
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

WORKING PAPER 179 FEBRUARY 1979

CONCURRENT SYSTEMS NEED
BOTH SEQUENCES AND SERIALIZERS

Carl Hewitt

ABSTRACT

Contemporary concurrent programming languages fall roughly into
two classes. Languages in the first class support the notion
of a sequence of values and some kind of pipelining operation
over the sequence of values. Languages in the second class sup-
port the notion of transactions and some way to serialize trans-
actions. In terms of the actor model of computation this dis-
tinction corresponds to the difference between serialized and
unserialized actors. In this paper the utility of modeling both
serialized and unserialized actors in a coherent formalism is
demonstrated.

A.I. Laboratory Working Papers are produced for internal circulation,
and may contain information that is, for example, too preliminary or
too detailed for formal publication. Although some will be given a
limited external distribution, it is not intended that they should
be considered papers to which reference can be made in the literature.

This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support
for this research was provided in part'by the Office of Naval Re-
search of the Department.of Defense under Contract N00014-75-C-0522.

S•ASSA CHUsEs INSWTUrfE OF TECNbOL04-p

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/4404569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DRAFT February 1979 1 Sequences and Serializers

II -- INTRODUCTION

Contemporary concurrent programming languages fall roughly into two classes. Languages in the
first class support the notion of a sequence pf values and sorne kind of pipelining operation over the
sequence of values. Examples of such languages are the lambda calculus [Church: 19??], LAMBDA [Scott:
19??], LISP [McCarthy: 1660], data flow [Weng:' 19756, APL [Iverson 19??], Networks of Parallel Processes
[Kahn and MacQueen: 1977). Languages in Jhe second laiss support the notion of, transactions and some
way to serialize transactions. Examples of languageconstructs which are designed to serialize transactions
are semaphores [Dijkstra1 : 19??], monitors. [Brinch Hansei . 19??; Hoare: 19??], and serializers [Hewitt and
Atkinson: 19751, and Communicating Para jel Prqcesses (Hpare: 1978].

The ACTI langua.e described in this paper, is d4signei1 to support thq implementation of both
serialized and unserialized actors. The same communication mechanism is used: to support both kinds of
actors. A serialized actor can only process one message at;a tinme. It is created in an initial state, and can
change its state after each message which it 'receives. An. unserialized actor can process arbitrarily'
messages in parallel and does not change sitate.

.1 i I

DRAFT February 1979 . 2 Sequences ind Serializers

III 1- sE9S EI C1i ACTORS

Sequences are a standard example of a nseriliz.dcl act0tt. They can be constructed using closures
in the lambda calculus languages.. Alternhtively 'langdges like PURE LISP provide primitives for
selecting the first element and the rest of the elements of aa nonempty list as well as the ability to construct
a new list given an object and a list." I will ue. the unpack notation described in an appendix to this

paper to construct sequences and select their ~ibpartt. :

111.1 -- A Goncurrefi dase Expression

Clearly some kind of conditi6nal test is
selectcase-for expressions of the following, form:

(select-case.for expression
(pattern I then bod 1.)

needed,

(pattern then t244)bove: nti eo
[none-c4-th6_8boY6: altbiarmati,4e M)~l

in ','implementations. Use will be made of

which when evaluated first evaluates expression to proiuýe a value V.

If the value V matches any of the patteyn'then 1he rresponding bod is evaluated and its value is
the value of the selectcase.or expressiori. If the vall e;t matches ,more than one of the patterni then an
arbitrary one of the corresponding body,4 is Selected. to bý executed. However, if the value of expression
can match two different patterns then the Progran•mini Apprentice will warn the user if it cannot
demonstrate that the results of executing the bodies are i.hdistinrguishable. This rule has the advantage
that it makes bodyo depend only on pattern making. it easy.idd, more selections later.

We shall say that two activities are cdnpurrent i-f i- is possible for them to occur at the same. The
concurrent case statement facilitates efficient implFm~ntation by allowing concurrent matching of
expression against the patterns. This' ability is impdrtant in applications where attempts to determine
whether or not conditions hold take largeamounts of timT.

If the value V does not match any of the
provides the ability to have the patternsi represent
the general case if none of the special tases apply.

•POR then alternative.body :is executed. This rule

specil! case leaving the alternative.body to deal with

j •

1

I
I

i I

I'

I
I

DRAFT February 1979 31 Sequences and Serializers

III.2 -- Squash Duble Asterisks

The first problem is to write a procedure [caleo squash.asterisks] which, transforms a string of
characters to replace very pair of consecutive asterisks **" by an uparrow "+".

• . " . '.,. . ' , .'

(define (squash =s)
;to squash the double asterisks of a. string s which" i a seuence of characters

[is: (a String)]
[definition:

(select _casejfor s ;the rules for s ar"
((a String [characters: []]) then (a String [characters: []))

;if s is the empty string, thern the ýalud is6 the empty striig
((a String [characters: [(an Asterisk) |!rests]]) thent

;if the first character of s is an asterisk
(select_casefor rest.s ;then the rules ~or the rest f a are

((a String [characters: []]) then ;if thle rest of sis empty
(a String [characters: [(an Asterisk)]])) ;theA!, he)alue .is a string with one asterisk

((a String [characters: [(an asterisk). !=restrest,s]]) theen
(a String [characters: [(ain Uparrow) !(squash'.r.estrest-s.)]]))
;if the first character of therest of s is 'n asterisk
;then the value is a sequence. beginning with, in uparrow followed by
;the result of squashing the rest of the rust ýf s

((a String [characters: [((-, (an Asterisk)) A =second.s) !=restjrest_s]]) then
;if the first character of the resi of s is (ot an asterisk
(a String [characters: [(arn Asterisk). seconds !(squash rest.rests)]]))))
;then the value is a sequende beginning witgi an asterisk followed by
;the second character ofs followed by
;the result of squashing 'tho reit of the rest of s

[(a String [characters: [(((- (an Asterisk)) A: =first.s) !=.est_s]]) then
;if the first character of s is not an asterisk
(a String [firsts !(squash rest..s)[)])])
;then the value is the first character of s followed by the result of squashing the rest of s

1.

(V·

111

I.3 --- Disassemble a Seque nce of Cards'

The problem is to disassemble a sequence of cards, to produce a sequence of the characters in the
cards. An extra space should be inserted at the end of,!ealch card.

I I

(define (disassemble =s)
;to disassemble a card deck s inserting a blank at the,end of each card

[is: (a String)]
[definition:

(select.case.for s ;the rules for s are
((a Deck [cards: []]) then

(a String [characters: []])) ;if s is empty then return the empty sequence of characters
((a Deck [cards: [(a Card [string: =cs]) !=rest.]]) then'

(a String [characters: [!cs (a Blanki !(disassemble !=rest.t)]])))])

DRAFT February 1979 41 Sequences and Serializers

III.4 --- Assembling a Line Printer Format Listing

The problem is to format a sequence of characters into a listing in line printer format which is a
sequence of strings of 125 characters each with the last string completed with spaces if necessary. First we
define a procedure that will produced a string with n blanks.

(define (blanks =n) ;to produce a string of n blanks

[is: (a (String (length: n] [characters: (a Sequence [each..element: (a Blank)])]))]
[definition:

(selectcase_for n ;the rules for n are

(0 then (a String [characters: []]))
;if it is zero then the value is the empty string,

((> 0) then ;if n is greater than zero.
(a String [characters: [(a BlAnk)' !(blanks (n - 1))]])))])

;then the value is a string with a blank followed by n minus 1 blanks

Using the above procedure we can define the procedure to assemble a string into a listing as follows:

(define (assemble =s)
[is: (a Listing [eachJine: (a String [length: 125])])]
[definition:

(let ((a Sublisting [lines: =i] [buffer: hb]) be (subassemble •))
;the procedure subassemble is defined below

then (a Listing [lines: [!1 (a Line [characters: [!b (blanks (125 -'(length b)))]])]]))])

(define (subassemble =s) ;to subassemble a sublisting of s.

[is: (a Sublisting)]
[definition:

(select _casejor s ;the rules for s are :

((a String [characters: []]) then ;if S is an empty string

(a Sublisting
[lines: []]

[buffer: (a String [characters: []])]))

((a String [characters: [=firsts !=rests]]) then
;let first-s be the first character of s and rests be the rest of the characters of s

(let

((a Sublisting [lines: =1] [buffer: =b]) be (subassemble (a String [characters: rest.s])))
then

(select_casefor (length b) ;the rules for the length of b are
((< 125) then ;if it is less than 125

(a Sublisting
[lines: I]
[buffer: [!b first.s]]))

(125 then ;if the length 'of.b is 125
(a Sublisting

[lines: [!I b]]
(buffer: (a String [characters: [first.s]])]))))))])

II

DRAFT February 1979 5 Sequences and Serializers

111.5 --- Reformat Card Sequence for Line Printer

The problem is to reformat a sequence of cards. into a listing of lines of 125 characters each. The
sequence of characters on each card should be followed by an extra space, and the last line of the listing
should be completed with spaces if necessary.

(define (reformat =s)
S[is: (a Listing)]
[definition:

(assemble (disassemble s))])

II1.6 --- Conway's Problem

The problem [Conway: 19631 is to adapt reformat to replace every pair of consecutive asterisks by an
uparrow.

(define (printerformat..squasheddisassembled =s)
[is: (a Listing)]
[definition:

(assemble (squash (disassemble s)))])

It is quite informative to compare the above solution with the one given by Hoare in his published
paper on Communicating Sequential Processes. The programming styles are quite different but the
amount of concurrency possible in the two implementations is similar. I believe that the programming
style represented above constitutes an useful programming methodology which should be supported.

II.7 --- Multiple Output Sequences

One of the fundamental abilities of coroutines is the capability of combining operations so that
multipass algorithms are coalesced into a single pass. A classic example is the oddsand-evens procedure
which splits a sequence into two subsequences. For example (odds.andevens [1 3 2 4 1 5]) is
{[odd: [1 3 1 5]] [even: [2 4]]}. We begin by defining the notion of an interleaving of two sequences:

DRAFT February 1979 6 Sequences and Serializers

(define ({=sl =s2) is (an Interleaving [sequence: =s]))
[definition:

(xor ;either
({si s2 s) each.is []) ;sl, s2 and s are all empty sequences
(and ;or

(s is [=first-s !=rest s]) ;s is not empty
(or ;and

(and
(sl is [firsts !=restsl]) ;the first element of sl. is the same as s
({restsl s2) is (an Interleaving [sequence: rest.s])))

;and s2 and the rest of si is an interleaving of s
(and ;or vice versa

(s2 is [firsts !=rest s2])
({sl rest..s2) is (an Interleaving (sequence: rests]))))))])

Using the notion of interleaving we can give a partial specification of the problem to be solved and
provide an initial implementation.

(define (odds..and evens =s)
[preconditions: (s is (a Sequence [each.element: (an Integer)]))]
[is: ([odd: =o (a Sequence [each-element: (an Odd)])]

[even: =e (a Sequence [eachelement: (an Even)])])]
[constraints:

({jo el) is (an Interleaving [sequence: s]))]
[definition: ([odd: (odds s)] [event (evens s)]}])

;where the functions odds and evens are defined below

(define (odds =s)
[definition:

(selectcase_for s
([] then [])
([=first_s !=rests] then

(selectcase..for first-s
((an Odd) then [first.s !(odds rests)])
[none.oftheabove: (odds rests)])))])

(define (evens =s)
[definition: i

(selectcasejor s
([].then [])
([=first.s !=rest-s] thent

(select__casefor firsts
((an Even) then [first.s !(evens rest-s)])
[noneof.theabove: (evens rests)])))])

Sequences and Seriaiizers

Unfortunately the above implementation requires that the input sequence be scanned twice: to look
for odd numbers and to look for even numbers. The following implementation solves this problem:

(define (odds.and-evens =s)
[preconditions: (s is (a Sequence [each-element: (an Integer)]))]
[is: ([odd: =o (a Sequence [each-element: (an Odd)])]

[even: =e (a Sequence [each.element: (an Even)])]}]
[constraints:

({10o e) is (an Interleaving [sequence: s]))]
[definition:

(select.easejor s
([] then {[odd: []] [even: []]})
([=first..s !=rest_s] then

(let ({[odd: =odds-rest s] [even: =evensrest s]) be (odds-and-evens rest.s)) then
(select _casejfor first-s

((an Odd) then
([odd: [!odds..rests first s]]

[even: evens-rest.sj))
((an Even) then

([odd: oddsjrest.s]
(even: [!evens.rest.s firsts]]))))))])

It is interesting to compare the above implementation with the style of programming in (Kahn and
Macqueen: 1977 and Weng: 19751.

III.8 --- Advantages of Sequence Actors

Sequence actors have a number of advantages over previously published proposals for
implementing coroutines.

I1l.8.a --- No Special Termination Rules

There are no special termination rules that must be imposed to make actor sequences behave
properly. The empty sequence [] enjoys the same privileges as all other actors. Note that Communicating
Special Processes have a special protocol to deal with terminating processes. Also the networks of parallel
processes of [Kahn and Macqueen: 1978] which work with infinite streams. Both finite and infinite
sequences are accommodated in a natural way within the programming paradigm based on actor
sequences.

DRAF T' Feb'ruary 1979

.Sequences and Serializers

III.8.b --- Greater Concurrency

Actor sequences offer the possibility of greater concurrency than has been available in previous
proposals for coroutines. We describe a Split of a sequence in the following way: ,

(describe (a Split [initial: =i] [final: =f])
[is: [!i !f]]
[constraints:

(or
(not (i is. []))
(not (f is [])))])

In other words a Split is a division of a sequence into an initial segment i and a final segment f such that
at least one of them is not empty. Using the above construct we can define an actor which forms the
product of all the elements in a sequence as follows:1

(define (productof..elements =s)
[definition:

(select_c.ase jor s
([] then 1)
((a Split [initial: =i] [final: =f]) then

((product-ofelements i) * (productof-elements f))))])

The above implementation makes good use of one of the fundamental characteristics of actors: they are
defined by their behavior, not their physical representation [Hewitt, Bishop, and Steiger:' 1973). A sequence
can be split at any point that is convenient. This capability can be used to vastly increase the parallelism
of some systems. Consider the product-of-elements of sequences formed by processes such as the one given
below which generates a stream of the values of the leaves of a binary tree.

(define (fringe =t)
[preconditions: (t is (a Binary.tree))]
[definition:

(selectcaseJor t
((a Leaf [value: =x]) then [x])
((a Nonterminal [lefltsubtree: =tl] [rightsubtree: =t2]) then

[!(fringe ti) !(fringe t2)]))])

For example
.t r •:

1: This implementation is an adaptation of a suggestion of Henry Lieberman.

DRAFT February 1979

Sequences and Serializers

(productof.elements
(fringe

(a Nonterminal
[leftsubtree:

(a Nonterminal
[left-subtree: (a Leaf [value: 987])]
[right.subtree: (a Leaf [value: 89])])]

'[right-subtree:
(a Nonterminal

[left-subtree: (a Leaf [value; 789])]
[rightsubtree: (a Leaf [value: 98])])])))

will perform the multiplications (987 * 89) and (789 * 98) concurrently. This degree of parallelism is not
possible using previously published proposals for coroutines. If enough processors are available, the
above implementation using sequence actors can execute in the logarithm of the time of previously
published coroutine mechanisms.

IV -- OTHER UNSERIALIZED ACTORS

IV.1 --- Recursive Subroutines

Recursive functions are often quite awkward to implement using serialized actors. Consider the
problem of implementing (factorial n) as fast as possible. I.e. the problem is to compute

n n-1 2...*2, 1

Consider the following grouping of the above multiplications:

(n n-1...n/2) * ((n/2 -1) * (n/2 -.2) ... * 2 1)

The multiplications in two outermost expressions can be performed in parallel. This idea can be applied
recursively to obtain the following implementation:

A r *

DRAFT February i979

DRAFT February 1979 10 Sequences and Serializers

(define (factorial =n)
[preconditions: (n is (a Positiveinteger))]
[is: (an Integer)]
[definition:

(subfactorial n 1)])

(define (subfactorial =k =r)
[preconditions:

(ik r) eachjs (a Positiveinteger))
(k 1 r)]

[is: ((factorial k) / (factorial r))]
[definition:

(select_casejfor k
(r then 1)
((r + 1) then k)
((> (r + 1)) then

(select_casejor (k + r)
((an Even) then

(subfactorial k ((k + r) / 2))
(subfactorial ((K + r) / 2) r)))

((a Odd) then

(k * (subfactorial (k - 1) r))))))])

The above implementation executes in the logarithm of the time of the iterative implementation on an
actor machine which consists of a large number of processors connected by a high bandwidth network.
The reader is urged to attempt to write the above implementation using serialized actors.

DRAFT February 1979 11 Sequences and Serializers

V -- SERIALIZERS

The guardians in this paper are implemented using primitive serializers which are a further
development of serializers [Hewitt and Atkinson: 1977). Primitive serializers have the advantage that they
have been given a mathematical denotation [Hewitt and Attardi: 1978). Primitive serializers are also more
flexible in that they have less machinery built into them than previous serializers which gives them the
ability to efficiently implement the facilities (such as queues) that were provided by previous serializers as
well as to implement new facilities that were not provided before. Unlike previous serializers, primitive
serializers can explicitly deal with actors which act as qustomers to whom replies should be sent.

At the same time primitive serializers maintain the advantages of serializers over other published
proposals for synchronization primitives such as monitors [Hoare: 1974; Brinch-Hansen: 1973] and
Communicating Sequential Processes [Hoare: 1978). The examples considered in this paper are used to
illustrate the advantages of using primitive serializers for specifying and proving properties of guardians.

VI -- Primitive Serializers

The design goals for monitors is that they were intended to be a structuring construct for
implementing operating systems. There have been some attempts to develop useful proof rules for
monitors [Howard: 1976; Gjessing: 1977; Hoare: 1974; Owicki: 1978) Serializers [Hewitt and Atkinson: 1976]
are a further step toward these goals. However the language construct developed by Hewitt and Atkinson
may be too complicated to be useful both as a formal foundation and as a basis for the proof
methodology. In the study we present here the approach has been reversed. Instead of designing a
desirable set of primitives and then trying to describe their semantics in a formal way, we started with a
basic primitive with a simple semantics.

The syntax of a simple primitive serializer is the following:

(create_serialized_actor
[state:

[component : description1]

[componentn: descriptionn]]
[initialize:

[component 1 - expression1]

[component,- expressionn]]
[constraints: ...universally true properties declared here...]
[receivers:

(patternjfor.communication, received bd 1)

(patternjfor.communicationn received body,)]
[transitions:

(define transition1: transitionbody1)
.... i, !oii

(define transitionk: transitionbody)])

DRAFT February 1979 12 Sequences and Serializers

Serializers are introduced to create actors whose state may change after the receipt ofp a
communication. A convenient way to express this is by means of the notion of state. The behavior of an
actor depends on its (local) state, and its state may change as communications are received. The actor
created by create.serialixed_actor behaves in the following way. It can be either locked or pnlocked.
When it is created it is unlocked. When the first communication arrives, the serializer becomes locked and
the body of a receiver in the receivers section whose pattern matches the communication receivecq iý
selected for execution. Communications arriving while the serializer is locked are queued outside the
serializer in order of arrival. When the serializer becomes unlocked the next communication to be
processed is be taken from this queue. An important consideration in the design of efficient serializers is
that they should remain locked for as short a time as possible.

Commands of the form (transmit t - c) are used in receivers to transmit the communication actor c
to the target actor t.

When a result of the form

(transitioni
[component 1 4- expression1]

[component n - expressionnl)

is computed then the serializer transfers control to transition i in a state with the state components
component 1, ..., and component n having the values expression1 , ..., and expression n respectively.

When a result of the fornm

(unlock
[component 1 <- expression 1]

[component n - expressionn])

is computed then the serializer unlocks in a state with the state components component 1, ... , and componentn
having the values expression, ..., and expressionn respectively.

Note that there are three separate events which must occur before a communication C can be
received by a serialized actor T. First it must be transmitted in a transmission event of the form

(a Transmission [target: TJ [communication: C])

Next it must arrive in a delivery event (synonymous with arrival event) of the form

(a Delivery [target: T] [communication: C])

Hardware modules called arbiters are used to establish an arrival ordering for allicommunications
delivered to T. Finally it must be received in a receipt event of the form

1;.V

Sequences and Serializers

(a Receipt [recipient: T] [communication: Cj)

Communications are received in the order in which they are delivered. The receipt event marks a
transition in which the target changes from unlocked to locked. Thus if a serialized actor becomes locked
then no more messages can be received until it unlocks.

VI.1 --- A Concurrent Conditional Expression

The implementation of the hardcopy server given below makes use of a conditional construct of the
following form:

(select_oneof
(if condition1 then body 1)

(if conditionn then bodn)
[none.ofotheabove: alternative.body])

If any conditioni holds then the corresponding body1 is evaluated. If more than one of the condition.
hold then an arbitrary one of the corresponding body is selected to be evaluated. However, if it seems to
the, Programming Apprentice that more than one of the'condition. might hold simultaneously then it will
warn the user if it cannot demonstrate that the execution of the corresponding body have equivalent
effects. The rule of concurrent' consideration of conditions encourages programs which are morq robust,
modular, easily modifiable, and efficient than is possible with the conditional expression in LISP for te
reasons which are enumerated in the discussion of the select_casefor expression. If none of the conditioni
hold then alternative_body is executed.

The reader will probably have noticed that the select._one_of construct is very similar to the
select_casefor construct which we introduced earlier in this paper. The reason for introducing both
constructs is that whereas the select_caseJor construct is often quite succinct and readable there are cases
such as the implementation below in which it is desirable to concurrently test properties of more than one
actor in a single conditional expression. making the use of select_oneof preferable.

The select_,one_of expression is similar to the conditional expression of McCarthy modified in two
important respects. The first modification is that conditions have been generalized to allow pattern
matching as in the pattern directed programming languages PLANNER, QA-4, POPLER, CONNIVER,
etc. The second modification is to consider the conditions concurrently.

DRAFT February 1979

DRAFT February 1979 14 Sequences and Serializers

VII -- Air Line Flights

The purpose of the flight reservation actor is to maintain information on the number of seats still
available on a plane, the names of the passengers who have reservations, and the names of thoie waitorng
for a reservation. We assume that the flight reservation actor is sent messages by other computers
connected by a network.

Two kinds of transactions will be handled by a flight actor. The first kind is initiated when toe
flight actor receives a communication of the form

(a Request [message: (a Booking [person: p])] [customer: c])

which requests that a booking be made for a person p and a reply as to whether or not the booking Wvas
made to be sent to the actor c. The possible replies that will be sent to c are that a new booking a's
made, that the person p was already booked, or that the person p has been waitlisted in case a seat
becomes available later. The second kind of transaction 's initiated by the receipt of a communication of
the form

(a Request [message: (a Cancellation [person: p])] [customer: c])

which requests that a booking for a person p be canceled. The possible replies that will be sent to c are
that the booking was canceled or that the person p was not booked.

An important specification which must be met is that a response is guaranteed to be sent to the
customer c for each request received. Being part of a public utility, an airline flight is not allowed to
ignore a request. We believe that the requirement that processes must reply requests which they receive is
an imrportant one in the specification of the behavior of concurrent systems. It is analogous to the
requirement in serial programming that a procedure must return a value if it is provided with valid
arguments. For example if a subroutine factorial is sent the following communication:

(a Request [message: 3] [customer: c])

then it is natural to require that c will be sent the following communication:

(a Response [reply: 6])

In exactly the same way we require that if the reservation system is sent a communication of the form

(a Request [message: (a Cancellation [person: p])] [customer: c])

then c must be sent a communication which satisfies the following description:

(a Response [reply: (booked v waitlisted)]) .. .

DRAFT February 1979 Sequences and Serializers

Below we give an implementation of (createflight capacity) which creates a new flight actor with the
specified capacity. The implementation makes use of variables seatsJeft, reserved, and waiting which are
respectively the number of seats left on the flight and the passengers who are currently booked, and the
requests for bookings which are waiting for available seats.

(define (create.flight =capacity) ;to create a flight with a given capacity
[is: i

(a Serializedactor [receives.messages: (either (a Booking) (a Cancellation))])
(a Guaranteed-responder)]

[definition:
(createserialized_actor

[state:
[seatsJeft: (an Integer)]
[reserved: (a Set [each-element: (a Passenger)])]
[waiting: (a Queue [each.element: (a Booking.request)])]]

[initialize:
[seatsJeft - capacity]
[reserved - ()}
[waiting +- empty.queue]]

[receivers:
((a Request [message: (a Booking [person: =p])] [customer: =c]) received

;if the request is to book a person p
(select case_for p

(((passengers) then
;if p is an element of the set of passengers
(transmit c -ý [reply: already.booked]) ;reply that the person is already booked
(unlock))

(-i(passengers) then ;if p is not an element of passengers
(select_caseJfor seatsJeft

(0 then ;if it is 0. then
(transmit c 4- [reply: waitJisted])
(unlock [waiting *- (waiting enqueue the.request)]))

((> 0) then ;if seatsJeft is greater than 0
(transmit c *- [reply: booked])
(unlock

[passengers *- (passengers U {p))]
;add p to the set of passengers

[seatsJeft +- (seatsieft - 1)]))))))

;decrentent the count of seats left.
((a Request [message: (a Cancellation. [persqn:. Fp])] [customer: =c]) received

(select._casefor p
((E passengero) then

(transmit c 4- [reply: canceled])
(ponder

[seatsJeft - (seatsJeft + 1)]
[passengers #- (passengers - (p))]))

;reply that the booking has been canceled
(-,(f passengers) then

(transmit c +- [reply: not-booked])
(unlock))))1

Sequences and Serializers

[transitions:
(define ponder

(select_one_of
(if (seatsJeft > 0)
and

(waiting is (a Queue
[front: (a Request

[message: (a Booking [person: =p))]
[customer: =c])]

[all-butjront: =restwaitingl))
then

(transmit c +- [reply: booked])
(unlock

[passengers - (passengers i {p))]
[seatsJeft +- (seatsJeft - 1)]
[waiting 4- rest-waiting]))

[noneofthe above: (unlock)]))])])

We would now like to consider some of the interesting aspects of the above implementation.

VII.l --- Receipt of Reservation before Waitlist Notification

Within the actor model of message passing, it is possible that a customer will receive a reply that
they have a reservation before they receive a reply that they have been waitlisted. This models observed
behavior in real networks with gateways as well as the behavior of ordinary mail systems.

VII.2 --- Mutual Acquaintances

Because of the ability of an airline flight to keep customers on a waiting list in case a seat becomes
free, the. customers become an acquaintance of the airline flight while at the same time the flight is an
acquaintance of the customer. This situation of mutual acquaintanceship implies that reference counts
cannot be relied on to reclaim storage effectively. Tom Knight and I have improved the methods for
doing garbage collection in systems with large numbers of processors building on the work of [Bishop:
1977; Baker: 1977 and 1978; and Halstead: 19781.

DRAFT February 1979

1? T. I

Sequences and Serializers

VII.3 --- Limitations of Procedure Calls as Communication Mechanism

The above implementation points up one of the limitations of procedure calls as a communication
mechanism, Normal procedure calls allow just one response for each request sent. However in the case of
booking requests we sometimes want to send two responses.

VII.4 --- Potentially Unbounded Nondeterminism

Because of the guarantee of service, the above actor exhibits potentially unbounded nondeterminism
[Hoare: 19781. This is permissible within the CHRONON model for actor systems although it seems, to
cause grave difficulties for other mathematical models of concurrent systems. For example the possibility
of unbounded nondeterminism is apparently inconsistent with the use of Egli-Milner Ordering as tie
basis for a mathematical model of concurrent systems.

VIII -- INTERRUPTS

In .order to study the problem of interrupts we will consider the simple problem of implementing
division using successive subtraction. The behavior of a serialized actor named thedivider created by
create-uninterruptibledivider defined below is as follows. If it receives a communication asking it solve a
division problem given a numerator n, divisor d, and partial quotient q, then if the divisor d is less than
the numerator n then the customer is told the answer. Otherwise the-divider is sent a simpler version of
the problem to solve.

DRAFT February 1979

DRAFT February 1979 18 Sequences and Serializers

(define uninterruptibledivider
[is:

(a Serialized.actor [receives: (a Request [message: (a Problem)])])
(a Guaranteed..responder)]

[definition:
(createserialized_actor

[state:]

[initialize:]

[receivers:
((a Request

[message: (a Problem
[numerator: =n]
[divisor: =d]
[partial-quotient: =q])]

[customer: =c])
received

(select_casefor d
((< n) then

(transmit c +- [reply: (an Answer [quotient: q] [remainder: r])])
(unlock))

((> n) then
(transmit uninterruptibledivider -

(a Request
[message: (a Problem

[numerator: (n -d)]
[divisor: d]
[partial-quotient: (q + 1)])]

[customer: c]))
(unlock))))])])

Notice an important difference between the unsynchronized communication in the actor and ttie
synchronized communication in communicating sequential processes: a serialized actor can send a message
to itself, but if a communicating sequential process attempts to communicate with itself then deadlock
immediately results.

Within the actor model of computation, it is easy to prove that the implementatiop givet- above has
the guaranteed response property. That is if an event of the form

(a Delivery
[target: uninterruptibledivider]
[communication:

(a Request [message: (a Problem)] [customer: c])])

.V

Sequences and Serializers

occurs then an event of the form

(a Transmission
[target: c]
[reply: (a Answer)])

will occur. Unfortunately this guarantee is not by itself sufficient for my purposes. If I perform the
following instruction

(transmit uninterruptible-divider -

(a Request
[message: (a Problem

[numerator: 2178]
[divisor: 3]
[remainder: 0])]

[customer: Carl]))

then I would like not to be required to pay for the resulting computation! I would like to require that all
computations which I initiate can be interrupted by me if I later change my mind. I agree to pay for all
computation that has actually be performed before I interrupt plus a fixed fee agreed, in aadvancq for ,e
interruption.

In this case my new stronger specification can be met by the following implementation:

S1 * ·

DRAFT February 1979

Sequences and Serializers

(define interruptibledivider
[is:

(a Serializedactor [receives:
(either

(an Interruptrequest)
(a Request [message: (a Problem)]))])

(a Guaranteedj'esponder)]
[definition:

(create_..serialized-actor
[state: [interrupted: (a Boolean)]]

[initialize: [interrupted *- false]]

[receivers:
((an Interruptrequest [customer: =c]) received

(transmit c *- [reply: interrupt.received])
(unlock [interrupted *- true]))

((a Request
[message: (a Problem

[numerator: =n]
[divisor: =d]
[partial-quotient: =q])]

(customer: =c])
received

(select one._of
(if (not interrupted)

then

(select_case.for d
((< n) then

(transmit c +- [reply: (an Answer [quotient: q] [remainder: r])])
(unlock))

((M n) then

(transmit interruptible.divider *
(a Request

[message: (a Problem
[numerator: (n -d)]
[divisor: d]
[partial-quotient: (q + 1)])]

[customer: c]))
(unlock))))

(if interrupted then
(transmit c * [complaint: (an Interruption)]))))])])

'R~.

The behavior of a serialized actor named interruptibledivider created by createinterruptibledivider
is: as follows. If it receives a communication asking it solve a division problem given a numerator n,

DRAFT February 1979 20

Sequences and Serializers

divisor d, and partial quotient q before it is interrupted, then if the divisor d is less than the numerator n
then the customer is told the answer. Otherwise interruptible.divider is sent a simpler version of the
problem to solve.

IX -- CONCLUSIONS

Our research paradigm has been to discover and characterize the computations that are physically
possible using the actor model of computation. It began with an intuitive account [Hewitt, Bishop, and
Steiger: IJCAI-73] of the benefits that might be obtained from this approach. Important progress has
been made [Hewitt and Baker: 1977, Baker: 1978) in characterizing the Actors were developed to synthesize
a unified semantics that combined the message passing, pattern matching, and pattern directed invocation
and retrieval in PLANNER [Hewitt: 1969; Sussman, Charniak, and Winograd: 1971; Hewitt: 1971], the
modularity of SIMULA [Birtwistle et. al.: 1973, Palme: 1973), the message passing, ideas of an early design
for SMALLTALK [Kay: 1972], the functional data structures in the lambda calculus based programming
languages, the concept of concurrent events from Petri Nets (although the actor notion of an event is
father different than Petri's), and the protection inherent in the capability based operating systems with
their protected entry points.

The work which we have done on programming languages grows out of this semantic basis.
PLASMA [Hewitt: 1977, Hewitt and Smith: 1975] adopted the ideas of pattern matching, message passing,
and concurrency as the core of the language. The ACTI language described in this paper and ETHER-O
[Kornfeld: 1979, Hewitt: 1979] represent the latest generation of the experimental languages which we have
implemented.

An important issue that must be faced in any model of concurrent computation is resolving the
potential conflict when an actor receives two communications at approximately the same time. 6ne
possibility is that the two communications do not interact in any way. This choice is made in the lambda
calculus, pure recursive subroutines, streams [Kahn and MacQueen: IFIP-77 and Weng: 1975], and
unserialized actors. Another possibility is that the communications must be serialized so that the reception
of one is delayed until the actor is ready to receive it. This choice is made in monitors, Communicating
Sequential Processes, and serialized actors. One of the achievements of the actor model is to combine both
serialized and unserialized actors in a unified semantics of concurrent systems with a mathematical
semantics in which each actor has a denotation.

This paper has attempted to support the thesis that both serialized and unserialized .actors are
needed in concurrent systems. The examples in this paper show how sequences and recursive subroutines
(implemented as unserialized actors) can be used to vastly increase the concurrency possible in many
computations. On the other hand there are some specifications such as the ones for, the,air ili.~isystyra
and interruptible divider considered in this paper which can only be implemented using serialized actors.
In addition apparently there are some functions which are most efficiently implemented using both
serialized and unserialized actors. . •

h)
i'

DRAFT'I February 1979

DRAFT February 1979 '22 Sequences and Serializers

X -- ACKNOWLEDGEMENTS

I would like to thank Tony Hoare for suggesting the topic of this paper. Conversations wish Giples
Kahn, Dave MacQueen, and Jerry Schwarz, were particularly helpful in writing the section on sequen5s.
Dave MacQueen and Richard Waters maate some extremely perceptive and helpful comments which
markedly helped us to improve the presentation in this paper. The hospitality and collaboration of Luigia
Aiello, Stein Gjessing, Tony Hoare, Dave Macqueen, Kristen Nygaard, Gianfranco Prini, Jerry ,Shw~,z,
and Bob Tennent in the summer of 1978 greatly facilitated the development of the ideas'.in this paper. ,"

XI -- BIBLIOGRAPHY

Atkinson R. and Hewitt, C. "Specification and Proof Techniques for Serializersi IEV
Transactions on Software Engineering. 1978. To appear.

Baker, H. H. Jr. "Actor Systems for Real-time Computation" MIT/LCS/TR-197. MIT Technical
Report. March 1978.

Baker, H. J. Jr. and Hewitt, Carl I"ncremental Garbage Collection of Processes" MIT A.I., Memo
454. December, 1977.

Bishop, P. B. "Computer Systems with a Very Large Address Space and Garbage C llecti'"
MIT/LCS/TR-178. MIT Technical Report. May 1977.

Conway, M. E. "Design of a Separable Transition-Diagram compiler" CACM. Vol 6. No. 7. July
1963. pp 396-408.

Dijkstra, E. W. "Guarded Comnrands, Npndeterminancy, and Formal Derivation of Programs"
CACM. Vol. 18. No. 8. August 1975. ppi 453-457.

Good,D. I.; London, R. L.; and Bled-soe, W,. W. "An Ipteractive Verification System" IEEE
Transactions on Software Engineering. Vol. 1. 1975. pp 59-67.

Greif, I. "Semantics of Communicating Parallel Processes" MAC Technical Report TR-154.
September 1975.

Greif, I. and Hewitt, C. "Actor Semantics of PLANNER-73" Proceedings of AdCM
SIGPLAN-SIGACT Conference. Palod Alto, California. January, 1975.

A i It!

Hewitt, C. "Viewing Cor.trol Structures as Patterns of Passing Messages" A.I. Journal. Vol. 8. No.
3. June 1977. pp. 323-364.

Hewitt, C. "Using Message Passing in Concurrent Programming" MIT Artificial Intelligeo•ce
Working Paper. April 1977.

DRAFT February 1979 .23 Sequences and , Serializers

Hewitt, C. and Atkinson, R. "Synchironizaticri in Actor Systems" Proceedings of Conference von
Principles of Programming Languages. January 1977. Los Angeles, Calif.

Hewitt, C. and Attardi, G. "An Axiomatic Denotation Specification of a Concurrent Programming
Language" MIT Working Paper, April 1978.

Hewitt, C. and Smith, B.: "Towards 4a Programming Apprentice" IEEE Transactions on Software
Engineering. SE-I, 1. March 1975. pp. 26-45.

Hewitt, C. and Baker , H. "Laws. for Communicating Parallel Processes" IFIP-77. Toronto. August
1977. pp 987-992. I

Hewitt, C. and Baker, H. .Actors and Continuous Functionals" IFIP Working Conference on Formal
Description of Programming. Concepts" August 1-5, 1977. St. Andrews, New Brunswick,
Canada. MIT A. L.Memo 496A. MIT/LCS Technical Report 194. December 1977.

Hoare, C. A. R. "Communicating Sequential Processes" Department of Computer Science, The
Queen's University,; ielfast. March 1977.

Hoare, C. A. R. and McKeag, R. M. "Structure of an Operating System" Second Draft. 'October
1977. N'

Ingalls, D. H. H. "The Smalltalk-76 .Prograinming System Design and Implementation" Conference
Record of the Fifth Annual ACM. Symposium on Principles of Programming Languages.
January 23-25, 1978.. Tucson, Arizona. pp. 9-16. I

KahnG. and Macqueen, D. B. 'Coroutines and ,Networks of Parallel Processes" iFIP-77. Montreal.
August 1977. pp 993-998.

Manna, Z. and McCarthy, J. "Properties of Programs and Partial Function Logic" Machine
Intelligence 5. Edinburgh University Press. 1970.

McCarthy, J. "Recursive functions of Symbolic.Expressions and their Computation by Machine + I"
CACM. Vol 3. No: 4. April 1960. pp 184-195.

I

McCarthy, J. "A Basis for a Mathematical Theory of Computation" in Computer Programming in
Formal Systems P. B affort and D. Hirschberg (eds.). North Holland. 1963..pp. 33-70.

Paterson, M. S. and Hewitt, C. E. "Comparative Schematology" ACM Conference .Rddord..of
Working Conference on Concurrent Systems and Parallel Computation. 1970. Available from
ACM. i ,

Shoch, J. F. "An Overview of the Programming Language Smalltalk-72". Convention Informatique
1977. Paris, France.

11 10 ;

Sequences and Serializers

Standish, T. A.; Harriman, D. P.; Kibler, D. F.; and Neighbors, J. M. "The Irvine Progr•.m
Transformation Catalogue". Department of Information and Computer Science. University
of California at Irvine. January 1976..

Strong, H. R. "Translatirig Recursion Equations into Flow Charts" Journal of Computer and
System Sciences. Jupne 1971. pp 254- 285.

Ward,S. A. "Functional Domains of Applicative Languages" Project MAC TR-136. September
1974.

Weng,K. "Stream-oriented Computation in Recursive Data Flow Schemas" October 197,5 MIT
Project MAC Technical Memorandum!68. October 1975.

Yonezawa, A. "Specification and Verification Techniques for Parallel Programs Based on Message
Passing Semantics" MIT/LCS/TR-191. December, 1977.

I.P4

i F

. , [

1 'I.,-

24DRAFT February 1979

DRAFT February 1979 25 Sequences and Serializers

APPENDIX I --- The Unpack Construct

Our description system makes use of the unpack construct [Hewitt: 1971) which is denoted 4b "!"'in
relations. The unpack construct is used inside a sequence s to indicate that all of the elements of the
sequence which follows "!" are elements of s. For example if x is the sequence [3 4] and y is the sequence
[9 8] then the following equivalences hold:

[x !y] = [[3 4] ![9 8]] = [[3 4] 9 8]
[!x !y] = [![34] ![98]] = [3 4 9 8]

[!x 5 !x] ' = [![3 4] 5 ![3 4]] = [3 4 5 3 4]

The unpack operator is ailso usedlin pattern matching:

if the pattern [=x !=y] is matched against [1 2 3] then
x it bound to I and
y is bound to [2 3]

if the pattern [4 =x !=y] is matched against [4 5] then
x is bound to 5 and
y is bound to []

if the pattern [=x [4 !=y] !=Z] is matched against [9 [4 3] 7 8 9] then
x is bound to 9
y is bountd to [3] and
z is bound to [7 8 9]

APPENDIX II--- Implementation of Cells using Serializers

In this appendix I present an implementation of cells [Greif and Hewitt: POPL-75, Hewitt and
Baker:. IFIP-771 using primitive: serializers.

(define (create.cell =initialcontents)
[is: (a Serializedactor [receivesmessages: (either (a Contentsquery) (an Update))])]
[definition:

(createserialized_actor
[state:

[current.contents: (an Actor)]]
[initialize: .· !

[currentcontents *- initialcontents]]
[receivers:

[(a Contents-query) then
(unlock [reply: current.contents])] ;unlock the serializer for the next message

[(an Update [nextcontents: =n] then it
(unlock [reply: didupdate] [currentcontents 4- n)]])]) n.

;unlock the serializer with the current contents being n

DRAFT February 1979 26 Sequences and Serializers

The above definition shows how serializers subsume the ability of cells to efficiently implement
synchronization and state change in concurrent systems.

APPENDIX III --- Implementation of Semaphores using Serializers

Semaphores are an unstructured synchronization primitive that are used in the implementation of
some systems. The definition below shows how primitive serializers can be used to efficiently implement
semaphores.

(define (create.semaphore)
[is: (a Serialized_actor [receives.messages: (either (a Prequest) (a Vrequest))])]
[definition:

(createserialized_actor
[state:

[q: (an Queue [eachelement: (a customer)])]
[capacity: (a Nonnegativeinteger)]]

[initialize:
[q - (a Queue [sequence: []])] ;initially there are no waiting P requests
[capacity *- 1]]. ;the capacity is initially 1

[receipt.invariants:
(xor

(capacity > 0)
(q is (a Queue [sequence: -w[]])))]

[receivers:
[(a Request [message: P] [customer: =c]) received

(ponder [q * .(q enqueue C)])]
;ponder is a transition defined below

.[(a Request [message: V] [customer: =c]) received
(transmit c *- [reply:.DidV])
(ponder [capacity"'- (capacity + 1)])]]

[transitions:
[(define ponder

(select one of

(if (q is (a Queue
[front: =c]
[allbutjront: =rest...waiting_customers]))

and
(capacity > 0) :"

then
(transymit c 4- [reply: Di-.P]) .'
(unlock

[capacity *- (capacity - 1)]
[q +- rest_waiting._customers]))

(if (capacity is 0) then (unlock)))))]])])

In [Hoare: 1975] there is an elegant construction showing that monitors can be implemented using
semaphores. .I ,

Sequences and Serializers

APPENDIX IV--- Thumbnail Sketch of the Description System

This appendix presents a brief sketch of the syntax and semantics of our description system. A
paper which more fully presents the description system and compares it with other formalisms which have
been proposed is in preparation.

XI. --- Syntax

If <x> is a syntactic category then an expression of the form <x>* will be used to denote an arbitrary
sequence of zero or more items separated by blanks in the syntactic category <x>. An expression of the
form <x>t will be used to denote an arbitrary sequence of one or more items separated by blanks in the
syntactic category <x>.

The following is the syntax for descriptions and statements:

<description> ::= <identifier> I
=<identifier> I ;the chpracter = is used to mark local identifiers
<statement> I ;tote that statements (which are described below) are descriptions
<attribute.description> I
<instance.description> I
<criterial-description> I
<mapping.description> I
<sequence.description> I
<set-description> I
<multisetdescription> I
<instancedescription> I
(<description> viewed_as <description>) I
(<description> if <statement>) I
(<description> thatis <description>) I
(<description> such_that <statement>) I
(A <description>t) I
(v <description>t)
(either <description>t) I
-<description> I
(<relation> <description>*)

-A" .

DRAFT February 1979

DRAFT February 1979 28 Sequences and Serializers

<criterialdescription> ::= (the_only <description>t)

<instance description> ::= <indefiniteinstance> I <definitejnstance>
<indefiniteinstance> ::= (<indefinite_article> <concept> <attribution>*)
<definitejnstance> ::= (the <concept> <attribution>*)

;definite_instances are used only for criterial descriptions

<indefinite-article> ::= a I an
;there is no semantic significance attached to the choice of which article is used

<concept> ::= <description> ;note that this is to order

<attribution> ::= [<binaryjelation_description> : <description>]t
<binary_relation_description> ::= <description> ;note that this is o order

<attribute.description> ::= <projective.attribute-description> I
(<indefinitearticle> <binary.relationdescription> of <description>)

<projective-attributedescription> ::= (the <binary.relationdescription> of <description>)
;expresses that <binaryrelationdescription> is projective for <description>
;see example below for an explanation of projective binary relations

<mappingdescription> ::= [<description> +t - <description>)+]

<sequence-description> ::= [<elementsdescription>*] I
<setdescription> ::= (<elementsdescription)*} I ;{ and) are used to delimit sets

<multiset.description> ::= {j<elements-description>*}) I ;{I and I) are used to delimit multisets
<elements-description> ::= ... I

<description> I
!<description> ;! is the unpack construct

<statement> ::= (<predicate> <description>*) I

<predication> I
(<description> coref <description>) I ;statement of coreference

({<description>*) each_is <description>) I

(and <statement>t) I

(or <statement>t) I
(xor <statement>t) I
(not <statement)) I
(implies <statement> <statement>)

<predication> ::= (<subject> is <complement>)
<subject> ::= <description>
<complement> ::= <description>

Note that the syntax of our description system reads somewhat like template English [Hewitt: 1975,

Bobrow and Winograd: 1977, Wilks: 1976) Thus for example we write (an Integer) in this paper instead of

writing that (integer) as was done in PLANNER-71. However we also allow the use of instance

descriptions such as (the Integer [>: 0] [<: 2]) to describe the Integer which is greater than 0 and less than

2.

DRAFT February 1979 29 Sequences and Serializers

We feel that it is quite important that a description expressed in template English correspond in a
natural way with the intuitive English meaning. For this reason we use the indefinite article in attribute
descriptions of such as the one below:

(4 is (an element of (2 4 6)))

where the binary relation element can occur multiply in an instance description such as the following:

(({2 4 6) is (a Set [element: 2] [element: 4])))

Attribute descriptions only make use of the definite article in cases like the one below

((the imaginarypart of (a Real)) is 0)

where the binary relation imaginary.part projectively selects the imaginary part of a Real. In this case the
relation imaginary part might be inherited from Complex via the following description:

((a Real) is (a Complex [imaginary.part: 0]))

For the purpose of describing mappings, I prefer the syntax

[=xI-4 ...x...]

[cf. Bourbaki: Book I, Chapter II, Section 3] to the syntax

(x#. ...x...)

of the lambda calculus. For example the mapping cubes which takes a number to its cube can ;,e
described as follows:

(describe. cubes
[is: [=n- nr311)

XI.2 --- Axioms

The behavioral semantics of the description system is defined by its underlying message-passing
semantics. The axiomatization given below is significant in that it represents a first attempt to axiomatize
a description system of the power of the one described here. As far as I know previous to the
development of this one, there did not exist similar axiomatizations for FRL, KRL, OWL, MDS, etc.

The most fundamental axiom is Transitivity of Predication which says that for any <description3>tri

Sequences and Serializers

Transitivity of Predication
(implies

(and
(<description1 > is <description2))
(<description 2) is <description3>))

(<description1 > is <description 3 >))

Another fundamental axiom is Reflexivity of Predication which says that for any <description>

Reflexivity of Predication
(<description> is <description>)

Other important axioms are Commutativity, Deletion, and Merging:

Commutativity
((a <description1 > <attributions 1 > <attribution2> <attributions3) <attribution4>) <attributions 5)) is

(a <descriptionl> <attributions1> <attribution4> <attributions 3> <attribution2 > <attributions5>))

which says that the order in which attributions of a concept are written is irrelevant,

Deletion
((a <description1> <attributionsl> (attributions 2>) is (a <description) <attributions 2>))

which says that attributions of a concept can be deleted, and

Merging
(implies

(and
(<description1 > is (a <description2 > <attributions 1))
(<description1> is (a <description 2 > <attributions 2>)))

(<description1> is (a <description 2> <attributions1> <attributions 2)))

which says that attributions of the same concept can be merged.

Additional axioms are given below for other descriptive mechanisms:

Coreference
(<description1 > coref <description 2>) if and only if i

(<descriptionl> is <description 2 >) and (<description 2> is <description1))

Criteriality
(implies

(and
(<descriptionl> is (theonly <description3)))
(<description 2> is (the_only <description3>)))

(<description1> toref <description2>))

DRAFT February 1979

Sequences and Serializers

Definite Selection
((the <descriptionl> of (a <description 2 > [<descriptionl>: <description3 >])) is <description 3))

Indefinite Selection
(<description1 > is (a <description 2> [<description3 >: <description4)])) if and only if

(<description4 > is (a <description 3 > of (<description1 > viewed_as (a <description 2>))))

Constrained Description
(<descriptionl> is (<description 2> such_that <statement>)) if.and.onlyif

(and
(<description1 > is <description2))
<statement>)

Qualified Description
(<descriptionl> is (<description 2 > thatis <description3 >)) if.and-onlyif

(and
(<descriptionl> is <description2 >)
(<description1 > is <description3g))

View Point
((<descriptionl> viewed_as <description2 >) is (<description 2 > such.jhat (<descriptionl> is <description 2>)))

Negation
(<description>) is -,<description2 >) if_and._only_if

(not (<descriptionl> is <description 2>))

Conjunction
(<description1 > is (A <description 2 > <description3>)) ifand_only_if

(and

(<descriptionl> is <description2 >)
(<description1 > is <description3 >))

Inclusive Disjunction
(<descriptionl> is (v <description 2 > <description3 >)) if-and_only_if

(or

(<descriptionl> .is <description2>)
(<description1 > is <description3>))

Exclusive Disjunction
(<descriptionl> is (oitlher <description 2> <description3 >)) ifand.onlyif

(xor

(<descriptionl> is <description 2 >)
(<description1 > is <description3>))

Conditional Description
(<descriptionl> is (<description 2> if <statement>)) if_ad._olnly_jf

(<statement> implies (<description1> is <description2 >))

DRAFTFI February 1979

DRAFT February 1979 32 Sequences and Serializers

XI.3 --- Examples

XI.3.a --- Articulation

Additional axioms hold for each of the primitive descriptive mechanisms of the system. For
example

(describe cubes
[is: (a Mapping [=n- n3])])

can be articulated as follows:

(cubes is (a Mapping [l-- 1] [2V- 8] [3"-> 27] [41-4 64] [5- 125]...))

where ... is ellipsis.

XI.3.b --- Sets and Multisets

Sets and multisets can be described in terms of mappings using the usual mathematickal
isomorphisms. For example

(describe (a b)
[is: (a Mapping [al- 1] [b"- 1] [-a A -b--b 0])])

describes the set (a b) as a mapping from a and b onto 1 since they are present in the set and everything
else maps to 0 since there are nol occurrences of other elements. Extending the same idea to multisets gives
the following example:

(describe {la b a})
[is: (a Mapping [a--> 2] [bH 1] [,-,a A -b1- 0])])

XI.S.c --- Transitivity

If (3 is (an Integer [<: 4])) and (4 is (an Integer [<: 5])), it should be possible to conclude that
(3 is (an Integer [<: 5])). This goal can be accomplished by the command

(describe <
[is: (a TransitiveJrelation [tor: Integer])])

which says that < is a transitive relation for Integer and by the command

t' Ii -

Sequences and Serializers

(describe (a =concept [=R: (a =cortcept [=R: =m])])
[preconditions: (=R is (a Transitiverelation [for: =concept]))]
[is: (a. concept [R: m])])

which says that if x is an instan ce of a conCept which has a relationship R with something which is the
same concept which has the the 'relationship P with .m where R is a transitive relationship for concept, then
x has the relationship R with m. This example of transitivity cannot be done in most type systems; •e
above solution makes use of theio-order capabilities of our description system. ,. l

XI.S.d --- Projective Relations

If (z is (a Complex [realtpart: (> 0)])) and (z is (a Complex [real.part: (an Integer)])) then by merging
it follows that (z is (a Cqmplex [real.part: (> 0)] [real-part: (an Integer)])) However in order to be able to
conclude that (z is (a Complex [real-part: (> 6) (an Integer)])) some additional information is needed. One
very general way to provide thiý information is by

(describe real.part
[is: (a Projectiverelation [concept: ComplexpI)])

and by the command

(describe (a =C [=R: =descriptionl] [=R: =description2])
[preconditions: (R is (a Projective..relation (concept: C]))]
[is: (a C [R: description1 desciiption2])])

The desired conclusion is reached by using ihe above description with C with bound to Complex, R bodnd
to real..part, descriptioni bound to (> 0), and .escription2 bound to (an Integer).

XI.3.e --- Quantification and Existenice.

The treatment of local iddrtifiers' in our description system differs in an important respect from the
treatment of universally quantified variables in naive o-order logic where universal quantification implies
existence. For example the follwing sentence clear holds in • order logic:

VP Vx (P x) if and only if (P x)

From the above sentence the following follows by the usual rule for quantifiers:

VP 3Q Vx (Q xi if and only if (P x)

Using the following definition fbr P

DR:AFT February 1919

DRAFT February 1979 84 Sequences and Serialis ers

(define (P =x)
(definition: (not (x x))])

we get

3Q Vx (Q x) if :and only.if no (x x))

Using "-elimination with Q0 forjQ we get

Vx (QO x) if ard only if (nt (Q0 Q))

Substituting Q0 for x we obtain. -ussell's paradoxical formula:

(Qo Qo) if and only if (not (Q QO)) i

However the above formula is a contradiction in our description system only if (Qg O0) is a Boolean
which are described as fqllows:

(describe (a Boolean)
[iS: (either true false)])

(describe true
[is:

-,false
(a Boolean)])

(describe false
[is:

-,true
(a Boolean)])

We propose to restrict the rules of logic to statements which are Boolean. For example the rule of double
negation elimination can be expressed as follows:

(describe (not (not =p))
[precondition: (p is (a Boolean))]
[is:. p])

In this way we hope to avoid contradictions in our description system. In the course of the next year we
will. attempt to adapt one of the standard pr9 ofs to demonstrate its consistency.

Sequences and Serializers

XI.4 --- Description of Queues

Queues play arn important role in the implementation of nontrivial guardians which must schedule
access to their resources. In this section we formally describe unserialized queues [Hewitt and Smith: 1975).

(describe (a Queue) ;a Queue
[is: (a Queue [sequence: (a,Finite_sequence)])]

;has an attribute called sequence whic•h is the sequence of elements

(describe empty.queue
[is: (a Queue [sequence: []])]).

;the erhptyqueue
;is a Queue with the empty sequence of elements

Describing descriptions enables the user to declare the properties of new attributes that are
conditional on other attributes. For example a nonempty queue has attributes name¶t sequence, frrt.
allbutjfront, rear, and all_butrepr which are conditional on the sequence being nonempty.

(describe (a Queue [sequence: -[]])

(a Queue
[front: (an Actor)]
tall.butfront: (a Queue)]
[rear: (an Actor)]
[all-butjrear: (a Queue)])])

We can further describe Queues
construct for sequences [see appendix]:

to state relationships among these attributes using
I

the unpack

(describe'
(a Queue

[sequence: =sequence]
[front: =the-Jront] '
[allbutJront: (a Queue [sequence: =seqjuenceofall.butfront])]
[rear: =thejrear]
.[allbut.rear.: (a Queue [sequence: =sequence_ofallbut-rear])])

[isi -,empty..queue]
[postconditions:

(sequence is [thejront !sequenceofalL!butfront])
(sequence is [!sequenceoftallbutjrear the.rear])])

The description of the result of enqueuing an element x on a queue is described as follows:

(describe ((a Queue [sequence: =s]) enqueue =x)
[is: (a Queue [sequence: [!s x]])])

Ii, *f.

DRAFT February 1979 85

