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Abstract

The issue of how to represent the "meaning" of an utterance is
central to the problem of computer understanding of natural language.
Rather than relying on ad-hoc structures or forcing the complexities of
natural language into mathematically elegant but computationally
cumbersome representations (such as first-order logic), this paper
presents a novel representation which has many desirable computational
ahd logical properties. It is proposed to use this representation to
structure the "world knowledge" of a natural-language understanding
system.
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1 The general problem-domain

This project is primarily concerned with the "representation

problem": How complex interrelated symbolic information can be

structured so that a computer can use it "intelligently". For this

project, the information to be structured is the "knowledge of the

world" which a person must bring to bear in order to understand some

simple natural language utterances (such as found in children's

stories), and the "intelligent" use of such information is exactly this

process of understanding. Following the lead of other Artificial

Intelligence research into the problem of natural-language

understanding (primarily Charniak [1972] and McDermott [1974a]), we can

consider the computer to have "understood" an utterance if it can

answer relevant questions from it.

For example, consider the following story fragment from

Charniak's thesis (the line numbers are for later reference):

(1) Fred was going to the store.
(2) Today was Jack's birthday
(3) and Fred was going to get a present.

Now consider some questions which might reasonably be asked: "Why did

Fred go to the store?", and "Who is the present for?" For a human

reader the answers are trivially obvious. However, in answering these

questions, a significant amount of "knowledge of the world" must be

used. The first question requires knowing that presents can be gotten

at stores (so that "going to get a present" is sufficient motivation

for "going to the store"), and the second requires knowing that one

often gives presents to another on his birthday, so that the present



which Fred is going to get is ultiiately to be given to Jack. Note

that none of this knowledge is even implicit in the story text (as it

would be if the story contained "Fred was going to the store in order

to buy a present for Jack"), and that the integration of the story

input with the world knowledge is so smooth that it seems to humans

that such information is in the story.

Also, note that line (3) out of context could mean that Fred is

whom the present is for (as in "Fred was happy because he was going to

get a present"). Thus one also needs to understand the "local

discourse context" in order to make sense of the story. Furthermore,

there must exist some sort of "global discourse context" which refers

to the general topic under discussion. The statement that "the group

had no identity" [Winograd 1971] is understood quite differently

depending on whether one is discussing mathematics or sociology.

Thus there appear to be several different kinds of knowledge

which must be used in order to understand even very simple utterances,

without even considering the need for potentially vast amounts of

traditional "linguistic" knowledge to handle syntax. Indeed, all the

natural-language systems referenced in this proposal use different

representations for each sort of knowledge used, and usually contain

many additional ad-hoc formats for storing certain kinds of

information.



2 The proposed solution-domain

What this project attempts is to express all these different

sorts of knowledge using a common representation. The appendix to this

proposal gives the philosophical and technical details of the proposed

representation as it is currently conceived, and should be consulted if

one wishes to verify the claims made for it here. The appendix also

compares this "constraint expression" (CE) representations to other

ones such as Planner (Hewitt 19681 and first-order logic.

2.1 Experts

The advantages and disadvantges of attempting to use a common

representation can be elucidated by comparing such an approach with the

"black box experts" approach. The "expert" paradigm says that for each

particular kind of problem involved in understanding language one

builds a self-contained "expert" program which contains the knowledge

necessary to solve it. The experts can call on other experts to solve

subproblems or pass the buck. These experts are "black boxes" in that

their internal workings are not public: The only access to the

knowledge each contains must be through some particular message-passing

protocol. Thus for example line (3) might have the expert for the word

"get" detect the ambiguity in "get a present" (either "receive oneself"

or "get to give to another"), and then it could call the "local

discourse" expert to see which of the two interpretations makes the

most sense. The local discourse expert might be able to resolve the

problem immediately, or it in turn might call other experts (perhaps to



do some deductive inference to decide whose birthday it is).

2. 2 Some history

This approach has many advantages (which it is why it is used

in the systems of Winograd [1971], Charniak [1972], and McDermott

[1974a]), among the most important of which is its modularity: One can

attack design problems one-at-a-time by building a new expert whenever

some new phenomenon has to be taken care of. Of course one problem is

that many of the old experts have to then be changed to include calls

upon this new expert -- after a while the interesting details of how

the knowledge is used become swamped by the details of the particular

communication protocols used between various pairs of experts.

Many years ago (when such experts were being coded in Fortran

or machine language), such. a "complexity barrier" was quickly reached,

which caused much interest in uniform logical representations such as

first-order logic. Such a uniform representation avoids the problem of

"who knows. what" by dumping all known facts into a homogeneous set of

axioms instead of hiding them in experts. Unfortunately, first-order

logic was designed to axiomatize the foundations of mathematics, not to

compute with. Anyway, partly in reaction to the Procrustean bed of

fi.rst-order aXiomatization, Hewitt designed some ways to lubricate the

interface between experts and thus free the system's designer from

having to consider all the low-level details of inter-expert

communication. The micro-Planner language and philosophy which

resulted [Sussman, Winograd,. and Charniak, 1970) allowed the creation



of such systems as Winograd's and Charniak's.

However, the complexity barrier was again reached -- being free

from concern with low-level interaction details, the designer could

concentrate on more intricate higher-level interactions, which in their

turn became too numerous and involuted to understand. Thus there is

again a push. for a more uniform type of formalism (See McDermott

[1974b) and Winograd [19741 for a deeper discussion of such issues. It

is only fitting that the designers of expert-based systems, who have

personally run into the complexity barrier, should have good insight

into the dimensions of the.problem). This of course does not entail a

return to mathematical logic -- it is clear that any new formalism must

be designed with great attention being paid to its computational

aspects (some of which are discussed in the appendix).

2.3 Advantages of a common representation

Apart from the historical cycle of section 2.2, there exist

sound methodological reasons for preferring a common representation in

the first place. For one thing, one of the main reasons why Winograd's

system is so outstanding is that it exploits the strong interactions

between the classically separate linguistic domains of syntax,

semantics, and pragmatics (world knowledge). Winograd's thesis contains

a goo.d discussion of why this is much better than the previously-used

techniques of "doing" the syntax of a sentence, taking all 4386

resultant parses,. and then "doing" semantics on each one to resolve the

ambiguities. By closely interweaving the syntactic, semantic, and



pragmatic analyses, one can vastly reduce the combinatorial explosions.

My thesis will not deal with the syntactic aspects of language, in that

it will use pre-parsed input such as McDermott and Charniak do. Thus

it will not -address the syntax-semantics interaction, but it will be

concerned with the semantics-pragmatics one (my solution of course

being that the "semantics" and the "pragmatics" can interact strongly

because they are essentially the same "kind" of knowledge -- linguistic

semantics is exactly the world-knowledge which we have about lexical

entities, represented in the same manner as other world knowledge. Some

details of this are given below).

Also, handling apparently different "kinds" of knowledge within

a common representation helps clarify how they interact. Just as using

a common representation for space and time allows relativistic physics

to explore interactions which would not otherwise be considered, so too

does the embedding of different "kinds" of knowledge in a common medium

allow an easier examination of their possibly interesting interactions.



3 The conceptual layers

The system to be computer-implemented as a result of this

project can be viewed in terms of six layers. The lowest layer consists

of mechanisms to do the CE label propagations (see appendix). At this

lowest level the system is committed to using a CE representation,

assuring the availability of the clean semantics and modularity

discussed in the appendix.

The second layer consists of the particular CE nodes which are

used. The appendix mentions the class-partition node, the singleton

node, the model-theoretic "world" node, the binary relation node, and

the typical-member node. These are all implemented in terms of the

previous level, and any new node types which may turn out to be

necessary can be similarly implemented, This layer is responsible for

the logical expressive power discussed in the appendix.

The third layer consists of "low-level constructs" such as

might be found as "primitives" in some logic. The appendix mentions

taxonomies, boolean connectives, Conniver-like "contexts" [McDermott

1973), domain-range restrictions, transitive relations, and N-ary

relations. These (and any new ones which are needed) are implemented

directly in terms of simple combinations of the level-two nodes.

The fourth layer consists of "high-level constructs" which make

a strong commitment regarding the ontology of the universe. Some of

these constructs are discussed in section 4. They consist of such

things as frames, defaults, states, events, and the .representation of

time. This layer also provides a mapping from linguistic entities (such



as nouns, adjectives, verbs, and case frames) into the appropriate

high-level constructs.

The fifth layer consists of the particular world-knowledge to

be encoded in terms of layers three and four. For example, to handle

the story fragment given in section 1, it is necessary to have

knowledge about children, birthdays, birthday parties, gift-giving,

gifts (such as where they are gotten), stores, "going", and "getting".

This knowledge will of course be expressed in a form which does not

bias it too heavily in favor of the particular examples used: For

instance, there will be knowledge of "going" in general, not just

knowledge of "going to the store". Section 4 gives some detailed

examples of such knowledge. The primary commitment of this layer is to

the particular domains of discourse used for examples in the thesis.

The sixth and topmost layer consists of a program to "use" the

CE data-base. The appendix discusses the CE data-base as a rather

passive storehouse of knowledge, which must be prodded by some user in

order to actually accomplish anything. In terms of the appendix, this

layer is responsible for creating new fragments of CE network (to

represent the story fragments), for setting up the different kinds of

initial labeling conditions, and for reacting to the results of the

label propagations (such as contradictions). This layer is the

interface between the CE data-base and the outside world. Thus this

layer's primary commitment is to the particular story fragments which

will be used as examples in the thesis (The kinds of high-level

processing which will be applied to these examples is illustrated in



section 4). Thus it should be possible to dissect the final system and

say that the stuff in layer si.x is particular to this one thesis, but

that the rest is of more general applicability.

Note that this topmost layer is fundamentally different from

the others. Layers one through five represent increasing levels of

structural complexity within the CE data-base. The top layer however

represents the the user of this data-base. It also provides a

convenient place to house the various ad-hoc processes which will

doubtlessly turn out to be necessary. Indeed, the ad-hoc stuff is

exactly that knowledge which can not (yet) be represented within the CE

data-base. For example, the fact that the high-level constructs do not

yet include "procedures" means that all procedural knowledge must be

housed here (or else that "procedures" must be implemented within

levels one through four). If a large mass such of ad-hoc material does

in fact accrete here, it will indicate the areas in which the existing

data-base scheme is deficient and thus provide a focus for possible

future work.



4 Using the high-level constructs

This section presents a rather detailed analysis of the kind of

knowledge structures which are needed in order to understand story

fragments such as the one given in section 1. What is desired is to

represent in the CE data-base both the hearer's pre-existing knowledge

(about birthday parties, etc.) and the knowledge which is conveyed by

the linguistic constructs in the story. Consider the sentence in line

(1): "Fred was going to the store."

4. 1 Entities (noun groups)

Line (1) describes an "event" (Fred going to the store)

involving two "entities" (Fred, and the store) and a time reference

(past progressive). Entities are represented by points (classes) in the

CE network. In this case, both entities are singular so they are

represented as singleton object classes, which we can call Fred-37 and

store-38. It is known that store-38 is indeed a store, so we need the

fact that store-38 is a subclass of all STORES. This is handled using a

partition node, which we will abbreviated here by [store-38 -+ STORES)

-- the brackets serve to delimit pieces of CE network from this

surrounding text. The fact that store-38 is the store instead of a

store gets into rather complex linguistic issues which will not be

dealt with here (but which will be discussed in the thesis). Now all we

know about Fred from the story is that it is an object named "fred":

The is handled by a binary relation node which says that the NAMIE-OF

Fred-37 is "fred". As a linear notation for this we will say



[<NAME-OF Fred-37 fred>], where "fred" is a point which represents the

name "fred" (as opposed to representing the objects which have that

name). Note that none of this says that Fred-37 is human or even is

even a physical object -- such facts are part of the hearer's pre-

existing knowledge which is already encoded in the data-base.

4.2 Events and the case-frame hierarchy

The event "going to" is more complex than the static entities.

One way of representing such an event is to use logical predicates,

such as (GO-TO Fred-37 store-38), which is in fact the approach taken

by Charniak's and McDermott's systems. Note, however, that there is

considerable question as to how many arguments such a GO-TO predicate

takes. In "Fred was going from his home to the store" we seem to need a

"source" argument; in "Fred was going to the store via Main Street" we

need a "path"; in "Fred was going to the store rapidly" we need a

"speed"; and so on. Now, this "variable number of arguments" problem

disappears in the CE representation: An N-ary relation is always

represented as a series of binary relations between the instance of the

relation and its arguments, For example, the class GOINGS represents

all instances of the ".going" relation. Then the instance in line (1)

is in this class, so we make up a new name (going-39) and state that

[going-39 - GOINGS]. To associate the arguments, we say something like

[<OBJECT-OF going-39 Fred-37>], [<DESTINATION-OF going-39 store-38>],

and so on (such as I<SOURCE-OF going-39 whatever>] if required).

Now in fact such structures are called "case frames" [Fillmore



1968] and are being used both by some linguists and some AI language-

understanding projects (see section 5). Note that the structure of the

CE representation itself (which is based on rather abstract, non-

linguistic considerations) has pretty much forced the re-invention of

such things. This kind of serendipity has occurred often with CE, and

is one of the reasons I am confident that this is a productive line of

research.

Now, it turns out that many verbs other than "going" have a

similar case structure in that they can take a source, destination,

path, object, etc: Consider "coming" "taking" "moving" "sending" and

"receiving". To capture this generalization, we can create the common

class PTRANS (for "physical transfers", following Schank [19721), and

have all these particular kinds of physical-transfer relations be

subclasses. In addition, each of the different kinds of PTRANS may have

additional information associated with it by using additional

arguments.

Furthermore, it turns out that all events have some structure

in common. Thus at the top of the hierarchy of events should be

something that captures the general structure of all events. Calling

this top point DOINGS, the common structures include "intensity"

modifiers ("He did it with vigor"; "He did it rapidly"), the time of

the event (which can be very complex, as in "he has been wanting to do

it for a week, already"), and the cause of the event.



4.3 Events and difference descriptions

However, we still need to deal with the internal structure of

events: What does it mean for an object to be PTRANSing from a source

to a destination? In general, I choose to model the meaning of events

in terms of state changes. A state can be represented by a CE "world":

Each state "contains" the facts which are true in that state. Thus

each event has associated with it a before state and an after state:

The before-state contains those facts which are true before the event

(but not after), and the after-state contains those facts which are

true after (but not before). Anything not mentioned in these states is

thus known to be unchanged by the event. So part of the structure for

PTRANS affirms that for every ptran-N which is in PTRANS, the

LOCATION-OF the OBJECT-OF ptran-N is the SOURCE-OF ptran-N in the

before-state, while it is the DESTINATION-OF ptran-N in the after-

state. That is, the meaning of an instance of PTRANS is that the object

changes location (where LOCATION-OF a physical object is a

representation of its physical location). The "for every ptran-N" in

the above description means that a typical-member node is used to say

this about a typical ptran-N, so that the description then applies to

all instances of PTRANS (which includes all instances of GOINGS,

TAKINGS, etc).

4.4 Events, Minsky's frames, and defaults

The general structure which has evolved in this discussion so

far can be described as follows: A complex relation (such as "physical



transfer") is represented via a class of all instances of it (PTRANS).

A typical-member node is used to describe the structure of a typical

member of the class (ptran-N). The attributes of the typical ptran-N

are specified by a series of binary relations (such as OBJECT-OF) which

specify the "arguments" to the complex relation. Furthermore, the

classes can be arranged in a hierarchy (or even more complex structure)

so that structurally similar complex relations can have their

similarities factored out and made explicit. This structure is in

effect an implementation of Minsky's [1974] idea of "frame systems", so

here is another instance of serendipity.

An additional aspect of Minksy's frames is that they employ

"defaults" -- each argument slot may have associated with it a "loosely

bound" (ie.. easily replaced) default value, which is to be used in the

absence of any other information. This use of defaults allows quick

"jumping to conclusions" with the later possibility of filling things

in more cautiously. The notion of "default" is closely related to those

of "exception" and "probability", and in fact the same CE mechanism can

handle all three. This mechanism uses the CE "world" construct to

impose an ordering on the "reliability" which the system assigns to any

particular. fact. The ordering is imposed using a subclass hierarchy,

such that world W1 represents more reliability than world W2 iff W1

contains W2 (ie. is a superclass). Section 5.4 of the appendix

discusses such hierarchies as a means of expressing orderings with

respect to transitive relations such as "on". Now, individual facts

are tied into this hierarchy using world nodes, such that if Wf is the



world of some fact and Wi is a world in the hierarchy, then [Wi + Wf]

means that Wf's fact is at least as reliable as Wi. That is, if what Wi

represents is reliable enough for a given purpose, then so is the fact

that Wf represents.

This can be made clearer by looking at the processing which

goes on within such a hierarchy. Since the higher reliability is

towards the top of the hierarchy, a +w label (see appendix) placed on a

point representing a given level of reliability (such as W2) can

propagate upwards to all levels of reliability which are known to be

"higher" than it (such as Wi). Furthermore, any world node having its

Wf contain such a W2 (as in [W2 - Wf]) will also be reached by the +w.

Thus we have hierarchy of "contexts" such that if some Wi is "enabled"

by putting +w on it, then all higher contexts and all facts implied by

such contexts will also be enabled; otherwise these facts will not be

enabled. Now, the +w label which is actually used is "+inf", which

means that these facts are to be enabled for the duration of the

current inference (appendix, section 4). Thus by starting this +inf at

different points in the reliability hierarchy, different sets of facts

can be enabled for use by the inference. So starting the +inf at a

lower point in the hierarchy will enable more facts than starting it at

a higher point (since a lower point such as W2 automatically propagates

its +inf to all higher points, but not conversely).

Now reconsider the issue of probability. By associating less-

probable facts with worlds lower in the hierarchy, they will only be

enabled when +inf starts at least that low. Thus the lower down the



+inf starts, ;the more "gullible" the system is in terms of allowing the

use of less-r~el.iable (low-probability) facts. This then allows the user

of the CE data-base (ie. layer 6) to set whatever level of gullibility

it desires. So :for first-pass crude processing it can use a very

gullible setting (which enables all the frame defaults), -and then

switch -to a less gullible setting whenever its suspicions are aroused

(as might be the case if there were a contradiction between a frame

default and other data). As more and more is known about something, the

system can afford to be less gullible in terms of accepting the truth

of vague generalizations (as embodied in the defaults), since it has

more "quality" data. to work from and can afford to ignore the defaults.

This same mechanism can handle hedged facts, such as "Most birds can

fly" or "The rain in Spain stays mainly in the plain" -- the facts are

simply given a world node which is assigned the proper place in the

reliability hierarchy.

4.5 Disambiguation -- Domain-Range restrictions

The preceding parts of this section have dealt with

representing information after it has been fully translated into the

proper'CE structures. This final part touches on the issue of semantic

disambiguation in order to examine part of the translation process

itself.

Consider the phrase "going to" in "Fred was going to the

store". Here, it clearly means a form of PTRANS, where the destination

is the physical location of the store. But in "Fred was going to his



doom", the destination is more a state (of Fred) rather than a physical

location. In "Fred was going to help me", the destination involves

participating in some other event (ie. helping me). Now a standard

linguistic analysis of this would conclude that there are (at least)

three different senses of "going to", and that it must be fully

diSambiguated before one can begin to understand a sentence in which it

occurs.

In opposition to such an analysis, I claim that all three

senses of "going to" are more similar to one another than they are

different -- much of the information conveyed by "going to" is the same

regardless of the context and "sense" in which it is used. This means

that the part of the meaning of "going to" which is common to all three

senses can be used as soon as "going to" is encountered -- one need not

wait for the phrase to be disambiguated before one can start drawing

some useful conclusions. For "going to", the major common meaning

involves the existence of a state in the future involving the object

(Fred) and the destination. Thus as soon as "going to" is encountered,

it is immediately known that its meaning involves such a future state.

Now, given that much, it is still necessary to distinguish

among the three senses as more information comes in. To name the three

disambiguated senses and the ambiguous one, let GOINGS-O be the

ambiguous form, and GOINGS-PHYSICAL, GOINGS-STATE, and GOINGS-EVENT be

the three senses in the order presented above. Part of the hearer's

world knowledge includes the fact that GOINGS-O is partitioned into the

three senses: Every instance of a frame for GOINGS-O is an instance of



exactly one of the disambiguated senses. The facts which are common to

all the senses (such as the use of a future state) are hung off

GOINGS-0; the facts peculiar to one sense are hung off that sense. When

"going" is firs~t encountered, a frame is set up as an instance of

GOINGS-0. Then "disambiguation" of this involves assigning the frame to

one of the more specialized senses. This can be accomplished using

domain-range restrictions (appendix, section 5). These would say that

[<DESTINATION-OF GOINGS-PHYSICAL PHYSICAL-OBJECTS>], [<DESTINATION-OF

GOINGS-STATE STATES>], and [<DESTINATION-OF GOINGS-EVENT EVENTS>]

respectively for the three senses. That is, the destination of a

GOINGS-PHYSICAL is always a physical object, and similarly for the

other two. As more information comes in, these restrictions force the

choice of one of the three senses. Suppose the destination turns out to

be "the store". Most things which the system knows about will be

arranged into a global taxonomy (such as figure 2-1 in the appendix).

In such a taxonomy, physical objects, states, and events will be

mutually exclusive. Now, "the store" is a store, which is indeed a

physical object. Thus it is not a state or an event, so the second and

third choice for the partition of GOINGS-0 are eliminated (they receive

-x labels). Thus GOINGS-PHYSICAL, the only remaining choice, is forced.

All this happens within the framework of CE label propagations -- no

other kind of processing is necessary.

The paradigm that comes out of such examples is that of

"incremental disambiguation" -- instead of something being

categorically "unambiguous" or "ambiguous", it is known to a greater or
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lesser amount of precision. Indeed, the whole idea of "unambiguous"

becomes faintly ridiculous -- there is always more which can be known

about any particular thing. The important criterion is that enough be

known about the thing in order to be able to make useful inferences.



5 Relation to. other work

One purpose of this research is to take several of the ideas

,about language understanding (and AI in general) which have appeared in

the last few years and to embed them in a semantically clean

representation, so that their interactions can be studied and

experimented with.

The general CE philosophy (layer 1) that computations should be

performed by pushing labels around a network has been derived from the

works of Lamb. [1966, 1969], Quillian [1967, 1969], and Waltz [1972].

Since all three of these systems involve local constraint propagation,

they share with CE the feature of modularity in both the logical and

computational senses (see appendix). However, unlike Lamb's and

Quillian's systems, CE has a clean semantic in terms of exactly what

the primitive labeling operations are, and how they interact. In

addition, unlike all three, CE has sufficient expressive power to

handle a very wide variety of logical inferences in a reasonably simple

manner. Of course these three systems were designed to meet different

goals from those embodied in CE, and to work in different domains.

Thus this research can be seen in part as an extension of such

techniques to a more complex domain. Also, like Waltz, I am attempting

to take a complex problem ("common sense" logical inference) and reduce

it to an essentially trivial algorithmic procedure, much as Waltz did

for his area of scene analysis.

The choice of the domain of natural language understanding in

general and childrens stories in particular represents a conscious



attempt to build on the work of Charniak [1972]. The two major

differences between this research and Charniak's are: (1) His was much

more ambitious, addressing a wide variety of linguistic and world-

knowledge issues, and (2) This research is interested in doing things

cleanly, while Charniak's pioneering efforts were quite properly

devoted to doing things at all. Many surface differences between

Charniak's work and this research ultimately derive from my desire for

"clean" solutions. That is also the major difference between this

research and that of McDermott [1974a), who also created a Charniak-

like system. For one thing, Charniak and McDermott used "procedural"

representations because such representations provide a lot of usable

power; I chose a "declarative" representation because it facilitates

understanding the underlying semantics of the representation and the

interactions between different chunks of knowledge.

Since Minsky's [1974] frame theory is also concerned with such

interactions from the standpoint of a basic representation, it is not

surprising that this research directly relates to his. Indeed, a large

portion of the work to be done on this project involves a reasonably

large-scale implementation of some of his ideas which have heretofore

not been embodied in executable computer programs.

The use of "difference descriptions" for representing events is

derived from Winston's thesis [1970). Using such descriptions makes

explicit the possibilities for an event changing something, and so may

be a good solution for the "frame problem" of McCarthy [McCarthy and

Hayes 1969].



The use of case analysis for verbs is currently a topic of

interest within the AI community. Martin's [1974] work on natural

language is a prime example, as well as the in-progress l. I. T. theses

of Mlitch Marcus and Cal Drake. Martin's system also exploits the

semantic commonalities of different word senses discussed in section

4. 5 -- the meaning of "put an idea in one's head" has many similarities

to that of the physical sense of "put into".
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1 Introduction

1.1 Goals

This appendix introduces a representation for information,

based on "constraint expressions" (CEs). This CE representation has

evolved (over the last year or so) in response to the following three

design goals:

First, The representation should be "natural" with respect to

the domain of information which is to be expressed. By that fuzzy,

overworked term I mean that the representation should be a positive

help in structuring the domain's information in useful ways, instead of

being a hindrance. In particular, things which are structurally similar

in the domain should be structurally similar in the representation. For

example, LISP is a far more natural representation for recursive symbol

manipulation algorithms than a universal Turing machine is, in part

because LISP's control structures allow one to write structurally

similar programs for structurally similar algorithms: All algorithms

with the same general form "chew down a list and perform a common

operation on each sublist" can be naturally written using the same

recursive structure. With Turing machines, however, one would be hard

pressed to find any similarity among the representations of such

algorithms. Of course, in a different domain (such as automata-

theoretic proofs) the Turing machine might turn out to be the more

"natural" representation. Therefore, since "naturalness" is a function

of the domain, it is necessary to explain the intended domain for the

CE representation.
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Broadly speaking, the intended domain is that of "natural

language understanding." In particular, the CE representation forms

the basis of my forthcoming S.M. thesis, which deals with the

understanding of the sort of discourse found in children's stories.

Now, interesting structural similarities show up in natural language

because the same locally meaningful structure (such as a noun phrase)

can occur as a constituent in many different higher-level structures.

Now, since the meaning of a structure (such as "Macy's employees") is

pretty much independent of where this structure fits in to some higher-

level structure, the representation of such a meaning should have this

same property. That is, "Macy's employees" should be represented the

same in all of: "John Doe is one of Macy's employees"; "Is John Doe one

of Macy's employees?"; and "List the Macy's employees who will retire

this year." By representing the constituents (such as "Macy's

employees") the same, the structural similarities among these three

sentences are directly reflected in the representation. This emphasis

on "local meaningfulness" means that the CE representation is highly

modular, and that all channels for interaction are represented

explicitly in the data-base. Also, the fact that statements, questions,

and commands are all represented in the same manner is one of the

powerful features of the CE representation -- this appendix mentions

some of the limitations found in some representations which do not have

such a feature.

The second design goal is that the representation must have

sufficient expressive power, in a computational as well as abstract
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logical sense: It does no good to have an abstractly "powerful"

representation if it is computationally difficult to use it. First-

order logic is the canonical example of a computationally poor

representation -- the time required to compute an inference grows

exponentially with the complexity of the inference and the amount of

available information (in the form of axioms). This seems rather

strange, in that the more one knows, the easier it should be to answer

questions. Thus the emphasis in this appendix is more on the

computational aspects of the CE representation, rather than its purely

logical ones.

However, this is not to slight the desirability of having a

deep theoretical understanding (logical as well as computational) of

the representation. Sadly, it often seems that there are two opposing

factions working on the representation problem: On one side are some

logicians, who are almost exclusively concerned with achieving a deep

understanding of their representations; on the other side are some

computer scientists, who concentrate on achieving computational power

without much understanding of the underlying semantics. The

disadvantage of such computer hacking is that when something works (or,

more often, doesn't), it is very difficult to glean more general

information such as "why", or "where exactly is the weak link."

Indeed, I personally made the greatest progress with CE when I

stopped hacking for a while and attempted to discern the basic

semantics of what was really happening. Doing this was facilitated by

the third design goal, which is that the basic representation should
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have a clean semantic base by using the possibly complex interactions

of a few simple primitives, rather than on primitives which are

themselves inherently complex. The fact that the representation

concentrates on "local meaningfulness" is a big help here, since that

implies that the global semantics of an expression can be easily

analyzed in terms of the local semantics of the primitives. (Another

reason for the third design goal is that I eventually plan to use the

representation for complex learning tasks, which would be nigh well

impossible if the primitives are too complex. The features of CE which

relate to learning are beyond the scope of this document). Finally, a

system with a simple semantic base is much easier to implement (Just

compare the compilers for LISP and PL/II).
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1.2 Details

Section 2 presents the basic ideas behind CE by using it to

represent taxonomies. This representation for taxonomies is compared

with first-order logic, Planner (Hewitt 1968, Sussman 1970], and Codd's

relational data-base scheme [Date & Codd 1974].

Section 3 slightly extends the CE representation of section 2

to handle all Aristotelian syllogisms. Procedures for finding all the

individuals with a given property are presented.

Section 4 extends the representation of section 3 to handle all

of propositional (0-order) logic. The nature of the model theory for

this logic is examined, with references to the problems of consistency

and completeness.

Section 5 extends section 4 to handle binary relations (in

terms of mappings). It is shown how the CE representation can easily

handle transitive relations. The obvious extension to N-ary relations

is discussed. Some examples are presented, and compared with Codd-like

representations.

Section 6 extends section 5 to handle arbitrarily nested

quantifications, giving CE the logical expressive power of oarga-order

logic and the attendant necessity for brute-force processing. Some

brute-force examples are presented, and it is explained why such

complexity has up to this point not been needed.
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2 Taxonomies

2. 1 Other representations

Figure 2-1 shows an example of a taxonomic classification of

physical objects. The asterisks (called points) represent classes of

objects. The constructions connecting the points are partition nodes

-- each signifies that the classes below the bar form an exclusive and

exhaustive partition of the class above the bar. (The "..." indicates

that a partition node has other subclass points which are not shown).

For example, the class of LIVING things is partitioned into exactly the

three subclasses of PLANTS, ANIMALS, and WEIRDIES. Now, the visual

connectivity of the figure makes it very easy for humans to draw

certain kinds of conclusions from it. For example, it is obvious that

all redwoods are plants, since the class of redwoods is a subclass of

trees is a subclass of plants. Also, no redwoods are bacteria, since

all redwoods are plants, all bacteria are weirdies, and plants and

weirdies are mutually exclusive.

In general, the problem of representing taxonomies is an

important one, for at least three reasons. First, humans do it well and

do it often: Biologists classify specimens; programming language

designers define data-types ("numbers" are partitioned into "integer,"

"real," and "complex."); operations analysts (among others) use

decision trees; and the notion of "subclass" alone appears often in

various formalisms -- for example, Codd [Date & Codd 1974, p. 241

would like to be able to state that "everyone who supplies any part is

a known supplier".
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Noting that Codd's formalism has trouble even with simple

subclass, let us consider how some other formalisms handle taxonomies.

This is the second reason for interest in taxonomies: Most formalisms

do it poorly. Consider first-order logic. The partitioning of LIVING

things into PLANTS, ANIMALS, and WEIRDIES can only be done by something

like this:

Yx [LIVING(x) E PLANT(x) v ANIMAL(x) v WEIRDIE(x)]
Vx E[PLANT(x) A ANIMAL(x)]
Vx -[ANIMAL(x) A WEIRDIE(x)]
Vx -[PLANT(x) A WEIRDIE(x)]

The first line of this seems alright -- the problem is that we need all

those negation assertions. Indeed, a theorem prover would find it not

completely trivial to prove "no redwoods are bacteria", which is

annoying since there clearly does exist a trivial procedure ("following

the lines", as was done above). Representing the above facts in Planner

is even worse, because Planner-like languages do not even have a built-

in negation mechanism, usually relying on something to the effect that

"if I can not prove it is true, then it is false."

The third and most important reason for discussing taxonomies

here is that the CE representation (which is about to be explained)

does in fact represent and process them efficiently.

2.2 The CE representation

Consider the process of putting individual objects into the

various classes (represented by points) in figure 2-1. Let names in all

lowercase letters denote particular objects (while uppercase names

still denote classes). We will "put objects in classes" by labeling the
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classes with the names of the objects: For an object "x" and a class

"C", let the label "+x" on C mean that x is in C; let the label "-x" on

C mean that x is not in C. Clearly, it is contradictory to label C

with both "Ox" and "-x"

Now, if the diagram in 2-1 consisted of just the points, with

no partition nodes, there would be complete freedom in labeling any

particular point "+x" or "-x" (but not both) without fear of

contradiction. By including the partition nodes in the diagram, what we

do is constrain the possible patterns of labeling the points, hence a

partition node is a kind of "constraint expression". For example, if +x

is on TREES, it is constrained to also be on PLANTS (since all trees

are plants). Thus the more we know (in terms of additional

constraints), the fewer arbitrary interpretations we can make. In

general, figure 2-2 enumerates the four ways (tl thru t4) in which a

partition node can apply a constraint and force the propagation of

label assignments:

(tl) If one subclass is labeled +x, then the superclass must

be labeled +x and all other subclasses must be labeled -x. For if an

object is in one partitioning subclass of the superclass, then it is

clearly in the superclass itself, and can not be in any of the other

mutually exclusive subclasses.

(t2) If the superclass is labeled -x, then all subclasses must

be labeled -x. For if an object is not in the superclass itself, it can

not be in any subclass.

(t3) If the superclass is labeled +x, and all-but-one of the
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subclasses are labeled -x, then the remaining subclass must be labeled

+x. For if an object is in the superclass and is definitely not in all-

but-one of the subclasses, then it must be in the remaining subclass.

(t4) If all the subclasses are labeled -x,' then the superclass

must be labeled -x. For if an object is not anywhere in the exhaustive

partitioning of the superclass, then it is not in the superclass.

Note that tl and t3 are in some sense "duals", as are t2 and

t4. Also note that another way of looking at the partition node

constraints is to say that a partition node makes certain labelings

illegal. Figure 2-3 shows the three basic illegal labelings around a

partition node, from which one can indeed derive ti thru t4.
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3 Syllogistic logic

3.0 Introduction

The purpose of this section is to show in rather gory detail

some of the interesting processing that can be applied to a CE network

in order to answer questions. The framework of Aristotelian syllogistic

logic was chosen for this section because the inferences are easy for

humans to follow, and the inferences are easy for the CE representation

to compute.

3. 1 Universal affirmations: "all A are B"

Given the label propagating machinery of the previous section,

it is trivial to do syllogistic inferences of the form "all REDWOODS

are TREES, all TREES are PLANTS, thus all REDWOODS are PLANTS" (see

figure 2-1). One method is to initially label REDWOODS with +x. Then,

by tl, label TREES with +x. Finally, by tl again, label PLANTS with +x.

Now, since "x" is an arbitrary redwood, we know any arbitrary redwood

is a plant; ie. all redwoods are plants.

Since the use of such "arbitrary" objects can be confusing, I

prefer a different method of doing such inferences. Assume that the

statement is false. Thus there is at least one redwood which is not a

plant. Without loss of generality, call it "x" -- "x" is now that

particular (although unknown) redwood. So, label REDWOODS with +x

(since by hypothesis x is a redwood), and label PLANTS with -x (since

by hypothesis x is not a plant). By propagating the labels as above, we

get +x on PLANTS. But, this is a contradiction: x can not both be a
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plant and not be a plant. Thus the initial hypothesis must be

incorrect, so indeed all redwoods must be plants. Note that instead of

using ti to push the +x from REDWOODS to PLANTS, we could just as well

have used t2 to push the -x from PLANTS to REDWOODS, or we could have

used both and let the contradiction occur somewhere in between (at

TREES, in this case).

3.2 Universal negations: "no A are B"

Similarly, label propagation can handle syllogisms involving

negation: "All trees are plants, no weirdies are plants, thus no trees

are weirdies (and no weirdies are trees)". As above, assume the

conclusion is false. Then there exists something which is both a tree

and a weirdie. Call it "x". Label both TREES and WEIRDIES with +x.

Then, by tl, propagate the +x to PLANTS. Then, by ti, +x on PLANTS

constrains there to be -x on WEIRDIES. Since WEIRDIES is now both +x

and -x, we have the contradiction, so the hypothesis is false. Thus no

trees are weirdies. As above, different orders of applying constraints

can cause the point of contradiction to occur at different places.

3.3 Existential affirmations: "some A are B"

Consider: "Some employees are felons, all felons are crooks,

thus some employees are crooks". As above, the goal is to represent the

premises as a network of constraint expressions, and then prove the

conclusion by setting up an appropriate initial labeling. However, a

network consisting solely of partition nodes can not make existential
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statements: Given a network with a point representing the class of

EMPLOYEES, nothing prevents that class from being completely empty. The

partition node provide constraints of the form "if an object is in one

of the subclasses, then it must be in the superclass and not be in any

other subclass" -- nothing says that there has to in fact be an object

there at all, but only that if there is one then it must be in the

superclass, etc.

Thus we need a new kind of constraint, one which insists that

there in fact be an object (or objects) in a particular class. We do

this by making special note of classes containing exactly one object.

Such singleton classes are represented by network "points" which are

drawn as small squares. As an example, figure 3-la says that there are

exactly three EMPLOYEES -- Smith, Jones, and Lee. In keeping with the

convention of naming objects with lower-case letters, points

representing singleton classes are given lower-case names (except

perhaps for the first letter).

Two details need to be emphasized about this particular

formalism for objects. First, like OWL [Martin 1974], this formalism

does not consider objects to be set-theoretic elements of classes, but

rather to be classes themselves (with the added property of being

singletons): "The object 'Smith' is in the class EMPLOYEES" is

represented as a subclass relation and not a class-membership one. Thus

this is a "one level" system -- it is impossible to have classes whose

'elements' are themselves classes, whose elements in turn .... This

eliminates a counter-intuitive source of conceptual complexity
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(consider Russell's paradox), without harming the system's usable

power.

The second detail is that two distinct object-points in a

network do not necessarily represent distinct objects. Just as two non-

object classes can be the same (for example, when each is constrained

to be a subclass of the other), so may two object classes be

constrained to be the same. The fact that two (or more) objects are

distinct must be represented explicitly. In figure 3-1a, the three

employees are constrained to be mutually exclusive with each other, and

hence are distinct. In figure 2-1, any objects which appear at the

bottom of such a taxonomy will all be distinct by virtue of the

hierarchy of mutual exclusions which connect them. Thus there is little

overhead in requiring explicit representation of object distinctness,

while allowing for the case that superficially 'distinct' points in a

network really represent the same object (such as "the morning star"

and "the evening star").

Now, figure 3-1b represents the premises that some particular

employee (arbitrarily named 'empl') is a felon, and that all felons are

crooks. Note that in a representation such as Planner or Codd's, two

atomic objects are always considered to be distinct if they have

different print-names. Thus "empl" would considered to be distinct from

all of Smith, Jones, and Lee; while in 3-1b it is clear that "empl" is

in fact exactly one of those three. Now, since all known objects are

represented explicitly in the CE data-base, the problem of showing that

there exists some employee who is a crook is equivalent to finding one
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(or more) such objects. That is, we need to find an object which is

both an EMPLOYEE and a CROOK. We of course know that the desired

object is 'empl', but the problem is to implement the necessary

inferences in terms of label propagations. Several such implementations

are possible.

The obvious brute-force technique is to enumerate all the

objects in the data-base and test each one. Testing an object is easy:

To see if an object is an employee, mark the object +x, mark EMPLOYEES

-x, and look for a contradiction during the label propagation.

Similarly, we can test the object to see if it is a crook. Of course,

for a large data-base on conventional hardware such a scheme would be

much too expensive.

One way to eliminate this brute-force enumeration in some cases

is to keep a "short term memory" of objects recently mentioned or

created. Then if the conclusion is presented immediately after the

premises are given, 'empl' can be tried immediately. However, in a real

data-base application it is usually necessary to answer questions using

information that is not explicitly mentioned, and hopefully without

using brute-force enumeration.

So, instead of enumerating everything known and testing each

one for employeehood and crookedness, it would be much better to

enumerate only the known employees (or known crooks), and then test

each of these for crookedness (or employeehood). Enumerating all the

objects in a class (such as EMPLOYEES) is easy: Label EMPLOYEES with

-x, then and every object to which a -x propagates is a known employee.



Appendix

In this case, the -x will propagate (using t2) to all of Smith, ,Jones,

Lee, and empl. To show that every object which is reached by a -x is in

fact an employee, attempt the inference for the general case: Label

any found object (Jones, for example) with +x, and label EMPLOYEES with

-x. Then clearly a contradiction will occur, since the -x label can

propagate from EMPLOYEES to the found object (which is labeled +x).

Thus the object is a subclass of EMPLOYEES (by the reasoning used for

showing "all A are B"). This proves that all found objects are indeed

employees, but does not prove that all employees will be found --

section 4 contains a brief discussion of this issue of "completeness".

A final way of finding crooked employees is to do the

enumerations in parallel: Label EMPLOYEES with -x, and CROOKS with -y.

Any object which is reached by both these labels is by necessity both

an employee and a crook. Note that this is less efficient for

sequential hardware than the previous technique is, but it is not hard

to envision various asynchronous processing schemes (using cellular

automata) which make the parallel-enumeration approach win.

3.4 Existential negations: "some A are not B"

The machinery of the previous subsection can also handle

syllogisms such as: nSome employees are felons, all felons are crooks,

no good-guys are crooks, thus some employees are not good-guys".

Figure 3-1c adds this constraint that no good-guys are crooks (ie. they

are mutually exclusive classes). All the techniques for existential

affirmations apply here too. For example, we can enumerate all
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employees as before, and test them to see if they are not good-guys (by

deriving a contradiction from labeling both the found employee and

GOOD-GUYS with +x). This is analogous to the handling of universal

negations in 3.2. Similarly, to enumerate the non-good-guys, start a +x

at GOOD-GUYS and use all objects which are reached by -x. The proof

that this works is isomorphic to that in 3.3.
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4 Propositional logic

4.0 Introduction

This section uses the CE representation to handle the full

range of propositional (0-order) logic. The same processes which apply

for simple syllogisms also apply here, although the complexity of the

interacting label propagations increases as the complexity of the data-

base does.

4.1 Model theory: Propositions as classes

Propositional logic deals with 'propositions' (abbreviated by

the letters P and Q), each of which has a 'truth value' (true, or

false). The 'propositional connectives' (negation, conjunction,

disjunction, implication, etc.) are considered to be functions on the

domain of truth values: For example, the compound proposition "P and

Q" (or PAQ) has a truth value of "true" iff both P, Q have truth values

of true. We shall see later on how this somewhat obscure notion of

"truth function" can be better interpreted in terms of "constraints".

For now, consider that CEs deal with classes, not propositions,

so it is necessary somehow map all propositions into classes. This is

done by traditional model theory: The class corresponding to a

proposition is that of all the possible worlds (models) in which the

proposition is true. Then, the propositional connectives become

operations on classes. For example, the class corresponding to PAQ is

the intersection of the class for P with the class for Q. That is, PAQ

is true in exactly those worlds where both P is true and Q is true.
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Similarly for PvQ, and -P. PnQ deserves special mention because it can

be represented as "P is a subclass of Q", which is a single partition

node. However, class relations corresponding to the other connectives

are not quite so simple.

4.2 Union, intersection, etc.

The following list of class relations specifies for each one

what behavior (in terms of propagating labels) it should have:

Intersection (PnQ), figure 4-1a.

(i1) If +x on both "inputs", then propagate +x to the "output".

(12) If +x on the output, propagate +x to both inputs.

(13) If -x on either input, propagate -x to the output.

Union (PuQ), figure 4-1b.

(ul) If -x on both inputs, propagate -x to the output.

(u2) If -x on the output, propagate -x to both inputs.

(u3) If +x on either input, propagate +x to the output.

Note that union and intersection are exact duals, as expected.

Complement (4P), figure 4-1c.

(cl) If +x on either side, propagate -x to the other.

(c2) If -x on either side, propagate +x to the other

These (plus the subclass relation) correspond to the standard

primitive connectives used in propositional logic. All of the 16

possible boolean connectives can be made from this (redundant) set of

primitives. One additional class relation deserves mention, because it

points out the distinction between viewing class relations as
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"functions" and viewing them as "constraints". This relation is that of

"exclusive or": An object is in PQQ iff it is in P, or in Q, but not

in both. For any two arbitrary classes P and Q, PVQ contains exactly

those objects which are in exactly one of them. This is also the

behavior of a partition node, except that with a partition node the two

"inputs" are additionally constrained to in fact have no objects in

common. Thus the "function" viewpoint takes arbitrary "inputs" and

produces some "output" (which is constrained to bear the appropriate

relationship to the inputs); the "constraint" viewpoint abhors

arbitrariness because that loses propagation information. Indeed, the

addition of all the class relations of figure 4-1 is just a notational

convenience: Each of them may be defined in terms of a small network of

partition nodes (using 3 or fewer nodes); they add no new expressive

power to the CE representation. Soperhaps the centuries-long gap

between syllogisms and modern propositional logic would have been

considerably shorter if Aristotle had picked the right primitives!

4.3 Using the data-base (with an example)

The techniques for using a general propositional-logic CE data-

base are an extension of those for processing syllogisms, A syllogistic

data-base presumably contains a large number of syllogistic 'facts'

(such as "no good-guys are crooks") in the form of CEs. The user then

queries the data-base by providing syllogistic statements which the

system is to prove or disprove (including the case of proving something

exists by actually finding one). Note that the 'facts' are represented
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by CEs, while the users 'queries' are represented by imposing initial

labelings on the network and watching for interesting conditions (such

as a contradiction) to occur during the constrained label propagations.

It is important that the 'facts' and 'queries' have exactly the same

expressive power, even though they are represented differently (facts

as pieces of network, queries as initial labelings). This means that

anything which the user can put into the data base he can later get

out, and conversely.

However, the use of the boolean class relations allows one to

express complex 'facts' as CEs which can not be represented as simple

initial labelings. For example, the right-hand side of figure 4-2

expresses the facts that the class of fortunate-ones is exactly the

union of the classes of wise-ones and lucky-ones, and that all

unfortunate-ones are unhappy-ones. Now suppose the user wishes to know

if everyone who is both unlucky and unwise is therefore unhappy. This

can be represented in terms of a simple initial labeling by

constructing the intersection class (named C here) of unlucky-ones and

unwise-ones, and then asking if "all C are unhappy-ones". The left side

of figure 4-2 shows this construction, and the initial labeling (+x on

C, -x on UNHAPPY-ONES). This inference does indeed succeed. One way of

producing the contradiction is as follow: The +x on C yields +x on both

Al and A2 by constraint 12; +x on Al yields -x on WISE-ONES by cl;

similarly, +x on A2 yields -x on LUCKY-ONES; then these two -x labels

yield -x on FORTUNATE-ONES by ul; this yields +x on UNFORTUNATE-ONES by

c2, finally yielding +x (and a contradiction) on UNHAPPY-ONES by tl.
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Although cumbersome to write out in English, the derivation can

be done quite simply by actually marking the appropriate +x and -x

labels directly on the network diagram. This is of course how a

computer implementation can do it (where "marking" means "add the label

to the list associated with this class-point"). Note that this is not

how traditional logic does such inferences: Theorem proving involves

applying "rules of inference" to a large bag of axioms and derived

statements, putting the derived results of the rules into the bag in

turn (where they may then be used as input to the inference rules....)

Thus theorem proving creates and copies items which are much more

complex than the simple CE labels. Also, note that the inference of

figure 4-2 includes the derivation of one of DeMorgan's laws (that

[-P A -Q] 2 -[PvQ]), for which most logical systems have to generate

rather long proofs.

4.4 Implication revisited -- representing models explicitly

One item which has been glossed over so far is the issue of

nested implications. Propositions such as [Pn[QmR]] [[PmQ] [PnR]],

although ugly, actually do appear in standard treatments of logic. (In

fact, this thing is actually an axiom of a system presented by

Mendelson [1964]). However, using the subclass relation for implication

does not allow such nesting, since a "logic box" (like those in figure

4-1) for a nested implication needs to connect to three points, while

the subclass relations just connects to two. This subsection discusses

human intuitions about nested implications, presents an intuitively



Appendix

satisfactory representation for them, and discusses ramifications of

this representations in terms of "context", and knowledge about

knowledge. This representation is also used in section 6, dealing with

nested quantifications.

One way of allowing nested implications is to represent all

nested ones by using the boolean truth-function for implication, while

still representing the top-level implications using the subclass

relation. This does not seem satisfactory for two reasons. First, any

use whatever of the implication truth-function goes against my

intuitive understanding of what "implication" is, anyway. I balk at

the idea that P3Q "really means" the truth-function [(P]vQ: I vastly

prefer "If I am getting wet then it is raining" over "Either I am not

getting wet, or it is raining, or both". Now this might just be an

artifact of English, but I doubt it. Second, note that 'right-nestings'

of implication seem much "simpler" than 'left-nestings', although the

truth-functional representation does not make any distinction. An

example of a right-nesting is "If it is raining, then if I am outside

then I am getting wet"; a sample left-nesting is "If it is true that if

I am outside then I am getting wet, then I should not be outside".

Now, the only reason for mentioning these objections to truth-

functional implication is that there is a good CE representation for

nested implications to which the objections do not apply: It still

uses the subclass relation (even for nested implications), and right-

nestings are processed differently from left-nestings.

This representation allows an explicit correspondence between
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the proposition that "A is a subclass of B" and the class of models for

that proposition. Figure 4-3a shows the representation for this: It

states that M1 is the class of all worlds in which A is a subclass of

B. This kind of CE is is called a "world node". Now, let P, Q, and R be

world-classes as above. Then figure 4-3b represents Rz[PzQ], while

4-3c represents [PmQ]zR. Note that M2 and M3 are each a world-class

for a subclass relation between the world-classes P and Q. Thus it is

possible to nest these to any depth, although the label propagating

computations get more involved as the depth increases.

Before examining these computations, consider what the objects

in the world-class M1 represent. Each corresponds to one possible world

wherein it is true that A is a subclass of B. Logically speaking, each

world (or "model") has an "interpretation" which associates with each

class in the network exactly those objects which it contains (in that

world). However, for our purposes it is not necessary to be this

precise, so we can consider a "world" to be a "possible universe" or

"situation" in the physical (and metaphysical) sense. Note that the

world-classes need not be finite or even denumerable: We are only

interested in how world-classes relate to each other, not in their fine

structure.

These world-classes have many uses which are beyond the scope

of this appendix to discuss in detail, but which are mentioned here to

give some concrete examples. First, different physical situations can

be modeled as world-classes. One can consider an "event" to be

something that changes the world, so each event has associated with it
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a "before" world-class and an "after" one. The data-base can hold

different facts about these different worlds, so it is possible to

answer questions about the past and about hypothetical futures (perhaps

based on proposed courses of action). Second, different states of

knowledge can be represented by different world-classes. By associating

a world-class with each sentient being, it is possible to explicitly

represent what the being does and does not know about something (Such

as "John knows Bill's phone number, but I don't think that Bill

realizes it"). Of course, the different beings can be the same being

at different times: "Yesterday I learned .... " As a final example,

different worlds can represent different "contexts" of information

within the data-base. If it is known that some desired information is

in a particular context (such as "mathematics context" or "Macy's

payroll register context"), then it is more efficient to only propagate

labels within that context. Such a context world-class operates by.

"enabling" parts of the data-base (and perhaps explicitly disabling

other parts).

Indeed, this "enabling" operation is exactly how labels

propagating thru world-classes can affect things. To allow a label to

be distinguished on the basis of which world is responsible for

generating it, associate with each label a "world tag". When putting an

initial labeling on the CE network, use the world tag "inf" (for

"current inference"). Each world tag can also act as a label in its own

right (in which case it, too, is associated with a world tag of its

own). To clarify this, consider the example in figure 4-3d. We want to
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infer that [PnQ][P3Q]. This is a nice example because it is trivial

yet it shows the processing for both left-nesting and right-nesting. M4

is the world-class for the left-hand P3Q and M5 is the world-class for

the right-hand one. Thus to infer [PnQ]=[PnQ] we must show that M4=MS.

To show that M4 is a subclass of M5, mark M4 with +x and MS

with -x, and attempt to derive a contradiction. The world tags for the

+x and -x are both "inf": We write +x/inf and -x/inf when it is

necessary to show the world tag. The +x sitting on M4 means that the

associated inference (P4Q) is true in the world "x"; the -x sitting on

M5 means that its associated inference (also P=Q) is false in the world

"x". This is clearly a contradiction, but there remains the task of

showing how the label propagating system can realize it. This is

accdamplished by further processing of the -x label. The -x says that

the P=Q inference is false in the world "x". Now, if it can be shown

that the inference is in fact true in "x", then we have a our

contradiction in "inf" (because it is "inf" which is asserting that the

PmQ must be false in "x") Showing that the inference is indeed true in

"x" is easy: Label P with +y/x and Q with -y/x, and try to derive a

contradiction in "x". Since there is a +x at M4, the subclass relation

PnQ is true in world "x". Thus a -foo/x on Q can propagate to P, and a

+foo/x on P can propagate to Q (as with constraint ti). Doing either of

these (with the -y/x on Q or the +y/x on P) derives the contradiction.

Thus the general procedure for hacking labels at world nodes is

as follows (Refer to figure 4-3a). If a +x reaches Mi, then propagate

any +foo/x which reaches A from A to B, and propagate -foo/x from B to
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A. This works because the subclass relation is enabled in world "x". If

a -x reaches Mi, generate a sub-inference: For a new label "y", put

+y/x on A and -y/x on B. If this sub-inference produces a

contradiction, then the parent inference (which put the -x on Mi) is

also contradictory: The parent inference says that the sub-inference

must be false in world "x", but it turns out that the sub-inference is

actually true in "x". These two different processes (for +x and -x on

M1) may help explain why right-nested implications seen simpler (to me

at least) than left-nested ones.

4. 5 Logical consistency and completeness

The issues of consistency and completeness discussed here are

presented in terms of propositional logic, but the conclusions drawn

can be seen to apply to all the CEs mentioned in this appendix.

A system of inference is logically consistent iff everything

which can be inferred is true. This is usually demonstrated by showing

that the various inference rules used do not individually cause

inconsistencies, so (by induction) any combination of them also

preserves consistency. "Truth" is defined in terms of a model theory,

and then it is shown that each inference rule preserves such "truth".

Well, we do not have to go to that trouble, because the CE "inference

rules" (concerning label propagations) are themselves a direct

consequence of the "model theory" (concerning class relations). This

correspondence is shown for each constraint propagation rule (such as

ti-t4) when that rule is first presented, so there is no need to repeat
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everything here. Thus CE inference is consistent since the "inference

rules" themselves are purely model-theoretic to start with.

Logical completeness, however, is another matter entirely.

Consider the rather degenerate example in figure 4-4. Clearly A and B

are the same class (since both are the union of Ai and A2), and

similarly B and C are the same. Indeed, it is trivial to show that A

is a subclass of B (and conversely) by labeling A with +x and B with -x

(or vice-versa) and then deriving a contradiction using constraints u2

and ul. Similarly, B and C are trivially subclasses of each other by

labeling +x, -x and using constraints 12 and ii. Furthermore, it is

trivial to show that C is a subclass of A (labeling +x, -x and applying

constraints u2, ul, 12, and ii to produce a contradiction at B).

However, with the propagation scheme presented so far it is not

possible to show that A is a subclass of C. This happens because the

+x on A and the -x on C both get "blocked" -- no constraint is

immediately applicable.

Now, it is unclear whether or not structures with this "dual

blocking" property are ever encountered in practice with any

"reasonable" data-base. If it turns out that that such structures do

present a practical problem, there is a conceptually simple way to

achieve full logical completeness. However, even though this method

(about to be presented) is conceptually simple, it is computationally

disastrous even for highly-parallel hardware. The problem is that full

logical completeness always requires an exponentially-explosive

combinatorial enumeration of cases. (Karp [1972] gives strong
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mathematical evidence that a complete proof procedure for propositional

logic must always take at least exponential time). Anyhow, the super-

idiot version of the method uses the "model theoretic" approach: For a

CE network containing N+2 class-points (with 2 of them being initially

labeled), generate all 2N combinations of assigning the label +x or -x

to each of the remaining classes. Then for each of these 2N

combinations of N label assignments, see if it violates any node

constraints. If each of the combinations violate at least one

constraint, then the initial labeling is indeed contradictory. This

method is analogous, to that of doing propositional logic problems by

enumerating the entire truth-table and checking each entry.

The ordinary-idiot version of the method is still exponentially

explosive, but with a smaller explosion rate. This method involves

doing all possible label propagations until everything gets stuck. Then

pick any unlabeled point and assume x (or whatever) is in the class.

So label the point +x and finish the inference. If that wins, then

assume the point does not contain x (by labeling it with -x). Finish

the inference again, using this different assumption. Since one of

these cases must hold (x must be either in the class, or not be in it),

and since the inference wins for both cases, the inference must win in

general. The exponential explosion comes in because both of those

"finish the inference" processes may in turn themselves require the

testing of both cases of some other point, and so on recursively.

Consider applying this method to point B of figure 4-4. If B

is labeled with +x, we get the contradiction using 12 and ii; if B is
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labeled -x, we get the contradiction using u2 and ul; so we win. The

general point is that full logical completeness can be easily achieved,

if one is willing to put up with an exponential explosion. For a very

large data-base, then, it is impossible to achieve full logical

completeness anyway, so there is little point in worrying too much

about it.
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5 Functions and relations

5. 1 Binary relations: Image

The above schemes of CE inference deal only with questions of

class relations. It is only as powerful as propositional logic,

meaning that it can not handle relations in general ("Aristotle is

taller than Socrates") or any quantification beyond the simple "All X's

are Y's", "No Y's are Z's", etc.

The problem of handling general relations is of course very

basic -- even simple attribute-value systems (such as SIR [Raphael

1964]) have the ability to represent such relations, an ability which

is of course needed for a practical data-base system.

What is wanted is a way of expressing such relations in a

manner which allows inferences to be made by the same sort of local

label-propagation used in the preceding sections. The basic notion to

be used for this is that of the image of a class under a relation. For

example, "my parents' hobbies" is the class which is the image of the

class "my parents" under the relation "hobby of". We use the following

notation for such a "relation node":

* HOBBY-OF

MY-PARENTS I\I MY-PARENTS'-
* __I \ .. * HOBBIES

I/

Figure 5-0

Now, we must be very precise as to what exactly the "image" is.

Let R be the image of D under F. (In 5-0, the R is "my parent's

hobbies", the D is "my parents", and the F is "hobby of"). Consider F
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as being a class of ordered pairs <d,r>, pairing an object in the

domain and an object in the range. There is no uniqueness constraint --

many d's may map onto the same r (playing golf is a hobby of many

people), and many r's may be in the image of a single d (my father has

many hobbies). Thus F is a general relation and not just a "function"

in the sense of there being a unique object in the image for any given

object in the domain.

To insure that R is at least as big as the image, we insist

that if <d,r> is an element of F, and d is an object in D, then r must

be an object in R. That is, R contains every object which participates

in the relation F with any object in the domain. To insure that R is at

most as big as the image, we insist that for every r in R, there is a

(d,r> in F such that d is in D. That is, R does not contain any extra

objects which do not participate in the relation F with any object in

D.

Now this all may seem overly nit-picky, but in fact such a

precise definition of "image" is exactly what is needed in order to

formalize the propagation constraints for relations. (Parenthetically,

it was not particularly easy to get things to this level of crispness

-- I had the general idea of using the image under a relation for a

long time, but a useful formalization had to wait until my semantic

understanding caught up with my hacking)
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5. 2 General domain-range specification

One nice feature of using the image in the above form is that

it allows compact specification of the domain and range of a particular

relation. Domain-range is very important in a lot of applications. For

example, a business data-base might expresses that the domain and range

of the relation SUPPLIES-PART are exactly the known SUPPLIERS and

PARTS, respectively. Figure 5-1 states this fact and in addition that

that 3M (a supplier) supplies all the parts. That is, any part which

is supplied by any supplier is also supplied by 3M.

Another use for domain-range specifications is that a

programming system might use a different function for square-root

depending on whether the argument is an integer, real, or complex

number. Thus these 3 sub-functions for the different domains would

have different domain-range specifications. In general, conditional

expressions can be viewed as being conditional on the domain of the

terms in the expression: For factorial, the range is (1) when the

domain is (0,1); the range is the recursive part of the definition when

the domain is the integers > 1; the range is null when the domain is

anything else. Thus an intelligent system trying to evaluate a

factorial using such information would see which domain constraint(s)

the argument satisfies, and then do the thing specific to that domain.

5. 3 Constraint propagation

Given the above definition of the image, we want to formalize

some labeling constraints. To do this, we need a new kind of label for
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relations: Let the label +<x,y> on a relation mean that the relation

relates x and y; let -<x,y> mean that the relation definitely does not

hold between x and y. Note that these can propagate like ordinary +z

and -z labels (using ti-t4): Doing this, a relation can be treated like

any other class: For example, the relation "parent of" can be defined

as being partitioned into "mother of" and "father of". Thus we have not

introduced a new kind of label so much as a new kind of object, the

ordered pair. Now, using our definition of "image", we have these

propagation rules:

(fl) From +x on D, +<x,y> on F, infer +y on R. That is, since

R is the entire image of D under F, y must be in R if x is in D and F

relates x,y.

(f2) From +y on R, generate a new object g0037 and infer

+<g0037,y> on F and +g0037 on D. That is, since R is no larger than the

image of D under F, for every y in R there must be some domain object

which bears the relation F to it. We do not know which object this is,

so we use a new name. This is a little obscure, but will hopefully be

clarified by the examples below.

(f3) From -y on R and +x on D, infer -<x,y> on F. This is a

negation of (fl): If -y on R, then either -x on D or -<x,y> on F; thus

if also +x on D (and thus not -x on D), it must be -<x,y> on F. More

intuitively, if x is in the domain and y is not in the image, then

<x,y> can not occur in the relation.

(f4) From -y on R and +<x,y> on F, infer -x on D. This is the

other case of the negation of (fl): If -r on R, then either -x on D or



Appendix

-<x,y> on F. Since not -<x,y> on F, it must be -x on D. Again, if y is

not in the image but <x,y> is in the relation, then x can not be in the

domain (otherwise y would have to be in the image).

(f5) If D is an object (singleton class), then for +x on D and

-<x,y> on F, infer -y on R. Since D is a singleton, and since x is in

that singleton, then only x can be in the singleton. Thus if x is the

entire domain, and x does not relate to y, then y can not be anywhere

in the range.

(f6) Similarly, if F is an object (contains only a single

ordered pair), then for +<x,y> on F and -x on D, infer -y on R.

5.4 Transitive relations

As an example of making inferences using some of the above

constraints, this subsection concerns a representation for transitive

relations. The fact that "taller", for example, is transitive, tends

to be a bit of a nuisance. Either something must be built into the

system code to recognize transitive relations and treat them specially

(as in SIR and OWL), or some complex thing such as

VxVyVz[TALLER(x,y) A TALLER(y,z) m TALLER(x,z)]

must be given to a theorem prover (which may choke on it).

Since transitive relations are so common (virtually all English

adjectives, for example, have meaningful comparative forms), then I

assume that for humans they are both usefully expressive and easy to

compute with. It would be nice to have a clean formal representation

with the same feature. Consider: For most relations like "taller"
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there is associated a "quantity", in this case, "height". In common-

sense terms, A is taller than B if A's height is greater. Attempts

(such as by Schank (19721) to use this fact by assigning numerical

quantities seem very forced -- what, after all, are the measure units

for happiness, goodness, or beauty? Also, if the issue of units is

ignored by assigning a dimensionless number, then statements such as

"Joe's height is greater than Sam's happiness" would be sensible, which

they obviously are not (except in a metaphorical sense: If Joe is a

midget, it is just a cute way of saying that Sam is unhappy).

So, our scheme will be to have a relation HEIGHT (for example)

which maps from the domain PHYSICAL-OBJECTS to the range HEIGHTS. The

HEIGHTS will be ordered by the superclass relation -- if Hi, H2 are

heights, then Hi is greater than or equal to H2 iff the class Hi is a

superclass of H2. Note that these classes Hi1, H2 are not classes of

objects having some particular height -- they are classes which

represent the ordering of abstract heights. (What exactly the objects

are in those classes is unimportant. One way of looking at it is that

each abstract height is a class of tokens with numbers on them, and the

"measured height" in inches is the maximum number to be found among all

the tokens in the class. The use of maximum insures that all

superclasses of a given height must have a "measured height" at least

as big).

Since the CE inference scheme already knows about the

transitivity of "superclass", it will know about the transitivity of

"greater height" since that is represented as superclass. Figure 5-2a
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says that A is taller than B -- A's HEIGHT is a superclass of B's

HEIGHT. Similarly, figure-5-2b says that B is taller than C. Finally,

figure 5-2c represents A's height and C's height. (The "Stacking" of

relation nodes-in 5-2 means that all the stacked nodes have as their F

points the same class, in this case HEIGHT. This cuts down on the

number of crossing lines in the network diagrams). Now, the goal is to

show that A's height (point AH2) is a superclass of C's height (point

CH2). As with inferring "all redwoods are plants" (from section 2), we

label CH2 as +x and AH2 as -x. If a contradiction is obtained, then

there is no such x, so all of CH2 is contained in AH2.

Before forging ahead with the label propagations, consider

again exactly how the data-base is used. We want to test the assertion

that A is taller than C by using a data-base which presumably contains

some relevant information. Here, figures 5-2a and 5-2b represent

existing knowledge in the data-base. Figure 5-2c is new stuff which has

been built solely for the purpose of testing the assertion. In a sense,

a user who wishes to use the data-base has access to certain

"terminals" (points) in the data-base to which new stuff can be

attached. That is, it would be meaningless to ask "is A taller than C"

if the user had no access to the names A and C, about which the data-

base presumably contains some facts. Note that the user of the data-

base does not have to know anything about B, or even that B exists at

all.

Further, the user does not have to know that the heights of A

and C are already explicitly represented in the data-base (by AHI and
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CHI, respectively). In the process of label propagation, we will

implicitly infer that the points AH2 and CH2 can be identified with AHI

and CHI for the purposes of the current inference. Such identifications

can easily be made explicit and given to the user, so that in the

future the user has a more direct way of refering to A's height (using

the existing AHi) than by constructing another thing such as AH2. Using

the existing AHI and CHI is more efficient both in terms of space

(since the new stuff need not be created) and in terms of time (since

the inference that AH2 is identical to AH1 need not be rederived each

time it is needed).

Now, the inference for figure 5-2 can best be thought of as

happening in three stages: The first pushes +x from CH2 to CH1; the

second pushes it from BHC to BHA; and the third pushes it from AHI to

AH2, causing the desired contradiction since AH2 is already labeled -x.

The three stages involve using identical constraints, so it is only

necessary to explain one of them in detail. Consider the second stage:

From +x on BHC we get +<g0341,x> on HEIGHT and +g0341 on B by

constraint f2, where g0341 is some new label; then from these two

labels we immediately get +x on BHA by constraint fll Intuitively,

this happens because two different occurrences of the image of a given

class under a given relation (such as BHC and BHA both being the image

of B under HEIGHT) must be identical, thus the +x should always be able

get from one to the other. So three applications of this do all the

work, with some interstage glue being provided by constraint tl (which

gets stage one's output +x from CH1 to BHC, and gets stage two's output
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from BHA to AHi). Note that this particular inference for figure 5-2 is

by no means unique -- Just as for "all redwoods are plants", using

different constraints would produce a different inference, with the

final collision of + and - occuring at some other point in the figure.

5.5 A comparison with Codd's system and Planner

Codd [see Date I Codd 1974] proposes a "relational model" for

data-bases. Such a data-base consists of a collection of N-ary

relations, each of which is expressed as an enumerated set of N-tuples.

In the case of "normalized" relations (which is what we are concerned

with here), the slots of each N-tuple are filled with atomic data items

(such as employee names or part numbers). For all tuples in a given

relation, the i-th slot of each is filled with the same "type" of

atomic data. Thus a relational data-base can be written out as a

collection of tables: Each relation is a different table, the rows of

which each represent one N-tuple, and the columns of which are the

different slots. For example, one relation (table) might be "supplies

part", where the first slot (column) names a supplier, and the second

one names a part which the supplier supplies.

This sort of data-base scheme is conceptually very much like

the non-procedural portions of the Planner data-base [Sussman 1970],

with two major exceptions. The first is that Planner represents N-

tuples in a slightly different manner. Each tuple explicitly names the

relation of which it is a member (such as (SUPPLIES-PART 3M WIDGET)),

and data-base retrieval is done on the basis of slot position within
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the tuple instead of on the basis of the slot (column) name. That is,

Codds system can be asked for "all suppliers who supply widgets" (in

some formal notation), while Planner is asked to find all tuples which

match (SUPPLIES-PART $? WIDGET). Besides this minor notational

difference, there is a second, more important difference. This is that

Planner has slightly more expressive power. In Planner, the relation's

name (in the tuple) has the same status as any other slot, so one. can

ask for all matches against ($? 3M WIDGET), which (in a suitably

structured data-base) might mean "all relations which occur between 3M

and widgets" (for example, 3M may use or recycle or engrave widgets, in

addition to supplying them). Codd's system can not do this because a

"relation" (table) can not be used as a search key -- it 'contains'

manipulable atomic data without itself being manipulable as a unit.

This difference between Codd's system and Planner is also the

major difference between both of them and the CE representation.

Briefly, in the CE representation everything is manipulable: Classes,

objects, ordered pairs (2-tuples), relations (classes of ordered

pairs), and even the structure of the CE network itself are all

explicitly manipulable (The network structure can be manipulated by

selectively enabling different constraints via worlds). This is why the

CE representation has such a clean semantics and can represent both

statements and questions in the same manner.

Furthermore, the fact that Codd-like systems represent

everything in terms of explicitly enumerated finite sets drastically

restricts the expressive power. .Consider figure 5-1, which states that
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3M supplies all parts. To say such a thing in Codd's system would

require that the "supplies parts" table have a separate 2-tuple for

each part which 3M supplies. Even worse, if 12 different companies each

supply all of the 100 different parts, this involves 1200 table

entries. The problem is that there is no way to talk about a class of

things (such as "all parts") as a unit. In addition, the use of

explicit enumeration requires that the system have complete information

about the contents of every set: The only way to state that "all parts

which company A supplies are also supplied by company B" is to know

exactly what those parts are and explicitly list each one as being

supplied by both A and B. This clearly does not capture the expressed

generalization about all parts (as opposed to each of the currently-

known individual parts). Since the desired generalization is not

directly expressed, the system must not only generate all those table

entries to express an approximation to the general fact, but it must

examine them all if asked "does B supply all the parts which A does".

Using a CE network, both the generalization and the question are

trivial to express, using a single subclass constraint.

5.6 N-ary relations

In Codd's system, it is trivial to express N-ary relationships,

since N-tuples are a primitive of the system. Even though N-tuples are

not primitives in the CE representation presented in this appendix, it

is easy to represent them in an intuitively-satisfactory manner.

Consider an example taken from Date and Codd [1974]. They represent
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"part" as being a relation among the slots P# (part number), PNAME

(part name), COLOR, and WEIGHT. The P# is included for the purpose of

acting as a "primary key", which is something that uniquely identifies

the tuple. Now note that there is nothing that one can point to here

and say "this is a part". The thing that comes closest is the P#

(since there is a 1-1 correspondence between parts and part numbers),

but the "part number" is not the part itself. It seems to me that

individual parts can exist independently of their known attributes

(such as color, weight, and number). Of course, the tuple itself can be

considered to be the part, (with the slots giving each part's

attributes), except that there is no way in Codd's system to refer

directly to a given tuple -- that is why the "primary key" is needed as

an indexer.

In the CE representation, each part is represented explicitly,

and the various attributes are each represented as a binary relation.

Figure 5-3a enumerates some of the kinds of parts, and gives the

attribute values for widgets. Considering just the partition nodes for

the moment, note that things can be specified at exactly the desired

level of detail. It is possible to refer to all PARTS, to all of some

particular kind of part (such as all WIDGETS), and even to particular

widgets (W1, W2, W3, and W4). Note that Codd's representation is

restricted to one level of detail, since there is no representation for

higher-level groupings (classes) of objects. In this example, Codd's

system is restricted to the level of WIDGETS -- it is impossible to

refer to either a more general concept (such as PARTS), or a more
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particular one (such as W2).

Concerning the relation nodes which supply the attribute

values, note that they too can be specified at exactly the right level

of detail. Since all widgets have the same part number, part name,

color, and weight, the specification of these attributes need only be

done once (for the entire class). For example, the relation node for

COLOR-OF says that the image of the entire class of widgets under the

relation color-of is the single object "pink". That is, all widgets

have the same color. If it is desired to create a transitive partial

ordering for weights (as subsection 5.4 does for heights), Just add a

relation which maps from a particular weight (such as 3-tons) to the

class which represents the corresponding "abstract weight". (5. 4 uses a

1-level mapping from individuals to abstract heights instead of a

2-level one from individuals to individual heights to abstract heights

in order to simplify the example. The identical processing goes on in

the 2-ievel case).

Now, it is indeed possible to do the same kind of inference on

this structure as we have been doing all along. Suppose a user wishes

to know the color of part type W2. The user does not have to know that

W2 is a kind of widget, or anything else. All the user needs is access

to the network point for W2. Given this, the construction in figure

5-3b constrains the class FOO to be the color of W2. Now, label FOO

with +x -- if this +x label reaches a class, then it is known that POO

is a subclass of that class. So in particular, if +x reaches an

object, then F00 is a subclass of that object. The only way in which
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one object can be a subclass of another is if they are the same, so in

fact the object which the +x reaches must be the color of W2.

One way in which +x can get from FO0 to 'pink' is by the same

series of constraints used in each of the "stages" in section 5.4: +x

on FOO yields both +<g0342,x) on COLOR-OF and +g0342 on W2 (by

constraint f2); the +g0342 propagates from W2 to WIDGETS by constraint

tl; and finally the +g0342 on WIDGETS and the +<g0342,x> on COLOR-OF

combine to yield +x on 'pink' (by constraint fl).

5.7 Inverse relations -- "active" and "passive"

One unusual feature of the CE representation for binary

relations is that they are treated asymmetrically, For example, every

object in the range must have at least one related object in the domain

(by constraint f2), but not vice-versa. Thus there is a problem if we

need to use both the "active" and "passive" forms of a relation (such

as "the companies which supply the part" and "the parts supplied by the

company").

These two forms of a relation can be related by introducing a

new constraining node, the "inverse node". Figure 5-4 contains an

inverse node (drawn as a bisected diamond) which constrains the

relations "supplies part" and "part supplied by" to be inverses of each

other. So point A represents the class of all parts which 3M supplies,

while point B represents all the suppliers which supply a widget. This

inverse node constrains every <x,y> instance of the relation

SUPPLIES-PART to have a corresponding (y,x> instance of
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PART-SUPPLIED-BY, and vice-versa. Thus the general label propagating

constraints for an inverse node and arbitrary objects x and y are:

(vi) If +<x,y> on either side, put +<y,x> on the other.

(v2) If -<x,y> on either side, put -<y,x> on the other.
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6 Logical quantification

6. 1 Implicit quantification

With any sort of deductive inference system, processing becomes

more complex (or even impossible) when the data-base facts and queries

are allowed to contain complex logical quantifications. This section

examines how the CE representation can be extended to handle such

things (using a fair amount of brute-force enumeration, however).

But before doing this, consider what kinds of quantification

can already be handled using CEs. As seen in section 2, the constraints

embodied in the harmless-looking "partition node" need explicit

quantification in order to be represented in first-order logic.

Indeed, the intuitively simple notion of "subclass" is usually defined

by something like: "A is a subclass of B iff for all x, if x is in A

then x is in B". This explicit universal quantification is made

implicitly in the CE representation by allowing any label of the form

+x to go from A to B (by the first part of ti), and similarly for the

other propagation constraints. Thus there is a certain power of

quantification inherent in the dynamic processing (via label pushing),

which therefore does not need to be expressed explicitly in the static

representation.

For example, consider figure 6-1. The top two relation nodes

state that supplier-1 supplies both widgets and frobs (Each is a

subclass of the class of all the different kinds of parts which

supplier-i supplies). The bottom relation node represents the stuff

added for the query "what parts does supplier-i supply": The class FOO
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is exactly what we want (the entire image of supplier-i under the

relation supplies-part). So, as usual, to find relevant subclasses of

the given class FOO, we mark FOO with -x, and propagate. Any point

reached by -x is then a subclass of FOO. Since all objects (singleton

classes) obviously contain themselves, we can implicitly "hard-wire" a

permanent +supplier-1 label to the class 'supplier-1'. Then by

constraint f3 on the bottom node we can put -<supplier-l,X) on

SUPPLIES-PART. Then constraint f5 on the two top nodes produces -x on

Al and A2, respectively. Finally, constraint t2 propagates the -x from

Al and A2 to WIDGETS and FROBS, and we are done. If in addition we want

to go down to the ultimate atomic objects (such as the 4 types of

widgets in figure 5-3), then we can propagate the -x labels further.

6.2 Explicit quantification

Of course, there exist queries which are too complex to be

handled by the built-in implicit quantification mechanisms. Since the

most general way of handling a "find all" or "find one" query is to

actually construct a class which contains what is desired (and then

start a -x from it), it is first necessary to be able to construct

complex quantificational facts before being able to answer questions

about them.

Consider "FOO is the class of all suppliers each of which

supplies all parts". Now it is easy to state for a particular supplier

that the supplier supplies all parts (for example, figure 5-1), but is

not so easy to capture the general case. One possible approach is



Appendix

diagramed in figure 6-2: The subclass of suppliers (FOO) does indeed

supply all the parts. However, nothing prevents FOO from just

consisting of some supplier-A and supplier-B, which together supply all

the parts, but which individually do not. What 6-2 represents is that

"FOO is a class of suppliers, which among themselves supply all parts".

What is needed is some way to refer to a "typical" supplier

(such as 3M in figure 5-1) which individually supplies all parts, and

then say "let FOO be the class of all of those". Indeed, English makes

it clear that such a typical object exists (at least at the surface

level): In "list all suppliers such that the supplier supplies all

parts", the definite description "the supplier" clearly refers to a

typical object. OWL, in fact, is strongly biased towards the use of

such descriptions by typical example, as is Winston's [1970] scene-

analysis program.

Figure 6-3 shows the CE representation for such a typical

object. This is a copy of part of figure 5-1 (stating that 3M supplies

all parts), with the addition that the object "typ-supplier" is the

desired typical object: It, like 3M, supplies every kind of part. The

two other lines (with arrows going out of and into the node) are

respectively the desired 'destination class' of all of those objects

which behave as the typical one does, and the 'source class' from which

such objects may be drawn (in this case, from the class of suppliers).

This kind of node is called a "typ node".

Now as usual, the important point is not so much that such

typical objects can be statically represented, but that in fact some
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useful computations can be done using them. To find suppliers each of

which supply all parts, we put the customary -x on FOO, and see where

is propagates to. The way a typ node processes a -x on the

destination-class point is as follows: Enumerate objects one at a time

from the source class; for each one, test to see if it meets the

description of the typical-object; when one does, then it is a desired

object in the destination-class. To enumerate the objects in the source

class, we use the customary method of putting -y (a new label) on the

source class and noting those objects which a -y reaches. In this

case, it will reach all suppliers.

To test each such object to see if it meets the typical-object

description, assume the contrary and try to derive a contradiction. In

this case, assuming the contrary means assuming that there is a part

which the enumerated object does not supply. This is done by

generating a new label z (to represent the hypothetical part), putting

+z on PARTS, putting -(typ-supplier,z> on SUPPLIES-PART, and

temporarily "binding" typ-supplier to the enumerated object. This

"binding" means that anything which refers to typ-supplier (as a point

or a label) will really refer to the enumerated object.

As an example of this rather involved process, consider the

case when the enumerated object happens to be 3M. PARTS gets the label

+z, and SUPPLIES-PART gets -<typ-supplier,z> (which by virtue of the

"binding" is really -<3M,z>). Finally, 3M (being an object class) has

its hard-wired +3M label. Well, thank heavens we are done: Constraint

f5 applied to 3M's relation node forces a -z on PARTS, and we have the
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contradiction.

Clearly, this process is rather expensive: It involves a

brute-force enumeration and the maintenance of temporary bindings.

This is unfortunate, but there is some consolation in the fact that

other data-base formalisms have to go through pretty much the same

thing. The moral is that one must be prepared to pay a stiff

computational price if one insists on asking quantified questions.

6.3 Nested quantification

Of course, things can always get worse -- in addition to the

computational problems with doing explicit quantification at all, there

is the problem of in what order things should be done when multiple

quantifiers are used. A sufficiently high-level query language (such as

Zloof's [1974] "query by example") can remove the burden of ordering

from the naive user, but within the data-base itself the order must be

specified. (Zloof's system and the other Codd-like systems do not have

to worry about quantified facts in the data-base, because they use a

data-base containing only completely specified finite tables of atomic

facts).

Within, the CE framework presented in this appendix, the

orderings among quantified typical-objects can be made explicit by

using worlds. The "world node" used in section 4 provides an explicit

representation for all worlds in which a given subclass relation holds,

and the same principle can be applied to the "typ nodes" of this

section. Figure 6-4 shows a typ node in all its glory. The in-world
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line specifies when the constraints represented by the typ node apply

-- if +w is on the in-world then the constraints apply for labels

generated by w; if -w is on the in-world than the constraints

definitely do not apply. The out-world is a filtered subclass of the

in-world, much as the destination-class is a filtered subclass of the

source-class: +w can go from in-world to out-world iff the source

class is not empty. That is, the out-world is activated iff there is

indeed a source object to be bound to the typ-object.

Thus by chaining the out-world of one typ node to the in-world

of another, the order in which they operate can be specified: The

first node will pick a source object, bind it to the node's typ-class,

and then fire up its out-world, letting the second node now bind one of

its own source objects. This order corresponds to the "scoping" or

lexical nesting of quantifiers in mathematical logic, and indeed the

same amount of non-intuitive complexity can be produced. One simple

2-level example is shown in figure 6-5: It states that every girl who

has a brother who has a pet likes it (the pet, that is). A typ node

for which no in-world is specified is always enabled, just as the one

in figure 6-3 is. The final out-world connection to the world node

states that in all worlds in which such objects can be found (the girl,

her brother, and his pet), the pet is contained in the class of things

which the girl likes.

If this were a query to be processed (ie. "Is is true that

.... "), it would require 2 nested loops of enumerations: One for the

girls, and one for each girl's brothers. This is somewhat painful, but
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appears to be the only way to answer such questions. So the conclusion

from all this is clear: For facts and queries which can not. be handled

by the CE representation's implicit quantification, it must go through

the same kind of brute-force enumeration which the other data-base

schemes use.
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7 Summary

This appendix has presented a data-base representation based on

Constraint Expressions. It has the following features:

(1) It is highly modular, in several senses. First, the

primitives of the representation themselves are semantically modular,

in that any given fragment of CE network has the identical local

meaning regardless of context (a feature which first order logic, for

example, does not share, since a subexpression of a logical formula may

have different meanings depending upon the quantifiers within which it

is scoped). Second, the processing of inferences is computationally

modular, in that each node can be viewed as an active process which

waits for certain label patterns to appear on its attached points, and

propagates new labels when such a pattern occurs. Thus the

representation can reap the full benefits of using parallel-processing

hardware (even to the extent of actually building the data-base

expressions themselves out of cellular automata). Finally, the growth

of the power of the representation is evolutionarily modular. The

sequence of sections in this appendix corresponds to the sequence in

which the various different kinds of constraint nodes were developed.

It is important that every new increment of expressive power represents

an extension of what previously existed -- no changes in the previous

primitives have been necessary.

(2) It has great expressive power, in both the logical and

computational sense. Inferences not involving complex quantification

are easy to compute, without resorting to an exhaustive enumeration of
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cases. Of course, such an exhaustive search is needed if abstract

logical completeness is desired, but the "incomplete" system is still

extremely powerful. Also, it has great user-oriented expressive power

in that anything which can be stated as a fact to the data-base can

also be used as a query, and vice-versa. Systems based on a fully-

instantiated finite model theory (such as the non-procedural portions

of Planner, and the various Codd-like data-base schemes) do not have

this feature, and in fact are unable to express any sort of "general"

fact whatever.

Finally, it has a clean semantics. The combination of this and

(2) is very unusual: First-order logic has the semantics, but is

computationally disastrous even for small data-bases; The procedural

aspects of Planner and Conniver [Mcdermott, 19731 have the

computational power, but do not (at the current state of the art) have

any unifying semantic base. Having a clean semantics aids both the task

of implementing the primitives of the system on a computer, and that of

encoding a large data-base into the implemented representation.
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