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Abstract

A focus on planning and debugging procedures underlies the enhanced
proficiency of recent programs which solve problems and acquire new skills. By
describing complex procedures as constituents of evolutionary sequences of families
of simpler procedures, we can augment our understanding of how they were written
and how they accomplish their goals, as well as improving our ability to debug them.
To the extent that properties of such descriptions are task independent, we ought to
be able to create a computational analogue for genetic epistemology, a theory of
procedural ontogeny. Since such a theory eught to be relevant to the teaching of
procedures and modelling of the learner, it is proposed that an educational
application system be implemented, to help to clarify these ideas. The system would
provide assistance to students solving geometry construction problems.
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Inﬁroduétion:

[The behaviorist] says: "There is no proble‘th of consciousness, none of imagery, none
of meaning”. But what he really intends to say is: "There is no problem that cannot
just as well be formulated without using these particular terms". ..there may be very
good reasons for saying that meaning arises-partially as a result of the organisation of
reactions. But this is a very different view from the one which states roundly:
"Meaning is action”. " '

<Bartlett, 64>.
Hampered by inadequate formalisms, or frustrated by the replacement of the study of
“phenomena by the study of formalism itself, psychologists, computer scientists, linguists,
philosophers, educators, logicians, and mathematicians 'have_' -5egun to forge a substantial new
discipline: cognitive sctence. The central problem of cognitive science is. to understand and
represent the meaning content of human knowledge,.'T_he artificial intelligence [Al] approach to.
the problem of meaning is to strive for precision by expressing our intuitions in the language of
cornputer programs. Perhaps. the single most significant f eature of the Al method is the attempt to
describe the notion of process.

There is a fruitful interplay between this theoretical approach and cognitive engineertng, the
attempt to build intelligent machines. The design- of ‘applications-oriented programs can be a
powerful methodology for clarifying theoretical issues. This section discusses certain controversies
which are the overriding concern of the current proposal for research. Other sections scrutinize the
application of some of the ideas to the domains of turtle geometry and sorting algorithms. A later

section attempts to formulate the beginnings of a theory.. The final section proposes the

implementation of an educational computer system (which would provide assistance to students
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solving geometry construction problems), as a technique for pursuing the investigation of these
issues.

Shifting emphasis away from earlier axiomatic and search paradigms, recent Al research
has focused on the understanding of program planning and debugging, and the explicit.
representation. of knowledge in a domain. This theme underlies the enhanced proficiency of
systems which solve problems and acquire new skills. The embedding of such knowledge in
procedures, as opposed to more static data sfructures; ‘has been termed procedural eptstemology.
Examination of the genesis of probleni solving _procedurgé for several domains leads to the
‘observation that procedural knowledge exhibits a tendencjg to évolve toward gr;eafer flexibility and
generality. By describing complex procedures as constituents of evolutjonary sequences of families
of simpler procedures, we can augment our understanding of how they were: written.and how. they
accomplish their goals, as well as ithproving our -ability to debug them. To the extent that
properties of such descriptions are task independent, we ought to be able to create a computational
analogte for genetic epistemology, a theory of procedural ontogeny.

[The phrase "procedural ontogeny” can be criticized as both loose and pompous. These

ob jections are not without substance, and it might have been preferable to avoid this

terminology entirely. The overriding heuristic value of providing names for concepts is

the justification for its retention in this document.. Nonetheless, this particular

nomenclature is still questionable. The choice of the word “ontogeny”, instead of some

less specific term, reflects an emphasis on similarities among the developmental histories

of individual procedures, rather than on differences between collections of procedures

(i.e., speciation), as might be suggested by some more inclusive phrase. Even then, one

might legitimately inquire as to the sense in which the procedures being: discussed exist.

Are they embodied, for example, in- the adaptive mechanisms of biological organisms?

The. intention is that the procedures represent abstractions from reality; this is a special

case of the philosophical distinctibn between epistemology and ontology, the -

implications of which cannot be pursued in a paper of this nature.) ' '

Such a theory (i.e, of procedural ontogeny) would be rele?w)ant to the teaching of procedures,

and, mare importantly, the modelling of the learner. By addressing fundamental questions of
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prbblem solving and learning, the project should contribute to progljeis in program understanding
research, and help to strengthen the developmental foundations of the study of intelligence.
Knowledge of the evolutionary history of pro'granjs'-ca,rf_: be utilized in 'several different ways,
including explanation, generation, and debugging.
Several alternative techniques for organizing the débugging-proéess have already emerged:
I. Model Driven Debugging opi_erates by fixing a program so as to eliminate violations
of a model of the intended result. The MYCROFT system written by Ira Goldstein for
the LOGO domain is organized in this manner, where the model language provides
primitives for describing pictures in declarative form, and the debugging monitor
attempts to insure the consistency of declarative and procedural descriptions.
2. Process Driven Debugging is s directed by the abstract state of the process at the time
of the error interrupt. Gerry Sussman’s HACKER program emphasizes this
understanding’ of the chronology and purpose of. the computation in writing and
debugging BLOCK'S WORLD programs ' '
8. Algorithm Drtven Debugging is gmded by mterpretlve descriptions of standard
algorithms for a given task. Gregory Ruth has built an analyzer for sorting programs
written by beginners which attempts to recogmze the underlymg algorithm.
4. Validation Driven Debugging bases its strategy_on the structure of ' the pr__ocedure
definition during attempted verification. Carl Hewitt's group has proposed an
environment for knowledge-based programming in which procedural contracts are
reconciled with corresponding ACTOR code by meta- evaluatton
Derivmg guidance from the edm_ng history of the program, Evolutton Driven Debugging could
provide further insight. By keeping a record of the successive Vers_idns of a program, the monitor
system can become sensitive to bugs arising from recent patches of various semantic types.
Evolution driven debugging énalyzes the conceptual origins of bugs in more complex programs
(such as those with inputs), tracing them to planning heuris_tics.which produced the code by
generalizing from earlier families of simpler programs. “There_is'no quarrel with the utility or

validity of other techniques; rather, it is contended that a powerful debugging monitor would need

to exhibit many such sources of direction.
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It is important .to' recoghize, in program generation, thai the complete specifications very
often are not known in advance. Nor does one al'ways. l{naw- the correct way to. proceed. At each
stage, some bugs will be introduced; others will be .elimin'ite.d._lref,lect,ing an evolving
understanding, and adapting to changing specificati.o_ns. The planning and gener;_tion of
procedures are inextricably bound up with debﬁgg_ing. Wh.a_t_is beiné d_éalt with here is the
relationship of bugs to longer range plans for bdilding’ a cdmple*' program by starting with a
simplified, less efficient, or Iessgeneral'ver'sion. These.concept_s"are unified by a provision for
program readable annotation of causal relationshfps. Th?r,e is a -r'.lee& for caref ul evaluation modes, |
history lists, and means for representing the dyn,amics. of a i:hanging_ world. Tﬁere have to be
mechanisms for discovering whether and why a program is indg;ed- malfunctioning, and this may
depend on an important role for typical and pathplogical examples. ‘-

Research on procedural evolution is necessarily concem:eql 'wilth. the nature of expertise: the
representation of domain dependent knowledge.so as. to ‘be accessible by situational goals; the
problem of recognition;. the tradeoff with structural 'problém scﬁ-\ving techni.que_s; and tﬁe
importance of geometrical, physical, or mechanical analogies in thought about other dorﬁains. Most
importaﬁt in studying children’s programming is the role of. ledarning.. The empﬁasis isl on learning
how versus learning that, and the importance of a careful.ly organized sequence of problems,
solutions, and near misses to solutions. | |

A crucial issue for this work cohcerns the'altérnafive_'_paradigms for organizing a problem
solving system. One schiool of thought favors Fregéin rep-resentations; making a sharp distinction ‘
between facts and inf érence rules. There have beeﬁ certain prdblems- with th-is a'pproach, such as
. the difficulty of updating facts which can change over time. Another school of thought, embodied -

in GPS <Newell & Simon, 72>, organizes the problerh solver as a set of p.roduttions which search a
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problem space, using plausible move generators and. static _eVatu.a_tion fu,nction.{. This contrasts with
a new knowledge paradigm based on planning and deb_u_ggiﬁg. and providing for explicit (of teﬁ
procedural) domain d.ependent knowledge. Forgetting is allowed, since knowledgé is seen as limited
and changeable. An important sub-issue is the extent t'o-which debugging or problem solving in
general is dependent on the parﬁcular domali_n. Does each mini-world have its own characteristic
bugs, and/or appropriate top-level debugging strategy? To what extent ca.'n ‘existing programs be
extended or generalized? Can there be a complete catélogue of i)ug 'ty_pes; or does skill in trouble-
shooting merely reflect the operation“of ‘a myriad assortment of ad hoc techniques? What is the role
of paradigmatic examples as analogies or powerful ideas for o.ther-ldom'a_'ms?

The distinction between _procedﬁral aﬁd declara;i‘;e knowledge is a difficult issue. This
- controversy of rheaning-as-action versu§ m.eaning-as-confext parallels the earlier pﬁychologlcal issue
of Behaviorism versus Gestaltism. Howevef, the current deba.te ref Iec.ts a more advanced
understanding, being essentially mentalistic and having reference to internal states. The‘questions
are more refined: intrinsic -versﬁ‘s extrinsic computation, intensional versus extensional contexts, the
modularity/ef ficiency tradeoff, heuri'stit_:.pou-rer versus logical consistency. What is most important
is that the programmer be able to put knowledge anywhe're,' in the system that it can be used, and
that facts be linked to advice as to their use. Moreover,- it is critical tq be able to specify all and
only what is intended. For example, if may be that an _itérativa factorial program serving to model
the intentions of a recursive f actﬁrial program requires too much - it prescribes the order in which
the muitiplications are to be done -- complicating the task of :-show.ing the equ.i.valence of alternative
versions. This might be particularly true in .the presence of bUgs-,. where equivalent contracts could
produce different manifestations. Likewise, when we wish to express (IMPLIES A B), we may not

know whether it should be used in antecedent or consequent form. If forced to choose, we have
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decided too much too soon. It'may be desirpus to leave the decisiéﬁ to a neutral (perhaps as yet
unspecified) interpreter. On the other hand, much of the elegance and power of LISP lies in its
blurring of such distinctions. This closure property has been put to ﬁowérful- use in programs
which create, modif y. and execute code. It is not so much the for'ﬁ of the fanguage but the amoﬁnt
and location of tmperative content. The ob je_ctio:lls.ln the case of f éctor_ia‘l can be met, for exaﬁmp!e.
by the introduction of new primitives such as bags, which leave the_.order unspecifiegl. Tl_:en, it
becomes a matter of raising the level of the intérpreter. Some of .these problems may be te_lated to
dissatisfaction with the invocation of database rh_ethﬁds oﬁ the basis of the pattér_n of a single- :
assertion. Minsky's FRAME theory may be seen as a possii)le step toward synthesis. |
More perplexing than even the de_clarativelp.rocedu-ral .con_trc'wersy is. the _ge‘néral

proflfe'ration of proposals.for répresent_ing knowledge. WHat criteria doe‘s one use in determiﬁing
to employ Semantic Nets instead of Conniver Assertions, Actors instead of Frames, or Conceptual
Dependency Diagrams instead of .'Deep Structures? Can there be a scientif icl basis for such choices,
or is Al bound to wallow in the "Turing' Machine_’i-‘arpit"? Is there a useful sense in which these
are not merely notational variants? Can the best aspectS of eaﬁh proposal. be .uniﬂed into a single, -
superior representation? For example, Bobrow and Norman <74> have attempted to merge features
of Actors and Frames into a single mechanism called “Schgm;ta", Can such a device help to. draw
parallels between Piaget's vague but int;xit.ive egphna_tit_i_n’s. and the- precise operations of a
computer program?

~ A growing movement to find. ways of cdnstr_u_cting.more .re'liable software raises another.
issue: validation versus debugging. It is not inconceivable that within five or ten years there
might exist a "complete” catalogue of programming bugs. Would this eliminate the need for

debugging? Could one compile a critic for each, to preprocess all programs, and then send them
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off for automatic verification? Likewise, is it possible that the Structured P"‘rogramming movement
will supply us with such a sound design methodology that it becomes almost perverse to make
mistakes? Can top-down-stepwise-refinement replace simplify-and-debug? Is debugging obsolete? It
seems doubtful. Every programming construct with any power is dangerous. Even critic
compilation, which surely distinguishes the expert from the novice in programming, cannot
eliminate the efficiency of not explicitly providing for all exceptional conditions. For the fifth-
grader, this might mean not checking for accidental equality when vériabilizing. For the LISP
interpreter, it might mean that the MAP s;ries of functions must terminate on NULL checks (or,
for that matter, tolerate attempts to RPLAC. NIL); because the expense of NLISTP checks would be
prohibitive.

A good example of a powerful but dangerous construct is the free variable. The scope of
identifiers has been a difficulty for.every programming language to date. Various improvements
have been and will continue to be considered. Undoubtedly some of these will eliminate certain
bugs. But consider the following evolutionary:sequence. Program ALPHA has been written to call
subroutine GAMMA. GAMMA uses the variable FOO freely, as it is declared by ALPHA. It is
irrelevant whether the scope rules of >the language are ALGOL-like or LISP-like, or whether they
make fluid access the defa‘ult or the exception. For efficiency reasons (which will not be argued
further here)) GAMMA inteﬁds explicitly to use FOO freely. Néw é few years later, when the
listing for the system has grown very large, it is discovered that for certain configurations, users
would like ALPHA to call an intermediate routine, BET A, which will take over responsibility for
calling GAMMA in these cases. BETA needs a temporary storage cell. Because of homonymy,
coincidence, or prevalence of the favorite name FOO, BETA declares FOO as a local variable --

thereby clobbering GAMMA. Could this be avoided? The answer to this, and a thousand similar
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questions, is a matter éf computational efficiency. If a sophisticated on-line indexing facility were
available (and this buglwas in the catalogue), a check fqr such a situation could be made (the
listings are sufficiently long to make habitual hand-checking uhreasonabl.e). But it seems probable
that ther_e will always be a number of such pitfalls which, ihdiﬁ_idually, occur sufficiently
infrequently, and cost enough to routinely test for, that it is best to-let subsequent errors direct the
processing. The cost-effectiveness of such a de'cisio_l; will of course 'always' ﬁave to be weighed
against possible results of future errors. When bﬁil&ing a ;'eal-timg hospital-patient monitor, or an.
air-traffic controller, it might be necessary to modify the criterion. But there seems to be little
chance that modular methodology can totally compensate for the eventuality that the specifications
for a program -- whether because of new user needs at the top or replacement of the hardware
below -- may change drastically.

Similarly, it seems preposterc;us to attempt to prove that a program is correct when it has
never been tried on a single example. Like'tﬁe examination of sﬁmple vartations in chess, the use
of well-chosen test examples is intended not as a 's_ubstitute for, but' as a complement to, validation.
Within this framework one can ask related subquestions, such as cbmparing the l_'elative efficiencies
of various approaches for particular bugs, or for the hroblem of inputs. When (how much?) does
a declarative model help? Are bugs caught by run-time Intefru'pts (unsatisfied prerequisite to
primitive) more amenable to Process Driven Debugging? 'W.ou_ld compile-time type-checking
eliminate or reduce manifestations such as wrong.number or order. of arguments? What would be
the role of evolutionary information in a ;omprehensive programming-laboratory style monitor?
Should completeness and even strict logical cﬁnsistency be '.traded for increased practical problem
solving power (and resultant need to debug)? Local versus g.loba‘: what is the role of ma jor

program reorganization as opposed to ‘patching? Analog versus digital: what is the role of
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simulation models in reasoning? Are such techniques as the use of a diagram filter in geometry
helpful or necessary? Is program writing more like debu_gging a blank sheet of paper or
implementing a proof? Must we distinguish between cogn.itiwl_e and emotive bugs? At least some
spelling and syntax errors can be easily fixed, if not understood.

A central concern is to understand the structure of natural Iangqage dialogue when it occurs
in a goal-directed context, such as that between tutor and student. What is the best way to
communicate procedural problem st_:lving khov-vledgé- to thg.névicé? In particular, what is the
nature of a "hint"? The focus is on the connections between a general theory of procedural
evolution, and its application to a model of the progress of a given student. 'i'o what extent are
hints based on structural problem sdlving techniques (eg., "look at the degenerate case”), as opposed
to, for exarﬁple, knowiedge of the ai)proach used in récently.-solved problems, and prediction of
bugs which can arise in attempts to- extend it? How can tutor-like systems carry on a more natural
dialogue with a human user? What is the effect of expressing procedures in natural-language -- a
loss in precision or a gain in programmer power? Most generally, what are the postulates of

purposeful human conversation?

In many cases, there are no formal differences between the positions posed here. Criteria
such as naturalness, efficacy, and perspicuity come into play. If Al is to be an experimental science,
such issues can not be left to speculation, peisonal séyle, or religious preference. They must be
resolved by analysis of successful and unsuccessful attempts té build systems such as the one

proposed here. Evolutionary considerations may provide some insight.
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A Look at Related Research:

genetic epistemology deals with both the formulation and the meaning of
knowledge. We can formulate our problem in the following terms: by what means
does the human mind go from a state of less sufficient knowledge to a state of higher
knowledge? The decision of what is lower or less adequate knowledge, and what is
higher knowledge, has of course formal and normative aspects. It is not up to
psychologists to determine whether or not a certain state of knowledge is superior to
another state. That decision is one for logicians or for specialists within a given realm
of science. For instance, in the area of phiysics, it is up to physicists to decide whether
or not a given theory shows some progress over another theory. Our problem, from the
point of view of psychology and from the point of view of -genetic epistemology, is to
explain how the transition is made from a lower level of knowledge to a level that is
judged to be higher. The nature of these transitions is a factual question. The
transitions are historical or psychological or sometimes even biological .. _
: ' " <Piaget, Ti>.

A brief review of related hterature will help to put this proposal into perspective. The ideas
behmd the project have grown out of recent work directly concerned with plannmg and debugging
procedures. More-generally, these efforts are relaied to: Al rgsearch into the representation of
knowledge and the learning of descriptions; efforts to build intglligent, reactive, computer-based
learning environments; cognitive and educational psychology; and computer science work on
programming language semantics, computational linguistics, automatic prograrﬁming. and program
understanding.

The research described herein begg.n as an attemp,tj to extend'M\.(CROFT_. the debugging
system described by Ira Goldstein <-74a>. 'i'hls thesis emphasiies‘ powerful ideas like finearity,
ordering the attack on multiple bugs, and t.he importance.of finding the plan. The model driven
debugging system generates patches which eliminate v,ilqlations'of a declarative model of an

intended picture, described in terms of predicates such as "connected”, "left-of", and "inside-of".



The Evolution of Procedural Knowledge . B R A Look at Related Research

The model specifies what is to be accomplished; the program tells how. Understanding the program
involves finding its plan, commentary indicating which piecés of code accompiish which model
parts.. Additional information is obtained from performance annotation, including a Cartesian
representation of the resulting picture. The debugging monitor was designed to take advantage of
features unique to its domain of fixed instruction turtle programs (such as fhe Rigid Body
Theorem), although extensions to more complex con.strulctions are suggeste_d. Study'iﬁ'g the
extension to programs with inputs suggested the desirability of (or need .for_) ‘additional sources of
direction. In a quest for generality, there also arose an obiigati_on to examine other domains.
Nonetheless, MYCROFT is quite effective at isolating and correcting a large catalogue of bugs. It
(he?) does not attempt to explain why they.are there. |

Gerry Sussman’s HACKER <73> combines the ability-'to debug (BLOCK’S WORLD)
programs with a library of techniques for writing them as well. It mode!s the way in which skills
| " ‘are acquired by adapting a plan based upon a related problem, and then patching it when it fails.
It debugs programs which fail by requ,esting.illeg-al comp'qta‘tions, such aS attempting to pick up a -
block whose top has not yet been cleared off. Bf_keépir;g a tﬁorou'gh record of the history of the
computation (the CHRONTEXT), and providing-for'éah#al commentary such as protection pt‘ the
scopes of goals, bugs .involving the interaction of conjoined subgoals and similar errors can be
repaired. Some of thése bugs are linked to the way in which the programs have been constructed
- for example, HACKER is sub ject to 6vervariabi|iza‘tion -- but knowledge of why the bugs are
there is not used. This suggests that more than one approach can be effective in handling a given
type of bug: HACKER favors a style of process driven debugging analogous to th'e. stack tracing
commonly employed with on-line systems. | | | | ..

Gregory Ruth <74> has built a Computer Aided Instruction [CAI] type system for use in an
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undergraduate programming course. Debugging sorting programs written by beginners, it takes the
pragmatic philosophy that mlost people do not invent brand new algorithms for standard
programming tasks. Knowledge of ba;;ic sorting algorithms is built into the system. It expectsthe
plan of the user program to be one of the.-two or three common ones, such as "bubble sort”. This
algorithm driven debugging system incorporates a grammaf for recognizing similar or equivalent
implementations. Based on possible sequences of desiigﬁ decisions which still support the basic
algorithm, this grammar includes several common error types as variations. The bugs are repaired
by expert modules designed to incorporate 'knowl‘ed,gerf' loops, conditionals, and other
programming constructs.

Carl Hewitt's ongoing PLANNER project <Hewitt et.al, 73> épproaches program
understanding from the perspective of validation. In the fra’mework‘of developing a
comprehensive model of computation, all of the knowledge in a sys;t,em is embedded in ACTORS,
procedures with generalized control structure, based upon a unidirectional message-passing scheme.
This includes knowledge of the intentions and contracts of code. Meta-evaluation is a facility
whereby the system attempts to verify that the code in fact Satisf ies its advertised contract with the
outside world. It is based upon the inductive assum.ption that all ACTORS with which it
communicates do likewise. This is a procedural analogue of the l"generalized snapshots of
performance” method <Naur, 66> for handling the problem that testing on a few inputs cannot
demonstrate the absence of bugs <Di‘jkstra,v 70>. ngitt's formalism is entirely procedural, bringing
the declarative/procedural controversy to the fore. Fo.r example, the contract for a recursive
FACTORIAL program is an iterative version. This confronts the problem of meaning with an
interpretive (as contrasted with denotative_) semantics, replacing questions of the consistency of

descriptions with questions of the equivalence of computations. Here, the concern is with the
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proposal to build a programmer’s asststant (similar to Teitlemaﬁ’s'<70>‘ concept of a programming
laboratory) which should be able to repair pragrams by examining the point at which attempted
meta-evaluation breaks down. Some exémples of how this validation driven debugging might be
done are provided in <Smith et.al, 73>. The ability to discover discrepancies very close to the
underlying source of the error 'naturally depends on the amount of intentional commentary
provided. The first point at which an intention fails to be provable causes entry into the error
repair system. It seems likely that the incorporation of extrinsic purpose cc;mmentary into the
formalism will be essential. Closely related to efforts to undgrstand the evolution of programs is
the work on teaching procedures by .telling (i.n a high level goal oriented language), deducing the
bodies of canned loops, and (especially) procedura.l abstracﬁon f rém protacols of examples <Hewitt,
70b>, <Hewitt, 71>. It is clear that a synthesis of the contributions of proceduralists, declarativisfs
and those who employ multiple repres.entationé is badly needed.

The(e are a number of projects not directly concerned with planning and debugging
procedures which nonetheless have a similar spirit. Many -of these have adopted knowledge
representa-tions similar to Minsky's <73> Frame theory, which has influenced the approach being
taken here. This trend reflects a need for larger, more structured representations, where knowledge
is inseparably bound to procedures for its use.. Issues of recognition of classes of problem situations
(as opposed to invocation by the battern ot; a single assertion), shared data (e.g., Clusters <Liskov &
Zilles, 74>), and schemas versus productions are pursued elsewhere (eg., <Miller,l7ia>).‘ Some
projects in this vein are the Electronics Repairman <Brown, A, 74>, <McD§rmott, 74> and work on
medical diagnosis (eg., <Silverman, 74>). Similar ideas have been employed in work on vision
<fah|man, 73b>, <Kuipers 74>, <Dunlavey, 74a,b> and robo.tic‘s.‘dj'ahlman, 73a>. Description

comparison, near misses, and discrimination networks are features of Winston’s .<70> learning
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program, and recent attempts <Freiling, 73> to extend lt |

Work on functional reasoning in geography, geometry ahd _eiectronics <Brown & Collins, 74>
suggests how people create a "pseudo-proof” of a tﬁeorem by intelligently creating and
manipulating examples. Relevant systems in;:'lu.dg SOPHIE <i3rown etal, 71%. a CAI program for
teaching the qualitative knowledge needed--for trouble-shooting electronic circuits, SCHOLAR .
<Collins et.al,, 74>, a tutoring program for geography, and a .few other projects ;Goldberg, 3>,
<Kimball, 73>. There is more concern with_efforts to teach mathematical problem solving skills
than those which primarily present factual information. The applications system described in a
| later section is inspired by a proposal to build a more complete Geométry Laboratory <Burton, 73>,
<Brown, ]J. 75. The hope is that an under-standing of the gvolution of procedures will help to
alleviate some of the problems which these autﬁo‘:s see as confronting the next g.elneratioh of
Intelligent CAI [ICAI] systems. The problem solving ability of the ICAI system proposed here,
which would teach students to apply powerful ideas about problem solving to geometry construction
problems, relies partly on the procedural approach to constructions described by Funt <13

Psychological and pedagogical Iiteratur-e on learning and broblem solving provide the
background for this sort of research. One of the doma_ins considered in this paper is based on the
LOGO project, an attempt to provide computational tools and concepts to elementary school
children <Papert, 71a,b,72,73>, <Papert & Solomon, 7i>. Muc_ﬁ thought has gone. into an attempt to
find computational analogies to the theories of Piaget (e.'g._, <Piaget, 71>), apd Polya (eg., <Polya
71>). Studies of human information processing, especialiy attempts to represent the semantic content
of natural language utterances .(<No;~man,' 73>, <Schank, 72>, <Newell & Simon, 72>), suggest how
process models of long term memory, such as active semantic netwc.:rl;s. can be used to model the

learning of procedural knowledge (eg., cooking recipes and programming languages).
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It is important to try to relate this work to'g'eneral' computer science, as well. The natural
interface is automatic programming. Thgre have been nugne_.rous efforts to build systems that write
programs <Fikes, 70>, <Manna & Waldinger, 7l>, <Waldinger & Lee, 69> or learn to perform simplé
tasks such as arithmetic <Friedberg, 58>, <Friedberg et.al, 59. These have encountered various
difficulties (e.g., the “mesa” phenomenon) discussed elsewhere <Miller, 74b>, <Sussman, 73>, <Balzer,
72>. Structured Programming (eg., <Dijkstra, 70>, <Wirth, 7l>, <Hoare, 69>) provides rational form
criterta, where design caveats (eg., "a.void free variables’) suggest demons looking for erroneous
code, (e.g., “incorrect scoping of. identif iers'f). Comparative S‘chei.'matology <Paterson, 70>, <Paterson
& Hewitt, 70> suggests looking for situations where the power of the plaﬁ-type. or schema is
inappropriate for the model to be. achieved; for ex'ample, af Ioivchart schema to implement an
. inherently recursive model. The semantics of programming languages <Floyd, 67>, <McCarthy, 59>
provides various alterﬁative rep.resentation's for the meanings of programs (such as Pratt’s <74>
idea to use modal logic). Finally, numerous attempts to automate. proofs of éorr‘ectness (eg.,
<Laventhal, 74>) provide ya-rdstick.s against which to measure the progress of the less farmal

(heuristic) planning/debugging approach.
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Turtle Geometry -- A Scenari‘.: of Planning and Debugging:

The fundamental hypothesis of genetic epistemology is that there is a parallelism
between the progress made in the logical and rational organization of knowledge and
the corresponding formative psychological processes. Well, now, if that is our
hypothesis, what will be our field of study? Of course the most fruitful, most obvious
field of study would be reconstituting human history -- the history of human thinking
in prehistoric man. Unfortunately, we are.not very well informed about the psychology
of Neanderthal man or about the psychology of Homo stntensts of Teilhard de
Chardin. Since this field of biogenesis is not available to us, we shall do as biologists
do and turn to ontogenesis.  Nothing could be more accessible to study than the
ontogenesis of these notions. There are children.all around us. It is with children that
we have the best chance of studying the development of logical knowledge,
mathematical knowledge, physical knowledge, and so forth. ,
<Piaget, 7I>.

A major aspect of the research leading up tcls'this proposal has been an imlrestig'ation of the
planning and debugging of picture programs from the -mini-worldl.of 'LOGO turtle geometry. In the
LOGO laboratory, children are exposed to computers and computational ‘concepts, as a way of
understanding and improving their oﬁn’ efforts to learn and solve problems. The turtle is a virtual
graphics cursor, with various physical embodiments. The turtie ﬁas a staie; which consists of its .
location, its heading, and whether its pen is up or down. ?'rimitives in the LOGO programming
language (FORWARD, RIGHT, PENUP) alter these attributes of the state vector independently.

The system built by Ira Goldstein debugs fixed _tnstrdctlbn turtle programs.. A fixed
instruction program is a sequence of non-recursive calls to primitives and user subroutines. Calls to
primitives can take only constant inputs; in user procedutes, inpufs, variables, counters,
condi.tionals, iteration, recursion, and exiting commands are‘not .allow.ed_. This research grew out of

an attempt to extend Goldstein’s work to include some of these previously disallowed constructs.
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This section develops an evolutionary scenario as an illustration of the understanding of more
complex programs -- and their associated bugs -- through k'nowlque of the editing sequences by
whi;h they were written.

The LOGO programs of concern draw pictures by manipulating the state of a dtsplay turtle
<Abelson, et.él., 73>. Standard control primitives such as looping, conditionals, and recursion are
available, but not interrupts, co-routines, or more general control mechanisms. Actually, prior to
processing, the programs are translated to equivalent MACLISP fMoon, 74> code, as described in
<Goldstein, et.al, 74>. For convenience, we employ the LOGO syntax, as in the following fixed
instruction TRIANGLE routine.

TO TRIANGLE
10 FORWARD 100
20 RIGHT 120

30 FORWARD 100
40 RIGHT 120

50 FORWARD 100
60 RIGHT 120
END

The debugging leading up to such a routine would be easily handled by Goldstein’s system.
Furthermore, his system is sensitive to such .considerations as evolutionary tnsert plans, where
rational form criteria (such as a caveat against consecutive calls to the same primitive) can be
temporarily suspended. An example of such a situation is the following triangle program, which
will be a building block for a later TREE.

TO TREETOPTRI
10 FORWARD 50
30 FORWARD 50
40 RIGHT 120

50 FORWARD 100
60 RIGHT 120

70 FORWARD 100
END
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The TRUNK would be added later, as line 20.
It would be natural for a fifth grader who had just learned the concept of "inputs” to

generalize the first triangle routine to take variable Iéngth sides. The correct routine might look
something like the following.

TO TRIANGLE2 :X
10 FORWARD :X
20 RIGHT 120

30 FORWARD :X
40 RIGHT 120

50 FORWARD :X
60 RIGHT 120

END

But consider the unfortunate case of a child who happens to use sides of length 120 in the
original program. Forgetting the semantics of each constant, the accidental equaltty leads to
overvartabilizing the routine:

TO TRIANGLES :X

10 FORWARD :X

20 RIGHT :X

30 FORWARD X

40 RIGHT :X

50 FORWARD :X

60 RIGHT :X

END
This also emphasizes the fact that, when dealing with inputs, bugs may be intermittent. This
version would work correctly if :X happened to be 120, but would produce rather odd violations for
other values. Since the violations vary considerably with the input (for example, from
"unconnected” to "X-connected”), trying to isolate the error on the basis of model violations alone
might be diff icult. K nowledge of the recent edit, however, helps to pinpotnt the problem. This is

facilitated by domain dependent knowledge of primitive semantics. FORWARD takes a length as

input, whereas RIGHT takes an angle. It is seen as odd to pass the,same_parameter- to both, except
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to achieve unusual special effects.

Note that encourﬁging the child to use mnemonic names might help her/him to detect this.
"RIGHT :SIDE" would seem "weird”, whereas "RIGHT :X" does not. This suggests that such b.ués ._
could be avoided, since the programmer could keep track of the mea;ning of each constant,
variabilizing accordingly. Indeed, it would be surprising to find a cﬁmpetent programmer' falling
into this kind of trap. But to the‘novice, such a rgf iﬁement seemsl unnecessary, since such situations
have not arisen frequently enough to warrant the additional mental effort. Likewise, for expert
programmers there uhdoubtedly exist more sophisticated bugs, suffiéiently improbable to cause
them to be overlooked on the first pass.

The plan of the simpler program constrains the relative |}keliht.)ods of the kinds of bugs
which can occur. Consider the following program, which draws an équilateral triangle beginning
in the center of one side.

TO TRIANGLE4
10 RIGHT 90

20 FORWARD 50
30 RIGHT 120

40 FORWARD 100
50 RIGHT 120

60 FORWARD 100
70 RIGHT 120

.80 FORWARD 50
90 RIGHT 90
END

Here, the fact that one side is accomplished in two pieces -might be considered an accidental
tnequality. It makes the bug of tncomplete variabtlizatton much more likely.

TO TRIANGLES :SIDE
10 RIGHT 90

20 FORWARD 50

30 RIGHT 120

40 FORWARD :SIDE
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50 RIGHT 120

60 FORWARD :SIDE

70 RIGHT 120

80 FORWARD 50

90 RIGHT 90

END
Of course this incomplete editing bug can and does occur with the other plan, but it would be
considered less probable. Likewise, overvariabilizing could occur here. But the bug of forgetting
to scale the first side by a factor of two can only occur with this type of algorithm.

If the child happens to notice the repeated pattern'.o,f instructions in. these programs,
perhaps by comparing similar ones for fixed size squares or peﬁt’agdns, it may occur to her/him to
subroutinize the common code. Even if she/he does not, it can be quite natural to introduce

“iteration or recursion at this point. Note that without condiiionals. such programs do not terminate.

TO TRIANGLE® ~ TO TRIANGLE"

10 FORWARD 100 : 10 FORWARD 100
20 RIGHT 120 20 RIGHT 120
30 GO 10 " 30 TRIANGLE7Y

END END -
Bugs, however, are in the eye of the beholder. What is a feature to the implementors of a system
may turn out to be a bug for the users. In this case, failure'tt.).l_w.alt beco;ﬁes a bpg when the
programs are used as subroutines. B

The fix for the iterative version is a local counter and a stop rulg: The recursive version
may pass the counter as a parameter, somewhat of an incon'ven.ier.lcé at the top level. '

TO TRIANGLES " TO TRIANGLE9 :X'
10 LOCAL :X _ 10’ FORWARD 100
20 MAKE "X" 3 | 20 RIGHT 120
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30 FORWARD 100 ~ "301F:X =1 THEN STOP

40 RIGHT 120 ' : 40 TRIANGLE9 :X-1
50.IF :X=1 THEN STOP ' _ "END

60 MAKE "X" :X-1 o

70 GO 30

END

While these versions do not help to abbrevtate the code, they can be .a .ﬁseﬁxl intermediate step for
the student, suggesting areas for further generalization. Althaugh -such co.nceftually tntermediate
forms might not be explicitly manifested in the evolutionary sequence because of their lack of
brevity, a debugging monitor shouid nevertheless be cognizant of them and' their associated bugs.
These versions are subject, for example, to counting errors in the loops, such as fencepost and
sitpthrough. [An earlier draft of this paper in fact contained se‘v;ral fencepost (counting the "holes”
instead of the “posts”) bugs which were-n.c‘)t discovered until actual on-line testing!] These could be
caught by an approach based upon the editing ﬁistory, in _toncgr,t with a Ioop'specialist such as is
'utilize& in <Ruth, 74>.

TRIANGLES, like most programs, can be inter-preted_._differently. It might be a bugged
polygon, where the side length is fixed, but the number of sides is an input. Howevef. it has the
bug that the rotation was -not edited.to correspbnd to the number of sides. The result is that it
draws triangles, repeating some of the sides.

-Very odd effects result from overvariabiliz:_ing- a program which specifies a polygon by its
rot#tion angie. |

TO POLYGONI A

10 FORWARD :A

20 RIGHT :A

30 POLYGONI :A

END

For familiar angles (divisors of 360 with small.integers), the program. draws perfectly satisfactory,
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connected polygons whick would satisfy a qualttative model. The only manifestation is that the size
fluctuates seemingly unpredictably. This is an example of the principle that very mysterious
behavior often has quite simple origins. Other possible bugs in the constant side, variable angle
polygon routine would include invocation errors, such as input-not-a-divisor-of-360, or round-off-
error -- resulting in unexpected violations of connectivity when used by higher level routines.

Usage errors are not usually considéred bugs in the routines being used. But when dealing
with the full capabilities of co-recursion possible in recent languages, such distinctions are relative.
The assignment of guilt for a manifested violation can depend on what seems most natural or
convenient. A very simple example of this can be seen in the wrong-on{er-of-tnputs syndrome in
the following recursive polygon procedure..

TO POLYGON2 :ANGLE SIDE

10 FORWARD SIDE

20 RIGHT :ANGLE

30 POLYGON2 :SIDE :ANGLE
END

The picture drawn by (POLYGON2 90 200), for example, is aesthetically pleasing, if somewhat
hard to describe. Should we blame line 30, or the procédure heading? It mi‘gvht seem more natural
to reorder the heading, but if this were done in the context of other user routines which used
POLYGON?, perturbation analysis <Hewitt et.al, 73> would be necessary. Th'is bug might be
expected to arise more frequently in a sequence which had variabilized the angle before the side,
than one in which the converse were the case.

When two evolutionary paths merge, as is the case for a fully general polygon routine with a
stop rule, the patterns of edits are reversed. Cﬁnsequently, the linear assumption is that the
corresponding bugs are also reversed. This is precisely the sense in which knowing. the editing

history constrains the bugs which should be considered -- if the user just edited a correct, iterative
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triangle routine to take a variable side input,.there i:s no reason-to expect errors associated with the
loop structure -- even though there ts a loop in the resulting prngram. Likewise, paths below a
correct node in the sequence are not sub ject to the bugs which ‘are prior to that node (alchough they '
may of course be sub ject to other bugs of the same type) As a consequence the catalogue of
possible bugs in a long sequence can be expected to grow linearly, rather than exponennally.
provided that no steps are skipped. This may be a pamal explanatlon for the value of -carefully
graded training sequences. When the polygon is attempted .on the f irst--pas's, every conceivable bug
is a possibility, and other sources of debugging direction are needed. It is plausible that the
heuristic, "consider bugs near the end of the sequence first” might be valuable, if the user had
proceeded along these lines without the aid of the system. |

However, in some unfortunate situations, bugs_'may also- erise-'from the interactton of two
edits. For example, a correct straight-line polygon routine which is clever enough to calculate the
rotation angle from the number of sides, might be edited to operate recursively. This merges with
a correct recursive version which is edited to calculate the rotation angle. The result might be
something like the fallowing.

TO POLYGONS SIDE SIDES

10 LOCAL :ANGLE

20 MAKE "ANGLE" 360/:SIDES

30 FORWARD SIDE

40 RIGHT :ANGLE

50 IF :SIDES =1 THEN STOP

60 POLYGONS3 :SIDE :SIDES-I

END
Note that :ANGLE will be 180 degrees on the second-to-fast invocation; consequently the most

serious manifestation is that a model part (one side) seems to be missing entirely; the retracing

done by the innermost call could easily be mistaken for a preparation step. An approach based
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solely upon ordering the manifestations according to severity and then trying to focalize one at a
time might begin by hypothesizing missing code, or a fencepost-type countih‘g error ‘in the recursive
stop rule. But this clobbered-local-variable bug is actually' a common pitfall of recurstotzing.
Without explicitly testing the level of the call, the patch requires creation of a setup super-
procedure. Although a related bug is possible in-a corresp.ondi_n'g iterative version, the patch is
local to a single statement within the body of the procedure. Thus, while iteration may be a special
case of recursion in the formal sense, debdggi‘ng systems must distinguish' them, to reflect the
differences in the bugs --and patches -- to which they are sub ject.

TO POLYGON4 :SIDE :SIDES

10 LOCAL :ANGLE :

20 MAKE "ANGLE" 360/:SIDES

30 FORWARD SIDE

40 RIGHT :ANGLE

50 IF :SIDES = 1 THEN STOP

60 MAKE "SIDES" :SIDES-I

70 GO 30

END

Whether examining the programming of a VILLAGE from a HOUSE, a FOREST from a
TREE, or (in the case of the LOGO music box) a SONG-from a single THEME, one finds
editing sequences which introduce countless exarﬁples of a relatively small number of such
evolution-related bug types: inconsistent/incomplete scale-factors, the confusion of ‘types and tokens
(and the associated problem that not all changes are _b‘eneflcial to all users), the clobbering of
preparation steps, the incorrect scoping of idenﬁfiers.. These are the sorts of errors commonly
encountered by fifth graders <Goldstein, G., 73>. Were the horizons of the domain to be
broadened -- for example to include touch and light sensitive turtles, or, perhaps, to include

distinctions between alternative argument passing conventions (call-by-variable-substitution, call-by-

name-substitution, call-by-variable-reference-substitution) v-_'o;her bugs would begin to be included:
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unexpected side effects, forgetting previous conventions, addition of an input parameter which
unintentionally denotes a component of an existing parameter. At least some of these evolutionary

bugs may be common for more experienced programmers as well.
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Sorting Algorithms -- Another Seenario:

In real situations the compléte specification of a problem is unknown, and what we
really see happening is an evolutionary process. The sloppily formulated problem is
given to the programmers, who produce a concrete realization. The users then _
complain about those properties of the realization which do not reflect their needs.
This process iterates until the users are satisfied. As the users debug their ideas of
what they need, the programmers debug their programs. At no point in this process do
either the users or the programmers believe that they fully understand the problem.
The iteration usually doesn’t terminate because the users continue to evolve new ideas
and requirements; so the programs must continually undergo revision due to "bugs"
resulting from a misunderstanding or changing of intent. This remains true even in
the case where the users are the programmers. '
: <Sussman, 73>.

The last section attempted to illustrate how certain bugs can arise from the sequence of edits
which extend the utility of a procedure.. This section will emphasize a slightly different aspect of
procedural evolution: how a complex prograni can be written by a succession of edits designed to
eliminate problems in earlier versions. In order to avoid being .misled by the peculiarities of a
single domain, the next set of examples are taken from a different sphere: they are based upon a
class of algorithms which sort an array of numbers.into ascending order.

According to Knuth <73>, computer manufacturers estimate that over a quarter of the
running time on their computers is spent on sorting. This relevance to practical programming
should make a study of the evolution of algorithms for the task the more compelling, hopefully
lending some generality to the ideas. Moreover, the ordering structure (i.e, a lattice) implicit in the
operations of sorting reflects a fundamental aspect of human reasoning. For example, it is one of

‘the three "mother structures” of the Bourbaki mathematicians. Furthermore, it corresponds to a

logic of relationships present in the practical intelligence of even vefy.young children. Prior to the
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stage of concrete operations, children can place two'_o'r. three sticks at a time into a series of
ascending lengths (although they cap'not coordinate all of the sticks of a larger group into a single
sequence). By the age of seven, children ‘have a remarkably advanced sorting algorithm. First,
~ they find the shortest stick, and, having set that'to-oqe side, they proceed recursively to find the
shortest of those remaining, and so on <Piaget, 7b. 'f'he_sé kinds of intuitions caﬁ become the basis
for qi;lite sophisticated procedures.

The program constructed by Gregory Ruth analyzes and &ebqgs implementations of sorting
algorithms written by beginners. Its analysis is based on a program generation model (PGM] for
each of several standard algorithms, knowledge of which is programmed into the system. Expert
modules incorporate knowledge of common coding errors, and how to correct them. In the
following, sorting is considered from a. slightly different perspective, with a view to understanding
the evolution of the algorithms themselves.

The simplest form of the sorting problem is to atrange an array of: .numbers inté non-
decreasing order. More generally, the task is to create a ﬂl_e of .N records, each of which has a key,
such that the records in the f iie are a permutation of the records in an inpﬁt file, and. the keys in
the output file satisf y some ordering rel’ation;. ‘This"di.scussio_n is restricted to the former; while the
latter formulation greatly complicates the specifications (eg., by 'requiﬁng functional arguments), it
is not hard to edit simpl‘ér programs so-as to encompass thése optioﬁs. Of course, if the harder
problem were attacked by trying to modify a solution to the easier one, certain types of bugs might
be expected to appear! For example, the final procedure might be required to be stable (i.e., records
with equal keys retain their original '-relat.ive order), but the :pu.rely ‘numerical version might not
have provided for this property. - | |

Since the cardinality of the set of sorting algorithms is of the order of the number of
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programmers in the universe squared, attention is further restricted to a particularly simple family
of such methods, known as sorting by insertion <Knﬁth. 73>.- l.Tbe basic fdrm of insertion sorting is
an obvious technique which is certain to be re-invented by anyone who gives the problem a few
minutes thought. Although in a strict sense, the current discussion .does not concern programs,

which are tmplementations of algorithms, for consistency a LO_GO-Iike syntax will continue to be -

employed.
TO SORTI:A N - 'A is input array of nums!
10 ARRAY A,BII:N] : .. 'B is output array; size N!
20 LOCAL L] _ - 'A[JJis the item we are doing!
25 _ ' - . 'Lis the search ptr for B!
30 MAKE BIl] All] : . o tinsert first num! '
40 MAKE"J" 2 . - lstart processing nums 2-N!
50 MAKE "T":J- , : 'searching for insrt loc!
60 IF B[11<A[:J1 THEN GO 100 ‘ '
70 MAKE BLI+1] B(1) 'move right!
80 MAKE "I" 1 | ~ Tkeep looking!

90 IF 150 THEN GO 60
100 MAKE BLI+1] AL

110 MAKE "J" :J#l tincrement J; if done, return!

120 IF :J>N THEN RETURN B : -

130 GO 50 . . 'not done -- insert A[j!
END _ . S

Of course, in most situations, there is no particular need to .maintain the original array
intact. Consequently, it becomes natural to consider whether the second array can be dispensed
with altogether. If so, the storage requirements of the algbrith,m.':would be-haived. A cursory

analysis reveals that the role of array B is, in fact, minor, and it can be eliminated. For clarity, an

additional local variable is introduced.

TO SORT2:A N . farray A sorted in place!

10 ARRAY A[l:N] ' 'N is the size of A

20 LOCAL LK ' '] is where we are so far.!

30 MAKE"J" 2 ' 'The first num is ok wrt self!
40 MAKE "I":J- o ' '1 indexes compares for each J!

50 MAKE K AL]] ' . 'If AlilsK, insrt loc found!
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60 IF AllJ<:K THEN GO 100 :

70 MAKE A[I+1] ALI] 'move right!
80 MAKET":I- : 'keep looking!
90 IF :I>0 THEN GO 60 '

100 MAKE ALI+I) K

110 MAKE "J" :J+1 tincrement J; if done, return!
120 IF : >N THEN RETURN A

130 GO 40 'not done -- insert A[jJ!
END

“Unquestionably, this could be made more readable in allanguage which provided structured
looping facilities, but the idea ‘is clear: the left hand part of the array is in the correct relative
order; when the next element from the right hand part is inserted into the left part, it is inserted
into the correct place, and larger elements are bumped to the right; by induction, when the right
part is null, the array will be completgly sorted.

The annoying truth is that the above algorithm does in fact perform the specified task. In
the usual sort of model of computation, specifications may describe what a program is to do, but
not- how, and certainly not Aow well. After formalizing the above de:ﬁonstration of correctness, there
would simply be nothing more to be said. There are mgny-problems (e.g., playing chess) for which
a straightforward but impossibly slow solution exists; these miss the point that the essence of
procedural knowlgdge lies in the effictent use of available resources.

It woul.d be desirable to be able to forma.li_ze various common sense notions about what it
means to perform a task well; of course,‘ this is an extremely difficult problem in general. In the
present task, for example, there are certain requirements which one might wish to place on the
algorithm. In some situations, the ordering function might be very costly to execute;, for these, the
goal would be to find solutions in which the number of comparisons made was minimal. If, as is
the case with numerical keys, comparison is relatively inexpensive; the amount of reshuffling

performed on the array might be of greater concern. For now, suppose that the constraints have
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evolved so that the number of comparisons made is the relevant factor.

There is something very bad about the above algorithm. It exhibits a certain stupidity in its
actions which deserves to be called a "bug”. Let us suppose fhat we were given the task of sorting
the numbers manually -- in the L'OGO environment, this is known as "playing furtle"._ Perhaps we
have already taken care of the first ten or so numbers, and we are now working on the eleventh.
We need to find the proper location of this item rglativ-e to the other ten. Since "sorting turtles”
have tunnel vision, we can only examine one of'these ten numbers at a time. Does it seem
reasonable that we would first look at the tenfh, and then the ninth, and so on, until we found the
correct spot? Maybe we would with ten, but if there were a hundred we would quickly tire of this,
and start skipping around until we got into the right vicinity. Thiis bit of common sense is the

intuition behind binary insertion.

TO SORT3:A N o 'binary insertion sort!

10 ARRAY A[0:N] 'A[0] a dummy, in case even!
20 LOCAL [} K.LM " '} K approx as before!

21 ’ 'L delimits interval!

22 'M a dummy for interchanges!
30 MAKE A[0] -999999 'some very small number!

40 MAKE"J"' 2

50 MAKE "K" AL]] .

60 MAKE"L":JDIV2 'truncation division!
70 MAKE "I":L+«(:J REM 2)

80 IF :K<A[I] THEN GO 160

90 IF :K>A[I) THEN GO 200

100 MAKE "I" :1+} 'reshuffle and insert!
110 IF :I>:] THEN GO 240 _
120 MAKE "M" A[L) linterchange!

130 MAKE A[I]):K

1490 MAKE "K" :M

150 GO 100

160 IF :L=0 THEN GO 10 'K < ALI] here!

170 MAKE "I" :I{((L DIV 2x(L REM 2))

180 MAKE "L" :L. DIV 2

190 GO 80 'continue searching!
200 IF :L=0 THEN GO 100 'K > ALID here!
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210 MAKE 1" :I+«(L DIV 2:(.L REM 2)
220 MAKE "L" :.L DIV 2 : :
230 GO 80 . ' " Icontinue searching!

240.MAKE "J":J4 : : - louter loop!
250 IF :}»N THEN RETURN A - :
260 GO 50 |

END

Note that the plan of this version is analogous to that 6f the previous one. This might be
made more apparent if the searching and 'reshufﬂir;g code weré separately subroutinized. The
basic idea s to start by comparing the current item to the middle of the.lef t part of the array; _this
tells which interval to check next; then, this is repeated on the appropriate haif of the left part,
and so on. Bﬁt it is still not quite what we originally had in mind. Since the range of values for
the part of the array being examined is known, this iﬁformatioﬁ sﬁpul,d be taken into account.
Suppose that the next item were relatively large. Ag;nlin, pretend ‘th.at_ we are forced to perform the
operations mandally. Rather than starting in the middie of the already sorted part, we would
normally try somewhere toward the right. This line of reasoning -wou.g.ld. lead ‘us to re-invent the

interpolation sort.

TO SORT4:A N ' tinterpolation search sort!
- 10 ARRAY A[O:N] : fsorted in place!
20 LOCALLJKLMU - IL, U lower and upper bnds!
30 MAKE A[0] -999999 ' :
40 MAKE"J"2

5 MAKE "K" AL:J]

60 MAKE "L"1

70 MAKE "U":}J- .

80 MAKE'T''L 1 is next loc to check!
90 IF A[LL] = Al:U] THEN GO 130

100 IF :K < ALL) THEN GO 160

110 IF :K > ALU] THEN GO 270

120 MAKE "I":I + Ichoose new I in [L,UY
125 (K - ALL)+{(:U-L) DIV (ALU}ALL))

130 IF :K<ALI] THEN GO 210

140 IF :K>ALI) THEN GO 240 :

150 MAKE "T" :Is1 linsert between I and I+I!
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160 IF :I>:J] THEN GO 290
170 MAKE "M" A[I)

180 MAKE ALI) :K

190 MAKE "K":M

200 GO 150

210 MAKE "U" Il

220 IF :U>:L THEN GO 80
230 GO 160

240 MAKE "L" :Is

250 IF :U>:.L THEN GO 80
260 GO 150

270 MAKE "I":U

280 GO 150

290 MAKE "_]" :J4

Sorting Algortthms

'M is dummy for interchange!

.. 'shove right!’ -

limprove upper'bound!"

bounds narrowed to zero!

* timprove lower bound!

| 'hounds narrowed.to zero!
K>A[U), so insert above!

‘outer loop!

300 IF :J>:N THEN RETURN A

310 GO 50

END

The latest version employs a f airly' sophist_ic_ated technique for locating the spot to insert the
next i.tem. But the routine is thrashing for a different reason: it spends all of its time
"reshuffling” -- bumping elements to the right. in order to make room for the newly inserted item.
If we were performing the operations on paper; we would run out of era;e_rs!

There are a number of tacks which can be taken to surmount this problem. One approach
is known as the Shell sort, but it is fairly complex and nolt central to this argument. A less
sophisticated alternative will serve the purpose. The idea, again, ls quite simple -- given the
progress which has been made so far. Suppose we cbuld_- write the numbers on a second sheet of
paper. Would we start out writing them at .the top? After a'li'ttl_e consideration; it would occur to
us to start somewhere in the middie; this would be a two-way tnsertion sort. But without even
writing the program, we can apply what has been learned in a previous step: we would not want to
insert the numbers right in the cenrer- of the available space. Rather, we'would take into account
~ the relative proportions, leading us to what might be called an inter polation-search {nterpolation-

{nsertion sort. Most of us have probably used such a method, say, to alpha-betize a list. The details
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Sorting Al gor'tthm:

of this sort of algorithm are cumbersome, because of the danger that all of the items may "bunch

up”, causing us to get out the eraser again. When we weary of that, we start drawing arrows

instead, and we have discovered /{st tnsertion sorting.

TO SORTH:A:N

10
20
30
40
50
60
70
80
90

ARRAY A[O:N]

LOCAL LJ.K L

MAKE A[0] -999999

MAKE "J" 2

MAKE “L" «LIST A[0] All]

MAKE "I" :L

MAKE "K" ALJ]

IF (BUTFIRST :1)=NIL THEN GO 120

IF :K<FIRST(BUTFIRST :I) THEN GO 120

100 MAKE "I" (BUTFIRST 1)
110 GO 80

120 REPLACE (BUTFIRST 1) BY «CONS K (BUTFIRST 1)
130 MAKE "J" :J1

140 IF :J>»N THEN RETURN (FILLARRAY "A" :L)
150 GO 60

END

Nist insertion sort!

L a linked list of nums!

'l is a-tail'of L!

Inext parsed as "RPLACD™

‘outer loop!

This latest version has decreased the amount of reshuffling considerably. However, a larger

number of comparisons are now being made. It seems as though the sequence has split into two

branches, each appropriate to pursue for different applications. It turns out, however, that there is

a way to merge these into a single aigorithm which improves upon both. The result is known as a

tree tnsertion sort, and is the culmination of this effort. Detailed analysis of more sophisticated

approaches to the sorting problem -- and some discussion of their evolution -- can be found in

<Knuth 73>,

TO SORT6 :A N

10
20
30
10
50
60

ARRAY A[0:N]

LOCAL LJ.K,L

MAKE "J" 2

MAKE "L" «LIST Al0] NIL (sLIST Alt] NIL NIL)
MAKE "K” ALJ]

MAKE "I" :L

Ytree insertion sort!

'L is the binary tree!
‘each entry a triple -- !
tvalue, lo link, hi link!

' ptr into L for "RPLACA™
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70 IF :K > (FIRST :I) THEN GO 130

80 IF FIRST(BUTFIRST :1)-NIL THEN GO IIO

90 MAKE "I" FIRST(BUTFIRST I) -

100 GO 0 'follow lo link!

110 REPLACE FIRST(BUTFIRST :I) BY oLIST :K NIL NIL
120 GO 170 'grow new lo link!

130 IF FIRST(BUTFIRST(BUTFIRST :I))=NIL THEN' GO 160 -
140 MAKE "I" FIRST(BUTFIRST(BUTFIRST :I)

150 GO 70 'follow. hi link!

160 REPLACE FIRST(BUTFIRST(BUTFIRST 1)) BY LIST :K NIL NIL.

170 MAKE "J" :J+1 ~ ‘above grows new hi link!

180 IF :J>:N THEN RETURN FILLARRAY "A" (TRESYM L)

190 GO 50 .. 'TRESYM -> symmetric order!
END

Pursuing this scenario has been instructive for a humber of reasons. It seems fairly clear
that it would not have been easy to arrive at the final version of the algorithm by "top-down-
progressive-refinement” from the original specit;ications. i’-‘urthe.rmore, at each step, the
improvements which were incor.po_rated were based on common sense notions of efficiency, which
were reasonably straightforward to implement. Whereas the preyious, section examined how bugs
can be introduced by successive edits which extend the-utility_ of a procedure, the current section
emphasized how a complex program can be written by.a sequence of edits to a crud.er, simpler

version, each of which eliminates or reduces the severity of various deficiencies.
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Toward a Theory:

Any large program will exist during its life-time in a multitude of different versions, so
that in composing a large program we are not so much concerned with a single
program, but with a whole family of related programs, containing alternative programs
for the same job and/or similar programs for similar jobs. A program therefore should
be conceived and understood as a member of a family; it should be so structured out
of components that various members of this family, sharing components, do not only
share the correctness demonstration of the shared components but also of the shared
substructure.
<Di jkstra, 70>.
Procedures, like all symbolic descriptions, can be compared. The resulting difference
description is itself a program, operating over a domain of legal edits to symbolic structures. When
the programs being compared are related by causal evolutionary chains, this difference can be
interpreted and classified in terms of purposeful plans in a meaningful way. The Thests of
Evolution Driven Debugging is that these longer range planning heuristics can be fruitfully
associated with particular common types of bugs. The evolutionary approach to program-writing is
to begin with a crude or existing program for a simpler related task, or a simpler but inefficient
program for the same task, and successively extend and improve it, by analysis of its shortcomings
according to straightforward but powerful common sense rules. The first phase of an evolution
driven debugging monitor involves the semantic categorization of evolutionary edit types. The
output of this phase would be an editing summary such as "variabilization of a rotation angle”,
“subroutinization of generic round”, or "recursivization of repetitive open code”. The first phase of

an evolutionary program generator involves the recognition that the problem statement is either

amenable to a coarse solution by a known general-purpose plan, or similar to the problem statement
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for a related special-purpose plan. The 6utput would be a- generator function for instantiated
candidate solutions, along with information about the kinds of difficulties which should be

anticipated.

A unifying concépt of the evolutionary approach is that procedures be_ar'family
resemblances to one another. This idea is a familiar cbncépt in the literature on software
portability and adaptability. However, the intention is to suggest a deeper relationship, one based
upon the more global planning structures involved. This corresponds to Goldstein's suggestion that
a new type of equivalence -- with .respect to the plan *- be considered.

One kind of family is tﬁe collection of programs satisfying a given modél. Thl§ is
somewhat ambiguous, as it could bé a reference to the fact that many programs will satisfy any
given specification, however com;lalete.. In this discussion, there is more-concern with the leeway
provided by an underdetermined model. For example, most standard def initions of an equilateral
triangle will not mention size or orientation. Consequently, any program drawing any size
equilateral triangle in any orientation is correct with respect to such a model. That is, it satisfies all
of the required properties. Natural extensions of these programs will identify these degrees of
freedom and variabilize them. The resulting programs, 'whigh take, say, size and orientation as
input parameters, might be said to summarize the simpler family. Only very rarely are the
specifications for a programming task so tight that only a single class of .equivalen.t computations
can satisfy them. This is as it should be. Some constraints which might have been imposed
because of a desire to cleanly characterize the task may not be essential to the users’ needs, and
could prove to be costly or dif ficult to implement.’ This.:is_a:nalbgoﬁ's to tﬁe role of passible worlds
in model theoretic semantics. The model should specify all and only what is intended.

There is yet a deeper, more subtle family relationship. This is provided by the connections
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between various models. For example, one k.ind of generalization is structural generalization of the
model <Winston, 70>. When the model is being inferred by induction from a series of examples --
and refined by ﬁear non-examples - a tree of such models is created, where previously explored
branches correspond to rejected hypotheses about the important attributes of the description.
When the model is made more general, tﬁe class of programs which are correct Is enlarged; when
it is refined, certain previous members’ are rﬁ_led out. .Débugging- of fhe model will have second
ord‘er effects on debugging the program. A difficult but;important area for investigation here is
the relationship of model structure to program st.ructure. It may be difficult to find the plan for,
and therefore debug, programs with control.structyres ndt_ref lecting that of their models.
Confusing ar obscure code may be related to attempts to cut across the boundaries of model
families. |

| As the specifications and code for a program evolve, a network of related programs is being
constructed. Looking at this network from the perspective of a given program to be debugged, it
" can be viewed as a tree, with fixed instructioﬁ programs at the roots. It seems useful to assert that
underlying every complex program is a family of simpler (ultimately fixed instruction) programs
for whiclh it can _be-considered the general case. One .of the arguments édvanced in favor of
capturing such generalizations in code is that they abbreviate the total text involved, as in the usual
explanations which' novices receive about the virtues of subroutines. Of course attempting to
recognize these abstractions is conceptuaily worthwhile for a variety of ‘other reasons - including
clarity, debuggability, and modularity -- even if the routine is only to be used once. Conversely, ill-
considered attempts to find the ultimate abstraction can be dangerous, or at best vacuous, as the

following example illustrates.
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TO MISCELLANEOUS :INPUT
5 LOCAL :ANGLE
10 MAKE "ANGLE" 72

20
30
40
50
60
70
80
90

IF :INPUT="SQUARE" THEN GO 70
IF :INPUT="TRIANGLE" THEN GO 1i0
FORWARD 100 '

RIGHT :ANGLE

GO 80

MAKE "ANGLE" 90

FORWARD 100

RIGHT :ANGLE

100 GO 120

110 MAKE "ANGLE" 120
120 FORWARD 100

130 RIGHT :ANGLE
140 FORWARD 100

150 RIGHT :ANGLE
160 FORWARD 100

170 RIGHT :ANGLE
END

Toward a T heory

!default: draw pentagon!

The utility of describing individual procedures as members of such a network is that it

suggests a possible basis for the theory of procédu_ral ontogeny, consisting of syntactic and semantic

components. The grammar would prescribe thé reasonable. ways in which programs -- and the

programmer’s insight underlying them -- develop. Presumably "reasonable” would be interpreted to

exclude such oddities as the following.

TO FOOI

10 FORWARD 100

20 IF :X=l THEN STOP
30 FOOI

END

© TO FOO2
10 LOCAL X

20 MAKE "X" |

30 IF :X=l THEN STOP.
40 FOO2

END

It is difficult to imagine any purposeful routine for which either of these could be a bugged

version.

In the more usual case, the intention would be to include common errors among the correct

versions, so that they would appear in the structure along with their brethren. This could be
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imagined to specify the Iinlkages of an augmented transition network [ATN] <Woods et.al.,, 72> or
some comparable representation. The importance of the “transformational comp)onent", which
might consist of arbitrary computations which test arcs or manipulate registers, (here as in the case
of natural language), would then be that it provides a mechanism whereby one may describe
regularities about families of programs which, derived from a common fixed instruction base,
ditlfer only by the application of a transformation such as “identify indistinguishable nodes and
variabilize”. The semar;tic component would provide interpretations of the resulting structures in
terms of global planning strategies and their associated bugs. The conditions on arcs which lead to
incorrect programs would specify particular bugs. Since the possible bugs would be described, in
such a framework, as a function of the (semantic editing) tr;\nsformation, rather than merely the
particular program involved, .there should be'no constraint t§ produce a new network for each
programming task. The extent to which one might need to supply such information for each new
domain would thereby become a precise technical question.

To the extent that such evolutionary bugs turn out to depend on the domain, one might
next be led to investigate high level ways to modify‘ the network in a modular fashion. If new
links could be "grown" when bugs which slipped through undetected were later pointed out, one
could have a domain-sensitive critic comptler, analogous to that in HACKER, but based on the
pattern of edits. When the earlier versions of a program were known (or could be ascertained on
other grounds), a set of demons could be generated which are appropriate for the arcs associated
with the transformational pattern. (A-demon is a rule of the form "(pattern --> action)”, which is
triggered by events such as the addition of information to the knowledge base) The demons

would attempt to interpret future suspicious occurrences in light of the known evolutionary bug

types when the system was run in careful mode. Where extremely high reliability became so
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desirable that considerations of computational ef.f i'cienéy'we_r'e #ondary, the demons could be fired

“up at once. The advantage of the trial-and-error p_hilos,qphy'is that only those demons which are
seen to be relevant later need actually be run. T&.ts method ti more powerful and exact than the
.crude evolutton based heurtstic "look at recent patches first". It is much more like the analysis-by-
synthests heuristic, "ask what you could do to a correc_t, mod,hle to make it behave in this bbnoxious
way", which often leads straight to the source of dif f iculty.

The development of a program would usually follow a single path through the network.
Although intermediate states might be skipped, (probably e'very' state would need to have a default
"JUMP" arc), the r.elated' bugs could be carried. along until a correc.t node or leaf was reached.
Paths below a correct node are no longer subject to bués' abﬁve them 'in. the hierarchy. This is
probably why programs are often built in this gradual evolutionary way. - at each stage, only a few
bugs can be introduced. These are (hopefully) repaired before the more difficult next stage is
attempted. If the full-blown program were attempted all at once (aﬁ the "top-down” school might
advocate), every conceivable bug would have to be considered, énd more difficult strategies for
obtaining reliability would have to be adopted -- sich as providing detailed simulations of 'lower
level routines in order to verify the top level <Zurcher & Randéll, 68>.

An important question for this research is the mechanism for determining ;hat.a_bug in fact
exists. Different approaches will result in different ma_nifestations._f_or the same underlying cause.
What are the possible manipulations one may perform in trying to understand a br_oced_ure? .Tﬁe
most obvious is to examine its code as .dat'a, Iookiﬁg_'for rational form violations, fof example.
Another is to run it, observing its behaviér. "This sn_*ategy. of performance annotation can be quite
valuable, but a problem arises for more complex progriméz there are infinitely many possible

inputs and runtime environments to test. One solution is to replace this process annotation by an
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abstract schematic annotation, in which identifiers are bound to aﬁonymous objects, and the code is
simulated symbolically. This resuits (for-. the cas_é of geometlry.) in a set of analytic equations
describing the class of pictures, whose solution for some predicates may prove difficult or
intractable. An iﬁteresting area for research is to attempt to prqvic_,ie an interfac.e for such a scheme
with programs such as MATHLAB <Ma|;tin, 67>. An alternative method, which seems favorable
at the present time, is to test the procedure on ekamples, as hl_iman program;nlers currently do. This
has the difficulty that no amount of testing can Eonclu;ively demonstrate that a program is correct,
a serious concern in the drive toward greater solftware.reli'abi'lity._ However, the art of testing
reflects an important human ability to reason by carefully chosen éxample_s. Some test cases are
chosen because they are Itypical of the expected use. .Others are specifically chosen to be extreme,
testing the pathological possibilities. This is b#sed' on the powerful idea of the conttnutty of the
physical world. With sufficient formal trappings.' such arguments can form the basis for a more
rigorous demonstration. Understanding the criteria for selection of such.examples'is an exciting
researchable question. The role of models and/or runtime checking for such things as datatypes or
prerequisite conditions on invocations of primitives is somewh_ét unclear at present. For example, a
program which draws only squares must satisfy a rectanglé -tﬁod'el a‘s a special case. But this fails to
capture the intuition that a rypical rectangle has ad jacent sides une'quall. '

Such considerations argue for a knowledge representation more like Frame-Systems.
Whereas the ATN-like approach described ;o far (with prﬁcedures located at the nodes of a
network), might be said to emphasize what Piaget calls the 'Tf:igu,ratiw)e" aspect of thought, its dual
(with procedures as the links, and models as'the nodes) emphasizes the “operative” aspect. A
representation is sought in which these elements are unified, and yet the active, operative aspect

remains primary.
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The currently envisioned problem solving subsystem (and its model of the student’s problem
solving subsystem) is assumed to have two parts. The first is a base performance system which
constitutes the current state of knowledge about the domain. ‘This is organized as a linked network
of frames. Each frame corresponds to an abstract situation, such as the current state of progresslin
developing a new procedure. Schematized states of the world are grouped together on the basis of
certain ’patterns of features, for the purpose of common action specific to those features.

Effort at classification naturally breaks up into the frequently observed (eg., <Gr®t, 65>)
phases of thought. Thé earliest phase, ortentation, consists of testing for key features in order to
generate a working hypothesis. In an exploratory phase, instantjation of ma jor terminal nodes takes
place. During these first classifying phases, many of the n.1etho'd-s being developed by work on
hypothesis-driven recognition systems can be utilizedi One of the desiderata leading to the effort
to combine work on natural language Qith other aspects of intelligence .is the quest for a unified
formalism which can account for many such specific phenomena. This is evolutionarily sound (in
the biological sense), since such mechanisms could have beén adapted, for example, f rofn existing
visual routines. Conversely, it is difficult to imagine how "searching a problem space” or
"resolution theorem proving” could have suddenly evolved in higher organisms.

Within each frame are procedures for further fnvestigation and wverificatton, and for
handling unexpected problems. There will be a model of the situations to which the frame applies,
which might be expressed as a procedure for recognizing them. ldentifiers in the frame can be
bound on invocation or receive typical default values. Their meanings can be linked to those of
other frames by analogy or explicit generalization hierarchies. There v‘vill generally be commentary
linking the model to one or more associated methods, and pointers to typical uses of the methods in

higher level frames. The methods will be programs which transform the situation into new ones,
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linking pairs into "action schemes” or "before-after transf orm_;tions". For example, in.the case of
language, there might be a scheme for Schanlé’s "PTRANS", another for "MTRANS", and a higher
level, generalized "TRANS" scheme. S_uch schemes (linked pairs of f rames) can be used in forward
reasoning from the current state, or backward (feleological) reasoning from a desired goal state. A
chain of schemes at a given level may represent a singie unitary action -- and its associated
c‘ommentary. -- at the next higher level. Thus, wheth,er. algive'n frame represents a procedure
(linking two other frames into a scheme), a plan,.or_'a model of a situation, depends on the context.
In particular, the evolution of a procedure is an instance of a chain of such schemes, where the
nodes represent successive versions of the routine, ar;d the links represent the editing history, some
of whi;h may include the introduction of bugs. Invocatiop of database methods is frame-directed,
rather than being directed by the pattern of a single assertioﬁ. When faced with a problem, if
there is no perfectly matching scheme in the database, the most similar scheme is used as a plan to
be debugged. A huge network of .such schemes are connected on the basis of similarity (common
features) -- a powerful generalization of the simplisﬁc but suggestive "dif ference operator table”
<Newell & Simon, 63>.

The second major part of the problera solving subsystem (and the system’s model of the
student’s problem solving subsystem) is responsible for monitoring progress. generalizing successful
results, and assimilating new knowledge. It relies on the highly structured modular base béing able
to -make its assumptions about the rest of the system explicit. Léarning proceeds by discrete stages
of development, or plateaus of problem solving ability. The mechanism for proceeding from one
stage to another is the incorporation of new action schemes. These are created by copyiné,
extending, and debugging existing ones. They are not like new, independent axioms, because they

may interact in complex ways, and even contradict previous knowledge. Although superficially
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similar to the addition of new productions, this process differs in the following ways: (a) the
frames are larger and more structured th;n the condition part of productions; (b) the frames are
linked (not necessa;rily one-to-one) into schemes which i'ﬁclude bt;th initial and final state |
specifications; (c) the control structure is explicit, as opposéd to the implicit - linear sequenc_e. of |
testing conditions; (d) the use of -asso'ciatiQ_e connections. (hash _coding: t.echniq_ues,
similarity/discrimination networks) helps to find rele.vanf schemés--quickly: L |

The theory of procedural evolution to be used by a tdtoring program or debugging monitor,
then, is on.ly superficially similar to an ;‘\Tl\i; rather, it is embodied in the relationships of a
network of schemes. The student’s progress on a part.icu_la.r problem is seen és_ a subscheme in a
larger chain. The system attempts to ensure that the chain is e-xte.nded in certain ways, which are
specified by its own, more abstract chain (one might draw an analogy to protein synthesis). This is
to be accomplished by providing hints. A hint might hellp the student to avoid a blind élley or
recognize a useful subscheme, or provide a prétotyp'ical exz.ample of ﬁ desired generalization. The
most powerful hint, of course, is implicit in the order in'_wh'ich problems are posed.

The current section has suggested only th'g"_barest outlines of a theory bf the evolutionary
planning and debugging of procedures. An attempt has been made to marry the most valuable
features of a wide range of candidate formalisms for répresenting_such knowledge. What is
significant is that the resulting synthesis'seems to be applicable to other Al taskS, such as natural
language understanding, as well. The n.ex-t section will |ook- at the problem of building a tutor
program for geometry constructions using straight-edge and compass. The design of this system

will provide a coherent methodology for fleshing-out and debugging these sketchy ideas.
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A Consultant For Geometry Construction Problems:

Anyone who has followed the argument this far will nevertheless feel the need to ask
why the evolutionary process should work. What must nature, including man, be like
in order that science be possible at alt? Why. should scientific communities be able to
reach a firm consensus unattainable in other fields? Why should consensus endure
across one paradigm change after another? And why should paradigm change
invariably produce an instrument more perfect in any sense than those known before?
From one point of view those questions, excepting the first, have already been
answered. But from another they are as open as they were when this essay began. It is
not only the scientific community that must be special. The world of which that
community is a part must also possess quite special characteristics, and we are no closer
than we were at the start to knowing what these must be. That problem -- What must
the world be like in order that man may know it? -- was not, however, created by this
essay. On the contrary, it is as old as science itself, and it remains unanswered. But it
need not be answered in this place. Any conception of nature compatible with the
growth of science by proof is compatible with the evolutionary view of science
developed here. Since this view is also compatible with close observation of scientific
life, there are strong arguments for employing it in attempts to solve the host of
problems that still remain. : _

<Kuhn, 62>.

In order to further pursue the investigation of i,s_sﬁeS surrounding thé evolution of
procedurall knqwledge. this section proposes the design and implementation of an educational
application system. The proposed system would act as a consultant to students solving geometry
construction problems. The task of writing such.a program would helé to clarify the ideas, ensure
their generality by the extension to a new d-c.)main, and test théir practical applicability. The
program cotlxld' be valuable as one facet of a larger reactive educational environment, such as
Seymour Papert’s Mathland projec-t'or the ICAI system envisioned in a.recent proposal by John
Seely Brown <75>. Examples of subsystems one might_wis-h to include in such an environment

would be a symbolic integration laboratory, an assistant to students learning to prove trigonometric
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identities, or a simulator for simple physics problems.

In a typical situation, the geometry consultant is tutorir;'g a high school student who is .
learning to construct geometrie figures sa'tisfying cerfain constfaints, while employing only a
straight-edge and compass. The program acts as bt.zokkeeper,-_g.raphics display, critic, and advisor.
When the student "gets stuck’, it makes suggestions. It attempts to provide _guidaml:e in planning
construction algorithms, and counterexamples to incorrect ones. By maintaining a detailéd model. of
each students’ progress, it is able to present a carefully organized sequence of related problems,
illustrating variations or extensions of known construction techniques.

It is not taken for granted that cbmputeriziﬂ'g- the tr_éditionél- high school c;rriqulum is
worthwhile. It may well be the case that very little of that which is currently taught in the schools
ought to be taught at all. In particular, it is not the ob jective of this research project to automate
the mindless memorization of dogma. What the sch@ls ought to-teach are skills in t'ht_nktng.

The domain of straight-edge and c&mp_ass constructions: has much to recommend it as a
vehicle for teaching problem solving skills. Eutlidean'gedmétry' as a v)ﬁole provides a paradigm
for formal reasoning. Construction problems in partichlaf require insight and ingenuity not unlike
that of the engineer or programmer. lIn_ fact, the solutions to such pr;)plems are procedqres quite
analogous to those used in BLOCK'S WORLD co-ns_t_ructit.m.'or -tulrtle geometry. The formal
structure of the task is isomorphic to that of the mechanical engineer: eg., build a bridge able to
support a given load, withstand various stresses, using certain available techniques.

Such a program would be theoretically interést_ing in a number of respects. It could be
regar.ded as a warm-up exercise for more 'diffi.cult domains, such as the M.gchanics of Solids
<Miller, 74 or the assembly of components on a circuit board: sub ject to various constraints (eg..

heat dissipation, length of leads). The program would necessarily address those controversies to
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which this paper has addressed itself in earlier sections. It would be forced to deal with the
interfacing of multiple representations: Euclidean, analytic, computational. It would have to verify
the correctness of procedures and soundness of. .plans; 'g.enerate typicél examples and pathological
counterexamples; provide for plausible réason_iné and qga_lita;iVe explanation; understand logical
entailment and debugging. The search for helpful Similarities and analogies will require an
instantiation of the frame/scheme cbncept. unclouded byl the vagueness of Iess. well-understood
domains. There must be an analysis of tutorial d‘ia_logue,.an .examination of the postulates of
purpogef ul conversation, an inquiry into the interplay of natural-language syntax, semantics, and
pragmatics -- in a mini-world which is neither mysterious nor trivial. Most importantly, there is the .
chance to examine the effectiveness of the planning'ldebuggipg approach to learning and problem
solving in a context to which many high school students are éxposed.

A small, well-traveled domain undgrlies the technical feasibility of the project. The
description problem has been addressed by a variety of l'.thedrem'p,rove,rs (eg., <Goldstein. L, 73a>,
<Ge]ernter etal., 63>, <Nevins, 74>). The problem..solv.ifig aspects of constructions have been dealt
with by a recent system <Funt, 73> A number of self-help style te.xt,s-'(e_.g., <Rich, 63>) catilogue the
standard construction techniques, in a manner strongly suggesting frame-systems. Considerable
success has been achieved, as noted earlier, by programs whicﬁ debué analogous kinds of
algorithms. A similar consultant program for the domain of eiecirdnics trouble-shooting has
already been alluded to. Traditionally, insights into the problem solving process have been
couched in examples from georhetry consfructions. i’rogress in very high level languages provides
valuable primitives in which to express a theory; for example, a methodology for the intelligent
handling of fault interrupts in a genel;ali-zed control reg,iine is emerging <Fahiman, 73a>. Even the

secondary goal of conversing in a comfortable subset of English seems realistic in view of the
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available parsing technology and strong expectations. provided by the domain. In short, such a
project provides a balanced proportion of the do-able and the warthwhile.

Nonetheless, there are serious problems with- which previous .-ICAI_-_type"'system-s have been
unable to deal satisfactorily. The most important (l)f these concerns the development of a good
model of the student. The difficulties stem from-.in;dequat,e" description of £he development of
knowledge structures, and failure to ret;ognize that the problé‘m solver is operating- at a number of
dif ferent levels. Tﬁe planning/debugging -parad-igm‘ has begun 'to_pro‘iride the tools necessary to
surmount these barriérs. With tﬁe development'o'f a theory of the ontogenesis of procedural
knowledge, it becomes concei.vable.to model the student as an entirely procedural problem solving
system. still, a great deal of care must be exercised in such an analysis. In particular, it .is essential
to distinguish between debugging the. student's overt responses, which might be called the obfect
code, and debugging the student’s internal procedulre generation heuristics, (which may also be
operating at more than one level). The ob ject co_ﬁe can be patched directly, but an inference is
_required to go from an error at this level to the ‘bu'_g it refllects in the internal process. The
relationship between these second order mqntfé:lattons and the éonc,eptual underlying causes may be
obscure. The monitor system must rely.on the constraints. pro.v_ided' by its own solution (and a
model of its own internal procedu‘res). the student's. so.lut.ions to previous problems, knowledge of
recently acquired theoreﬁvs and construction algorithms, and so forth. At the same time, it must.be
prepared to accept partial plans for the solution which differ from those provided by its own
construction algorithms, and determine whether they can be completed successfully. Where they
can, it must rely heavily on a sound understanding of the student’s approach in determining which
hints will be helpful, and which would be "giving away’ too much”, faifing to demand a fair share

of active participation from the student. Few systems to date have seriously attempted to deal with
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these kinds of issues.

There are two primitive operations in the domain of straight-edge and compass
constructions. One takes as input the names.of two points and draws the straight line containing
them. Either can be defaulted to a random point in the plane. The other expects to receive as
input the name of a point, a leﬁgth, and an internal angle, drawing the arc with center at the point,
‘and the corresponding radius and extent. These are embedded in frame-like data structures, which
include procedures for recognizing when a Cartesian representation of a figure is indeed a line or
an arc, intrinsic commentary for justifying the lega"lity of the procedures in terms of Euclidean
theorems ("two points determine a line"), and links. tol extrinsic commentary in frames which employ
them in typical higher-level purposes. Student remarks are to-be interpreted as: factual questions
intended to clarify tﬁe goal of a problem, partial plans for the solution, intensional and purpose
commentary, and partial trace output from either the problem solving process or an interrupting

monitor process.

The following sample interaction is presgntéd in order_to_provid.e a clearer view of the
intended system. It is based partly on experien'ce‘gained by tutoring high school students on
numerous similar examples. .Commentary about the basis fo.r system respdnse appears in {curly
braces}.

S: I’'m confused. I don’t understand how to &o thiS problem.

T: Which problem are you working on? {presumably the system has already read
in its file for this student and is updating its model.}

S: To inscribe a circle in a given triangle.

T: Ok, here is the triangle. Call it AABC {lmportance of drawing diagram,
naming. Discussion refers to figure 1} :



FIGURE 1

FIGURE 2
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" S: Now what do I do?

T: You are asked to draw a certain circle. What must you know in order to
construct a circle? {Emphasizing the unknowns. Note that one reason for the difficulty
that students experience with such problems is that they fail to recognize, at first, what
the relevant unknowns are.} :

S: Well, the radius, for one thing.

T: That's true. So at some point - we will need to determine the radius, a line
segment. What else must you know, which is even more important? {A more
experienced student would immediately have seen that the essence of this problem is to
find the location of the center.}

S: The center.

T: Right, ‘the location of the center, which is a point. Let's start with that.
{Breaking the problem into subproblems. Note that choosing to search for a point
suggests the use of one of the primary schemes. for construction problems -- Polya's
"pattern of two loci”. It is not coincidental that a mere handful of such schemes are
adequate for solving a wide range of problems in our domain. Nevertheless, even the
system’s method has a "bug", in that it can fail to-determine whether a solution exists;
in such cases, the system should be able to resort to more powerf ul techniques outside of
the purely Euclidean ones.}

S: Well, it has to be somewhere inside the triangle.

T: Ok. {The claim is accepted at face value, although this student might find the
proof quite hard; eg. closely related problems, for which the statement happers to be
false, come to mind at once. It would hardly be appropriate to challenge the student's
correct intuition at this point.} Very well, call the center "O". Does the circle touch side
AB? {Expanding definition of "inscribed"}

S: Yes, in one point.

T: So segment AB must be tangent to the cnrcle? {paraphrasing. trying to draw
connections to relevant frames.} :

S: Right, the radius is perpendicular to AB.
T: What about the other two sides? {To elicit the obvious generalization.}
S: It's the same.

T: Ok, look at the points where the circle touches the triangle. Call them D, E,
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and F. {Updates the display.} What can you say about ADAO and AEAO? [Here, using
intensional commentary from the system's own solution to prompt a corresponding step
in the student’s plan. This seems to be one fairly powerful standard strategy that many
tutors employ Of course, there are several others as well.}

S: They are congruent.

T: And how about ACEO and ACFO?

S: Congruent, also.

T: So what does that tell you -about angles DAO and EAO, for. examplé? {still

pursuing the strategy of working backward through lts own-plan, promptlng with the
intrinsic commentary.}

S: They're equal.

T: Ok. Now if you were given angle EAD, could you construct the ray AO so
that <EAO = <DAO? {Pointing out a useful subroutine}

S: That's just bisecting a given angle.

T: What about the ray CO?

S: Oh, ok, so we've got Q.

T: What else do you need? {R;st'oring the previous context. During this strategy

of simplifying the problem by relaxing constraints, the student may have forgotten that
the original problem involves more than one step.}

S: The radius. But that's just segment OE.

T: How do you construct OE? {._Thé ;lext main step.} |

S: It's already there! |

T: No, we just pretended we knew where it was, so we could talk abeut it. {The

nominal fallacy bug.} Given O, and AC, how do you construct E?

S: 7?77

T: What is the relation between segments OE and AC? {Using the intensional
commentary strategy on a subprablem.} :

S: Perpendicular.
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T: Can you construct a perpendicular to.a given line (AC) from a given point
(O)? {Describing the fully instantiated invocation pattern for the appropriate frame.}

S: Oh yes, that's easy.

T: {Note that the above required T to have a model of the student which
included the appropriate frame.} Well, then what is the procedure to inscribe the circle?
{Popping back up to the main problem for which all the subroutines have been
written.}

S: First, bisect <BAC. The center is on the blsecting ray Drop a perpendicular
from the center to AC.

T: Wait a minute. {Unsatisfied prerequisite bug.} You left something out. From
what you said, I could draw O on the bisector ray of <BAC outstde the triangle.
{Generation and display of counterexamples.} '

S:  Oh,ok you have to bisect the other two angles.'too. The intersection is O.

T: But what if they don't meet at.a point? {It is not enough for a procedure to be
correct, it must also appear to be correct!} :

S: Um, I don't know.
T: Can you think of an example where they don’t meet at a point?
S: What about a long skinny triangle?

T:  Like this? {The system moves paint C slowly to the right.}

S: Well, I guess they always have to. méet at the _sia'me.-po_in-t.

T: That's right, but do you see how you could prove it?

S: Not exactly, maybe if we undid what we said before?

T:  That's ok for now. {This was #n interesting po.int to mention, but the proof is

beyond the level of this student. People can understand. procedures more readily than
their proofs of correctness.} Anyhow, do you see any place that you did more work than
you had to? {Rational Form violation -- the purpose of a step is already satisfied.}

S: No.

T: Why did you need to construct the third bisector? {Just localizing the error to
a particular step.}
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S: I guess you don't.

T: Ok. What's left?

S: Drop the perpendicular. That is the radius. Draw the circle.

T: Ok. Here is the final figure. Do you remember the p.roblem we began

working on’ the other day? {While willing to work on problems in the order preferred
by the student, the system takes the initiative -in pursumg the most logical (from an
evolutionary point of vnew) line of development.}

S: Yes: "Given a triangle, to construct a circle: which is tangent to one side and to
the extensions of the other two sides.”

T: Good. Here is the figure we were using. ABC was the given triangle.
{Discussion refers to figure 2. Note that the type of the unknown (a circle) and the type
of the given (a triangle) are the same as those in the previous example. This suggests
extending that solution to a more general form; moreover, it suggests that the method
of finding that solution is a special case of a more powerful planning scheme} What is
the most essential unknown?

S: The location of the center, point G.

T: Good. And what conditions can be used to constrain it? {In order for the
"scheme of two point sets” (our rendition of Polya’s terminology) to be applicable, G
must lie at the intersection of two loci whose components are rectilinear or curvilinear.}

S: Well, 1 have one idea. Since segments GE and GF are radii, they must have
equal length. Since they are also perpendicular to the two sides, triangles FGC and
EGC must be congruent. So, by corresponding parts of congruent triangles, G must lie
on the bisector of angle C. '

T: All right. {This was not the procedure that the system intended to use, but it
can be completed successfully, so the system accepts it for now. It can still be used to
illustrate the basic reasoning pattern. The system uses this more abstract scheme to
generate a particular hint} So you have restricted G to lie on a certain line. If you
could find another line contammg G, then the center would be located at their point of
intersection.

S: That's as far as I could get, though. The only other lines are GE and GF, but
" to draw these I would need to know E or F. L

T: No, there is also GD. Do you see that D does not necessarily lie on the bisector
of angle C? {In the original display, triangle ABC was draw 5o as to cause some
confusion when segment GC was added. This isolates a sort of "accidental equality”



T he Evolutton of Procedural Knowledge 57 B Géométry Construction Problems

bug. Note, however, that in this gradual sequence of refated problems, there are fewer
such bugs; - if the system had posed a problem which was further afield, there would
tend to be more. Furthermore, it would be harder for the monitor to discover their
underlying conceptual causes.}

S: Oh. Well, | suppose if side AB were more slanted, ...

T: {An extremely acute version is displayed, as in the figure. At this point, the
system should provide a hint which will help the student to draw on previously learned
schemes. The idea of the hint is ta mention one or two key features of the frame’s
precondition.} Can you do anything with quadrilateral GDBE?

S: ' Um,..

T: ~ What is a generally good thing to do with quadrilaterals?

S: Oh! Divide them into triangles! Let;; see, please show chord ED.

T: - Well, that's one possibility. {An unfortunate choice, but it is shown} Or, you
could try to get some line containing G.

S: Ok, show GB instead.

T: Go _ahead. {ED is erased to avoid cluttering up the display.}

S: I think the two triangles are similar ... but I o.nlf know one .angle. '
T: If you don’t know the angles, what about the sides? |

S Of course! The tr.iangles are congruent, by, um; A.S.S.'...-.?

T: What!? | |

s: Er, by Hypotenuse-Leg.

T: All right. So what can you say about <EBG and <DBG?
S: Equal. So GB is the angle bisector. We're done.
- T: Good. Now, I want to illustrate a different solution for the same problem. Is

that alright? {It would probably be well for the system to review the current solution at
this point, perhaps even printing out the entire procedure in a LOGO-like syntax. In
any case, it uses the now-familiar problem to explore alternative approaches, extendmg
the planning method to a more general form.}
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S: I would have thought one would be enough!

T: The method we have been using so far has been to simplify the problem to
locating a point, and then to try to describe the point as the intersection of two point
sets which could be constructed separately. {Teaching procedures by telling is always
legitimate!} In your solution, one of the point sets was segment GB, the bisector of
<EBD. The other was GC, the bisector of <BCA. Can you think of any others you
could have used?

S Not offhand.

T: Is there anything special about vertex B? {"Nothing Special” is a standard clue
to look for symmetry.}

S: No. I suppose we could bisect angle FAD instead of angle EBD. It's the same.
T: Is there a way to solve it without constructing segment GC? {This first step,
bisecting angle C, is still central to the student’s approach. Challenging it may lead the

student to additional insights.}

S: I guess you could just use segments GB and GA as the two point sets... {etc.}

This hypothetical scenario should help to lntllustrate‘ the goal of a geometry constructions
consultant program, and by analogy, the goal of other tutor-like systems. It is‘doubtfu-l that such
an intelligent and flexible system could be achieved in six months or a year. Nevertheless, the
planning/debugging paradigm and ideas stemming from it provide a new collection of tools with

which a good start can be made.
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Conclusion:

A focus on planning and debugging procedures underlies the enha’nﬁed proficiency of recent
programs which solve problems and acquire new skills. B..y describing complex procedures as
constituents of evolutionary sequences of families of simpler procedures, we lcan augment our
understanding of how they were written and how they accomplish their goals, as well as improving
our ability to debug them. To the extent that pmpenties of such descriptions are task independent,
we ought to be able to create a computafional analogue for genetic epistemology, a theory of
procedural ontogeny. Since such a theory ought to be relevant to the teaching of procedures and
modelling of the Iearner; it is proposed that an educationai app.li'cat_ion system be implemented, to
hélp' to clarify these ideas. The system would provide assistance to 'sfudents solving geometry'

construction problems.
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