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Abstract

This paper describes the basic geometry of the electric manipulator

designed for the Artificial Intelligence Laboratory by Victor Scheinman

while on leave from Stanford University. The procedure for finding a

set of joint angles that will place the terminal device in a desired

position and orientation is developed in detail. This is one of the

basic primitives that an arm controller should have. The orientation

is specified in terms of Euler-angles. Typically eight sets of joint

angles will produce the same terminal device position and orientation.
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APOLOGY: The coordinate systems chosen for the links in this paper allow

the use of extremely simple transformation matrices - they are
not however the ones that have come into common use when discussing
generalized manipulators. It is hoped that this will not prove
too much of an inconvenience. It would not be too hard to translate
the solution here presented into the corresponding one using the
other notation.



1.1 HISTORY AND INTRODUCTION:

A manipulator was designed for the M.I.T. A.I. Laboratory by Victor

Scheinman while on leave from Stanford University. He subsequently

started manufacturing this manipulator and we are now in possession of

a working model with locally designed electronics, interfaced to the

Micro-Automation Group's PDPll/40. Two more manipulators are slated

for delivery sometime this summer. These will include minor improve-

ments in areas that the prototype was found to be less than optimal.

The intent is to allow for two-armed manipulations needed in assembly

of small mechanical systems, while retaining one spare arm.

The electronics were designed by Russell Noftsker to provide current

servoing of the electric torque motors and back e.m.f sensing of these

same motors. Note that the motor torque -- Ignoring friction -- is

proportional to the current and that the back e.m.f -- If the resistive

drop due to the motor current is correctly subtracted out -- is propor-

tional to motor speed. Frederick Drenckhahn developed the layout for

the electronics and with William Freeman and Thomas Callahan was re-

sponsible for providing the other mechanical and electrical details

such as drivers for the brakes in the manipulator. The arm has been

dissassembled a number of times to make minor repairs, mostly to the

wiring. It is not yet Fall-Safe! Please take care!

There is a simple manual controller which allows velocity control of

one joint at a time. The inactive joints are locked. There are a

number of safety features that prevent the more obvious problems such

as gross motions while powering up and down. The current sensing resis-

tor for example also acts as a thermal model of the motor armature and

excessive temperature at this point will shut down the electronics in a

graceful way.

The authors of this paper developed the transformation equations. Meyer

Billmers and Richard Waters are writing a first-order servo program.

And of course Richard Waters is interested in implementing a sophistica-

ted manipulator control system.



1.2 GEOMETRY AND OPERATION:

It takes three degrees of freedom to position the terminal device in

an arbitrary position in space. It takes another three to give it an

arbitrary orientation. A manipulator that wants to achieve arbitrary

position and orientation (within some space) ought to have six degrees

of freedom. With less, most position orientation combinations will be

unattainable. With more, most position orientation combinations can

be reached with an infinite variety of Joint angle combinations. A

manipulator with six degrees of freedom has a finite number of ways

of reaching a given position and orientation. In our case this number

is eight, as we will see.

The MIT-AI-VICARM manipulator has six rotational joints and no exten-

sional joints. Each joint is equipped with a D.C. torque motor, poten-

tiometers for measuring position, a brake for locking the joint when

there is no motion. Eventually some joints will also be equipped with

tachometers for a more precise determination of velocity. The arm is

about as small as one can hope to make it using the technology of D.C.

torque motors and spur gears. The shoulder to elbow link and the elbow

to wrist link are each.203 im (8") long. The present terminal device is

a rudimentary two-fingered grasper -- the wrist to fingertip distance is

.159 m (6.25"). The total offset from shoulder to wrist is .118 m

(4.65"), and the shoulder stands.273 m (10.75") above the base.

There is no closed loop analog positional servo. There are a number

of reasons for this. The first is that many of the manipulations of

interest Involve objects that are externally mechanically constrained

(nut on bolt, peg in hole, crank on pin, door on hinge). Something

akin to force-control is more appropriate in such situations. Another

major reason is that because of the non-linear interaction of the moments

and torques only slow motions are possible with Individual positional

control. In a digital model of the arm dynamics such things as Coriolis

forces can be dealt with properly.



2.1 SPECIFYING ORIENTATION: (Euler-angles-> Rotation matrix)

The relative rotation of one coordinate system with respect to another

can be given in terms of three angles usually referred to as Euler-angles.

Unfortunately there is no standard convention for choosing these angles.

We have choosen agcA, as defined in the above diagram. To go from the

x' ,y' ,z' coordinate.system to the x,y,z coordinate system one performs

a rotation of -1 about the z-axis, a rotation of -/3about the y-axis and

a rotation of -c about the z-axis. Remember that rotations in three-space

do not commute. An alternate way of specifying a rotatfon is by means of

amortho-normal 3 by 3 matrix. Such a matrix would produce a vector in the

x,y,z coordinate system when it is multiplied on the right by a vector in

the x',y',z' coordinate system. This matrix is clearly the product of the

three simpler rotation matrices cooresponding to the individual rotations

K, /~ and 1.



xl ,cos a

I S 0
-sinot 0 cos/
cos i 0 0

0 1 -sinp

sinI cos'
a sin(

Cori 0

The matrix product becomes:

So given the three angles one can easily produce the uniquely determined

rotation matrix above. This requtres three sine and cosine evaluations,

twelve multiplications and four additions/subtractions.

When sin/tA 0 the z and z' axes line up and thestandY rotations take

place about the same axis. When?=- 0, the above matrix becomes:

cos(a +% ))
sin(ac+)

0

-sin(,•+' )
cos(ot+Y )

0

Whenp = r , we have instead:

-cos( o-E)

-sin(o(- )

0

-sin(~ -1 )
cos(-o< )

0

0
0

-1

One can restrict to the range [0,1']. Outside this range one obtains

no new rotation matrices. The matrix defined by (ir+ 'ct,-•,r+W ) is the
the same as that specified by (a<, ,) for example.

-sint
cos0
0

0 x'
0 y'



2.2 GETTING EULER-ANGLES FROM THE ROTATION MATRIX:

Let the rotation matrix be (mij) for i=0,1,2 and j=0,1,2.

Lets restrictA to the range (O,1w] to avoid ambiguity. Since one has

9 entries in the matrix, one can choose between alternate ways of

computing the angles.

cot = m22

sin 2m2 + m 2  = 2  2+ml
s02 12 20 21

For numerical stability one might want to use some combination, eg:

L = atan( +I (mr2 + m + m 0 + m 1)/2 , m22)

Note that this will produce the correct range forp automatically.
Now if sin/# 0 one can use:

sinKs-in/= m12 = m2 mo01 -m00o 21

coselsin = m02 = m20m11 m10om21

to get t, eg: C-= atan( ml2, m02)

Similarly if sin •0 one can use:

sin sin = m21  a 02m;o0-m00ml2

-cos sin = m20  = m02mll-m01m12

to get , eg: W= atan( m21 ', - 20)



When•= 0 however we have a problem since tandj are no longer uniquely
determined. Note however that:

(1 + cos/) sin(+% ) = m10 - 01

(1 + cos/A) cos(0L+%) m00 + 11

In this case we get: o(+W = atan( m10-m10 , m00 + M 11 )

Similarly when --• we have a similar problem, but observe that:

(1 -0 os ) sin(ac- = -o01 m10
(1 - cosP) cos(a.- )= mll m00

And so we get: C(- ' = atan(-m0 1-m10 , mlm11 0)

In the program, the function SPHERES takes at, i, and produces the

rotation matrix (mij). The function ANGLES takes the rotation matrix

and produces *(,jj,V . In the degenerate cases mentioned above,ANGLES

arbitrarily sets o- 0. Note that SPHERES is an, inverse for ANGLES, but

not the other way around.



2.3 ROLL, PITCH AND YAW:

Many other conventions for Euler-angles are in vogue. One is defined as

follows:

X

In this case we have the following sequence of rotations: roll-r about

x-aits, pitch-p about y-axis and yaw-y about z-axis.

I cos y -sin y 0 cos p
= sin y cos-y O 0

zI 10 0 1 l-sin p

The matrix product becomes:

0

cos r

sin r

0 x'

-sin r I
cos r z

cos y cos p

sin y cos p

- sin p

cos y sin p sin r - sin y cos r

sin y sin p sin r + cos y cos r

cos p sin r

cos y sin p cos r + siny sin r

siny sin p cos r - cosy sin r

cos p cos r



To obtain the three angles given the rotation matrix, consider that:

sin p a -m20

cos2p *2 2 o m2 +n2121 22

So p atan(-m 20', 00

If cos p 0 0

+ 0 M 1+ 2 m 2) ) -1'24.p4r/2

sin r cos p - ml0

cosy cos p = m00

y= atan (m10 -mo00)

If cos p # 0 sin r cos p = m21

cos r cos p - m22

r = atan(m21, m22 )

When p a T/2 one can use instead:

(1 + sin p) sin (r-y) = m01 wim 20

(1 + sin p) cos (r-y) = m11 + m02

r-y = atan(mol0 - m20' m 11+ M02)

When p = -'W/2 one can use:

(1 - sin p) sin (r+y) - m 1 - 20

(1 - sin p) cos (r+y) = m11 -m 0 2

To get r+y a atan(-m01 - 2 0 ' m11  - m0 2 )

Note: This formulation of the Euler-angles is more appropriate for the

roll-pitch-yaw geometry of the TOS Mini-Six arm designed by Carl Flatau.
The previous formulation on'!the other hand is convenient for the roll-yaw-

roll geometry of the wrist in the MIT-AI-VICARM manipulator and.will be

used from now on in this paper.

To get



3.1 DETERMINING THE COORDINATE TRANSFORMATION FROM THE BASE TO THE HAND:

To determine where the terminal device is in space and how it is oriented
when given the six joint angles, it is convenient to erect a coordinate

system in each link of the arm. There are six links (numbered 1, 2 ... 6)

and six joints (also numbered 1, 2, ... 6). The base counts as link 0.

Each coordinate system is associated with a link and each transformation

is associated with a joint. Each transformation can be conveniently
written as a 4 by 4 matrix. This allows both a rotation (top left-hand

3 by 3 sub-matrix) and an offset (Top 3 elements of last column). The last
row is always constant (0, 0, 0. 1). To obtain the overall transformation
later on we will just multiply these six matrices together.

Let JN Height of Shoulder above base. .273 m

SJ Horizontal offset of Wrist with respect to Shoulder. .118 m

EW Length of Elbow to Wrist link, also Shoulder to Elbow. .203 m

WH Distance from Wrist to Finger-tips. .159 m

xo  cos 01 -sin 01

zo 0 0
1 0 0

0 x1
0 Yl

JN z
11

I - .

- ---- ---·- --·

II,



X1

yr

ZI

1

XZ

zIS2.z I
11

cos 92
0.

-sin 92
0

sin 02
0

cos 02
0

cos 93
0

-sin 93
0

sin 93
0

cos 93
0

Yl&31

z2.

1

0

01

EW

X3

1
1 ,

0

SJ

0

1



94 0 0
94 0 0

1 EW

0 1

sin 95
0

cos g5
0

-sin

Cos

0

0

x

Yy

1

I

x3

Yj

Z3

z31

1

cos 94
sin 94

0

0

cos 95
0

-sin 95
0

Xsjx 5

yr

11
1



Yiu

cos a6 -sin 06  O 0 x6
sin 06  cos O6  0 0 y
0 0 .1 WH z&
0 0 0 1 1

To summarize we have, when going from the terminal device to the base:

Offset in z WH

Rotation about z -96
Rotation about y -95
Rotation about z -94
Offset in z EW

Rotation about y -0
Offset in z EW

Rotation about y -92
Offset in y S3

Rotation about z -01
Offset in z JN

The offsets are all fixed, the rotations are all controlled.



3.2 COORDINATE TRANSFORMATION FROM HAND TO BASE:

We can multiply the six matrices obtained in the previous section to

obtain one overall transformation. Let this product matrix be (mi..) for

i=O,1,2,3 and j=0,1,2,3. As pointed out before the rotation -of the terminal

device relative to the base coordinate system is given by the top left-

hand sub-matrix (mij) i=0,1,2 and j=0,1,2 and the position of the terminal

device is (m03' m13, m23). To determine the orientation of the hand in

terms of Euler-angles we can opprate on the matrix as indicated before.

Note that each of the terms of the rotation sub-matrix is a polynomial

in the sines and cosines of the six joint angles. Each product term in

such a polynomial will contain at most one sine or cosine of a particular

angle. The offset vector is similar except that the offsets also appear

multiplied with the sines and cosines.

3.3 THE TRANSFORMATION MATRICES:

Lets start with the first three going inward from the hand. Abbreviate

cos 96 by c6 etc. then:

Ic4
s4

-s4

c4

0

0

0 c5
0 0

EW s5

1 0

O c6

0 s6

0 0

1 0

-s6

c6

0

0

This product becomes:

(c4 c5 c6 - s4 s6) (-c4 c5 s6 - s4 c6)

(s4 c5 c6 + c4 s6) (-s4 c5 s6 + c4 c6)

-s5 c6 s5 s6

0 0

c4 s5 c4 s5 WH

s4 s5 s4 s5 WH

c5 (c5 WH+EW)

0 1



That isyjust the Euler-angle rotation matrix defined previously,

augmented on the right by an offset vector easily calculated from the
third column and the known dimensions WH and EW. This takes 15 multiplications.
(The Euler-angles where defined to coincide withihe last three rotational
joints on the arm)

Now lets look at the last three going inward

the abbreviation c3 for cos 03 etc. we have:

cl
sl
0

0

-sl

cl
0
0

0O
JN

1I

from the hand. Again using

0
0
EW
1I

This product becomes:

-sl cl s23

cl sl s23

c23

(cl c2 EW - sl SJ)

(sl s2 EW + cl SJ)

(c2 EW + JN)

where c23 = cos(2 +3) =
s23 = sin(02+ 3) =

c2 c3 - s2 s3

s2 c3 + c2 s3

It takes 14 multiplications to develop this matrix.

Further multiplication of the two matrices developed here produces

an overall transformation matrix that contains very complicated terms.
There is no point in presenting the result here since it is not used.

c3
0-s3
0

cl c23

sl c23

-s23

0



3.4 COMPUTING THE TRANSFORMATION MATRIX:

Obviously we could just develop the six 4 by 4 matrices and multiply them

together. This requires (6-1)*4*4*4 a 320 multiplications.

Since the last row in each matrix is a constant (0, 0, 0, 1) we can carry it

along implicitly. This reduces the arithmetic to (6-1)*3*4*3 z 180 multiplications.

Next one may note that the rotation components of the matrices only affect

two coordinates at, a time (since we defined the coordinate systems in the

links to always line up the rotation axis with one of the coordinate axes).

This allows us to replace general matrix multiplication by mere rotation

operators (as in the functions ROTY and ROTZ). This reduces the arithmetic

further to (6-1)*4*2*2 = 80 multiplications.

Moral: homogeneous coordinates and general schemes are useful for conceptual

development, but computationally ineffecient.

It is still possible to reduce the work further by noting that the three

wrist rotations correspond to the three Euler-angles we have defined and

that as noted we can calculate the product of the first three matrices

using only 15 multiplications. Then we end up with 15+3*4*2*2 = 63.

It might be thought that separately calculating the product of the first

three and the last three matrices as indicated in the last section and then

determining their product might save even more - but one gets: 15 + 14 +

3*4*3 = 65 multiplications.

Even worse is the situation obtained by multiplying out all six symbolically.

Each term in the final matrix requires about 30 multiplications, for a grand

total of 287.

The function COORDS, using the fastest of the above methods produces the

transformation matrix when given the six joint angles. The functions COORD

does the same, but also calculates the position and orientation of the

terminal device. Note that the matrix is uniquely determined by the joint

angles. The converse is not true. A given terminal device orientation and

position can be achieved by up to eight joint angle configurations.



3.5 THE EIGMTFOLD WAY:

Most orientations and positions of the hand can be reached by any one of

eight sets of joint angles. These correspond to three two-way choices. One

simple way of dividing up the possibilities is according to the signs of the

three angles G2' 93 and 95. So one could for example restrict each of these

to be positive to obtain a unique solution. This has implications in terms

of the potentiometers built into the arm, since they could be restricted

in their travel and thus provide greater accuracy and resolution.

A somewhat more natural division of the redundant solution space is provided

by the folleoing:

Sign of 92+ 3/2:

Sign of 93:

Sign of 95:

When this is positive, the wrist.isla front of the "chest'!

The "chest" is the side of the metal cube at the shoulder

that is1i/2 clockwise from the arm attachment when viewed

from above. (That isthe arm is thought of as a left arm).

If the sign of 02+ 3/2 is negative on the other hand, the

wrist will be "behind". The sAmeet'o f positions can be

reached in this fashion,provided 01 is changed by almostlT.

The other angles will be affected as well to some degree.

If 92+63/2 is positive then the sign of 93 determines whether

the elbow is above or below the line connecting the wrist to

the shoulder. The same set of positions can be reached in this

fashion provided 02 is adjusted by 203. The other angles will

be affected as well to some degree. If the sign of 02+ 3/2

is negetive, the two positions are swapped around.

Since the last three joints in the arm correspond to the

Euler angles we defined, there is a redundancy in that the

position 94' .5' 06 is equivalent to the position

1F +94, -95, ir+9 6 . Even the space occupied by the arm is

the same Ur thsertwo sets of joint angles. The other three

angles are not affected.



4.1 OBTAINING JOINT ANGLES FROM HAND POSITION AND ORIENTATION:

The hand position and orientation allows one to calculate the transformation

matrix from the hand coordinate system to the base coordinate system.

We now have to find what six joint angles will give rise to this transformation.

Since each element in the matrix is a polynomial in the sines and cosines

of the angles and the various offsets we could try to solve this

set of twelve polynomial equations so formed for the twelve sines and cosines.

This can be done by sucussively eliminating variables by combining equations

somewhat analogously to the method used in the solution of linear equation.

The difficulty is that the degrees of the polynomials multiply in these

operations. When finally only one equation in one unknown remains it will

be found to have a degree of a few thousand!

One alternative is interpolation from a stored set of configurations

combined with iteration and some hill-climbing method. This implies

repeatedly evaluating the transformation matrix given the guessed joint

angles and is quite slow. Fortunately the arm under consideration was

specifically designed to avoid this problem. The rotational axes in the

wrist intersect in one point and allow a decomposition of the problem

into two smaller ones. One can find 9l , 92, 93 independe4ly first and then

use these to find 94 , B5 ' g6' Briefly, the desired hand orientation

allows one to determine where the wrist should be, and only the first three

angles affect the position of the wrist. Having determined these angles

one can calculate the orientation of the hand in the elbow-wrist coordinate

system. Since the wrist angles correspond to the Ealer-angles previously

defined it is quite easy then to determine the last three angles.



4.2 FINDING 1.' ,2' 3:

The position of the wrist can be found in terms of the first three

joints angles using a matrix previously developed to get us to the

*lbow-wrist coordinate system and noting that in this system, the wrist

is located at (0, 0, EW):

Wx = cl (s23 + s2)EW - sl SJ

Wy = sl (s23 + s2)EW + cl SJ

Wz = (c23 + c2)EW + JN

(It would have been nicer if the shoulder-offset SJ was zero 8)
Remember that s23 = s2 c3 * c2 s3 and that c23 = c2 c3 - s2 s3.

We now have to solve this set of equations for sl, cl, s2, c2, s3, c3 --

keeping in mind that sl2 + cl2 = 1 and so on. Presumably one could

use MATHLAB to do this, but its easy enough by hand if one introduces

some intermediate variables as follows:

AO2  W21+ 2  = (s23 + s2) 2EW2 + SJ 2

=02 = AO2  2 = (s23 + s2) 2EW2

BO+ -+_

SF = JN - Wz = -(c23 + c2)EW

SW2  = 802 + SF2 = 2(1 + c3)EW2

CW2  SW2/4 a (1 + c3)EW2/2

EC2  EW2 - CW2  = (1 - c3)EW2/2

ECL = +fEC

Note that the choice of sign for BO determines the sign of 92+93/2, while

the choice of sign for EC determines the sign of 93. Further if 802 < 0,
the wrist position is too close the vertical column to be reached, while if
EC2(0, the wrist position is too far out to be reached.



Then we have:

W BO - W SJ

A02

s2 =
CW BO + EC SF

EW SW

2 EC CW
s3 EW2EW2

S W BO + W SJ

AO2

c2 =
EC BO - CW SF

EW SW

CW2 -_ EC2

c3 =EW 2

91 = atan( Wy BO - Wx SJ , Wx BO + Wy SJ )

@2 = atan ( CW BO + EC SF , EC BO - CW SF)

03 = atan ( 2 EC CW , CW2 - EC2 )

4.3 GEOMETRIC INTERPRETA

The above. is a geometric interpretation of the intermediate terms defined.



To understand

intermediate

the point A

sinV, =

sin Va. =

One then gets

Further:

the above formulae it also helps to introduce some

angles. In the above diagram for example we have

at (Wx, Wy) and so:

Wy/AO cos W, = Wx/AO

AB/AO = SJ/AO cos Y. = BO/AO

sine and cosine of e1 by noting that 01 = ,-l.

S

sin I, SF/SW cos 9,= WF/SW = BO/SW

sin *!- EC/EW cos l= CW/EW

One then gets sines and cosines of 92 and 93 by noting that:

02 -T /2 + ,- 01. 3 - 2 o.



4.ý FINDING 4' 5, 9.6:

Once l1' 92' 83 are known, the orientation of the elbow-wrist link can

be determined. This implies that it is now possible to determine what

the orientation of the hand is in terms of the elbow-wrist coordinate
system. Since the last three joints correspond to the Euler-angles in

this system one can easily determine their values using methods already

demonstrated. The rotation matrix for the hand orientation has to
be rotated about the z-axis by e1 and about the y-axis by 92+3*.

This is by far the most comprehensible approach. We have various other
solutions in terms of vector products, geometric methods and the like,
but they are all hard to understand and debug.

5.1 AUXILIARY FUNCTIONS:

OFFY oy adds oy into matrix as offset along y-axis.

OFFZ oz  adds oz into matrix as offset along z-axis.

ROTY 9y rotates transformation by 9y about y-axis.

ROTZ Oz rotates transformation by 9z about z-axis.

SPHERES , (& ,'6d Produces ortho-normal rotation matrix (mij) i,J=0,1,2

given orientation in terms of Euler-angles.

ANGLES Returns Euler-angles determined from rotation matrix./a will
be positive or negative depending on whether argument is +1.0 or -1.0

ATANS Takes two arguments, returns atan of their ratio. Result in

range -l to +TT .



5.-L THE FUNCTIONS IN THE PROGRAM:

COORDS @1' g2' g3' g4' 4 5' g6 (mfj) i=0,1,2 J=0,1,2,3

Produces the unique matrix of transformation from the hand

to the base coordinate system.

JOINTS (mij) i=0,1,2 j=0,1,2,3 o1' g2' 93' 94' 95' 96

Produces a set of joint-angles from the transformation matrix.

BOSGN, ECSGN, PMSGN control which of the eight possibilities

is chosen (Each must be set to +1.0 or -1.0).

COORDSX (mij) i=0,1,2 j=0,1,2,3

Produces the position of the centre of the finger-tips and the

orientation of the terminal-device in terms of Euler-angles.

Produces the transformation matrix from the hand position and
orientation given in terms of Euler-angles.

COORD Gl' g2' 93' 94' 95' g6

Composition of COORDS sad COORDSX.

JOINT g,'g2' 93' 94' g5' g6

Composition of JOINTSX and JOINTS.

Hx , Hy , Hz , ,0,(39

JOINTSX Hx , HY, Hz ,9 (, ,A (mij) i=0,1,2 j=0,1,2,3

Hx , Hy , Hz ,' , A

Hx' Hy, z Hz ,% , I A



5.3 (DECLARE (SPECIAL PI PI2 PI4 WH EW SJ JN SJS EWS BOSGN ECSGN PMSGN))

(SETQ PI 3.14159265 P12 (/IS PI 2.8) PI4 (//I P12 2.0))

(SETQ WH .159 SJ .118 JN .273 EW .283 SJS (*1 SJ SJ) EWS (Wt EU EW))

(SETQ BOSGN 1.8 ECSGN 1.8 PMSGN 1.8)

(ARRAY M T 3 4)

(DEFUN ATANS (S C) (-S (ATAN (MINUS S) (MINUS C)) PI))

(DEFUN OFFY (D) (STORE (M 1 3) (+S (M 1 3) D)))

(DEFUN OFFZ (D) (STORE (M 2 3) (+5 (M 2 3) 0)))

(DEFUN ROTY

(DEFUN ROTZ

(TH) (PROG (SINT COST TA TB)
(SETQ SINT (SIN TH) COST (COS TH))
(DO J 8 (1+ J) (- J 4)

(SETQ TA (+$ (*W COST (M 8 J))
TB (-$ (*$ COST (M 2 J))

(STORE (M 8 J) TA) (STORE (M 2

(TH) (PROG (SINT COST TA TB)
(SETQ SINT (SIN TH) COST (COS TH))
(00 J 8 (1+ J) (- J 4)

(SETO TA (-8 (*$ COST (M 8 J))
TB (+$ (*W COST (M 1 J))

(STORE (M 8 J) TA) (STORE (M 1

(DEFUN SPHERES (AL BE
(SETQ SA

SB
SG

(STORE
(STORE
(STORE
(STORE
(STORE
(STORE
(STORE
(STORE
(STORE

GA) (PROG (SA CA
(SIN AL) CA (COS
(SIN BE) CB (COS
(SIN GA) CG (COS

(-$ (*$ CA
(MINUS (+8
(+8 (,* SA
(+8 (MINUS
(*S CA
(MINUS
(*s SA
(*$ SB
CB)))

(*S SINT (M 2 J)))
(*S SINT (M 8 J))))
J): TB))))

(*$ SINT (M 1 J)))
(*W SINT (M 8 J))))
J) TB))))

SB CB SG CG)
AL)
BE)
GA))
CB CG) (*8 SA SG)))
(*8 CA CB SG) (,* SA CG))))
CB CG) (,* CA SG)))
(*S SA CB SG)) (*S CA CG)))

SB))
(*8 SB CG)))
SB))
SG))

(DEFUN ANGLES (SGN) (PROG (AL BE GA SINB COSB)
(SETQ SINB (SORT (//$ (+$ (*S (M 8 2) (M 8 2)) (*8 (M 1 2) (M 1 2))

(*$ (M 2 8) (M 2 8)) (*t (M 2 1) (M 2 1)))
2.8))

COSB (M 2 2)
BE (ATANS (*8 SGN SINB) COSB))

(COND ((> SINS 1.8E-5)
(SETQ AL (ATANS (*8 SGN (M 1 2)) (*S SGN (M 8 2)))

GA (ATANS (*S SGN (M 2 1)) (s* SGN (MINUS.(M 2 0))))))
((PLUSP COSB) (SETQ AL 8.8

GA (ATANS (-S (M 1 8) (M 8 1)) (+8 (M 1 1) (M 0 8)))))
((MINUSP COSB) (SETQ AL 8.8

GA (ATANS (+8 (M 1 8) (M 8 1)) (-$ (M 1 1) (M 0 8)))))
(T (RETURN 'MATRIX-BAD)))

(RETURN (LIST AL BE GA))))



(DEFUN COORDS (TH1 TH2 TH3 TH4 TH5 THS)
(SPHERES TH4 THS TH6)
(STORE (M 8 3) (*5 WH (M 8 2)))
(STORE (M 1 3) (*5 WH (M 1 2)))
(STORE (M 2 3) (W5 WH (M 2 2)))
(OFFZ EW) (ROTY TH3) (OFFZ EW)
(ROTY TH2) (OFFY SJ) (ROTZ TH1) (OFFZ JN))

(DEFUN JOINTS NIL (PROG (WX WY WZ BOS BO SF CWS CW. ECS EC TH1 TH2
(SETQ WX (-5 (M. 8 3) (•t WH (M 8 2)))

WY (-$ (M 1 3) (*5 WH (M 1 2)))
WZ (-5 (1 2 3) (*S WH (M 2 2)))
BOS (-5 (+4 (*• WX IX) (*t WY WY)) SJS))

(CONO ((MINUSP 80) (RETURN 'TOO-CLOSE)))
(SETQ BO (W5 BOSGN (SQRT BOS))

SF (-$ JN WZ)
CWS (I// (+$ BOS (*5 SF SF)) 4.8)
CW (SORT CWS)
ECS (-t EWS CWS))

(COND ((MINUSP ECS) (RETURN 'TOO-FAR)))
(SETQ EC (W5 ECSGN (SQRT ECS))

TH1 (ATANS (-5 (,* WY BO) (Ws WX SJ)) (+4 (r5 W
TH2 (ATANS (+3 (W5 CW BO) (*5 EC SF)) (-$ (+* E
TH3 (ATANS (*5 2.0 EC CW) (-S CWS ECS)))

(ROTZ (MINUS TH1))
(ROTY (MINUS (+$ TH2 TH3)))
(RETURN (APPEND (LIST TH1 TH2 TH3) (ANGLES PMSGN)))))

(DEFUN COORDSX NIL
(APPEND (LIST (M 8 3) .(M 1 3) (11 2 3)) (ANGLES 1.0)))

(DEFUN JOINTSX (HX
(SPHERES AL
(STORE (M 8

TH3)

X BO)
C BO)

(*s WY SJ)))
(*s CW SF)))

HZ AL BE GA)
GA)
HX) (STORE (M 1 3) HY) (STORE (M 2 3) HZ))

(DEFUN COORD (TH1 TH2 TH3 TH4 THS THS)
(COORDS THI TH2 TH3 TH4 THS THS) (COORDSX))

(DEFUN JOINT (HX HY HZ AL BE GA) (JOINTSX HX HY HZ AL BE GA) (JOINTS))



5.4 REPRESENTATION OF ANGLES, FRACTIONS AND DISTANCES

For angles, lets choose 216 to correspond to one revolution. This

makes for automatic mod(2 pi) operation. Furthermore you can think of

the number either as signed and representing angles in (-pi, +pi)or

as unsigned numbers, representing angles in (0,2pl). So:

number - (angle/ pi) 215

For fractions, lets choose 215 to correspond to unity. This allows a

range of -1.0 to almost + 1.0 (Or 0.0 to almost 2.0 If you like to think

of it as an unsigned number) and is this just right for output from SIN

and COS for example. (It is also consistent with above as a fraction of

pi).

number - (fraction) 215

For distances lets use the metric system and since the arm can reach at

most .86 meters (when pointed straight up) lets choose 215 to correspond

to one meter. This again makes for consistency.

number - (meters) 215



5.5 MATHEMATICAL FUNCTION SUBROUTINES FOR THE PDPII (courtesy of bkph)

SQRT will take double precision argument in RO, R]; return in RO.

since the maximum result is 2 -1, the maximum input is 230-1.

So the first two bits in RO better be off. This is mainly used

for hacking things of the form SQRT[a2+b2 ] - where a, b are

single precision,

SIN/COS will take single argument in RO; return answer in RO,RI.

is an angle between -pi and +pI expressed as (angle/pi) 215

The output Is a fraction between -1.0 and +1.0 expressed as

(fraction) 215

ATAN will take two arguments in RO and RI; returning an angle in RO.

The angle will be in the range -pi to +pi and will be ATAN

[RO/ Rll. The idea of using two arguments is that sungularities

are avoided at multiples of pl/2 and in addition the ambiguity in

quadrant can be resolved. The angle produced will be expressed as

(angle/pi) 215 , while the inputs can be in any units since one

works with their ratio.

MULTIPLICATION: Multiplication of integers is handled in the

obvious way by picking off the low order register. When multiply-

ing by fractions expressed as (fraction) 215, care has to be taken

to get the result with the right scale. This is done by shifting

the two words left one and then choosing the high-order word.
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