
WORKING PAPER 64

MINI-ROBOT GROUP USER'S GUIDE

by

MEYER A. BILLMERS

Massachusetts Institute of Technology

Artificial Intelligence Laboratory

March, 1974

Abstract

This working paper describes the facilities of the mini-robot
group and the software available to persons using those
facilities.

Work reported herein was conducted at the Artificial Intelligence

Laboratory, a Massachusetts Institute of Technology research

program supported in part by the Advanced Research Projects Agency

of the Department of Defence and monitored by the Office of Naval

Research under Contract number N88014-78-A-8362-0805.

Working Papers are informal papers intended for internal use.

PAGE 2

CONTENTS

8. Introduction 4

1. The Configuration S

2. File Transfer and Backup 8

2.1 COPY 8
2.2 ITS 9
2.3 SEND and BACKUP 9
2.4 RECEIV and RESTOR 10
2.5 PUNCH 11

3. Scope Support Programs 12

3.1 GTLOAD 12
3.2 GTMAC 13
3.3 GTROS 15
3.4 DISP 16

3.41 Literal DISP 16
3.42 Datapoint DISP 17
3.43 Display Mode DISP 17
3.44 Other OISP Options 18
3.45 DISPLO 18

4. System Programs 19

4.1 Graphic Editor 19
4.2 LISP 19

4.21 LISP Control Characters 20
4.22 File Specification Errors 21'
4.23 LISP Functions 22

4.3 RUG

PAGE 3

4.31 Location Opening Commands

4.32 Typeout Modes

4.33 Typein Modes

4.34 Breakpoints

4.35 Miscellaneous RUG Commands

4.4
4.5
4.6
4.7

VERIFY
LIST
USERS
ABSLDR

5. Picture Processing

5.1
5.2
5.3

VIDIN
PROF IL
MAPPER

6. The Devices

6.1 The Analogic Converter

6.2 The X-Y Table

7. Miscellany

7.1 System Bugs

7.2 SUPERD

APPENDIX 1 GETTING ON THE 11/48

APPENDIX 2 INDEX TO PROGRAMS

PAGE 4

0. Introduction

This guide describes the resources available to users of the

Mini-Robot group PDP 11/40 system. Chapter 1 describes the

configuration of peripherals associated with the 11/40, and

chapters 2 through 7 describe the software available. The

operating system on the 11/40 is DOS, with some modifications

described herein; consequently, a familiarity with the DOS system

manuals is assumed.

Questions and comments about this guide should be directed to

Meyer Billmers, room NE43-983.

PAGE 5

1. The Configuration

The Mini-Robot PDP-11 system consists of a processor with 24K

of core and the extended instruction set (EIS) option, a GT48

graphic display terminal and associated POP 11/05 processor with

8K of core, two RKBS disks with 1.2 million words of bulk storage

apiece, a high speed paper tape reader and a General Electric

Terminet 12088 printer/keyboard. Specialized devices include a

Vidicon video input device, an Analogic 0/A and A/D converter, a

high precision X-Y table, and numerous peripheral devices which

may be connected to the Analogic converter and thus take advantage

of its software and interfacing. Finally, there is T40, a 4800

baud TTY line to ITS.

Directly below the Vidicon interface is a patch panel which

determines the terminal connections for the system. There are two

input jacks at each labelled site on the panel. With the

exception of 11-SYS, only the rightmost jack is active. The sites

have the following interpretations:

11-SYS -- PDP 11/48 system console

T40 -- 4888 baud TTY line to ITS

GE1288 -- GE Terminet 1288 printer/keyboard

DC11 -- interface reserved for T48

GT48 -- interface reserved for the GT48 graphic terminal

DL11 -- interface reserved for GE Terminet 1200

The following set of connections will be referred to as the
standard configuration:

11-SYS -- GT48

T48 -- DC11
GE1288 -- DL11

The standard configuration will be the configuration normally in
effect, and will be assumed for the remainder of this guide unless
otherwise noted. The standard configuration is wired into the
patch board, so that if all the patch cables are removed it will
still be in effect. Making a non-standard patch will override

PAGE 6

these defaults.

In the standard configuration, the GT48 graphic terminal is

the system console, known to DOS as device KB for both input and

output. Other DOS devices known to the system are:

PR - high speed paper tape reader

DKS,DK1 - RK05 disks

GK - GE Terminet 1288 keyboard (input only)

GE - GE Terminet 12880 printer (output only)

A number of non-standard configurations is possible. Two of the

more useful possibilities are described below.

NSC1: By connecting GE1288 to T48, the Terminet 12800 may be

used as an upper/lower case ITS terminal off-line, depriving

the 11/40 user of devices GE and GK, and obviating several

system programs which refer to the Terminet and to T48.

NSC2: By connecting GE1288 to 11-SYS and T48 to GT48, the

GT40 graphic display terminal may be used as a datapoint for

ITS while an 11/46 user may be simultaneously using the

Terminet as the 11/48 system console. In this case, device KB

is the Terminet and devices GE and GK are once again not

available.

In general, when using non-standard configurations, there will be

a line speed problem which the user will have to correct. The

Terminet is incapable of running at baud rates higher than 1288.

Thus in NSC1 it will be necessary to change the speed of T40 to

1200 baud; this may be done as follows:

a) Using the GT40 as a datapoint (see chapters 2,3), type to

ITS

LOCK^K

_48SPEED INPUT SPEED-1288 OUTPUT SPEEO-1288 <CR>

PAGE 7

b) Change the patch cables to NSC1, and at the terminet type:

^Z

:TCTYPE GE120 <CR>

c) When finished, type:

:TCTYPE GT H 36 W 110 <CR>
LOCK^K

4BSPEED INPUT SPEED-4888 OUTPUT SPEED-4888 <CR>

and then the patch board may be placed back in the standard

configuration. In NSC2, the speed of T40 already will be correct
for the GT40 when it is being used as a datapoint, but the line
speed of 11-SYS must be changed to 1288 baud. This is done by
inserting one end of a spare patch cord into the left-hand jack of
11-SYS.

PAGE 8

2. File Transfer and Backup

Hardware troubles have plagued the POP 11/40 system and

caused numerous system crashes and extensive file loss. To

protect against this, a number of backup procedures have been made

available to the user. Forms of backup fall into three classes:

disk backup on a PDP 11/40 backup disk, backup on ITS, and paper

tape.

2.1 COPY

The copy command, RUN COPY, facilitates backup on a PDP 11

backup disk. It will copy from the disk loaded on drive DKn to

the disk loaded on drive OKm, where n,m < 2. COPY will first

query the user as to the direction of copy desired (DKO to DK1, or

the reverse); the user may then choose to backup selected files,

or he may copy his entire disk. This latter process takes 70

seconds, and the copy is verified for correctness as it is done.

In normal operation, OK8 will contain the system disk

(labelled SYSTEM) and is not to be written on, while DK1 will

contain the user's personal files. It is not possible to COPY

individual files unless DK0 contains a system; the user may COPY

individual files from OK1, then mount his backup disk on OK1 and

copy the files from OKB to his backup disk. Files placed on the

system disk for such temporary storage should be immediately

deleted after the backup is complete.

When using COPY to backup an entire disk (this is normally

the fastest way), the above restriction about the system being on

drive B no longer applies. A user may type RUN COPY to get COPY

into core, then dismount the system disk and mount his backup disk

on DKO and issue the command for COPY to begin the transfer. It

is wise to run VERIFY before copying a disk, however, because the

bit maps or file structure could be incorrect. See chapter 4 for

details on how to use VERIFY.

PAGE 9

2.2 ITS

ITS is a program which will make a software connection
between T48 and the POP 11 while still in the standard
configuration. Typing the command RUN ITS to DOS will cause every
character typed at the system console to be transmitted to ITS,
and will cause every character received from ITS to be displayed
on the GT4B. Control-C is an exception -- it will cause the

software connection to be broken (this does NOT log the user off
ITS) and return control to DOS. Control-Q is a quote character;
it is not transmitted, but causes the next character typed to be
transmitted, and thus it is the only way to transmit a control-C
to ITS.

2.3 SEND and BACKUP

SEND and BACKUP are programs available for transmitting files
to ITS over a standard teletype line. A datapoint simulator
should be running on the GT40 (see DISP, section 3.42) and the
user should be logged in to ITS. To transmit a file, the
following steps are needed: 1) Type RUN ITS, and place the GT4B
in datapoint mode. 2) Type BACKUPAK. 3) Type control-C to break
the connection and cause a return to DOS. 4) Type RUN SEND to
DOS. SEND will prompt with a "#" when it is ready to accept a
file specification. 5) Type the device, if applicable (default is
DKB), the file name, the extension, and the user identification
code (UIC). The default for UIC is the UIC of the user currently
logged in. The file so specified will then be transmitted to ITS,
and entered on the directory of the user logged in. Rubouts and
control-u are recognized while typing the file specification to
SEND. When the transmission is complete, SEND will prompt the
user with another "#".

When all files are transferred, the user should RUN ITS, log
off from ITS, and type a control-C to return to DOS.

SEND is useful for backing up files on your ITS directory,
and also for obtaining assembly listings of ".LST" files produced
by MACRO. SEND will transmit both ASCII and binary files, but

PAGE 18

binary files are first encoded by SEND into a "safe" form which

contains no dangerous control characters (like control-z) by

coding every 3 eight bit bytes into 4 six bit ASCII characters.

SEND will decide whether to encode a file based on its extension.

Files with ".MAC" or ".LST" extensions are assumed to be ASCII and

are not encoded; all others are assumed to be binary. The user

may override these defaults with the /A (ASCII) ,/B (binary), and

/P (picture) switches. For example,

SRUN SEND

#FOO.MAC

#DK1:TEST.LDA[1,11

#PICT. 1/P
#PAPER.TXT/A

will send the ASCII file FOO.MAC, the binary load module TEST.LDA

on OK1, the picture file PICT.1, and the text file PAPER.TXT, with

this last being send in ASCII mode.

SEND will give the message SYNTAX ERROR if the file

specification was not meaningfully parseable, and the message I-0

ERROR if the file specified does not exist or is read protected.

In each case, SEND will prompt the user with another "#" and wait

for a new file specification.

2.4 RECEIV and RESTOR

RECEIV and RESTOR move files from a disk directory on ITS to

the PDP-11/40 disks. Their operation is a dual to SEND and

BACKUP. The user must first make the connection to ITS by typing

RUN ITS, log in to ITS, type RESTOR^K, return to DOS by typing

control-C, issue RUN RECEIV to DOS, and type the name of the file

which he wants transmitted. The user is reminded that DOS will

not allow him to write on any directory except his own, unless he

is logged in on the system UIC, 11,11, in which case he may

specify any UIC for the file specification.

An implementation note: because the POP-11 runs in real

time, RECEIV can use larger btiffers than SEND, and thus transfer

PAGE 11

of large files in the 18 to 11 direction is faster than the

'reverse.

RECEIV uses the same coding conventions as SEND, so that a

binary file encoded and sent up by SEND will be decoded by RECEIV.

But if a /A or /B switch was specified with SEND in order to

override a coding default, the same switch should be used with

RECEIV. The user is warned that RECEIV will not work correctly

with picture files.

2.5 PUNCH

The surest means of file backup possible is paper tape. The

PDP 11/40 has no high speed punch, but programs may be put on the

user's ITS directory using SEND and then punched out onto paper

tape .from ITS using the command PUNCH^K. PUNCH will type FILE:

and then wait for a file specification (currently PUNCH will only

punch files from the directory of the user who is logged in).

PUNCH will punch one fold of leader, the name of the file in block

letters, the date and time, a fold of leader, the file itself, and

three folds of leader -- and then ask for another FILE: . PUNCH

will make the same assumptions about coding as SEND and RECEIV,

and will decode a binary file before punching it out. Again,. the

/A and /B switches will override these defaults. Thus,

PUNCH^K

FILE: PAPER TXT/A

will punch out the ASCII file PAPER TXT on your directory. If

punching an ASCII file, PUNCH will look for the .END statement

which must terminate all MACRO-11 source files, and if it is

missing, PUNCH will print the warning message NO END STATEMENT

ENCOUNTERED.

PUNCH is designed to work with SEND and to punch out files

prepared on the 11/40 and SENT to ITS. It will, of course, work

correctly on any ASCII files, but binary files not already in

coded format should only be punched out using the appropriate TECO

commands.

PAGE 12

3. Scope Support Programs

The GT48 scope has been integrated into the DOS system as a

standard output device with device name KB. It is an ASCII

device, and so all output to it must be line oriented and must end

with a line terminator (LF, FF, or VT). The keyboard attached to

the GT40 is also a standard, ASCII, input device with device name

KB. It will process rubouts and control-u's, and buffer one line

of input at all times. KB will buffer up to one line of input

(and process rubouts and control-u's) even if no .READ has been

done. Characters so buffered will be echoed when the next .READ

occurs, and if a line terminator was seen, the line will

immediately be given to the monitor.

Connections exist between the GT40 and the 11/40, and also

between the GT40 and ITS. When this latter connection is made,

the GT40 may be used as a high speed (4888 baud) datapoint with

rubout processing capability and upper and lower case letters.

3.1 GTLOAD

In order to use the GT40 as described above, the appropriate

program must be loaded into its core. The POP11/85 processor has

a read only memory (ROM) loader which has a start address of

166000. This is an absolute loader, designed to load programs in

over the TTY interface, which is seven bits wide, plus a parity

bit. Since binary programs require all 8 bits in each byte, the

ROM loader assumes that it will be given absolute loader format

files in an encoded form, so that they will fit on the interface.

The program GTLOAD will 'encode absolute loader files into the

appropriate form, and load them into the 11/85. The command

sequence:

(start the ROM loader at 1660008)

SRUN GTLOAD

#FOO.BIN

will encode FOO.BIN and load it into the 11/05 procc-sor.

PAGE 13

GTLOAD has the ability to load more than one program into the
11/95. In general, the command sequence

IRUN GTLOAD
#FILE1.BIN,FILE2.BIN,FILE3.BIN,FILE4.LDA/R

will cause FILE1,FILE2, and FILE3 to be loaded sequentially into
the 11/05 processor. Since the run option (/R) has been specified
for FILE4, it will be run on the 11/40 after the loading is
complete. If any file is to have the /R option, it must be the
last one, and that file must be in the correct format to be run on
the 11/48 (e.g. a .LDA file).

When GTLOAO is used to load multiple files into the 11/05,
the ROM loader will halt after each file is loaded. In order to
keep the two processors in synchronization, GTLOAD will also halt
the 11/48. When this occurs, the user should restart the ROM,
then press CONTINUE on the 11/40 and the next file will be loaded.

3.2 GTMAC

The PDP11/85 processor is, with only minor differences,
capable of executing the same instruction set as the 11/40. Thus
11/85 programs may be written as if they were to run on the 11/40,
assembled in absolute mode (with the Assembler switch .ENABL ABS)
and then loaded into the 11/85 with GTLOAD. The instruction set
for the GT40 scope processor is, of course, markedly different,
and the MACRO-11 assembler does not recognize any standard
mnemonics for the GT40 scope instructions.

To enable the user to program easily for the scope processor,
the macro file GTMAC.MAC[3,31 has been made available. GTMAC.MAC
contains macros which expand into the various scope instructions.
These macros are:

SGM MODE,INTEN,K1,K2,K3 -- set graphic mode. MODE may be
CHAR (character mode), SVEC (short vector), LVEC (long vector),
PNT (point mode), RPNT (relative point), GRFX (graphplot x),
or GRFY (graphplot y). It is a required argument; all other

PAGE 14

arguments to SGM are optional. INTEN sets the intensity

level. If present, it must be an integer from 8 to 7.

K1,K2, and K3 are keywords. None or all three'may appear;

note that if INTEN is omitted, the first keyword must

still be the third parameter. ,Their order is arbitrary,

and they may be chosen from the following three sets:

LPI,NOLPI -- enables or disables light pen interrupts.

BLK,NOBLK -- blinking is on, off.

SOLID,LOASH,SDASH,DDASH -- line type (solid, long dash, short

dash, dotted dash).

LOA K1,K2,K3,K4,K5 -- load status register A. The keywords K1-K5

may be chosen in any order and number from the following sets:

HALT - stops the scope

HI,NOHI - interrupt on scope halt is enabled, disabled.

LPY,NOLPY - the point of light pen interaction is intensified,

not intensified.

ITX,NOITX - characters are italicized, not italicized.

SYNC - halt scope and-restart on next 68 HZ clock pulse.

LDB NUM -- load status register B. NUM is the 6 bit positive

graphplot increment.

The following group of macros uses the parameter conventions:

X6,Y6 are signed, 6 bit coordinates

X10,Y10 are signed, 10 bit coordinates
X10A,Y10A are positive 10 bit coordinates

HIDE is an optional keyword that specifies that

the item is not to be intensified.

SVEC XG,YG -- short vector mode instruction

LVEC X18,Y10 -- long vector mode instruction

PNT X10A,Y10A -- point mode instruction

RPNT X6,YG -- relative point mode instruction

GRFX X10A -- graphplot x instruction

GRFY Y18A -- graphplot y instruction

PAGE 15

As in MACRO programs, the .ASCII / text / statement is used
to insert characters into a scope program.

To use these macros in your scope program, specify the
following command string to the assembler:

SRUN MACRO

#DK1: ,DK1:<GTMAC.MAC[3,3],DK1:FOO.MAC

and your file, FOO.MAC, will be assembled with GTMAC.MAC and all
these macros will be defined.

3.3 GTROS

GTROS, the GT48 Trivial Operating System, is available to the
user as GTROS.BIN[3,31, and as the following macros in GTMAC:

SJMPR - position independent scope jump

SJSR - jump to scope subroutine.

SJSRR - position independent SJSR.

SRTS - return from scope subroutine.

SINT - interrupt the 11/85. The argument to this macro specifies
the address at which the 11/85 is to be started.

SINTR - position independent SINT.

SINTH - interrupt the 11/85, and halt the scope program.

SINTHR - position independent SINTH.

BELL - ring the console bell.

SEXEC - start execution of the scope processor at the specified
address.

PAGE 16

SREXEC - restart execution of the scope processor at the last

point at which it was stopped by a SINTH or SINTHR.

To use the macros in GTMAC which are part of GTROS, the user

must first load GTROS into the 11/85. The procedure is as

follows:

(start the ROM loader at 16680088)

SRUN GTLOAO

#GTROS.BIN[3,31,FOO.BIN

(restart the ROM loader and press CONTINUE

on the 11/40 when halted)

will load GTROS and then your program which makes use of the GTROS

macros. GTROS is loaded from 320 to 748.

3.4 DISP

DISP is a general purpose display program which runs on the

11/85. To load DISP, the command sequence is:

(start the ROM loader at 1668880)

IRUN GTLOAD

#OISP.BIN[3,31

The starting address for DISP is 4808. DISP has three modes, and

the mode of operation is determined by the contents of the 11/85

switch register when it is started.

3.41 Literal DISP

SWR Bit 081. Whenever bit 0 of the 11/85 switch register is up,

literal OISP will be selected. Literal DISP displays every

character sent over to it on the TTY interface, so that no

characters are interpreted. Literal OISP echoes over the TTY

interface every character typed at its keyboard, and again no

characters are interpreted. Literal DISP is useful for debugging

purposes, by enabling the user to see every charac~er his program

outputs. Literal DISP will display control characters as an

PAGE 17

up-arrow followed by the character. If the ASCII character 136 is

sent to DISP, it will display as a carat, so that it will not be
confused with a control character.

3.42 Datapoint DISP

SWR Bit 1-1. Whenever bit 1 of the 11/05 switch register is up,

datapoint mode DISP is selected. By making the connection of the

GT48 to the ITS line, it will function as a datapoint (at 4888

baud) with these differences: 1) Whenever bit 15 is zero, all

letters will be shifted to upper case. 2) Whenever bit 15 is 1,

lower and upper case letters will be available. 3) Rubouts are

processed, i.e. rubbing out a character will cause it to be erased
from the screen.

3.43 Display mode DISP

SWR Bits 8-2 all zero. Whenever bits 8-2 of the 11/05 switch

register are zero, OISP will assume normal display mode operation.
A square cursor will appear on the screen, marking the location at
which the next character typed to DISP will be displayed. In this
mode, DISP will display characters sent to it, interpret tabs,
carriage returns and line feeds, echo characters typed on the GT48
keyboard across the TTY interface, interpret rubouts by erasing
the previous character, and interpret control-u's by erasing an
entire line. If bit 15 is 8, all letters will- be converted to
upper case. DISP keeps a buffer of several thousand characters,

and so it is possible to scroll through the text at all times.

There are two modest home mode and echo mode. To enter home

mode, type HOME on the GT48 keyboard side panel. To leave home
mode, type LOCK-EOL. When in home mode, the effects of the keys
on the side panel are:

(up-arrow) -- scrolls up ten lines in the buffer.
(down-arrow) -- scrolls down ten lines in the buffer.
(left,right-arrow) -- scrolls (left,right) 32 characters.

This is useful for examining a line that is too long
to fit on the GT48 screen.

(LOCK-EOS) -- jumps to the bottom of the buffer. Has the
same effect as clearing the screen.

PAGE 18

When in echo mode, keys on the side panel will echo their own

ASCII values, so that (up-arrow) will echo as control-z and

(down-arrow) will echo as control-k. Conversely, when in home

mode, control-k will cause the screen to scroll up 10 lines.

DISP keeps its buffer in a ring, so that as a large amount of

text is sent to DISP, it will overwrite the oldest text with the

newest, and always display the last (buffersize) number of

characters received. As DISP is receiving information, it will

scroll up a line for each new line received. If the user scrolls

away from the last (most current) line by typing (down-arrow),

DISP's display will become "unstuck" from the bottom of the buffer

and will allow the user to look at one screenfull of information

while DISP continues to receive more characters and fills up its

buffer. But when DISP wraps around and needs to overwrite the

screenfull. currently being displayed, it will begin to lose

information being sent to it, and will ring the console bell.

Scrolling forward (up-arrow) will allow DISP to resume writing

into the buffer, and scrolling to the line currently being

received will cause DISP to "stick" again and continue scrolling

new lines onto the screen as they are received.

Display mode DISP will normally be running in the 11/85 when

the GT40 is being used as the system console.

3.44 Other DISP options

Turning switch register bit 15 on will allow upper and lower

case letters to be typed, while bit 15- causes all alphabetic

characters to be upper-cased. Raising bit 2 will start execution

of the ROM loader (DISP will not run again without being

reloaded).

3.4S DISPLO

DISP may be loaded from ITS by the command :M3.S;DISPLD while

the ROM loader is running.

PAGE 19

4. System Programs

4.1 Graphic editor, Version 5

The DOS editor, EDIT, now uses the GT48 to display 29 lines

of buffer after each editor command is executed. The command RUN

EDIT will cause the graphic editor Version 5 to identify itself.

This editor is identical to the DOS editor (see the EDIT-11

manual) with one exception: a new command, nQ, has been added.

The nQ command causes the last line of commands typed at EDIT to

be executed n times. When the GE Terminet is the system console,

EDIT will compensate by displaying only three lines of buffer

after each edit command.

4.2 LISP

POP11 LISP provides the user with most of the features of a

full scale LISP. Atom print names are restricted to being three

characters in length, and the print names should be alpha-

numeric. This is a shallow binding LISP with saved values of the
variables kept on the stack, along with function calls and

associated information (such as function return addresses and
parameters being passed). There is only one stack. Currently
there is no way for a LISP program to do its own file structured
I-O.

The command RUN LISP will cause mini-robot LISP to identi fy
itself and prompt the user with a vertical bar. Expressions may

then be evaluated directly at top level, or the user may type a

control-G, which causes LISP to print a "#" and wait for a set of
file specifications. The general form of the file specifications
is:

#DVsOFILE1.EXT[ulc],OFILE2.EXT[uic]<IFILE.EXT[uic]

where all standard defaults are recoginized (DV defaults to DK8:
and [uicl defaults to the current user).

PAGE 28

In this notation, OFILE1 is the primary output file, OFILE2
is the secondary output file, and IFILE is the primary input file.
If a non-file structured device is specified, no filename,
extension or uic need be supplied. The primary input file and one
of the output files must be supplied.

Once this file specification has been typed in, followed by
<CR>, control will be transferred to LISP. If the primary input
file was KB: or GK:, LISP will prompt the input device with a
vertical bar and wait for an S-expression. <CR> and <LF> may be
used as atom name separators, but only a matching number of right
parentheses will close an expression. LISP will then ignore any

other characters typed except a following <CR>, evaluate the

expression, and send its value to the primary and secondary output

files. When the output is complete, LISP will once again prompt
the input device with a vert.ical bar.

If the input file specified was other than GK: or KB:, LISP
will read in, evaluate, and output each s-expression on the input

file. When the last s-expression has been read and evaluated,

LISP will prompt the user with another vertical bar. Bindings
established from previous inputs remain in effect.

4.21 LISP control characters

LISP recognizes the following control characters on an

interrupt level, regardless of the device open for input.

CONTROL-D returns control to the monitor.

CONTROL-P suppresses output to the primary output file for the

duration of the s-expression currently being EVAL'd. If output is

off, CONTROL-P will resume output.

CONTROL-S similar to CONTROL-P, but for the secondary output
file.

CONTROL-G terminates computation of LISP, closes ;Il input and

output files, prints a "#" and waits for a new set of file

PAGE 21

specifications. When <CR> is typed, LISP will resume its

computation, but it will take input from the new input file.

CONTROL-H is the debugging interrupt. It interrupts LISP but

preserves the state of the LISP computation and the state of all

1-0. It will temporarily open the GK: or KB: (whichever was open

last) for input. LISP will respond by issuing the error message

ERROR: EXTERNAL INTERRUPT, and come to top level with a vertical

bar. The user may then examine the state of his program, change

bindings, and type (CNT) to close the keyboard for input, and

resume computation and I-0 from the previously opened files.

4.22 File Specification Error Messages

LISP maintains the following set of error messages which

pertain to the file specification entered at a "#":

SYNTAX ERROR

This error indicates a non-parseable file specification.

LINKBLOCK ERROR

This error indicates that the monitor did not have sufficient

space for a buffer for one of the devices specified.

I-O ERROR

FILE TYPE: PI ERROR CODE: B

This error indicates a problem with one of the files in the

file specification. PI indicates that the file causing the

error was the primary input file; PO and SO are the other

possibilities. The error code is the ASCII character obtained

by adding 100 to the error code in the FILEBLOCK (see DOS
monitor manual, page 3-82, for a complete list of these error
codes). The error codes which can appear as a result of an
improper file specification to LISP are:

PAGE 22

e - an attempt was made to open a file for output twice.

B - file does not exist, or an attempt was made to open a

file for both input and output.

F - file protection violation.

J - the UIC referenced is not known to the system.

L - an attempt was made to create an output file with an

illegal name.

O - the file extension was ".CIL".

END OF FILE ENCOUNTERED

BEFORE END OF EXPR

This error indicates that the input file did not contain enough

right parentheses.

4.23 LISP Functions

The following are standard LISP functions:

LM -- lambda

NLM -- nlambda

EVL -- eval

' -- quote

+ -- addition

- -- subtraction

* -- multiplication

PAGE 23

/ -- division

GT -- greater than

GE -- greater than or equal to

NOT -- boolean not

CAR -- car

CDR -- cdr

RPA -- replace car

RPD -- replace cdr

CNS -- cons

NUL -- the null predicate

ATM -- the atom predicate

NUM -- the number predicate

LST -- the list predicate

OTH -- the none of the above predicate

- -- the equality predicate

STQ -- quoted assignment

SET -- assignment

AND -- boolean and

OR -- boolean inclusive or

CND -- cond

PAGE 24

LIS -- list. Makes a list of its arguments (may take an indefinite

number).

PRG -- prog. Takes two arguments, a list of local variables and

the prog itself.

RET -- returns a value from a prog.

GO -- jumps to a label within a prog.

GBG -- garbage collector. The value returned is the number of free

cells.

CL -- characters to list. This will take input from the input

device in the form of a character stream, build a list, and return

the list as its value.

LC -- list to characters. Takes a list as argument, and outputs

the character stream corresponding to that list on the current

output devices.

SYS -- regenerates and restructures the system. (SYS) should be

called only in dire instances. SYS takes five arguments, which are

the size of the hash table, of atom space, of list space, of the

"margins", and the stack. The margins are areas not normally

available to the system, but are reserved in the event of a list

space overflow or a stack overflow. When an overflow occurs, a

soft error message will be generated, and the user will have

access to the margin space while he tries to free more space.

Overflowing the margin causes a hard overflow error, which is

irrecoverable. Null arguments to SYS leave the corresponding

argument position unchanged.

RST -- restore. Flushes the stack and restores top level bindings

to all atoms, then returns to top level evaluation.

BRK -- break. Used to set break points in program execution. It

prints out an 10 which is determined by its first argument. If

the first argument to BRK is between one and twenty, it will print

out one of the twenty standard system error messages, and if the

PAGE 25

first argument is outside this range it will print out. BREAK: USER
DEFINED, followed by the value of the first argument. In any case,
BRK will then print out the values of all other arguments passed
to it, and then will return to the top level evaluator.

CNT -- continue. Restarts the program from its state at the

occurrence of the last BRK. CNT flushes the stack down to the

last BRK block, but restores no atom bindings (thus, there should

be no open lambdas on the stack), and then continues operation.

CNT may be used after a user defined break point, or after a

CONTROL-H interrupt. If called with an argument, CNT returns the

value of that argument as the value of the last BRK.

TOP -- top level evaluator

BT -- backtrace. This is a diagnostic routine which has three

modes: 1) no arguments. BT will print out the name of every
function call on the stack. 2) two numeric arguments. BT will

print out everything on the stack from the beginning of the

(arg1th) function call and continuing for (arg2) function calls.
3) two addresses. BT will dump core between the two addresses,

interpreting everything between (i.e. pointers into list space
will be followed, and the corresponding lists will be printed
out).

LISP's internal representations for numbers and for addresses
are different; numbers are represented internally by odd integers
(N is represented by 2*N+1) while addresses are always divisible

by four. When communicating with LISP, the user should prefix all

addresses (for example, the arguments to BT in dump mode) with es
all other numbers will be assumed by LISP to be numbers. LISP
will also use this convention when outputting.

4.3 RUG

RUG is a symbolic debugger which replaces the DOS debugger
ODT. The command RUN RUG will cause RUG. to identify itself and

prompt with a "#", indicating that a file specification is
expected. Typing

PAGE 26

#FILE1

will cause RUG to take the following actions: 1) A search will be

initiated for FILE1.LST (keep in mind that FILE1 represents a

general file specification, which may include a UIC or device);

this file must be present, or RUG will give an error message and

prompt with another "#". 2) The symbol table in FILE1.LST will be

searched and the symbols found therein will be defined so that

they may be referenced by name during the debugging process. 3)

RUG will attempt to locate FILE1.MAP. If found, RUG will read the

relocation constants for FILE1 from it, which will be added to all

relocatable symbols in FILE1's symbol table (those which have an

"R" next to them in the symbol table portion of the listing file).

If no .MAP file is found, RUG will warn the user of this fact, and

then assume a relocation constant of zero. (Recall that the

relocation constant applies only to relocatable symbols; if FILE1

is an .ASECT with no .CSECT, then the relocation constant is never

used.) 4) A search will be made for FILE1.LDA, and if it is found

it will be loaded into core. If this file does not exist, RUG

will print an error message and another "#".

NOTE1: The file FILE1.LST must exist, but it need not be a full

listing file. If the following string is typed to MACRO when

assembling FILE1:

#DK1:,DK1:/NL<DK1:FILE1

then a listing file will be created consisting solely of a symbol

table for FILE1, which is enough to satisfy RUG.

NOTE2: If FILE1.MAP does not exist, a relocation- constant may

still be supplied to RUG by typing

#FILE1/RC:42642

NOTE3: If FILE1.LDA was obtained by linking together the

separately assembled modules FILE1.OBJ,FILE2.0BJ, and FILE3.OBJ,

the user may type

PAGE 27

#FILE1,FILE2,FILE3

and RUG will load FILE1.LDA, use FILE1.MAP for the three

relocation constants (one for each module), and read in all the

symbols from FILE1.LST, FILE2.LST, and FILE3.LST.

NOTE4: When RUG prints its "#", the user may type just a <CR>.

This will cause RUG to enter debugging mode without defining any

symbols or loading any user programs into core.

NOTES: RUG will allow the user to define approximately 680

symbols, and then will print the message "TOO MANY SYMBOLS --
THERE WERE N UNDEFINED SYMBOLS". Extra symbols will merely be

ignored by RUG.

NOTES: All symbols beginning with the letter "Z" and all symbols

whose value is less than 108 will not be defined by RUG. This

allows the user to have "garbage" symbols in his program which

will not occupy space in RUG's symbol table.

When RUG has completed the process of defining user symbols and

loading the user program, it will enter debugging mode and prompt

with a "*". At this point the user may execute any of the RUG

commands described below. Debugging mode may be entered at any

time by starting the processor at 24080 if there is a copy of RUG
in core.

4.31 Location Opening Commands

The following commands govern the opening and closing of core

locations.

foo/ opens location foo and closes currently open location

foo\ same as above, but opens foo in byte mode

/ when typed at an open location, opens the contents
of that location and closes the original location.

PAGE 28

^ closes the currently open location and opens the

previous location

<CR> closes the currently open location

<LF> same as <CR>, and additionally opens the next location

I same as /, but opens the left hand (source)

argument of the currently open location or of

the last location opened if none are open

I same as [, but opens the right hand (destination)

argument

undoes an indirection chain (of [,/, and I commands)

and opens the original open location.

When RUG opens a location, it types out the contents of that

location and then allows the user to change the contents by typing

something to be entered there. Anything the user types at an open

location which is not a RUG command and which makes sense to RUG

will be stored in the open location when it is next closed. If

the location is closed without anything being typed, its contents

will be unchanged. Note that only one location may be open at a

time.

4.32 Typeout Modes

RUG has a number of typeout modes which govern the way in

which the contents of a location being opened are to be

interpreted. Preceeding a typeout mode with one altmode (ESC)

will set that mode temporarily (so that it will only affect the

currently open location), while preceeding it with two altmodes

sets the mode permanently.. When RUG is started, it is in

instruction mode.

The typeout modes are:

PAGE 29

I - instruction mode

S - symbolic mode

C - constant (numeric) mode

A - ASCII mode

R - Radix58 mode

- decimal constant mode

4.33 Typein Modes

Regardless of the typeout mode, RUG will always allow

instructions, octal numbers, symbols, or expressions composed of

symbols, numbers and "+" and "-" signs to be typed in to any open

location. There are a number of special typein modes which are

available, however:

& - enters up to three radix58 characters

- enters one ASCII character

" - enters two ASCII characters

37. - enters the decimal number 37

4.34 Breakpoints

A breakpoint is a tagged instruction in a user program which,

when executed, causes control to return to RUG so that the state

of the program may be examined. The following RUG commands govern

the use of breakpoints:

SB sets a breakpoint at the current value of "." (the

location currently open, or the last location to

have been opened)

fooSB sets a breakpoint at foo

SD deletes all breakpoints

fooSDl deletes the breakpoint at foo

SG starts execution of the user program at the program's

PAGE 30

start address

fooSG starts execution of the user program at foo

SP proceeds with the execution of the user program. This

i's only valid after at least one breakpoint has

been encountered.

niP same as SP, but sets a proceed count of n for the

breakpoint being proceeded past. This count will

be decremented each time the breakpoint is

encountered, and RUG will not receive control

until the count has gone to zero, so that the

breakpoint will effectively be proceeded past.

n times.

SN single step. Executes one instruction from the user

program and then re-enters RUG.

nSN Executes n instructions in the user program.

In RUG the user is allowed to define 8 breakpoints, and when

a breakpoint is encountered RUG will type B3;F00/ INC R3, for

example, if breakpoint number three were set at FO0. The user

should note that the instruction at FOO (INC R3 in our example)

will not have been executed. Other messages RUG will type are SS-

when single stepping, MPV; for a memory protect violation

(attempt to reference non-existant memory or an odd boundary with

a word instruction), IOC; for an attempt to execute an illegal

opcode, and BE; for a bad entry into RUG caused by the user

program's executing a BPT instruction or setting bit 4 of the

processor status word. Including a BPT in the user program is

often a convenient way to assemble in a breakpoint.

4.35 Miscellaneous RUG Commands

n$T types out the contents of the next n locations on

the GE Terminet

PAGE 31

fooSE searches for words which reference effective address,

foo (such as the offset word in an index mode

instruction)

fooSW searches for words which contain foo

foo: when typed at an open location, causes the symbol

foo to be defined and equal to the address of

the open location

N!foo defines the symbol foo to be equal to N

foo^K half-kills foo, so that RUG will suppress its use

when doing typeout but will still accept it when

doing typein

A^ returns to the monitor

The following are some useful RUG locations:

.H -- highest core address

.B+n -- location of breakpoint number n (if not set, this

location will contain the symbol NOBKPT)

.C+n -- proceed count for breakpoint n, normally set

by doing mSP

.P -- RUG's program status word

.S -- user program's program status word

.M -- mask used for SE and SW searches, to be and'ed with

items being matched
.M+1 -- low core limit for searches

.M+2 -- high core limit for searches

Note on searches -- if a SE or SW search succeeds, i.t will type
the address at which it first succeeds. To continue the search,
type "I", and to terminate the search, type <CR>.

PAGE 32

4.4 VERIFY

Hardware problems are frequent on the 11/48 system, and often
are responsible for the corruption of the file structure on a
disk. VERIFY is a program which checks the file structure and
reports on any problems it finds. If there is any doubt about the
data -on a disk, or if the system begins to act strangely, VERIFY
should be run to ensure that the disk has not been clobbered. It
is wise always to run VERIFY before doing a disk copy, because a
bad file structure will be copied onto the backup disk, corrupting
it as well.

The sequence of commands is as follows:

SAS GE:,5
(place the Terminet on line)
$RUN VERIFY
WHICH DEVICE (SY,DK,DF,DC,DT)?
DK
UNIT NUMBER?
1
MODE (NORMAL, LIST, FIX, SEARCH, OR ALL)?
N

VERIFY will return to the monitor when it is done. There
should be no output. Any output by VERIFY indicates that the disk
has been corrupted; the output should be brought to Meyer
Billmers (ITS mail address: MAB) as soon as possible. 00 NOT
ATTEMPT TO DELETE FILES, OR OTHERWISE FIX THE PROBLEM YOURSELF,
UNLESS YOU SPECIFICALLY KNOW WHAT YOU ARE DOING. This may make
the situation worse and may cause unexpected loss of parts of the
disk.

4.5 LIST

LIST is a program for spooling listings onto the GE Terminet,
allowing the user to perform other tasks whi!e his listing is
being printed. Typing the command RUN LIST will cause a "#" to
appear. When a standard file specification has been entered, LIST

PAGE 33

will begin to print a two page identification header. When this

bigprint is finished, LIST will return control to the monitor, and

the user may RUN any other program he wishes, with a few

exceptions:

1) The user may not log out. 2) Typing control-C and then KI at

any running program will terminate LIST's output. If a control-C

is unintentionally typed, CO will return to the running program

without interrupting the listing in progress. (ITS is an

exception; control-C typed at it is the normal return to monitor

-- see section 2.2). 3) Control-D is normally used to return

control to the monitor from a running program, and it will not

interfere with a listing in progress. 4) The user may not attempt

to do output to the Terminet while a listing is in progress. 5)

The user is cautioned that running MACRO and attempting to produce

a large listing file may interfere with a listing in progress, but
specifying the /NL switch in the listing file position to MACRO is

always safe. 6) All other system programs will time share

normally with the lister, although RUG will temporarily allow the
definition .of fewer symbols.

4.6 USERS

The command RUN USERS will display the current authorized
user list for the 11/40 system, along with UIC's and ITS login
names for each user.

4.7 ABSLDR

ABSLDR is an absolute loader, used to load .BIN files from
paper tape. The tape should be mounted and the reader turned on
before the command RUN ABSLDR is issued.

PAGE 34

5. Picture Processing

Currently the mini-robot 11/41 has a Vidicon picture scanner/

digitizer as its only means of picture input. The Vidicon will

scan a picture 30 times a second, and can digitize as many as four

points on the same vertical sweep in 65 usec., making it possible

to digitize an entire picture in two seconds. In practice, a

somewhat slower rate is used.

5.1 VIDIN

VIDIN is a program used to take pictures from the Vidicon

scanner, digitize them, and store them as contiguous (random

access) files on disk. The calling sequence is

SRUN VIDIN

DEVICE NAME?

VC

ENTER DATASET SPECIFICATION

DKI: PICT.1

ENTER WINDOW COORDS

2,3,5,7
ENTER WINDOW COORDS

<CR>

ENTER HEADER INFO

THIS IS A PICTURE OF A CIRCUIT BOARD,

DAYLIGHT ILLUMINATION, TAKEN MAR 17

<CR>

OK, ALL DONE

S

The device name VC indicates that the Vidicon has been

selected as the input device, and PICT.1 is the desired name of

the picture. The window coordinates are the x,y coordinates of

the upper left hand sector of the picture to be taken (here: 2,3)

and the x,y coordinates of the lower r-ight hand sector of the

picture (5,71. This enables the user to speci.fy a rectangular

PAGE 35

picture he wishes taken, from 1 to 64 sectors in area. Each
sector is 64x64 points on the screen and requires 8 disk blocks of

storage. The screen is 8 sectors on a side, and sector 0,8 is in
the lower left hand corner. Each set of coordinates given to
VIDIN will be scanned once, but the picture will not be taken
until a line with only a <CR> is typed, so that one may see which
sections of the picture will be taken, and be able to change one's
mind before "clicking the shutter". The header info is an ASCII
string used to identify and comment the picture. It too is
terminated by a line with only a <CR>.

5.2 PROFIL

PROFIL is a program intended to be used before VIDIN to
obtain information about the picture on the monitor. If 11/40
switch register bit 13 is a 1, PROFIL will print a grid of VIDIN
sectors. Otherwise, PROFIL will allow the user to select a cross
section of the picture, and it will display on the monitor such
information as an intensity plot of the points on the cross
section, or a histogram.or cumulative histogram of the intensities
on the cross section. PROFIL is useful in setting the black and
white level adjustments in the Vidicon digitizer, and for deciding
which sectors of the picture to take with VIDIN. PROFIL explains
its options when it is started.

5.3 MAPPER

MAPPER is a program for inspection of the picture files taken
by VIDIN, In MAPPER one can select a specific sector of a picture
file, obtain statistics about that sector (such as maximum and
minimum intensities, average intensity and standard deviation of
the intensity distribution), obtain a histogram of the intensity
values for a sector or a single x or y value of a sector, .and then
make a map of the sector. The maps are made by assigning ASCII
characters to each of ten specific intensity ranges, and can be
printed on either the GT40 or the Terminet. When MAPPER is
started it lists the available commands, and many of the commands
offer instructions in their use. A detailed description of MAPPER

PAGE 36

is available on ITS as DHT;MAPPER INFO.

PAGE 37

S. The Devices

In addition to the Vidicon, the 11/48 system has two other

devices for which software exists: an x-y table and an Analogic

A/D and 0/A converter which drives all the other devices (e.g. the

mechanical arm, the mirror deflection system, and the modulatable

laser).

6.1 The Analogic Converter

Two system macros exist for use with the Analogic converter.

These are .A20 and .02A. To define these macros in your program,

the assembler directive is

.MCALL .02A,.A2D

These macros will now
program they will

digital-to-analog and

two arguements:

be defined, and when called in a user

expand into code necessary to do
analog-to-digital conversions. .D2A takes

.D2A CHNUM,VALUE

where CHNUM is some variable which contains the channel number
(from 8 to 7), and VALUE is a variable which contains the number
to be converted. The contents of VALUE may range from 3777 (which
will produce nearly +18VDC on the desired channel) to -4888
(-18VDC). This macro requires approximately S usec. delay time
for the conversion.

.A2D takes two arguments:

.A2D CHNUM,VALUE

and it will convert the

variable CHNUM, and will

complete (this takes about

the variable VALUE.

voltage on the channel contained

do a busy wait until the conversion

3 usec.) The converted value is left

PAGE 38

6.2 The X-Y Table

The assembler directive

.MCALL .TABLE

will define a macro called .TABLE which, when called, expands into

a set of subroutines for moving the x-y table. These routines are

called using the convention JSR PC,SUBR. The table subroutines

are:

CALTBL calibrates the x-y table and leaves it in position

(8,0)

VELTBL sets up the velocity for the next table movement.

RB should contain the velocity for x and R1 should

contain the velocity for y

ABSTBL moves the table to the absolute location (x,y),

where x is contained in R8 and y is contained in RI

RELTBL causes the table to move relative to its current

location. The x and y in Rb and R1 respectively

are taken as offsets for the relative motion

and are preserved so that successive calls of

RELTBL will reference them.

Note: neither ABSTBL nor RELTBL wait for the table to finish

moving. Neither should be called if there is a chance that

the table is in motion without first calling WTTBL.

WTTBL waits for the table's motion to finish. WTTBL will

take a skip return if the table motion completes

normally (without running into a limit stop). If

a limit stop is encountered, WTTBL will take a

non-skip return. Thus:

PAGE 39

JSR PC,WTTBL
(error return)
(normal return)

WHRTBL returns the table's x position in RO and its y
position in R1.

NOTE: These macros will protect the user from moving the table to
a negative position; motion will stop at zero, and the table will
not have been decalibrated. Similarly, attempting to move the
table too far forward in either x or y will result in a cessation
of the table's motion without running into the physical limit
stops or decalibrating the table. WTTBL will take the error
return whenever such a premature stoppage occurs. Note also that
all coordinates kept by the .TABLE routines are relative to the
calibration point, and thus CALTBL always should be the first
routine called.

PAGE 40

7. Miscellany

7.1 System Bugs

There is a known bug in LINK. If a .MAP file is being
produced, the name of the file must be specified, even if it is
the same as the input file. Doing #DK1:,DK1:<DK1:FILE/E will not

only fail to produce FILE.MAP, but it will also destroy a randomly
selected portion of the disk.

7.2 SUPERD

Do you have a file you can't delete with PIP? You say you've
tried unlocking it (#FILE.EXT/UN) and you still can't get it out

of your life? Try SUPERD, the super-deleter. Due to some unclear

hardware/software problems, EDIT and MACRO will occasionally

produce files which cannot be deleted with PIP even after being

unlocked. This seems to be especially true of the EDITor after it

mysteriously dies. SUPERD takes one file name (it must be on the

directory of the person logged in) and hopefully will delete even

these stubborn cases. If it fails to work, leave some mail on ITS

for MAB. It's probably wise to do a VERIFY after using SUPERD,

especially if it fails to work.

PAGE 41

APPENDIX 1

GETTING ON THE 11/48

1. If necessary, turn the power on. Place the RUN/LOAD switch of

the uppermost disk drive into the RUN position. Wait for all

three lights to come on.

2. Ensure that the WT PROT light is off on that drive.

3. Place the HALT/ENABLE switch on the PDP 11/48 processor into

the ENABLE position, and press CONTINUE.

4. Repeat step 3 on the POP 11/85 processor (under the GT40

scope).

5. If a square cursor appears on the scope, the GT40 is in a

happy state. If not, press HALT on the 11/85, place 400 in the

11/85 switch register, press LOAD ADDRESS, raise the HALT/ENABLE

switch to ENABLE, and press start. This should produce a square

cursor on the GT40. If it fails to do so, go to step BA. If the

cursor does appear, go to step 6.

5A. Press HALT on the 1185 processor, place 16688008 in the 11/85

switch register, press LOAD ADDRESS, raise the HALT/ENABLE switch

to ENABLE, and press START. Turn the brightness all the way up.

6. Type a <CR> on the GT40 keyboard. A "S" should appear. If

not, press control-c and then KI. If still no "S" appears, go to

step 7. Otherwise, go to step 8.

7. To bootstrap DOS, HALT the 11/48 processor. Place 173178 in

the switch register, and press LOAD ADDRESS. Move the HALT/ENABLE

switch to ENABLE, and press START. The mini-robot group message

and a "S" should appear on the GT48.

8. If you failed to get a cursor in step 6, set the switch
register on the 11/85 to zero, and type the following:

PAGE 42

SRUN GTLOAD <CR>

#DISP.BIN[3,3] <CR>

and a "S" and a cursor should appear presently. The above should

be typed in upper case letters, and for this shifting will be

necessary. Further, the 11/85 processor must first have been

started as in step 5.

9. If you have still failed to raise the system correctly, find

someone who knows how!!

PAGE 43

APPENDIX 2

INDEX TO PROGRAMS

NAME PAGE AUTHOR

.A2D 37 M. BILLMERS

ABSLDR 33 M. BILLMERS

BACKUP 9 M. BILLMERS

COPY 8 M. BILLMERS

.D02A 37 M. BILLMERS

DISP 16 R. WATERS

DISPLD 18 M. BILLMERS

EDIT 19 DEC, M. BILLMERS

GTLOAD 12 M. BILLMERS, R. WATERS

GTMAC 13 R. WATERS

GTROS 15 R. WATERS

ITS 9 M. BILLMERS

LISP 19 R. WATERS, M. BILLMERS

LIST 32 M. BILLMERS

MAPPER 35 0. TAENZER

PROFIL 35 B.K.P. HORN

PUNCH 11 M. BILLMERS

RECEIV 10 M. BILLMERS

RESTOR 18 M. BILLMERS

RUG 25 M. BILLMERS et.al.

SEND 9 M. BILLMERS

SUPERD 40 M. BILLMERS

.TABLE 38 M. BILLMERS
USERS 33 M. BILLMERS

VIDIN 34 G. DRESCHER

VERIFY 32 DEC

