
WORKING PAPER 58

FUNCTIONS AND FRAMES

IN THE LEARNING OF STRUCTURES

by

MICHAEL J. FREILING

Massachusetts Institute of Technology

Artificial Intelligence Laboratory

December 1973

Abstract

This paper discusses methods for enhancing the learning abilities of
the Winston program, first by representing functional properties of the
objects considered, and secondly by embedding individual models in a
hierarchically organized system to provide for economy of recognition. An
example is presented illustrating the use of these methods.

Work reported herein was conducted at the Artificial Intelligence
Laboratory, a Massachusetts Institute of Technology research program
supported in part by the Advance Research Projects Agency of the
Department of Defense and monitored by the office of Naval Research under
Contract Number N88814-78-A-8362-8085.

Working Papers are informal papers intended for internal use.

page 2

Table of Contents

1. Introduction p.3

2. Function p.7

2.1 Motion p.P11

2.1.1 General Motion Primitives p.13

2.2 Holes p.17

2.2.1 Hole Types p.18

2.3 A Formalism For Function p.21

2.4 Use of functional representation p.24

3. A Hierarchical ly Structured Knowledge System p.29

3.1 The Individual Test-Frame p.34

3.2 Utilizing the Test-Frame Structure p.38

3.3 Constructing and Debugging p.42

3.3.1 Local Debugging Rules p.43

3.3.2 General Debugging Techniques p.49.

3.4 An Example p. 5 8

4. Grouping p.58

5. Conclusions p.63

References p.64

page 3

1. Introduction

The structural description learning program of Pat Winston <6> achieved

great progress in answering questions concerning possible mechanisms for

acquiring the ability to categorize and compare objects. His program was

capable of building general descriptions of classes of objects,

understanding differences between descriptions to the extent that it

could solve simple analogy problems, and in some cases dividing a scene

into component structures. The limitations of his work however, raise a

number of other interesting questions.

First of all, his program described objects only in terms of their

structure. Such one-sided description has inherent limitations in that

(a) It does not provide for recognition of objects on the basis of
less concrete criteria, say the uses to which they may be put.

(b) It does not permit generalization to deal with classes which may
be different structurallu but similar in other respects. For
example, the class of possible supports for a television set
includes tables and shelves, which share little in the way of common
structural properties.

(c) In many practical problems, it is of great advantage to have
many ways of describing a particular object. Limitation to one
specific mode of description severelu restricts the class of
problems which may be tackled.

These limitations suggest that we search for other ways to describe

objects aside from pure structural form, and attempt to understand the

relationships between different ways of describing objects. The richness.

of such interrelationships. should provide us with useful waue to

page 4

accelerate our ability to understand the objects, as well as greatly

expand our ability to use such descriptions effectively.

Secondly, while Winston's program was quite capable of understanding

the differences between particular items or classes of items in a given

domain, the descriptions were not organized in a systematic fashion

capable of -representing any structure inherent in the domain. For

instance, there is no provision for economically representing subclasses

of given structures. Understanding the structure of a domain should

enable us to

(a) classify items much more easily,

(b) propose more refined theories about the structure of the domain,

(c) provide valuable ideas on the nature of learning since much of
learning and problem solving is concerned with exploring and
comprehending the inherent structure of general classes of "problem
spaces" <4>.

This paper represents a collection of ideas and proposals aimed at

providing first steps in overcoming both these limitations. It should be

stressed that most if not all of the ideas are tentative and in a state

of flux. They are not meant to be as yet a complete or consistent theory

of general types of representation or learning of structures of various

domains.

The particular domain I have chosen to discuss is a slight extension

of Winston's domain--that of structures built from blocks. The ideas of

functional description which will be elaborated are of course, very

specific to the blocks world domain, though it is reasonable to expect

that in some modified form they will have applicability to the problem of

page 5

recognizing real physical objects. The ideas of structuring a

recognition system, however, are far less domain-dependent, and should

find application in almost any recognition scheme.

With respect to the problem of representing aspects of objects other

than form, it seems appropriate to make an attempt at describing objects

on the basis of their function. There are several reasons for thist

(a) It may be possible to construct simple representations of the
functions of objects in the blocks world in terms of simple concepts
of motion and areas of unoccupied space.

(b) Many structures in the blocks world have real-world counterparts
which are classified in actuality on the basis of function. An arch
is principally something we can pass through. A table is
principally a structure we can put things on.

(c) There are many relationships between the form and function of
objects. Since the possible functions of a class of objects are
generally much simpler to enumerate (assuming we have the proper
tools!) than the possible structures, functional description enjoys
the advantages of more concise forms of representation with a
corresponding increase in our ability to manipulate overall
descriptions of objects.

As far as the problem of organizing descriptions is concerned I am

proposing a system constructed on the lines of general vision frame

systems discussed by Minsky <3>. Such systems have several advantages.

They have a well defined inherent structure, they provide for economic

representation of information, they are relatively easy to patch local l,

and they are simple to construct in a step-bu-step fashion. Furthermore,

frame-like systems posess a generality which makes them applicable to

many domains.

It should be mentioned here that I have felt it desirable as a first

step to divorce this work from problems of vision or sense.

page 6

Consequently, It is assumed that all structures presented are described

in a "God's eye" view, that is, such descriptions are complete in the

sense that nothing is obscure or hidden from the viewer, and that the

descriptions contain no information which is applicable only to a

specific viewing position. In addition, the descriptions are assumed to

contain complete information about the attachment of blocks to each

other. Such data could be gathered by a machine which attempts to move

different parts of a scene it is viewing. It is hoped that these

simplifications will provide a basis for fuller understanding of the

relationships explored, which understanding may later, perhaps, be

applied to aid in the solution of vision and sense problems.

For the reader who desires merely an overview of the work described,

it is suggested that the example of section 3.4 be perused and the first

sections of chapters 2 and 3 be read.

page 7

2. Function

When we classify objects in everuday life, we generally do so on the

basis of their function. When one sits down at a desk, for instance, one

is not usually concerned with the shape of its legs, or the number of

drawers, but more directlu with the fact that it has a flat surface to

write upon. When looking for a hammer one doesn't care if the handle is

round or square or octagonal, or if one side of the head i.e a claw or a

ball. What we want to know is, is one side of the head flat enough that

we may use it to drive a nail, and is the handle long enough to provide

sufficient leverage? If one were to worra, about classifying the hammer

doun to the last irrelevant detail, one would waste inordinate amounts of

time doing such calculations. Rather, it makes more sense to concentrate

on those specific properties which are especially pertinent to the

desired function. Classification of an object by its functional features

provides us with a computationally useful. tool for quickly finding the

objects we desire.

For this same reason, it seems quite desirable that anu computer

program to deal with classification of objects on a more than trivial

levl1 should be capable of providing representation of a class of objects

by their function, or by the specific properties directly relevant to

their function. This is not to say that detailed structural descriptions

are not desirable, but that functional representations will generallu

expedite computation, even in cases where we may later desire to examine

page 8

the detailed description.

Consider for example the problem of finding all instances of an arch

in figures 2.1 and 2.2. When working on 2.1, Winston's program first

groups the three basic arches (i.e. those whose support consists only of

a single block) and then groups each bottom arch with a support (E with

ABC and F with GHI) to form a fourth "generalized arch," since any

arbitrary structure may be a support for the arch. Following this logic,

there are 15 possible matches for arches in figure 2.2, which one might

expect the Winston program to produce. Although such fine distinction

may be necessary in a particular puzzle domain ("Find an arch in this

scene such that the number of blocks in the arch is one less than the

number of blocks in the scene which are not in the arch."), and even

desirable to be able to make, one would certainly balk at the prospect of

carrying around descriptions of 15 different arches every time one

encountered this configuration in some larger scene. In any application

where one plans to utilize the arch for some purpose, one would expect to

be almost exclusively interested in the arch containing all blocks in the

scene. Especially so in a domain of constructed objects, where one might

expect all the blocks in 2.2 to be attached to each other, thus rendering

it impossible to physically isolate any of the other arches. (Consider

the prospect of having to find all arches in a brick wall!)

As a step towards resolving these problems, I would like to propose a

scheme for representing block structures on the basis of properties

closely related to their function. This scheme will rely principally on

the ideas of motion and holes in achieving its goal. The next section

F- ;. 1

F;g.a~L

page 9

will discuss my ideas on motion and after that I will say a little about

holes. In the third section a formalism for representing function will

be discussed, and finally, the possible use of such descriptions in a

learning program.

Before that however, let us speculate about a possible solution to the

arch problem mentioned above. A loose functional definition of an arch

might be "something one can walk through." Although this is not

sufficient to define our arch (one can walk through Building 10, for

instance), if we couple it with some model of an arch, we can immediately

discover the essential property of the arch. That is, the two supports

do not touch. We might use this information to model an arch

functionally as a hole surrounded on three sides, representing the hole

as a block of air. Applying this to 2.2, we would find one hole and

thus, only one arch need be considered when using functional criteria.

This last qualification is important, because it is conceiveable that in

some cases we would prefer to invoke a more form-oriented arch finder.

However, the speed and simplicity with which the function-oriented

representation may be used recommends it as a strong heuristic. Applying

our function-oriented representation to figure 2.1, we encounter a

slightly different problem. The two holes corresponding to arches A-B-C

and G-H-I may be found easily. The central hole, however, might be

considered slightly ambiguous. If we are choosing to represent holes as

blocks of air, we see that the central hole may be represented either as

one T-shaped block or as one brick of air "lying" atop another brick of

air. Consideration of the former would yield the generalized arch while

page 18

consideration of the latter will ield arch D-E-F surrounding hole alpha

(figure 2.3). Beta will not have a corresponding arch because it is not

"covered" by a solid object. There may be some question about uhether we

should consider D-E-F to be functionallu an arch or not. As will be

discussed later, this will ultimately depend on other functional criteria

such as whether there is attachment between E and A and/or between F and

G.

page 11

2.1 Motion

In the domain of objects constructed out of blocks, most of the

functions one considers seem to be contingent upon the idea of motion or

the restriction of motion. The hole is the principal part of the arch

because it enables the arch to achieve its function, i.e. one's ability

to move through it. The concept of support, or potential support, which

may be considered the function of objects like a pedestal or table, may

be simply defined as the restriction of motion in a downward direction.

A wall may be considered as a structure which prevents one from

proceeding in a given direction unless a detour of some sort is taken.

It seems clear that if we are going to deal with such functions in a

program, we should have a set of primitive concepts with respect to

motion available for use. This section will consider a set (which is by

no means to be thought of as complete) of such primitives as a basis for

the study of functional representation.

The motion we will initially be primarily concerned with will be

motion in a straight line, or a sequence of straight lines. We will

probably want to consider the motion of three types of objects: (a) that

of a bird, which may move in any direction; (b) that of a ball, whose

motion must have no purely upward components; and (c) that of a creature

with legs, for whom the vertical components (e.g. climbing a staircase)

must be suitably small.

It should be noted here, that this definition of "suitably small" is

/ I

G,/

lz -- - - - - - - - -- --- /
/

I 1/

23

/

/

Fi-

/
/ I

/

/1- -
1 ----- ~7;

0(

C -· - - -1- - - - - - - -

It
I

L

page 12

of necessity rather vague. There will be many other similarly relative

concepts mentioned later, in conjunction with ideas about containment,

windows, doors, etc. At the present there does not seem to be a general,

systematic method for handling these concepts adequitely. The fuzzy

logic work of Lakoff <2> and Goguen <1> is not very satisfactory. What

is more desirable for our limited application is a set of very simple

rules for determining a threshhold condition with respect to a given

context. Fuzzy Logic work generally tends to be quite complicated and

ignore the importance of context. For the time being, I intend to use

simple ad hoc and perhaps slightly arbitrary conditions, e.g.

"Sufficiently small vertical components with respect *to a moving object

will be less than one fourth the height of the object." Since the moving

object is hypothetical, (and thus imaginary) its dimensions will be

determined from the structure under consideration, i.e., it must be small

enough to get through the doors.

One can see that these semi-quantitative concepts like "sufficiently

small", as well as the proposed representation of holes as blocks of air

(see section 2.2), will require descriptions at some level to be more

quantitative in terms of dimension than the purely qualitative relations

handled by the Winston program. In a hierarchically organized knowledge

system (see chapter 3) these should naturally be placed at the lowest

(i.e. most specific) frame level and invisible at any higher level,

where the concepts of relative size and position may be introduced. The

information will then be available for access, but need not clutter up

higher level comparisons. Furthermore, such specific information need

page 13

only be present in a specific scene being viewed. - It can be completely

eliminated from most models the system will choose to keep around for a

while.

It should be realized that the descriptions of motion and holes in

the next sections are not intended to be the basis of a general theory of

motion or space. Rather, they should be viewed as gross simplifications

of complicated concepts which are intended to permit easy description of

more abstract relations. Their chief feature is a large amount of

expressive power at a low level of complexity.

2.1.1 General Motion Primitives

The general primitives I wish to consider deal specifically with

the relationship of a (potentially) moving object with respect to its

environment. Basically, they are:

OBSTRUCTION -- A rolling object will be considered obstructed in a
specific direction (perpendicular to the vertical) if it meets an
obstacle on. traveling in that direction and must make a suitably
long detour (say greater than or equal to the distance already
traveled) before it can continue in that direction. Thus
obstruction is a function of the length of the obstructing object
and its position relative to the moving object.

In figure 2.4(a), the moving object is obstructed to the "east"
because in order to move east it will be forced to move north from
X1 to X2 or south from X1 to X3, a distance greater than it traveled
from X8 to X1 in the easterly direction. In figure (b) the object
is not obstructed because the detour is relatively short. In
figures (c) and (d) we would consider the object obstructed if the
perpendicular component of the total path traveled becomes greater
than the component in the desired direction. In the case of
backward motion (e) in either of the two directions, th.is may be

page 14

simply subtracted from the forward component, since one can
generally trace an alternative path which does not contain the
components backtracked over. As with all the motion primitives, it
will be useful to add the qualifier RELATIVELY when an object
contains sufficiently sparse (say no more than one fifth the total
length) holes which permit the desired motion, but would represent
an obstruction if these holes were blocked. (This is to be seen as
a tentative answer to the "window" problem where, topologically
speaking, a building with an open window does not enclose anything.)

COVERING -- An object will be considered covered if in traveling
upwards, the resultant of motions perpendicular to the upward
directions ever becomes greater than the upward component of the
motion. As with obstruction, backtracking is subtractive, and there
is an analogous notion of relatively covered.

SUPPORT -- It is of interest that the existence of gravity dictates that
the concept of support be not quite analogous to that of covering.
First of all we assume that an object cannot be at rest unless it is
supported by another object or group of objects which are at rest.
The actual definition of support, however, is likely to give us some
trouble. We could define support in such a way that an object is
supported by all the objects in contact with its bottom. But this
ignores the question of what would happen if we wanted to remove
some of the objects beneath the supported one. A simple defintion
of support is that an object is supported by any set of points such
that one cannot pass a vertical plane through the center of gravity
of the object which places all members of the set on one side. Such
a definition at first glance may seem computationally messy, but
these are several alleviating factors. For one we will be dealing
with blocks, and in general the supports will be surfaces rather
than points. Any points which do appear will of necessity arise
from pyramid type objects which prevent their being placed
arbitrarily close. In any case, the rule used to determine if an
object is supported will not affect the use of the support predicate
in higher level computation.

Another concept which is potentially useful is that of SAFE
SUPPORT. An object is safely supported if it cannot be rolled to a
position where it will drop vertically, i.e. there are no points
under it directly in contact with its surface. Since a relatively
safe support would not really be very safe, there doesn't seem to be
much use for it.

SURROUNDED -- We say an object is surrounded if (a) it is safely
supported and (b) it is obstructed in all horizontal directions. In
other words, if it were a ball, its motion would be restricted to a
fixed horizontal surface. The concept relatively surrounded refers
to the relative obstruction in all directions.

(0-)
(b)

(

(e)

C

F 1ý a

(C

~

CC)

I

i~I/

Ir9·.

FIG. J7.

(b)

page 15

CONTAINED -- an object is contained if its movement (in any direction)
is restricted to a fixed subspace of the world space. We may make
boundary conditions explicit by considering the "world" we observe
as a fixed 3 dimensional rectangle with clear walls. All things
will be considered contained in the world (unlike Columbus, we do
not have to face the prospect of falling off the edge). An object
will be considered relatively contained in the usual manner, as long
as it is safely supported.

ATTACHMENT -- Objects which are not attached to each other may move
independently. There are two types of attachment I feel should be
considered -- face attachment and edge attachment. If a face (or
suitable subregion thereof) is attached to to the face of another
object, the two objects are essentially one object in that they must
move together. If an edge of an object is attached to some other
object, the former object is said to be edge attached and is free to
pivot about that edge with respect to the other object. This will
enable us to deal with items such as doors and gates in a structure.
We will ignore tolerance problems in door jambs. For example in
figure 2.5 (a) if the marked edge is attached as indicated, we will
assume the block A may move freely to the position indicated in
2.5(b), provided, of course, it is not obstructed as in (c).

Using these concepts we can provide simple definitions for many

common block structures. A box (figure 2.6) is any structure capable of

surrounding an object. A canopy (figure 2.7) is any structure capable of

covering an object. A door (figure 2.5) is a block which is edge

attached to an arch such that in one possible position, the arch and door

form a wall. A wall is any group of objects which obstruct motion in

some direction for a moving object sufficiently close. Addition of the

word "group" is important because otherwise, any object could serve as a

wall for a near enough object.

It seems evident that in a system using both functional and

structural definitions, we must be careful not to confuse them.

Hierarchies formed on the basis of function may differ greatly in their

organization from those formed on the basis of structure. Functionally,

page 16

a table may serve as a pedestal and vice versa, although they differ

structurally. Despite the fact that functional criteria may prove a

valuable aid in choosing candidates for a class, we will not in general

wish to define classes solely in terms of function.

page 17

2.2 Holes

Since an object may only move through space which is unoccupied, it

Is a logical step to desire that freedom and restriction of movement be

represented in terms of unoccupied space or holes. In general, holes are

not an easy thing to represent. Bob Moore's statement "Holes are the

complements of simple objects, and the complements of simple objects are

not in general simple" seems to shed some light on the fact. The contour

of free space in a given room at a given time may be exceedingly complex.

However, for the purposes considered here, it should not be necessary to

worry about such complicated questions. Basically, it would be desirable

if our representation of holes did not differ too greatly from our

representation of the other items in our world. This suggests that we

consider holes as composed of blocks of free (or as we shall see later,

potentiallg free) space, generally rectangular in shap6. Such a

representation also seems advantageous for other reasons. Dividing the

free space up into blocks will also give us clues as to which parts of a

structure should be grouped together. But perhaps most important, the

primitives relating to motion which were discussed in the previous

section lend themselves readily to analogy with holes.

It seems advantageous to define holes with respect to a given

structure or group of structures. Thus asho~le may in part consist of

solid objects not attached to the given structure. The reason for this

is that any unattached object may be moved independently of the given

structure. Suppose we have a box with a block in it (figure 2.8), and

FK Q t. 8
(Ca)

F,.. a 9 F . . 10

hot
o tfo-Ck Q-

page 18

we move the block to a different position in the box. We do not want to

be forced to consider these situations as representing two different

holes, so we choose to include the unattached block within the hole which

describes the interior of the box. Besides making our task simpler,

however, this scheme should give us a certain power in altering

descriptions. For instance, suppose we have a ring of blocks surrounding

an object (figure 2.9), all of which are attached except one. Then with

respect to the rest of the structure that block represents a hole (albeit

a hole which has been temporarily filled) and the presence of that block

is not essential. If we are interested in forming an entrance to the

area surrounded by the blocks, we know that all we need do is push the

block out and we have our hole. (In a sense we will get this information

for free if the unattached block is already considered as a hole relative

to the attached ring.)

2.2.1 Hole Types

Rectangular holes may be classified according to the number of sides

on which they are bounded. Conveniently the number of bounding sides

coincides with the general purpose of such a hole.

Passages (ramps) -- Passages are holes which are bounded by three edges,
one parallel to the ground and two which are vertical and parallel,
above the horizontal edge. The key function of a passage is that it
limits non-flying objects to motion along only one line. Though
hard to visualize as holes, they are useful in understanding the
functions of roads and bridges.

page 19

Ports-- A port is a space bounded by four edges, all perpendicular to a
given plane. They are similar to passages, in that they restrict
motion to a line. A port may be long, e.g. a tunnel; or short, e.g.
an arch and its supporting surface. Generally, their purpose is to
provide for motion from one region to another. Unlike passages
ports restrict the motion of any object.

Niches--A niche is a space bounded by five edges, the lowest: of which
must be parallel to the ground. Niches generally provide pldaces for
objects to rest or be contained. Boxes (figure 2.6) and wall
indentations are both examples of nichesi: Any niche supports an
object, while a niche with onlu one edge parallel to the ground will
safely support any object inside.

Rooms--Rooms (for want of a better word) are considered to be areas of
space bounded on all sides--i.e. completely enclosed. They
represent the idea of containment.

It should be mentioned that the edges bounding holes do not have to

be solid. They may contain reasonably small (say not more than one sixth

total surface area) holes, with the general provision that the floor be

solid. For example (figure 2.10), a box with a port in one side is still

considered a niche, or a tunnel with a window would still be considered a

tunnel. Thus most of the motion concepts to which holes correspond are

the "relative" counterparts of those concepts.

It is interesting to note that some of the motion concepts discussed

in the previous section have direct representation In terms of holes..

The notion of constraint to one direction of motion and safe support may

be achieved by either a port or a passage. The notion of surrounded may

be directly represented by a niche with only one edge parallel to the

ground. The notion of containment translates directly into a room. More

specific examples of the transition from function to representation will

be provided in section 2.4.

It must be mentioned that for the sake of simplicity, some perfectly

page 28

natural conditions have been neglected. Consider for example a room with

a sunken area in the middle. One would like to consider this still to be

a room, but it might conflict with the notion of containment since

containment implies safe support, and a large enough niche in the center

might cause us to consider an object in this particular room not safely

supported. The bug here is probably with our notion of "safe-support."

We probably want to permit "sufficiently small" drops. This would allow

us the liberty of considering structures like staircases to provide safe

support. For the time being, such fine points will be left open.

page 21

2.3 A Formalism For Function

Any system which plans to provide some representation for function

must also provide a formalism for such representation. The preliminary

formalism I will describe is exceedingly simple (no doubt reflecting the

simplicity of the domain) but some aspects suggest generalization to more

complicated areas. Syntactically, ?X will represent a pattern match which

binds X to any item occurring in that positon, much like the pattern

matching rules of Planner or Conniver. The symbol "S" will represent

"self", i.e. "S" is considered a reference to the object whose function

we are describing. For example, (SUPPORTS S X) indicates that the object

we are describing supports an object named X. Our formalism basically

consists of a predicate, POSSIBLE, the logical connectives AND, OR, NOT,

and CHOICE, which corresponds to exclusive or, e.g.

(CHOICE (HAVE ?X CAKE) (EAT ?X CAKE))

and some functions and predicates (IN ?X ?Y), (IS ?X ?Y) <true if X is a

member of class Y>, (SUITABLE-OBJECT ?X ?MODE), and PASS, SURROUNDED-BY,

SUPPORTED-BY, CONTAINED-IN, OBSTRUCTED-BY, and COVERED-BY.

(IN ?X ?Y) returns T if X is located in some hole which is part of

the description of structure Y. (SUITABLE-OBJECT ?X ?MODE) generates.a

structure representing a movable object whose size is reasonable with

respect to structure X. MODE is optional. Where specified, it refers to

FLY, WALK, or ROLL depending on which motion abilities we desire the

generated objects to posess. The others are all predicates of the form

(PREDICATE ?X ?Y ?MODIFICATIONS) where the possibilities for

page 22

MODIFICATIONS vary with the predicate. For COVERED-BY, SURROUNDED-BY and

CONTAINED-IN, MODIFICATIONS may be RELATIVELY or NIL. For SUPPORTED-BY

it may be SAFELY or NIL. For OBSTRUCTED-BY, MODIFICATIONS is a list of

the form (DIRECTION, M002) where DIRECTION represents a direction and

MOD2 represents RELATIVELY or NIL. For PASS, MODIFICATIONS may be ON or

THRU or BETWEEN. ON may apply only to passages, THRU applies to holes

in general and BETWEEN to a list of two objects.

POSSIBLE is a general predicate which operates on the motion

primitives. It asserts that there is currently no condition which

prevents the relation on which it operates from taking place. If it can

make the predicate true it returns T, otherwise NIL. CHOICE is a

predicate operating on a list (L1 L2LN) of predicates, and can best

be understood in terms of a predicate CAN-MAKE (similar to Planner's

THGOAL) which succeeds if it proves its argument can be realized through

limited manipulation of the structures involved. (CHOICE L1 L2 . . . LN)

is equivalent to:

(AND (CAN-MAKE L1)
(CAN-MAKE L2)

(CAN-MAKE LN)
(NOT (CAN-MAKE (AND L1 (OR L2LN))))

(NOT (CAN-MAKE (AND LN (OR LiLN-1)))))

page 23

Examples:

ARCH

(POSSIBLE (PASS (SUITABLE-OBJECT S WALK) PORT1 THRU)

DOOR

(CHOICE
(POSSIBLE (PASS (SUITABLE-OBJECT S WALK) (B1 B2) BETWEEN))
(NOT POSSIBLE (PASS (SUITABLE-OBJECT S WALK) (B1 B2) BETWEEN)

ROAD

(AND
(POSSIBLE (PASS (SUITABLE-OBJECT S WALK) S ON))
'(POSSIBLE (SUPPORTED-BY (SUITABLE-OBJECT S WALK) S SAFELY)

pORT j /

I
' i

SPO!T3 / /

/I / /
/ I/ /

I I / // ,/ I I i

1 // ~/1

/ //

1 po _ _ _ _

/ I
-- I-

po RTI
Cc LI'

/po RT
/ k

F'3, a.11

(o~)

r

(6))

I

page 24

2.4 Use of functional representation

Assuming we have a program which takes a structure and interprets it

in such a way as to discover all the pertinent holes, we may use the

holes and other information to construct a list of possible functions for

the structure. Let us look for example at a table (figure 2.11(a)). -Our

hole finder will find the four ports shown in (b) and.produce a

description like (c). Furthermore the large square area of the top

suggests that it will support something. Consequently the list of

possible functions will be:

(POSSIBLE (PASS (SUITABLE-OBJECT S) PORT1 THRU))
o " " PORT2 "

Ii" " " PORT3
" " " PORT4 "

(POSSIBLE (SUPPORTED-BY (SUITABLE-OBJECT S ROLL) TOP1))
(POSSIBLE (COVERED-BY (SUITABLE-OBJECT S FLY) TOP1))

If we are now searching this structure for a table, and the functional

representation of table is

(POSSIBLE (SUPPORTED-BY (SUITABLE-OBJECT S) T4)

where T4 points to the table top in an internal description of the table,

we immediately have an anchor with which to begin our comparison with the

table description. Winston's program would have to search the entire

description before deciding to link the two table tops. Furthermore, If

we were looking for a house in figure 2.11(a), and assuming the house

had a functional representation

(POSSIBLE (CONTAINED-IN (SUITABLE-OBJECT $) R1 RELATIVELY))

RQI ,LA PA RT

T HAS - PA RjZ'

2E

Fi± 5.AI (c)

page 25

we would see that this does not occur in the description and would not

even have to bother trying to match the two descriptions. It is

interesting to note that if we are actually looking for a pedestal (which

will have essentially the same functional description as a table) we will

succeed on the functional description but then end up with a bad match.

But we haven't lost entirely, because the machine has discovered an

important thing. While not strictly speaking a pedestal, the object of

figure 2.11(a) may be used for a pedestal if one is needed and none are

around. If at some later point the machine wishes to build something,

this information may prove invaluable. Consequently, we see that certain

advantages will accrue from keeping our knowledge of functional

properties separate (in some sense) from our knowledge of structural

form. This will be discussed more completely in the next chapter on the

general hierarchical system which will be the backbone of the program.

Although I do not propose presently to deal with the problems of planning

and constructing structures, such would be a logical and perhaps

insightful extension of the program I have in mind.

Let us return now to the triple-arch example of figure 2.1. Our

function list will look something like

(POSSIBLE (PASS (SUITABLE-OBJECT S) PORT1 THRU))
go" " " PORT2 "
" " " PORT3 "

Where PORT1, PORT2, and PORT3 point to the respective ports in this

scene. When looking for arches, we again get immediate links. Here, the

time saved is much greater because we do not have to go searching for

crosspieces among every object in the scene. It is perhaps important to

FI , D-.12

o oc ks

page 26

note that this simplified process will fail to find the simple top arch.

This is because the top arch strictly speaking, does- not contain a port.

As discussed in section 2.8, this may or may not be desirable. One

practical way to fix this bug, if we want that arch, would be to consider

the top structure separately by moving it (in the machine's imagination)

to a separate place and then discovering the port. Another is giving the

machine the knowledge that an inverted passage may serve as a port if the

object rests on a suitably large surface. Both these methods presuppose

proper attachments, and a grouping of items in a scene by attachment (see

chapter 4). Both have heuristic merits, which should be considered in a

final program.

Another interesting problem is that of finding an arch in a scene

like figure 2.12, where the hole is blocked. Again, assuming an initial

grouping by attachment, and that block C is not attached to the others, C

will be represented as a hole with respect to substructure A-B-D. The

arch will be easily found. Winston's program would have to explore

possibilities A-B-C and B-C-O as well as A-B-D in determining the arch.

Suppose, now that C were edge-attached to B or D. Then by considering

the extremes of its motion (figure 2.5(b)), our function-f.inding program

should know enough to construct:

(CHOICE
(POSSIBLE (PASS (SUITABLE-OBJECT $) (B D) BETWEEN))
(NOT (POSSIBLE (PASS (SUITABLE-OBJECT S) (B D) BETWEEN))))

matching the description of door.

I do not think the problem of translating from function descriptions

into the structure necessary to fulfill those descriptions will arise

page 27

until a constructor is built. So I will just mention the problem briefly

with reference to one example. Consider the function description

(POSSIBLE (PASS (SUITABLE-OBJECT S WALK) ?HOLE THRU))

Since passing through refers to space (i.e. holes) in general we will

be able to generate several structures to fill this need. Any port or

passage will do, as well as any structure consisting of a box or room

with two ports or passages. The first two would likely be generated on. a

first call since that is their sole function and they are simple to

construct. The second pair should not be ignored, however, and may be

tried if the machine fails to find a port or passage and is desperate for

something to fill this function.

It is appropriate to wonder if the domain discussed here is not too

simple to afford effective extension to other areas. This is a difficult

question. Certainly at some level of structural complexity much more

sophisticated theories of physical laws will be needed to adequately

describe function. And it is possible that even the generalized

formalism would be of no use at all for describing the functions of

classes of non-physical objects. It may be that both the key functional

features and the short functional descriptions are much too simple to

admit useful extension. Nevertheless, it is quite striking that the

functional concepts discussed find an easy and direct representation in

terms of specific structural properties and that certain structural

properties may immediately be singled out to provide clues as to

functional use. Perhaps this is an artifact of our simple blocks world.

But perhaps not. Considering chess as one example, specific types of

page 28

moves often translate readily into specific objectives. Simultaneous

attack of two pieces may be easily achieved by a fork. Immobilization of

a desired piece suggests immediate examination of the possibilities of a

pin. And when one's queen is in trouble, a saving tactic is often

attacking the opponent's queen. Of course a simple one-to-one

correspondence between structural properties and functional use does not

hold in general, or even in these simple examples. But in any case where

a good method of functional representation narrowly defines the choices,

such representation is definitely useful.

page 29

3. A Hierarchically Structured Knowledge System

In chaper 7 of his thesis, Winston discusses the identification

problem, a generalized application of the simple matching techniques

developed earlier. There are many aspects of this identification problem

which may be Illuminated by the following questions:

Given a scene X, is X a structure of type FOO?
Does X contain any substructures of type FO0?
Do we have a structure which matches X?
What substructures are present in X?
What in general can we say about X?

These questions show a progression from less to more general. The

questions are closely related, because the answering of one question may

involve the asking of several others. For example, if a structure FO0

necessari ly contains some substructures of type BAR, then in answering

the question "Is X a FO0?" we will want to answer "Does X have any

substructures of type BAR?" But in answering this question we will

certainly want to ask of a substructure Y of X "IsY a structure of type

BAR?" Clearly these different questions we will want to ask will require

quite similar processes, and many of the procedures used will be shared

by routines answering all of these questions.

Winston's program answers the question "Do we have a structure which

matches X?" by matching all structures against X. If the number of

structures in our data base is large, this sort of procedure may be

extremely wasteful, since many structures will not be at all like X, and

those which will be like X will require much redundant computation.

page 30

Winston proposed two ideas to help improve matters.

(1) abstracting certain essential properties of a scene into a skeleton
which could be matched against X to quickly decide if it was worth
continuing to match X against this structure in detail.

(2) When certain structures are sufficiently similar, pointers may be
inserted in them so that if the matching program runs into
difficulty matching x against FOO, but the difficulty strongly
suggests X is really a BAR, the machine can quickly.switch to the
BAR description with a reasonable expectation of success.

Both of these ideas are quite valuable for shortening the amount of.

computation required in deciding such problems. However, they still have

some drawbacks in the form proposed. Their construction and application

is somewhat haphazard, and lacking in definite structure. Solution (2),

the "similarity network" <6; p.232> does enable certain crucial

differences to change the model being compared,, but it does so on a

highly local, one-difference level, without using the overall evidence

gained already (perhaps including failures in previously tried models) to

present an appropriate sequence of likely choices. Such a system will

work well when there are not too many structures around and few of them

are related. But if we are dealing with a world of structures where the

relationships and similarities are many, in other words, a world with a

definite structure of its own, we would like our machine to be more

sgstematic in the application of these processes so that its internal

models resemble the structure of the world to at least a reasonably close

degree.

It is also interesting to note that the question "What substructures

are present in X?" is answered in the Winston system by checking a list.

of all substructures known. It would be quite nice, of course, if a

page 31

program looking at the structure could quickly generate lists of likely

and unlikely substructures, i.e. tell us which substructures we should

be looking for. It may be asked if this is really a meaningful question,

or simply one of "puzzle value" as figure 7-31 <6; p.238> in Winston's

thesis might indicate. My personal feeling is that it is in fact quite

meaningful. When presented with raw data in the form of a large and

complex structure which is not artificially contrived, we have an

excellent chance of determining its principal features if we can simplify

the description by a judicious labeling of substructures. This, however,

depends on our ability to cheaply decide which substructures we should

look for. We should be able to make use of clues provided by specific

remarkable features of the object as wdll as those provided by context.

(What type of structure is expected here? What substructures are known to

be common building blocks in our current world?)

In this light, it is instructive to consider the properties we would

find desirable of a general description mechanism. Perhaps most

important is the consideration of speed. At the brute face level,

finding appropriate descriptions of structures requires exponentially

exploding search if all possible substructures are to be considered. The

amount of search actually needed in solving problems provides a

convenient metric against which to measure performance. Each level of

complexity in our descriptive power can only be attained practically if

such descriptions may be recognized in a reasonable amount of time. In

order to recognize a complicated structure reasonably fast, we must be

able to recognize its simpler components very fast. This requirement

page 32

strongly suggests that we have the power to concentrate on description

one level at a time, so that we do not become confused by irrevelant

detail. Winston <6; p.282> recognized this problem and proposed a method

for solving it. It seems desirable to generalize his solution.

A second desirable property of a general description processing

sgstem is that the system be easy for the machine itself to construct and

debug. If we merely handed these structures to the machine on.a platter,

the best claim we could make would be that we ourselves had a reasonably

good understanding of the structure of the domain we were working on.

But it would be far more interesting if the machine itself could

construct a working system, with some help from us of course. Then we

could sau in some sense that the machine itself was capable of

understanding the structure of our particular domain. This can best be

achieved by a great degree of simplicity, as well as the ability for

errors to be patched locally without having to worry about possible side

effects on the entire system. The ability to divide the system into

small blocks of well defined structure would greatlU facilitate this.

There are probably many possible systems one could build which meet

these criteria to a reasonable degree. In this chapter, one alternative

will be discussed which owes its conception to the frame systems proposed

by Minsky <3> as a general structure for dealing with many. problems in

artificial intelligence. Such a system has many of the desirable

properties mentioned above. A hierarchy of frames provides something

like an automatic control structure. Through judicious organization and

use of pointers one should be able to eliminate virtually all unnecessary

page 33

search, and thus provide tremendous gain in speed. The ability to

isolate single frames provides conveniently for local repair and

construction. And since a frame system is in general hierarchial,

differences between structures may be represented at different levels,

enabling the machine to temporarily focus attention on specific questions

and effectively share descriptions of several similar objects.

A short overview of the proposed orgainzational system will be given

here, and dealt with in more detail in subsequent sections. The

description in this chapter should not be considered complete, since

there are several problems which have not yet been resolved

satisfactorily. These will be mentioned where they occur.

Basically, the system will consist of a set of hierarchies (each a

tree or perhaps a lattice structure) of small modules called test-frames,

which will represent complete and incomplete descriptions of various

classes (or examples of classes) of objects. The hierarchies will in

general each represent a general class of objects at their top level,

with subclasses represented at lower levels. Models of specific members

of each class may be tacked on at the bottom level of classification.

These will be of use in processing complicated descriptions and in

debugging our system when errors are noticed. Certain test-frames will

be considered "entry points" to the system. Any frame which has a

specific name associated with it will be an entry point. This will

permit descriptions in one part of the system to reference components by

name, which may be examined directly without having to pay attention to

test-frames above the named class. Other entry points will be defined by

page 34

a "skeleton" <6; p.233> consisting primarily of functional information

described in the previous chapter. The top test-frame in each hierarchy

will be an entry point. Names and function descriptions will be indexed

by a program which provides pointers to the various entry points, and may

be considered the super-top-level test-frame. The purpose is to provide

a small list of entry points arranged in some order of likelihood which

will eliminate search of most of the test-frame structure. All frames

will provide information which uses the result of prior frame description

operations to reject a description or accept it, and if accepted, to

point to subsequent frames in the hierarchy where it might belong. Each

entry point will contain more complete information to compensate for the

fact that it may be entered without the prior processing having been

done. A description will first be processed by the super-top-level frame

which will return a list of plausible entry points. These will be

explored in a given order. Some may define substructures which will be

noted and others will (hopefully) lead to a complete classification of

the description. Other substructures may be searched for only when

specifically requested by a frame, since it Is desirable to eliminate a

Or costly search for every possible substructure.

3.1 The Individual Test-Frame

The original network matching program described by Winston <6;

chapter 4> was reasonably symmetrical with respect to the two networks

page 35

being matched. This has certain advantages in applications such as the

analogy problem, since it permitted models to be formed from descriptions

and then compared with other models. But, in some cases, this completely

symmetric match proved to be a drawback. In finding substructures of a

scene, for instance, the matching program produced such a proliferation

of c-notes that it was extremely difficult to isolate the proper

information. These c-notes ended up being discarded <6; p. 239>.

Continually generating c-notes only to discard them later is a wasteful

process. The essence of our system is that one does not want to carry

out an entire match at once, but only small portions at a time, deciding

what to do next on the basis of the previous results. Consequently, it

is desirable to have a matching routine which is by nature asymmetric,

considering the network description required by a test-frame (the frame

model or FM) as a pattern which must be matched in the structural

description (SD) of the item we are attempting to classify. Features

present in the SD but not in the FM will generally be ignored unless

specifically noted, while those in the FM which are absent from the SD

will be of critical importance. Furthermore, it is desirable to simplify

those portions of the description processed by each frame so that they

may be readily accessed by lower frames. Such simplification may take

two forms:

(a) labeling certain portions of the SD with a tag which may be
referenced by lower frames, and

(b) replacing certain sections of the SO by simpler descriptions to
speed up work by lower frames. For instance, it would in many cases
be desirable to replace the subdescription of a row of attached

page 36

bricks by the simple tag (WALL). When this is done, a record of the
transformation should be kept someplace, so that it may be undone if
that should later be necessary.

It is reasonable, considering this, to view the operation of the

matching program as a progressive transformation of the SD into a more

and more general representation. In cases where the area of the SD being

examined is very small, say one or two nodes, it may prove possible to

bypass any interpretive mechanism and represent the requirements.

explicitly by a few lines of code. I anticipate that this will generally

be the best representation for the difference operations on descriptions

which are coming from immediately preceding test-frames. The case of

entry points will be different, however. Here the matching will be much

more extensive and we will probably desire to invoke the matching

program. In a language such as CONNIVER, the FM may represented by a set

of assertions in a context associated with the frame, and all we need to

do is add a line of code to call the matcher.

At this stage the usual distinction between data and program is

becoming quite blurred -- in one sense each test-frame represents a

description of a certain class of objects, and in another sense it

represents a portion of a procedure which moves us around the system..

For example, if we were interested in whether the structure under

consideration contains an arch we could represent this as

(AND (SETQa L2 (CONTAINS SS15 ARCH))
(GO-FRAME G8186))

where CONTAINS is a high level function which searches for substructure

ARCH in SS15 and returns it as a value. Or we could say

(AND (MATCH FM SD) (NOT (NULL L2)) (GO-FRAME G8186))

page 37

with a network FM:

(HAS-PART SS15 ?L2)
(KIND-OF L2 ARCH)

where the "?" indicates that L2 should be bound to the appropriate

substructure.

Also associated with the entry point frames will be a name or a

skeleton or both. The total content of the skeleton is flexible, but It

will definitely contain any functional information abstracted from the

structure under consideration. Other characteristics of great interest

will be added, presupposing that the machine has some means of deciding

which characteristics are of great interest for given frames, and also

knous how to find these quickly in a complex structure.

page 38

3.2 Utilizing the Test-Frame Structure

The key to success of the test-frame system will be a reliable set,'

of skeletons indexed in the super-top-'level test-frame. Given a skeleton

which has been created for a structure under consideration, matching this

skeleton against skeletons of entru points should yield generally three

sets of entry points:

(a) entru points with very simple skeletons which are small subsets
of the SD skeleton.

(b) entry points with more complicated skeletons which are subsets
or very nearly subsets of the SO skeleton.

(c) complicated entry points which almost completely match the SD
skeleton.

Entry points in class (a) will represent simple structures which are very

likely to be the basic components of a large structure (walls, arches,

etc.). Entry points in class (c) will represent likely candidates for

descriptions which match the dntire structure. Entry points in class (b)

may be either large components of the structure or candidates to match

the structure which are not as likely as those in.(c). First, entry

points of class (a) will be tested until exhausted. When appropriate

subgroups of the SD are discovered,: they will be marked accordingly, in

order to form a more generalized SD which will cause less confusion to

later test-frames. An entry point may be indicated more than once, say

by different portions of the SD which are instances of the same general

type of substructure. The entry point w•ill be tested once for each of

these. Certain frames may be marked as terminal for a given class, even

page 39

if they point to frames below them. The meaning. of a terminal frame is

that if a substructure being tested reaches a terminal frame, it is a

"success", i.e. it may be considered a valid member of the class of

objects represented by that particular frame. Terminal' frames thus in

some sense provide failpoints in a frame system. If a substructure which

we are trying to classify is rejected at some particular frame, it simply

backs up to the nearest terminal frame where it succeeded. When we have

decided that a substructure should be replaced by a more general

description, (usually just a name) in the larger SD, we hang the

substructure on the appropriate terminal frame as an "example" with a

unique label, and then replace it in the original SO by the name

associated with the terminal node and a pointer to the label. Thus if at

some time we wish to revoke our assignment of this substructure or

explore its properties more thoroughly we will not have lost any

information, while in the mean time we avoid cluttering up the SD.

After the SD has been simplified by replacing all the substructures

represented by class (a), we can begin deciding about the structure

itself by comparing the SD with frames whose entry points are in class

(c)., in order of the completeness of the match. If we process. a terminal

node in which the entire SD is accounted for, then we have a description

of the entire structure. If we reach a terminal which accounts for some

port-ion of the SD, we have isolated another substructure, and may further

simplify the SD as described above. We may proceed to the next entry

point if we fail to reach a terminal point, or decide to abandon a path

which is taking too much time. If we exhaust all entry points in (c)

page 48

without finding a match we may try those in class (b), which represent

less likely candidates and intermediate subgroups. If we are able to

simplify the SD still further, we may return to frames in places we

previously abandoned because of computational difficulty.

This procedure for using the test-frame structure is not final.

Principally it represents a sort of compromise between the classical

"bottom up" (starting with the most basic substructures and combining

them to form more complicated substructures until the entire structure is

categorized) and "top down" (looking only for specific substructures when

their presence is indicated by a particular attempted categorization).

The "bottom up" scheme would require manyu attempted matches and be quite

costlg in terms of time. The "top down" scheme will be dealing with

quite complicated SD's whose simplification will only be incidental. The

system proposed hopes to significantl iipl.if :the SU b6 f indag:i man,:

simple (i.e. cheaply identified) substructures and then operating in a,

top down fashion where further subgrouping occurs only when specificallI

-requested by a frame or is "stumbled upon" by the classification process.

Such a strategy may not prove optimal for this application and will be

open to change should a better one present itself.

It should be noted that there are no hard and fast guidelines for

separating the entry points into classes (a), (b), and (c). Such

separation will depend on a small program, perhaps with special purpose

knowledge, which knows enough about the domain to make the proper

choices. There would be a great advantage gained if this program itself

could be made to learn from experience. Currently, I do not feel I

page 41

understand the problem fully enough to have suggestions as to how this

might'be accomplished, but it would necessitate collecting some data as

to the reliability of the skeleton system and proposing amendments to it.

As the program grows in complexity, it may prove useful to embed the

skeletons in a mini-frame system, which may be debugged in a fashion

similar to the large one.

page 42

3.3 Constructing and Debugging

The test-frame system we have been examining is oriented toward ease

of construction by a machine. This form of construction must necessarily

be an incremental process, changes occuring each time an error is made in

classifying structures. It may be helpful to think of the system as a

"theory" of the structure of the problem domain, initially quite meager,

which is progressively fleshed out and debugged as new examples are

encountered. The test-frame structure is designed so that most debugging

will take the form of fairly local patching. Since too many local

patches in a system of this sort could easily compromise its structural

generality, we would like our debugging system to be as conservative as

possible about amending the existing system. Usually we will be faced

with choosing from among two or more alternatives which divide roughly

into three categories:

(A) adding a new test-frame or entry point

(B) producing a cross link between hierarchies

(C) changing existing conditions for rejection or frame
selection.

(C) will be preferable where the differences are small, that is if

an SD ends up fairly close to where it.should be, local changes should

not be too disasterous. However, in cases where a serious mistake has

occurred it will in general be better to create a new entry point

somewhere than provide a link between hierarchies. The problem here is

page 43

that if too many entry points with the same or similar skeletons are

generated, we may end up having to do a lot more processing than we

really want to. In cases like this, we will need a program which

collects a set of entry points with similar description and compares

them, perhaps changing the skeletons of some to permit more efficient

selection for a given SD. In addition we would like the entry points to

be fairly evenly spaced throughout a hierarchy, .If the entry points are

too dense they defeat their purpose by forcing more computation in the

initial entry point selection. And if they are too sparse, too much work

will have to be done in the frame system, and we run the risk of better

matches in the wrong places for a given SD. Also, at some time we may

want to totally or partially reorganize a hierarchy, perhaps deleting

entry points which don't do much good. This will be discussed later.

3.3.1 Local Debugging Rules

There are basically two different types of definite errors which may

occur. One occurs where a particular SD is accepted as a member of a

class when it should not be. Another is when all entries in a particular

hierarchy are rejected, and the SO actually fits somewhare in that

hierarchy. Since the machine is going to need some kind of information

concerning the proper position or positions (we will assume a given

structure may actually fit in more than one position in the frame system)

we will allow the machine to request the classifications when it has

page 44

finished processing an SD.

This form of questioning generalizes upon Winston's program which

accepts the information about whether a structure does or does not belong

to a specific class. Other forms of questions will be discussed later

which will augment the basic teacher-student relationship and permit the

machine to learn more quickly.

There are four fundamental debugging processes in the frame system.

They are :

(1) providing for rejection of an SD when such is needed,

(2) rearranging a particular test-frame so that a particular
description or class of descriptions gets pointed in a different
direction,

(3) adding a new terminal node for a particular classification,

(4) processing a set of test-frames to provide for a structural
description being accepted which was formerlu rejected.

(1) When we wish to provide a rejection of an SD somewhere in our

system, we generally want to place it as close to the entry point as

possible so that the amount of useless processing is small. By. examining

portions of the SD which were not looked at and found acceptable by the

system we may focus on the probable causes for rejection, and we may

further narrow our possibilities by comparison with already learned

examples of the particular concept. Then we proceed up the hierarchy,

one test-frame at a time, making sure that no examples attached to each

test-frame have the putatively undesirable properties. As soon as we hit

a frame which does accept such examples, we may place that particular

rejection information in the frame immediately below it.

page 45

(2) if we want to rearrange a test-frame so as to redirect a

particular class of SD's we must make sure that no previously learned

SD's get redirected also. Since the direction indicators as presently

conceived will each be a test or two followed by a frame pointer, we need

only worry about examples tacked on to frames descendent from the

test-frame whose pointer we wish to amend. We may take the examples from

these frames and test them to make sure each goes in the proper direction

after our patching. If not, we will be forced to further amend the

test-frame which is giving us trouble. We should generally not have to

look at any lower frames.

(3) When we want to add a new terminal node under a particular

class name, we will assume we have fixed things so that the SD in

question reaches the top test-frame processing members of this class. We

are then faced with two possibilities: (a) this frame rejects our current

SD or (b) the SD is accepted, but rejected before any terminal test-frame

of this class (or any of its subclasses) is reached. (If it is accepted

down to the terminal of any subclassification we have an error since we

assume the teacher is being honest and giving us the most accurate

classification possible for the particular SO.). In case (b) we will

simply add an extra terminal frame with description of the SD immediately

below the classification frame and provide (using (2)) an acceptable

pointer to it. In case (a) however, there may be good reason to preserve

the other members as a separate subclassification, so we will replace the

top frame for this class by a test-frame with two pointers -- one to our

new terminal and one to the previous top frame, which will now be a

page 46

subframe of the class. In some cases it may be desirable to provide a

more suitable entry point for our new terminal, either by changing an

entry point above it or creating a new entry point. We can do this by

comparing a proposed skeleton of the new item with properties of nearby

frames and the immediately preceeding entry point. If we can add the

right items to the entry point skeleton (even if its position must be

shifted slightly) this is preferable. Otherwise we will have to create a

new entry point, placing it so that it covers as much area as possible.

If for some reason we do not wish to create a new entry point, we may

wish to add linking pointers to our new terminal at other entry points

whose skeleton match is better than the terminal's immediately preceeding

entry point.

(4) In cases where we would like to place an SD in a given class,

but it is rejected before we reach there, we must first amend the

rejection test so that the SD is accepted at this stage. This will be

somewhat risky, uhless we have kept around examples of rejected

structures. Furthermore, problems of this type may arise from instances

where we misinterpreted the offending property in a structure we desired

to reject, and thus in reality we may be better off eliminating: the

rejection test altogether. Eliminating the test will not really put us.

in serious difficulty (though it means we have wasted an example or two

due to bad sequencing) because if we were ever to encounter again the

structure which originally caused us to insert the rejection test, we

would be forced to produce a better test by virtue of the fact that we

would now have an example which demands acceptance.

F , s3.1 0#f-ji po(nr-

Fi3 .3.o

kovng -r) ,

tP -o a P (r 2
Vjec Ot tes{toW

c9ht scrve, as t4vodola,

,CL
,jct e~d

r eje eak

page 47

Then we must follow the path down to our desired class, if necessary

amending further rejection criteria and changing frame pointers as in

(2).

These routines will enable us to patch most errors discovered in our

system. If we accept an SD in a certain category which should be

rejected, we either (figure 3.1) fix the frame where a wrong choice was

made or (figure 3.2) place a rejection pointer close to the point at

which we entered the hierarchy. If the SD belongs somewhere higher up,

or on a separate branch, we must create a new terminal and entry point

for it and then test to make sure processing of the SD will be accepted

by the terminal.

If we reject an SD before we get to its proper class, we invoke

procedure (4). If, on the other hand, we have taken a wrong turn and hit

a dead end, we must process the pointers in the frame where the wrong

turn was taken. Perhaps the worst problem will occur when we were not

even pointed into the proper hierarchy by any entry points for a given

SO. Here we must begin at the top of the hierarchy and work our way

down, changing each frame necessary to insure that the SO will reach the

required classification. Certainly we will want to add an entry point

for the new terminal created. Along with these methods for fixing

hierarchies, we will want to be able to create a new hierarchy when we

desire. This will be relatively simple. We simply create a top level

entry point with skeleton being the function description and whose FM is

the SD of our first example. It will initially be a terminal frame. The

program should be infor'med when we desire a new hierarchy started,. since

page 48

it will usually be incapable of handling descriptions so completely alien

to its current structure. The hierarchy will then be built up by

successive terminals added as new examples appear and are named.

We will also want the capacity to split up a frame when the number

of subframes it points to gets too large. The number of subframe.s

pointed to by a particular test-frame should be more or less between two

and six. Since the subframe selection will generally be a seria. pocess,

more than six would be wasteful of time. Perhaps even more important, as

the number of subframes grows, so does the amount of work needed each

time the frame is patched. Of course the fewest number of decisions

would be made if the frames had a balanced binary tree structure, but

this would necessitate keeping a lot of fairly useless frames around --

taking up space and requiring maintenance.

Finally, we will want the capacity to specify that certain groups of

classes should be given a collective name. We could either tell the

program this or have it ask us. These are equivalent, since it would be

simple to invoke a questioning routine which would take groups collected

under one frame and asked if they had a name. We could also ask, every

time we established a terminal corresponding to an SD, if this example

was typical of a specific subclass of the general class under which it is

placed.

page 49

3.3.2 General Debugging Techniques

It may prove desirable to be able to restructure the entry point

system from time to time if we are winding up with too many entry points

or too many of a specific nature. In the latter case, we may collect any

group whose members are too similar and examine the FM's associated with

test-frames at and below each corresponding entry point. If we can

discern specific properties which apply to small enough subgroups, and

are easy to find in a complicated. structure, we may include them in the

skeleton. We may test for this condition by trying some previously

learned examples. In the former case, we may want to remove some entry

points from particularly dense hierarchies. We can do this, provided we

do not compromise the efficiency of finding an entry point close to the

desired classification. If elimination of an entry point causes better

matqhes to be generated at entry points elsewhere in the system we may

put explicit rejection statements at each of these, thus providing that

the time spent examining such irrelevant entry points be short. Again,

we will want to test our alterations on known examples to be sure we

haven't fouled things up somewhere else.

Fr . 3,3

ig. 34L

= ATTACHE -DI

-TI NEXT-rTO

=1E MARRIC-S

-Y A-klN:D-oF

page 58

3.4 An Example

This section will present an example which, it is hoped, will make

some of the points described in this chapter clear.

Suppose we start with no frame system and an example of a wall

(figure 3.3). Since walls do not generate functional descriptions we

might choose as a skeleton some pattern which matches any set of objects

all of which are connected by a chain of attachment and "NEXT-TO"

pointers. (We will not be considering point-of-view problems, so there

will be no distinction between left-of and right-of or in-front-of.) Our

first hierarchy will have frame model of figure 3.4, no pointers, and

skeleton as above, as well as the name "wall." Suppose now we introduce a

tower (figure 3.5). The chain of attachment and support pointers which

would form its skeleton only partially matches that of the wall

hierarchy, and (since this is the only hierarchy we presently have) the

tower description is matched against the wall description. The match is

not perfect, but then there is nothing which expressly forbids the tower

being a wall. So our program proposes that the new structure is a wall.

We inform the program that this structure is actually a "tower" but that

it should be included in the same hierarchy. The program now amends its

test-frame structure so that the top frame matches a group of blocks

which are connected by attachment pointers. The top frame will now test

whether the blocks are connected by chains of support or "NEXT-TO"

pointers, and point to the appropriate terminal frame. A problem now

riýB 3. 5-

c c, a, o" k O"-0-Pt

Jcu o r r- o a(of srV
Othe,# rzdatIo,

no cký,(h

o-f HAPRIGS -
p oSn a e. ~s /

T-=> G.,?02 .h , , 0odJ

R i. 3, G

Grou•p of bloc)

cd, ktiLhj sk4.e o srze-
ckaiLL of eff-c-k ruent

po shtacrs .

---- ~-----
f

IIIOI-·PIII~-~C-

f

F~Oint~r:

F .3, 7

page 51

arises with regard to the entry point skeleton, since it no longer

matches the properties of all subframes. The skeleton (in this instance)

S1i.1 be amended to match any group of objects with chains of attachment

and MARRIES pointers. This is not especially what we would like

generally, so we introduce a new "wall" (figure 3.6) in which the blocks

do not marry. This will be added to the hierarchy under the, wall

category. Now one might expect that the skeleton be reduced to the chain

of attachment pointers. This is not particularly desirable since such a

skeleton would be so general as to match nearly anything. We would

qe expect that a store of general information about the domain (perhaps

analogous to Gerry Sussman's "blocks world knowledge Iibrary" <S; p.41>)

could communicate this to the skeleton builder, which might then. add any

restriction common to all subframes. For example:

(a) that all the objects must be of identical shape & size,

or

(b) the chain of attachment pointers be accompanied by a chain of
pointers representing some other spatial relationship.

Assuming we pick b, our new hierarchy looks like fig 3.7. Notice

that we perhaps have more test-frames than is really desirable, i.e. the

two "wall" terminals could be collapsed. This, however, is an open

question. Perhaps at some point (uhen the number of example walls is

quite large) we will want to separate walls on the basis of whether they

"look nice" or not. The decision to collapse test-frames should only be

made when the structure becomes extremely cumbersome, and then on the

basis of special purpose knowledge about the relative importance of

F1g. 3 v g. 3 .

(SoPPOPTe.D-Sy
P (srrALs -o eCT 4)

?Y))

•y Y bloo~s

page 52

relationships. At this point we only have a total of 5 frames, so we

can well afford the luxury of two terminals for "wall".

Now, suppose we introduce a typical table (figure 3.8). The

skeleton created will be:

(POSSIBLE (SUPPORTED-BY (SUITABLE-OBJECT S) T1)
(POSSIBLE (COVERED-BY (SUITABLE-OBJECT 8) T1))
(POSSIBLE (PASS (SUITABLE-OBJECT S) P1 THRU))
(POSSIBLE (PASS (SUITABLE-OBJECT S) P2 THRU))
(POSSIBLE (PASS (SUITABLE-OBJECT 5) P3 THRU))
(POSSIBLE (PASS (SUITABLE-OBJECT 5) P4 THRU))

where T1 is the top block and P1 - P4 are the ports created by the legs.

This skeleton matches no current entry point in the frame system. So we

have good reason to believe that we should create a new hierarchy. We do

so, giving the entry point skeleton shown above. Now, suppose we

introduce a pedestal (figure 3.9) into the system. the skeleton created

will be:

(POSSIBLE (SUPPORTED-BY (SUITABLE-OBJECT 5) T2)).

This partially matches the entry point for table and we: attempt a match

there. The match will not be particularly successful, but we don't have

anything else to do. So our machine will half-heartedly propose that

what we have here is another table. We will, with paternal patience,

instruct the machine that this is in fact a pedestal. The machine will

9. reform the hierarchy, giving us the one shown in fig 3.18. The entry

point skeleton will tentatively be reduced to:

page 53

(POSSIBLE (SUPPORTED-BY (SUITABLE-OBJECT S) ?X))
(HAS-PART S X)

This may be somewhat weak, (though clearly not as weak as a chain of

attachment pointers) but we will have the option of strengthenting it or

adding new entry points later. For now such a weak skeleton is fine.

Suppose now we introduce the pedestal of fig 3.11. The chain of

SUPPORTED-BY pointers will match the entry point in the wall-tower

hierarchy, while the support offered by the top block will match the

entry point in the table-pedestal hierarchy. This will be the first time

we have had a choice of two entry points for an SO. We will perhaps need

to call a routine to classify them, as described in section 3.2. Using

the knowledge that groups of similar attached objects are much more

likely to be substructures than complete structures we would place the

wall-tower entry point in class (a) and the table-pedestal in class (c).

Using the entry point in (a) first we would match the tower substructure.

This would cause us to modify our structural description of T3's

supporting group by the designation

(TOWER (some pointer to the example frame))

and hang the example under the appropriate terminal. Then we would

compare our modified SO with the entry point in class (c). Once we got

into the frame, we would not be able to progress further because the

pointers to terminals refer to the blocks, and in the current strucutral

description we have a tower instead of a block. Since we know that the

tower is a grouped substructure, we may undo the grouping and proceed.

Now we make it down the the pedestal terminal (though perhaps for the

wrong reason, i.e. that the large block is supported by the top block of

page 54

the tower. This fulfills the support requirement but fails to account

for the rest of the tower.) But here we have matching problems because

there are several blocks unaccounted for. Our program will most likely

propose a substructure "pedestal" consisting of the top two blocks in the

structure. Now we are stuck because Me have two overlapping

substructures, but no classification for the whole, and we ask for help.

The program is informed that the whole structure is actually a pedestal.

This type of problem may be expected quite often in a recognition system

which is always attempting to generalize its descriptions, and there seem

to be mang ways to surmount it. The error made by our program was

actually in backing up. If it had stuck with the tower subgroup and

admitted defeat at that point, it would have learned that a pedestal may

be supported by a tower, and have been able to fix the frame pointer so

that a single tower or block would point toward selection of a pedestal.

But since we have discarded the original tower substructure, we are faced

with the prospect of embedding an additional tower description (and

worse, not even a general one) under the pedestal description.

Furthermore, since the test-frame pointer specifying support by a single

block eventually worked, it has little chance of being modified. It

seems we will be screwed by our own conservatism. One suggestion might

be to treat structures in the tower-wall hierarchy as single units, since

they are such functionally, and also have some claim to being the most

basic of all substructures. (Any block may be replaced by a group formed

by slicing the block up and gluing the pieces back together.) But this

patch will only help us when the group concerned is a tower or Mall.

page 55

Perhaps a better strategy would be to make the program wary of backing up

too often. When a substructure in the SO occurs in one-to-one

correspondence with a specific block formation noted in the frame system,

the program could call a routine which checks if the substructure may

serve the same purpose as the formation. Or, at each point where it is

forced to discard a previously accomplished substructure, it could

suspect lack of generality as the problem (especially if the substructure

is a fairly basic one), and temporarily alter the frame system to see if

it got to the right place. Still another alternative would be to take a

more general view of the frame pointer tests. In this specific example,

the machine might notice that the essential difference in pointers was

between one and four, the number of supports, and the best match would

clearly be the "one". This technique appears most promising in terms of

generality, because if the assumption proves valid, we do not have to

invoke the hairy debugging procedure, because we know exactly which parts

of which test-frames should be modified (i.e. in the pointer under

consideration, the description "block" would be matched against "tower"

and if we succeeded we would then return to include towers where

previously only blocks were permitted.) When the program reached a

correct acceptance it would know to amend such pointers, and if it

reached an incorrect acceptance it would be capable of placing rejection

conditions in that frame to prevent the same process recurring. Of

course, this latter strategy requires the program's ability to compare

and contrast sections of its own code. If the program has an adequate

mechanism for modeling its own commands, the comparisons may be made by a

j. 34 -
.A Rq.4 3iiQ,

F, . 3.,-1

L/

page 586

program similar to Winston's analogy problem solution <6; p.105>. .A

related problem is that of a structure which gets classified, but which

has an important subgroup not recognized at all before the classification

is made. This problem will be discussed in the section on grouping.

Anyhow, let us say the above problem is resolved as desired, i.e.

that the pedestal now accepts towers as legs. The program is now fed a

standard arch (figure 3.12). We may wish it to create a separate

hierarchy for the arch. But suppose not. The program will concievably

determine that the arch is capable of supporting something as well as

having the required port. Its skeleton would thus be:

(HAS-PART S ?X)
(POSSIBLE (SUPPORTED-BY (SUITABLE-OBJECT $) X))
(POSSIBLE (PASS (SUITABLE-OBJECT S) S THRU))

It will match in the table-pedestal hierarchy, and cause a new frame

"arch" under the hierarchy, pointed to in case there are two supports

instead of one or four. Alternatively, (depending on our whim) we could

inform the program that it is a special type of table, in which case the

pointer to table frames would be generalized from "4" to "more than one."

Supposing the former happens, we now feed in a pointed arch (figure

3.13). Its skeleton will be

(POSSIBLE (PASS (SUITABLE-OBJECT $) P1 THRU))

which matches no entry point. Our program will create a new hierarchy

for this item. Imagine the machine's suprise on being. told that this too

is an arch! It now has two terminals labeled. "arch" in completely

different hierarchies. Such a situation is intolerable and must be

fixed. The new hierarchy cannot be incorporated under the old arch frame

page 57

because it will not match the skeleton. The onlI thing to do is to move

our old arch description under the new hierarchy, since its skeleton will

match the others to some extent. This Mill entail deleting a frame from

the table-pedestal hierarchy. Our final arch hierarchy will look like

figure 3.14.

Thus, the frame system gets constructed by gradual debugging as new.

examples are added. Much of the structure will be dependent on what we

choose to tell the program. But regardless of the actual structure, we

can be reasonably sure of having a system which will classify items much

faster than an attempted match with all known models.

page 58

4. Grouping

Many of the unresolved problems mentioned in this paper stem from

the lack of a good theory of adequate grouping mechanisms. Since the

purpose of grouping is to provide for simple generalization of

description along many lines, many different types of activities will

come under the heading of "grouping". A grouper will really be a

p, collection of mechanisms looking for a chance to apply. themselves rather

than one simple coherent procedure.

Winston's program uses two general grouping heuristics:

(a) sequences of objects chained by the same pointer
<6; p.84>

and
(b) sets of objects or structures with sufficiently similar

properties rated on a percentage basis. <6; p.87>

No doubt (a) is a valuable heuristic, but I have the feeling that (b), as

Winston constructed it, may be of doubtful use in a function oriented

system. Rather than debate the merits of Winston's grouper, however, I

would like to offer some suggestions for a more general set of procedures

which I feel will be useful to my proposed system.

Since the system is expected to have knowledge of attachment between

blocks, one strong technique will be to divide an SD into its attached

components. There are basically two reasons for this. First, objects

attached to each other must move as a group and thus may to some extent

be "melted down" into a simpler representation which differs only in the

page 59

number of elements, and not in any more fundamental relationships. It

has already been observed, for example, that any block would serve

exactly the same purposes if it were sliced up and then glued back

together. Secondly, in the real world, objects are usually attached for

some reason, and attachment is strongly indicative that the group has

some basic functional property. Furthermore, if the attached subgroups

of an SD are considered separately, and one at a time, much irrelevant

detail may be discarded, and we will be likely to obtain a clearer

picture of the more general structure of the total description.

Consequently I think it advisable that when an SD of any complexity is

being considered, it be "pre-processed" by classifying as well as

possible all its attached subgroups as if they were independent and then

modifying the SD so as to take this information into account. This

raises many questions, of course, about how to represent intricate

relationships between subgroups and how to provide for the complicated

backup procedures which may be necessary. It may prove necessary to keep

several descriptions of a given structure on hand, each at a different

level of generality.

Another suggestion is to greatly increase the ability of the machine

to ask questions. One fault of Winston's program is that it is in a

sense expected to be smarter than humans. It is forced to provide

alternative structures in many cases where a human student would stop and

ask a question of the form "Must it be this way?" or "May it be modified

like this?" Such questioning ability, however, if used too liberally, can

subtly shift the "learning ability" right back to the programmer. It

page 68

seems quite feasible, for instance, to replace Winston's program with a

much less clever one which would simply ask all possible important

questions and produce the same results. But there are certain instances

where questions would enable the program to learn much faster, though not

give it any appearance of power it did not actually have. Such questions

might be:

1) finalizing the description of substructures before attempting to
classify the entire structure.

2) avoiding messy backups such as indicated in the example of
section 3.4 by asking if a particular group could serve as well as a
block in a particular instance.

3) requesting the names of subclassifications when they seem
desirable.

4) asking if new hierarchies should be constructed when the program
cannot find a suitable spot for a given structure.

Another form of grouping which seems quite desirable is a search for

fundamental substructures in a large structure, The class (a) of entry

points described in section 3.2 is a partial attempt to bring this about.

But it may be useful to define simple structures as "basic" in the sense

that they are exhaustively searched for in the pre-processing stage,

regardless of whether their presence is indicated by a structure's

skeleton. Walls and towers are good candidates because their essential

properties are quite unlikely to appear in any condensed skeleton of a

large structure. Others may be defined as "basic" if the general

management programs discussed below discover that they are missed quite

often.

page .61

Another heuristic which I feel might be valuable is what I woul.d

call the "immediate induction" heuristic <S;p87>, which, when it

discovers a group of substructures sharing the same function whose number

is three or greater, immediately generalizes to assume that the structure

may contain any number greater than two of such elements. Using -this

heuristic, the number of elements permitted in towers, walls, and

supports for a table in the example of section 3.4 would be immediately

generalized. Groups of this class seem far more abundant than groups

(like the sides of a triangle or the faces of a cube) which depend on a

specific number of such elements.

One of the most obscure problems I have encountered in thinking

about this proposed system is the question of what should be done when a

structure manages to be classified, and yet a significant subgroup is not

discovered, (or worse yet, not even known) before such classification.

Too many occurrences of this situation could defeat the generality of the

frame system and be very costly in terms of time or examples. It would

be nice if our program were detecting clues of this.sort of behavior

(such as discovery of a terminal frame which is always arrived at easily

only to require some small modification in the terminal frame model), but

such clues are hard to come by. Perhaps a better suggestion would be a

general management system which spends idle time searching for large

ungrouped segments in the terminal frame models and attempting to replace

them with an appropriate substructure pointer, or taking structures which

have been recently defined and searching the frame system for instances

of their occurrence. Of course such unsupervised "play" may have

page 62

dangerous consequences unless the machine is obsequious enough to present

its findings for human approval. Far more desirable, though, would be a

general algorithm for discovering such instances at classification time.

However in cases where the desired substructure has not even been

defined, the process will be difficult if not impossible.

One might criticise the heuristics above (as well as some aspects of

the test-frame system operation) as being biased in favor of immediate

and sometimes unwarranted generalization. I feel such bias is justified

for two reasons. First, in the real world it is rare that some but not

all of a given class of substructures is permitted in the general class

of some larger structure. (One rarely builds a mansion with a plywood

door, but would this be criterion for asserting that such a building

could not be a mansion?) Secondly, a mistaken generalization can be

undone (if as proposed we save examples known to be correct.) by a single

counterexample. A more conservative generalization process however,

would require several examples of occurrences of a substructure in each

structure in which it occurs, before the evidence is considered justified

for generalization to a class of substructures. Furthermore, such a

procedure would require constant observation of many points in the

test-frame system which are current candidates for generalization. This

would present a significant drain on the machine's energy. Ability to

generalize, even if somewhat hastily, enhances the effectiveness of the

learning process.

page 63

5. Conclusions

Since the ideas presented in this.paper are still of such a

tentative nature, it is hardly appropriate to make any far-reaching

claims as to the possibilities of such a system. I feel, however, that

the generality of the system proposed should enable us to extend some of

these ideas to other areas. Discussion of the frame system already

exists <3>. The representation of function is still far too limited to

provide much information about wider applicability. However, I feel it

is instructive to notice the possibilities of using relationships between

different types of properties of objects. Such relati'onships are

potentially of great use in environments in which it is necessary to

process several different descriptions (i.e. from totally different

criteria) of each object encountered.

page 64

REFERENCES

(1) Goguen L. "The Logic of Inexact Concepts"
Synthese 19 (1968-1969) pp. 325-375

(2) Lakoff G. "Hedges: A Study in Meaning Criteria and the
Logic of Fuzzy Concepts"

University of Michigan and Center for the Advanced
Study of the Behavioral Sciences

(3) Minsky M. "Frames"
A. I. draft; April 4, 1373

(4) Newell, A. and Simon, H. "Human Problem Solving"
Prenti.ce-Hall; New Jersey; 1972

(5) Sussman, Gerry "A Computational Model of Skill Acquisition"
M.I.T. Artificial Intelligence Technical Report 297;
May 1973

(6) Winston Pat "Learning Structural Descriptions From
Examples"

M.I.T. Artificial Intelligence Technical Report 231;
September, 1978

