WORKING PAPER 58

FUNCTIONS AND FRAMES
IN THE LEARNING_DF STRUCTURES
by
MICHAEL J. FREILING

Massachusetts Institute of Technology
Artificial Intelligence Laboratory

December 1973

Abstract

This paper discusses methods for enhancing the learning abilities of
the Winston program, first by representing functional properties of the
objects considered, and secondly by embedding individual models in a
hierarchical ly organized system to provide for economy of recognition. An
example is presented illustrating the use of these methods.

Work reported herein was conducted at the Artificial Intelligence
Laboratory, a Massachusetts Institute of Technology research program
supported in part by the Advance Research Projects Agency of the
Department of Defense and monitored by the office of Naval Research under
Contract Number NBBB14-70-A-8362-8085.

Working Papers are informal papers intended for internal use.

1.
2.

3.

S.

Table of Cbntents

Introductiun
Function
2.1 Motion

2.1.1 General Motion Primitives

_ 2.2 Holes

2.2.1 Hole Types
2.3 A Formalism For Functioh
2.4 Use of functional representation _
A Hleraréhicalig Structured Knoulédge System
3.1 The Individual Test-Frame |
3.2 Utilizing the Test-Frame Structure
3.3 Constructing and Debugging

3.3.1 Local Debugging Rules

3.3.2 General Debugging Techniques
3.4 An Example

. Grouping

Conclusions

References

p.3
p.7

jp;il
p.13

p.17

p.18

p.21

p.24
p.29 .

p.34

'p.38
p.42
p.43

pP.49 .

p.508
p.58
p.63
p.64

page 2

page 3

1. Introduction

The structural description learning program of Pat Ninston achieved
great progress in answering questions concerning possible mechanisms for
acquirihg the ability to categorize and compare objects. His program'uas-
capable of building general descriptions of-clésaeé of objects,
understanding differences betueen descriptions to the gxtent that it
could solve simple analogy problems, and in some cases dividing a scene
into component structures. The limitations of his work however, raise a
number of other intefesting gquestions.

First of all, his program described objects onlg-in terms of their

structure. Such one-sided description has inherent Iimitatibns in that

(a) It does not provide for recognition of objects on the basis of
less concrete criteria, say the uses to which they may be put.

(b) It does not permit generalization to deal with classes which may
be different structurally but similar in other respects. For
example, the class of possible supports for a television set
includes tables and shelves, which share little in the way of common

structural properties.

(c) In many practical probiems, it is of great advantage to haQe :
- many ways of describing a particular object. Limitation to one

specific mode of description severeiy restricts the class of

problems which may be tackled.

~ These |imftations suggest that we search for other ways to describe
Objecta aside from pure structural form, and'attempt to understand the

relationships between different ways of describing objects. The:r!chness

of such interrelationships should provide us uith useful ways to

page &4

accelerate our ability to understand the objects, as weil as greattly
expand our abilitg to use such descriptions effectively.

Secondiy, uwhile Winston’s program uas quite capable of understanding
the differences betueen particular items or classes of items in a given
domain, the descriptions were not organized in a systematic fashion
capable of representing any structure inherent in the domain. For
instance, there is no provision for economically representing subclasses
of given structures. Understanding the structure of a domain should

enable us to

(a) classify items much more easily,

(b) propose more refined theories about the structure of the domain,
(c) provide valuable ideas on the nature of learning since much of
learning and problem solving is concerned with exploring and
comprehending the inherent structure of general classes of "problem
spaces" <4>.

This paper represents a collection of ideas and proposals aimed at
providing first steps in overcoming both these limitations. It should be
stressed that most if not all of the ideas are tentative and in a state
of flux. They are not meant to be as yet a complete or consistent theory
of general types of representation or learning of structures of various
domains.

The particular domain I have chosen to discuss is a slight extension
of Winston’'s domain--that of structures built from blocks. The ideas of
functional description uhich uill be elaborated are of course, very

specific to the blocks world domain, though it is reasonable to expect

that in some modified form they will have applicability to the problem of

page 5

recognizing real physical objects. The ideas of structuring a

recognition system, houever, are far less domain-dependent, and shouild

find application in almost any recognition s@heme; | |
Hith respect to the problem of representing aspects of objects other

than form, it seemg appropriate to make an attempt at deécribing_objecta"

on the basis of their function. There are several reasons for thiss

(a) It may be possible to construct simple representations of the
functions of objects in the blocks world in terms of simple concepts
of motion and areas of unoccupied space.

{b) Many structures in the blocks world have real-uorld_counterparts .

" which are classified in actuality on the basis of fuhction, An arch
is principally something ue can pass through. A table is
principally a structure we can put things on.

{c) There are many relationships between the form and function of
objects. Since the possible functions of a class of objects are
general ly much simpler to enumerate (assuming we have the proper
tools!) than the possible structures, functional description enjoys
the advantages of more concise forms of representation uith a
corresponding increase in our ability to manipulate overall
descriptions of objects. '

As far as the problem of organizing descriptions is concernéd‘l am
propasing a system constructed on the lines of general vision fraﬁg

systems discussed by Minsky <3>. Such systems have several'advantages,

They have a well defined inherent structure, they provide for economic

representation of information, they are relatively easy to patch lecally,
and they are simple to construct in a step-by-step fashipn. Furtﬁermoré,
frame-1ike systems posess a generality which makes them applicable to
many domains. | |

It should be mentioned here that 1 have felt it desirable as a first

step to divorce this work from problems of vision or sense.

page 6

Consequently, It is assumed that all structures presented are described
in a "God’s eye" vieuw, that is, such descriptions are complete in the
sense that nothing is obscure or hidden from the viewer, and that the’
descriptions contain no information uhich is applicable only to a
specific viewing position. In addition, the descriptions are assumed to
contain complete information about the attachment of blocks to each
other. Such data could be gathered by a machine uhfch attempts to move
different parts of a scene it is viewing. It is hoped that these
simplifications will provide a basis for fuller understanding of the
relationships explored, which understanding may later, perhaps, bhe
applied to aid in the solution of vision ahd sense problems.

For the reader uho desires merely an overvieu of the work described,
it is suggested that the example of section 3.4 be perused and the first

sections of chapters 2 and 3 be read.

page 7

2. Function

When we classify objects in everyday life, ue_generallg do so on the
basis of their function. When one sits doun at a desk, for instance, éne
is not usually concerned uith the shape'of its legs, or the humbgr of
drawers, but more directly with the fact that it has a flat surface_to.
write upon. Hhen looking for a hammer one doesn’t care if the handle is
round or square or octagonal, or if one sidg of the head is a claw or a
ball. HWhat we want to knou is, is one side of the head flat enough that
we may use it to drive a nail, and is the handle long enough to provide
sufficient leverage? If one were to worry about classifying the hammer
doun to the last iréelevant detail, one Qould waste inordinéte amounts of
time doing such calculations. Rather, it makes more sense to concentrate
on those specific properties which are espéciallg pertinent to the
desired function. Classification of an object by its functional features
provides us with a computationally useful tool for quickly finding the
objects we desire.

qu this same reason, it seeﬁs quite desirable that any cﬁmputer
prograh to deal with classification of objects on a more than trivial
levél should be capable of providing representation of a class of objects
by their function.'or by the specific properties directly relevant to
their function. This is not to say that detailed stpuctural descriptions
"are not desirable, but that functional repﬁesentations'uill generally

expedi te computation, even in cases uhere ue may later_desire to examine

page 8

the detailed description.

Consider for example the problem of finding all instances of an‘arch
in figures 2.1 and 2.2. UWhen working on 2.1, Winston’s program first
groups the three basic arches (i.e. those whose support consists anly of
a single block) and then groups each bottom arch with a support (E with
ABC and F uith GHI) to form a fourth "generalized arch,” since any
arbitrary structure may be a support for the arch. Following this logic,
there are 15 possible matches for arches in figure 2.2, which one might
expect the Winston program to produce. Although such fine distinction
may be necessary in a particular puzzlie domain ("Find an arch in this
scene such that the number of blocks in the arch is one less than the
number of blocks in the scene uhich are not in the arch."), and even
desirable to be able to make, one would certainiy balk at the prospect of
carrying around descriptions of 15 different arches every time one
encountered this configuration in some larger scene. In any application.‘
where one plans to utilize the arch for some purpose, one would expect to
be aimost exclusively interested in the arch containing all blocks in the
scene. Especially so in a domain of constructed objects, where one might.
expect all the blocks in 2.2 to be attached to each other, thus rendering
it impossible to physically isolate any of the other arches. {Consider
the prospect of having to find all arches in a brick walll)

As a step towards resclving these problems, I would like to propose a
scheme for representing block structures on the basis of properties

closely related to their function. This scheme will rely principally on

the ideas of motion and holes in achieving its goal. The next section

Ffﬁ.gu

‘._.\

A

Fig. .2

page 9

Wwill discuss my ideas on motion and after that I uill say a fittle about
holes. In the third section a formalism for reprgsenting functfon will
be discussed, and finally, the possible use of such descriptions in a
learning program.

Before that however, let us speculate about a possible solution to the
arch problem mentioned above. A loose functional definition of an arch
might be "something one can ualk through." Although this is not
sufficient to define our arch (one can ualk through Building 18, for
instance), if we couple it with some model of an arch, we can immediately
discover the essential property of the arch. That ig, the tuo supports
do not touch. MWe might use this information to mode! an arch
functionally as a hole surrounded on three sides, representing the hole
as a block of air. Applying this to 2.2, uwe would find one hole and
thus, only one arch need be considered when using functional criteria.
This last qualification is important, because it is conceiveable that ih
some cases we would prefer to invoke a more form-oriented arch finder.
Houéver. the speed and simplicity with wuhich the function-oriented
representation may be used recommends it as a strong heuristic. Applying
our function-oriented representation to figure 2.1, we encounter a
slightliy different probiem. The two holes corresponding to arches A-B-C
and G-H-1 may be found easily. The central hole, however, might be
considefed slightly ambiguous. If we are choosing to represent holes as
blocks of air, we see that the central hole may be represented either as
one T-shaped block or as one brick of air “|ging"vatop another brick of

air. Consideration of the former would yield the generalized arch while

page 18

consideration of the latter uwill yield arch D-E-F surrounding hole alpha
(figure 2.3). Beta will not have a corresponding arch because it ié not
"covered" by a solid object. There may be some question about whether we
should consider D-E-F to be functionally an arch or not. As uWill be
discussed later, this will ultimately depend on other functidnal criteria.
such as umhether there is attacﬁment between E and A and/or betueen F 'a'hd

G.

page 11

2.1 Motion

In the domain of objects constructed out of bfocks. most of the
functions one considers seem to be contingent upon the idea of motion or
the restriction of motion. The hole is the principal part of the arch
because it enables the arch to achieve jts function, i.e. one’s ability
to move through it. The concept of support, or po}ential éupport. uhicﬁ
may be considered the function of objects |like a pedestal or table, may
be simply defined as the restriction of motion in a downuard direction.
A uwall may be considered as a structure which prevents one from
proceeding in a given direction uniess a detour of some sort is taken.
It seems clear that if we are going to deal with such functions in a
program, ue shouid have a set of primitive concepts with respect to
motion available for use. This sectidn uill consider a set (which is by
no means to be thought of as complete) of such primitives as a basis for.
the study of functional representation.

The motion we will initialiy be primarily concerned with Wwill be
motion in a straight line, or a sequence of straight lines. UWe will
probably want to consider the motion of three types of objects: (a) that
of a bird, which may move in any direction; (b) that of a ball, whose
motion must have no purely upuward components; and {(c} that of a creature
with legs, for whom the vertical components (e.g. climbing a staircase)
must be suitably small.

It should be noted here, that this definition of "suitably small” is

®

page 12

of necessity rather vague. There will be many other similarly relative
concepts mentioned later, in conjunction wWith ideas about containment,
HWindous, doors, etc. At the present there does not seem to be a general,
systematic method for hand!ing these concepts adequately. The fuzzy
logic work of Lakoff <2> and Goguen <1> is not very satisfactory. What
is more desirable for our limited application is a set of very simple
rules for determining a threshhold condition with respect to a given
context. Fuzzy Logic work generally tends to be quite complicated and
ignore the importance of context. For the time being, I intend to use
simﬁle ad hoc and perhaps slightly arbitrary conditions, e.g.

"Sufficiently small vertical components with respect to a moving object

Wwill be less than one fourth the height of the object." Since the moving

object is hypothetical, (and thus imaginary) its dimensions uill be.
determined from the structure under consideration, i.e., it must be small
enough to get through the doors.

One can see that these semi-quantitative concepts iike "sufficiently
small", as well as the proposed representation of holes as blocks of air
(see section 2.2), will require descriptions at some level to be more
quantitative in terms of dimension than the purely qualitative relations
handled by the Winston program. In a hierarchically organized knouledge
system (see chapter 3) these should naturally be placed at the lowest
(i.e. most specific) frame level and invisible at any higher level,
where the concepts of relative size and position may be introduced. The
information will then be available for access, but need not clutter.up

higher level comparisons. Furthermore, such specific information need

page '13

only be present in a specific scene being viewed. - It cén be completely
eliminated from most modeis the suystem will choose to Keep around for a

while.
It should be realized that the'descriptidns of mntion and holes in
the next sections are not intended to be the basis of a general theory of

motion or space. Rather, tneu should be viewed as gross simplifications

.

of complicated concepts which are intended to permit easy description of
more abstract_relations. Their chief feature is a large amount of

expressive power at a lou level df comp]exitg.

2.1.1 General Motion Primitives

The general primitives I wish to consider deal specifically with
the relationship of a (potentially) moving object with respect to its

environment. Basically, they are:

OBSTRUCTION ~- A rolling object will be consldered obstructed in a
specific direction (perpendlcular to the verttcal) if it meets an
obstacie on traveling in that direction and must make a suitably
long detour (say greater than or equal to the distance already -
traveled) before it can continue in that direction. Thus
obstruction is a function of the length of the obstructing object
and its position relative to the moving object. '

In flgure 2.4(a), the moving object is obstructed to the "east"”
because in order to move east it will be forced to move north from
X1 to X2 or south from X1 to X3, a distance greater than it traveled

+ from X@ to X1 in the easterly direction. In figure (b) the object
is not obstructed because the detour is relatively short. In
figures {(c) and (d) we would consider the object obstructed if the
perpendicular component of the total path traveled becomes greater
than the component in the desired direction. In the case of
backuard motion (e) in either of the two directions, this may be

page 14

simply subtracted from the foruward component, since one can
general iy trace an alternative path which does not contain the
components backtracked over. As with ali the motion primitives, it
will be useful to add the qualifier RELATIVELY when an object
contains sufficiently sparse (say no more than one fifth the total
length) holes uhich permit the desired motion, but would represent
an obstruction if these holes uere blocked. (This is to be seen as
a tentative ansuer to the "window" problem where, topologically
speaking, a building uith an open window does not enclose anything.)

COVERING -- An object will be considered covered if in traveling
upwards, the resultant of motions perpendicular to the upuward
directions ever becomes greater than the upward component of the
motion. As uWith obstruction, backtracking is subtractive, and there
is an analogous notion of relatively covered.

SUPPORT -- It is of interest that the existence of gravity dictates that
the concept of support be not quite analogous to that of covering.
First of all we assume that an object cannot be at rest uniess it is
suppor ted by another object or group of objects which are at rest.
The actual definition of support, houever, is likely to give us some
trouble. MWe could define support in such a way that an object is
supported by all the objects in contact with its bottom. But this
ignores the question of what would happen if ue wanted to remove
some of the objects beneath the supported one. A simple defintion
of support is that an object is supported by any set of points such
that one cannot pass a vertical plane through the center of gravity
of the object which places all members of the set on one side. Such
a definition at first glance may seem computationally messy, but

these are several alleviating factors. For one we Will be dealing
Wwith blocks, and in general the supports uwill be surfaces rather
than points. Any points which do appear will of necessity arise

from pyramid type objects uwhich prevent their being placed
arbitrarily close. In any case, the rule used to determine if an
cbject is supported nill not affect the use of the support predicate
in higher level computation.
Another concept which is potentially useful is that of SAFE
SUPPORT. An object is safely supported if it cannot be rolled to a
* position where it Will drop vertically, i.e. there are no points
under it directly in contact with its surface. Since a relatively
safe support would not really be very safe, there doesn’t seem to be
much use for it.

SURROUNDED -- We say an object is surrounded if (a) it is safely
supported and (b) it is obstructed in all horizontal directions. In
other words, if it were a ball, its motion would be restricted to a
fixed horizontal surface. The concept relatively surrounded refers
to the relative obstruction in all directions.

(o) X,

M. (b)
Xo
———
) AN x
Xz
| f— (d)
(C‘) \L
(e)
Q,H:a,woauéo__>§ € m e
f.)od? L\ ° N
; |
< ax
: g
¢ Zsulbt ;’-o.cf'(‘ e
: paths
Y

—

Fig. L.

e

Eg,i.b

(o)

(o)

(©)

Fi. 2-.C

(b)

page 15

CONTAINED -- an object is contained if its movement (in any direction)
is restricted to a fixed subspace of the world space. We may make
boundary conditions explicit by considering the "world" we observe

" as a fixed 3 dimensional rectangle uith clear walls., All things

Wwill be considered contained in the world (unlike Columbus, we do
not have to face the prospect of falling off the edge)l. An object
Wwill be considered relatively contained in the usual manner, as long

as it is safely supported.

ATTACHMENT -- Objects which are not attached to each other may move
independently. There are tuo types of attachment I feel should be
considered -- face attachment and edge attachment. If a face (or
suitable subregion thereof) is attached to to the face of another
object, the two objects are essentially one object in that they must
move together. If an edge of an object is attached to some other
object, the former object is said to be edge attached and is free to
pivot about that edge uith respect to the other object. This uill
enable us to deal with items such as doors and gates in a structure.
We will ignore tolerance problems in door jambs. For example in
figure 2.5 (a) if the marked edge is attached as indicated, we will
assume the block A may move freely to the position indicated in
2.5(b), provided, of course, it is not obstructed as in (c).

Using these concepts we can provide simple definitions for many
common block structures. A box (figure 2.6) is any structure capable of
surrounding an object. A canopy (figure 2.7) is any structure capable of
covering an object. A door (figure 2.5) is a block uhich is edge
attached to an arch such that in one possible positioﬁ, the arch and door
form a wall. A wall is any group of objects which obstruct motion in
some direction for a moving object sufficiently close. Addition of the
word "group" is important because otheruise, any object could serve as a‘
wall for a near enough object.

It seems evident that in a system using both functional and
structural definitions, we must be careful not to confuse them.

Hierarchies formed on the basis of function may differ greatly in their

organization from those formed on the basis of structure. Functionallg.

page 16

a table may serve as a pedestal and vice versa, although theg_ differ
structurally. Despite the fact that functional criteria may prove a
valuable aid in choosing candidates for a ciass, we will not in general

uish to define classes solely in terms of function.

page 17

2.2 Holes

Since an object may only move through space which is unoccupied, it
is a logical step to desire that ?reedom and restriction of movement be
represented in terms of unoccupied space or holes. In'generaf, holes are
not an easy thing to represent. Bob Moore’s statement "Holes are the
complements of simple objects, and the complements bf simple objects are
not in general simple" seems to shed some light on the fact. The contour
of free space in a given room at a given time may be exceedingly ccmpiex,
Houever, for the purposes considered here, it should not be necessary to
worry about such complicated questions. Basically, it_uould be desirable
if our representation of holes did not differ too greatly ffom our
representation of the other items in our world. This §UQgests that we
consider holes as composed of blocks of free (or as;ﬁe'shall see later,
potentially free) space, generally rectangular in-sﬁapé. Such a |
representation also seems advantageous for other reasons. Dividing the
free space up into blocks uwill also give us clues as to which parts of a
structure should be grouped together. But perhaps most important, the
primitives relating to motion which were discussed in the previous
section lend themselves readily to analogg With holes.

It seems advantageous to define ho|es-uith respect to a given
structure or group of structures., Thus a'hoje mag in part éonsist of
solid objects not attached to the given structure. The reason for'fhié_

is that any unattadhed'object may be moved independently of the given

structure. Suppose we have a box with a block in it (figure 2.8), and

Fig. 2.0
J (o)

_ —
=7 /4
Fig. 2.9 Fig 2.10

\
O\

bage 18

we move the biock to a different position in the box. We do not want to
be forced to consider these situations as representing tuwo different
holes, so we choose to include the unattached block within ihe hole uhich
describes the interior of the box. Besides making our task simpler,
houever, this scheme should give us a certain pouwer in altering
descriptions. For instance, suppose we have a ring of blocks surrounding
an object (figure 2.9), all of which are attached except one. Then with
respect to the rest of the structure that block represents a hole (albeit
a hole which has been temporarily filled) and the presence of that block
is not essential. If we are interested in forming an entrance to the
aréa.surréunded by the blocks, we knou that al!‘uéfneéd do is push tﬁé.
block out and we have our hole. (In a sense ue'uili bet tﬁis“information :
for free if the unattached block is already considered as a hole felative

to the attached ring.)

2.2.1 Hole Types

Rectangular holes may be classified according to the number of sides
on which they are bounded. Conveniently the number of bounding sides

coincides with the general purpose of such a hole.

Passages (ramps) -- Passages are holes uhich are bounded by three edges,
one parallel to the ground and tuo which are vertical and parallel,
above the horizontal edge. The key function of a passage is that it
limits non-flying objects to motion along only one line. Though
hard to visualize as holes, they are useful in understanding the
functions of roads and bridges.

page 18

Ports—- A port is a space bounded bg four edges, all perpendicuiar to a
given plane. They are similar to passages, in that they restrict
motion to a line. A port may be long, e.g. a tunnel; or short, e.g.
an arch and its supporting surface. Generally, their purpose is to
provide for motion from one region to another. Unlike passages .
ports restrict the motion of any object. R

Niches--A niche is a space bounded by five edges, the louest of which

must be parallel! to the ground. Niches generally provide plabes_for
objects to rest or be contained. Boxes (figure 2.6) and wall
indentations are both examples of niches: Any niche supports an
object, while a niche with only one edge parallel to the ground wuitt
safely support any object inside.
Rooms--Rooms (for want of a better word) are considered to be areas of
. space bounded on all sides--i.e. completely enclosed. They
represent the idea of containment. . _ '

It should be mentioned that the edges bounding holes do not have to
be solid. They may contain reasonably small (say not more than one sixth
total surface area) holes, with the general provision that the fioor be
solid. For example (figure 2.18), a box uith a port in one side is still
considered a niche, or a tunnel with a window would still be considered a
tunnel. Thus most of the motion concepts to which holes correspond are
the "relative" counterparts of those concepts.

It is interesting to note that some of the motion concepts dis;ussed
in the previous section have direct representation in terms of holes..
The notion of constraint to one direction of motion and safe support may’
be achieved by either a port or a passage. The notion of surrounded may

be directly represented bg.a niche uith only one edge parallel to the.

ground. The notion of containment translates directly into a room. HMore

‘specific examples of the transition from function to representation will

be provided in section 2.4.

It must be mentioned that for the sake of simplicity, some perfectly

page 28

natural conditions have been neglected. Consider for example a room with
a sunken aréa in the middle. One would like to consider this still to be
a room, but it might conflict with the notion of containment since
containment implies safe support, and a large enough niche in the center
might cause us to consider an object in this particular room not safely
supéorted. The bug here is probably with our notion of "safe-support.”
We probably want to permit "sufficiently small" drops. This would allou
us the liberty of considering structures |ike staircases to provide safe

support. For the time being, such fine.points will be left open.

page 21 '

2.3 A Formalism For Function

Any system which plans to provide BOme representation for fun¢tion
must also provide a formalism for such representation. The preliminarg
formalism I will describe is exceedingly simple (ﬁd doubt'refiécfinb the
simplicity of the domain) but some aspects suggest-generalizatlon to more
compl icated areas. Syntactically, ?X will represent a pattern-match'uhich
binds X to any item occurring in that positon, much_ifke the pattern
matching rules of Planner or Conniver. The symbol "C" uill represent
"sel f", i.e. "$" is considered a reference to the object uﬁﬁse function
we are describing. For example, (SUPPORTS $ X) indicates.fhat the object
ue are describing supports an object named X. Our formalism basically |
consiste of a predicate, POSSIBLE, thé logical connectives AND, OR, NUf,‘
and CHOICE, which corresponds to exclusive or, e.g.

(CHOICE (HAVE ?X CAKE) (EAT ?X CAKE)) _
and some functions and predicates (IN ?X ?Y)}, (IS ?X.?Y) ;true'if'x is a
member of class Y>, (SUITABLE-OBJECT ?X ?MODE), and PASS, SURROUNDED-BY,
SUPPORTED-BY, CONTAINED-IN, OBSTRUCTED-BY, and COVERED-BY.

(IN ?X ?Y) returns T if X is located in some hole which ié_part-qf
the description of structure Y. (SUITABLE—DBJECT ?X ?MUDE) generates .a .
structure representing a movable object whose size ié.feasonable with i
respect to structure X. MODE is optional. UWhere spécifiéd, it refers tﬁ
FLY, WALK, or ROLL depending on which motion abilities ue desire the
generated ocbjects to posess. The others are all predfcates-of the form

(PREDICATE ?X ?Y ?MODIFICATIONS) where the possibilities for

page 22

NUD!FICATIUNS vary with the predicate. For COVERED-BY, SURROUNDED-BY and
CONTAINED-IN, MODIFICATIONS may be RELATIVELY or NIL. For SUPPORTED-BY
it may be SAFELY or NIL. For OBSTRUCTED-BY, MODIFICATIONS is a list of
the form (DIRECTION, MODZ2) where DIRECTION représents a direction and
MOD2 represents RELATIVELY or NIL. For PASS, MODIFICATIONS may be ON or
THRU or BETWEEN. ON may apply only to passages, THRU applies to holes
in general and BETWEEN to a list of tuo objects.

POSSIBLE is a general predicate which operates on the motion
primitives. It asserts that there is currentig:no condition which
prevents the relation on which it operates from taking place. If it can
make the predicate true it returns T, otheruiée NIL. CHOICE is a
predicate operating on a list (L1 L2LN) of predicates, and can best
be understood in terms of a predicate CAN-MAKE (similar to Planner’s
THGOAL) which succeeds if it proves its argument can be realized through
limited manipulation of the structures involved. (CHOICE L1 L2 . . . LN)
is equivalent to:

(AND (CAN-MAKE L1)
(CAN-MAKE L2)

(CAN-MAKE LN)
(NOT (CAN-MAKE (AND L1 (OR L2LN))))

(NOT (CAN-MAKE (AND LN (6R L1LN-1DD)) .

page 23

Examples:
ARCH _
(POSSIBLE (PASS (SUITABLE-OBJECT $ WALK) PORT1 THRU)

DOOR

(CHOICE .
(POSSIBLE (PASS (SUITABLE-OBJECT $ WALK) (Bl B2) BETWEEN))
(NOT POSSIBLE (PASS (SUITABLE-OBJECT $ WALK) (B1 B2) BETWEEN)

ROAD
(AND

(POSSIBLE (PASS (SUITABLE—DBJECT $ LALK) 8 ON))
‘(POSSIBLE - (SUPPORTED-BY (SUITABLE-DBJECT $ WALK) 8 SAFELY)

Al

g

F-fa.

(a)

TorPl

v — e -

page 264

2.4 Use of functional representation

Assuming we have a program uhich takes a structure and interprets it
fn such a way as to discover all the pertinent holes, We may uée the
holes and other information to construct a list of possible fuﬁctions for
the structure. Let us look for example at a table (figqre-2.11(a)); 'Our
hole finder Wwill find the four ports shoun in {(b) and producela

description like (c). Furthermore the large square éEea of the top

- suggests that it will support something. Consequently the_ligt of

possible functions will be:

(POSSIBLE (PASS (SUITABLE-OBJECT $) PORTI THRU))
" L] "

PORT2 *
u " L] PURT3 n
" . . PORT4 "

(POSSIBLE (SUPPORTED-BY (SUITABLE-OBJECT $ ROLL) TOPL))

(POSSIBLE (COVERED-BY (SUITABLE-OBJECT $ FLY) TOP1))
1f we are now searching this structure for a table, and the functional
reprasentatioh of table is

(POSSIBLE (SUPPORTED-BY (SUITABLE-OBJECT $) T4)

uwhere T4 points to the table top in an ihternal description of the table,
we immediately have an anchor with which to begin .our comparisﬁn_uith the
table description. Hinstbn’slprogram Would have fo search the entire
description before deciding_tq link the two table tops. Furtherﬁofé; if
we Were looking for a hous@ in figure 2.11(a), and assuming the house -
had a functiﬁnal representation |

(POSSIBLE (CONTAINED-IN (SUITABLE-OBJECT $) R1 RELATIVELY))

Relat ions

T HAS - PART

I SUPPORTED ~BY

T MARRIES

IT A-KIND—OF

Nz

PORT | =
Lz

HS .11 (<)

page 25 °

He would see that this does not occur in the descrfptiqn'and would not
even have to bother trying to match the tuo‘descriptiohs. It is |
interegting to note that if we are actually looking for a pédestal (uhich_
will have essentially the same functional description as a table) we will
succeed on the functional description but then end up uWith a_bad match.
But we haven’t lost entire!g. because the;machihe has discovered aﬁ
important thing. MWhile not strictly speaking a pedestal, the object of
figure 2.11(a) may be used for a pedestal if one fs needed'and none are
around. If at some later point the machine wishes to build soﬁething;
this information may prove invaluable. Consequently, we seé thétzcertain
advantages will accrue from keeping our knowledge of functional
properties separate (in some sense) from our knouledge of structural
form. This Qill be discussed more completely in the ne#t-cﬁapter on the
.general hierarchical system which uil! be the backbone of the program.'
Al though [do not propose presentiy to deal with the prbb[eme of planning
and constructing structures, such would be a logical and pefhaps
insightful extension of the program 1 have in mind. |

Let us return nou to the triple-arﬁh example of figure 2.1. Our
function list will look something like -

(POSSIBLE (PASS (SUITABLE-OBJECT $) PORT1 THRU))

" " " PORTZ2 "
" " " PORT3 *

Where PORT1, PORT2, and PORT3 point to the respective ports in'tﬁis
scene. When looking for arches, we again get immedfate links. Here, the
time saved is much greater because we do not have to go searchihg for

croéspieces among every object in the scene. It is perhaps important to

[:l’cj, &.il

——

blocks

page 26

note that this simplified proceas uwill fail to find the simple top arch.
This is because the top arch strictly speaking, does not contain a port.

As discussed in section 2.8, this may or may not be desirable. One

practical way to fix this bug, if we want that arch, would be to cohéidér

the top structure separately by moving it (in the machine’s imagination)
to a separate place and then discovering the port. Anéther is giving_tﬁe
machine the knowledge that an inverted passage may serve as a portlif the
objéct rests on a suitably large surface. Both these methods presuppose

proper attachments, and a grouping of items in a scene by attachment (see

"~ chapter 4). Both have heuristic merits, which should be consideﬁed in a

final program.

Another interesting problem is that of finding an arch in a scene
like figure 2.12, uhere the hole is blocked. Again, aséuming an initial
grouping by attachment, and that block C is not attached to the others, C
will be represented as a hole with respect to substructure A-B-D. The

arch uill be easily found. Winston’s program uould-have-to explore

- possibilities A-B-C and B-C-D as well as A-B-0 in determlning the arch.

Suppose, now that C were edge-attached to B or D. Then by consldernng

the extremes of its motion (figure 2.5(b)), our function-finding program

should know enough to construct:
(CHOICE

(POSSIBLE (PASS (SUITABLE-OBJECT 8) (B D) BETWEEN))
(NOT (POSSIBLE (PASS (SUITABLE-OBJECT 8) (B D) BETNEEN))))

matching the description of door.
(do not think the problem of translating from function descriptions

into the structure necessary to fulfill those descriptions uill arise

page 27

until a constructor is buiit. So I will just mention the'problem'briéflg:
uith reference to one example. Consider the function description
(POSSIBLE (PASS (SUITABLE-OBJECT.SIHALK) PHOLE THRU)) .

Since passing through refers to space (i.e. holes) iﬁ generai we will
be ;ble to generate several structures to fill this need. Any port or
passage wil! do, as well as any structure consisting of a bbx or room .
Wwith tuwo ports or passages. The first two would Iikelglbe'generatedzon,a-
first call since that is their sole function and they are simple to
construct. The second pair should not be ignored,. hquéveri and may be
tried if the machine fails to find a port or passage and is desperate for
something to fill this function.

It is appropriate to uonder if the domain discussed here is rot too

simple to afford effective extension to other areas. This is a difficult

question. Certainly at some level of structural complexity much more

" sophisticated theories of physical laus will be needed to adequately

describe function. And it is possibie that even the generalized

formalism would be of no use at all for describing the functions of

classes of non-physical objects. It may be that both the key functional
features and the short functional descriptions are much too simple to
admit useful extension. Nevertheless, it is quite'strikiné.thqf the
functional concepts discussed find an easy and diract-represeﬂtatioﬁ in
terms of specific structural properties and that certain structural

properties may immediately be singled out to provide clues as to .

' fuhctional use. Perhaps this is an artifact of our simple blocks wor Id.

But perhaps not. Considering chess as one example, specific types of

page 28

moves often translate readily into specific.objectives.: Simul taneous
attack of two pieces may be easily achieved by a fork. Immobilization of
a desired piece suggests immediate examination of the possibi[ities of a
pin. And when one's queen is in trouble, a saving tactic is often
attacking the opponent’s queen. Of course a simple one-to-one
correspondence between structural properties and functional use-dogs»not
hold in general, or even in these simple'ekamples. But in any case'uhefa-
a good method of functional representation narrouly defines:fﬁezchoices.

such representation is definitely useful.

page 29

3. A Hierarchically Structured Knoul.édge System

In chaper 7 of his thesis, Ninéton discusses the identifiéation
problem, a generalized application of the simple matching techniques
developed earlier. There are many aspects of fhis identification problem
which may be illuminated by the following questioﬁs:

Given a scene X, is X a structure of type FOO?

Does X contain any substructures of type F00?

Do we have a structure which matches X?

What substructures are present in X?

UWhat in general can ue say about X?

These questions shou a progression from less to more general. The
questions are closely related, because the answering of one question'még
involve the asking of several others. For exémﬁle, if a structure FOO
necessarily contains some substructures of type BAR, then in answering
the question "Is X a FOO?" we will want to ansuer "Does X have ang
substructures of type BAR?" But in ansuering this question we uill
cebfainlg want to ask of a substructure Y of X "ls:Y a structure of type
BAR?" Clearly these different questions we uill want to ask will require
quite similar processes, and many of the procedures used will be shéred
by routines ansuering all of these questions.

Winston’s program ansuers .the question "Do uwe have a structure which
matches X?" by matching all structures against X. If the ndmber of
structures in our data base is large, this sort of procedure may be
extremely wasteful, since many structﬁr‘es will not be at all like X, and

those which uill be like X will require much redundant computation.

page 38

Winston proposed tuo ideas to help improve matters.

(1) abstracting certain essential properties of a scene into a skeleton
which could be matched against X to quickly decide if it was worth
continuing to match X against this structure in detail.

(2) When certain structures are sufficiently similar, pointers may be
ingerted in them so that if the matching program runs into
“difficulty matching x against FOO, but the difficulty strongly
suggests X is really a BAR, the machine can quickiy suitch to the
BAR description with a reasonable expectation of success.
Both of these ideas are quite valuable for shorteﬁing the amount of.
computation required in deciding such problems. However, they still have

some drawbacks in the form proposed. Their construction and application

‘is somewhat haphazard, and lacking in definite'structure. Solution (2),

the “similarity netuork" <6; p.232> does enabie certain crucial
differences to change the model being compared, but it does so on a
highly local, one-difference level, without using the overall! evidence)
gaineﬁ already (perhaps ‘including failures in previously tried models) to

present an appropriate sequence of likely choices. Such a system will

work well uhen there are not too many structures around and few of them

are related. But if we are dealing with a world of structures where the

relationships and similarities are many, in other uoﬁds, a world with a
definite structure of its oun, we would like our'mgchfné to be more
systematic in the application of these processes'sd thaf.itg internal
models resemble the structure of the world to at least a reasonablu.closéz
degree. |

It is also interesting to note that the question "What subsfructufes”

are present in X?" is ansuered in the Winston system by checking a list

of all substructures knoun. [t would be quite nice, of course, if a

page 31

program looking at the structure could quickiy generate lists of likely

and unlikely substructures, i.e. tell us which substructures we should

“be looking for. It may be asked if this is really a meaningful question,

or simply one of "puzzie value" as figure 7-31 <6; p.238> in Winston’'s
thesis might indicate. My personal feeling is that it is in fact quite
meaningful. When presented uwith rauw data in the form of a large and
complex structure uwhich is not artificially contrived, we have an
excellent chance of determining its principal features if we can simplify
the description by a judicious labeling of substructures. This, houever,
depends on our ability to cheaply decide which substructures we should
look for. We shouid be able to make use of clues provided by specific
remarkable features of the object as uéll as those provided by context.
(Uhat type of structure is expected here? What substructures are kndun to
be common building blocks in our current world?)

In this light, it is instructive to consider the’properties we would
find desirable of a general description mechanism. Perhaps most
important is the consideration of speed. At the brute face level,
finding appropriate descriptions of structures requires exponentially
exploding search if all possible substructures are to be considered. The
amount of search actually needed in solving brobléms provides a
convenient metric against which to measure performance. Each lével'of
complexity in our descriptive pouer can only be attained practically if
such descriptions may be recognized in a reasonable amount of time. In
order to recognize a complicated structure reasonably fast, we must be

able to recognize its simpler components very fast. This requirement

page 32

strongly suggests that ué have the pouer to concentrate on deécription
one level at a tfme, so that we do not become confused by irrevelant
detail. Winston <B3 p.202§ recognized this problem and proposed a méthod
for solving it. It seems desirable to genera[ize his_splutibn.

A second desirable property of a general description pr0ces§1ng
system }s that the system be easy for the machine jtself to construct and _.
debug. I[f we merely handed these structures to the machine'on_a;platteri
the best claim we could make would be that we oufselves had a reasonably
good understanding of the structure of the domain ue uere working on. |
But it would be far more interesting if the.machine itsel f could
construct a uworking system, wWith some help from us of course. Then ue
could say in some sense that the machine itself was capable of -
understanding the structure of our particular domain. This can best be
achieved by a great degree of simplicity, as uell as the ability for
errors to be patched locally without having to uorrg about possible side
effects on the entire system. The ability to diviqe the system into
small blocks of well defined structure would greatly facilitate this.

There are probably many possible systems one could build which meet
these criteria to a reasonable degree. In this chapter, one alternative
Wwill be discussed which owes its conception to the frame systems proposed
by Minsky <3> as a general structure for dealing uith'mang.probIQMs_ih
artificial intelligence. Such a system has many of the desiraﬁle
properties mentioned above. A hierarchy of frames provides eométhing
like an automatic control structure. Through judicious-ofganizatibn and

use of pointers one should be able to eliminate virtually all unnecessary

| X

page 33

search, and thus provide tremendous gain in speed. The ability to
isolate single frames provides conveniently for local repair and
construction. And since a frame system is in general hierarchial,

di fferences betuween structures may be represented at different levels,
enabling the machine to temporarily focus attention on specific questions
and effectively share descriptions of several similar objects.

A short overview of the proposed orgainzational system will be given
here, and dealtvuith in more detail in subsequent sections. The
description in this chapter should not be considered complete, since
there are several probliems which have not yet been resolved
satisfactorily. These uill be mentioned uhere they occur.

Basically, the system will consist of a set of hierarchies (each a
tree or perhaps a lattice structure) of small modules cailed test-frames,
uhich uill represent complete and incomplete descriptions of various

classes (or examples of classes) of objects. The hierarchies uill in

. general each represent a general class of objects at their top level,.

Hith subclasses represented at louwer levels. Models of specific members
of each class may be tacked on at the bottom level of classification.
These uWill be of use in processing complicated descriptions and in
debugging our system when errors are noticed. Certain test-frames will
be considered "entry points" to the system. Any frame which has a
specific name associated with it will be an entry point. This will
permit descriptions in one part of the system to reference qomponents by
name, which may be examined directly without having to pay attention to

test-frames above the named class. Other entry points will be defined by

*

page. 34

a "skeleton" <B; p.233> consisting primarily of functional information

described in the previous chapter. The top test-frame in each hierarchy

will be an entry point. Names and function descriptions—uill'be'indeked_

by é program which provides pointers to the various entry points, and may
be considered the super-top-level test-frame. The pﬁrpose is to provide
a small list of entry points arranged in some order of |likelihood uhich
will eliminate search of most of the test-frame struchre. All frames
will provide information which uses the result of prior frame deécriptibn
operations to reject a description or accept it, and if accepted, fﬁ E
point to subsequent frames in the hierarchy where ft might beiong. Each
entry point Will contain more complete information tb_bpmbensate for the

fact that it may be entered without the prior,processiﬁg having been

done. A description will first be processed by the super-top-ievel fréme .

which will return a list of plausible entry points. These will be

explored in a given order. Some may define substructures uhich.uijl be

noted and others uill (hopefully) lead to a complete classification of

the description. Other substructures may be searched for only when .
specifically requested by a frame, since it is desirable to eliminate a

costly search for every possible substructure.

- 3.1 The Individual Test-Frame

The original network matching program described by Winston <6;

chapter 4> was reasonably symmetrical with respect to the tuo networks

page 35

being matched. This has certain advantages in applications such as the
analogy problem. since it permitted models to be formed from descriptions
and then compared uwith other models. But, in some cases, this completely
symmetric match proved to be a drauwback. In finding substructures of a
scene, for instance, the matching program produced such a proliferation
of c-notes that it uas extremely difficuit to isolate the proper |
information. These c-notes ended up being discarded <6; p. 239>.
Continually generating c-notes only to discard them later is a wasteful
process. The essence of our system is that one does not want to carry
out an entire match at once, but only smalil portions at a time, deciding
what to do next on the basis of the previous results. Consequently, it
is desirable to have a matching routine which is by nature asymmetric,
considering the netuork description required by a test-frame {(the frame
model or FM) as a pattern uhich must be matched in the structural
description (SD) of the item we are attempting to classify. Features
pﬁesent in the SD but not in the FM uill generaliy be ignored unless
specifically noted, while those in the FM uhfch are absent from the SD
Wwill be of critical importance. Furthermore, it is desirable to simplify
those portions of the description processed by each frame so that they

may be readily accessed by louer frames. Such simplification may take

tuo forms:

(a) labeling certain portions of the SD with a tag which may be
referenced by louer frames, and

(b) replacing certain sections of the SD by simpler descriptions to
speed up work by louwer frames. For instance, it would in many cases
be desirable to replace the subdescription of a rouw of attached

page - 36

bricks by the simple tag (WALL). When this is done; a record of the
transformation should be kept someplace, so that it may be undone if
that should later be necessary.

It is reasonable, considering this, to vies the operation of .the
matching program as a progressive transformation of the SO intoc a more -
and more general representation. In cases uhere the area of the SD being
examined is very small, say one or two nodes, it may prove possible to

bypass any interpretive mechanism and represent the requirements

explicitiy by a feu lines of code. [anticipate that this will generallg'

“be the best repregeﬁtation for the difference operations on descriptions

which are coming from immediately preceding test-frames. The case of
entry points will be different, houever. Heré the matching uill be much
more extensive and we will probably desire to invokq the matching
program. In a Iangdage such as CUNNIVER, the FM may represented by a set
of assertidns in a context associated with the frame, and all we need to
do is add a line of code to call the matcher.

At this stage the usual distinction between data and program is

becoming quite blurred -- in one sense each éest-frame represents a

description of a certain class of objects, and in another_éense it
represents a portion of a procedure which moves us around the system.
For example, if we uwere interested in whether the structure under
consideration contains an arch ue could represent this as .

(AND (SETQ L2 (CONTAINS SS15 ARCH))
(GO-FRAME G@186))

where CONTAINS is a high level function which searches.for substructure
ARCH in SS15 and returns it as a value. Or we could say

(AND (MATCH FM SD) (NOT (NULL L2)) (GO-FRAME GB186))

page 37
with a netuork FM:

(HAS-PART SS15 ?L.2)
(KIND-OF L2 ARCH)

where the "?" indicates that L2 should be bound to the appropriate
substructure. |
Also associated with the entry point frames will be a name or a

skeleton or both. The total content of the skeleton is flexible, but it

Will definitely contain any functional information abstracted from the

structure under consideration. Other characteristics of great interest
will be added, presupposing that the machine has some means of deciding
which characteristics are of great interest for given frames, and also

knous hou to find these quickly in a complex structure.

page 38

3.2 Utilizing the Test-Frame Structuré

The key to success of the test-frame sgsteﬁ_nill.be a reliaﬁle_setﬁ'
of skeletons in&exed in the}euper-top-1evel test-frame.. Given a ékeletan'
which has been created for a structure under conslderatlon, matching this
skeleton against skeietons of entry points should gue!d generallg three

sets of entry points:

(a) entry points uith very simple skeletons which are small subsets
of the SD skeleton. :

(b) entry points with more complicated skeletons which are subsets
or very nearly subsets of the SO skeleton.

{c) complicated entry points which almost completely match the SD
skeleton.

Entry points in class (a) will représent simple structures which are very
likely to be the basic components of a large structure (ua!ls. archés,
etc.). Entry points in class (¢) uill represenf likely candfdatee_fqr
déscriptions which match the éntire structure; Entry points in class (b)
may be either large components of the sfructurg’or'céndidates.{o match
thé structure which are not as likely as those in.(c). 'First, entry
points of class (a) will be tested until éxhéusted. When appropriaté-
subgroups of fhe SD are discovered,, thég,uill be marked a;cardinglg; in

order to form a more generalized SD which uill cause less confusion to

‘later test-frames. An entry point may be indiéated more than once, sag

by different portions of the SD which are instances of the same geheral
type of substructure. The entry point will be tested once for each of

these. Certain frames may be marked as terminal for a given class, even

page 39

if they .point to frames belou them. The‘ meaning of a te_fminal frame is
that if a substructure being tested reaches a terminal frame, it is _é |
"success", i.e. it may be considered a valid member of the class of
objects l?epr-esented by that particular frame. Terminal’ frameé tHUs in
some sense provide failpoints in a frame system. | [f a substructure which
we are trying to classify is rejected at some particular frame, it s'!mplg
backs up to the nearest terminal frame where it euécée_jded. When ue have
-decided_ that a substructure should be replaced by a more g'enér_a’|
description, (usually just a name) in the laréer SO, we hang the :
substructure on the appropriate terminal frame as an "example" with a
unique label, and then replace it in the original SD by the name
associated with the terminal node and a pointer to the label. Thus if at
some time we wish to revoke our assignment of this substructure or
explore its properties more thoroughly wuwe will not have _Ioét any
information, while in the mean time we avoid cluttering up the SD.

After the SD has been simplified by replacing all the substructures
represented by class (a), we can begin deciding about the structui*e_
itselflbg comparing the SD with frames whose entry points are in c_léss
(c), il:'l order of the completeﬁess of the match. If we process a terminal
node in which the entire SO is acbounted for, then we have a"descrip-tion
of the entire structure. If we reach a terminal which aécot;mfs_ for some
portion of the SD, .ue have isolated another substructure, and may further
simplify the SD as described above. We may proceed to the next entry |
pbint if we fail to reach a terminal point, of- decide to abandon a b'a'i:h

Hhich is taking too much time. Ilf we exhaust all entry p'oints in (c)

page 48

Without finding a match ue may try those in class (b)._uhich.rebreseht

'less likely candidates and intermediate subgroups. If we are able to

simplify the SO still further, we may return to frames in places we
previously abandoned because of computational difficulty.

This procedure for using the test-frame structure is not final.
Priﬁcipa!lg it represents a sort of compromise between the classfcar
"bottom up" (starting uith the most basic substructure; and combining
them to form more complicated substructures until the éntiré structure is
categorized) and "top doun" (looking only for specific substructures when
their presence is indicated by a particular attempted categorizatiqn),'
The "bottom up" scheme uou(d require méng_attempted matéhes and be quite
costly in terms of time. The "top doun" scheme will be dealing with
quite complicated SD's whose simplification will oﬁlg'be incidental. The

system proposed hopes to significaﬁflg‘éiﬁﬁiifg!fﬁé“SﬂlbﬁiffhﬁﬁgﬁaﬁéﬁgiﬁT“"

simple (i.e. cheaply identified) substructures and then opérafing in é'

top doun fashion where further subgrouping occurs only when specifically

requested by a frame or is "stumbled upon" by the classification process.

Such a strategy may not prove optimal for this applicafion and Will be
open to change should a better one present itsslf. N ..

It should be noted that there are no hard and fast guideiines for
separating the entry points into classes (a), (b), and (c). Such
separation will depend on a small program, perhaps uith special purpose

knouledge, which knous enough about the domain to make the proper

"choices. There would be a great advantage gained if this program itself

could be made to learn from experience. Currentiy, I do not feel 1

page 41

understaﬁd the problem fully enough to have suggestions as to hou this-.
might{be accompl ished, but it would necessitate collecting some data és
to the reliability of the skeleton system and proposing amendments to it.
As tﬁe program grous in complexity, it may prove uSeful to embeﬂ thé
skeletons in a mini~-frame system, which may be débugged in a fashion

similar to the large one.

page 42

3.3 Constructing and Debugging

The test-frame system we have been examining is oriented toward ease
of construction by a machine. This form of construction must necessarily
be an incremental process, changes oécuring.each time an error is made in
classifying structures. 1t may be helpful to think of the system as a
“theorg" of the étructure of the problem domain..3hitialig-duite_meagerg
which is progressively fleshed out and debuggéd as new examples are
encountered. The test-frame structure is designed so that_most'debugging
Wwill take the form of fairly local patching. Since too many local |
patches in a system of this sort could easily compromise its structural
generality, ue would like our debugging system to be as conSerVatiQe'as
bossible about amending the existing system. Usually we will be faced
&ith choosing from among two or more alternatives which divide roughly

into three categories:

(A) adding a neu test-frame or entry point
(B) producing a cross link between hierarchies
(C) changing existing conditions for rejection or frame

selection. '

(C) will be preferable uhere the differences are small, that is if
an SO ends up fairly close to where it should be, local changes should
not be too disasterous. However, in cases uhere a serious mistake has
occurred it will in general be better to create a new entry point

someuhere than provide a |ink betueen hietarchies: The problem here ié

page 43 -

that if too many entry points uith the same or similar skeletons.are

generated, we may end up having to do a lot more processing than we

really want to. In cases like this, we Wwill need a program which’

collects a set of entry points with similar description and compares

them, perhaps changing the skeletons of some to permit more efficient
selection for a given S0. In addition we would like the entry poipts to
be fairly eveniy spaced throughout a hierarchy. . [f the entry points are
too dense they defeat their purpose by forcing more compﬁtétion in the.'
initial entry point selection. And if they are too sparse, too'much work
will have to be done in the frame system, and ue_run'the risk of better
matches in the urong places for a given 303 Also, at some time we may
want to totally or partially reorganize a hierarchy, perhaps deleting

entry points which don’t do much good. This will be discussed later.

3.3.1 Local Debugging Rules

There are basically two different types of definite errors which may
occur. 0One occurs uhere a particular SD is accepted as a member of a
class when it should not be. Another is when all entries in a particular
hierarchy are rejected, and the SD actually fits someuhare in that
hierarchy. Since the machine is going to need some kind of information
concerning the proper position or positions (we will assume a given
structure may actually fit in more than one position in the frame system)

we will allow the machine to request the classifications when it has

o

page 44

finished processing an SD.

This form of questioning generalizes upon Winston's proéram which
accepts the information about uhether a structure does or doeé not beiong
to a specific class. Other forms of questions will be discussed later
which will augment the basic teacher-studént‘relatiqnship and_permit the
machine to learn more quickly. . |

There are four fundamental debugging processes in the frame system.

They are :

(1) providing for rejection of an SD when such is needed,

(2) rearranging a particular test-frame so that a particular

description or class of descriptions gets pointed in a different
- direction,

(3) adding a neu terminal node for a particular 'classification,

(4) processing a set of test-frames to provfde for a structural
description being accepted which was formerly rejected.

(1) When we wish to provide a rejection of an SD someuhere in our
system, we generally want to place it as close to the antrg‘point-as
possible so that the amount of useless processing ié_small. Bg.examining.
portions of the SO which uere not looked at and fﬁund-acéeptable by the
system We may focus on the probable causes for rejection, and ue-mag

further narrow our possibilities by comparison uith already iearned-.

" examples of the particular concept. Then ue proceed up thé hierarchy,

one test-frame at a time, making sure that no examples attached to each.
test-frame have the putatively undesirable;properties. As soon as ue hit
a frame which does accept such examples, we may place that particular

rejection information in the frame immediately below it.

page 45

(2) 1If uwe want to rearrange a test-frame so as to redirect a
particular class of SD’s we must make sure that no previously learned
SD’s get redirected also. Since the direction indicators as presentliy
conceived uill each be a test or tuwo followed by a frame pointer, ue need
only worry about examples tacked on to frames descendent from the
test-frame whose pointer we wish to amend. We may take the examples from
these frames and test them to make sure each goes in the proper direction
after our patching. If not, we uill be forced to further amend the
test-frame uhich is giving us trouble. We shouid generally not have to
look at any lower frames.

(3) UWhen uwe uant to add a ne