
The FINDSPACE Problem

VISION FLASH 18

by

Gerald Jay Sussman

Massachusetts Institute of Technology

Artificial Intelligence Laboratory

Vision Group

8/3/71

ABSTRACT

The FINDSPACE problem is that of establishing a volume in space where an ob-
ject of specified dimensions will fit. The problem seems to have two subproblems:
the hypothesis generation problem of finding a likely spot to try, and the
verification problem of testing that spot for occupancy by other objects.
This paper treats primarily the verification problem.

Work reported herein was conducted at the Artificial Intelligence Laboratory,
a Massachusetts Institute of Technology research program supported by the
Advanced Research Proj.ects Agency of the Department of Defense, and was
monitored by the Office of Naval Research under Contract Number N00014-70-
A-0362-0002.





The FINDSPACE problem is a computationally hairy but well-defined sub-

problem of the robot problem. The genesis of the problem name is a function

in Terry Winograd's block manipulation program. This function assumes a

model of the world consisting of a table with bricks piled on it and takes

arguments describing an object to be added to the scene by placing it on a

specified surface (either the table or the top of an existing block). If

there is room on the specified surface for the given block, FINDSPACE re-

turns a specification of the available space. If there is no available space,

the FINDSPACE function returns NIL. Associated with the FINDSPACE program must

be routines to update the data base, i.e. the environmental model, when an

object is moved in, added to, or removed from the scene. Indeed, since these

routines will be called relatively rarely compared with accessing of the

data base, it is reasonable that they be expensive and compute a complex

representation of the object whose status is being modified if this makes

FINDSPACE sufficiently easier. I became involved in the FINDSPACE problem

because Terry's program has certain restrictions (which I will described

later) which make it fairly useless for dealing with real world situations.

In the real world, a FINDSPACE solution, though it may be heuristic,

must be conservative. That is, it must not make the mistake of finding

space when there is none, though it may be occasionally wrong by failing

to find space when there is some. This is the case because the robot hand

may be damaged by attempting to push one object through another. This dic-

tum can best be understood by realizing that the stubbing of a toe reflects a

failure of the human FINDSPACE.

The FINDSPACE problem has several subproblems to be solved. How do we

represent the objects in the world model so that it is possible to solve the

problem with a reasonable degree of efficiency? How can we propose a likely



space for an object? And given a proposed likely space, how can we verify

its safety to the desired degree of conservativeness without rejecting too

many good answers? Thus the FINDSPACE program may be divided into two sub-

routines: a proposer and a verifier. Although this paper is basically about

verifiers, I will take a short excursion into the realm of proposers. The

simplest proposer (which is employed in Winograd's program) is a random

solution generator. It generates solutions randomly, constrained only by

the input data (the object and the surface to put it on) without regard to

the model. It then passes this proposed solution to the verifier. Such a

method works very well in a sparse space. A more sophisticated proposer could

have some description of the larger areas of free space, roughly analogous

to a free storage list in a storage allocation system for a computer. The

problem with this idea is that I haven't seen any scheme for doing this that

doesn't become very fragmented quickly. Another possible scheme (currently

implemented by Eugene Freuder) is a division of space into a set of buckets

which are marked when they are occupied; thus only proposals of unmarked

buckets may be made.

Getting to the verifier, various restrictions may be imposed on the

problem to make it more tractable. In Winograd's program, for example, the

only objects allowed are rectangular prisms, hereafter called bricks (he

does allow pyramids, but from FINDSPACE's point of view they are bricks con-

taining the pyramids), with all dimensions parallel to the coordinate axes;

furthermore, no brick may ever be rotated. This model is too restricted for

a real world robot since it cannot expect to find its world all lined up

for it. In this model an- object is represented as a single point (the lower,

forward, lefthand corner) and a set of dimensions (length, width, and depth).

The central function in Winograd's verifier is a function called GROW, which



Page 3

takes a proposed point and grows it along the direction of the coordinate axes

to become a rectangle of maximal size which intersects no other object. It

then tests the size of the result to see if it fits the given object, and

if it does it returns the center of the grown region.

I have written a verifier, called RCLEAR(recursive clear), which allows

the model to contain bricks in any orientation, thus relaxing the most im-

portant restriction of the previous program. In the model each brick is

represented as a list (P0 El E2 E3), where P0 is the centroid of the brick and

El, E2, E3 represent the edges of the brick. El is a list (d v), where d is

the square of the length of the corresponding edge and v is the unit vector

pointing in that direction. The general philosophy of RCLEAR is: in order

to determine if the given object could fit in the given place in the scene,

imagine it in place and check if it intersects any other object. The

critical function here is one called DISJOINT1, which takes two representa-

tions of bricks and returns T if they are disjoint and NIL otherwise. Upon

entry, DISJOINT1 computes the radii r1 and r2 of the smallest spheres com-

pletely enclosing each brick and the distance d between the centroids of

the bricks (they are the centers of the spheres). If d>rl+r 2 the bricks are

disjoint. If not, it constructs rl and r2, the radii of the largest spheres

about the centroids completely enclosed by the bricks (they are half of the

length of the minimum side). If d<rl+r2 the bricks overlap and the algorithm

returns NIL. If neither test is passed, there is uncertainty in the result,

and to remove this uncertainty we must apply a finer filter. We find the

largest edge, say El of brick Bl, of all six edges of the two bricks. We

then divide B1 into two bricks, Bll and B12, by halving El. DISJOINT1 then

returns (AND (DISJOINT1 Bll B2) (DISJOINT1 B12 B2)).



Note how clever this algorithm is; if at any level it can decide

immediately that the objects are disjoint by applying a gross test, it does

so. Furthermore, the recursion lets it zero in on the trouble spot very fast.

For example, if the bricks are close together at one end of one of them,

then it will recurse deeply only on subbricks at that end. Another thing to

note is that each test is very fast, so it never considers very long two

bricks at opposite ends of the table or obviously overlapping. In fact, the

harder it is to decide the question, the harder DISJOINT1 works. Furthermore,

it never takes a square root because it always keeps its distances squared.

DISJOINT1, however, has one serious difficulty; it never terminates if the

objects just touch, rather than overlap or are separate. To avoid this there

is an extra parameter (a free variable called FUZEPS (the epsilon of f~zziness))

which it compares to the length of the maximum edge before it recurses and

if MAX<FUZEPS it conservatively returns failure. This also makes FINDSPACE

somewhat hairier because it must avoid applying DISJOINT1 to the proposed

spot and the brick whose surface we are finding space on.

Another problem with RCLEAR is that it too is severely restricted in

that it only works for bricks and would be difficult to extend to other classes

of objects. We could write a version of DISJOINT1 which worked for tetra-

hedra, since it is very easy to calculate the circumscribed and inscribed

spheres of a tetrahedron. Furthermore, a tetrahedron can be split easily

into tetrahedra, making the recursive step possible. Since any polyhedron

may be triangulated into tetrahedra, it becomes possible to represent any

polyhedron as a union of tetrahedra. Thus two polyhedra are disjoint if and

only if all the pairwise combinations of a tetrahedron from each are disjoint.

This is very general but it suffers from the disadvantage that the algorithm to

triangulate an object may be in general very hairy. This is not so terrible



Page 5

if we are dealing with many objects because the data base building function

may be arbitrarily expensive since most objects are stationary. Another dis-

advantage is that an object such as a brick will be represented by say 5

(I do not know if this is minimal) tetrahedra, and thus a new program would

be perhaps 25 times as expensive as RCLEAR. Although this is only a con-

stant factor, it looks pretty bad to me.

Instead of going all the way to arbitrary polyhedra, we can get some

mileage by restricting ourselves to arbitrary convex polyhedra. Any such

object can be represented as a system of linear inequalities, each of which

determines the halfspace bounded by a plane of which a face of the object is

a segment and which is true on the interior of the object. Thus the ques-

tion of whether or not two convex polyhedra are disjoint is the same as

the question of when a system of linear inequalities (the union of the sys-

tems which determine each object) is inconsistent. Until the recent visit

of Michael Rabin, I thought that this problem was very hard, and I did not

consider it as a possible approach. Dr. Rabin, however, showed me that one

could consider this a linear programming problem as follows: Let two con-

vex polyhedra P and Q be represented by the following inequalities, where

fpi=O (fqi=O) is the equation of the ith face of p (q).

fpl"P+Pl xx+ply+Plz z>O, fp2=P2+P2xx+P2yY+P2zz>0, etc.

fql=qlqlxx+qlyqlzz O, fq292 + 2xx+q2yy 2zz0 etc.

Since P is an object, it is not inconsistent and must have a solution, say

(xl1 1,zl) which satisfies it. Thus we can employ linear programming tech-

niques, the simplex method, for example, to find a solution of P which op-

timizes the form fql (we actually need not optimize fql, we can stop when-

ever fqL 0). If the best we can do leaves fql negative, then the systems



are mutually inconsistent and thus the objects are disjoint, If we can make

fql positive, then we have a solution of the constraints {fql}U P and we

can use linear programming to repeat the process on f q2 with respect to

the new constraints {fql1}U P. We continue this process until we come up

with an inconsistency or until all the f qi are satisfied, in which case we

decide that P and Q are simultaneously satisfiable, i.e. they intersect.

This turned out to be a common linear programming technique which I

found formalized in Linear and Convex Programming by Zukhovitsky and Av-

deyeva, as an algorithm (chapter 2.2 - The Simplex Method for Finding a

Basic Solution for a System of Linear Inequalities). I have realized a form

of this algorithm in a program called FEASGEN, which generates a Solution to

a system of linear inequalities if there is one. I have embedded this pro-

gram in a verifier called SIMPCLEAR. Comparisons in efficiency of RCLEAR

and SIMPCLEAR are included in the appendix. It is evident, however, that a

great deal might be gained in the efficiency of FEASGEN by a judicious

choice of the f . to be tested at any time. Furthermore, if at any time

we get a point which satisfies all the remaining fqi (the regions have

the point in common) we want to know that immediately, and in fact if we

ever come up with a point which satisfies any fqj besides the fqi we

are currently considering we want to bring f .qj into the list of constraints

so as to narrow our search space as fast as possible. I illustrate this

as follows: P and Q intersect over the area CIJ. Suppose that the ini-

tial proposal we have for P is the vertex A (a worst case). When we choose

a function corresponding to a side of Q to increase with respect to the

constraints of P, it would not be optimal to choose EF or FG because they

are both satisfied everywhere on P. If, however, we increase HG (or EH)



Page 7

with respect to P

we will get to

D (or B)

after one step

(the simplex

algorithm

steps along the

vertices of

the object).

(Note that

in either

case HG

will be-

come pos-

itive,

becoming

a con-

straint

which cuts A
off ver-

tex A). In the next step the only plane worth increasing is EH, which gets

us a solution. The algorithm which I have coded contains all of these

hacks and thus does not waste time with irrelevancies. The only real over-

head is that it carries EF and FG along throughout the calculations because

I do not know how to decide that they are subsumed by P.

Why have we gone to so much trouble to find a clever method for

determining the disjointness of objects; surely we can do this simply by

analytic geometry? If two objects intersect such that one is not wholly



contained within the other, then an edge of one must intersect a face of

the other. The straightforward way to check this is to determine the

intersection of every edge of one with every face of the other by solving

three simultaneous equations in three unknowns (two defining the edge and

the third, the face) and then checking that the resulting point is in

the correct range. (By Cramer's rule, a 3x3 set of equations takes four

determinants, each taking 14 operations; but by collecting common sub-

expressions, this can be reduced to a total of 47 operations.) Thus,

since a brick has six faces and twelve edges, this method would require

144 such tests (plus a check that one vertex of each is not in the other

to exclude the wholly contained case) to determine that two bricks are

disjoint. If they are not disjoint the condition would be determined

earlier by some particular edge intersecting a particular face in range. In

the worst case, however, this test would require more than 144x47=6768

operations (we have ignored the range tests) to prove two bricks disjoint.

The linear programming method should take about n iterations, for n

the number of constraints, to determine feasibility. Now each iteration is

a Jordan elimination on an nx(d+l) matrix, where d is the dimension of

space. A Jordan elimination takes (n-l)xd subtractions and 2x(n-l)xd

multiplications for a total of 3x(n-l)xd operations. So for bricks,

FEASGEN should take about 3x11x3x12=1188 operations to determine disjoint-

ness. Though I don't know about the worst case, the data on FEASGEN, as

explained in the appendix, seems to indicate that the worst case is when

the objects are disjoint, which takes almost a constant amount of time

to compute, whereas the amount of time it takes to decide that two objects

are not disjoint is always less and varies considerably, just as in the



Page 9

exhaustive intersection method examined earlier. This would lead me to

surmise, since the observed behavior of FEASGEN matches the a priori

behavior of the unwritten exhaustive search, that FEASGEN is really only

a very clever bookkeeping method for doing the exhaustive search, with

built-in range-testing and wholly-within case exclusion.

Nick Horn and I have slightly investigated other methods. For ex-

ample, we have conjectured, but not proved, that any two disjoint convex

polyhedra can be separated by a plane determined by a vertex of one and

an edge of the other. Since it is easy to determine if two points are

on the same side of a plane, this may be a useful technique, but we are

not yet convinced.



Appendix: A Comparison of RCLEAR and SIMPCLEAR

Besides implementing RCLEAR and SIMPCLEAR, I also implemented a testing

procedure to make it possible to compare their behavior. The testing pro-

gram generates a brick with a random length, width, depth, position, and

orientation in a sharply delimited cubical space. It then applies RCLEAR

and SIMPCLEAR.to this brick. If they disagree, the program types out an

error message and halts until told to proceed. If they agree that the new

brick is not clear of other bricks in the space, it repeats the process.

If they agree that the new brick is clear of all other bricks in the space,

it inserts the new brick into the space and repeats. Since both RCLEAR and

SIMPCLEAR work by testing the pairwise disjointness of their argument and

the bricks in the model, a common parameter which may be used to analyze

the performance of the program is the average time per pairwise comparison

of two bricks during the verification process.

The programs were written in LISP and run interpretively (due to the

fact that the compiler often produces hard-to-find bugs, programs are not

worth compiling unless they are to be run many times so that the time saved

justifies the resultant extra debugging time). They therefore ran with a

monstrous overhead (especially since they spend much of their time number-

crunching) and the time per brick-pair comparison ranged from .1 to 10 sec.

RCLEAR had much better best cases and much worse worst cases in general than

SIMPCLEAR. Furthermore, as space filled up with bricks, RCLEAR became better

and better with respect to SIMPCLEAR. If the new brick was destined to be

see graph and raw data at end of paper.



Page 11

discovered clear, it is likely that RCLEAR would spend less than .3 sec.

finding that out. This is probably due to the fact that RCLEAR hardly

blinks an eyelash at a brick far away because it will be flushed without

any recursion, allowing RCLEAR to concentrate on the more difficult, close-

by cases. Sometimes, however, a bad case can happen in which RCLEAR re-

curses for a long time. These cases, however, are rare, and tend to get

averaged out when the number of bricks is large. They also tend to happen

more often when the brick is to be rejected rather than accepted. This

tends to suggest that the circumscribed spheres buy more than the inscribed

spheres per recursion. I think that because SIMPCLEAR does more arithmetic

than RCLEAR it was hurt more by LISP inefficiency and that if both were hand-

compiled into MIDAS, SIMPCLEAR would be much more competitive. Perhaps the

best algorithm would combine the two ideas, using the spheres to weed out

obvious cases and turning over tough nuts to FEASGEN.





u
: 

.
T

 
.4

 
2 

C
yc

le
s 

x 
10

 to
 t

h
e 

in
ch

zo
; 

t,
 

.N
 

.
0I

 
b 

tP

SU
;

4 •
 I.. 

..4

24
 1

 
.4

-4
·
I
!
,

.4
 .

4
.

__
__

~

·r,

-
-
-7
--
•;

[i
i

i
 

.
.
 
.!
 i I

.4
,

S
i
 
'
g
|
:

.4
 

.

4 
:

.

4
L

-·
--

 
.4

.1
i

4
.4

..
4
.4

.4
4
.i
 i

-

1
4

.1

t
--e :..I ·j 

, i'

i..
.

.i.
..

-
-

x +

4>--
--:

-o 0
i
.

0

e 7- C i.-
. !·
i

Si
- 1-

I

-4
0'

---

C

O

R

i3
i

-t
~t ';'

'"

i··
i·i

 
I

L
; --

·
··

I

,:1
.

T
.

zb
zi

·C

.
I

S
, 1

i ·
- '

·· 
:· :

··
'''`

 
: 

i''
 

i' 
i 

,,
j

.1
 .

-.
''?

: 
·.

·C
:;

·il
:i

;

:1
:1

.1
1

Q
ii

·t1
4

i 
~~

L
C

~·
~E

.I
 

If
i. .1

...
·t:··

·
I 

r ~·
···

i

·+
· -i

--
 

--
-

·
-1

- -C

.4
.,
;.
, i

"
i

·-
.4

 
.i

-

.4
C

 
.4

 -

i
-
 

-

,
 ;
 i

i. '
 .
i
 

.
.
i
,

I-
 

; .
i 

·t
-

i
.
4
.
,

-
.I

 .
-

l-
 

1·
.-~

·
•
 i
 !
.

•
i
)

-i
i

-
?
 .

.·
.

-

-1

1
.i
.

7i
- 

-i
.,t

 
.

t-
i.

*1
'-;

· 4
 

-.
4

I -;
·i 

!·
-t

·

.i
r r-

i

i 
.I

...
:~

..i
i· 

: 
-:

- 
L

i
~·

 ·t-
t-

-1
-i

···
- 

·
·

i

--
-

--
 

--
; 

·
--

! 
. -

-
1

.
.

7
 .
.
.
.
 

.
.
.
.

__
--

--
-·

·-
L

·-
,-

-

.4
.4

i-
 4.
. 

..
4

''': ..
i :

 :
 I

I.
.;

., 
i. 

ii.
.:. ··~

·i i

-
·

i?
-

-I
· 

~ 
-·

 
·

.-
·

I
.,
..
.

·~
 ·t

··

·-
·-

~-

i 
_

-·
 

'

• 
.

·

-·
-I

 
: 

·
--

·
i· 

·-
·-

I-
··-

--
-·

--
·i·

 
--

··
·-

-
·i

· 
--

··
··

·
·-

-
·-

·-
- 

·
·

·
--

--
·

;-
 

·
-

·-
-

--
-~

.
-
 

.
-

.
-
 
.
.

.
.
.
 

.
.
 

-
-
 

.
-

..
-

,
;
=
4

-

I'

··
·i

 
·

~

'I 
·

i I 
...

,lu
ri

!
--

i 
cI

I-
-c

--
L

·-
: 

~I 
I 

·
-

I
 

•
 
I
 

:
 

;
 

:
 

'
,
 

;
 

•
 

;
-

--
i·

i
-
-
-
-
-r
-
,
-
-
•
-
-
-
e
-
,

1 
1-

-~
- 

·

I 
I 

I 
·

.1
.· 

I 
.I

 
i 

I 
i.l

 
I 

c.
,:

I 
I 

i 
1 

1 
i

--
- 

--

00 
L 74i

A

i
-
.
.
.
:
 

'
I I

c

'1
·i

I 
i 

i 
: 

i

i 
i

lil
 

-t
-i

- 
:

,.
J.

..
~

1 .
1
..
 

.

1

'
l
l

I 
~ 

'


