
HETERARCHY IN THE M. I. T. ROBOT

by

Patrick H. Winston

FLASH #8

VISION GROUP

ARTIFICIAL INTELLIGENCE LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Work reported herein was conducted at the Artificial
Intelligence Laboratory, an M.I.T. research program supported
by the Advanced Research Projects Agency of the Department of
Defense and was monitored by the Office of Naval Research
under Contract Number N00014-70-A-0362-0002.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/4404468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Introduction

In the early days of artificial Intelligence there was

tendency to write programs conducive to the study of

particular dimensions of intelligence. A great deal was

learned from these programs including knowledge about

planning, subgoal formation, heuristic measures and methods,

tree search and the like.

With this experience we are now at M.I.T. going into

projects that seem to require the integration of all these

methods and ideas into powerful, general systems. We are

tackling problems like natural language comprehension and

robot vision with the hope and expectation that the work wil

lead us beyond previous efforts to exhibit particular forms

of intelligence long recognized and into an understanding •

those aspects of intelligence not even named as yet.

Although the way to go is not at all clear, it is

characteristic of our science to experiment as well as

speculate. It is only natural then that we are working with

a real robot that in a limited way perceives, understands,

and manipulates the simple objects we put in front of its

eye.

Now to talk of understanding an environment, even a

simple environment like that of the robot, one must have

operational measures of expertise. Otherwise one faces

endless haggling about just what It means for a system to



understand. Three particular abilities which we feel require

and demonstrate a degree. of understanding are the ability to

describe, to learn, and to copy. Figures 1, 2, and 3 will

help explain exactly what I mean.

The machine's problem in figure 1 is to build a natural,

heirarchically ordered description of the scene like that a

human would produce <1>. Note that the configuration shown

is quite a complex scene containing objects of various shapes

which relate to one another In a variety of ways. From it we

want something like this multi-level description:

> The scene has seven objects.

> All but one is shaped like a brick.

> In the foreground there is a tower consisting of

three objects.

> The tower is in front of a bridge.

> The bridge supports a wedge at one end.

> The tower consists of medium sized bricks.

> The bridge consists of two medium sized

bricks, carefully aligned with the long

board.



Figure 1: A scene of the sort now understood
by drawing analysis programs.



NEAR MISS

Drawings used in teaching the machine
the notion of ARCH.

ARCH NEAR MISS

Figure 2:



Figure 3: Configuration typical of those copied
by the M.I.T robot. Note that objects
obscure one another.



Figure 2 defines the particular special kind of learning

that I have In mind for the second measure of competence <1>.

One presents the machine with a sequence of samples, in this

case both examples and near misses to the notion of ARCH.

From these the machine is to create an abstract model

with which it can later identify examples of the ARCH

concept. The model must be good enough to allow recognition

of partially obscured arches and arches differing from those

in the learning sequence by way of changes in size and

orientation.

The third measure of understanding and the one I want to

concentrate on here, Is the ability to copy a configuration

from spare parts. The world as our system sees It consists

of white, plane-faced objects organized into scenes such as

the one shown in figure 3. At the moment, we work primarily

with bricks and wedges, but many of our modules are quite

general and deal successfully with other shapes. Unlike some

other systems, ours makes no assumption that the objects are

restricted to a fixed set of sizes. Moreover the system

expects to see partially hidden objects. Indeed it thrives

on configurations where the objects are on top of or in front

of one another.

For us this copying task is harder to implement than the

previous two tasks because we insist on total machine self-



reliance. It does not begin with a line drawing as we

usually allow In our other work. Instead we want it to make

its own drawing using a random access Image dissector camera

to gather information directly from the objects themselves.

Many attempts at programming for this task failed and no

respectable line drawings were produced using our vidisector

until Thomas Binford <2> and Arnold Griffith .<3>

independantly completed Important line finders.

The problems associated with all three of these indexes

of competence have been under attack for many years now.

Some have proved unexpectedly hard, but within the last year

all three of the capabilities sketched out here have been

demonstrated. I concentrate here on the achievements leading

to the ability to copy because I think they best illustrate

how this work not only confirms the need for forward-looking

ideas in system organization but also contributes to the

development of a theory for artificial intelligence.

The Basic Robot Modules

In order to establish a frame of reference for further

discussion, I must briefly outline the sort of things that go

on in the mind of our seeing robot.

The first thing is the very difficult job of

transforming the array of a million or so noisy intensity

samples one gets from the camera Into the respectable line

drawing needed by other modules. Since one must fight all



flavors of optical distortion and electron noise, and non-

uniform camera sensitivity, it is no embarrassment that our

line finding modules rarely find all the lines in a given

scene.

In any case, the drawing must be represented In the

machine in a way that Is convenient for other procedures.

Preparing and maintaining such a representation Is the job of

a module I will simply call the bookkeeper. This program

uses essential ideas contributed by H. N. Mahabala <M>.

Beyond this, the system has a module good at

partitioning the regions defined by the lines into a set of

bodies. It is the job of such a body finder to report that a

scene appears to have a certain number of bodies or objects

and to indicate the regions associated with each.

Other modules in turn describe various properties of the

objects. One module looks for relationships between objects

corresponding roughly to our human notions of on-top-of, in-

front-of, and aligned-with. This is the job of the body-

relationship-describer. Its skill is useful to a module

that finds XYZ coordinates and another that speculates on the

size of each body. These are the body-position-finder and

the body-dimension-finder modules.

There remains In a skeletal system only a structure

construction module that plans and executes the steps

necessary to build a copy from spare parts.



Now early in this research we believed that It might be

possible to write good general programs for each of these

jobs and arrange them together under an executive program

that would use them to cause an orderly progression of data

from intensity values on one end to arm-and-hand commands on

the other. However we cannot make such a system work, and we

do not believe that such a system has good prospects. The

reason is that the system has so much to do, the probability

of getting through the whole job without oversight or error

is small, even with very good modules.

Heterarchical Organization

To us the way to success therefore lies in a set of

attitudes toward system organization that has come to be

called heterarchical organization. At the moment, the term

remains only vaguely defined, but it certainly includes the

following ideas:

1. A powerful vision system must contain or have access
to lots of knowledge. Some of the knowledge is apt
to be special purpose and some of it quite general.
In our system, for example, we have some special
knowledge that Is useful only for bricks and some
more general knowledge that applies to almost all
simple plane-faced objects.

2. A powerful system needs not only a variety of good
methods, but also knowledge about those methods
sufficient to judge when they are inappropriate.

3. If a module perceives some other module has erred and
has provided false information, it must be able to
complain and request a review. This objection might
be that a body of unlikely shape has been proposed or
perhaps that a crucial line has likely been
overlooked.



A. Communications between modules must be smooth and
-natural for many reasons, not the least of which is
the fact that many programmers must cooperate in such
a large project. So far the system represents direct
contributions in code from Thomas Binford, Berthold
Horn, Arnold Griffith, Eugene Freuder, David Silver,
and Patrick Winston. We expect this group to expand
quickly now that the skeletal system is complete.

Taken together, these points suggest something quite

different from a simple row of processes, each passing over

the data base, doing Its job, handing control to the next In

line, and retiring. Instead one must think more of an

Interacting community of processes, some narrow experts,

others broad generalists, and still others in the role of

critics. As the system becomes more powerful, we expect to

see more flow of advice, complaints, and requests for help.

To clarify these somewhat general and abstract remarks,

I now describe two relevant parts of our system. The first

of these Is the part that judges how regions go together, the

body finder.

Our general method for region conglomeration is a

descendant of a program conceived and implemented by Adolfo

Guzman <5>. His technique, stripped of all embellishments,

Is simply to make two passes over the representation of the

line drawing, the first producing local evidence from the

vertex configurations and the second gathering together and

weighing that evidence.

The local evidence pass recognizes the 8 vertex types



Illustrated in figure 4. Of these the T, K, and L are

ignored, while the others each produce one or more units of

evidence for believing two adjacent regions belong to the

same body. These units of evidence are called links. The

second pass then observes which regions are joined by two or

more links and announces that they belong to the same body.

Figure 5 shows how this scheme easily handles a simple

two brick situation. By iterating the second conglomeration

pass, it can handle much more complicated scenes. But

attempts to make it fully as good as people at this job have

led only to unsatisfying hodge-podge collections of Weaker

and weaker heuristics that subtract, rather than add to the

basic elegance of the scheme. This does not discourage us,

however, because part of our philosophy of approach holds

that such general schemes without any special knowledge or

access to advice cannot do more than a good job.

To see instead how this general program can contribute

to the system positively while sharing its job with

specialists, consider for a moment the K type vertex. Guzman

did not use it In his basic algorithm because without a

context, the vertex suggests two equally likely, but

incompatible possibilities. Figure 6 illustrates the usual

case where two aligned bodies each contribute a pair of

adjacent regions to the set of four regions that surround all

K's. But which of two pairings Is correct cannot be



T

ARROW

PEAK

FORK

-OTHERS-
MULTI

Vertex types as defined by Guzman.Figure 4:



Figure 5: Bodies are found through a process that
uses local vertex evidence to link regions
together.



determined locally.

Of course there are many ways one might attempt to

resolve the ambiguity and get solid linking evidence from the

otherwise ambiguous K. But here I only want to observe that

K's are frequently resolvable through the use of a specialist

for unobscured bricks. This program's only use Is the

discovery of three adjacent parallelograms compatible with a

brick Interpretation. It Is thus a region conglomerator only

under special, easy circumstances. But see how this special

case program easily resolves the ambiguous K's in figure 6.

Once-the supported bricks are seen, the special case program

may advise the general case program that the K's have only

one interpretation compatible with its findings. Thus the

former ambiguity gives way to solid general evidence.

This last example shows how special and general programs

work together in our system to accomplish the same task. The

next illustrates how another chain of communication extends

from a distinct critic through a hypothesizer and on to

another specialist.

As previously mentioned, the line finder cannot and

should not be expected to find all lines. Rather, it should

only report the ones it is reasonably sure of for the

analysis of other programs with more knowledge. It can be

expected to occasionally miss lines such as the ones dashed

in figures 7 and 8 since the Illumination gradient across



Figure 6: K-type vertexes suggest two bodies
but the proper pairing of regions
cannot be determined locally.



A common type of missing line.
The heavy lines outline an region
which the region critic finds
objectionable.

Figure 7:



Figure 8: The double L missing line situation.



such lines may be quite small.

Presently the bookkeeper is the system's first line of

defense against such oversights. At the moment it has little

sophistication in Its complaint mechanism. It simply objects

to concave regions. The more concavities it notices along a

region's periphery, the stronger It objects. Of course

concavity only suggests the possiblity of missing line error.

But If a region genuinely deserves to be concave, the

complaint leads to no action and nothing Is lost.

Complaints are received by proposers that have buried in

their code implicit knowledge of both our line finder and of

likely line configurations. One proposer, again a

specialist, is designed to react to a missing interior line

of a brick. Hence when the peculiar concave shape outlined

In figure 7 Is observed, this proposer Instantly hypothesizes

a line which divides the region Into two parallelograms.

A more general proposer Is good at the sort of doubly

concave region heavily outlined in figure 8. Its effort Is

to find a pair of L type vertexes, one of which has a line

whose extension passes through the other vertex. This

extension is then the line proposed.

Both of these proposers appeal to a line verifier which

closely inspects a small region about the proposed line. One

can afford enormously Involved computation here because the

program only looks at a small portion of the scene. Should a



line be considered likely, the verifier reports Its presence

back to the bookkeeper which initiated the entire chain of

events.

The PLANNER Language

It goes without saying that our work places heavy

demands on the programming languages we use. LISP, our

favorite for many years, is now yielding to the more adequate

PLANNER of Carl Hewitt <6>. PLANNER has the features of LISP

plus a number of Improvements, three of which particularly

facilitate our effort. These are roughly the following:

1. Adequate pattern matching and data management. This
has greatly shortened program length and debugging
time.

2. Automatic backup. If a subroutine falls, all action
is unwound back to a specified point where a choice
was made. Alternative is selected, and control then
passes forward again. This means that if one line of
reasoning leads to a dead-end, all its effects are
withdrawn and alternatives are tried.

3. Goal orientation. The language allows subroutines to
be called through their purpose rather than their
name. By analogy this is like the ability to step
into a room of strangers and to say "I need to have
some boards nailed together. Is anyone good at
that?" One need not know In advance who the
appropriate people for carpentry are.

We believe that our work will emphasize the need for

features such as these and lead to still further advances in

language architecture as well as contributions to an overall

theory of intelligence.

Conclusion

Our effort in robot research is to get at the problem of



organizing a large, highly coupled system that features many

different abilities and kinds of knowledge. The examples I

have given here represent only our first attempts at breaking

away from straightforward design into arrangements that cause

us to squarely face the problems of big system design. We

soon hope to add more and more specialists and more and more

module complaint, advice, and request channels. On the

immediate horizon are more than a dozen possibilities, among

which are several alternatives to our current monocular

object location scheme as well as some specialists that deal

primarily with wedge processing.



REFERENCES

(1) Patrick H. Winston, "Learning Structural
Descriptions from Examples," Report MAC-TR-76
(Thesis)(Cambridge, Mass.: Project MAC, MIT, September
1970).

(2) Annette Herskovits and Thomas 0. Binford, "On
Boundary Detection," Artificial Intelligence .Laboratory Memo.
No. 183 (Cambridge, Mass.: Artificial Intelligence
Laboratory, MIT, July 1970).

(3) Arnold Griffith, "Computer Recognition of Prismatic
Solids," Report MAC-TR-73 (Thesis)(Cambridge, Mass.: Project
MAC, MIT, August 1970)..

(4) H. N. Mahabala, "Preprocessor for Programs which-
Recognize Scenes," Artificial Intelligence Laboratory Memo.
No. 177 (Cambridge, Mass.: Artificial Intelligence
Laboratory, MIT, August 1969).

(5) Adolfo Guzman, "Computer Recognition of Three-
Dimensional Objects In a Visual Scene," Report MAC-TR-59
(Thesis)(Cambridge, Mass.: Project MAC, MIT, December 1968).

(6) Carl Hewitt, "Description and Theoretical Analysis
(Using Schemas) of PLANNER: A Language for Proving Theorems
and Manipulating Models in a Robot," Thesis, Department of
Mathematics (Cambridge, Mass.: MIT, January 1971).


