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ABSTRACT

We describe an approach to estimate state-of-charge and
faded capacity of cobalt-based lithium-ion cell based on time-
domain analysis of a short-term transient. This approach re-
quires a relatively short-duration test and is suitable for re-
purposing cells for less demanding applications. The suc-
cessful estimation requires previous characterization of the
cells for the given family because lithium ion chemistries dif-
fer significantly. Two algorithms were considered for estima-
tion of unknown state-of-charge and capacity: Bayesian in-
ference and boosted regression trees. The achieved accuracy
was 95 % of capacity estimations; estimations were within
±2 % of the nominal cell capacity from the true value.

1. INTRODUCTION

Lithium-ion (Li-ion) batteries in high-end applications, such
as communications systems, electric vehicles, and plug-in hy-
brid electric vehicles, are typically replaced at an early point
in their lives, while they still have considerable capacity left.
Typically this percentage is ∼80 % of new because, by de-
sign , in the demanding applications, the remaining capacity
determines an important system parameter, with low degrada-
tion tolerance. For example, the remaining capacity of elec-
tric vehicles translates directly into range. At the end of use-
ful life in the demanding primary applications, the batteries
can continue to be used for secondary, less demanding ap-
plications, such as storage in microgrids, power tools, and
consumer electronics, which all exhibit considerably higher
tolerance to the loss of capacity.

In practice many cells are discarded even before they reach
∼80 %. The capacity of these cells can be higher than 90 %
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because of general reluctance of the battery integrators to
manage mismatched cells. If something, other than a cell,
fails in the battery system, the cells and modules have a high
probability of being discarded. Generally the maintenance of
large battery packs faces considerable apprehension related
to mixing cells of mismatched capacities, resulting in early
retirement of the cells. In order to make sustainable decisions
about pack maintenance, methods are needed to understand
the relative health of each cell.

In both applications (reuse and maintenance), it is crucial to
be able to efficiently assess Li-ion state-of-charge SOC and
remaining capacity Qc. While the most reliable estimation
is obtained by cycling a cell from its fully charged state to
its fully discharged state, this process is expensive and time-
consuming.

Cell capacity may instead be estimated using data-driven
techniques, where measurements of a cell’s characteristics
are used to estimate the cell capacity, based on a model. We
are interested in data-driven approaches rather than electro-
chemical models, as data driven modeling techniques can be
applied to a wide variety of cell chemistries with little ex-
pert intervention. In contrast, electro-chemical models re-
quire considerable engineering, chemistry, and physics exper-
tise to create a model for each cell chemistry. One of the com-
monly used models for data-driven regression is the boosted
regression tree (BRT), because it has generally good predic-
tive performance for non-linear functions and it is tolerant of
imperfect data (Elith, Leathwick, & Hastie, 2008). We will
explore BRT-based estimation for this problem, demonstrat-
ing its performance alongside another, more traditional data-
driven approach: Bayesian inference.

Li-ion cells come from different families, determined by the
cathode chemistries, the chief among these are: lithium cobalt
(LiCoO2), lithium iron-phosphate (LiFePO4), lithium man-
ganese spinel (LiMn2O4), and lithium mixed-metal (LiMO2)
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cathodes. This article is concerned with the lithium cobalt
family. Figure 1 shows natural capacity degradation of eight
lithium cobalt cells, labeled S1 through S8, subjected to full
cycle charges and discharges vs. the number of cycles N .
The circles indicate the in-class spread of the data in Qc-N
space. The spread slightly increases as the cells age.
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Figure 1. Capacity fade of eight lithium cobalt cells.

The data shown in Figure 1 are full cycles, the cells of a spe-
cific chemistry are fully charged and discharged at room tem-
perature. This is usage pattern does not immediately gener-
alize to other cycling profiles, operating conditions, and en-
vironmental conditions because cell aging and capacity fade
of the cells generally depends on several other important pa-
rameters (Broussely et al., 2005; Spotnitz, 2003; Vetter et al.,
2005), including temperature, where higher temperature ac-
celerates aging; charge and discharge current, where higher
currents accelerate aging; depth of discharge, where shal-
lower cycles decelerate aging; and rest time between charge
and discharge, where low rests after discharge can greatly ac-
celerate capacity loss. While the process does not directly
apply to an arbitrary scenario, the conditions of the batter-
ies in high end applications are generally carefully monitored
and maintained. Thus, the entire process described here, in-
cluding capturing training data, can be applied in full in a
more realistic setting, after modification to accommodate the
operating conditions are put in place.

High-end battery systems employ a battery monitoring sys-
tem (BMS), with a sophisticated cell equalization, and a real-
time prognostics health monitoring (PHM) system for esti-
mation of SOC and state-of-health (SOH). There has been
considerable work in the development of battery PHM, whose

full review is beyond the scope of this study (for early works
see (Plett, 2004; Goebel, Saha, Saxena, Celaya, & Christo-
phersen, 2008; Saha, Goebel, Poll, & Christophersen, 2009;
Saha & Goebel, 2009); for a review, see (Zhang & Lee, 2011),
and for more recent works (Liu, Pang, Zhou, Peng, & Pecht,
2013; Sankararaman, Daigle, Saxena, & Goebel, 2013) ). Our
approach complements real-time PHM with a specific use at
the end of life. PHM provides the usage history of the pack
and the state-of-health estimates as an essential input for the
decision process at the end of life. However, PHM systems
are concerned with the battery system as a whole and they of-
ten do not monitor individual cells. Instead, they typically use
extrapolations from a finite number of measurements. Know-
ing attributes of individual cells is valuable when they are
considered for secondary applications because the properties
of individual cells diverge in time and use and this study aims
of individual cell assessment at the end of life of their primary
application.
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Figure 2. Outline of the approach.

2. APPROACH

Because direct capacity measurements are expensive, the age
of cells is often estimated indirectly. In particular, the two
methods considered here are based upon extensions to the
well-known correlation between age and resistance. To esti-
mate age and SOC, a characterization process first extracts a
set of its parameters over a range of known SOC and capacity
Qc, using a battery model as described in Section 2.1, thereby
estimating cell age. The data obtained during this character-
ization process is then used to estimate unknown values for
capacity and SOC.

The outline of the approach is depicted in Figure 2. After in-
troducing the battery model, with its two ports, terminal and
hidden, we proceed to identify the components of the terminal
port from the time-domain and frequency data. Because the
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time domain approach yields a more accurate model, within
our experimental and analytical setting, parameters extracted
from the time-domain analysis are used for subsequent esti-
mations of the hidden parameters.

Two approaches for estimation of are considered: Bayesian
inference and BRTs. In the first approach, the direct relation-
ships of the terminal ports are first learned as a function of
the hidden parameters, and then inverted using the Bayesian
inference. In the second approach, the estimations of hidden
parameters are learned directly from the data.

2.1. Battery model

A popular battery model adopted in time-domain analyses,
described in (Chen & Rincon-Mora, 2006), consists of two
electrical ports as shown in Figure 3. The parameters of
the terminal port are: open-circuit voltage Voc, resistance
R0, and two parallel RC circuits R1-C1 and R2-C2. We
refer to this model as the double exponential model1. In
this model, the circuit elements are both functions of SOC
and consumed life. For example, if the consumed life is ex-
pressed in terms of the number of full charge/discharge cy-
cles N , and expressed in remaining capacity Qc (see Fig-
ure 1) a circuit element is the function of SOC and Qc, e.g.
R0 = R0(SOC,Qc).

Figure 3. Double-exponential model.

The hidden port of the model consists of cell capacity Qc,
represented by a capacitor, self-discharge resistor Rsd, and
controlled-current source SOC. The loss of charge when the
battery is in open circuit condition is typically negligible for
most commercial lithium ion batteries, and Rsd can be safely
ignored; that is, we assume that Rsd → ∞. Because cell
capacity Qc fades as the cell ages, it can be used as a direct
measure of consumed life. As a result, assessment consists
of two steps: first, the terminal voltage vBatt and terminal
current iBatt are used to estimate the circuit components of
the terminal port of Figure 3: Voc, R0, R1, C1, R2, and C2;
and second, the parameters of the terminal port are used to
estimate the components of the hidden port, SOC and Qc.

1A simpler model, with only one parallel RC circuits (R2 = 0 and C2 → ∞)
is referred to as the single-exponential model. The simple model was also
considered, but was outperformed by the double-exponential not only in fit
accuracy, but also in generalization.

2.2. Parameter extraction

The model parameters can be extracted from measurements
in the time or frequency domains. In our work, reduced-error
fits were achieved in the time domain, although parameter
extraction from impedance spectroscopy (frequency domain)
is also discussed.

2.2.1. Time domain

Time-domain analysis is based upon a short-duration step
change in current during charge and discharge; a single-step
test takes a few minutes (compared to several hours for full
charge). Because the trajectories during charge and discharge
are slightly different, including both charge and discharge
adds to the variance of the data. Here we present just the
results associated with charge cycles. The model parameters
are extracted from the transient waveform of the terminal bat-
tery voltage vBatt and current iBatt.
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Figure 4. A charge transient: measurements and the fit.

Figure 4 illustrates example parametric fits for the double-
exponential model during the characterization phase. The
battery was charged with pulsed current: active charging
lasted five minutes, followed by ten minutes of rest. There
were 18-20 such pulses during a charge, initially, and the
number of pulses dropped as the cell aged. The current was
held constant during the active period. The data waveforms
were sampled every thirty seconds, Ts = 30 s. Note that the
current is negative during charge, according the convention
that iBatt is positive during discharge (see Figure 3). To de-
termine parametrization, we consider transients when the bat-
tery current charge drops to zero, after being constant suffi-
ciently long that the transient had died out, and choose the
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beginning of the transient as the time reference, i.e., t = 0.
The terminal battery voltage is then given by

vBatt(t) = vBatt(0
−)−[R0 +R1 +R2

−R1e
−t/(R1C1)

−R2e
−t/(R2C2)]IBatt

(1)

where IBatt is the magnitude of the charge current before
the transient started. Eq. (1) was used to estimate the termi-
nal voltage. The unknown parameters are fitted using a non-
linear optimization function such as fminsearch() in Matlab
or fmin(), used here, from the scipy Python library (Jones,
Oliphant, Peterson, et al., 2001–). The cost function J cov-
ers the squared error of the measured voltage vBatt and the
estimate v̂Batt, summed over the instances of time, with an
additional term controlled by a weight that penalizes negative
parameter values:

J(y|vBatt) =
∑
tk

(vBatt(tk)− v̂Batt(tk|y))
2

+ λ
∑
yi<0

|yi|

(2)
In this equation, y is the vector of the unknown parameters
y = [Voc, R0, R1, C1, R2, C2]T , yi are its components, λ is
the wight for penalizing negative values, and v̂Batt(y) is the
estimate of the terminal battery voltage for the given test set
of the terminal circuit parameters. Finally, the terminal port
parameters of Figure 3 can be estimated simultaneously using
an optimization library

ŷ = argmin
y

[J(y|vBatt)] . (3)

Slightly different approach is to first estimate R̂0, and then
separately estimate V̂oc, R̂1, Ĉ1, R̂2 and Ĉ2 using the es-
timated R̂0. A step charge (or discharge) follows a period
where iBatt = 0 for a long enough time that C1 and C2 have
effectively discharged, so ∆vBatt and ∆iBatt, from the first
two points of the step current change, can be used to estimate
R0:

R̂0 =
∆vBatt

∆iBatt
=
vBatt(0+)− vBatt(0−)

IBatt
(4)

Comparison of the two approaches showed that first esti-
mating R0 and then estimating the other parameters yielded
smaller mean-squared estimation error, so the two-phase pa-
rameter estimation method was used. Note that Eqs. (1-2)
remain the same, but y in Eq. (2) does not contain Ro, that is
the parameter vector here is y = [Voc, R1, C1, R2, C2]T .

2.2.2. Frequency domain

A common health indicator of the battery aging is impedance
(Hawkins, 1994; Lasia, 1999; Amine et al., 2001; Brous-
sely et al., 2005; Dees, Gunen, Abraham, Jansen, & Prakash,
2005; Tröltzsch, Kanoun, & Tränkler, 2006). According to
the double-exponential model of Figure 3, the impedance of

the terminal port is given by

ẐBatt(ω) = R̂0 +
R̂1

1 + jωR̂1Ĉ1

+
R̂2

1 + jωR̂2Ĉ2

(5)

where ω is the angular frequency; ω = 2πf .

Figure 5(a) shows the average impedance spectra of fully
charged cells when new (with at most a few cycles passed)
and after their capacity dropped to 90 % of new. Each
plot contains seventy one data points in 0.01 Hz – 100 kHz
range. The points are logarithmically spaced over the fre-
quency range.

The double-exponential model of Figure 3 and Eq. (5 do not
account for the inductive part of the curve , but the impedance
spectra becomes inductive only for frequencies f ≥ 1 kHz,
which is of lesser importance than f < 1 kHz because bat-
teries normally operate at low frequency. The standard ag-
ing feature employed in the industry is the real part of the
impedance evaluated at f = 1 kHz, which closely approxi-
matesR0 of Figure 3, because of high correlation between re-
sistance and capacity was expected (see e.g. (Saha & Goebel,
2008)) .

The impedance data shows that more resolution is available
at lower frequencies (1 Hz or less), in the so-called Warburg
region. At lower frequencies, the change in the real part of
the impedance is ∆<{ZBatt} ≈ ∆(R0 +R1 +R2), whereas
at f = 1 kHz, ∆<{ZBatt} ≈ ∆R0 .

The model parameters are grouped in parameter vector z,
which does not contain the open circuit voltage Voc

z = [R0, R1, C1, R2, C2]T (6)

Fitting the model in the frequency domain can be done by
minimizing the cost function JZ , defined as the square er-
ror in the impedance (the difference between the measured
impedance ZBatt and the estimate ẐBatt given by Eq. (5))),
summed over the frequencies and with an additional term for
penalizing negative values of the parameters, with respect to
the model parameter vector.

ẑ = argmin
z

[
JZ

(
z
∣∣∣<{ZBatt(ω)},={ZBatt(ω)}

)]
= argmin

z

{∑
ωk

[(
<{ZBatt(ωk)} − <{ẐBatt(ωk)}

)2
+
(
={ZBatt(ωk)} − ={ẐBatt(ωk)}

)2]
+ λ

∑
ẑi<0

|zi|

}
(7)

While the extracted values of the model parameters are sim-
ilar whether transient domain or frequency domain data is
used, the double-exponential model fits the transient data
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Figure 5. Impedance spectra. (a) Charged and discharge with frequency annotations. (b) Least square fit.

better than the impedance spectroscopy. However, the
impedance spectroscopy does not include Voc, which is prob-
ably the best single indicator of SOC. From a practical view-
point, collecting the transient data is considerably cheaper
and easier than collecting the spectroscopy data because the
step charges and discharges are performed on the same piece
of equipment (single cell battery tester, e.g. Maccor 4600)
as any other charge/discharge profile. The cell aging and the
collection of the transient data can be performed on many
cells in parallel with minimum engagement of an operator.
Moreover, the transient data collection is considerably less
expensive because the cost of a channel on a battery tester
(∼$1.3k)2 is considerably less than the cost of an impedance
analyzer and potentiostat (∼$55k). The equipment cost and
its scale-up and engagement of an operator are of great prac-
tical importance, if the approach is to be considered for a real,
industrial setting. The rest of the document is concern only
with the information extracted from the transient data.

3. STATE-OF-CHARGE AND CAPACITY ESTIMATION

Two methods of SOC and capacity estimation were em-
ployed: Bayesian inference and BRTs. These methods are
described in turn in the following subsections.

The data set was based on eight cells, with up to about twenty
transients associated with each charge and discharge. For
each transient the parameters of the terminal port were ex-
tracted. The entire dataset had 2154 values for each param-
eter. We used six cells for training and two cells for test. In
the first approach, we trained the neural networks with six
fixed cells (S1-S6), and verified results using the remaining

2This price is computed for a 32-channel unit and it would be less if a large
system was employed.

two cells. In the second approach, model parameter values
for all 28 combinations of eight cells taken six (for training)
at a time, using the remaining two cells for the verification.

3.1. Bayesian inference

The Bayesian approach consists of two steps: family char-
acterization and posterior estimation. In the family char-
acterization step, we use a held-out training set to com-
pute functions expressing the parameters of the termi-
nal port in terms of the parameters of the known hid-
den port: Voc(SOC,Qc), R0(SOC,Qc), R1(SOC,Qc),
C1(SOC,Qc), R2(SOC,Qc), and C2(SOC,Qc). In the
posterior estimation step, we use the computed functions to
estimate SOC and Qc at fixed points by way of Bayesian
inference.

3.1.1. Family characterization

In the characterization process, parameter fitting is repeated at
different levels of state-of-charge and at different ages (num-
ber of cycles) for a set of cells. This characterization results
in empirical surfaces of the model parameters as a function
of state-of-charge and age. At first, a two-layer neural net-
work was employed for modeling the functions3, with forty
neurons in the hidden layer, given by

ŷk(SOC,Qc;w) =

σ

 40∑
j=1

wkjσ (wj1SOC + wj2Qc + wj0) + wk0

 ,
(8)

3This article employs the notation where the number of layers of a neural
network is equal to the number of adaptive weights, as in (Bishop, 1st ed.
2006. Corr. 2nd printing).
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Figure 6. Model parameters and neural network surface in SOC-Qc plane. (a) Open-circuit voltage Voc. (b) Capacitance C1.

where σ() is the logistic sigmoid, ŷk stands for one of the pa-
rameters in the terminal port (Voc, R0, R1, C1, R2, and C2),
and w are the weights. This standard neural network topol-
ogy, known as the universal function approximator, with its
expressive power, and its relation to Kolmogorov theorem is
discussed in (Duda, Hart, & Stork, 2000, Section 6.2.2) and
(Bishop, 1995, Section 4.7). However, in our case, signif-
icantly better performance was achieved after the two-layer
topology 2-40-1, was replaced by a three-layer 2-20-20-1
topology with the same total number of neurons. Both net-
works were trained over 1,200 epochs. Our implementation
made use of the PyBrain Python library for neural networks
(Schaul et al., 2010).

A neural network takes considerably longer to train than a
regularized 2D polynomial, or 2D Fourier function approxi-
mation (which due to their simplicity were considered first),
but the model fit (measured by the total squared error) was
found to be considerably better for the neural network.

The performance of the three-layer (2-20-20-1) network is
shown for two out of six parameters. Figure 6a shows that
the open-circuit voltage Voc is a smooth, monotonic surface
in SOC-Qc space; C1’s dependence on SOC, on the other
hand, is non-monotonic, as shown in Figure 6b. The mono-
tonicity of the remaining four parameters is between Voc (the
flattest) and C1 (the most wavy).

An advantage of learning the inverse relationships, in this
case, is that each parameter is learned in two-dimensional
space (because the hidden port has two parameters) and can
be readily visually inspected and verified that the fits are rea-
sonable and that over-fitting does not occur. When over-
fitting was observed (in case of non-regularized least squares
for polynomial and Fourier fits), it manifested itself as a large
function variation over a small domain area. Thus, a quanti-

tative detection criterion can be formulated as the maximum
of the total approximated surface areas above a sub-domain,
over the grid of sub-domains. For the surfaces approximated
with the neural network model, such over-fitting did not oc-
cur. Moreover, because significant number of data points do
not lie on the fitted surfaces, we can readily observe that the
data over-determines the model and that splitting the dataset
into test and verification to avoid over-fitting is not neces-
sary. On the other hand, this may suggest that the bias of
the model may be too strong and that adding more variance
(using a more complex network) could improve the accuracy.

3.1.2. Posterior estimation

Once parameter’s empirical relationships are available, they
can be used for Bayesian inference. This approach essentially
inverts the relationships Voc(SOC,Qc), R0(SOC,Qc), etc.
to estimate SOC and Qc. Inference here starts with a uni-
form prior over values for SOC and Qc, but in practice one
can easily embed knowledge about the conditions of the cells
into the prior. For example, the probabilities of capacity that
exceed a prescribed percent limit (e.g. 90 %) can be set to
zero, if there is a strong reason to believe that the population
of cells that need the inspection must have less than some
specified percentage of the nominal capacity left.

Individual estimates of the parameters of the terminal port
are presented to the Bayesian inference engine one at a time,
with the posterior distribution narrowing after each new piece
of evidence. This is because the probability density of the
posterior at the kth step ppost,k is proportional to the proba-
bility density of the prior pprior,k and probability density of
the likelihood estimate p̂lik,k:

ppost,k ∝ pprior,kp̂lik,k, (9)

where the prior at the kth step is the posterior of the (k−1)th

6
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ŜOCo  = 38.0
Q̂o  = 1.96

(a) SOC [%]

20

80

Q c
 [A
h]

1.5

2.0

0

1

SOCo  = 25.0
 Qo  = 1.98
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Figure 7. An example of a posterior after Bayesian bivariate estimation. The posterior distribution becomes narrower after each
new piece of evidence is presented (a) After R̂0. (b) After R̂0 and R̂1. (c) After R̂0 , R̂1, and C1. (d) After R̂0 , R̂1, C1, and
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step

pprior,k ← ppost,k−1, (10)

The initial prior pprior,0 is assumed to be user-selected (uni-
form in our case). Assuming that the estimates of parameters
are normally distributed with respect to their approximated
surface in N − SOC space, the probability density of the
likelihood estimate can be approximated as

p̂lik,k(SOC,Qc) ∝

exp

[
− (ŷk − fNN,k(SOC,Qc))

2

2σ2
NN,k

]
,

(11)

where the normalization constant is omitted for clarity.

In Eq. (11), ŷk, fNN,k(), and σNN,k signify, respec-
tively, one of the estimated parameters of the terminal port
(R̂0,R̂1,Ĉ1,R̂2,Ĉ2, or V̂oc) from a single transient via mini-
mization of J given by Eq. (2), the neural network mapping
of the estimated parameter, and the standard deviation of the
neural network model for the given parameter.

In Eqs. (9-10) the dependence of the probability density func-
tions on state-of-charge and capacity is not made explicit for
readability, but clearly all probability density functions are
given with respect to SOC-Qc. In practical calculations,
evaluations of these density functions are carried out on a dis-
crete mesh, with mesh density affecting result precision.

Figure 7 shows an example of the posterior bivariate distri-
butions of SOC and Qc after each new piece of evidence is
presented. The posterior distributions are shown as surfaces
and the actual values of SOC and Qc are shown as a stem.
Maximum a posteriori estimates, ŜOC and Q̂c are also in-
dicated as plot annotations. As noted, the posterior becomes
narrower with each piece of evidence, with the maximum a
posteriori estimate approaching the actual values. A 30×30
mesh was used for this evaluation. Consider first Figure 7a,
which shows the posterior computed using exp Eq. (9), given
the uniform prior and the likelihood computed using Eq. (11),
where R0 was extracted from a waveform selected from test
and verification data set of measurements and fNN,0 is a neu-
ral network mapping of R0 as a function of SOC and Qc,
R̂0 = fNN,0(SOC,Qc). This distribution was then used as

7
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Figure 8. (a) Histogram of estimation errors of the capacity Qc. (b) Histogram of estimation errors of SOC.

the prior for the next piece of evidence computed from the
test dataset,R1 and the likelihood is computed using Eq. (11),
where we now have R̂1 = fNN,1(SOC,Qc).The new prior
and the likelihood are combined again using Eq. (9) and the
result is shown in Figure 7b. Figure 7c through Figure 7f
were generated using the same process: in each step the pre-
vious posterior becomes a prior and the likelihood given by
Eq. (11), where neural network mappings fNN,2–fNN,5, are
subtracted from C1, R2, C2, and Voc, respectively.

The histogram in Figure 8a summarizes the capacity estima-
tion performance of the approach over the test data. The er-
rors were computed by subtracting the final estimates (such as
those shown in Figure 7f) from the ground truth. As discussed
at the beginning of Section 3, data from two cells were used
for validation. In this figure, the bottom x-axis corresponds
to capacity error in amp-hours and the top axis corresponds
to the percent error relative to a nominal, new cell. Similarly,
the left y-axis corresponds the the bottom x-axis with units in
1/(Ah), while the right y-axis corresponds to the top x-axis,
with units in 1/[% of new]. Finally, the histogram in Fig-
ure 8b summarizes the SOC estimation performance of the
approach over the test data.

3.2. Boosted Regression Trees

BRT combine the simplicity and data-handling flexibility of
decision trees (Breiman, Friedman, Stone, & Olshen, 1984)
with improved performance provided with boosting. Because
they are often outperformed by competing models, decision
trees are now mostly used in ensembles, where multiple indi-
vidual models are suitably combined to arrive at a model of a
considerably better performance.

There are many ensemble models, but they are based on the
three main methods: boosting, bagging, and stacking. In
boosting (Freund & Schapire, 1995), the training examples
are weighted and the weights are suitably adjusted in each
iteration based on the errors in the previous iteration. In bag-
ging (Breiman, 1996), several models are trained from the
dataset using resampling and the results are combined by
voting. In stacking (Wolpert, 1992), the learners are hier-
archically arranged so that outputs of a lower-lever learner
becomes inputs of a higher level learner. One of the most
widely used ensemble approaches is random forest (Breiman,
2001a), which combines bagging with random selection of
features.

With a statistical insight (Friedman, Hastie, Tibshirani, et al.,
2000), regression boosting can be viewed as a “functional
gradient descen”, which minimizes a loss function. Ability to
select a suitable loss function (beyond square error) greatly
increases the power of boosting, including zero-one loss, log
loss, exponential loss, etc. For example, some loss functions
(e.g. absolute error and Huber error) are less sensitive to out-
liers than other (square error).

Boosted regression starts with a single tree of a prescribed
(typically low) complexity and fits it according to an algo-
rithm for fitting binary trees using a standard approach (e.g.,
CART). The next tree fits the residual – the error between
the estimation of the first tree and the data, and the process
continues in a sequential manner: each subsequent tree is “an
expert of the errors of its predecessor”. In the end, the trees
are added together resulting in a model with an improved ac-
curacy. BRTs have a nice property that existing trees do not
change as more trees are added, much like Fourier coeffi-
cients in Fourier function approximation (and in contrast to

8
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Figure 9. BRT performance (a) Actual and estimated capacity as a function of the cell age. (b) A summary histogram of the
performance of all BRT models on each model’s verification data.

polynomial coefficients in polynomial fits). The training pro-
cess is controlled by tree complexity, which controls the num-
ber of interactions among features; learning rate, or shrink-
age, which controls the contribution of a tree in the grow-
ing model; and number of trees, which are not independent.
For example, decreasing learning rate increases the number
of trees. In summary, the advantages of decision trees are
that they have the ability to handle heterogeneous data, do not
require pre-processing, support different loss functions, au-
tomatically detect feature interactions, and execute (to make
predictions) rapidly. Chief limitations are that they are slow
to train, require careful tuning during training, and do not
extrapolate. Unlike bagging, where individual models are
trained independently and the process lends itself to parallel
processing, boosting is a staged process, with limited poten-
tial for acceleration.

In our application, we used the data from a single step charge
or discharge to estimate the parameters of the terminal port,
then used a BRT model to estimate the hidden port parame-
ter of interest from the terminal port parameters; this is the
same as in the Bayesian inference approach, with Bayesian
posterior estimation replaced by a BRT. While flexibility of
BRTs loss function allows exploitation of multidimensional
outputs, essentially multiple BRTs are needed, one for each
of the outputs. For simplicity, we chose to test performance
of BRTs on estimation of only one of the two hidden param-
eters. Qc was selected over SOC because it is both more

critical and more difficult to estimate.

For our experiments, we used data from six cells for training
and data from the remaining two cells to verify the training
quality. We trained individual BRTs for the double exponen-
tial using model parameter values for all 28 combinations of
eight cells taken six (for training) at a time, using the remain-
ing two cells for the verification. To accomplish this, we used
the scikit-learn Python software library (Pedregosa et al.,
2011) to train and evaluate the BRTs. The BRT training was
performed using GradientBoostingClassifier (Prettenhofer &
Louppe, n.d.) with least absolute deviation (’lad’) loss func-
tion, the learning rate set to 0.1, 200 boosting stages, and the
maximum depth of individual regression estimators set to 10.

Figure 9a shows the estimated and actual capacity for a ran-
domly selected cell, labeled ”S1”. The estimated values (open
circles) for a given cell age correspond to each of the charg-
ing steps during the step test. As shown, each estimation is
close to the value measured during the step charge test (the
solid line).

Figure 9b likewise shows a histogram of the estimation error
of Qc for the verification cells’ data, with results from all 28
models combined. The estimation errors’ mean and standard
deviation are −0.0019 and 0.019 Ah, respectively. The ac-
tual error is skewed toward negative estimation errors, which
correspond to underestimates of the cell capacity, which is
desirable for our target application domain. The model gen-

9



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

eralizes well; 95 % of the estimation errors are within ±0.04
Ah or ±2 % of new cell capacity.

4. CONCLUSIONS AND FUTURE WORK

We presented a method for assessing a used cell’s capacity
and state of charge via estimation of the parameters of the
double-exponential model (Figure 3). This approach required
characterization of the cell family over the range of interest
for capacity and state-of-charge. The model parameters were
extracted from either time domain or the frequency domain,
but only time-domain data were subjected to full data analy-
sis. Two approaches were considered for estimating the ca-
pacity: Bayesian inference and boosted regression trees. Both
methods demonstrated statistical effectiveness in estimation
for a set of eight tested batteries, albeit without perfect es-
timation. Noting however, from Figure 1, that the intrinsic,
in-class spread of the cells with respect to Qc is ±2 %, we
conclude the achieved accuracy of assessment with the accu-
racy of ±2 % with the capacity estimation error of less than
5 % is reasonable. While the Bayesian inference approach
employs a model and allows direct human interpretation of
the results; BRT implementation is more of an algorithmic
(Breiman, 2001b) approach: less transparent, but ultimately
yields higher accuracy.

Future work may include investigation of performance when
training data includes an indicator separating step charge
and step discharge data, or experimenting with bias-variance
trade-offs in neural network models employed in Bayesian
approach. Also, because the single exponential model pro-
vides a combined representation of the short- and long-term
transients, additional investigations into ways to improve its
performance and decrease the testing time may lead to sim-
pler practical solutions.
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