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ABSTRACT 

In the past decades, machine learning techniques or 

algorithms, particularly, classifiers have been widely 

applied to various real-world applications such as PHM. In 

developing high-performance classifiers, or machine 

learning-based models, i.e. predictive model for PHM, the 

predictive model evaluation remains a challenge. Generic 

methods such as accuracy may not fully meet the needs of 

models evaluation for prognostic applications. This paper 

addresses this issue from the point of view of PHM systems. 

Generic methods are first reviewed while outlining their 

limitations or deficiencies with respect to PHM. Then, two 

approaches developed for evaluating predictive models are 

presented with emphasis on specificities and requirements 

of PHM. A case of real prognostic application is studies to 

demonstrate the usefulness of two proposed methods for 

predictive model evaluation. We argue that predictive 

models for PHM must be evaluated not only using generic 

methods, but also domain-oriented approaches in order to 

deploy the models in real-world applications. 

 

Keyword: Machine Learning Algorithms, Predictive Models 

Evaluation, Generic Methods, Binary Classifier, Prognostics 

and Health Management (PHM), Prognostics, Time to 

Failure 

1. INTRODUCTION 

One of the objectives of Prognostics and Health 

Management (PHM) systems is to help reduce the number 

of unexpected failures by continuously monitoring the 

components of interest and predicting their failures 

sufficiently in advance to allow for proper planning of 

maintenance.  The core of PHM is prognostics, which  is 

defined as an emerging technique being able to predict 

failure before it happened and to precisely estimate 

remaining useful life (RUL) or time to failure (TTF) 

(Jardine 2006, Schwabacher 2007). For the failure 

prediction, one effective way is to develop predictive 

models to predict failures. Recently, a data-driven predictive 

modeling attracts much attention from researchers in 

machine learning community. This modeling technique is to 

develop classifiers using classification algorithms, such a 

classifier is able to classify the system operation statues into 

“normal (negative)” or “abnormal (positive)”. Usually, the 

positive status is used as an alert for failure predictions. For 

example, Yang (2005) developed predictive models (binary 

classifiers) from the historical operation and maintenance 

data to predict train wheel failure. The ultimate goal of 

prognostics is to predict the probability of a failure and 

precisely estimate its TTF for a monitored 

component/subsystem in complex systems. This can be 

done by developing numeric prognostic models, either data-

drive models or knowledge-based models. Due to 

specificities of prognostics, evaluation of prognostic 

methods/models is much more challenge. Recently, some 

researchers started to look into the performance evaluation 

of prognostic methods. Saxena et al (2014, 2009) 

investigated the evaluation metrics for comparing the 

performance of prognostic methods by focusing on the RUL 

estimation-based prognostics models. In their work, they 

proposed to evaluate prognostic methods/algorithms in 

online and offline running environments, and suggested 

some metrics such as respond time, prediction horizon and 

accuracy. Such metrics are useful for computing regression-

based RUL estimation models. However, it is still difficult 

to compute the performance of predictive models because 

those metrics are designed for numeric models, not for 

discrete classification-based models.  Our paper addresses 

this issue by focusing on performance evaluation of 

predictive models in offline running environment. In 
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general, the offline environment can provide the ground 

truth for evaluation.  We believe that the evaluation of 

predictive models can be treated as classifier evaluation 

from the point of view of machine learning (we will use 

term “model” and “classifier” alternatively later in this 

paper).  It is desirable that such a model evaluation not only 

helps practitioners compute the performance of a model, but 

also assists them assess business value of a predictive 

model. The ideal way to evaluate predictive models is to 

perform field trials in real-world environments. This is, 

however, unrealistic and costly. Existing methods are to 

compute the performance of models using generic methods 

available from the machine learning community.  

 

However, these generic evaluation approaches sometimes 

fail to take specificities of PHM applications into 

consideration, and thus may not satisfy the needs of 

predictive model evaluation for PHM. To evaluate 

effectively predictive models, the metrics have to take the 

TTF and failure coverage into consideration (detailed in 

Section 4). Unfortunately, to our best knowledge, none of 

the existing generic methods do so. In order to improve 

generic methods for evaluating prognostic models, domain-

oriented approaches, which incorporate the specific 

requirements of domain problems into evaluation metrics by 

tailoring existing generic methods, are proposed.  Prior to 

this, generic methods are reviewed, and its deficiencies are 

discussed when applying them to classifier evaluation for 

fielded applications. Then new approaches developed for 

prognostic applications are presented. These approaches 

help developers not only evaluating the model performance, 

but also identifying the usefulness and business value, 

which could be achieved once a model is deployed in 

application. The objective is to emphasize that a predictive 

model should be carefully evaluated by incorporating PHM 

specific requirements into evaluation metrics.  

 

The paper is structured to include the following sections: 

Section 2 reviews generic methods; Section 3 discusses the 

limitations of generic methods from the point of view of 

PHM applications; Section 4 presents the approaches 

developed for evaluating predictive models; Section 5 

presents a case study for comparing the evaluation for 

different methods; and the final Section concludes the paper. 

2. OVERVIEW OF GENERIC METHODS 

2.1. Preliminaries 

One of the most important tasks in classification research is 

to build classifiers from a given dataset, 

})...3,2,1{(},{ 1 myyx k
n
kkk  , where  m is  the number of 

classes and n is a total number of samples (or instances).  

The developed classifier )(f  classifies a new data kx  as 

})3,2,1{ˆ()(ˆ myxfy kkk  .  The ultimate goal is to make 

kk yy ˆ
 
by incorporating all kinds of notions of costs, 

errors, and losses into modeling.   To evaluate 

generalization performance of a classifier )(f , a testing 

dataset, which is unseen or new data for the classifier, is 

used. As a result, a confusion matrix can be obtained by 

running the classifier on the testing dataset. We note this 

confusion matrix as C , expressed as Equation 1 

 

In Equation 1, ijc  is the number of misclassified instances, 

i.e., the number of the instances classified as  the i
th 

class 

which are really in  the j
th 

class. Predicted classes are 

represented by the rows of the matrix whereas true classes 

are represented by the columns.  

An ideal classifier should ultimately generate a confusion 

matrix in which jicij  ,0  by incorporating noise and 

errors in classification.   Using this confusion matrix, the 

performance of a classifier can be computed. Over the past 

decades, generic methods have been developed from the 

confusion matrix. Generally speaking, generic methods can 

be grouped into scoring methods and graphical methods.  In 

the following subsections, these generic methods are 

reviewed. 

2.2. Scoring methods 

The scoring metrics includes  Accuracy (or Error Rate), 

True Positive Rate(TPR), False Positive Rate(FNR), True 

Negative Rate (TNR), False Negative Rate (FNR), 

Sensitivity, Specificity, Recall, Precision, and F-Score. 

These metrics (Japkowicz and Shah 2011) provide a simple 

and effective way to measure the performance of a 

classifier. To simplify the definitions and notations, these 

metrics are illustrated using binary classification, i.e., m = 2, 

and }1,1{ky . For binary classification, the confusion 

matrix in Equation 1 is simplified as a 2x2 matrix shown in 

Equation 2. 
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where: 

 c11 is the number of true positives;  

 c12  is the number of false positives; 

 c21 is the number of false negatives; and 

 c22 is the number of true negatives. 

 

Table 1. The scoring metrics 

 

Metrics  Computing method 

Accuracy 
22211211

2211

cccc

cc




 

Error Rate 
22211211

2112

cccc

cc




 

TPR 
1211

11

cc

c


 

TNR 
2221

22

cc

c


 

FPR 
1211

12

cc

c


 

FNR 
2221

21

cc

c


 

Sensitivity 
2111

11

cc

c


 

Specificity 
2212

22

cc

c


 

Recall 
2111

11

cc

c


 

Precision 
1211

11

cc

c


 

F-score 
precisionrecall

precisionrecall



2
 

 

From this confusion matrix, scoring metrics are computed 
as shown in Table 1. These scoring metrics are widely used 
in comparing or ranking the performance of classifiers 
because they are simple, easy-to-compute, and easy-to-

understand. Such an evaluation typically examines unbiased 
estimates of predictive accuracy of different classifiers 
(Srinivasan 1999). The assumption is that the estimates of 
performance are subject to sampling errors only and that the 
classifier with the highest accuracy would be the “best” 
choice of the classifiers for a given problem.  These metrics 
overlook two important practical concerns: class distribution 
and the cost of misclassification. For example, the accuracy 
metric assumes that the class distribution is known in the 
training dataset and testing dataset and that the 
misclassification costs for false positive and false negative 
error are equal (Provost 1998). In real-world application, the 
cost of misclassification for different errors may not be the 
same.  It is sometimes desirable to minimize the 
misclassification cost rather than the error-rate in 
classification task. 

2.3. Graphical methods  

To overcome the limitations of scoring metrics and 

incorporate the consideration of prior class distributions and 

the misclassification costs, several graphical methods had 

been developed. These graphic methods are   ROC 

(Receiver Operating Characteristics) Space, ROCCH (ROC 

Convex Hull), Isometrics, AUC (Area under ROC curve), 

Cost Curve, DEA (Data Envelopment Analysis), and Lift 

curve. They are also useful for visualizing performance of a 

classifier. Here is an overview for each method.  

2.3.1. ROC Space  

The ROC analysis was initially developed to express the 

tradeoffs between hit rate and false alert rate in signal 

detection theory (Egan 1975). It is now also used for 

evaluating classifier performance (Bradley 1997, Provost 

and Fawcett 2001, 1997). In particular, ROC is a powerful 

way for performance evaluation of binary classifiers, and it 

has become a popular method due to its simple graphical 

representation of overall performance.  

 

Using TPR and FPR from Table 1 as the Y-axis and X-axis 

respectively,  a ROC space can be plotted. In this ROC 

space, each point (FPR, TPR) represents a classifier 

(Fawcett  2003, Flach 2004, 2003). Figure 1 shows an 

example of a basic ROC graph for five discrete classifiers. 

Based on the position of a classifier in ROC space, we can 

evaluate or rank the performance of classifiers. In ROC 

space, the point (0, 1) represents a perfect classifier which 

has 100% accuracy and zero error rates. The upper left 

points  indicated that a classifier has a higher TPR and a 

lower FPR. For instance, C4.5 has a better TPR and a lower 

FPR  than nB. The classifier on   the upper right-hand side 

of an ROC space makes positive classification with relative 

weak evidence and has a higher TPR and a higher FPR.  

Therefore, the performance of a classifier is determined by a 

trade-off between TPR and FPR.  However, it is hard to 

decide which classifier is best from ROC space.  For 
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example, it is difficult to tell which classifier is better for 

CN2 and nB in Figure 1 (The unit of FPR/TPR axils is %).  

2.3.2. ROCCH 

As mentioned, ROC space is useful for visualizing the 

performance of classifiers regardless of class distribution 

and misclassification costs.   In order to further use ROC 

space to select the optimal classifiers, a useful way is to 

generate ROCCH (Provost et al. 2003, Bradley 1997). This 

ROC convex hull represents the best performance that can 

be achieved by a set of classifiers. The classifiers on 

ROCCH usually achieve the best accuracy. 

 
             Figure 1. A ROC graph for 5 classifiers (Flach 2004) 

2.3.3.  Isometrics 

To further use ROCCH to rank the performance of 

classifiers, we can add isometrics to ROCCH (Flach 2004, 

2003). Isometrics are collections of points with the same 

value for a given metric (Flach 2003). In ROC space, 

isometrics are lines. To draw the isometrics for a given 

metric such as accuracy, the accuracy isometrics can be 

added to ROCCH using the approach proposed by Flach 

(2003). In the same way, other  metrics isometrics such as 

precision could also be added to ROCCH in order to decide 

the optimal classifiers based on precision metric and a given 

class distribution. 

2.3.4. AUC 

In ROC space, a ROC curve is plotted for a given classifier 

by sampling different class proportions of positive and 

negative samples in the training dataset. A ROC curve is a 

segment line connecting points in ROC space from left-hand 

side to right-hand side. Such a ROC curve illustrates the 

error tradeoffs. It describes the predictive behavior of a 

classifier independent of class distribution and error costs, 

so it decouples generalization performance of a classifier 

from these factors.  The area under the ROC curve is 

denoted as AUC (Bradley 1997, Huang and Ling 2005). 

AUC can be used to rank or compare the performance of 

classifiers.  It is more appropriate whenever the class 

distribution and error costs are unknown because it 

corresponds to the shape of the entire ROC curve rather than 

any single point in ROC space (Swets  et al. 2003).  AUC 

has been proven more powerful than Accuracy in 

experimental comparisons of several popular learning 

algorithms (Huang and Ling 2005).    

 

To compute the AUC for binary classifiers, Hand and Till 

(2001) proposed a simple formula: 

         

      where n0 and n1 are the number of positive and negative 

examples    respectively, and ri is the rank of the i
th

 positive 

example in the ranked list for all examples in the test 

dataset.   

2.3.5. Cost curve 

The cost curve is a graphical representation for visualizing 

binary classifier performance over a full range of possible 
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class distributions and misclassification costs. It transforms 

a ROC curve or a ROCCH into another two dimensional 

space using normalized expected costs and probabilities 

instead of the TPR and FPR. In the cost curve, the y-axis is 

the expected cost, which is the normalized value of the total 

misclassification cost, and the x-axis is a probability 

function, which combines with the cost of a false positive 

and a false negative. A point (TPR, FPR) in the ROC space 

can be projected into the cost curve space as a cost line. By 

projecting a set of points onto the ROC curve into the cost 

curve space, a set of cost lines can be obtained. The lower 

envelope of these cost lines forms a cost curve. For 

example, a ROC curve containing 10 points for a given 

classifier is shown in Figure 2. The corresponding set of 

cost lines to 10 points in ROC space is shown in Figure 3 

where the lower envelope forms a cost curve for a given 

classifier. Further details on cost curve construction are 

described in (Drummond and Holte 2004, 2000A). 

2.3.6. DEA  

The DEA method is a more effective way for multi-class 

classifier evaluation. It is widely used in decision-making 

support and management science. It addresses the key issues 

in determining the efficiencies of various producers or 

DMUs (Decision Making Units) by converting a set of 

inputs into a set of outputs (Banker et al. 1984, Zheng   et al. 

2004). DEA is a linear programming based approach, which 

constructs an efficient frontier (envelopment) over the data 

and computes each data point’s efficiency related to this 

frontier. Each data point corresponds to a DMU or a 

producer in applications.  Zheng, et al.(2004) has attempted 

to apply DEA to classifier evaluation. They have proven 

that DEA and ROCCH have the same convex hull for binary 

classifications. In other words, DEA is equivalent to 

ROCCH for binary classification tasks.  

 

2.3.7. Lift curve  

The Lift is often used in marketing analysis.  It is also useful 

for classifier evaluation. Lift measures how much better a 

classifier is at predicting positive than a baseline classifier 

that randomly predicts positives (Caruana et al. 2006, 2004, 

Giudici 2003, Prechelt 1996).  It is defined as follows: 
%% / APTPTLeft  .  Here PT

%
 is  % of true positives 

above the given threshold and APT
%

  is  % of samples  in 

dataset above the threshold. For example, an agent intends 

to send advertising to the potential customers but only 

afford to send ads to 10% of the population and wish these 

customers will response.  How the agent chooses these 

samples from the populations   is a classification problem. A 

classifier should be trained for predicting positive response 

customers. A classifier with the maximum Lift  will help the 

agent to get the maximum numbers of the customers who 

will respond to the advertisement in this dataset. 

3. ISSUES WITH GENERIC METHODS  

Generic approaches, either scoring methods or graphic 

methods, have played an important role in classifier 

evaluation. However, there are some limitations. As 

Salzberg (1997) pointed out, good classifier evaluations are 

not done nearly enough using datasets from real world 

problems. For example, in 200 surveyed papers on neural 

network learning algorithms (Flexer 1996), 29% of these 

algorithms are not evaluated with any real problem data, and 

only 8% of these algorithms can be compared with real 

problem data. Flexer did another survey on 43 neural 

network papers from leading journals and found that only 3 

out of 43 papers used real problem data to test their 

algorithms or tune the parameters for the algorithms. It is 

desirable that a classifier should be evaluated carefully not 

only using right metric but also the right data from real 

world problems, or so-called fielded applications. However, 

existing generic methods may not able to validate the 

performance of classifiers for some real-world problems due 

to some ingrained deficiencies. The deficiencies with 

generic evaluation methods can be summarized as follows.  

 

First, generic methods request i.i.d. sampling in evaluation. 

In practice many data from real-world problems may not 

meet this requirement of instance independency. For 

example, instances in time-series from prognostic 

applications are not independent. They are time dependent. 

The i.i.d. based random sampling may separate dependent 

data into different groups such as training and testing 

dataset. In fact, the instances associated with a time series 

should stay in the same group.  

 

Secondly, generic metrics have some deficiencies 

themselves. The scoring metrics do not account the cost of 

misclassification or error rates for evaluation. This is a 

serious problem because some errors may cost more than 

others in different problems. For example, in the medical 

diagnostic application, the false negative for a cancer could 

cost much more than a false positive.    

 

1 

t0 

Reward thresholds for positive predictions over time from replacement 

Figure 5.  A reward function for positive predictions  
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Thirdly, interpretation of evaluation results from generic 

metrics may be difficult to tell practitioners meaningful 

information. In other words, interpretation of evaluating 

results is hard to understand, even misleading. For example, 

AUC, a normalized value between 0 and 1, is supposed to 

address the deficiencies of ROC curve. Theoretically, the 

higher the AUC value, the better the performance of a 

classifier. Therefore, a classifier with 0.8 of AUC value 

should be better than one with 0.75 of AUC value.  

However, such interpretation may be meaningless or useless 

for an end user.  From the point of view of business value, 

the interpretation may be totally different. The classifier 

with 0.8 of AUC value may save $50,000, and the classifier 

with 0.75 of AUC value may save $60,000 after they are 

deployed in a real-world application.   

Finally, generic methods do not take the specificities or 

settings of real-world applications into consideration, in 

particularly, for prognostic applications. As an emerging 

application of classification to real-world problems, 

prognostics (Schwabacher and Goebel 2007, Yang and 

Létourneau 2005)] is to develop the predictive models 

(classifiers) from large-sized operation and maintenance 

data by using techniques from machine learning.  Such a 

prognostic model is able to predict the likelihood of a failure 

with a relatively accurate TTF estimation.  Existing generic 

methods failed to incorporate these specific factors into 

classifier evaluation. 

4. MODEL EVALUATION FOR PROGNOSTICS 

As emphasized above, predictive models evaluation needs 

to take domain specificities into account. Such specificities 

cover two aspects: capability of failure prediction and TTF 

estimation. From the point of view of TTF, it is desirable 

that a predictive model can generate alerts in a “targeted” 

time window prior to a failure.   A model that predicts a 

failure too early leads to non-optimal component use.  On 

the other hand, if the failure prediction is too close to the 

actual failure then it becomes difficult to schedule an 

effective maintenance. Figure 4 shows the requirement for 

prognostic models in the relationship between alert time and 

TTF. We use Tt and 0t  
to denote the beginning and then 

end of this target window.  The time at which the predictive 

model predicts a failure (and alert is raised) is noted p.  

When p < Tt  there is a potential for replacing a component 

before the end of its useful life and therefore losing some 

component usage. From the point of view of failure 

predictions, it is expected that a predictive model should be 

able to predict all potential failures with reasonable number 

of alerts (positive predictions) instead of few failures within 

many alerts. 

4.1. Score-based approach 

To address the specificities of prognostic application and 

evaluate the performance of predictive models effectively, a 

score-based approach is proposed by which the problem 

coverage and TTF is incorporated into classifier evaluation. 

The score-based method is briefly reviewed in the 

following. 

In the score-based method, a reward function is first defined 

for predicting the correct instance outcome. The reward for 

predicting a positive instance is based on time to failure 

between alert generation and the actual failure, i.e. the 

determined target window.  Figure 5 shows a graph of this 

function. The time target window is formed as [-t2, -t1].  The 

parameters t1 and t2 are determined based on the 

requirement of prognostic application. The maximum gain 

is obtained when the model predicts the failure in the target 

window prior to a component failure. Outside this target 

window, predicting a failure can lead to a negative reward 

threshold. As such a prediction corresponds to misleading 

advice. Accordingly, false positive predictions (predictions 

of a failure when there is no failure) are penalized by a 

reward of -1.5 in comparison to a 1.0 reward for true 

positive predictions (predictions of failure when there is a 

failure). 

 

The reward function accounts for TTF prediction for each 

alert; to evaluate model coverage, alert distribution over the 

different failure cases must be taken into account. This is 

achieved by the following formula or overall performance 

evaluation presented in Equation 4. 

 

where: 

 p is the number of positive predictions in the 

testing dataset;  

 NrDetected is the number of failures, which 

contain at least one alert in the target interval; 

 NrofCase is the total number of failures in a given 

testing dataset; 

TTF 

-tT

 

Failure 
Alert 

Figure 4. Time relation between alert time and failure time 
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 Sign is the sign of 


p

i

isc

1

. When Sign <0 and 

brDetected=0, score is set to zero; and 

 sci is calculated with the reward function above for 

each alert. 

 

From Equation 4, we can find that the total score for all 

positive prediction is customized from accuracy and the first 

part (Nrdetected/NrOfcase) is relevant to the recall metric.  

In terms of process, the threshold of the reward function is 

determined based on the requirements of the prognostic 

application at hand (rewards, target period for predictions). 

Then, all models are run using test dataset(s) and their 

respective scores are calculated  using Equation 4.  The 

model with the highest score is considered the best model 

for the application. This score-based method has been used 

to successfully evaluate the performance of classifiers for 

train wheel prognostics (Yang and Létourneau 2005) and 

aircraft component prognostics (Létourneau  et al 1999). 

4.2. Cost-based approach  

Although the score-based approach takes TTF prediction 

and problem detection coverage into account in evaluating 

predictive classifiers, the scores computed do not inform 

end users on the expected cost savings of predictive models. 

In practice, the best way is to estimate cost savings that will 

be achieved if a predictive classifier is deployed. To this 

end, a cost-saving method (Drummond  and Yang 2008 , 

Yang and  Létourneau 2007)  has been developed for 

predictive classifier evaluation.  

 

Estimating cost saving is a challenging task.  It fully 

depends on the real cost information from applications. In 

particular the cost may be changed with changes of time and 

deployment environments. Therefore, two different metrics 

for estimating cost savings are proposed: one for accurate 

cost information, and one for uncertain or missed cost 

information. 

When accurate cost information is available, a cost-saving 

metric can be used (Yang and Létourneau 2007) to estimate 

the business value for end users. By using this metric, four 

kinds of cost information are requested: the cost of a false 

alert (an inspection without component replacement), a pro 

rated cost for early replacement, the cost for fixing a faulty 

component, and the cost of an undetected failure (i.e., a 

functional failure during operation without any prior 

prediction from the prognostic model).  The first three costs 

are generally easy to obtain while the last one is difficult to 

approximate accurately.  This is because failures during 

operations may incur various on other costs that are 

themselves difficult to estimate. The following are the 

details of the cost saving estimation. 

To estimate the cost saving (CS) for a model, the difference 

between the cost of operation without the model ( nmC ) and 

the cost with the prognostic model ( pmC ) are computed 

using Equations 5 and 6: 

 

)()( NMdMNcCnm              (5)                          

)( NMdNcFbTaC epm              (6) 

 

where: 

 a is a pro rata cost for early replacement. For 

example, $10 for each lost day of usage; 

 b  is  the cost for a false alert; 

 c  is the cost for an undetected failure (direct 

cost for a failure during operation); 

 d is the cost for replacing the component (either 

after a failure or following an alert); 

 N  is the number of undetected failures; 

 M is the number of detected failures;  

 Te is the sum of  || Ttp   for all predicted 

failures, i.e., 




M

i

Tie tpT

1

||  (see Figure 3) 

where pi is the time of the i
th 

 prediction; and 

 F is the number of false alerts 

 

The cost parameters, cba ,, and d are provided by the end 

user, MFTe ,, , and N are computed after applying the 

given model to a testing dataset. 

5. CASE STUDY 

The WILDMiner project targets the development of data-

mining-based models for train wheel failures predictions 

(Yang and Létourneau 2005).  The objective is to reduce 

train wheel failures during operation which disrupt 

operation and could lead to catastrophes such as train 

derailments. The data used to build the predictive models 

come from the WILD (Wheel Impact Load Detectors) data 

acquisition system. This system measures the dynamic 

impact of each wheel at strategic locations on the rail 

network.  When the measured impact exceeds a pre-

determined threshold, the wheels on the corresponding axle 

are considered faulty.  A train with faulty wheels needs to 

immediately reduce speed and then stop at the nearest siding 

so that the car with faulty wheels can be decoupled and 

repaired.  A successful predictive model would be able to 

predict high impacts ahead of time so that problematic 

wheels are replaced before they disrupt operation. 

For this study, we used WILD data collected over a period 

of 17 months from a fleet of 804 large cars with 12 axles 

each. After data pre-processing, we ended up with a dataset 

containing 2,409,696 instances grouped in 9906 time-series 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

8 

(one time-series for each axle used in operation during the 

study).  We used 6400 time-series for training (roughly the 

equivalent of the first 11 months) and kept the remaining 

3506 time-series for testing (roughly the equivalent of the 

last 6 months).  Since there are only 129 occurrences of 

wheel failures in the training dataset, we selected the 

corresponding 129 time-series out of the initial 6400 time-

series in the training dataset. We created a relevant dataset 

for modeling which   contains 214364 instances from the 

selected 129 time-series. 

Using the obtained dataset and the WEKA package, we built 

the predictive models. The modeling process consists of 

three steps. First, we labeled all instances in the dataset by 

configuring the automated labeling step. Second, we 

augmented the representation with new features such as the 

moving average for a key attribute. Finally, we used 

WEKA’s implementation of decision trees (J48) and naïve 

Bayes (SimpleNaiveBayes) to build four predictive models 

referred to as A, B, C and D.  Model A and B were obtained 

with default parameters from J48 and SimpleNaiveBayes, 

respectively.  In a second experiment, we modified the 

misclassification costs to compensate for the imbalanced 

between positive and negative instances and then re-run J48 

and SimpleNaiveBayes to generate model C and D. 

For evaluation purpose, we ran these four models on the test 

dataset.  The test dataset has 1,609,215 instances.  Out of the 

3506 time-series contained in the test dataset, 81 comprise a 

validated wheel failure.  We applied the proposed evaluation 

method to estimate the cost saving from these four models.  

Since we assumed that the operators will act as soon as they 

receive an alert, we only kept the first alert (prediction of 

failure) from each time-series.  We then extracted the 

performance parameters N, M, and F by counting the 

number of time-series for which we did not get any 

predictions, the number of series for which we did get a 

prediction followed by an actual failure (true positive), and 

the number of time-series for which we got a false alert, 

respectively.  To compute, we added the differences 

between the time of the prediction and the beginning of the 

target window (i.e., || Ttp   ) for each of the M time-series 

for which the model correctly predicted a failure. In this 

application, the time unit for the difference || Ttp    is 

“day” and  tT is set as 20 days prior to failure. For example, 

when the time-to-failure prediction (p) of an alert is 40 days 

to an actual failure, its difference, || Ttp  , is 20 days (

|| Ttp  = |-40 – (- 20)| = 20). 

The cost information (noted ,,, cba  and d in Equations (5) 

and (6) was provided by an independent expert in the 

railway industry. These are as follows: a= $2/per day for 

loss of usage, b=$500/per false alert, c=$5000/per 

undetected failure and d=$2100/per component 

replacement.  All costs are in US dollars.  Using these 

values and the results for the performance parameters, we 

obtained the results shown in Table 2.   

 
Table 2. The results of 4 predictive models on test data 

 

Model Name   M+N  N F
 Cost Saving 

(US$) 

Model A 357 81 40 245 81,750.0 

Model B 812 81 30 178 164,376.0 

Model C 647 81 6 161 293,206.0 

Model D 1339 81 21 260 167,322.0 

 

To compare the evaluation results from different metrics, we 

also compute accuracy and false alert rate by using generic 

methods and the scores by using score-based approach by 

running models on the same test dataset as we computed 

cost-saving for Table 2. The results are shown in Table 3.  

 

Table 3. The evaluation results from different methods 

 

Model Name Accuracy  AUC Score
 Cost Saving 

(US$) 

Model A 75% 0.56 60.5 81,750.0 

Model B 89% 0.68 120.5 164,376.0 

Model C 93% 0.76 132.8 293,206.0 

Model D 86% 0.60 125.0 167,322.0 

 

The case study illustrates the simplicity and usefulness of 

the cost-based evaluation approach.  With this approach, the 

end user gets a quick understanding of the potential cost 

savings to be expected from each of the model.  Key factors 

such as timeliness of the alerts and coverage of failures are 

taken into account, which is not the case with other methods 

typically used in data mining research. As shown in Table 2, 

it is obvious that Model C outperformed other models in 

terms of the cost saving.  

From the evaluation results shown in Table 3, it is 

interesting to note that, for the case study considered, the 

results obtained from the cast-based method is consistent 

with the score-based approach.  In terms of the AUC and 

Accuracy results, Model B should be better than Model D. 

However, the cost-based approach and score-based method 

eT
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show different results. These results support our argument 

that predictive models deserve specific evaluation methods 

for its performance evaluation.  

6. CONCLUSIONS 

In this paper generic methods which are widely used in 

classifier evaluation are first surveyed. The limitations for 

existing classifier evaluation, particularly for predictive 

models evaluation have also been discussed. To address the 

issues two useful and effectively methods for prognostic 

model evaluation have been proposed which account for 

prognostic application specificities. These methods have 

been used to evaluate the predictive models for several 

PHM applications such as train wheel prognostics and 

aircraft component prognostics. In terms of the results 

obtained from the cast study, it is obvious that the proposed 

domain-oriented evaluation methods for predictive models 

are useful and able to provide a direct business value for 

practitioners.  

We believed that more and more feasible and effective 

domain-oriented approaches will be developed to meet the 

needs of predictive model evaluation for real-world 

applications. This is a right way to promote machine 

learning techniques in solving real-world problems. 

Domain-oriented approaches may incorporate specificities 

of domain problems into the performance assessments; 

therefore, they are helpful and useful in evaluating classifier 

for applications. At the same time, they are also welcomed 

by end users because of the feasibility to identify the 

business values such as cost savings. We strongly argue that 

a predictive model has to be carefully evaluated not only 

using generic methods but also domain-oriented approaches 

before deploying it in PHM applications. Generic methods 

could help developers in investigating overall performance 

of a model from the statistical viewpoint at the initial stage 

of model development. Domain-oriented approaches should 

be further used to evaluate the usefulness and business 

value.  
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