
International Journal of Prognostics and Health Management, ISSN 2153-2648, 2014 019

Predictive Model Evaluation for PHM

Chunsheng Yang
1
, Yanni Zou

2
, Jie Liu

3
 , Kyle R Mulligan

4

1
National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada

Chunsheng.Yang@nrc.gc.ca
2 Jiujiang University, Jiangxi, China

zouyanni@163.com
3
 Dept. of Mechanical and Aerospace Eng., Carleton University, Ottawa, ON, K1S 5B6, Canada

Jie.Liu@carleton.ca
4
GAUS, Dept. of Mechanical Engineering, Universit´e de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada

Kyle.Mulligan@USherbrooke.ca

ABSTRACT

In the past decades, machine learning techniques or

algorithms, particularly, classifiers have been widely

applied to various real-world applications such as PHM. In

developing high-performance classifiers, or machine

learning-based models, i.e. predictive model for PHM, the

predictive model evaluation remains a challenge. Generic

methods such as accuracy may not fully meet the needs of

models evaluation for prognostic applications. This paper

addresses this issue from the point of view of PHM systems.

Generic methods are first reviewed while outlining their

limitations or deficiencies with respect to PHM. Then, two

approaches developed for evaluating predictive models are

presented with emphasis on specificities and requirements

of PHM. A case of real prognostic application is studies to

demonstrate the usefulness of two proposed methods for

predictive model evaluation. We argue that predictive

models for PHM must be evaluated not only using generic

methods, but also domain-oriented approaches in order to

deploy the models in real-world applications.

Keyword: Machine Learning Algorithms, Predictive Models

Evaluation, Generic Methods, Binary Classifier, Prognostics

and Health Management (PHM), Prognostics, Time to

Failure

1. INTRODUCTION

One of the objectives of Prognostics and Health

Management (PHM) systems is to help reduce the number

of unexpected failures by continuously monitoring the

components of interest and predicting their failures

sufficiently in advance to allow for proper planning of

maintenance. The core of PHM is prognostics, which is

defined as an emerging technique being able to predict

failure before it happened and to precisely estimate

remaining useful life (RUL) or time to failure (TTF)

(Jardine 2006, Schwabacher 2007). For the failure

prediction, one effective way is to develop predictive

models to predict failures. Recently, a data-driven predictive

modeling attracts much attention from researchers in

machine learning community. This modeling technique is to

develop classifiers using classification algorithms, such a

classifier is able to classify the system operation statues into

“normal (negative)” or “abnormal (positive)”. Usually, the

positive status is used as an alert for failure predictions. For

example, Yang (2005) developed predictive models (binary

classifiers) from the historical operation and maintenance

data to predict train wheel failure. The ultimate goal of

prognostics is to predict the probability of a failure and

precisely estimate its TTF for a monitored

component/subsystem in complex systems. This can be

done by developing numeric prognostic models, either data-

drive models or knowledge-based models. Due to

specificities of prognostics, evaluation of prognostic

methods/models is much more challenge. Recently, some

researchers started to look into the performance evaluation

of prognostic methods. Saxena et al (2014, 2009)

investigated the evaluation metrics for comparing the

performance of prognostic methods by focusing on the RUL

estimation-based prognostics models. In their work, they

proposed to evaluate prognostic methods/algorithms in

online and offline running environments, and suggested

some metrics such as respond time, prediction horizon and

accuracy. Such metrics are useful for computing regression-

based RUL estimation models. However, it is still difficult

to compute the performance of predictive models because

those metrics are designed for numeric models, not for

discrete classification-based models. Our paper addresses

this issue by focusing on performance evaluation of

predictive models in offline running environment. In

Chunsheng Yang, et.al. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 United States License,

which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/440438584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

2

general, the offline environment can provide the ground

truth for evaluation. We believe that the evaluation of

predictive models can be treated as classifier evaluation

from the point of view of machine learning (we will use

term “model” and “classifier” alternatively later in this

paper). It is desirable that such a model evaluation not only

helps practitioners compute the performance of a model, but

also assists them assess business value of a predictive

model. The ideal way to evaluate predictive models is to

perform field trials in real-world environments. This is,

however, unrealistic and costly. Existing methods are to

compute the performance of models using generic methods

available from the machine learning community.

However, these generic evaluation approaches sometimes

fail to take specificities of PHM applications into

consideration, and thus may not satisfy the needs of

predictive model evaluation for PHM. To evaluate

effectively predictive models, the metrics have to take the

TTF and failure coverage into consideration (detailed in

Section 4). Unfortunately, to our best knowledge, none of

the existing generic methods do so. In order to improve

generic methods for evaluating prognostic models, domain-

oriented approaches, which incorporate the specific

requirements of domain problems into evaluation metrics by

tailoring existing generic methods, are proposed. Prior to

this, generic methods are reviewed, and its deficiencies are

discussed when applying them to classifier evaluation for

fielded applications. Then new approaches developed for

prognostic applications are presented. These approaches

help developers not only evaluating the model performance,

but also identifying the usefulness and business value,

which could be achieved once a model is deployed in

application. The objective is to emphasize that a predictive

model should be carefully evaluated by incorporating PHM

specific requirements into evaluation metrics.

The paper is structured to include the following sections:

Section 2 reviews generic methods; Section 3 discusses the

limitations of generic methods from the point of view of

PHM applications; Section 4 presents the approaches

developed for evaluating predictive models; Section 5

presents a case study for comparing the evaluation for

different methods; and the final Section concludes the paper.

2. OVERVIEW OF GENERIC METHODS

2.1. Preliminaries

One of the most important tasks in classification research is

to build classifiers from a given dataset,

})...3,2,1{(},{ 1 myyx k
n
kkk , where m is the number of

classes and n is a total number of samples (or instances).

The developed classifier)(f classifies a new data kx as

})3,2,1{ˆ()(ˆ myxfy kkk . The ultimate goal is to make

kk yy ˆ

by incorporating all kinds of notions of costs,

errors, and losses into modeling. To evaluate

generalization performance of a classifier)(f , a testing

dataset, which is unseen or new data for the classifier, is

used. As a result, a confusion matrix can be obtained by

running the classifier on the testing dataset. We note this

confusion matrix as C , expressed as Equation 1

In Equation 1, ijc is the number of misclassified instances,

i.e., the number of the instances classified as the i
th

class

which are really in the j
th

class. Predicted classes are

represented by the rows of the matrix whereas true classes

are represented by the columns.

An ideal classifier should ultimately generate a confusion

matrix in which jicij ,0 by incorporating noise and

errors in classification. Using this confusion matrix, the

performance of a classifier can be computed. Over the past

decades, generic methods have been developed from the

confusion matrix. Generally speaking, generic methods can

be grouped into scoring methods and graphical methods. In

the following subsections, these generic methods are

reviewed.

2.2. Scoring methods

The scoring metrics includes Accuracy (or Error Rate),

True Positive Rate(TPR), False Positive Rate(FNR), True

Negative Rate (TNR), False Negative Rate (FNR),

Sensitivity, Specificity, Recall, Precision, and F-Score.

These metrics (Japkowicz and Shah 2011) provide a simple

and effective way to measure the performance of a

classifier. To simplify the definitions and notations, these

metrics are illustrated using binary classification, i.e., m = 2,

and }1,1{ky . For binary classification, the confusion

matrix in Equation 1 is simplified as a 2x2 matrix shown in

Equation 2.

)1(

21

1

22221

11211

mmmm

imiii

m

m

ccc

ccc

ccc

ccc

C

)2(
2221

1211

cc

cc
C

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

3

where:

 c11 is the number of true positives;

 c12 is the number of false positives;

 c21 is the number of false negatives; and

 c22 is the number of true negatives.

Table 1. The scoring metrics

Metrics Computing method

Accuracy
22211211

2211

cccc

cc

Error Rate
22211211

2112

cccc

cc

TPR
1211

11

cc

c

TNR
2221

22

cc

c

FPR
1211

12

cc

c

FNR
2221

21

cc

c

Sensitivity
2111

11

cc

c

Specificity
2212

22

cc

c

Recall
2111

11

cc

c

Precision
1211

11

cc

c

F-score
precisionrecall

precisionrecall

2

From this confusion matrix, scoring metrics are computed
as shown in Table 1. These scoring metrics are widely used
in comparing or ranking the performance of classifiers
because they are simple, easy-to-compute, and easy-to-

understand. Such an evaluation typically examines unbiased
estimates of predictive accuracy of different classifiers
(Srinivasan 1999). The assumption is that the estimates of
performance are subject to sampling errors only and that the
classifier with the highest accuracy would be the “best”
choice of the classifiers for a given problem. These metrics
overlook two important practical concerns: class distribution
and the cost of misclassification. For example, the accuracy
metric assumes that the class distribution is known in the
training dataset and testing dataset and that the
misclassification costs for false positive and false negative
error are equal (Provost 1998). In real-world application, the
cost of misclassification for different errors may not be the
same. It is sometimes desirable to minimize the
misclassification cost rather than the error-rate in
classification task.

2.3. Graphical methods

To overcome the limitations of scoring metrics and

incorporate the consideration of prior class distributions and

the misclassification costs, several graphical methods had

been developed. These graphic methods are ROC

(Receiver Operating Characteristics) Space, ROCCH (ROC

Convex Hull), Isometrics, AUC (Area under ROC curve),

Cost Curve, DEA (Data Envelopment Analysis), and Lift

curve. They are also useful for visualizing performance of a

classifier. Here is an overview for each method.

2.3.1. ROC Space

The ROC analysis was initially developed to express the

tradeoffs between hit rate and false alert rate in signal

detection theory (Egan 1975). It is now also used for

evaluating classifier performance (Bradley 1997, Provost

and Fawcett 2001, 1997). In particular, ROC is a powerful

way for performance evaluation of binary classifiers, and it

has become a popular method due to its simple graphical

representation of overall performance.

Using TPR and FPR from Table 1 as the Y-axis and X-axis

respectively, a ROC space can be plotted. In this ROC

space, each point (FPR, TPR) represents a classifier

(Fawcett 2003, Flach 2004, 2003). Figure 1 shows an

example of a basic ROC graph for five discrete classifiers.

Based on the position of a classifier in ROC space, we can

evaluate or rank the performance of classifiers. In ROC

space, the point (0, 1) represents a perfect classifier which

has 100% accuracy and zero error rates. The upper left

points indicated that a classifier has a higher TPR and a

lower FPR. For instance, C4.5 has a better TPR and a lower

FPR than nB. The classifier on the upper right-hand side

of an ROC space makes positive classification with relative

weak evidence and has a higher TPR and a higher FPR.

Therefore, the performance of a classifier is determined by a

trade-off between TPR and FPR. However, it is hard to

decide which classifier is best from ROC space. For

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

4

example, it is difficult to tell which classifier is better for

CN2 and nB in Figure 1 (The unit of FPR/TPR axils is %).

2.3.2. ROCCH

As mentioned, ROC space is useful for visualizing the

performance of classifiers regardless of class distribution

and misclassification costs. In order to further use ROC

space to select the optimal classifiers, a useful way is to

generate ROCCH (Provost et al. 2003, Bradley 1997). This

ROC convex hull represents the best performance that can

be achieved by a set of classifiers. The classifiers on

ROCCH usually achieve the best accuracy.

 Figure 1. A ROC graph for 5 classifiers (Flach 2004)

2.3.3. Isometrics

To further use ROCCH to rank the performance of

classifiers, we can add isometrics to ROCCH (Flach 2004,

2003). Isometrics are collections of points with the same

value for a given metric (Flach 2003). In ROC space,

isometrics are lines. To draw the isometrics for a given

metric such as accuracy, the accuracy isometrics can be

added to ROCCH using the approach proposed by Flach

(2003). In the same way, other metrics isometrics such as

precision could also be added to ROCCH in order to decide

the optimal classifiers based on precision metric and a given

class distribution.

2.3.4. AUC

In ROC space, a ROC curve is plotted for a given classifier

by sampling different class proportions of positive and

negative samples in the training dataset. A ROC curve is a

segment line connecting points in ROC space from left-hand

side to right-hand side. Such a ROC curve illustrates the

error tradeoffs. It describes the predictive behavior of a

classifier independent of class distribution and error costs,

so it decouples generalization performance of a classifier

from these factors. The area under the ROC curve is

denoted as AUC (Bradley 1997, Huang and Ling 2005).

AUC can be used to rank or compare the performance of

classifiers. It is more appropriate whenever the class

distribution and error costs are unknown because it

corresponds to the shape of the entire ROC curve rather than

any single point in ROC space (Swets et al. 2003). AUC

has been proven more powerful than Accuracy in

experimental comparisons of several popular learning

algorithms (Huang and Ling 2005).

To compute the AUC for binary classifiers, Hand and Till

(2001) proposed a simple formula:

 where n0 and n1 are the number of positive and negative

examples respectively, and ri is the rank of the i
th

 positive

example in the ranked list for all examples in the test

dataset.

2.3.5. Cost curve

The cost curve is a graphical representation for visualizing

binary classifier performance over a full range of possible

CN2

Ripper

nB

C4.5

SVM

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

T
P

R

FPR

)3(
)(

10

1

0

nn

ir
AUC

n

i
i

1

 0.5

False Positive Rate

Figure 2. A ROC curve with 10 points

 Probability of Positive

Figure 3. Cost lines and their lower envelope

E

x
p

e
c
te

d
 C

o
st

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

5

class distributions and misclassification costs. It transforms

a ROC curve or a ROCCH into another two dimensional

space using normalized expected costs and probabilities

instead of the TPR and FPR. In the cost curve, the y-axis is

the expected cost, which is the normalized value of the total

misclassification cost, and the x-axis is a probability

function, which combines with the cost of a false positive

and a false negative. A point (TPR, FPR) in the ROC space

can be projected into the cost curve space as a cost line. By

projecting a set of points onto the ROC curve into the cost

curve space, a set of cost lines can be obtained. The lower

envelope of these cost lines forms a cost curve. For

example, a ROC curve containing 10 points for a given

classifier is shown in Figure 2. The corresponding set of

cost lines to 10 points in ROC space is shown in Figure 3

where the lower envelope forms a cost curve for a given

classifier. Further details on cost curve construction are

described in (Drummond and Holte 2004, 2000A).

2.3.6. DEA

The DEA method is a more effective way for multi-class

classifier evaluation. It is widely used in decision-making

support and management science. It addresses the key issues

in determining the efficiencies of various producers or

DMUs (Decision Making Units) by converting a set of

inputs into a set of outputs (Banker et al. 1984, Zheng et al.

2004). DEA is a linear programming based approach, which

constructs an efficient frontier (envelopment) over the data

and computes each data point’s efficiency related to this

frontier. Each data point corresponds to a DMU or a

producer in applications. Zheng, et al.(2004) has attempted

to apply DEA to classifier evaluation. They have proven

that DEA and ROCCH have the same convex hull for binary

classifications. In other words, DEA is equivalent to

ROCCH for binary classification tasks.

2.3.7. Lift curve

The Lift is often used in marketing analysis. It is also useful

for classifier evaluation. Lift measures how much better a

classifier is at predicting positive than a baseline classifier

that randomly predicts positives (Caruana et al. 2006, 2004,

Giudici 2003, Prechelt 1996). It is defined as follows:
%% / APTPTLeft . Here PT

%
 is % of true positives

above the given threshold and APT
%

 is % of samples in

dataset above the threshold. For example, an agent intends

to send advertising to the potential customers but only

afford to send ads to 10% of the population and wish these

customers will response. How the agent chooses these

samples from the populations is a classification problem. A

classifier should be trained for predicting positive response

customers. A classifier with the maximum Lift will help the

agent to get the maximum numbers of the customers who

will respond to the advertisement in this dataset.

3. ISSUES WITH GENERIC METHODS

Generic approaches, either scoring methods or graphic

methods, have played an important role in classifier

evaluation. However, there are some limitations. As

Salzberg (1997) pointed out, good classifier evaluations are

not done nearly enough using datasets from real world

problems. For example, in 200 surveyed papers on neural

network learning algorithms (Flexer 1996), 29% of these

algorithms are not evaluated with any real problem data, and

only 8% of these algorithms can be compared with real

problem data. Flexer did another survey on 43 neural

network papers from leading journals and found that only 3

out of 43 papers used real problem data to test their

algorithms or tune the parameters for the algorithms. It is

desirable that a classifier should be evaluated carefully not

only using right metric but also the right data from real

world problems, or so-called fielded applications. However,

existing generic methods may not able to validate the

performance of classifiers for some real-world problems due

to some ingrained deficiencies. The deficiencies with

generic evaluation methods can be summarized as follows.

First, generic methods request i.i.d. sampling in evaluation.

In practice many data from real-world problems may not

meet this requirement of instance independency. For

example, instances in time-series from prognostic

applications are not independent. They are time dependent.

The i.i.d. based random sampling may separate dependent

data into different groups such as training and testing

dataset. In fact, the instances associated with a time series

should stay in the same group.

Secondly, generic metrics have some deficiencies

themselves. The scoring metrics do not account the cost of

misclassification or error rates for evaluation. This is a

serious problem because some errors may cost more than

others in different problems. For example, in the medical

diagnostic application, the false negative for a cancer could

cost much more than a false positive.

1

t0

Reward thresholds for positive predictions over time from replacement

Figure 5. A reward function for positive predictions

-1.5

Reward

-t1 -t2

-t3

TTF

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

6

Thirdly, interpretation of evaluation results from generic

metrics may be difficult to tell practitioners meaningful

information. In other words, interpretation of evaluating

results is hard to understand, even misleading. For example,

AUC, a normalized value between 0 and 1, is supposed to

address the deficiencies of ROC curve. Theoretically, the

higher the AUC value, the better the performance of a

classifier. Therefore, a classifier with 0.8 of AUC value

should be better than one with 0.75 of AUC value.

However, such interpretation may be meaningless or useless

for an end user. From the point of view of business value,

the interpretation may be totally different. The classifier

with 0.8 of AUC value may save $50,000, and the classifier

with 0.75 of AUC value may save $60,000 after they are

deployed in a real-world application.

Finally, generic methods do not take the specificities or

settings of real-world applications into consideration, in

particularly, for prognostic applications. As an emerging

application of classification to real-world problems,

prognostics (Schwabacher and Goebel 2007, Yang and

Létourneau 2005)] is to develop the predictive models

(classifiers) from large-sized operation and maintenance

data by using techniques from machine learning. Such a

prognostic model is able to predict the likelihood of a failure

with a relatively accurate TTF estimation. Existing generic

methods failed to incorporate these specific factors into

classifier evaluation.

4. MODEL EVALUATION FOR PROGNOSTICS

As emphasized above, predictive models evaluation needs

to take domain specificities into account. Such specificities

cover two aspects: capability of failure prediction and TTF

estimation. From the point of view of TTF, it is desirable

that a predictive model can generate alerts in a “targeted”

time window prior to a failure. A model that predicts a

failure too early leads to non-optimal component use. On

the other hand, if the failure prediction is too close to the

actual failure then it becomes difficult to schedule an

effective maintenance. Figure 4 shows the requirement for

prognostic models in the relationship between alert time and

TTF. We use Tt and 0t
to denote the beginning and then

end of this target window. The time at which the predictive

model predicts a failure (and alert is raised) is noted p.

When p < Tt there is a potential for replacing a component

before the end of its useful life and therefore losing some

component usage. From the point of view of failure

predictions, it is expected that a predictive model should be

able to predict all potential failures with reasonable number

of alerts (positive predictions) instead of few failures within

many alerts.

4.1. Score-based approach

To address the specificities of prognostic application and

evaluate the performance of predictive models effectively, a

score-based approach is proposed by which the problem

coverage and TTF is incorporated into classifier evaluation.

The score-based method is briefly reviewed in the

following.

In the score-based method, a reward function is first defined

for predicting the correct instance outcome. The reward for

predicting a positive instance is based on time to failure

between alert generation and the actual failure, i.e. the

determined target window. Figure 5 shows a graph of this

function. The time target window is formed as [-t2, -t1]. The

parameters t1 and t2 are determined based on the

requirement of prognostic application. The maximum gain

is obtained when the model predicts the failure in the target

window prior to a component failure. Outside this target

window, predicting a failure can lead to a negative reward

threshold. As such a prediction corresponds to misleading

advice. Accordingly, false positive predictions (predictions

of a failure when there is no failure) are penalized by a

reward of -1.5 in comparison to a 1.0 reward for true

positive predictions (predictions of failure when there is a

failure).

The reward function accounts for TTF prediction for each

alert; to evaluate model coverage, alert distribution over the

different failure cases must be taken into account. This is

achieved by the following formula or overall performance

evaluation presented in Equation 4.

where:

 p is the number of positive predictions in the

testing dataset;

 NrDetected is the number of failures, which

contain at least one alert in the target interval;

 NrofCase is the total number of failures in a given

testing dataset;

TTF

-tT

Failure
Alert

Figure 4. Time relation between alert time and failure time

Target Alert
)4(

1

p

i

i

sign

sc
NrOfCase

NrDetected
Score

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

7

 Sign is the sign of

p

i

isc

1

. When Sign <0 and

brDetected=0, score is set to zero; and

 sci is calculated with the reward function above for

each alert.

From Equation 4, we can find that the total score for all

positive prediction is customized from accuracy and the first

part (Nrdetected/NrOfcase) is relevant to the recall metric.

In terms of process, the threshold of the reward function is

determined based on the requirements of the prognostic

application at hand (rewards, target period for predictions).

Then, all models are run using test dataset(s) and their

respective scores are calculated using Equation 4. The

model with the highest score is considered the best model

for the application. This score-based method has been used

to successfully evaluate the performance of classifiers for

train wheel prognostics (Yang and Létourneau 2005) and

aircraft component prognostics (Létourneau et al 1999).

4.2. Cost-based approach

Although the score-based approach takes TTF prediction

and problem detection coverage into account in evaluating

predictive classifiers, the scores computed do not inform

end users on the expected cost savings of predictive models.

In practice, the best way is to estimate cost savings that will

be achieved if a predictive classifier is deployed. To this

end, a cost-saving method (Drummond and Yang 2008 ,

Yang and Létourneau 2007) has been developed for

predictive classifier evaluation.

Estimating cost saving is a challenging task. It fully

depends on the real cost information from applications. In

particular the cost may be changed with changes of time and

deployment environments. Therefore, two different metrics

for estimating cost savings are proposed: one for accurate

cost information, and one for uncertain or missed cost

information.

When accurate cost information is available, a cost-saving

metric can be used (Yang and Létourneau 2007) to estimate

the business value for end users. By using this metric, four

kinds of cost information are requested: the cost of a false

alert (an inspection without component replacement), a pro

rated cost for early replacement, the cost for fixing a faulty

component, and the cost of an undetected failure (i.e., a

functional failure during operation without any prior

prediction from the prognostic model). The first three costs

are generally easy to obtain while the last one is difficult to

approximate accurately. This is because failures during

operations may incur various on other costs that are

themselves difficult to estimate. The following are the

details of the cost saving estimation.

To estimate the cost saving (CS) for a model, the difference

between the cost of operation without the model (nmC) and

the cost with the prognostic model (pmC) are computed

using Equations 5 and 6:

)()(NMdMNcCnm (5)

)(NMdNcFbTaC epm (6)

where:

 a is a pro rata cost for early replacement. For

example, $10 for each lost day of usage;

 b is the cost for a false alert;

 c is the cost for an undetected failure (direct

cost for a failure during operation);

 d is the cost for replacing the component (either

after a failure or following an alert);

 N is the number of undetected failures;

 M is the number of detected failures;

 Te is the sum of || Ttp for all predicted

failures, i.e.,

M

i

Tie tpT

1

|| (see Figure 3)

where pi is the time of the i
th

 prediction; and

 F is the number of false alerts

The cost parameters, cba ,, and d are provided by the end

user, MFTe ,, , and N are computed after applying the

given model to a testing dataset.

5. CASE STUDY

The WILDMiner project targets the development of data-

mining-based models for train wheel failures predictions

(Yang and Létourneau 2005). The objective is to reduce

train wheel failures during operation which disrupt

operation and could lead to catastrophes such as train

derailments. The data used to build the predictive models

come from the WILD (Wheel Impact Load Detectors) data

acquisition system. This system measures the dynamic

impact of each wheel at strategic locations on the rail

network. When the measured impact exceeds a pre-

determined threshold, the wheels on the corresponding axle

are considered faulty. A train with faulty wheels needs to

immediately reduce speed and then stop at the nearest siding

so that the car with faulty wheels can be decoupled and

repaired. A successful predictive model would be able to

predict high impacts ahead of time so that problematic

wheels are replaced before they disrupt operation.

For this study, we used WILD data collected over a period

of 17 months from a fleet of 804 large cars with 12 axles

each. After data pre-processing, we ended up with a dataset

containing 2,409,696 instances grouped in 9906 time-series

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

8

(one time-series for each axle used in operation during the

study). We used 6400 time-series for training (roughly the

equivalent of the first 11 months) and kept the remaining

3506 time-series for testing (roughly the equivalent of the

last 6 months). Since there are only 129 occurrences of

wheel failures in the training dataset, we selected the

corresponding 129 time-series out of the initial 6400 time-

series in the training dataset. We created a relevant dataset

for modeling which contains 214364 instances from the

selected 129 time-series.

Using the obtained dataset and the WEKA package, we built

the predictive models. The modeling process consists of

three steps. First, we labeled all instances in the dataset by

configuring the automated labeling step. Second, we

augmented the representation with new features such as the

moving average for a key attribute. Finally, we used

WEKA’s implementation of decision trees (J48) and naïve

Bayes (SimpleNaiveBayes) to build four predictive models

referred to as A, B, C and D. Model A and B were obtained

with default parameters from J48 and SimpleNaiveBayes,

respectively. In a second experiment, we modified the

misclassification costs to compensate for the imbalanced

between positive and negative instances and then re-run J48

and SimpleNaiveBayes to generate model C and D.

For evaluation purpose, we ran these four models on the test

dataset. The test dataset has 1,609,215 instances. Out of the

3506 time-series contained in the test dataset, 81 comprise a

validated wheel failure. We applied the proposed evaluation

method to estimate the cost saving from these four models.

Since we assumed that the operators will act as soon as they

receive an alert, we only kept the first alert (prediction of

failure) from each time-series. We then extracted the

performance parameters N, M, and F by counting the

number of time-series for which we did not get any

predictions, the number of series for which we did get a

prediction followed by an actual failure (true positive), and

the number of time-series for which we got a false alert,

respectively. To compute, we added the differences

between the time of the prediction and the beginning of the

target window (i.e., || Ttp) for each of the M time-series

for which the model correctly predicted a failure. In this

application, the time unit for the difference || Ttp is

“day” and tT is set as 20 days prior to failure. For example,

when the time-to-failure prediction (p) of an alert is 40 days

to an actual failure, its difference, || Ttp , is 20 days (

|| Ttp = |-40 – (- 20)| = 20).

The cost information (noted ,,, cba and d in Equations (5)

and (6) was provided by an independent expert in the

railway industry. These are as follows: a= $2/per day for

loss of usage, b=$500/per false alert, c=$5000/per

undetected failure and d=$2100/per component

replacement. All costs are in US dollars. Using these

values and the results for the performance parameters, we

obtained the results shown in Table 2.

Table 2. The results of 4 predictive models on test data

Model Name M+N N F
 Cost Saving

(US$)

Model A 357 81 40 245 81,750.0

Model B 812 81 30 178 164,376.0

Model C 647 81 6 161 293,206.0

Model D 1339 81 21 260 167,322.0

To compare the evaluation results from different metrics, we

also compute accuracy and false alert rate by using generic

methods and the scores by using score-based approach by

running models on the same test dataset as we computed

cost-saving for Table 2. The results are shown in Table 3.

Table 3. The evaluation results from different methods

Model Name Accuracy AUC Score
 Cost Saving

(US$)

Model A 75% 0.56 60.5 81,750.0

Model B 89% 0.68 120.5 164,376.0

Model C 93% 0.76 132.8 293,206.0

Model D 86% 0.60 125.0 167,322.0

The case study illustrates the simplicity and usefulness of

the cost-based evaluation approach. With this approach, the

end user gets a quick understanding of the potential cost

savings to be expected from each of the model. Key factors

such as timeliness of the alerts and coverage of failures are

taken into account, which is not the case with other methods

typically used in data mining research. As shown in Table 2,

it is obvious that Model C outperformed other models in

terms of the cost saving.

From the evaluation results shown in Table 3, it is

interesting to note that, for the case study considered, the

results obtained from the cast-based method is consistent

with the score-based approach. In terms of the AUC and

Accuracy results, Model B should be better than Model D.

However, the cost-based approach and score-based method

eT

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

9

show different results. These results support our argument

that predictive models deserve specific evaluation methods

for its performance evaluation.

6. CONCLUSIONS

In this paper generic methods which are widely used in

classifier evaluation are first surveyed. The limitations for

existing classifier evaluation, particularly for predictive

models evaluation have also been discussed. To address the

issues two useful and effectively methods for prognostic

model evaluation have been proposed which account for

prognostic application specificities. These methods have

been used to evaluate the predictive models for several

PHM applications such as train wheel prognostics and

aircraft component prognostics. In terms of the results

obtained from the cast study, it is obvious that the proposed

domain-oriented evaluation methods for predictive models

are useful and able to provide a direct business value for

practitioners.

We believed that more and more feasible and effective

domain-oriented approaches will be developed to meet the

needs of predictive model evaluation for real-world

applications. This is a right way to promote machine

learning techniques in solving real-world problems.

Domain-oriented approaches may incorporate specificities

of domain problems into the performance assessments;

therefore, they are helpful and useful in evaluating classifier

for applications. At the same time, they are also welcomed

by end users because of the feasibility to identify the

business values such as cost savings. We strongly argue that

a predictive model has to be carefully evaluated not only

using generic methods but also domain-oriented approaches

before deploying it in PHM applications. Generic methods

could help developers in investigating overall performance

of a model from the statistical viewpoint at the initial stage

of model development. Domain-oriented approaches should

be further used to evaluate the usefulness and business

value.

ACKNOWLEDGEMENT

This work is supported in part by the National Natural

Science Foundation of China (Grant Nos. 61463031).

REFERENCES

Banker R, Chanes A, Cooper W, et al. (1984). Some

Models for Estimating Technical and Scale

Inefficiencies in Data Envelopment Analysis,

Management Science, Vol. 30 No. 9, 1078-1092

Bradley A (1997). The Use of the Area under the ROC

Curve in the Evaluation of Machine Learning

Algorithms, Pattern Recognition, Vol. 30, 1145-1159

Caruana R and Niculescu-Mizil A (2006). An Empirical

Comparison of Supervised Learning Algorithms.

Proceedings of the 23rd International Conference on

Machine Learning (ICML2006)

Caruana R and Niculescu-Mizil A (2004). Data Mining in

Metric Space: An empirical Analysis of Supervised

Learning Performance Criteria, Proceedings of the 10th

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD2004), Seattle,

Washington, USA, 69-78

Drummond C and Yang C (2008). Reverse-Engineering

Costs: How much will a Prognostic Algorithm save?,

Proceedings of the 1st International Conference on

Prognostics and Health Management. Denver, USA

Drummond C and Holte R (2004). What ROC Curve Can’t

Do (and Cost Curve Can), ECAI Workshop on ROC

Analysis in Artificial Intelligence

Drummond C and Holte R (2000). Explicitly Representing

Expected Cost: An Alternative to ROC Representation,

Proceedings of the 6th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining

(KDD2000), New York, USA, 155-164

Egan J (1975). Signal Detection Theory and ROC Analysis,

New York Academic Press

Fawcett T (2003). ROC Graphs: Notes and Practical

Considerations for Data Mining Researchers,

Technical report, Intelligent Enterprise Technologies

Laboratory, HP

Flach P, (2004). The Many Faces of ROC Analysis in

Machine Learning, ICML’04 tutorial,

http://www.cs.bris.ac.uk/~flach/ICML04tutorial/

Flach P, (2003). The Geometry of ROC Space:

Understanding Machine Learning Metrics through ROC

Isometrics. Proceedings of the 20th International

Conference on Machine Learning (ICML03),

Washington, DC, USA

Flexer A (1996). Statistical Evaluation of Neural Network

Experiments: Minimum Requirement and Current

Practice. Proceedings of the 13rd European Meeting on

Cybernetics and Systems Research. Austrian Society for

Cybernetic Studies, 1005-1008

Giudici P (2003). Applied Data Mining, John Wiley and

Sons, New York

Hand D and Till R (2001). A Simple Generalization of the

Area Under the ROC Curve for Multiple Class

Classification Problems, Machine Learning, Vol.45,

171-186

Huang J and Ling C (2005). Using AUC and Accuracy in

Evaluating Learning Algorithms, IEEE Transactions on

Knowledge and Data Engineering, Vol. 17, No. 3, 299-

310

Japkowicz N. and Shah Mohak (2011). Evaluation of

Learning Algorithms, A Classification Perspective,

Cambridge University Press

Jardine A., Lin D., and Banjevic D. (2006). A review on

machinery diagnostics and prognostics implementing

condition-based maintenance. Mechanical Systems and

Signal Processing Vol.20, 1483-1510.

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

10

Létourneau S, Famili F, et al. (1999). Data Mining for

Prediction of Aircraft Component Replacement, IEEE

Intelligent Systems Journal, Special Issue on Data

Mining. 59-6

Prechelt L (1996). A Quantative Study of Experimental

Evaluations of Neural Network Algorithms: Current

Research Practice, Neural Networks, Vol. 9

Provost F, Fawcett T and Kohavi R (1998). The case

Against Accuracy Estimation for Comparing Induction

Algorithms, Proceedings of the 15th International

Conference on Machine Learning, 445 – 453

Provost F and Fawcett T (2001). Robust Classification for

Imprecise Environment, Machine Learning, Vol.42,

No.3, 203-231

Provost F and Fawcett T (1997). Analysis and Visualization

of Classifier Performance: Combination under

Imprecise Class and Cost Distributions, Proceedings of

International Conference on Knowledge Discovery and

Data Mining (KDD1997)

Provost F, Fawcett T, and Kohavi R (1998). The case

Against Accuracy Estimation for Comparing Induction

Algorithms, Proceedings of the 15th International

Conference on Machine Learning, 445 – 453

Salzberg S (1997). On Comparing Classifiers: Pitfalls to

Avoid and a Recommended Approach. Data Mining &

Knowledge Discovery, Vol. 1, 317-328

Saxena A, Sankararaman S, and Goebel K,, (2014).

Performance Evaluation for Fleet-based and Unit-based

Prognostic Methods, European Conference of the

Prognostics and Health Management Society

Saxena A, Celaya J., Saha B, Saha S, and Goebel K.

(2009). On Applying the Prognostic Performance

Metrics, Proceedings of International Conference on

Prognostics and Health Management

Schwabacher M and Goebel K (2007). A Survey of

Artificial Intelligence for Prognostics, The 2007 AAAI

Fall Symposium, Arlington, Virginal, USA

Srinivasan A (1999). Note on the location of optimal

classifiers in n-dimensional ROC space. Technical

Report PRG-TR-2-99, Oxford University Computing

Laboratory

Swets J, Dwaes R, et al. (2000). Psychological Science Can

Improve Diagnostic decisions, Psychological Science in

the Public Interest, Vol. 1, 1-26

Yang C and Létourneau S (2007). Model Evaluation for

Prognostics: Estimating Cost Saving for the End Users,

The Proceedings of the 6th International Conference on

Machine Learning and Applications (ICMLA 2007),

Cincinnati, OH, USA

Yang C and Létourneau S (2005). Learning to Predict Train

Wheel Failures, Proceedings of the 11th ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining (KDD2005), 516-525

Zheng Z, Padmanabhan B, et al. (2004). A DEA Approach

for Model Combination, Proceedings of the 10th ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD2004), Seattle,

Washington, USA, 755-758

BIOGRAPHIES

Chunsheng Yang is a Senior Research Officer at the

National Research Council Canada. He is interested in data

mining, machine learning, prognostic health

management(PHM), reasoning technologies such as case-

based reasoning, rule-based reasoning and hybrid reasoning,

multi-agent systems, and distributed computing. He

received an Hons. B.Sc. in Electronic Engineering from

Harbin Engineering University, China, an M.Sc. in

computer science from Shanghai Jiao Tong University,

China, and a Ph.D. from National Hiroshima University,

Japan. He worked with Fujitsu Inc., Japan, as a Senior

Engineer and engaged on the development of ATM

Network Management Systems. He was an Assistant

Professor at Shanghai Jiao Tong University from 1986 to

1990 working on Hypercube Distributed Computer

Systems. He was a Program Co-Chair for the 17th

International Conference on Industry and Engineering

Applications of Artificial Intelligence and Expert Systems.

Dr. Yang is a guest editor for the International Journal of

Applied Intelligence. He has served Program Committees

for many conferences and institutions, and has been a

reviewer for many conferences, journals, and organizations,

including Applied Intelligence, NSERC, IEEE Trans., ACM

KDD, PAKDD, AAMAS, IEA/AIE. Dr. Yang is a Senior

IEEE member.

Yanni Zou is an Assistant Professor with Jiujiang

University, Jiangxi, China. She is also a Ph.D. Candidate at

School of Information Technology, Nanchang University.

She is interested in image processing, process control,

robotics, intelligent systems, and machine learning. She

received an Hons. B.Sc. in Electronic Engineering from

Nanchang University China, an M.Sc. in System

Engineering, Anhui University of Science and Technology,

Anhui, China.

Jie Liu is currently an Assistant Professor in the

Department of Mechanical & Aerospace Engineering at

Carleton University, Ottawa, Canada. He received his

B.Eng. in Electronics and Precision Engineering from

Tianjin University, China, his M.Sc. in Control Engineering

from Lakehead University, Canada, and his Ph.D. in

Mechanical Engineering from the University of Waterloo,

Canada. He is leading research efforts in the areas of

prognostics and health management, intelligent mechatronic

systems, power generation and storage. He has published

over 25 papers in peer-reviewed journals. He is also a

registered professional engineer in Ontario, Canada.

Kyle R Mulligan obtained his Bachelor’s degree in

Systems and Computer Engineering at Carleton University

in Ottawa in 2007. He then continued to obtain his Master’s

degree in Biomedical Engineering in 2009 at Carleton

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

11

University. In 2014 he completed a Doctorate degree in

Mechanical Engineering at the Université de Sherbrooke

with a specialization in data-driven prognostics for assessing

structural failures. He is an active volunteer at local high

schools to promote the awareness and importance of

Engineering in today’s society. His research interests

include: medical imaging techniques, biomechanics,

nanorobotics, and structural/prognostic health management.

