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Abstract

This thesis explores the efficiency potential inherent to series elastic actuators during oscillatory
tasks. Series elastic actuators have a spring intentionally placed at the actuator output that provides
good force resolution and filters out high frequency disturbances from the environment. These
properties are essential for robotic applications in which interactions with the environment are
unknown, because they allow the actuators to maintain stable force control while protecting the
drive train from harmful loadings. The spring can also be used to store energy similar to the
way animals use their tendons during locomotory tasks. This thesis shows that by operating the
actuators at the appropriate frequency, the storage of energy by the springs can be translated into
large efficiency gains for the actuator.

To show the efficiency gains of the actuator, a control scheme was developed that is capable of
operating the actuators at and above their resonant frequency. The control scheme was based on
spring force control allowing it to provide protection to the drive train while being robust to changes
in link inertia due to manipulator configuration or environmental interactions. The control scheme
was designed to be sufficient for use in real world applications so as to provide experimental results
that are representative of operation on a robot vehicle.

The control scheme was implemented on a single-link benchtop teststand which was used to
demonstrate the performance of the actuators. Experimental results are presented that demonstrate
the conditions under which efficient actuation is possible. By comparing the experimental data to
models of the hardware, the mechanisms through which power was lost were determined. The results
indicate that at resonance there is the potential to achieve up to twice the efficiency obtained by
a rigid actuator however, in order to do so extra attention is needed in both hardware design and
control.
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Chapter 1

Introduction

In robotics applications where unknown interactions with the environment take place, the use of

series elastic actuators is advantageous because they provide good force control while exhibiting

shock protection to high frequency disturbances. Akin to animal muscles, series elastic actuators

have an elastic element placed between their power source and their output. In addition to using the

elasticity of their muscles for force control and shock tolerance, animals exploit it to gain efficiency

during locomotory gaits. In this thesis, the potential for exploiting series elastic actuators to gain

efficiency is explored. Through model and experiment the conditions under which efficiency can be

gained are determined and the mechanisms through which power is lost and system performance is

limited are identified.

1.1 Motivation

Historically rigid actuators have been used in the design of manipulators in order to take advantage

of their superior position control capabilities. Compliance in these systems is minimized, yielding

lower order systems that respond well to high controller gains. Unfortunately, in certain applications

a manipulator's environment is rigid and explicitly controls position as well. In these cases rigid

actuators are incompatible with their environment and interactions result in high contact forces and

often damage to either the environment or the robot. In light of this, it has been widely argued that in

order to interact safely with the environment, robot manipulators must be capable of controlling the

forces of interaction instead of blindly defining position [Hogan, 1985a,b,c], [Kazerooni et al., 1986],
[Raibert and Craig, 1981]. This train of thought is referred to as force control. Unfortunately, rigid

actuators are constrained by the bandwidth of their controller and are susceptible to high frequency

disturbances. Also, poor force resolution is inherent to rigid actuators, and causes instability during

force control.

The shortcomings exhibited by rigid actuators were remedied by the conception of series elastic
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actuators where an elastic element is intentionally placed between the actuator and its load [Pratt

and Williamson, 1995]. The elastic element filters out high frequency disturbances while adding force

resolution to the system. This provides an actuator that is shock tolerant and has the capability to

provide stable force control.

Series elastic actuators are the robotic dual of animal muscles/tendons. The elastic properties of

animal muscles/tendons are essential for controlling force during movement as well as protecting the

animal from harmful shockloads. Animals have also learned to exploit the elasticity of their mus-

cles/tendons to gain efficiency during locomotory gaits by storing energy in their muscles/tendons

during one phase of their stride in order to release it at a more advantageous point. In this thesis it

is shown that series elastic actuators, like animal muscles, can be exploited to gain efficiency during

oscillatory tasks.

1.1.1 Hardware

The motivation behind this project comes from the HISS project at Charles Stark Draper Laboratory.

The HISS vehicle is a Hyper-Redundant Intelligent Sensing Snake that was built with the goal of

being able to autonomously navigate unknown environments. HISS was constructed using redundant

two degree of freedom modules connected in series. Each DOF included an actuator that consisted

of a motor, harmonic gear drive and output shaft. The motor drove the harmonic gear drive which

in turn drove the output shaft. The output shaft interfaced the actuator with its load, which in the

case of hiss was by connecting the present module to the next module through a link.

When HISS was run with rigid output shafts, it exemplified all of the shortcomings that provide

the motivation behind series elastic actuators. All of the gearboxes on the vehicle were constantly

stressed which caused them to jump teeth and ultimately led to deterioration in their performance.

In a short period of time all of the gearboxes were destroyed and needed replacement.

Replacing the solid shafts with spring shafts alleviated a large portion of the stresses endured

by the gearboxes, however, due to the truncated time table of the project force control was never

achieved. Other hardware issues including sensing, motor commutation and nonlinearities never

allowed for a stable force control scheme to be implemented and ultimately the system had to be

run with a low bandwidth position controller.

Although force control was never achieved initial results from the system indicated that the

addition of the spring provided efficiency gains under certain operating conditions. During largely

oscillatory gaits such as sidewinding, the HISS vehicle demonstrated large efficiency gains in modules

closer to the center of the snake. Due to their location, these modules had higher inertial loads than

the outer modules. This effectively lowered the resonant frequency of the actuator/load bringing it

closer to the operating frequency of the snake. Unfortunately, due to some of the hardware issues

the data obtained from the HISS vehicle is not reliable thus creating the need for the work done
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here.

The work in this thesis uses pieces from the HISS project in order to illustrate the performance

capabilities of series elastic actuators. Extensive time is spent dealing with the issues encountered

during the HISS project in order to understand and effectively implement the series elastic actua-

tors. Additions or alterations to the hardware were made and control was developed so that the

performance of the actuators could be documented. After the hardware issues and controls were

addressed the HISS hardware was used to show that series elastic actuators yield significant gains

in efficiency when operated under the appropriate conditions.

1.2 Thesis Highlights

There were two major goals that were set out for the work in this thesis:

" Develop a control scheme that takes advantage of the force control properties of the actuators

to protect the hardware, while being able to operate with significant bandwidth to illustrate

efficient actuation.

* Using experimental data, show that efficiency gains can be achieved and demonstrate the

conditions under which efficient operation is feasible.

This section gives details on each of these goals and shows the important results achieved by this

thesis.

1.2.1 Control

In order to show that series elastic actuators can be exploited to gain efficiency in real systems, it

is essential that tests are performed under realistic conditions. In light of this, the control system

developed to run the actuators was subject to the requirements of a real vehicle. This meant that the

control system must maintain accurate force control to protect the actuator under adverse loading

conditions. It must be robust to changes in load inertia that may be present on a real vehicle due to

changes in the vehicle's configuration. And of course, it must be able to operate with high enough

bandwidth to investigate the performance of the actuators. Some of the important issues that were

encountered in the development of the control scheme are given here, as well as some experimental

results demonstrating the controller performance.

Nonlinear Compensation

For the most part, linear control techniques were used in the control scheme that was developed.

In order to make this possible, however, feedforward terms were used to compensate for nonlinear

effects such as cogging torque and stiction. These feedforward terms were essential to linearizing

17



Velocity Response to a 1l z Sinusoidal Conunanthed Torque
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Figure 1-1: Time domain response showing the effect of nonlinear compensation. The plots are
the velocity response of the motor/gearbox to a 1Hz sinusoidal commanded current. (a) This plot
shows that without compensation the response is nonlinear due to phenomenon such as stiction and
cogging torque. (b) This plot shows that when the feedforward terms are added to the commanded
current the system behaves linearly.

the system so standard control techniques could be used. A plot of the motor velocity response to

a 1Hz sinusoid is given in Figure 1-1, it shows the effectiveness of the compensation scheme.

Force Control

A motor position loop is used as the foundation for force control. It is found that the motor

position loop provides the high frequency bandwidth limitation on force control while load motion

and sensor delay provide limitations at low frequencies. A Bode plot of the system under closed

loop force control is given in Figure 1-2. The low frequency force control limitations are acceptable

because they are the result of load movement, which is ultimately the purpose of force control when

the load is unconstrained.

Adaptive Feedforward Cancellation

A PID controller was used to determine the force in the spring required for load movements. Due to

control issues including sensor noise and inadequate load plate mounting, however, the load position

loop yielded significant errors at the efficient frequencies. Adaptive Feedforward Cancellation (AFC)

was used to compensate for the shortcomings in the load position loop. Figure 1-3 shows the resulting

load position error signal when operated with and without AFC at a frequency of 16.9rad/s. It shows

that when AFC is activated good load position tracking is achieved.
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Figure 1-2: Bode plot of the system under closed loop force control. This plot gives the response
from desired spring torque to measured spring torque.
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(b) Tracking error with AFC loop active.

Figure 1-3: These plots demonstrate the superior tracking error achieved by the AFC loop. (a) This
plot shows the tracking error under load position control when the AFC loop is not active. The
tracking error is very large due to the limited bandwidth of the control loop. (b) This plot shows the
tracking error under load position control with the AFC loop active. The tracking error has been
reduced to less than 10% of the original error.
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Stability

System stability is largely affected by the size of the load inertia. Decreases in the load inertia cause

the force control loop to go unstable. In general, this is because a decrease in load inertia equates

to an increase in the resonant frequency of the system. As the system resonance approaches the

limitations of the motor position loop stability can no longer be maintained. It was found that

for the current hardware, the major limitations of the motor position loop were due to controller

bandwidth and motor current saturation.

Controller Performance

The controller performance is illustrated here through two representative experiments. Figure 1-4

shows the response of the system to a large load disturbance while commanded to hold a position.

This plot shows how the control scheme protects the system during adverse loading and that the

load position control responds nicely to correct the error once that loading has subsided. Figure 1-5

shows the response of the system to a nonlinear load suddenly placed on the system during resonant

control. Good tracking is achieved at the system's resonant frequency. When the nonlinear load

is placed on the system, the control system suppresses the error and achieves good tracking with

the nonlinear load. These plots show that the control system goals have been achieved in that the

system is protected against harmful disturbances, is robust to changes in inertia and can operate

effectively at the resonant frequency of the system.

1.2.2 Efficiency

Through model and experiment, it is demonstrated that series elastic actuators can provide signifi-

cant efficiency gains when operated at the appropriate frequency. The efficiency gain is due to the

resonance between the load inertia and the elastic element in the actuator. At the resonant frequency,

very little movement is needed at the spring input (i.e. the motor) to produce large movements on

the output. This lowers the input power required by the actuator to produce the same output power,

therefore efficiency is gained. The amount of efficiency that can be gained is directly related to the

load damping. Low damping values, where the resonant peak is large, yield large efficiency gains

if the actuators are operated at the resonant frequency. High damping values, yield lower gains in

efficiency but result in better overall system efficiency. The results indicate that given the choice it

is desirable to operate the actuators at higher damping values as is done in impedance matching.

However, when lightly damped movements are required, such as a human running gait where the

direction of movement is parallel with the environmental interface, the experimental results show it

is advantageous to operate at resonance.
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1
Response to a Disturbance under Load Position Control
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Figure 1-4: Response of the system to a disturbance while not in resonant mode. Initially the load
is being held at the desired load position of zero radians. At 1.5 seconds the load plate is pulled
by hand to demonstrate the system's response to extreme disturbances. When the spring torque
reaches lNm the load position control command saturates and the force control loop attempts to
hold the spring torque at 1Nm. The load is then release at 4 seconds and once the load position
controller asks for a spring torque below the 1Nm limit the load position loop resumes control.

Resonance Response under AFC Load Position Control
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Figure 1-5: System response to a sinusoidal load position command with the AFC loop closed.
Initially the system is operating at steady state with the control loop active resulting in negligible
position error. At 2.7 seconds the nonlinear loading is added (a bucket with intermittent ground
contacts) and the AFC loop reacts and suppresses the disturbance.
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Ideal System Efficiency Response
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Figure 1-6: Ideal Efficiency Response of the entire system. An efficiency peak occurs between
the load resonance frequency and the system resonance frequency indicating that efficiency can be
scavenged by series elastic actuators if operated at the optimal frequency
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Figure 1-7: Open loop efficiency response of the entire system. The plot shows that there is a large
decrease in efficiency from the ideal system to the actual system. This drop in efficiency is largely
due to motor/gearbox stiction that is not part of the ideal model. Despite the decrease in overall
system efficiency, however, the system still has an efficiency peak.

22

1

0.9

0.8 -

0.7 -

0.6 -

0.5

0.4

0.3

0.2

0.1

1

0.9

0.8 -

0.7-

0.6 -

- ) 0.5

0.4

0.3

0.2

0.1

- -. .

- ~
4

A i --

- 1



Closed Loop Efficiency Response
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Figure 1-8: Closed loop efficiency response of the entire system. The plot shows that there is a large
drop in efficiency from the open loop response to the controlled response. One of the drawbacks of
series elastic actuators is that, due to the compliance, large motor movements are required to main-
tain force control which draws extra power. In the current system, these movements are amplified
by false sensor readings and mechanical vibrations causing an excessive drop in efficiency when the
system is under control.

1.2.3 Power Loss

The series elastic actuators used in this thesis suffered primarily from two major forms of power loss;

stiction losses and losses due to control. Figure 1-6 gives the ideal efficiency of the system at three

different values of load damping and compares it with the ideal rigid actuator efficiency. Figure 1-7

gives the experimental results of the open loop system efficiency compared to the ideal model and

a non-ideal model that includes stiction. Figure 1-8 shows the experimental results of the system

with the control system active. The results show that a large drop in efficiency is experienced with

each iteration of testing.

Stiction Losses

Figure 1-7 shows a large drop in efficiency from the levels predicted by the ideal model. This drop in

efficiency is primarily due to the presence of stiction in the real system. Stiction affects the system

in two ways. Motor stiction creates a mechanical power loss in phase with the motor velocity. In

order to compensate for the motor stiction, extra current is drawn creating higher resistive losses in

the motor electronics. The resistive losses make up the larger portion of stiction losses due to the

fact that they are proportional to the square of the motor current while the mechanical losses are

proportional to just the motor current.
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Control Losses

Figure 1-8 shows that there is a significant drop in efficiency from the open loop system to the closed

loop system. This drop in efficiency is primarily due to the extra power necessary to control the

system. The benefits of series elastic actuators are that the addition of compliance in the system

filters out high frequency disturbance and increases force resolution. This is possible because more

compliant systems require larger deflections to produce large forces. From a control standpoint,
however, this translates to larger motor movements to correct for force control errors. Even small

force errors can cause large movements of the motor and require large power draws. Although some

force errors are due to disturbances or load movements in which case the power draw due to control

is reasonable, force errors can also be due to measurement errors in which case power draw due to

control is excessive.

System Design

In most cases the power lost in the system is due to inadequacies in design. In any real system there

will always be power lost due to electrical resistance, friction and sensor error. The magnitude of

these inadequacies, however, plays a large roll in the overall system efficiency. Although running

series elastic actuators at their resonant frequency does allow the system to gain efficiency, the first

step in any design concerning efficient operation must be to address non-idealities such as stiction,

sensor noise, vibrations and system mounting among others. Only then can series elastic actuators

be exploited to their full potential.

1.3 Thesis Outline

Chapter 2 presents the background work, explaining the reasoning behind force control, the moti-

vation for and benefits of using series elastic actuators, as well as a short survey of applicable

work done on biological locomotion and a summary of related work.

Chapter 3 gives a detailed description of the hardware, documents the work done on motor com-

mutation and nonlinearity compensation to linearize the system, and develops a linear model

of the hardware.

Chapter 4 describes the control scheme developed to run the series elastic actuators and demon-

strates the capabilities of the control system through a few representative experiments.

Chapter 5 shows the experimental results and explains the efficient capabilities of the system as

well as the major sources of power loss that limit system efficiency.
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Chapter 6 reviews the work done in this thesis and draws conclusions on the results obtained. Also

suggestions for improvement and possible topics for future research are given here.
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Chapter 2

Background

2.1 System Causality, the Environment and Force Control

Most robotic systems that have been able to effectively make the jump from laboratory study to

uses in real world applications have been rigid systems, where compliance has been minimized in

both the actuators and the robot's structure. Rigid systems are desirable in many applications

because they are for the most part superior at trajectory control. Undesired vibrations that may

cause errors are isolated to high frequencies in stiff systems allowing high controller bandwidth and

in turn excellent position tracking. Using the structure of the system to minimize the vibrations

as opposed to using the controller also decreases the energy demand resulting in a more efficient

system. Systems, however, that are successful in this respect are subject to the restriction that they

are conceived with the full knowledge of both their task and their environment.

In practice, most position controlled robots are designed to interact mainly with their task

because they deliver energy in a way that is incompatible with most environments [Robinson, 2000].

The interaction between two systems can be described by the dynamics of the power transfer at

their interface. Each system in a workspace is defined by a control surface through which power can

be transferred to other systems via shared ports (i.e. a motor shaft). The power entering a system

and therefore leaving another system (or vice versa) at a specific port is defined as the product of

the two conjugate variables effort and flow, where effort is the symmetric variable and flow is the

anti-symmetric variable when viewed from different sides of the interface [Brown, 2001]. Incidentally,

due to the causal nature of real systems, only one of the variables can be defined by a given system.

The other variable is then left as a dependent variable to be defined by the connected system. In the

case of a DC motor (System 1) connected by a shaft to some load (System 2), the motor can only

define the effort (i.e. shaft torque). The flow (i.e. shaft angular velocity) is then determined by the

load's response to the input torque. A rigid robot is a system explicitly designed to control motion
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or flow by overcoming the torque or effort reflected back by its load or task. This means for rigid

actuation to be suitable, the task must be able to accept flow, or in other words the task must be

an impedance as defined by Hogan. Most environments, however, are admittances not impedances.

They are kinematically constrained inertial objects that define flow and accept only effort [Hogan,

1985a]. Therefore for a robot to effectively interact with its environment it must control effort, this

is defined in the literature as "force control."

To address the problem of dealing with a constrained environment a number of force control

strategies have been developed. These methods generally follow one of two trains of thought. One is

that force is explicitly controlled along degrees of freedom that are constrained by the environment

while simultaneously position is controlled in directions orthogonal to the system/environment inter-

face. This line of thought is called hybrid control which was developed by [Raibert and Craig, 1981]

based on the work done by [Mason, 1981]. The second train of thought follows the premise that the

robot should control position in all directions while accommodating disturbances instead of merely

rejecting them. In this scheme the environment is accommodated by choosing the appropriate out-

put dynamics the robot is to exhibit to ensure energetic compatibility at the interface. This line

of thought has been presented in a number of forms including; Stiffness Control [Salisbury, 1980],

Impedance Control [Hogan, 1985a,b,c], Compliance Control [Kazerooni et al., 1986] and Parallel

Force/Position Control [Chiaverini and Sciavicco, 1993].

These control techniques on their own, however, only solve the force control problem at frequen-

cies within the controller's bandwidth. Unfortunately, irregularities in the environment and force

sensor noise ensure that high frequency disturbances exist. These disturbances, in turn, can cause

large contact forces or even instability when a robot is in contact with the environment [An and

Hollerbach, 1987]. A solution to this problem was the application of passive compliance at the inter-

face that acts as a low pass filter for disturbances and adds resolution to the force sensing [Roberts

et al., 1984, Hirai et al., 1998]. This strategy is successful when only the tip of a robot interfaces

with the environment, however, it is insufficient if the entire robot may have to. Adding compliance

to the joints gives the overall system a compliant dynamics that is desirable but causes instability

due to the non-collocated modes created. In order to stabilize the system damping can be added to

the joint compliance to suppress the collocated modes [Eppinger and Seering, 1992] or force sensing

can be added to the joints to control them. Adding damping slows the response of the system which

is undesirable, whereas, adding joint force sensing makes design and control more complicated but

produces an effective result. This solution is the foundation on which Series Elastic Actuators were

developed.
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2.2 Series Elastic Actuators

Over the past two decades a new class of robotics has arisen where environmental interactions and

in some cases specific tasks are unknown upon the robot's conception and so the robot must be

designed to deal with these disturbances. Types of robots in this class include teaching and skill

acquisition, telerobotics, haptics and biomimetic robots [Robinson, 2000]. Due to the uncertainty

of their interactions these robots need compliant actuators to implement stable force control. In

addition, the size of motor that is necessary to drive these systems has low power density at low

speeds and therefore must be geared to operate in an efficient range. The motor inertia seen by the

environment reflected through the N : 1 gear ratio is scaled by N 2 requiring high forces to backdrive

the motor. These forces put large stresses on the gear teeth and will often damage the transmission,

thus the actuator must be able to exhibit good shock protection as well. Series Elastic Actuators

accomplish this by intentionally placing a spring after the transmission and sensing the force in the

spring to ensure stable control of the actuator [Pratt and Williamson, 1995].

The use of series elastic actuators, however, does not come without its drawbacks. By placing

a compliant element in the joint the overall gain of the system is lowered which leads to "looser"

control when operating in high admittance environments. Also due to the spring's interaction with

arm or link inertias the resonant modes of the system are lowered limiting control bandwidth. Thus

the use of series elastic actuators presents a number of engineering tradeoffs that must be addressed

during the robot design. An in depth study of these tradeoffs and how to address them is provided

by [Robinson, 2000]. In general, bandwidth and system gain are traded for dynamic range and low

output impedance.

The benefits attained by the use of series elastic actuators are directly related to the stiffness

of the elastic element in the actuator. The source of these benefits will be briefly discussed while a

more in depth exploration will be left to the literature. Dynamic range is the ratio of the maximum

force to the minimum difference in force or force resolution that can be delivered by the actuator.

The maximum force does not change due to the addition of the compliance; at frequencies below

resonance it is still directly related to the maximum force produced by a standard rigid actuator (i.e.

the motor). The force measurement, which defines the attainable force resolution, is proportional to

the differential position across the elastic element. If the elasticity is increased, a wider positional

range is achieved, thus the resolution is improved. Consequently, the dynamic range of the actuator

is increased which improves force control. The output stiffness, as seen from the environment, is

the ratio of the output force to the difference in output position required to produce that force.

Under perfect force control the output stiffness would be zero and movements of the output would

not change the force from its controlled value. In real systems the output stiffness is related to

the tightness of the force control loop and it increases with frequency until the bandwidth of the

controller is reached where the output stiffness equals the stiffness of the physical system. For a series
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elastic actuator the high frequency output stiffness is equal to the stiffness of the elastic element,

therefore, the softer the spring the better the shock protection from high frequency disturbances.

When using series elastic actuators the designer must decide on the stiffness of the elastic element

by weighing the tradeoffs discussed above.

Series elastic actuators have been successfully implemented in a number of robots. At the

MIT Leg Lab, where the actuators were conceived, they were used in "spring turkey" and "spring

flamingo" two planar biped robots, in "M2" and "Troody" two autonomous bipedal robots and in

the arms of "COG" a humanoid robot among others [LegLab, Pratt, 2000]. Outside of the Leg Lab

series elastic actuators were used in LOPES, an exoskeleton-type rehab robot [Veneman et al., 2006],

"Big Dog" an autonomous quadraped robot [BDI], an unnamed power autonomous monopedal robot

[Krupp and Pratt, 2006] and HISS, a Hyper-Redundant Intelligent Sensing Snake among others.

2.3 Biological Locomotion

The conception of series elastic actuators was largely aided by insights obtained from the study of

biological locomotion. A great deal of research has been done on the movement of multi-legged

animals both for the purpose of better understanding ourselves and to try to imitate them to

develop more mobile and functional robotics. It has been found that the gaits that animals use are

highly efficient and versatile for their terrain. [Cavagna et al., 1976, 1977] showed that bipeds such

as humans and birds and quadrupeds such as dogs, monkeys and rams moved in highly efficient

ways by using an exchange between potential and kinetic energy to minimize wasted work during

motion. He showed that during slower gaits, such as walking, animals exchange the kinetic energy

associated with the forward motion of their center of mass with potential energy due to gravity.

When efficiency was maximized in a walking gait the magnitude of these two quantities were 180

degrees out of phase. For faster gaits such as running, however, the fluctuation in potential energy

due to gravity is much smaller and the two quantities became more in phase without a significant

drop in efficiency. Cavagna suggested that at higher speeds the exchange of potential and kinetic

energy is maintained through another mechanism identified as the storage of potential energy by the

elastic nature of muscles and tendons.

Later studies showed that Cavagna's hypothesis was correct and that animals do store energy

in elastic muscles and tendons during locomotion. [Alexander, 1984] surveyed experimental work

on tendon, bone and muscle elasticity and showed through the analysis of film and force records

that animals store elastic energy primarily in their tendons. Work was also done to create a simple

model of an animal's leg that could accurately represent the gait motions observed during locomotion

[Blickhan, 1989, McMahon and Cheng, 1990]. These models were used to understand the properties

that define an individual gait and it was shown that the model is sufficiently generic to be used to
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describe many forms of locomotion across a large number of skeletal configurations [Blickhan and

Full, 1993]. This model has become known as the spring loaded inverted pendulum (SLIP) model

for terrestrial locomotion.

2.4 Series Elastic Actuators as Muscles

According to the models of biological locomotion the musculatory system can be represented as

an array of spring-actuator combinations that are used to regulate body movement. In animals

the elastic component of the muscle-tendon combination is used for shock protection and force

application as well as energy conservation during appropriate tasks. In order to gain efficiency

through energy storage, the task must be oscillatory in nature suggesting that the efficiency is

a result of a resonance between two energy storing elements. In the robotic world, series elastic

actuators are then the dual of biological muscles. They were originally created for their shock

tolerance and force control properties but like biological actuators they too could be exploited for

efficiency.

A few researchers have done work on trying to exploit the natural dynamics of series elastic

actuators for oscillatory robotic tasks but the work done is limited and the results seem to be hindered

by progress in control. Still there are a few noteworthy works that have surfaced. Williamson

showed that neural oscillators could be used to control series elastic actuators, and that due to

the adaptive nature of the oscillators only the mechanical coupling between multiple degrees of

freedom were needed to produce coordinated behavior. This produced a simple yet robust control

paradigm [Williamson, 1999]. Unfortunately, no correlation between the natural motion produced

and the system efficiency was made. Buchli et al. are studying adaptive oscillators along the same

line of thought. They show that when feedback is provided, the oscillators converge to the most

efficient operating point [Buchli et al., 2005]. At this point their efficiency results are shown only in

simulation, as experimental hardware results are yet to be reported. Hollander et al. have designed a

human ankle walking assistance device that utilizes a series elastic actuator controlled by a human's

walking gait that they call a robotic tendon. The work shows that using a series elastic device

results in less energy consumption than a direct drive actuator [Hollander et al., 2006]. Paluska

and Herr show that more energy can be output per stroke by using series elastic actuators instead

of a direct-drive motor and that an instantaneous power amplification can be gained by tuning the

spring stiffness to the load [Paluska and Herr, 2006]. Along a similar line of thought Scarfogliero et al.

have designed the jumping robot "Grillo" to use a low power motor in a series elastic configuration

to build up energy in the springs during its aerial phase. By releasing the energy in the springs

upon landing the robot produces much higher power delivery than its motors are capable of alone

[Scarfogliero et al., 2006]. The humanoid robot "Lucy" developed by Vanderborght et al. uses
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pneumatic actuators similar to series elastic, called McKibben Muscles. They show on a one link

test stand that energy consumption is reduced when the link is actuated at an optimal frequency

[Vanderborght et al., 2006].

This thesis investigates the idea that the elastic element inherent to series elastic actuators can be

exploited for efficiency if the system is operated at the optimal frequency. The subsequent chapters

aim to add to the pool of work given here, by demonstrating through model and experiment, that

at resonance, energy is stored in the elastic element of the actuator increasing efficiency.
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Chapter 3

Experimental Hardware and

Modeling

In this chapter the physical hardware used for the work in this thesis is described and a system model

is developed. Section 3.1 describes the individual components that make up the system including

the motor, gearing, compliance, sensors, electronics and computer as well as discusses some of the

improvements made on the HISS hardware. Section 3.2 presents a model of the motor electronics

and derives the commutation law used to run it. Section 3.3 gives the mechanical motor model

and investigates nonlinearities in the model. Section 3.4 describes the compensation scheme used

to counteract the motor's nonlinearities and linearize the model. Section 3.5 discusses the loading

conditions that will be used, derives a linear model of the entire system and compares it with

experimental data.

3.1 Hardware

A large portion of the mechanical hardware is made up of components from the HISS project at

Charles Stark Draper Laboratory. These parts include the motor, gearing, series compliance and

encoders. Aside from the encoders, no physical alterations were made to these pieces as part of the

work related to this thesis. The remaining parts were created or programmed specifically for this

thesis. The work in this thesis is done on a single link benchtop setup that replicates the hardware

configuration on the HISS vehicle. The benchtop setup is shown in Figure 3-1.

3.1.1 Motor

The motor used on the experimental setup is a Torcman TM200-5-18 three phase brushless DC

motor. The motor is an external rotor design with twelve permanent magnets on the rotor and nine
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Figure 3-1: Picture of the Benchtop Teststand used for the work in this thesis.

coils (three for each phase) located on the stator connected in a Y configuration. The stator coils

have been rewound from the original 18 winds per coil to 42 winds per coil to increase the motor's

torque constant. This effectively tuned the peak motor efficiency to 5000RPM, the desired operating

velocity for the snake's sidewinding gait.

The torque constant (kt,p) was measured by running the motor at various speeds and measuring

the voltage produced on each phase, also known as the back EMF. Assuming that the rotor magnets

produce a sinusoidal magnetic field with reference to position the per phase voltage (V) is given by:

Vi(#e, m) = kt,p sin(#e + 0j) b, i = A,B,C (3.1)

Where 0m is the motor position and m is the motor velocity. #e = a m is the motor electrical

position, P, is the number of rotor magnets and V'i is the phase offset. The voltage measured between

two phases (Vi-j) at a given angular velocity (pm) is then given by taking the difference of the two

phase voltages.

Vi -j (0e, M) = Vi(0e, m) - Vj ($e, qm) = vkt,p cos (e + 2 )q$ (3.2)

It turns out that because the phases are all 120 degrees apart, the amplitude of the voltage across

two phases is equal to the amplitude of the phase voltage scaled by the square root of three. The

per phase torque constant can then be found in terms of the amplitude of the back EMF measured

between two phases.

ktp-Vi-j,Amplitude (3.3)
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ktp(Nmn/Amps) Re(Q) Le(pH)

0.00691 1.1 233

Table 3.1: Motor Parameters

The measurements obtained of the per phase torque constant for the motor are given in Table

3.1 along with measurements of the coil resistance (Rc) and coil inductance (Lc).

3.1.2 Harmonic Geardrive and Belt

In order to produce the required torque, a gear reduction was placed at the output of the motor.

The reduction is provided by the combination of a harmonic gear drive and a timing belt that

connects the motor shaft with the input to the harmonic drive. The configuration of the motor

and transmission are shown in Figure 3-1. The harmonic drive is a CSF-5-100-2XH-F produced by

Harmonic Drive Systems Inc. and delivers a reduction of 100:1. The belt delivers a 2.3:1 reduction

making the overall transmission ratio 230:1 (This N : 1 transmission ratio will be referred to by the

constant N throughout this thesis). This large transmission ratio in combination with the geometry

of the harmonic drive made series elasticity essential for the survival of the HISS robot. In general

harmonic drives are not backdrivable because the high ratio scales the input damping and motor

inertia by a factor of N 2 as seen from the environment, while nonlinearities, such as stiction forces,

are scaled by a factor of N. As a result the input system looks highly constrained to the environment.

Solid shafts were initially used on HISS to connect the output of the transmission to the load and

it was found that even small amplitude high frequency torque application by the motor or torque

disturbances by the environment would cause the harmonic drives to break. Furthermore, at low

frequencies the continuous failure torque was found to be as low as 1.7 Nm on some drives making

overloading under all operating conditions a concern.

3.1.3 Compliance

To provide the system with series elasticity a novel rotary spring shaft was designed. The shaft

has a spiral configuration that gives it symmetry under both positive and negative deflections. The

design is shown in Figure 3-2. It is linear up to 2Nm where it becomes stiffer due to contact of the

spiral sections. The spring shaft's unique compact design allows it to fit inside the harmonic drive

making for a compact shock tolerant unit. The location of the spring is shown in Figure 3-3. It

connects to the harmonic drive through two pins on the outer edge of the spiral portion. A 5mm

thick solid shaft is inside the spiral portion and interfaces with the load through a 4mm hex piece at

its end. The other end of the shaft is used as the encoder interface. The spring shaft is made out of

VascoMax 350C, specialty steel produced by Allvac, giving it good resistance to wear and corrosion.
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SECTION D-D
-003 (MEDIUM)

(a) CAD Drawing of the Spring Shaft.

S

(b) Picture of the Spring Shaft.

Figure 3-2: Pictures of the spring shaft used as the series elastic element.

Figure 3-3: Picture of the Harmonic Drive/Spring Shaft interface.
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3.1.4 Sensors

Position of the motor shaft and the output of the spring shaft are sensed by RLS AM256 magnetic

encoder IC's [RLS]. The encoders operate using Hall Effect principles to detect the magnetic flux

density at the surface of the chip. The magnetic field is created by a diametrically polarized perma-

nent magnet of cylindrical shape that is placed at the end of a rotating shaft. The encoder outputs

analog sine and cosine signals that represent the magnetic field distribution. From these analog

signals absolute position is calculated. The locations of the sensors are shown in Figure 3-1.

The motor encoder is placed at the end of the motor shaft, as can be seen from the photo. The

output encoder, however, is placed at the end of an auxiliary shaft that is connected to the spring

shaft through a flexible coupling. On the HISS robot the output encoder was positioned at the end

of the spring shaft in a similar configuration to the motor encoder (Figure 3-4a). Due to the compact

setup of the harmonic drive and spring shaft the magnet for the output encoder was located inside

the harmonic drive's input pulley. A bearing was placed between the input pulley and the output

shaft to make sure the two parts could move freely relative to each other. When the harmonic drive

is actuated the input pulley runs in the opposite direction as the output shaft at 100 times the

speed. Due to hysteretic magnetization of the bearing's outer race this relative motion caused an

error in the output position detected by the encoder upon changes in direction (Figure 3-5). In order

to avoid this error the magnet for the output encoder had to be moved outside of the pulley so its

magnetic field could not be skewed by magnetic hysteresis of the bearing. Unfortunately, the shaft

could not simply be extended because the nonlinear motion created by the harmonic drive would

be amplified causing alignment error between the encoder and the magnet. To solve this problem

an auxiliary output encoder shaft was added with its own housing to maintain encoder alignment

(Figure 3-4b). Plots of the output encoder response are shown in Figure 3-5.

The encoders used are largely intolerant to misalignment of the magnet with respect to the

encoder IC. A misalignment of 0.2mm for a magnet that is on the edge of the polarization symmetry

tolerance will result in an additional position error of ±0.6 degrees [Rotary and , RLS]. In order to

minimize this error the output encoder IC is mounted on a three dimensional micrometer stage that

is adjusted to achieve the optimal alignment. Even after the stage has been adjusted some integral

nonlinearity remains in the measured position. This is the combination of the effect of noise and

non-idealities on the measurement and is shown in Figure 3-6. The large amplitude nonlinearity

is repeatable over a revolution of the output shaft and is compensated for in software by using a

lookup table. The output position error before the correction is applied is shown in Figure 3-6.

The encoder noise for the AM256 is shown in Figure 3-7. A first order low pass filter with a

corner frequency at 1000rad/s is used to filter the motor position signal. This filter is used mainly

for control and display and is applied after the raw signal has been used for commutation. The

motion seen at the output encoder is decoupled from the motor shaft by the harmonic drive and
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(b) Thesis Output Encoder Placement.

Figure 3-4: Pictures of the ouput encoder placement on the Hiss vehicle and the Thesis hardware.
In order to avoid magnetization error, the output encoder had to be moved away from the end of
the spring shaft to an auxiliary shaft.

Output Encoder Magnetization Error

5 10 15

Time (sec)
20 25 30

Figure 3-5: Plot of the output encoder error that was present on the HISS vehicle due to magne-
tization of a bearing. This data was taken with a solid shaft substituted in for the spring shaft so
there should be no difference between the scaled motor position and the output position.
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Output Encoder Integral Error
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Figure 3-6: Integral Encoder Error upon a revolution of the output shaft.

compliance and does not operate at as high a bandwidth as the motor. It is filtered by a sixth order

Bessel filter with a cutoff frequency at 200rad/s. A Bessel Filter is used in order to maintain a linear

phase response through the passband which minimizes distortion of the filtered signal. More than

anything these filters are essential to reduce noise in the velocity (differential) signal. A plot of the

motor angular velocity and output angular velocity before and after filtering are provided in Figure

3-8.

3.1.5 Electronics

The motor is powered by a custom-built driver circuit that is responsible for maintaining the desired

current in each phase. A schematic of the circuit is given in Figure 3-9 and an operational block

diagram is given in Figure 3-10. The current in phase A and phase B are controlled by analog current

loops while the voltage on phase C is controlled to ensure that the motor operates in the middle of

the supply's voltage range. The circuit is designed to operate at supply voltages up to ±18Volts

but is kept at ±12Volts for the work in this thesis. Similarly the circuit can drive currents up to

±6Amps but is limited to 3.5Arnps.

There are a few notable components in the driver circuit. At the heart of the circuit is the

OPA549 Power Operational Amplifier from Burr Brown. It can maintain an output voltage close to

its supply rails which can be set up to ±18volts and provide continuous current up to 8amps. Also it

has an open loop unity gain crossover at 1MHz meaning it can deliver current at high frequencies.

The INA128 Instrumentation Amplifier from Burr Brown monitors the current being delivered to

each phase by measuring the voltage across 0.025Q current sense resistors from Ohmite. At 100kHz

it has a CMRR of 60dB allowing a current control bandwidth that is much higher than the dSPACE

38

I



Frequency Content of the Encoder Noise
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Figure 3-7: FFT of the encoder noise.
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(b) Output Encoder Differential Noise

Figure 3-8: Noise on the velocity signals obtained by differentiating the encoder position signals.
These plots illustrate the magnitude of noise on the unfiltered signals and the importance of applying
strong filters.
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Desired Phase Current, lid Phase Voltage, Vi Phase Current, 1

- P27OP270 P12-17 OPA549
Gain = -10 Gain = 2 mc

LIc = 21277rad/s I

INA1I28 Rses
Gain = -50 Gain = 0.025

Figure 3-10: Electronics Operational Block Diagram. The block diagram represents the operation
of phases A and B. Phase C only consists of the system plant (Gmc) and the OPA549.

computer's sampling frequency. It also has a high limit on common mode voltages which is essential

for high speed motor control. The current loop is controlled with a PI compensator that is made

out of OP27 low noise operational amplifiers from Analog Devices. Zener diodes are used to provide

a 5volt saturation limit on the PI compensators to ensure that the common mode voltage limit of

the INA128 is not reached. The passive component values are a result of the analysis of the analog

current loop in Section 3.2.

3.1.6 Computer

The computer used for this thesis is a dSPACE ds1003/ds1004 (Alpha Combo) operated with a

constant sampling rate of 10kHz and run out of a PX10 expansion box. The ds1003 is powered by

a Texas Instruments TMS320C40 digital signal processor (DSP) and was primarily used as the I/O

controller. The ds1004 is powered by a DEC Alpha AXP21164 DSP and was used for the majority

of the application's calculations. The ds1004 used stored data from the last clock cycle in order to

minimize wasted processor time per cycle and increase the calculation capability of the system. Also

in the expansion box are a ds2003 a 32 channel A/D board and a ds2103 32 channel D/A board

both sampled at the update rate of the Alpha Combo. The resolution of both the D/A and the A/D

is 16bits at either ±5Volts or ±iOVolts. The ±10Volts setting was used for this thesis
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3.2 Motor Commutation

The motor is the power delivery device for the actuator. It converts electrical energy from a source to

mechanical energy and controls the rate at which that energy is transferred to the load. In order to

achieve good control of a load it is important that the motor be able to deliver energy in a linear and

predictable manner. This section gives a model of the motor electronics and derives the governing

equations, a commutation law that achieves a linear current to torque relationship is found, and

finally the implementation of that control law is described.

3.2.1 Motor Electrical Model

The motor is a three phase brushless motor where the phases are connected in a Y configuration.

Each phase consists of a series combination of the winding resistance (R,), the winding inductance

(L,) and a nonlinear gyrator (characterized by gyrational constant kt,p otherwise known as the per

phase torque constant) that represents the interaction between the rotor's permanent magnets and

the stator coils. This interaction is responsible for converting electrical energy to mechanical energy

and is described by Eqs. 3.4 and 3.5 below.

Vb(0e,Sm) kt,p sin(0e + i) m i = A,B,C (3.4)

T2(oe, ii) ktsin(#e + ,i)i? Z = AB,C (3.5)

T is the per phase motor torque and 7i is the per phase current. The subscript i denotes the

motor's phases A, B and C. A model of the motor electronics is shown graphically in Figure 3-11.

Variables that haven't been referenced but are shown in the figure are Vi which is the node voltage

at the input of each phase and V which is the node voltage at the center of the Y.

The voltage across each phase is found by taking the sum of the voltage dropped across the

lumped elements representing the coil resistance, coil inductance and the nonlinear gyrator

di -
Vi(ii, Vb, Vo) = Rei, + L d- + Vbi + V (3.6)

dt

By using Kirchhoff's current law at the center node the relationship between the current on each

phase is found.

C

E i = 0 (3.7)
i=A

Due to the 120degree difference between the phases the sum of the back EMF also equates to

zero.
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Figure 3-11: Motor Electrical Model.

C C

S Vi = kt~pm E sin(e + j) = 0 (3.8)
i=A i=A

3.2.2 Commutation Law

In order to commutate the motor the current on all three phases must be controlled. Due to the

motor configuration controlling the current on only two of the phases dictates the current for all three

phases. This is because the current on the last phase, according to equation 3.7, is the resulting sum

of the controlled currents. To achieve the desired current on the controlled phases the node voltage

on those phases is defined by an analog current control loop (see section 3.2.3). The node voltage

of the last phase is then free to be chosen so that the commutation voltages stay centered between

the saturation limits of the electronic hardware. This is guaranteed if the voltage at the center of

the Y is maintained at the reference voltage (VRef) of the driver circuit (in our case, ground). By

summing the node voltages given in equation 3.6 and substituting in equations 3.7 and 3.8 a relation

for V in terms of the node voltages is found.

1
VO -(VA + VB + VC) (3.9)

3

Setting VO to zero then yields a relation for the node voltage on the uncontrolled phase in terms
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of the voltage on the two controlled phases.

VC = -VA - VB (3.10)

As mentioned earlier the main purpose of the commutation law is to ensure that the motor

exhibits a linear relationship between commanded current (Id) and motor torque (Tm). As this is

not enough to define a unique law, a secondary constraint that the efficiency of the motor during

constant speed operation is maximized is also imposed. The torque produced by the motor is found

by summing the per phase torques.

2wr 27r
Tm = kt,,(sin(e)iA + sin(phi, - -)iB + sin(phie + 27iC) (3.11)

3 3

Where Vb form Eq. 3.4 is equal to zero, - and 2 for phases A, B and C respectively. By

substituting Eq. 3.7 and solving for 1B, a relation for the current on phase B is found in terms of

the current on phase A and the motor torque.

.rm/kt,p + v/3/cos(#e + ()
- sqrt3 cos(3e)

The electrical efficiency (rIEec) of the motor is given by the ratio of mechanical power supplied

by the motor (Pout,Elec) to input power drawn by the motor (PInElec). This relation is given in

equation 3.13 with the mechanical power supplied given in Eq. 3.14 and the input power is given in

Eq. 3.15.

POutElec (3.13)
1
/E'ec =PIn,Elec

C

POut,Elec = , q rnTj -- bmrm (3.14)
i=A

C di
PIn,Elec PR + PL + POut,Elec = (Ri? + i + Lmci ) (3.15)

dt
i=A

In Eq 3.15 PR represents the resistive losses in the copper wire and PL represents the inductive

power stored in the coils.

If a constant motor torque is achieved by the commutation law the mechanical power supplied

at constant velocity is a constant. The efficiency can then be maximized by minimizing the input

power drawn by the motor. Substituting Eqs. 3.12 and 3.7 into Eq. 3.15 gives the input power in

terms of the current on phase A.
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PIn,Elec(iA) = PR(A) + PL(IA) + POutElec = 2Rg(iA, bet) + Lc d g(iA, &t) + Tm , (3.16)
dt

t ( -)2 - 3sin(c et)ftiA + i 2

OAi, &et) = t,
3 cos 2 (qet)

Noticing that power is stored in the inductors and not lost and again using the fact that POut,Elec

is a constant, a suitable commutation law can be found by minimizing the resistive losses. Setting

the derivative of PR with respect to iA to zero and solving for iA the optimal commutation current

for phase A is found. Subsequently the commutation laws are found through back substitution and

are given in Eqs. 3.17, 3.18 and 3.19.

i m sin(oe) = Id sin(o,) (3.17)

. Tm 2r 2wr
iB ~ sin(7 e - 2) - Id sin(oe - 2-) (3.18)kt 3 3

VC = -VA - VB (3.19)

3
kt = -kt,p2

Where the desired current is linearly related to the motor torque through the motor constant

(kt) -

3.2.3 Implementation

Analog Current Loop

The desired phase current, given by the commutation law, is calculated by the dSPACE computer

and output to the electronic driver circuit. Analog current loops are wrapped around phases A and

B of the motor to maintain the desired current in each phase. A block diagram of the current loop'

is given in figure 3-12. Using the voltage on phase C to hold V at VRef effectively decouples the

phases from each other yielding the simplified system plant (Gmc,phase) for each phase given in Eq.

3.20. The open loop bode plot of Gmc,phase is given in Fig. 3-13a.

Gme,phase(s) = i()1 2(3.20)
V (s) Les + R, + 2k 2 /bm(2 t,p

A proportional integral (PI) compensator, composed of a pole and a zero, is used in the current

control loop. It's transfer function is given in Eq. 3.21. The compensator's pole lies at the origin,

which adds low frequency gain and ensures that when the loop is closed the steady state error

'identical current loops
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System Plant

Figure 3-12: Current Loop Block Diagram

Bode Diagrain
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Figure 3-13: Current Loop Bode Plots. (a) Shows bode plots of the system plant and of the open
loop transfer function after the compensator has been applied. This plot displays the unity gain
crossover for the system and the phase margin (Pm) achieved at the crossover frequency. (b) Shows
the bode plot of the current loop compensator.
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Kmc Kmccomp Kmc,I Wmc (rad/s)
107296 20 21277 100krad/s

Table 3.2: Current Loop Parameters

Phase A Commutation Current
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Desired Current
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Figure 3-14: Controlled Commutation Current on Phase A. The plot shows that the current settles
adequately within one sample period of the computer.

converges to zero. The zero is placed close to the pole of the system plant by adjusting the integral

gain (Kmc,i). This is done to achieve the stable open loop transfer function Gmc,open = Kmc/s, where

Kmc is the overall loop gain. The motor angular velocity limit based on the hardware is 1000rad/s.

This requires a sampling rate of 10kHz in order to have at least ten samples per electrical cycle. In

turn the bandwidth of the current loop is set so that the current settles adequately within the sample

period. The compensator gain (Kmc,comp) is adjusted so that the open loop unity gain crossover

occurs at Wmc = 100krad/s. The gains used in the current loop PI controller are given in Table

3.2. A bode plot of the open loop transfer function is given in Figure 3-13a and a bode plot of the

compensator is given in Figure 3-13b. The controlled current during motor commutation is shown

in Figure 3-14

Gmc,comp(s) = Kmc,comp (s + Kmci (3.21)

Angle Advance

A delay of two sample periods (tdeay = 200ps) is introduced by the dSPACE computer due to the

data acquisition and calculation. This delay is shown in Fig. 3-15. As the motor angular velocity

is increased, this delay becomes a much larger portion of the electrical commutation cycle. Conse-
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Figure 3-15: Plot of the commutation current delay cause by the data acquisition and processor

computation. The plot shows how the commanded current is calculated two sample periods ahead

of when it is desired to overcome the delay.

quently the commutation current lags behind the desired phase current defined by the commutation

law creating a drop in both output torque and efficiency. In order to maintain actuator linearity a

feedforward term based on the motor position and the motor angular velocity is introduced. This

term advances the angle used to calculate the commutation current by two sample periods so that

after the delay the desired current is achieved. The corrected commutation current is also shown in

Fig 3-15.

3.3 Motor Model

Assuming a linear command-to-torque relationship is achieved, the motor electronics can be viewed

as a torque source as long as the motor is within its saturation limits. It is then reasonable to reduce

the total motor model to the simple mass damper system given in Eq 3.22, where Jm is the motor

inertia and rf is the friction torque. The motor model is shown graphically in Fig 3-16. The standard

motor model used for control assumes that friction torque is a linear term that is proportional to the

motor angular velocity. This model yields the transfer function given in Eq. 3.23. The measured

bode plot of the motor, however, deviates from this linear model as shown in Fig. 3-17a. A time

domain response to a sinusoid at lrad/s is given in Fig. 3-17b. It shows that the majority of the

deviation from the linear model is due to nonlinear effects at low speeds.

Jm m + Tf = Tm (3.22)
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Motor Motor Rotor Friction

Figure 3-16: Motor Mechanical Model

Frequency Response of the Motor and Harmonic Drive Velocity Response to a 1Hz Sinusoidal Commanded Torque
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(a) Open loop frequency response of the motor. (b) Time domain response of the motor.

Figure 3-17: Plots of motor response without any compensation. (a) Bode Plot of the motor velocity
from the motor current. The frequency response of the motor was taken at multiple values of current
ranging from 300mA to 700mA. The plot shows how nonlinear effects create different responses based
on the size of the input which hinders efforts to characterize the system and can hurt the effectiveness
of control. (b) Open loop time domain response to a 1Hz sinusoid input. Due to nonlinear effects
the rotor stops for a portion of each cycle.

qOm(s) _ 1Gm(s) - Jm S (3.23)
Tm(s) Js+b

There are two nonlinear phenomenon responsible for this deviation. The first is cogging torque,

a positional torque ripple caused by magnetic interaction between the stator and the rotor magnets.

The second is static friction or "stiction", which is a torque that occurs due to the metal to metal

contact forces in the bearings.

3.4 Nonlinearity Compensation

The presence of nonlinear effects such as cogging torque and stiction are undesirable because they can

reduce the effectiveness of standard control techniques or even introduce undesired stable equilibria
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Figure 3-18: Plot of the torque required for the PD controller to overcome cogging torque and hold

a position.

such as limit cycles. With the proper models, however, feedforward terms can be introduced to

compensate for these nonlinearities. In this section the motor cogging torque and stiction are

characterized and feedforward terms are added to the command signal to linearize the system.

3.4.1 Cogging torque

Cogging torque is a periodic torque ripple that occurs due to the interaction between the rotor's per-

manent magnets and the stator slots or "teeth". This torque is position-dependent and is produced

regardless of stator current. The periodic nature of cogging torque causes a number of stable and

unstable equilibria which can cause large errors under position control. Fortunately this disturbance

is repeatable over a revolution of the motor and therefore can be compensated for in software.

In order to measure the cogging torque. a high gain proportional derivative (PD) position con-

troller was implemented and the torque required to maintain a given position was measured about

a revolution of the motor. A portion of this data is plotted in Fig. 3-18. A single harmonic curve fit

was applied and a relation for cogging torque in terms of motor position was found and is given in

Eq. 3.24. By adding this term to the command signal much of the disturbance due to the cogging

torque was suppressed which can be seen from the reduction in position error under PD position

control shown in Fig 3-19.

Tcog (#m) = 7.69 x 10-4 sin(36,m - 1.5796) (3.24)
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Figure 3-19: Plot of motor position error under PD control due to the motor's cogging torque. The
plot illustrates how the cogging torque compensation improves the effectiveness of the PD control.

3.4.2 Stiction

The term stiction describes the forces resulting from microscopic irregularities of two surfaces in

contact. An analogy that is commonly used is that the points of contact on the microscopic level

act like wire bristles that exhibit a spring damper effect. Small deflections from rest produce large

forces in the bristles until a critical force is reached causing the points of contact to start to slip.

Canudas et al present a dynamic model that effectively describes this interaction [Canudas de Wit

et al., 1995] and a technique for measuring the model parameters [Canudas De Wit and Lischinsky,

1997]. These methods are used in this thesis to characterize the bearing stiction and implement

compensation for it.

The dynamic stiction model introduced by Canudas et al, called the LuGre Model, is composed

of a rotor velocity state and an internal state (z) representing the average bristle deflection. The

LuGre Model is given in Eqs. 3.25 and 3.26, where uo, 91 , aO, al, a 2 and m,o are all constant

parameters of the model.

d z
drf = z Z + O d + a 2 0m (3.25)

dz 90
d = om -- Z|m| (3.26)
dt 9(4m)

g(qSm) ao + - 02

uo is the stiffness of the bristles while o 1 is the damping. ao is the critical force required for the

bristles to start to slip. al and m,O describe the increase in friction force that takes place at slow

speeds due to lubrication called the Stribeck Effect. a 2 is the standard viscous damping. These
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NO (C) 0i (rnj~s) ao (Nm) a, (Nm) a2 (2) Om,0 (rad/s)

Motor 0.0001 0.0385 0.00035 0 N/A 0
Harmonic 0.0005 0.82 0.00478 0 5e- 0

Table 3.3: Stiction Parameters

constants are measured for both the motor and the harmonic drive using the techniques described in

[Canudas De Wit and Lischinsky, 1997] and are given in Table 3.3. Using the parameters measured,

the LuGre Model is implemented in software to actively calculate the stiction torque. This torque is

then added to the command signal to compensate for the bearing stiction. The effect of the friction

compensation with respect to velocity is shown in Fig. 3-21.

During implementation of the stiction compensation it was found that stability of the stiction

model, was highly sensitive to motor speed and sampling bandwidth. At higher motor speeds the

average bristle deflection state would become unstable and the compensation scheme would cause

the motor current to spike and saturate. The explanation for this phenomenon came from a more

detailed analysis of the stiction model, specifically the internal state z. Eq. 3.26 is a nonlinear

differential equation describing the change in bristle deflection in terms of the motor velocity and

the bristle deflection. By assuming a constant velocity the system takes on the form of a linear first

order system.

S=m,const I - Z (3.27)

Where Pm,const represents the motor velocity as a constant. By transfering Eq. 3.27 into the

Laplace domain and solving for z(s) the system takes the form of a standard low pass filter.

z(s) = .,const (3.28)
S + #m,const -

This equation can also be looked at as the result of closing a proportional control loop around

an integrator as is shown in Figure 3-20. The input to the control loop (u) is an impulse and the

motor velocity is the proportional gain. The open loop phase margin of the continuous system will

always be 90 degrees due to the single pole in the system plant (the integrator) regardless of the

gain. When the system is implemented digitally, however, the sampling delay causes phase to rolloff

at high frequencies so that when the gain is increased adequate phase margin is no longer maintained

and the system becomes unstable. In the hardware implementation the system gain of the stiction

model was limited by setting saturation limits on the motor velocity term at ±100rad/s. With

the saturation limits in place the system remains stable at high velocities. Moreover, the stiction

force converges to a constant at high velocities, therefore the lack of system gain does not hinder its

calculation.
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Figure 3-21: Plot of friction torque vs velocity. The plot shows the large jump in friction force due
to stiction. Once the feedforward compensation scheme is implemented the friction torque appears
to behave linearly to the command signal.
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Frequency Response of the Motor and Harmonic Drive
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(a) Open loop frequency response of the motor with (b) Time domain response of the motor with nonlin-
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Figure 3-22: Plots of the motor's velocity response to commanded current with the nonlinearity

compensation scheme implemented. In both the bode plot (a) and the time response to a sinusoid

(b) the system responds linearly to the commanded current.

Once the feedforward compensation terms were applied a bode plot of the motor and harmonic

was measured and is given in Fig. 3-22a. Also the time domain response to a sinusoidal com-

mand at lrad/s is shown in Fig. 3-22b. It can be clearly seen that the nonlinearities have been

largely suppressed leaving a system that, for the most part, behaves linearly. With the feedforward

compensation scheme in place the linear mass damper model given in Eq. 3.22 can be used.

3.5 System Model

In this section a general model for the entire system will be developed. First, the motor inertia and

damping are combined with the elastic element and transmission to complete the model of the series

elastic actuator. Then a general robotic model of the actuator and its load will be presented. Next,

realistic loading conditions under which series elasticity can be exploited for improved efficiency are

discussed and the general model is reduced to a few simplified loading conditions that accentuate

this point. Finally, the frequency responses of the simplified models are compared with those of the

actual hardware to confirm the validity of the model.

3.5.1 Series Elastic Actuator Model

The model of an electromagnetic linear Series Elastic Actuator is shown in Fig. 3-23 and is described

analytically by Eq. 3.29. It consists of a motor acting as a torque source connected to a mass and

damper, a transmission made up of the timing belt and the harmonic gear drive and an elastic

element which is provided by the combination of a spring shaft and the transmission compliance.
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Figure 3-23: Series Elastic Actuator Model

Jm( k) bm(kg ) N k,(Nm/rad)

8.36e- 7 6e- 6 230 10

Table 3.4: Series Elastic Actuator Parameters

The model coefficients were determined by measuring these elements and are given in Table 3.4. By

fitting the linear motor model given in Eq. 3.23 to the bode plot in Fig. 3-22a the rotor inertia

(Jm) and damping coefficient (bm) were found. The value for the rotor inertia agrees with the

value predicted by the CAD model and the value for the motor damping matches that obtained

from the friction characterization in Figure 3-21, adding validity to the measured coefficients. The

transmission ratio was measured by running the motor at constant speed and recording the output

speed, and was found to be the predicted combination of the belt transmission and that of the

harmonic gear drive. The stiffness of the system was found by locking the motor and loading the

output of the spring shaft. Stiffness of the spring shaft was then distinguished from the stiffness

of the transmission by locking a test transmission with epoxy and loading the spring shaft. It was

found that the transmission added very little compliance, and thus the system compliance used in

the model became that of the spring shaft. A plot of the spring stiffness (k,) is shown in Fig. 3-24.

It shows that the spring behaves linearly up to 2Nm where the stiffness begins to increase due to

helical windup of the spring.

- . - J. + -- 0 m (3.29)
i N 0 Ts o -k,
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Figure 3-24: Plot of Spring Stiffness

3.5.2 General Robotic Loading

Series Elastic Actuators were designed for and are most commonly used in single or multi-link

robotic manipulators. Generally these manipulators are in the form of arms or legs on biomimetic

robots. They have also been used in serpentine robots, such as the HISS robot, where the multi-

link manipulator makes up the entirety of the vehicle. The general model of a multi-link robotic

manipulator is given below in Eq. 3.30.

H(0)0 + C(0, ) + BO + E(0, ) =act (3.30)

Where Fact is the torque supplied by the joint actuator. 0, 0 and 0 are 1 x n matricies of the

joint orientations (angle, angular velocity and angular acceleration), n being the number of links of

the manipulator. H() is the inertia matrix, C(0, 0) is the coriolis torques, B is the damping matrix

and E(O, 0, 0) is the torques produced by environmental interactions. Combining the torque model

of a generic multi-link robotic system with the model of a series elastic actuator gives the entire

system model given in Eq. 3.31.

J.0, + bmm+ s = m

H(L)L + C(OL, OL) + BOL + E(OL, 0L, O)L = (3.31)

ks( ym - OL) = 7,

Eq. 3.31 in the multi-link case represents the loading configuration in a complex nonlinear

equation that is difficult to use to analytically characterize actuator performance. It has been

shown, however, that the organisms mimicked by biomimetic robots use the natural dynamics of

their multi-link configurations to gain efficiency in locomotory movements (see Section 2.3). In
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light of the complicated nature of the multi-link model, the simplified case of a single-link robot

will be used in this thesis to investigate the conditions under which series elasticity can be used to

enhance performance, in the hope that the insights gained can be used as a starting point for more

complicated analysis.

In the case of the single link model Eq. 3.31 simplifies to Eq. 3.32 given below.

Jmqm+brnq+ T-Ts = rm

JL L ( bL32L + E()L, LOL) = Ts 3.32)
ks (- O~m--L) = Ts

Where the inertia matrix simplifies to the link inertia and the damping matrix simplifies to the

link damping. Coriolis effects do not exist in the single link case and have been dropped, leaving

the simplified environmental interactions E(p, e, $) as the only nonlinear term. It is the contention

of this thesis that the exploitation of natural dynamics to obtain efficiency gains is most effective

during steady-state operation, therefore the interaction forces are simplified to loading conditions

that simulate constant velocity movement. Two cases of loading are considered. Case 1: The

environment enacts a purely frictional loading on the link. Case 2: The more realistic loading case

where a nonlinear inertial loading term is used to represent the flight and contact phases present

during terrestrial locomotion.

Case 1: Friction Load

A purely frictional load is created by two metal rods pressed up against the load plate. This setup

creates a nonlinear form of friction called coulomb friction in which a constant force is created in

the opposite direction of the load movement. Although nonlinear, this frictional load is considered

somewhat of an ideal case because the loading is always in phase with the motion of the link and

maximum power can be transferred to the load. Although it is not accurate for most patterns of

locomotion, it comes very close for those that always maintain ground contact such as serpentine

sidewiding, or in the case of machines a piston/crankshaft connected to a wheel. Nevertheless, the

purely friction load sheds light on conditions for efficient actuation that can be applied to the more

realistic case.

Under this case the environmental interaction term is simplified to:

E(L) = TfE (sign($L)) (3.33)

Where Tf,E is the environmental friction force. Substituting Eq. 3.33 into Eq. 3.32 gives the

complete linear model.
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Jm~m m+bmm+kTs Tm

JLOL + bLSL + Tf, (sign(L) Ts (3.34)

ks(- m -L) Ts

Case 2: Nonlinear Inertial Loading

In order to simulate more realistic robotic loading conditions, periodic ground contacts were added

to the friction load of Case 1. The ground contact was achieved by hanging a weight off of the load

plate and providing just enough cord so that the weight was barely in contact with the ground when

the load position was at zero. The friction load from Case 1 was kept to ensure that power was

being output by the actuator while the weight added non-linear inertial dynamics to the loading

upon each ground contact.

3.5.3 Frequency Response

By substituting zero in for E(PL, O ,L) representing an unloaded system, the model given in Eq.

3.32 gives the following transfer functions in the Laplace Domain: Motor position from Motor Torque

(Gp,mv), Link position from Motor Torque (G,,t) and Spring Force from Motor Torque (GP,f) given

in Eqs. 3.35, 3.36 and 3.37.

Gp'mv(S) = kt(JLs 2 + bLS + ks) (3.35)
JJL S3 + (bmJL + bL Jm)S 2 + (bmbL + ksJeq)S + ksbeq

kg k 8 /N
G, ze (s) = ktk N(3.36)

JmJLS3 + (bmJL + bL Jm)S 2 + (bmbL + ksJeq)S + ks beq

kG(kN (JLs+bL)
JnJL3 

s + (bmJL + bL m)S 2 + (bmbL + ksJq)S + k (s3eq

beq bm + bi/N 2  Jeq = J + JL/N2

The frequency response of the unloaded hardware was taken and compared with that of the

system model in Figures 3-25, 3-26 and 3-27. As can be seen from the plots the simulation results

correspond quite well to the hardware response verifying the system model developed in this section.
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Figure 3-25: Frequency response of motor velocity from motor torque.
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Figure 3-26: Frequency response of load velocity from motor torque.
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Open Loop Frequency Response
Desired Motor Current to Spring Force
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Figure 3-27: Frequency response of spring torque from motor torque.
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Chapter 4

Control

In this chapter the control strategy used to investigate the performance of the actuator is developed.

Just as if the actuator was being placed in a biomimetic robotic system, certain control requirements

must be achieved. The control scheme must react to high loading conditions to limit the force in

the spring and protect the gear train. In order to achieve efficient actuation the controller must be

able to operate at the resonant frequency of the system. Finally, the controller must be robust to

changes in the load inertia that may be present on a real vehicle due to changes in the manipulator's

configuration or interactions with the environment. The control strategy developed to achieve these

requirements is made up of a number of control stages. The design and implementation of these

stages are described in the subsequent sections. Section 4.1 describes the motor position control loop.

Section 4.2 derives a law that achieves accurate force control in the elastic element. In section 4.3

the load position control loop is designed. Control issues including sensor noise, control bandwidth

and stability issues are discussed in section 4.4. Adaptive feedforward cancellation is added in

section 4.5. Finally, the control scheme's overall performance is demonstrated by data taken in a

few representative experiments in section 4.6.

4.1 Motor Position Control

One of the benefits of Series Elastic Actuation is that the addition of the compliance changes force

control, a problem which geared motors are poor at handling, to a position control problem which

geared motors are well suited. This section develops a motor position control loop that is used as

the foundation for active force control. The frequency response of motor position from command

current is given below:

kt(JLs 2 + bLS + ks)GpImp(s) = S(JmJLS3 + (b-nJL + bL Jm)S 2 ± (bmbL + ksJeq)S + ksbeq)
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(a) Open loop Bode plot of motor position.
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(b) Bode plot of the motor position controller

Figure 4-1: Motor Position Control

Fig. 4-la shows the frequency response of the unloaded actuator from motor torque to motor

position. The motor position response exhibits a resonant peak at Wsystem 23.41, due to
S

the dynamic coupling between the load inertia and the motor inertia through the spring, this is

referred to as the system resonance throughout this thesis. Figure 4-1a also shows a trough at

Wioad = 16.9M, due to the coupling between just the load inertia and the spring, this is referred to

as the load resonance throughout this thesis. The trough is located in the vicinity of the peak if the

load inertia is small compared to the motor inertia, causing the trough and the peak to partially

cancel each other. This is generally the case with series elastic actuators because it is the large

reflected motor inertia that created the need for the spring in the first place. Due to the closeness

of the load resonance and the system resonance, there is only a small deviation between the motor

position response of a rigid system and that of the current hardware. This is illustrated in Fig. 4-2.

As a result, standard motor control techniques can be used despite the presence of the spring.

A requirement for the load position controller was that it be able to operate with a bandwidth

above the system's efficient frequency. In order to achieve this, the inner force control loop and

subsequently the motor position control loop were designed to operate at a bandwidth one decade

above that of the outer loop. With the efficient frequency at Wload, a bandwidth of wp = 20rd was
8

chosen for the outer loop and a bandwidth of omp = 20011ad was chosen for the motor position loop.

A PID controller, consisting of a pole at the origin and two zeros, was used in the motor position

loop to achieve this bandwidth. The zeros were placed at wzl,mp = 1L and WZ2 = 100w in order

to achieve a phase margin of 45 degrees at wmp. A controller gain of Kc,mp = 1.5 then achieved

an open loop unity gain crossover at the desired bandwidth. The transfer function for the motor

position controller is given in Eq. 4.2 with its parameter values given in Table 4.1 and its response

is shown in Fig. 4-1b.
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Figure 4-2: Bode response comparing an elastic actuator to one which has the spring shaft replaced
by a solid shaft.

Gcmp - Kmp Kd,mpS 2 + Kp,mps + Ki'mp (4.2)
(Kf,mps + 1)s

Kc,mp Kd,mp Kp,mp Kimp
1.5 0.01 1 1

Table 4.1: Motor Position Controller Parameters

Fig. 4-3 shows the closed loop motor position response of the implemented controller compared

with the theoretical closed loop response predicted by the model. As can be seen from the plot

the model corresponds nicely to the measured data. The relationship between the desired motor

position and the actual motor position shown in Figure 4-3 is described by the term Gmp as follows.

m = Gmp(s) (4.3)
Omd

4.2 Force Control

4.2.1 Spring Compensation Law

The torque in the spring is defined as the difference between the load position and the motor position

scaled by the transmission.

Ts = ks(Om/N - $L) (4.4)
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Figure 4-3: Frequency Response of Closed Loop Motor Position Control. The plot shows the response
of motor position from the desired motor position command.

In order to achieve force control, a control law is chosen that defines the motor position necessary

to maintain the desired spring torque. Solving Eq. 4.4 for motor position results in the appropriate

law.

N
cm,d =T Ns,d + N#Lmeas (4.5)

Where Pm,d is the desired motor position, T,,d is the desired spring torque and OL,meas is the

measured load position.

This force control law can be broken into two parts, a spring compensation term NOL and a

desired force term -- Trd. The spring compensation term is solely based on load position and defines

the position the motor must achieve to guarantee zero force in the spring. It, in effect, decouples

the load inertia from the motor inertia thus suppressing the complicated dynamics associated with

resonance.

The load dynamics in terms of motor position and load disturbance torque is given by:

ks
JLOL + bLOL +YL TsdL = Om (46)

N

In the ideal system infinite bandwith, perfect sensing and therefore perfect tracking is achieved

by the motor position law, an assumption that is not reasonable in the real world but is useful in that

it illustrates the decoupling effect of the spring compensation term. The control law given in Eq.

4.5 is now substituted in to Eq. 4.6 under the ideal assumption that Om = /m,d and OL,meas = OL

resulting in a relation for load position in terms of the desired spring torque and the load disturbance

torque.
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JLq5
L + bLOL = Td + Ts,d

It can be seen that the spring compensation term of the force control law cancelled the spring

force that results from the load dynamics thus transforming the system into a simple mass damper

composed of the load inertia and load damping.

4.2.2 Closed Loop Force Control

Although the ideal system is useful to illustrate the concept of spring compensation it is not reason-

able to use as a system model because it does not illustrate any of the limitations that are inherent

to active force control. These limitations are best investigated by breaking the operating conditions

of the actuator into two main categories. The first is fixed load operation, where the load inertia

is constrained somehow, as can be the case during interactions with the environment. The second

category is operation during load motion, where the load is in free space and the load inertia is that

of the link plus a possible added inertia due to the robot's task.

A model of the actuator under closed loop force control is now derived in order to investigate

the two operating conditions. Moving Eqs. 4.4 and 4.5 into the Laplace domain gives:

m,d(s) = NTs,d(s) + N#L,meas(s) (4.8)

Ts(s) = k,(Om(s)/N - OL(s)) (4.9)

Then substituting Eq. 4.8 and Eq. 4.3 into Eq. 4.9 yields the relation for spring torque in terms

of the desired spring torque, the load position and the measured load position.

Ts (s) = Gmp(S)Ts,d(S) + ks(Gmp(S)#L,meas(S) - OL(S)) (4.10)

The load position sensor introduces a significant amount of noise and is filtered as explained in

Section 3.1.4. This introduces dynamics between the measured load position and the actual load

position:

#L,meas(s) = Gf,jp(s)OL (s) (4.11)

where Gf,Ip represents a sixth order Bessel filter with a cutoff frequency at Wf,ip = 200w"/.

Substituting Eq. 4.11 into Eq 4.10 gives the spring torque in terms of the desired torque and the

load position.
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T (s) = Gmp(S)Ts,d(S) + ks(Gmp(s)Gflp(s) - 1)OL(s) (4.12)

Fixed Load Operation

Operation when the load is fixed is the most pertinent condition for active force control. It provides

the conditions under which position control and rigid actuation are not compatible with dynamic

constraints and is the motivation behind series elastic actuation. Accurate force control is important

in this case to prevent large spikes in force that could damage either the robot itself or the objects

that the robot is interacting with.

During fixed load operation #L goes to zero and Eq. 4.12 simplifies to:

T,(s) = GmpTs,d (4.13)

The developed model in Eq. 4.13 states that the limitation on force control during fixed load

operation is the bandwidth of the motor position controller. The closed loop motor position response

in Figure 4-3 is then also the response for fixed load force control, thus good force control is achieved.

Dynamic Load Operation

During operation when the load is allowed to move, the requirements on the force control law are

not as rigid as in the fixed load case. There are two major requirements that must be met by the

force control scheme if acceptable actuator performance is to be attained. First and foremost, just

as in the fixed load case, accurate force control at frequencies around the system resonance must be

obtained if that resonance is to be suppressed. After that, during load motion the purpose of force

control becomes the manipulation of the load and thus accurate force control is only necessary in

the range of frequencies present in transients associated with load movement.

In the case of a dynamic load OL does not go to zero and the second term in Eq. 4.12 is able to

have a significant impact on the closed loop force control. The relation for load motion in terms of

the spring torque is represented by a mass damper model similar to the motor.

JL L + bLL =, (4.14)

Which in the Laplace domain is given by:

L(S) _ 1(4.15)
Ts(S) (Js +bL)s

Substituting Eq. 4.15 into Eq. 4.12 and solving for Ts gives a model of the closed loop force

control under dynamic loading conditions.
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Figure 4-4: Bode plot of the closed loop force control. The plot gives the response of the spring
torque from the desired spring torque. The Bode plot characterizes the measured spring torque
with respect to the desired spring torque. The plot shows that good force control is achieved at
frequencies between 1 - 100d, which is an adequate range to achieve position control of a dynamic
load.

Ts(S) = Gmp(S) ( (JLS + bL)S

Tsd(s) SLA2 + bLS + ks(Gmp(S)Gf,p(S) - 1)

The model in Eq. 4.16, when compared to experimental data in Fig. 4-4, agrees nicely with

the hardware. The plot illustrates the dynamics added by the second term in Eq. 4.12 through

the rolloff of magnitude present at low frequencies. This rolloff occurs because under dynamic load

conditions, low frequency spring torque equates to low frequency acceleration of the load inertia.

The lower the frequency range the closer the load acceleration is to a constant, thus resulting in

large load velocities. At higher load velocities, however, a delay in the measured load position is

introduced by the load position filter, thus the motor position commanded by the force control law

is no longer the correct value to achieve the desired spring torque.

In order to determine if this force control scheme is adequate, the requirements for good system

performance given at the beginning of this section must be checked. The resonant frequency of the

system is at 23.31-d falling within the range of good force control, therefore the system resonanceS ?

will be suppressed and the first requirement is satisfied.

In order to check the second requirement, the model of the system from spring torque to load

position is used to determine the range of frequencies required to achieve load manipulation. Fig.

4-5 shows a typical torque control signal from the model in Eq. 4.7. The model parameters were

set to the same values as the load inertia and damping measured in section 3.5.1. Position control

of the model was realized with a PID controller configured to a bandwidth of 20L, just above the
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Figure 4-5: Transient response of a mass/damper system under PID position control to a step input.
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Figure 4-6: Frequency composition of a PID position controller's torque command during a step
in position. The plot shows that during load movements it is not necessary to have accurate force
control at low frequencies.
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in this range therefore the second requirement is satisfied and good actuator performance can be

achieved during load movement.

4.3 Load Position Control

In order to manipulate the load, a PID load position controller such as the one referred to in the

last section was designed and implemented. In the last section the ideal model was used for the

controller design. This model is not sufficient because it neglects the limitations of the force control

scheme. Substituting Eq. 4.15 into Eq. 4.16 and solving gives the transfer function from the desired

spring torque to the load position.

GSfe lp( s) -Gmp() (JS ss+ 1) (4.17)
S-s(G (s)G,(s) -

Differentiating this equation, which in the Laplace domain is equivalent to multiplying by s,

changes load position to load velocity.

FrqLnc (ads

GSfc,In(s) L() Gmp(s) (JS±b -1______ (4.18)

The frequency response of Eq. 4.18 is given in Fig. 4-7. Viewing the relation of load velocity to

desired spring torque as opposed to load position to desired spring torque makes it easy to see the
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Figure 4-8: Load Position Control

location of the pole created by the interaction between the load inertia and damping. When fit with

the ideal model in Eq. 4.7 the load inertia and damping coefficients are found to be JL = 0.0305k*42
rad

and bL = 0.4865 Ns respectively. The inertia value matches the model of the hardware, however,

the damping coefficient is much higher than what was previously measured on the hardware. This

discrepancy is due to the force control limitations. The delay introduced by the load position filter

creates a force that is linearly coupled to load velocity. This delay manifests itself as an additional

damping term causing the perceived damping of the load to be much higher than that of the actual

hardware.

The load position controller's design process was identical to that of the motor position controller

due to the likeness of the two models. As stated earlier a controller bandwidth above the system's

efficient frequency at 16.91 was required to investigate the efficiency gains possible using series

elastic actuators. Zeros were placed at wzi,lp = 1 amd Wz2,Ip = 4Za to ensure that there

was adequate phase margin in the frequency range at and above resonance. The gain was then

adjusted to achieve as high a bandwidth as possible. A final value of Kp = 60 was settled on

yielding a bandwidth of 27.112-4. The load position controller parameters are given in Table 4.2.

The frequency response of the open loop system is shown in Fig 4-8a. It shows a phase margin of

74.6 degrees and a gain margin of 6.8 dB. A Bode plot of the load position compensator is given in

Figure 4-8b. The closed loop response of the system under load position control is given in Fig 4-9.

Kc,ip Kd,lp Kp,p KI,1p
60 0.25 1.25 1

Table 4.2: Load Position Controller Parameters
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Figure 4-9: Frequency Response of Closed Loop load Position Control. The plot shows the response
of load position from the desired load position command.

Part of the reason for the relatively low placement of the controller's two zeros was to ensure

adequate phase margin at frequencies lower than the current systems resonant frequency. This

precaution was taken so that the system could be robust to small changes in load inertia. Fig.

4-10 shows how the system's open loop response changes due to variations in the load. As can be

seen from the plot the controller remains stable for both increases and decreases in the load inertia.

Although stability is maintained upon small decreases in load inertia, the amount of decrease is

limited before instability is a concern. This is acceptable as long as the controller is designed so

that the load inertia corresponding to the robot link inertia results in good stability margins. In

addition to stability, the controller maintains a bandwidth higher than the system resonance during

load variations. This is due to the fact that as the load increases the natural frequency of the system

drops at a higher rate than the controller bandwidth.

4.3.1 Shock Protection

One of the largest shortcomings of the hardware used in this thesis, which was experienced during the

HISS project, was that there was not adequate protection for the delicate harmonic drives. Initially

solid shafts were used and the harmonic drives were damaged so much that they could no longer

support a third of their original torque rating. Spring shafts were introduced to alleviate the burden

on the drives but due to the sensor problems described in section 3.1.4 only loose force control was

implemented and the harmonic drives still sustained a great deal of damage. PID controllers such

as the one used here were impossible due to the large spikes in force they called for during sudden

movements. The improved force control scheme developed in the present work, however, allows

active spring force saturation to be implemented to protect the harmonic drives. The addition of
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Figure 4-10: Load Position open loop stability margins upon changes in load inertia.

force saturation made the actuator tolerant to shock loads either created by the system or those

enacted on the system by the environment.

4.4 Control Issues

There were a number of issues that turned up that limited the performance of the control. Three

major problems called for constant attention and had a notable affect on the final design. They are

sensor noise, vibration and stability and are described in this section.

4.4.1 Sensor Noise

In order to calculate the load position controller's damping term the load position is differentiated

amplifying the sensor noise at higher frequencies. This noise is then amplified again by the controller

gain and propagates through the force control law to the desired motor position signal. The motor

then tracks any noise within the bandwidth of the motor controller causing the motor to chatter.

Fig. 4-11 shows the noisy differential signal and the resulting motor movement. If too much noise is

allowed to enter into the desired motor position term the chattering would become violent ultimately

degrading the performance of the force control and therefore the load position control.

The bandwidth achieved by the load position control is directly related to the gain of the con-

troller. Propagation of noise through the controller's differential term, however, limited the gain and
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Motor Chatter due to Noise
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Figure 4-11: Motor Chatter due to noise under load position control. The load is for the most part
not moving however the load position sensor is measuring a small amount of movement due to either
vibrations or sensor noise (Top Plot). The load position controller then amplifies the load position
error through three terms. The spring compensation term and the proportional control term are
both proportional to load position and are shown in the bottom plot as the proportional command.
The differential control term is shown as the differential command. The resulting motor position
tracks these noisy command signals. This is what is refered to as motor chatter.
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in turn limited the control bandwidth. In order to suppress the sensor noise and increase controller

gain the load position signal was filtered as described in section 3.1.4. Unfortunately, the phase lag

added by the filter threatened controller stability thus creating a tradeoff between noise suppres-

sion and controller gain. The final designs used for the noise filter and controller are the result of

experimental tweaking in order to find a configuration that satisfies this tradeoff.

4.4.2 Vibration

Due to coupling between the load plate and the unique movement of the harmonic drive, large load

vibrations out of the plane of interest were present during operation. The load plate used to simulate

the link inertia of a robot was a 2 inch thick 12 inch diameter cylindrical piece of aluminum, which4

interfaced with the harmonic drive through the spring shaft connected at its center. The spring

shaft is supported by two bearings, one close to the load plate (the load bearing) and another at the

other end of the shaft (the input bearing). The input bearing did not provide enough support for

the size of the load plate and allowed radial deflections of the spring shaft. The special movement

pattern characteristic to harmonic drives coupled with the stresses provided by the load plate excited

radial vibrations of the spring shaft. The vibrations were in turn reflected through the coupling and

auxiliary shaft, where they created small misalignments with the load sensor, and thus error in the

position and spring torque measurements. It was also propagated through the control scheme as

described in Section 4.4.1 eventually causing extra chatter in the motor signal. As load position

control gains were increased the coupling between motor chatter and load vibration worsened to

the point that limit cycles about the controlled load position occurred. This placed yet another

constraint on controller gain and in turn bandwidth.

4.4.3 Stability

Stability of the force control loop was a major concern during controller design. The load position

controller depended on stable force control to maintain good load position control. More importantly,

the hardware depended on the force control loop to protect it under adverse loading conditions. If

the force control loop were to go unstable the harmonic drive would be destroyed.

The issue of stable force control is really an issue of stable motor position control. The standard

linear control methods used in Section 4.1 ensured motor position control stability for the hardware

configuration used in the controller design. There were two cases not addressed by the standard

linear method that were taken into consideration during the controller design. Case 1: Changing

load inertia. Case 2: Motor current saturation.
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Figure 4-12: This plot shows the movement of the system poles under closed loop motor position
control. As the load inertia is decreased the poles that correspond to the system resonance move
into the right half plane where the system is unstable.

Changing Load Inertia

Figure 4-12 shows the movement of the systems poles under closed loop motor position control as the

inertia is varied. As the inertia is decreased the conjugate pair of poles corresponding to the system

resonance moves both away from the real axis and toward the right half plane. If the load inertia

becomes small enough the poles enter the right half plane and the system becomes unstable. This

makes sense because as the load inertia decreases the resonant frequency of the system increases. If

the system resonant frequency is allowed to climb too high the motor position bandwidth will no

longer be high enough to suppress the resonance. Just as is the case with the load position loop,

the motor position loop requires a minimum load inertia (i.e. that of the link) to maintain stability.

Motor Current Saturation

Motor current saturation creates constraints on the region in the frequency domain in which the

motor position responds linearly to commands. It was found that as long as the motor position

movement required to suppress the system resonance was located in the linear region, stability was

maintained.

Ignoring the spring and load for a moment to simplify the system, the motor dynamics is given

by:

Jm d 2 + bmd 7 =Tamp cos(wt) (4.19)
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Where ramp is the amplitude of the commanded motor torque. Then solving this differential

equation for motor position yields:

# Wn Tamp 2 sin(ot - ) m,amp sin(wt - 0) (4.20)
C' V(JmoL))2 + bm2

If Tamp is replaced with the saturation limit (Tsat) the linear region for motor position is defined.

sat Tsat /(bwo)
(w /wo) V(w/wo) 2 + 1

wo = bm/Jm

Eq. 4.21 represents the non-dimensionalized linear constraints on motor position based on motor

torque saturation and in turn motor current saturation. Plotting these constraints (Figure 4-13)

sheds light on the limitations of motor position linearity and helps to show the mechanisms that can

be used to keep the motor operation in a linear region. Current saturation puts both a frequency

limit and a magnitude limit on motor position linearity. Increasing the current saturation increases

both of these limits. In order to maintain stability the system resonance must be at a low enough

bandwidth and the magnitude limit must be high enough so that the required motor movement

is in the linear range. This is done in two ways. First by limiting the system resonance to lower

frequencies by using a minimum load inertia. Second by increasing the current limit to make sure

saturation does not cause instability. It was found through simulation that using a current limit

of 2Amps and a load inertia of J = 0.015**2 put the system on the brink of instability. For

the work in this thesis the current limit was set at 3Amps and the minimum load inertia use was

JL = 0.03 k ultimately resulting in a stable system.

4.5 Adaptive Feedforward Cancellation

Under no external loading conditions, commanding the load to follow a sinusoid at the resonant fre-

quency with an amplitude of 0.1 radians resulted in a phase delay of -71.4degrees and subsequently

an error signal with a magnitude of 0.072rad (Figure 4-14). This tracking is poor enough that the

control is inadequate to execute robotic gaits. The inability to accurately tack a desired load posi-

tion is due to the limitation on controller gain caused by sensor noise and load vibrations. Due to

the cyclic nature of the gait, however, the error caused can be decomposed into a set of harmonics

of the commanded frequency. By using an adaptive feedforward cancellation (AFC) scheme as in

[Trumper et al., 2005] the tracking error can be suppressed at each harmonic.

AFC works by placing a set of parallel resonators in a loop around the load position loop as

shown in Fig. 4-15. Each resonator is designed to cancel a particular harmonic that is present in

the error signal and is of the following form:
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Figure 4-13: Non-Dimensional Motor Saturation Characteristic. This plot shows the region in which
the motor can operate linearly due to the constraints set by motor current saturation.
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Figure 4-14: Tracking Error under Load Position Control. The system was commanded to follow a
0.1rad, 2.8Hz sinusoid. This plot shows the resulting tracking error.
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Figure 4-15: Block Diagram of the AFC Loop.

G,c(s) = gn (4.22)s2 2w

Where w, is the natural frequency of the resonator, On is the phase offset term and gn is the

gain. In order to tune the resonators these three terms are adjusted. The result is that harmonics

in the error signal excite the corresponding resonator producing an oscillatory signal that augments

the load position command signal (WL,c) . The load position loop still exhibits its fundamental

shortcomings, however, the addition of the AFC terms adjust OL,c in such a manner that the desired

load position signal (WL,d) is followed.

4.5.1 Resonator Tuning

In order to tune the resonators the three design parameters, wn, #, and gn must be chosen. The

frequency term of each resonator is chosen based on the harmonic composition of the error signal.

The FFT of the error signal produced by the loaded actuator is given in Fig 4-16. It shows that the

disturbance is mainly manifested in the error signal at the first two harmonics of the commanded

frequency. AFC resonators are placed at these frequencies to compensate for the disturbance.

The phase terms and gain terms are then chosen to achieve sufficient phase and gain margins to

ensure controller stability as is done in standard controller design. The literature shows that there is

a discontinuity in phase at the natural frequency of the resonator centered on the phase parameter.

The design process presented involves choosing the gain parameter so that the unity gain crossover

for that resonator falls at approximately the natural frequency. The phase parameter is then chosen

so that the entirety of the phase discontinuity is in a location that achieves good phase margin (i.e.

Pm > 45 degrees). Due to the actuator's application to locomotion, the control design differs from

that described by [Trumper et al., 2005] in that the AFC scheme will be designed to operate under
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Figure 4-16: Frequency Content of the Tracking Error under Load Position Control. The system
was commanded to follow a O.lrad, 2.8Hz sinusoid and is loaded with both linear damping and
the nonlinear inertial ground contacts. The top plot shows that without the AFC loop closed the
majority of the tracking error is localized at the commanded frequency. The second plot shows how
after closing the AFC loop with a single resonator at the commanded frequency the remainder of
the tracking error is localized at the second harmonic of the commanded frequency. Finally the
bottom plot shows that with two resonators operating in the AFC loop most of the tracking error
is suppressed with the remaining error on the order of the sensor noise.
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Bode Diagram

= 50--

1o, 1()2

-200

-4(02

10' 102

Frequency (rad/sec)

Figure 4-17: Frequency Response of the AFC Resonators. The commanded frequency and therefore
the frequency of the first resonator is u1 = 16.9-ra. The second resonator is placed at the second

S

harmonic or twice the command frequency of w 2 = 33.8".

a range of commanded frequencies instead of being tuned for just a single commanded frequency.

This means that phase and gain terms must be chosen in terms of commanded frequency and be

sufficiently generic so that system stability is maintained during changes in command frequency.

The frequency response of the load position loop (G,,,t,c) in Fig. 4-15 is given in Fig. 4-9. It

shows that the system behaves as a first order system with a pole at 10rad. The frequency range

of interest spans from 1 - 20+, as these are the frequencies that a locomotion gait is useful

to operate in for the given actuator. The phase varies from 0 - 90 degrees in this frequency range.

Choosing a phase term of -7r/4 radians (45 degreees) ensures that the low side of the discontinuity

never drops below -135 degrees and that at least 45 degrees of phase margin is always achieved.

g, = -0.2 (4.23)
sin(<pa)

The gain of the load position loop stays close to OdB for the majority of the frequency range. The

frequency response of the two resonators is shown in Fig. 4-17. By choosing the gain term in Eq.

4.23, a gain margin of -14dB is achieved for both resonators and stability of the system is ensured.

The gain margin is set on the large side because it was found that a higher gain inducing faster

convergence would produce some overshoot causing the force control loop to reach the saturation

limit at high frequencies.

Fig. 4-19 shows the open loop transfer function of the AFC loop and Fig. 4-20 shows the transfer

function of the entire closed loop system with resonators placed at the load resonant frequency and
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Figure 4-18: Tracking Error with the AFC Loop Closed

its second harmonic. It can be seen from the plot that good tracking is achieved at those two

frequencies and thus disturbances will be rejected minimizing error. Fig. 4-18 shows the result when

the load position is commanded to the system resonant frequency. The shortcomings of the load

position loop are compensated for by the AFC loop and the error signal is reduced to 5.6% of the

original error.

4.5.2 Force Limit Violation

Although setting the gain margin to 14dB kept the controller from producing torques that violated

the force control limit, disturbance torque on the load could still cause large enough torques in the

spring to engage the force limit. W~hen this happened, as stated earlier, the AFC could not maintain

control of the system. In order to deal with this problem the AFC resonators are reset and held at

zero upon reaching the force limit thus allowing force control to take over and protect the system.

Once the spring torque returns safely under the force limit the AFC resonators are allowed to regain

control.

4.6 Controller Performance

This section demonstrates the performance of the control scheme through a few representative

experiments. Figures 4-l9and 4-20 give the open loop and closed loop bode responses of the AFC

loop. The closed loop response shows that at the command frequency (2.8Hz) and its second

harmonic (5.6Hz), the system achieves unity gain and zero phase lag between desired load position

81



Bode Diagram

50-

2 -50-

100 10' 102 103

200-

0

-400 -

100 101 102 103

Frequency (rad/sec)

Figure 4-19: Open Loop Frequency Response of the AFC Loop. The midpoints of the phase dis-
continuities are located at 37.1 degrees for the resonator at the fundamental harmonic resonator
and -11.2 degrees for the resonator at the second harmonic. The locations of these dicontinuities
ensure phase margins of at least Pm = 127.1 degrees for the first harmonic and Pm = 78.8 degrees
for the second harmonic.

and actual load position. This translates to the excellent tracking shown in Figure 4-18.

Figure 4-21 shows the step response of the system. Figure 4-22 shows the resonant response

of the system and the system's ability to react to changes in the loading. In this experiment, the

nonlinear loading is added during operation forcing the control system to adjust. Figures 4-23 and

4-24 show how the system deals with extreme disturbances that are potentially harmful to the drive

train. In these experiments, the load plate is pulled by hand causing the force controller to take

over and limit the force in the spring. As a result, the hardware is not damaged and the system can

resume control when the disturbance subsides.
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Figure 4-20: Closed Loop Frequency Response of the entire system
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Figure 4-21: Step Response of the system under load position control
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Figure 4-22: System response to a sinusoidal load position command with the AFC loop closed.
Initially the system is operating at steady state with the control loop active resulting in negligible
position error. At 2.7 seconds the nonlinear loading is added (a bucket with intermittent ground
contacts) and the AFC loop reacts and suppresses the disturbance.

Response to a Disturbance under Load Position Control
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Figure 4-23: Response of the system to a disturbance while not in resonant mode. Initially the load
is being held at the desired load position of zero radians. At 1.5 seconds the load plate is pulled
by hand to demonstrate the system's response to extreme disturbances. When the spring torque
reaches 1Nm the load position control command saturates and the force control loop attempts to
hold the spring torque at 1Nm. The load is then release at 4 seconds and once the load position
controller asks for a spring torque below the 1Nm limit the load position loop resumes control.
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Response to a Disturbance under AFC Load Position Control
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Figure 4-24: Response of the system to a disturbance while the AFC loop is active. Initially the
system is under AFC control and the resonators have built up to deal with the position error.
At 2 seconds the load plate is pulled by hand to demonstrate the system's response to extreme
disturbances. When the system reaches the spring torque limit of 1Nm the load position saturates
and the AFC resonators reset leaving the system under force control. The force control loop holds
the spring torque at 1Nm until the load position controller stops asking for more than 1Nm at which
time the resonators react and the full AFC loop retakes control.
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Chapter 5

Power Delivery and Efficiency

Series elastic actuators, like animal muscles and tendons, have the ability to conserve energy during

locomotory tasks by storing energy in their elastic element. For efficiency to be gained, however,

certain operating conditions must apply. This chapter investigates those conditions in order to

characterize the effectiveness of using the actuators to gain efficiency, as well as to determine the

mechanisms through which power is lost. In section 5.1 the system is run open loop in order to

determine the potential efficiency gains of the system. The control loop is then closed in section 5.2

and the efficiency of the controlled system is explored. The frictional loading presented in section

3.5.2 is used for the open loop data taken in section 5.1 and the control response data taken in

section 5.2. Finally, in section 5.3 the nonlinear inertial load described in section 3.5.2 is added to

the friction load in order to quantify the efficiency of the actuator under more realistic conditions.

5.1 Open Loop

The open loop power response of the system represents the potential performance achievable by the

system. It is used as a baseline to investigate the losses due to extra layers of complexity such as

nonlinearities and control.

5.1.1 Linear Model

The ideal system, obtained by substituting the linear environmental loading term, beL in for E( L)

in eq. 3.34, provides the highest benchmark of actuator performance. A comparison of the experi-

mental results to the ideal model is used later to shed light on the mechanisms that limit actuator

performance and reduce efficiency. The models updated with the linear environmental damping

term are given here.
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Figure 5-1: Power flow diagram of the actuator and load.

kt(JLs 2 + (bL + bE)S + ks)
GP, (S) = A8mJLS 3 + (bmJL + (bL + bE) Jm)S2 + (bm(bL + bE) + ks eq)S + ksbeq

kt ks IN
G,, 1e(s) =mL 3 ±(bJ bL+ kk/

JJLS3 + (bmL + L + bE)Jm)S2 + (bm(bL + bE) + ksJeq)S + ksbeq

kk, (JLS + (bL + bE))
Gp JJLS 3 + (bmJL ± (bL + bE)Jm)S2 + (bm(bL + bE) + ksJeq)s + ksbeq

beq = bm + (bL + bE)/N 2
Jeq Jm + JLIN2

The power flow of the system is broken up into three stages, the input power drawn from a

source (PInElec), the power transferred from the electromagnetic domain to the mechanical domain

(POUt,Elec) and the power output by the actuator (POut,Aech). Figure 5-1 illustrates the three stages

of power flow graphically as well as shows the loss terms.

The power at each stage is calculated by multiplying the two conjugate variables effort and flow.

Voltage and current are multiplied in the electromagnetic domain while torque and velocity are

multiplied in the mechanical domain.

PInElec s d = ReqId2 + Vb,eqld = (Req + kt(Gp,m,)*)Id2

POutElec Vb,eqId =mTm = kt(Gp,m, )*Id2

POut,Alech =LTs = Gp,f(Gp,,u)*Id2

3 3
Req = -R, Vb,eq = -kt5,

(5.4)

(5.5)

(5.6)
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Ideal Electrical Efficiency Response
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Figure 5-2: Ideal Electrical Efficiency Response. The plot shows that there is a drop in electrical
efficiency at the load resonance. This drop in efficiency is due to the decrease in motor velocity.
There is a then a peak in electrical efficiency at the system resonance before efficiency rolls off at
high frequencies.

Where Req and V,eq are the equivalent coil resistance and back Emf when the motor is viewed

as a lumped linear DC model. The efficiency is then found by taking the ratio of output power to

input power. Electrical efficiency (7Elec) is the ratio of the power transferred between the electrical

and mechanical domains to the total input power. It illustrates the effect resistive losses have on

the system. Mechanical efficiency (llMech) is the ratio of the power output to the load to the power

transferred to the mechanical domain. It shows the effect friction losses have on the system. The

total system efficiency (?7system) is then the ratio of the power output to the load to the total input

power draws by the system.

tElec Elec (5.7)
PIn,Elec

POut,Mech
TlMech =(5.8)

POutElec

POut,Mech
?lsystem =(5.9)

PIn,Elec

The ideal electrical, mechanical and overall system efficiencies given varying load damping are

plotted in Figures 5-2, 5-3 and 5-4 respectively. In each plot the efficiency values of the compliant

series elastic system are compared with those of a rigid system by sending the spring stiffness to

infinity. Figure 5-4 clearly shows that under certain loading conditions there is a peak in the actuator

efficiency at 3.25Hz for light damping to 3Hz for heavier damping that is not present with the rigid
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Ideal Mechanical Efficiency Response
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Figure 5-3: Ideal Mechanical Efficiency Response. The plot shows the large peak in mechanical
efficiency present at the load resonance due to the decrease in motor movement necessary to produce
output movement.

Ideal System Efficiency Response
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Figure 5-4: Ideal Efficiency Response of the entire Series Elastic Actuator. An efficiency peak occurs
between the load resonance frequency and the system resonance frequency indicating that efficiency
can be scavenged by series elastic actuators if operated at the optimal frequency
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actuator. This peak represents an efficiency increase as a result of the resonant mode of the actuator.

Series elastic actuators exhibit significant efficiency gains over rigid actuators for a range of load

damping values. The ideal model shows that for the current hardware, that range exists from no

load to approximately 20 times the bearing friction term. The efficiency gains over a rigid system

are maximized at low damping values (approximately 0 - 5 times the bearing friction term) while

system efficiency in general increases as load damping increases. This indicates that the system

efficiency would be truly maximized under large loading conditions such that the resonant modes of

the system are heavily damped. Loading conditions, however, are not predetermined and a robot

therefore may have to operate in ranges of lower damping. Human walking and running gates for

example are lightly damped by the environment because the direction of movement is parallel with

the environmental interface. For these types of lightly damped applications series elastic actuators

have the potential to be exploited for large efficiency gains if run at the appropriate frequency.

The plots of the system mechanical and electrical efficiency provide an explanation for the re-

sulting system efficiency gain. In Figure 5-3, a peak in mechanical efficiency similar to that of the

system efficiency is present due to the resonance between the spring and the load inertia (load reso-

nance). This resonance only requires small oscillation at the motor inertia to create large movements

at the output inertia and as a result requires very little mechanical power to drive the system. It

is notable, however, that this peak in mechanical efficiency is lower in frequency than the system

efficiency peak and cannot account for the gain in system efficiency alone. In the rigid system, the

electrical efficiency shown in Figure 5-2 drops at frequencies above 1Hz as the load impedance as

seen through the coils becomes reactive. This drop is present in the series elastic system as well

and counteracts some of the gains achieved in mechanical efficiency. In addition, the decrease in

motor movement in reaction to the load resonance causes its own drop in efficiency due to the fact

that motor electronics are much less efficient at low motor velocities. This drop is focused at the

height of the mechanical efficiency peak and therefore works to counteract the gains achieved in

the mechanical domain. The electrical efficiency, however, has an efficiency peak much like the one

in the mechanical efficiency. It appears at frequencies above the system efficiency peak and is the

result of assistive coupling between the load inertia and the motor inertia through the spring. The

combination of the gains in mechanical efficiency and electrical efficiency create the peak in the

overall system efficiency that can be exploited during oscillatory tasks.

5.1.2 Hardware Response

Although the ideal system confirms the hypothesis that series elastic actuators have the potential

for efficiency gains at resonance, the actual system is not ideal and therefore the potential of the

real system is given by the hardware's open loop response. Data is taken on the hardware and is

compared to the ideal system. Through this comparison, non-idealities that hinder performance are
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identified and an updated non-ideal model is used to help explain them.

Data Acquisition

In order to measure the power flow of the system, PIn,Eiec, POut,Elec and POutAech were mea-

sured instantaneously in real time by calculating the product of the two conjugate variables (Volt-

age/Current, Velocity/Torque). PIn,Elec was taken as the sum of the power flowing into the motor

on each of the three electrical phases. The power on each phase was found by multiplying the volt-

age on each phase measured at the output of the OPA549 and the current on each phase measured

across the sense resistors using the INA128. No filtering was performed on these signals. PIn,Elec

was taken at the input to the motor, therefore motor driver and CPU inefficiencies are not taken into

account in this analysis. The losses from the computer and driver electronics should be small, thus

the results found are taken as representative for real world application. Sample data of PIn,Elec is

given in Figure 5-5. POut,Elec was taken as the product of the motor torque and the motor angular

velocity. The motor torque is calculated from the current measured on each phase using Eq. 5.10

restated below from Section 3.2.2.

2wr 2wr
Tm = kt,p(sin(Oe)iA + sin(phie - -)iB + sin(phie + - )ic) (5.10)

3 3

The motor velocity was found by differentiating the motor position signal obtained by the am256

magnetic encoder. Although the signal from the encoder is inherently noisy and thus the velocity is

noisier still due to the differentiation, the unfiltered velocity signal was used in the power calculation

to avoid errors due to filtering delays. The accuracy of the calculation of POUt,Elec was validated by

taking data over ten mechanical cycles and comparing the average of the real time power calculation

to a post processed equivalent in which the velocity signal was filtered with a zero phase filter.

Sample data of the POut,E1ec calculation is given in Figure 5-6. POut,Alech is calculated by taking

the product of the spring torque and the load velocity. Both signals depend on the am256 magnetic

encoder and are noisy. Both signals are filtered by a 6th order Bessel filter with a cutoff frequency

at 200rad/s ensuring equal phase distortion. Sample data of the Pout,Alech calculation is given in

Figure 5-7. The three power signals were then filtered in real time with a cutoff frequency of 0.1rad/s

in order to obtain average power. The power frequency response plots given in this chapter use the

filtered power signals described here measured and averaged over ten mechanical cycles of the load.

Open Loop Results

Load friction is applied by two metal rods that are pressed up against opposite sides of the load plate

as shown in Figure 5-8. This setup creates a frictional force (Tf,E) that is opposite to the direction

of the load plate movement and is proportional to the normal force applied by the rods known as
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Figure 5-5: Representative Waveforms of the Electrical Input Power Calculation. Phase current and
voltage are multiplied to get the instantaneous phase power. The instantaneous phase powers are
then summed to get the instantaneous input power. The instantaneous input power is then filtered
to obtain the average input power.

Electrical Output Power Measurement
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Figure 5-6: Representative Waveforms of the Electrical Output Power Calculation. Motor torque is
multiplied by motor angular velocity to obtain instantaneous electrical output power. The instan-
taneous power is then filtered to obtain the average electrical output power.
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Mechanical Output Power Measurement

Spring Torque (Nm)

- - - -- Load Velocity (rad/s) ..
-I 

-3 

r
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Figure 5-7: Representative Waveforms of the Mechanical Output Power.
by the load velocity to get the instantaneous mechanical output power.
power is then filtered to obtain the average mechanical output power.

Spring torque is multiplied
The instantaneous output

Figure 5-8: Picture of the damping mechanism used on the load. The two bars are pressed up
against the load plate to create viscous friction. The bars are covered with felt at the end to
minimize stiction. The felt is attached to the bar with layers of compliant mounting tape to increase
damping coefficient resolution.
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Oscillation Test TJ.E = 46,mnNm

Data
0.8 - -- Curve Fit
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Figure 5-9: Representative Waveforms of the oscillation test used to determine load friction values.
The data was taken by holding the load plate at a constant torque while the motor was locked, then
releasing and recording the response. The data was then curve fit with a simulated response using
a least squares method.

coulomb friction. The rods are fitted with felt tips that are attached with compliant mounting tape

to increase the resolution of the normal force.

Power frequency response data for this thesis is taken at three values of load friction, low loading

(Tf,E = 45mNn), medium loading (Tf,E = 85mNm) and heavily loaded (Tf,E = 125mNm). The

load friction torques were determined by running oscillation tests and fitting a simulated response

to the resulting spring torque signal. This is shown for the Tf,E = 45miNm load in Figure 5-9.

The load friction applied to the hardware, although similar to the linear damping in that it is in

phase with the load velocity, is nonlinear and provides a different system response than that of the

ideal model. Simulations of the system efficiency were run using the model given in eq. 3.34 and are

compared with the linear results in Figure 5-10. The plot shows that there is a discrepancy in the

efficiency response between the linear system and the system with the coulomb friction loading. At

frequencies away from resonance the efficiency of the system with coulomb friction is less than that

of the linear system. At resonance, however, the systems behave very similarly and a large efficiency

gain at resonance is still expected. Also, the similarity between the models at frequencies close to

resonance show that the mechanisms responsible for the gain in efficiency identified using the linear

model are still present despite the nonlinear loading.

The open loop power response for a load friction of Tf,E = 46mNm is given in Figure 5-11. The

open loop power response for a load damping of Tf,E = 85mNm is given in Figure 5-12. And the

open loop power response for a load damping of Tf,E = 45mNm is given in Figure 5-13.

The figures show that the efficiency peak predicted in the ideal model is present but it is much
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Ideal System Efficiency Response

Coulomb, rf,E = 46mNm

Linear, bE = 80 Nad

- - - Coulomb, rf,E = 85mNm

Linear, bE = 180 rad

- - - Coulomb, rf,E = 125mNm

Linear, bE = 28 _ _a

101

Frequency (Hz)

Figure 5-10

lower than expected. For the -rf,E = 45mNm load the system efficiency peaks at 7lSystem,2.8Hz = 12%

at a frequency of 2.8Hz. This is 2.2 times the solid shaft efficiency of TSystem,1Hz = 5.4% at a

frequency of 1Hz. Unfortunately it is also four times smaller than the ideal system efficiency peak

at 77System,Ideal = 46%. The same trend is followed under the other two loading conditions. The

peak efficiencies and their relation to the efficiencies away from resonance are given in Table 5.1

for all of the loading conditions. The plots also show that the hardware follows the same trend

as the ideal model, in that the efficiency at all frequencies increases as load friction increases. As

predicted the system gets the highest efficiency, and subsequently the lowest efficiency gain due to

the resonance peak, when heavily loaded. In turn, it generates the largest gains over a rigid system

at low friction values. It is clearly shown, however, that for a wide range of loading conditions, the

highest attainable efficiency is achieved by operating a series elastic actuator at resonance.

Tf,E = 46mNm Tf,E = 85mNm Tf,E = 125mNm
1Hz Efficiency 5.4% 12.8% 16.5%

2.8Hz Efficiency 12% 18% 21.7%
Efficiency Gain 2.2 1.4 1.3

Table 5.1: Open Loop Efficiency Values.

The cause for the drop in efficiency from the ideal system to the real system is mainly due to

the presence of motor stiction which is not modeled in the ideal system. Stiction losses affect the

system efficiency two ways. Motor stiction (meaning stiction of the motor and gear train) creates

a mechanical power loss in phase with the motor velocity reducing mechanical efficiency. In order
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(b) Efficiency Response

Figure 5-11: Open Loop Efficiency Response under low loading. These plots represent the load
friction case where rf,E = 46mNm. The system exhibits a peak in efficiency at 2.8Hz and has the
largest gain in efficiency of the three loading values used. A significant drop in efficiency from the
ideal case is demonstrated due to motor/gear stiction.
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Figure 5-12: Open Loop Efficiency Response under medium loading. These plots represent the load
friction case where Tf,E = 85mNm. Like the low loading case the system exhibits a peak in efficiency
at 2.8Hz, however, it does not have as high efficiency gains as the low loading case. It also exhibits
higher efficiency away from resonance than the low loading case. Again there is a large drop in
efficiency from the ideal case due to stiction.
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Figure 5-13: Open Loop Efficiency Response under high loading. These plots represent the load
friction case where rf,E = 125mNm. Like the other two cases the system exhibits a peak in efficiency
at 2.8Hz and a large drop in efficiency from the ideal case due to stiction. This case yields the highest
overall efficiency both at and away from resonance.
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to compensate for the motor stiction extra current is drawn, creating higher resistive losses in the

motor thus reducing electrical efficiency.

Motor Stiction Model

A model of motor stiction using the linear system model is presented here to help understand the

resulting efficiency drops. Due to the similarity between the linear model and the model with

coulomb friction, the linear model can be used to shed light on trends in power loss. Analytical

relations for power loss in terms of the amplitude and frequency of the commanded current are

derived below.

The effect of motor stiction is to produce a torque that is in the opposite direction as the motor

movement. Although the stiction mechanism is a complex nonlinear system as described in Section

3.4, for simplicity it can be modeled as a constant torque in the power calculation without incurring

a large error.

TMS ( T) =t kims,o sign ( m) (5.11)

Where Tms is the stiction torque, im,,o is the stiction compensation current. The velocity in an

oscillatory system is:

Om GP,mv (s) id sin(Wt + V4ms) (5.12)

The power lost due to motor stiction is then found by taking the product of the stiction torque

and the motor velocity.

PMS = Tmsom = ktIms,OidjGp,mv(s) Isin(wt + qms)| (5.13)

Integrating Equation 5.13 over one cycle then yields the average power loss due to motor stiction.

2
Pmsavg - -ktim,oid Gp,mv(s)j (5.14)

The extra current that is needed to overcome stiction is calculated by the controller's feedforward

stiction compensation term and is proportional to the stiction torque.

Tins- (5.15)
kt

This current is in phase with the motor velocity and therefore is not always in phase with the

open loop driving current. The total current is then the sum of the stiction current and the driving

current.
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id sin(wt) - imrs,o for 0 < t < 0,

Sid sin(WOt) + ims,O for Vm s < t T (5.16)
-- 2

Where Vms is the phase offset between the driving current and the motor velocity. The resistive

losses are then calculated using the total current in the usual fashion.

PR =Rqi2  { Req (id2 sin 2(Wt) - 2 zms0,od sin(wt) + (ims,O)2 for 0 < t < ms (5.17)
Req (id2 sin 2 (wt) + 2 imsOid sin(wt) + (imsO)2 for Oms < t < T

The average resistive power lost is then found by integrating 5.17 over half a cycle and simplifying.

PR,avg = Req (id2 + -- idims cos(4'ms) + (imsO)2 (5.18)
2 7r

Eq. 5.14 describes the average mechanical power loss due to motor stiction. The stiction force is

a constant value that is in phase with the motor velocity, therefore the motor velocity response is the

only variable term in the equation. The amount of mechanical losses produced are proportional to

the magnitude of the motor velocity at each command frequency. This says that at load resonance,

where motor movements are small, the mechanical power lost due to stiction is small as well. In

turn, at frequencies away from resonance, motor stiction has a much larger effect on the system

performance. This is precisely the mechanism that allows series elastic actuators create efficiency

gains.

Eq. 5.18 describes the average electrical power loss due to motor current. This term represents

the majority of discrepancy in efficiency between the ideal models and the experimental data. The

first and last terms of the eq. 5.18 represent the direct losses from the commanded current and

the current drawn to compensate for stiction respectively. The commanded current is scaled by }
because it is sinusoidal whereas the stiction current maintains a constant depending on the direction

of the motor movement. The middle terni accounts for the difference in phase between the motor

movement and the commanded current. As they become more out of phase the resistive losses drop.

The decrease in power loss from the phase term is small compared to the total resistive losses and

yields negligible increases in efficiency. Also, at frequencies in which the motor velocity is out of

phase from the command current, the velocity magnitude is attenuated causing a drop in mechanical

power. This creates a drop in efficiency that far outweighs the increase from the phase term.

With the stiction terms, the input power becomes the sum of the mechanical stiction losses, the

updated resistive losses and the ideal power transferred from the electromagnetic domain to the

mechanical domain.
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PIn,Elec = PR,avg + Pms,avg + kt(Gp,mv)*1d2  (5.19)

Subtracting out the resistive losses gives the electrical output power.

POutElec = Pms,avg + kt(Gp,mv)*jd 2  (5.20)

Similar motor stiction terms are added to the model containing the nonlinear load friction and

the results are compared to the hardware results in Figures 5-11, 5-12 and 5-13. The stiction terms

account for a majority of the discrepancy between the ideal model and the hardware results. This

illustrates the importance of minimizing bearing stiction in robotic systems whether they are driven

with rigid actuators or compliant actuators. Nevertheless, efficiency can still be gained through the

use of series elastic actuators despite the presence of stiction losses.

It can be seen in Figures 5-11, 5-12 and 5-13 that the non-ideal model updated with the stiction

losses corresponds nicely with the hardware results at lower frequencies. At higher frequencies at

and above the system resonance, however, there is still discrepancy between the model and the data.

In fact the system efficiency peak is lower in the data than it is in the model and occurs at the

peak in mechanical efficiency. This lower efficiency peak is believed to be due to the fact that the

harmonic gearbox is for the most part, not backdriveable. As explained in Section 5.1.1 the system's

efficiency peak ideally lands between the load resonance and the system resonance, but because the

gearbox isn't backdriveable there is less coupling between the load inertia and the motor inertia and

the effect of the system resonance is suppressed. The result is that the load resonance dominates

causing the system efficiency peak to be aligned with it.

5.2 Controlled Response

Although the open loop results give merit to the claim that efficiency can be gained by exploiting

the resonant modes of series elastic actuators, the results do not confirm the actuator's feasibility in

real world applications. In order to show that the actuators can produce efficient locomotion when

realistically applied, power frequency response tests were run with the control scheme developed in

Chapter 4 active. These test were run under the same loading conditions as the open loop test and

are plotted in Figure 5-14 for Tf,E = 46mNm, Figure 5-15 for Tf,E = 85mNm and Figure 5-16 for

Tf,E = 125mNm. The plots show that even though the efficiency suffers a great deal due to the

active control, gains are still achieved at resonance proving that the elastic nature of the actuators

can be exploited for efficiency during practical application. As in the open loop case, the largest

gains occurred under the lowest loading with much lower gains but higher overall efficiency at the

higher loadings. For the Tf,E = 46mNm load the system efficiency peaks at '7System,2.8Hz = 4.7%
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at a frequency of 2.8Hz. This is 1.9 times the efficiency below resonance of q/System,lHz = 2.5% at

1Hz. The gains for all of the loading conditions are given in Table 5.2.

Tf,E = 46mNm Tf,E = 85mNm Tf,E = 125mNm
1Hz Efficiency 2.5% 7.1% 8.7%

2.8Hz Efficiency 4.7% 9.5% 11%
Efficiency Gain 1.88 1.34 1.26

Table 5.2: Controlled Efficiency Values.

Unfortunately the system's efficiency does take a major blow due to the addition of control. In

Figures 5-14, 5-15 and 5-16 the controlled results are compared with the open loop results. Under

all of the loading conditions, both the electrical and system efficiencies were reduced by almost a

half. The reduction in efficiency stems from the control algorithm's demand for current to make

fine adjustments to the motor position that allow it to maintain stable force control. Extra motor

current adds to the resistive electrical losses without increasing the power output of the system, thus

efficiency is lost.

It is not unreasonable for the control algorithm to use some power to achieve a controlled system.

The amount of power being used, however, is excessive and can be reduced through a hardware

redesign. The major cause of power loss is due to load position noise that propagates through the

control algorithm. The load position is used by the outer load position control loop to define the

desired motor position. The control algorithm gains up load position by a factor of 230 due to

the spring compensation term and gains up the even noisier load velocity term by 6.25 due to the

load position loop's differential term. Any noise on the load position signal causes unnecessary and

substantial motor movement through these two terms. The load signal noise comes from two main

sources, the inherent noise of the magnetic load position encoder and encoder misalignment due to

inadequate mounting support and vibration of the load. A hardware redesign including an improved

load mounting system would decrease encoder misalignment while a higher resolution encoder would

decrease sensor noise. Both are reasonable additions for the scale of the hardware. The input power

required to hold the load plate stationary was measured at an average of 150mWatts. This power

represents the excess system power due to noise. Table 5.3 gives the estimated system efficiencies

that would result if there was no power wasted due to noise. These estimates show that the system

has the potential for significant increases in efficiency. The peak efficiencies match or exceed the

rigid system open loop efficiencies implying that a series elastic system run at resonance has the

potential to be more efficient than its rigid counterpart.
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Figure 5-14: Controlled Efficiency Response under low loading. These plots represent the load
friction case where rf,E = 46mNm. The system exhibits a peak in efficiency at 2.8Hz and has the
largest gain in efficiency of the three loading values used.
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Figure 5-15: Controlled Efficiency Response under medium loading. These plots represent the load
friction case where T-f,E = 85mNm. Like the low loading case the system exhibits a peak in efficiency
at 2.8Hz, however, it does not have as high efficiency gains at resonance as the low loading case. It
also exhibits higher efficiency away from resonance than the low loading case.
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Figure 5-16: Controlled Efficiency Response under high loading. These plots represent the load
friction case where 'rf,E = 125mNm. Like the other two cases the system exhibits a peak in
efficiency at 2.8Hz, however, the peak is small when compared to the other two cases. The high
damping case exhibits the highest efficiency both at and away from resonance.
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TfE = 46mNm Tf,E = 85mNm Tf,E = 125mNm
1Hz Efficiency 3% 8.7% 10.8%

2.8Hz Efficiency 8.2% 13.7% 15.9%
Efficiency Gain 2.73 1.57 1.47

Table 5.3: Estimated controlled efficiency values after the power lost due to noise has been taken
out.

5.3 Non-Linear Loading

As a final test of the system's ability to conserve power due to resonance, the nonlinear inertial load

was added to the friction load as described in Section 3.5.2. Adding a nonlinear load causes the

resonant frequency of the system to change with load variations. In theory, however, the system

should still have an optimal frequency which it can be operated at to achieve the maximum efficiency.

The test results using the nonlinear inertial load are given in Figures 5-17, 5-18 and 5-19 for 'rf,E

46mNNi, TfE = 85mNrNm and TfE = 125mNn respectively. The responses show that there is

still an efficiency peak indicating that the actuators can be exploited for efficiency in real world

applications.

The efficiency peak of the actuators under nonlinear inertial loading is at a higher frequency

than when under just the friction load. This is reasonable as it was expected that the addition

of a changing inertia to the load would alter the coupling between the load and the spring. It

does, however, make control slightly more complicated because it becomes much harder to rely on

models to predict the efficient frequency. In order to have robots that can operate at their efficient

frequency, either experiments to determine that frequency for each gait will have to be performed

or an improved control strategy that naturally finds the optimal frequency will be required.
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Figure 5-18: Controlled Efficiency Response under Nonlinear Loading with rf,E = 85mNm. The
plot in this case is not as smooth as the linear damping case, an effect of the sudden ground contacts.
It does still show that an efficiency peak is achieved at a particular frequency

108



1.6

1 .4 -- -.-- - -.-- -.- -. .- - .- . - -. -. - -. - - - --.-

1.2 -....

---- PEec,In (Controlled)
1 -- ......................- - . -.-... - -.-. . -. P ec,in (bucket)

- PElecIn (Controlled)
0 .8 - - -.. . . . - . . . . . . . - -. .- . .- . .-- - - . .- . .- - . .- - .. - -. . . . -

- PElee,jn (bucket)

Pm h,O (Controlled)

' PMechOt (bucket)
0 .4 - -. .. .. . .. .. . - - -. --.-.-

00

1 1.5 2 2.5 3 3.5 4
Frequency (Hz)

(a) Controlled Power Response

1

0 .9 - -.. . . . . - - . . . . .. . . . . . -. . . . . -. . . . . -.-- - - - -.-- - - - -. ..-- - - - - - - -

0 .8 -- - . . -. -. -.-.-.-.-.-.-. - -.-.-.-.-. - - --. . -. - .- . ... . -. . . -. - -. - - - - -. - .- . -

0.7 -- --- - - -E,, (Controlled)

0.6 . . - -. -. e -C ELe (bucket)

- m ec (Controlled)
-2 0 .5 -- . . . . . . .. . . ... . . . .-. ....-. ..-- -. ..-- - - - - - - -

- -- *-- - cA (bucket)
a 0.4 - . . . . .. - - -.--.--.--.--.--..-..-..- - - - -- - - -- -- - - - - -- ----- s (C ontrolled )

... -.......-.-.-.---* ' 7System (bucket)

0 .2 - - -. -. --. ----. ---.-.-.-.- - -.- --.- -

0 .1 ---- ----- ---. . - - - - - - -. . . .. . ...- - !

0
1 1.5 2 2.5 3 3.5 4

Frequency (Hz)

(b) Controlled Efficiency Response

Figure 5-17: Controlled Efficiency Response under Nonlinear Loading with Tf,E = 46mNm. The
efficiency peak has shifted higher in frequency due to the nonlinear inertial load. The amount of
efficiency obtained, however, is comparable to the controlled system without the nonlinear inertial
load; a promising result for application to real world systems.
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Figure 5-19: Controlled Efficiency Response under Nonlinear Loading with rf,E = 125mNm. Just
as with low and medium friction loadings, the efficiency peak has shifted higher in frequency. Again
the amount of efficiency gained is comparable to the controlled system without the nonlinear inertial
load. The system also continues to follow the same tends as the ideal model in that the heavier
loading condition yields the greatest overall system efficiency while achieving the smallest gains.
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Chapter 6

Conclusions

Series elastic actuators have become well known for their abilities to provide shock tolerance and

accurate force control, however, they also have the ability to gain efficiency through the exploitation

of their natural modes. Just as animals use the elasticity in their muscles and tendons to operate

efficiently, robots can exploit series elastic actuators for efficiency. This thesis explores the potential

for efficiency gain provided by series elastic actuators and has shown through model and experiment

the conditions under which efficiency can be gained as well as the mechanisms through which power

is lost.

Efficiency

The efficiency of the system was documented and it was shown that series elastic actuators have the

potential to achieve large efficiency gains up to a factor of 2 under the appropriate conditions. The

amount of efficiency that could be gained depended directly on the load damping of the actuator.

Under low load damping, the system exhibited large efficiency peaks at an optimal frequency. Even

when more heavily damped, the system still showed an improvement in efficiency at an optimal

frequency, however, the gains over lower frequencies were much smaller than in the lightly damped

case. Of note was that the efficiency of the system at all frequencies was higher when the system was

more heavily damped indicating that it is beneficial to operate the system under larger loadings in

which the system resonance is suppressed. There are, however, some tasks that are lightly damped,

such as human walking gaits where the direction of movement is parallel with the environmental

interface. In these tasks it is certainly beneficial to operate series elastic actuators at their resonant

frequency.

Models of the system under different operating conditions were used to understand the mecha-

nisms in which power was lost. Initially a linear model of the open loop system showed that system

efficiencies could peak as high as 46% when lightly damped and up to 54% under heavier damping.
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When this model was compared to the open loop results of the hardware, it was found that stiction

caused drastic decreases in efficiency limiting lightly damped efficiencies to 12% and more heavily

damped efficiencies to 21.7%. Models of the stiction losses were added to the linear model and

verified that the presence of stiction cause both a mechanical loss due to the contact forces and an

electrical loss due to the extra current necessary to overcome stiction. The new model including

stiction was then compared with the efficiency results of the controlled system and it was found

that the addition of control created another large decrease in system efficiency. In the controlled

system, lightly damped efficiencies were limited to 4.7% while the more heavily damped system was

limited to 11% efficiency. Finally a nonlinear load was used to show that an efficiency peak was

still obtained under realistic loading conditions verifying that controlling series elastic actuators to

resonance can be beneficial in real world applications.

Although some power loss due to control is essential, the amount sustained in the present system

is excessive. The results from the current system indicate that if series elastic actuators are part of

the system, it is beneficial to run them at their resonant frequency in order to maximize efficiency.

Unfortunately, the excessive power loss experienced in the current system due to control makes a

rigid system the better choice if the shock protection and force control properties of series elastic

actuators are not needed. Through redesign and improvements in control, however, it is feasible, as

is shown by the open loop response, that a series elastic system run at its resonant frequency can

be more efficient than its rigid counterpart.

6.1 Suggestions for Improvement

This thesis has shown that under relatively lightly damped loading conditions efficiency is gained by

running series elastic actuators at their natural frequency. It also shed light on the major sources

of power loss that limited the performance of the actuators. It was found that the power loss came

mostly from drawbacks in hardware design and it was suggested that improvements in the hardware

could yield vast improvements in system efficiency. The two major areas of improvement suitable

for the current hardware are in sensing and mounting.

6.1.1 Sensors

The sensors used in this thesis were AM256 Rotary Magnetic Encoders made by Rotary and Linear

Systems. The sensors are prone to noise as is described in Section 3.1.4. The noise exhibited by

the encoders comes in three forms. Inherent electronic noise, axial misalignment noise (integral

noise) and noise produced by temporary misalignments due to radial vibrations of the spring shaft

(mounting noise).

The sensor noise causes large decreases in system efficiency when high controller gains cause
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the motor to chatter in response to the noise. Improvements in sensing could potentially decrease

the motor chatter, allowing the control system to operate much more efficiently. Replacing the

magnetic encoder with a high line count quadrature encoder would increase the resolution of the

position sensing and decrease the amount of noise that propagates through the control system. Also,

integral noise is a characteristic of the magnetic encoder and is not present in a quadrature encoder.

6.1.2 Mounting and Support

Shortcomings in the mounting of the hardware affected the efficiency of the system in two ways.

First, as explained in the last section, mounting noise propagated through the control system and

caused motor chatter which resulted in a great deal of power loss. Second, there was a large amount of

stiction in the system which in turn caused a large power loss during both open loop and closed loop

operation. The load plate is currently supported by just the spring shaft, with the only connection

point being the 4mm hex on the end of the shaft. Due to the size and weight of the load plate this

puts a large amount of torque on the spring shaft. The spring shaft is supported by two bearings,

one just before the connection to the load plate (the load bearing) and one at the other end of the

spring shaft placed inside the harmonic drive's input pulley (the input bearing). The input pulley

is in turn supported by a bearing between it and the harmonic drive's housing (the pulley bearing).

Therefore, the end of the spring shaft away from the load plate connection is supported by a bearing

inside another bearing. Having the two bearings for one support creates a "loose" support condition

under which radial movement is allowed. Although there is a coupling between the spring shaft and

the auxiliary encoder shaft, radial movement on the spring shaft still manages to propagate through

the coupling and cause radial movements of the encoder shaft which results in mounting noise.

Mounting noise could be greatly reduced through a couple improvements to the benchtop test-

stand. Replacing the shaft coupling with one that is more tolerant to radial movements would

decouple radial spring shaft deflections from the load encoder and reduce the mounting noise. This

would be essential if the load encoder were changed to a quadrature encoder because misalignments

can cause quadrature encoders to miss counts. Although replacing the shaft coupling will improve

the sensing it will not solve the problem of load plate movement due to poor mounting, which in

itself a source of power loss. Moving the input bearing outside of the input pulley so that it is placed

between the spring shaft and the harmonic drive housing will improve the "loose" support condition

created by the current combination of the input bearing and the pulley bearing. This will reduce

spring shaft radial movement and in turn reduce unwanted load plate movement.

Stiction is the largest source of power loss in the system. Large amounts of stiction are naturally

inherent to harmonic drives therefore without a complete redesign, where the harmonic drive is

replaced, it may be difficult to reduce the stiction a great deal. Improving the mounting of the

system will take stresses off of the harmonic drive which will reduce the level of stiction found in
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the current setup. Replacing the bearings in the system with high load ceramic bearings will also

reduce the amount of stiction.

6.2 Future Work

There are many areas of study in which the results of this thesis can serve as a starting point. The

areas most pertinent to the efficient application of series elastic actuators are suggested here.

6.2.1 Comparison to a Rigid Actuator

In this thesis, the efficiency of a series elastic actuator when run at different frequencies was investi-

gated and it was found that there is an optimal frequency at which the system should be operated

to achieve the most efficient performance. It is also suggested that series elastic actuators, with

improvements from this work, could have the potential to be more efficient than rigid actuators.

Unfortunately, in this thesis the only comparisons that could be made to rigid actuators were in

models because the hardware was much too fragile to accommodate a solid shaft. To investigate the

claim that series elastic actuators have the potential to outperform rigid actuators an experimental

comparison is required. This would lead to better information on the breakdown of power loss in

the system and lead to a better understanding of where power can best be saved.

6.2.2 Control

Linear control algorithms were used for the control in this thesis. These control schemes adjust

the command signal based on disturbances portrayed in the error signal. It was found that in the

current scheme this equated to fairly large adjustments to the desired motor position signal within a

cycle of output position. This has been referred to as motor chatter throughout this thesis and has

been identified as a large source of power loss in the system. Investigation of alternative forms of

control that adjust more fluidly to disturbances and are geared toward steady state operation, such

as the methods presented in [Williamson, 1999] and [Buchli et al., 2005], could lead to much more

efficient actuation. The ultimate goal would be a control scheme that can achieve efficiencies close

to the open loop system.

6.2.3 Exploration of the Multi-Link Case

The work done in this thesis was limited to a single link benchtop teststand. As a final test of the

system a nonlinear load was used and the system still demonstrated an optimal frequency where

efficiency was maximize. As a result, it is reasonable to believe that extension of the work in this

thesis to the multi-link case will also yield efficient operation. As mentioned in Section 3.5, the
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multi-link case is a much more complicated nonlinear system than the linear case. Further study

on the multi-link case has the potential to yield advances in system modeling, control and efficient

actuation. If the ideas in this thesis are to be applied in real world applications, research on multi-link

manipulators will be essential.

6.2.4 Application to a Robotic Vehicle

Of course, the ultimate goal of the research in this thesis and all of the future work mentioned

is the application of efficient actuation on a real robotic vehicle. There are many vehicles that

currently run off of series elastic actuators for their shock protection and force control properties,

however, there has been very little done to exploit the efficiency gains created by their resonant

modes. Draper Laboratory's HISS vehicle ran a locomotory sidewinding gait with springs in the

system and it showed some results that could be linked to efficient actuation. Unfortunately, these

results were subject to sensing errors and cannot be considered completely reliable. Although a

snake robot is a natural choice as an extension of this work due to its undulatory movements, any

biomimetic robot will have gaits that will allow series elastic actuators to be exploited for efficiency.

Other good candidates include swimming robots such as fish, flying robots that use a flapping gait

or biped/quadruped robots during their walking or running gaits.
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