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ABSTRACT 

The US operating fleet of light water reactors (LWRs) is 
currently undergoing life extensions from the original 40-
year license to 60 years of operation.  In the US, 74 reactors 
have been approved for the first round license extension, 
and 19 additional applications are currently under review.  
Safe and economic operation of these plants beyond 60 
years is now being considered in anticipation of a second 
round of license extensions to 80 years of operation.  

Greater situational awareness of key systems, structures, and 
components (SSCs) can provide the technical basis for 
extending the life of SSCs beyond the original design life 
and supports improvements in both safety and economics by 
supporting optimized maintenance planning and power 
uprates.  These issues are not specific to the aging LWRs; 
future reactors (including Generation III+ LWRs, advanced 
reactors, small modular reactors, and fast reactors) can 
benefit from the same situational awareness.  In fact, many 
small modular reactor (SMR) and advanced reactor designs 
have increased operating cycles (typically four years up to 
forty years), which reduce the opportunities for inspection 
and maintenance at frequent, scheduled outages.  
Understanding of the current condition of key equipment 
and the expected evolution of degradation during the next 
operating cycle allows for targeted inspection and 
maintenance activities.  This article reviews the state of the 
art and the state of practice of prognostics and health 
management (PHM) for nuclear power systems.  Key 

research needs and technical gaps are highlighted that must 
be addressed in order to fully realize the benefits of PHM in 
nuclear facilities. 

1. INTRODUCTION 

Recent years have seen major shocks to the nuclear power 
community, including those due to events at Fukushima and 
subsequent plant closures, such as those in Germany, and 
changes in economics in the USA due to the widespread 
availability of cheap natural gas following the introduction 
of hydraulic fracturing, which is causing some nuclear 
power plant closures. The global energy situation is further 
complicated by the growing need for energy to support 
development and by political uncertainty.  In spite of these 
challenges, global interest in nuclear power persists, with 
interest in maintaining and extending the safe, economic 
operation of the approximately 437 reactors currently in 
service, 73 new reactors being constructed, and as many as 
481 reactors planned or proposed for construction (Nuclear 
Energy Insider, 2014).  The operating U.S. fleet includes 
100 light water reactors.  In addition, there are now (as of 
December 2014) four new AP-1000 nuclear plants under 
construction in the United States and one delayed plant 
being completed by the Tennessee Valley Authority (TVA) 
at the Watts Bar site.  There is also interest in the United 
States in SMRs, most of which have longer operating 
periods between planned refueling and maintenance outages 
than currently operating LWRs.  Renewed worldwide 
interest in nuclear power has been somewhat tempered by 
the March 2011 incident at Fukushima Dai-ichi in Japan, as 
well as recent changes in oil and gas production that may 
change the economics of electricity generation in the US 
and abroad. However, nuclear power is still considered a 
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key element in meeting future worldwide goals for 
sustainable energy, energy security, and greenhouse 
emissions.   

Currently, three separate thrusts to safe and economic 
nuclear power development for energy security are being 
pursued in the United States:  (i) longer term operation for 
the legacy fleet, considering operating lives of 60–80 years; 
(ii) near-term new nuclear plants with a 60-year design life; 
and (iii) small modular reactors, which are expected to 
employ light water reactor technology at least in the 
medium term (e.g., integral pressurized water reactors – 
iPWRs).  Within these activities, attention is turning to 
enhanced methods for plant component and structural health 
management. 

Safety, reliability, and economics are key drivers for the 
nuclear power industry.  Greater situational awareness of the 
condition of key SSCs and the operating environment is 
crucial to meet these needs in legacy and future nuclear 
power plants (NPPs).   

Operational experience (with the light water fleet in the 
United States and overseas, heavy water fleet, and limited 
numbers of operating advanced reactors) has shown that 
greater situational awareness of the state of safety-critical 
nuclear plant systems, structures, and components is 
necessary, particularly as they age due to exposure to harsh 
service conditions.  While replacement of a subset of 
components is possible, and may even be economically 
attractive, it may be economically prohibitive to replace 
several of the larger components, including the reactor 
pressure vessel, primary piping, and some instrumentation 
cabling (Bond, Doctor, Jarrell, & Bond, 2008).  Thus, 
characterization, management, and mitigation of aging-
related degradation in these critical passive components 
becomes important to maintain safety margins.  In this 
context, the technical challenges related to detecting, 
characterizing, monitoring, and managing materials 
degradation need to be identified and addressed (Bond, 
Doctor, Griffin, Hull, & Malik, 2011; Chockie, Bjorkelo, 
Fleming, Scott, & Enderlin, 1991).  These challenges are not 
unique to the operating fleet of LWRs, as the next 
generation of nuclear power reactors is expected to have 
similar requirements for managing and mitigating 
degradation; therefore, it is likely that any technology 
developed for detecting and characterizing degradation will 
have applications beyond the current fleet.  In fact, 
experience with the existing NPP fleet suggests that future 
reactors would benefit from the design-for-inspectability 
concept, wherein SSC design is altered or additional 
monitoring capability is designed in at critical locations to 
enable detection and mitigation of potential failure modes 
(Nakagawa et al., 2006). 

The key technology developments necessary for detecting 
and managing degradation in reactor components are:  (1) 
nondestructive measurement methods and analysis to detect 

degradation and anomalies, (2) algorithms to characterize 
and monitor the state of degradation for the component, and 
(3) algorithms that use the state of degradation information 
to determine remaining useful life (RUL) and probability of 
failure (POF) of the component.  Prognostic results can be 
used to manage the evolving health and condition of nuclear 
plant SSCs. The POF information may then be used in a 
probabilistic risk assessment (PRA) model to assess the risk 
significance of the degradation and the corresponding 
reduced safety margin.  RUL estimates and associated 
uncertainties can also be used to provide advisory input to 
plant engineers for operations and maintenance (O&M) 
planning or in automated optimal control algorithms.  
Together, these technologies constitute PHM systems.  
Ideally, degradation detection should occur early in the 
degradation development lifecycle, to enable the application 
of appropriate mitigation or repair actions, thereby 
maintaining the necessary safety margins.  Appropriate 
PHM systems therefore can potentially preclude serious 
consequences due to aging-related faults.  

A 2012 report by the authors reviewed the current state of 
monitoring, prognostics, and health management in NPPs 
(Coble, Ramuhalli, Bond, Hines, & Upadhyaya, 2012).  
This article summarizes the results of that survey and 
incorporates additional advances that have been made in the 
intervening years.  Section 2 describes the PHM needs and 
opportunities in the current and future NPP fleet.  Section 3 
summarizes research and applications of online monitoring 
(OLM) and PHM for nuclear power facilities.  Remaining 
research needs and technical gaps are outlined in Section 4.  
Finally, section 5 summarizes this review of the state of the 
art in PHM for the nuclear industry. 

2. THE CURRENT AND FUTURE NUCLEAR POWER FLEET 

The current US fleet of operating power reactors includes 
approximately 100 LWRs, the majority of which began 
commercial operation in the 1970s and 80s.  These LWRs 
are currently undergoing life extensions from the original 
40-year license to 60 years of operation; some utilities are 
looking toward a possible second extension to an 80-year 
life.  In the US, 74 reactors have been approved for the first 
round license extension, and 19 additional applications are 
under review (USNRC, 2014).  In addition to extending the 
operating life beyond initial specifications, plants are 
implementing power uprates; 19 plants have been approved 
for power uprates since 2011 and eight more applications 
are under review (USNRC, 2013). 

In addition to the existing fleet, several additional LWRs are 
planned or under construction. TVA is completing 
construction of a previously uncompleted unit at Watts Bar, 
Watts Bar Nuclear Plant Unit 2.  An additional uncompleted 
unit at Bellefonte is under consideration for completion by 
TVA in the near future.  Four AP1000s are currently under 
construction with planned operation beginning between 
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2016 and 2018.  There is also near-term interest in LWR-
based SMRs.  

Longer-term interests focus on advanced reactor designs 
that use non-light water coolants (e.g., molten salt, liquid 
metal, gas), so-called Generation IV and the associated 
SMR designs.  Advanced reactor designs present additional 
challenges due to extended operating cycles and lifetimes, 
harsher operating environments, and new component 
designs.  Advanced- and LWR-based SMRs can support 
new operating paradigms, such as load-following and dual 
missions (e.g., electricity production coupled with water 
desalination, district heating, or hydrogen production). 

Advanced component designs, such as smart pumps, are 
already being deployed to support condition-based 
maintenance (CBM) based on monitoring and diagnostic 
results. Additionally, as new plants come online and 
existing plants are upgraded, new instrumentation and 
control (I&C) technologies will support PHM in NPPs. The 
adoption of digital I&C systems in legacy plants has been 
slow, and upgrades have largely been incremental and 
applied where digital systems can replace existing analog 
systems one-to-one.  Although fully digital I&C systems 
have been deployed widely outside the US, the first digital 
I&C system in a US NPP was deployed at Oconee Nuclear 
Station in 2011 (Hashemian, 2011a).   

The high cost of radiation-resistant instrumentation cable 
makes wireless sensor networks attractive, particularly for 
aging systems that may require additional sensing 
capabilities to support OLM or replacement of aging 
instrumentation and cables.  Several issues must be resolved 
before wireless sensor networks are ubiquitously adopted in 
NPPs for safety-related I&C applications, including 
coexistence, reliability, signal propagation, and regulatory 
impact (Howlader, Ewing, & Dion, 2010).  Wireless sensor 
networks have been deployed in two facilities for equipment 
condition monitoring data transmission as part of a U.S. 
Department of Energy (DOE) Small Business Innovation 
Research (SBIR) project:  Comanche Peak Nuclear Power 
Plant in Texas and the High Flux Isotope Reactor (HFIR) at 
Oak Ridge National Laboratory (ORNL) (Hashemian, 
2011b; Hashemian, Kiger, Morton, & Shumaker, 2011).  
Additionally, the integration of signals from existing wired 
sensors and new wireless sensors in existing LWRs can 
provide a holistic view of the health of SSCs and processes, 
further improving safety and performance in legacy plants. 

O&M costs comprise approximately 60–70% of the overall 
generating cost in NPPs, while only 15–30% of costs are 
attributed to fuel.  Furthermore, of the O&M costs in U.S. 
plants, approximately 80% are labor costs (Wacker et al., 
2007).  The use of PHM has potential to impact the 
economics of maintenance for both active components (e.g., 
pumps, valves, motors) and passive structures (e.g., concrete 
structures, reactor vessels, buried pipes) (Bond, Doctor, 
Jarrell, et al., 2008).  Equipment maintenance has some 

associated fixed cost for labor, repair and replacement parts, 
and the minimum necessary downtime for repair.  
Unscheduled maintenance due to unexpected equipment 
degradation or failure can incur significant additional costs, 
including possible secondary degradation or failure that may 
result from an in-service equipment failure.  The time 
needed to perform unscheduled maintenance may be 
extended due to a lack of necessary parts, equipment, and 
crew and the added repair time for secondary failures.  The 
lost revenue from reduced or halted electricity production 
during this extended repair time is a significant cost, 
estimated at approximately $1.25 million per day of plant 
shutdown for an average plant in the United States (NEI, 
2011). Obviously, it is of paramount importance to be aware 
of impending SSC failures so that preventive maintenance 
can be performed, operations can be adjusted, or auxiliary 
equipment can be employed to avoid these costs when 
possible.  Information from online monitoring (diagnostics) 
and prognostics enables turning unscheduled maintenance 
actions (resulting from unexpected malfunction of SSCs) 
into scheduled work. No formalized cost-benefit analysis for 
applying PHM in a specific NPP has been found; however, 
analyses suggest that fleet-wide savings of over $1 billion 
per year are possible in the United States alone when PHM 
is applied to all key equipment in legacy power plants 
(Bond, Ramuhalli, Tawfik, & Lybeck, 2011). 

Considering the lessons learned in operating and 
maintaining the existing fleet of NPPs, new reactors will 
clearly benefit from including advanced monitoring, fault 
detection, diagnostic, and prognostic infrastructure from 
initial design through operation.  Retrofitting health 
monitoring systems to existing plants is more costly and 
likely more complicated than incorporating the necessary 
monitoring systems in the design phase.  However, in both 
legacy and future plants, the economics of PHM for NPPs is 
attractive (Bond, Ramuhalli, et al., 2011).   

3. MODELING AND ANALYSIS FOR PHM 

Full health monitoring systems are the focus of much 
research. Kothamasu, Huang, and VerDuin (2006) describe 
prognostics as part of a full CBM system.  The authors 
describe using prognostic estimates to aid maintenance 
scheduling and planning; they also suggest prognostics for 
optimal control algorithms. Pipe (2008) and Hess, Calvello, 
and Frith (2005) suggest the use of RUL estimates for 
maintenance planning and logistics systems. Callan, Larder, 
and Sandiford (2006) outline a five-step CBM system which 
includes: Data Acquisition, Data Manipulation, Condition 
Monitoring, Health Assessment, and Prognostics.  By 
applying the entire suite of modules, one can accomplish the 
goals of most prognostic systems: increased productivity; 
reduced downtime; reduced number and severity of failures, 
particularly unanticipated failures; optimized operating 
performance; extended operating periods between 
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maintenance; reduced unnecessary planned maintenance; 
and reduced life-cycle cost.   

 
Figure 1. Suite of Modules in a Health Management System 

(Hines, Garvey, Preston, et al., 2008) 

The suite of modules typically included in a full PHM 
system is shown in Figure 1. Data collected from a system 
of interest are monitored for deviations from expected 
behavior. If an anomaly is detected, it is often important to 
identify the cause of the anomaly; systems will likely 
degrade in different ways depending on the type of fault and 
operational stressors and so different prognostic models will 
be applicable. Finally, a prognostic model is employed to 
estimate the RUL of the system. The following sections 
briefly introduce algorithms and approaches for each of the 
key modules in the PHM system: monitoring and detection, 
diagnostics, and prognostics. Table 1 summarizes the state 
of maturity of diagnostic and prognostic analysis for a 
variety of application spaces; the final three entries 
summarize the state of maturity in the nuclear power 
industry, which lags behind other industries and 
applications. 

Table 1. Assessment of State of Maturity for Diagnostic [D] 
and Prognostic [P] Technologies (adapted from (Bond, 

Doctor, Jarrell, et al., 2008; Howard, 2005)) 

Diagnostic/Prognostic Technology for: AP(a) A(b) I(c) NO(d) 
Basic Machinery (motors, pumps, 
generators, etc.) 

D&P    

Complex Machinery (helicopter 
gearboxes, etc.) D&P    

Metal Structures D P   
Composite Structures  D P  
Electronic Power Supplies (low power) D P   
Avionics and Controls Electronics D P   
Medium Power Electronics (radar, etc.) D P   
High Power Electronics (electric 
propulsion, etc.) D P   

Instrument Calibration Monitoring (NPP) D   P 
Active Components (NPP) D  P  
Passive Components (NPP)   D P 
(a)  AP = Technology currently available and proven effective. 

(b)  A = Technology currently available, but V&V not completed. 
(c)  I = Technology in process, but not completely ready for V&V. 
(d)  NO = No significant technology development in place. 

3.1. Monitoring and Anomaly Detection 

Monitoring can be accomplished through a variety of 
methods, including first principle models, empirical models, 
and statistical analysis (Hashemian, 1995; Heo, 2008; Hines 
& Seibert, 2006a; Ramachandran, Fathi, & Rao, 2010).  The 
monitoring module can be considered an error correction 
routine; the model gives its best estimate of the true value of 
the system variables.  These estimates are compared to the 
data collected from the system to generate a time-series of 
residuals.  Residuals characterize system deviations from 
normal behavior and can be used to determine if the system 
is operating in an abnormal state.  Several reviews of 
anomaly detection routines are available (Angeli & 
Chatzinikolaou, 2004; Gertler, 1988; Isermann, 1984; 
Miljkovic, 2011).  Typically, anomalies can be detected 
through simple thresholding techniques or hypothesis 
testing.  A common hypothesis test for anomalous behavior 
is the Sequential Probability Ratio Test (SPRT) (Wald, 
1945).  This statistical test considers a sequence of residuals 
and determines if they are more likely from the distribution 
that represents normal behavior or a faulted distribution, 
which may have a shifted mean value or altered standard 
deviation from the nominal distribution. When an anomaly 
is detected, the source of the anomaly should be diagnosed 
in order to attribute it to its specific cause.  

3.2. Diagnostics 

Diagnostics may include both fault isolation and fault 
identification. Fault isolation locates the fault to a specific 
component or area of a structure. Fault identification 
determines the root cause of the fault. Often, these analyses 
are completed in concert with each other; when an anomaly 
is detected, the diagnostic system typically determines both 
the location and cause (and, in some cases, severity) of the 
fault given the available fault symptoms. Fault symptoms 
include the signatures that may help diagnose the fault, 
including sensed data, features extracted from sensed data, 
monitoring system residuals, and anomaly detection results. 

Expert systems, such as rule-based and fuzzy rule-based 
systems, are common fault diagnosers (Milne, 1987; Rich & 
Venkatasubramanian, 1987). However, these systems can 
become unmanageable as the total number of rules increases 
to accommodate many fault modes and fault symptoms. In 
addition to expert systems, many traditional and advanced 
classification algorithms have been applied to fault 
diagnostics, including k-nearest neighbors (kNN), principal 
component analysis (PCA), neural networks, self-organizing 
maps, clustering, fuzzy clustering, etc 
(Venkatasubramanian, Rengaswamy, & Kavuri, 2003; 
Venkatasubramanian, Rengaswamy, Kavuri, & Yin, 2003; 
Venkatasubramanian, Rengaswamy, Yin, & Kavuri, 2003). 
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A thorough review of both model-based diagnosis and data-
driven diagnosis is given in (Yang, 2004). 

The evolving degradation and condition of SSCs will 
typically be unique for different fault modes. Once the fault 
has been diagnosed, the RUL can be estimated through 
appropriate prognostic models. 

3.3. Prognostics 

Prognostic algorithms can be loosely classified into physics-
based and empirical models. Physics-based models rely on 
an explicit representation of the underlying physics of 
failure to describe the evolving condition of SSCs (Pecht & 
Dasgupta, 1995). Often, the underlying physical processes 
leading to failure are not completely understood, and 
simplifying assumptions must be made to facilitate model 
development. Assumptions made in model development 
may not be fully applicable to real world systems, which 
limits the applicability of physics of failure models. As the 
SSCs, fault modes, and physics of failure become more 
complicated, these models may be computationally 
expensive and may not be amenable to rapid analysis and 
decision-making. Physics-based models may be preferable 
for high-cost, high-risk SSCs for which the failure data 
needed to develop empirical models may not exist. Physics-
based models have been widely studied for electronic 
components (Oja, Line, Krishnan, & Tryon, 2007; Valentín, 
Osterman, & Newman, 2003). 

Empirical prognostic models use data to model the 
relationships seen in real world operation and failure (Hines, 
Garvey, Preston, et al., 2008; Schwabacher, 2005; 
Schwabacher & Goebel, 2007).  These models typically 
provide no insight into the physical mechanisms leading to 
failure, and instead exploit the correlations between 
observable or inferable condition indicators and RUL. 
Empirical models may be preferable to physics of failure 
models because they are simple to develop, they capture real 
world relationships, and they require no expertise in the 
underlying physical phenomena leading to failure. However, 
empirical models rely on historic data for model 
development.  As such, these models are generally only 
applicable to systems operating within the range of the data 
used for model training and development.  This poses 
additional problems for prognostics models, which rely on 
run-to-failure data for model training.  Very few expensive 
or safety critical systems are allowed to run to failure, 
particularly in the nuclear power industry; in this case, 
physics of failure models may be used to simulate failure 
data for model development.  This alleviates the burden of 
collecting failure data for expensive or safety critical 
systems, but affords the benefits of empirical methods for 
prognostics. 

Hybrid methods have also been proposed that combine 
physics-of-failure information with data and empirical 
modeling methods. Kacprzynski, et al. mitigate the 

inaccuracies due to simplifying assumptions in physics-
based models of gears (Kacprzynski et al., 2002) and 
helicopter gearboxes (Kacprzynski et al., 2004) by fusing 
the results with other data sources including diagnostic 
results, prognostic architectures, inspection information, and 
real-time system level features. 

4. PHM APPLICATIONS AND TECHNOLOGIES IN NPPS 

The targets of OLM and PHM for NPPs can be categorized 
into active and passive SSCs (Table 2).  Simply put, active 
SSCs must move to perform their normal, intended function, 
while passive SSCs should not.  Active components include 
pumps, motors, generators, sensors, and control rod drives.  
Passive components include structures, pressure vessels, 
heat exchangers, cables, pipes, pressurizers, and steam 
generators. The distinction between active and passive 
components can be complicated.  For instance, pumps and 
valves are generally considered active components, but their 
bodies, casings, and support structures are passive. While 
data analysis algorithms may be commonly applicable, the 
current approaches for PHM of active and passive 
components are in some ways distinct. 

Table 2: Example Active and Passive SSCs in NPPs 

Passive SSCs Active SSCs 
cables and connections air compressors 

containment batteries 
containment liner circuit boards 

core shroud control rod drive 
heat exchangers cooling fans 

piping diesel generators 
pressurizer sensors 

pump casings motors 
reactor vessel pumps 

steam generators transistors 
support structures valves 

transformers power supplies 
valve bodies  

ventilation ducts  
The US Nuclear Regulatory Commission (NRC) is charged 
with ensuring the safe operation of the US fleet of NPPs.  
During the initial 40-year licensing period, NRC regulations 
primarily focused on monitoring the performance and 
maintenance of active components through the Maintenance 
Rule.  The Maintenance Rule provides a performance-based 
approach to improve the effectiveness of maintenance 
programs and to integrate risk analysis into maintenance 
processes (10 CFR 50.65, 2011).  A full review of the 
Maintenance Rule and its application is given by Gregor and 
Chockie (2006) and Stevenson (2006).  While the 
Maintenance Rule has been adequate for monitoring the 
effectiveness of maintenance of active components, it does 
not directly improve the scheduling or economics of 
performing maintenance.  In fact, most maintenance 
activities of active SSCs in NPPs remain periodically 
scheduled under the Maintenance Rule; however, well-
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applied CBM could reduce unnecessary maintenance and 
cost, and its effectiveness could also be monitored under the 
purview of the Maintenance Rule.   

Despite early beliefs that the high standards used to design 
and fabricate large passive components would preclude 
degradation during the planned lifetime, unexpected 
materials degradation has become a concern during the 
original plant life; an example of such an occurrence is the 
degradation of the reactor vessel head at the Davis-Besse 
plant.  As utilities started looking to extended operation, the 
current and evolving condition of large passive SSCs 
became even more important.  Additionally, the failure 
modes and components of interest have changed over the 
last five decades (Figure 2).  Failures of interest have 
trended from minor faults in smaller components to 
potentially catastrophic failures in larger components (e.g., 
from steam generator tube and bolt failures that appeared 
early in life to later degradation of shrouds, vessel heads, 
and pressurizer surge lines).   

 
Figure 2. The evolution of passive component failures in 

NPPs (Staehle, 2010) 
 
To address concerns over materials issues and structural 
health, the NRC issued Title 10 of the Code of Federal 
Regulations (10 CFR) Part 54 (10 CFR 54), which mandates 
aging management plans (AMPs) for large passive 
structures.  The series of Generic Aging Lessons Learned 
(GALL) reports (USNRC, 2001, 2005a, 2005b, 2010) and 
the International GALL (IGALL) report (IAEA, 2014) 
provide the technical basis for evaluating the adequacy of 
AMPs as plants move in to extended operation.  A key 
component of the AMP is the scheduled in-service 
inspection (ISI) of passive components codified in 10 CRF 
50.55a (10 CFR 50.55a, 2007), including inspection 

periodicity, inspection techniques, and qualification 
procedures.  More recently, the concept of risk-informed ISI 
(RI-ISI) is being explored for piping systems (IAEA, 2010); 
RI-ISI categorizes pipe sections and welds as being of either 
high or low safety significance based on qualitative and 
quantitative measures of the risk and consequence of pipe 
degradation. The AMP is then tailored to ensure that high-
safety significance SSCs are inspected, while maintaining 
some minimum inspection coverage of low-safety 
significance SSCs.  The proposed approach to RI-ISI, 
however, does not explicitly incorporate the nondestructive 
evaluation (NDE) measurements or resulting prognosis.  
The selection of components and the inspection interval are 
largely based on industry data, operating history, and expert 
judgment. 

Some progress is being made by early adopters of online 
monitoring and equipment condition assessment in NPPs, 
such as Électricité de France (EdF) and Exelon, who are 
deploying 700 units with centralized diagnostic monitoring.  
In general, however, the nuclear power community is slower 
to adopt on-line health monitoring than other industries.  

Because many utilities own multiple reactor units (some as 
many as fifteen (IAEA, 2008)), there is interest in 
developing capabilities to monitor a fleet of plants, either at 
the utility level or across multiple utilities.  Centralized, 
fleet-wide monitoring provides a myriad of benefits: more 
examples of key degradation modes, application of common 
models and analyses, ease of sharing knowledge and results 
across plants for common equipment and systems, and 
substantial savings in the implementation of OLM and PHM 
systems (IAEA, 2008).  The Electric Power Research 
Institute (EPRI), in conjunction with Expert Microsystems, 
has developed a suite of tools for monitoring high-value 
assets in electrical generation systems, detecting and 
identifying faults, and estimating remaining useful life 
(Agarwal, Lybeck, Bickford, & Rusaw, 2014).   The Fleet-
Wide Prognostic and Health Management (FW-PHM) Suite 
leverages fault signatures and data collected across the US 
fleet of electricity generating stations, including both 
nuclear and non-nuclear facilities. The FW-PHM software 
suite utilizes expert knowledge of fault and remaining life 
signatures to provide the link between anomaly detection 
and the creation of actionable information (diagnostics and 
prognostics).  The fault signature and prognostic model 
databases underlying the FW-PHM suite are intended to be 
living repositories of experience across the fleet of 
generating stations that capture cause and effect 
relationships associated with equipment degradation and 
prognostics. 

The following subsections highlight the state of the art and 
the state of practice in monitoring, fault detection and 
diagnostics, and prognostics for key active and passive 
SSCs, respectively. For many of these components, the state 
of practice does not include prognostics, which has largely 
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remained the purview of research in the nuclear power 
industry (IAEA, 2013). 

4.1. Monitoring and Prognostics for Active Components 

Active components in NPPs include things that must move 
in order to perform a function, such as pumps, valves, 
motors, and some sensors.  For these active components, 
PHM systems can capitalize on the process parameters 
already collected by the plant I&C system (e.g., 
temperature, flow, pressure).  Pump health may be 
characterized using discharge pressure and flow; valve 
operation could be monitored through the changes in flow as 
the valve position setpoint is changed; and sensor 
calibration can be monitored and diagnosed through analysis 
of the data those sensors are collecting.  However, for some 
active components, these process parameters may not be 
sufficient to detect and differentiate all fault modes and 
degradation severities.  In these cases, additional 
measurements may be useful or necessary to develop more 
robust and accurate prognostic models.  For instance, 
rotating components (pumps, motors, and bearings) can be 
monitored for various defects and degradation through 
vibration measurements, and electrical signals can provide 
additional information about the health of motors and 
motor-driven components. Many of these additional 
measurements, such as vibration, motor position, or 
electrical signatures, may largely be obtained autonomously 
and unobtrusively during operation.  The following 
subsections briefly describe the current state of PHM for 
application to sensors, motors, pumps, valves, and control 
rod drives. 

4.1.1. Sensors 

To ensure safe and effective operation of an NPP, sensing 
and transmitting reliable values for key parameters are 
central to nuclear power instrumentation for control.  
Current practice in the United States requires recalibration 
of process instrumentation channels every 24 months, in 
practice occurring during each refueling outage.  
Recalibration is both a labor-intensive and costly process, 
resulting in longer outages, increased maintenance cost, and 
additional radiation exposure to maintenance personnel, and 
it can actually be counterproductive, by introducing errors in 
calibration of previously acceptable sensors.  OLM 
techniques have been proposed to assess the calibration of 
sensors using data collected during plant operation 
(Bickford, Davis, Rusaw, & Shankar, 2002; Davis et al., 
2002; EPRI, 1998; Hashemian, 1995; Hines & Davis, 2005; 
Hines, Garvey, Seibert, & Usynin, 2008a; Hines, Garvey, 
Seibert, & Usynin, 2008b; Hines & Seibert, 2006a).  In 
2000, the NRC accepted the generic concept of OLM for 
sensor calibration assessment and calibration interval 
extension (USNRC, 2000); however, no US plant has 
successfully obtained the license amendment necessary to 
implement calibration interval extension.  The Sizewell B 

NPP in the United Kingdom does employ OLM for 
calibration monitoring and has shown that some common 
types of sensors and transmitters may function reliably and 
within calibration for 8 years or longer (Hashemian, 
Morton, Shumaker, Lillis, & Orme, 2004; Lillis, 2010). 
Currently, investigations into PHM for sensors and 
instrumentation is limited to fault detection (i.e., calibration 
assessment). If a sensor were determined to be out of 
calibration, current practice would flag that sensor for 
recalibration at the next maintenance opportunity. However, 
approaches to mitigate the effects of limited sensor faults 
and failures have been suggested (Coble, Ramuhalli, Meyer, 
et al., 2012); development of these mitigation strategies is 
the focus of ongoing research.  

4.1.2. Motors  

Induction motors, such as those used for motor-operated 
valves and pumps, are commonly monitored online through 
vibration testing, electrical signature analysis, and 
temperature monitoring (Hudson, 1999).  The systems 
currently in place largely either provide only anomaly 
detection or complete shutdown in the case of impending 
catastrophic failure.  Deployed motor monitoring systems 
do not currently extend to prognosis of motor life; however, 
many of these systems appear to be readily extensible to 
prognostics.  

International Atomic Energy Agency (IAEA) (IAEA, 2013) 
reviews the current state of the art in vibration data 
collection and analysis, including both stationary and 
transient signal analysis.  Vibration monitoring can detect 
and diagnose mechanical issues that may affect vibration: 
shaft misalignment and imbalance, looseness, bearing 
defect, etc. Korkua, Jain, Lee, and Kwan (2010) propose a 
network of wireless vibration sensors to detect rotor 
vibration due to imbalance and to estimate the severity of 
the imbalance; the authors suggest an extension of this 
approach to prognosis, though it was not presented. 

Motor electrical signature analyses make use of the 
variations in electrical properties with changing loads and 
motor malfunctions.  For instance, motor current increases 
with increasing load.  Various anomalies and faults also 
affect motor current, such as valve stroke in motor-operated 
valves (MOVs), rotor imbalance, cracked rotor bars, loose 
rotor, and mechanical misalignment (IAEA, 2008). Motor 
current signature analysis (MCSA) monitors specific 
frequencies (e.g., line, synchronous, rotational, slip, and 
sideband frequencies) for signs of impending anomalies and 
faults (Kumar & Madhab, 2006; Thomson & Fenger, 2001).  
Electrical signature analysis typically requires knowledge of 
mechanical loads and internal imbalances.  Advanced data 
analysis algorithms have been proposed to account for 
unknown speed or torque levels in the motor, providing a 
more robust and sensitive anomaly detection based on 
MCSA (Eren, Baskirt, & Devaney, 2005).  Voltage 
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mismatch has been investigated for early detection of motor 
winding degradation under power supply unbalance, 
manufacturing imperfections, and unknown mechanical 
loads (Trutt, Sottile, & Kohler, 2002). 

Approaches to monitoring the health of motors can often 
reveal the health of the motor-drive components as well.  
However, additional methods are available to specifically 
monitor the pumps and valves themselves for degradation 
and impending failure.  These techniques can be useful in 
differentiating between faults in the motor itself and faults 
in the motor-driven components that affect the motor 
performance.  Methods to monitor pumps and valves 
directly are described in the following subsections. 

4.1.3. Pumps 

The degradation and failure of reactor coolant pumps 
(RCPs) can cause significant economic losses for NPPs, 
which have to shut down for extended periods for 
maintenance and replacement of degraded RCPs.  As such, 
RCPs have received significant research attention for fault 
detection and diagnosis.  Degradation and failure of RCPs 
and casing are commonly monitored through the reactor 
coolant pump vibration monitoring system (RCPVMS) 
(Koo & Kim, 2000). Jarrell, Sisk, and Bond (2004) identify 
the primary stressors which cause degradation of centrifugal 
pumps and formulate deterministic relationships between 
these stressors and the resulting degradation.  Vibration data 
analyses showed agreement between the motor position 
indicator, the vibration response, and the dynamic force 
loading on the bearing in experimental tests.  The 
experiments highlighted a set of correlations that link 
measurable degradation stressors to resulting degradation 
rates and failure.  However, RCPVMSs do not currently 
support automated, online analysis of the vibration data to 
detect and diagnose abnormal conditions.   

Existing RCPVMS commonly apply the Fourier transform 
to vibration data for detection and diagnostics, but this 
method is only useful for stationary signals.  Often, the 
statistical properties of signals collected from faulted 
equipment are changing (i.e., not stationary) due to the 
nature of the fault progression.  To better capture and 
understand the time-dependence of these signals, a time-
frequency representation is necessary. Koo and Kim (2000) 
use the Wigner distribution of the vibration signals to 
extract frequency information for fault detection and 
diagnostics.  They use a single neural network trained to 
classify behavior as either normal or one of six faulted 
conditions: shaft bow, shaft misalignment, unbalance, oil-
less bearing rub, structure looseness, and shaft crack. Jung 
and Seong (2006) use the Wigner-Ville distribution, which 
accounts for cross-interference between different 
components of a signal, to detect RCP impeller looseness.  
This approach makes use of power line signals, three-phase 
voltage, and current, rather than vibration signals.  The 

three-phase voltage is measured from a secondary tap of the 
potential transformer, and the current from the current 
transformer output; this allows a non-intrusive measurement 
that will not interrupt plant operation.  The proposed 
detection method was validated using data collected during 
heat-up and cool-down phases of operation.  The authors 
corroborate their fault detection results through comparison 
to RCP vibration monitoring results and visual inspection. 

As an alternative to the current RCPVMSs, Singer, Gross, 
Walsh, and Humenik (1990) developed a SPRT-based fault 
detection and diagnostic system that was applied to the 
RCPs at the Experimental Breeder Reactor II (EBR-II) at 
Argonne National Laboratory.  This monitoring system used 
a network of SPRT tests and if-then rules to (1) detect 
anomalies in the plant data in real-time and (2) determine if 
the anomaly was due to sensor or pump degradation.  The 
developed system provided extremely early operator 
notification of anomalies, diagnosed the most likely fault 
mode, and recommended corrective actions based on 
existing operational and emergency procedures.  A similar 
system using SPRT with an expert system for monitoring 
RCPs based on sensed speed, vibration, power, and 
discharge pressure measurements was patented by Gross, 
Singer, and Humenik (1993). 

4.1.4. Valves 

Check valves are critical to safe NPP operation.  The NRC 
has mandated periodic inspection of these valves, which 
typically involves partial disassembly. Haynes (1990) gives 
a review of monitoring and diagnostic methods for check 
valves, focusing on acoustic emission, ultrasonic inspection, 
and magnetic flux signature analysis, primarily using 
portable, walk-around monitors.  The state of the art at the 
time indicated that the combination of acoustic emission 
with either ultrasonic inspection or magnetic flux signature 
analysis would enable monitoring of all major check valve 
operating conditions. Several studies have looked at using 
acoustic emission signals for valve health monitoring. 
Nakamura and Terada (1985) used high frequency (100 
kHz+) resonance type acoustic emission sensors to monitor 
for leaks in pressurizer valves.  After accounting for low 
levels of background noise, the acoustic signal was used to 
detect leaks and estimate the valve leak rate. Lee, Lee, Kim, 
Luk, and Jung (2006) took a similar approach to monitoring 
check valves for two types of failure: disk wear and foreign 
object intrusion.  These two fault modes were detected and 
diagnosed based on the frequency spectra profiles of the 
check valve leakage, the peaks of which are strongly 
dependent on the type of fault. McShane and Ulerich (1992) 
developed and patented a check valve monitoring system 
using ultrasonic transducers coupled to a pipe, instead of 
directly to the valve.  This technique measured the fluid 
turbulence downstream of the valve to assess the condition 
of the check valve. Ghosh, Varde, and Satheesh (2013) 
introduce prognostic models for hinge pin wear and 
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backstop failure of check valves based on validated physical 
models and vibration analysis and accelerometer-based tilt 
measurements; however, they present no results of applying 
these models. 

The condition of MOVs is commonly monitored through 
off-line operator testing of valves during outages and remote 
testing methods that rely on accurate first principle models 
of the induction machine in the MOV. Chai, Lyon, and 
Lang (1994) developed a first principle model of the motor 
in an MOV using measureable stator variables. The model 
accurately estimated motor behavior and pinion and worm 
gear frequency for normal operation in laboratory tests.  It 
was proposed that these accurate estimations of MOV forces 
and motions could be used in a diagnostic system; however, 
none was presented. Arcella, Bednar, Schreurs, and Forker 
(1994) patented an online valve diagnostic monitoring 
system that relies on three sensors: a motor current sensor 
and strain and position sensors coupled to the valve stem.  
This system utilized some simple data analysis, such as 
deviations from baseline data and an expert rule-based 
system for fault diagnosis. Eklund and Upadhyaya (1991) 
propose an automated approach to MOV diagnostics based 
on MCSA, valve stem thrust, and switch activation during 
valve stroking. The authors suggest trending of these 
parameters for degradation forecasting and maintenance 
planning, though no results of this trending are presented. 
Granjon (2011) proposes a method to monitor MOVs 
relying exclusively on remote electrical measurements, such 
as supply voltages and currents, without incorporating any 
internal MOV measurements. The estimated active power is 
used as an indicator of the stem nut mechanical condition.  
The results indicate that active power is closely related to 
internal mechanical phenomena in the MOV; this indicator 
may be useful for monitoring additional faults and/or 
components.   

Upadhyaya, Zhao, and Lu (2003) give an example of an 
advanced surveillance, fault detection, and diagnostic 
system applied to a turbine control valve during transient 
operation.  This approach involves a data-driven model for 
predicting nominal variable values and a decision-making 
module for anomaly detection and diagnosis.   

McGhee, Galloway, Catterson, Brown, and Harrison (2014) 
present a similarity-based prognostic model for “sticky 
valve” failure. Process data are generated from a high 
fidelity simulator of a combined-cycle gas turbine plant with 
simulated valve degradation. The valve degradation is 
primarily linear in nature, indicated by reduced cross-
sectional area at the valve. The RUL is estimated based on 
the pressure at the valve exit. No experimental data are 
presented to support the linear degradation path, but the 
prognostic results are promising.  

By replacing periodic walk-around monitoring with remote 
monitoring of electrical and acoustic signatures, MOVs can 
be continuously monitored for degradation and faults. The 

availability of these online condition indicators would likely 
provide the information needed to support prognostics, and 
many of the models developed for condition assessment 
would likely be extensible to prognostics. 

4.1.5. Control Rod and Element Drive Mechanisms 

Reactor power and reactivity are manipulated through 
control and shutdown rods (called control elements in some 
reactors). Several factors can contribute to malfunction of 
control rods: degradation of the control rod drive 
mechanism, failure of the rod control electronics, or 
restriction of rod movement due to dimensional changes in 
the core (of particular concern in advanced gas-cooled 
reactors, AGRs).  Failure of the control rods to respond 
accurately and quickly to drive orders can negatively affect 
plant load or lead to plant shutdown or trip.  As these 
systems age, the number of issues leading to reactor trip has 
increased, including failure of analog cards, cables, 
connectors, and power supplies (USNRC, 2015). 

Recent work has focused on developing enhanced position 
indication and condition monitoring and diagnostics for 
control rod and element drive mechanisms (CRDMs and 
CEDMs).  Enhancement of the digital rod position 
indication (DRPI) resulted in single step accuracy (as 
opposed to the 12-step position accuracy previously seen); 
in situ health assessment of the coil, cable, connectors, and 
power supply; rod drop timing during any reactor trip; and 
digital diagnostics of DRPI data (Hashemian, Morton, & 
Shumaker, 2009).  DRPI data can be used for performance 
testing, anomaly detection, and diagnostics for the CRDM 
and the power cabinet and logic cabinet components 
(McCulley, Morton, Caylor, & Hashemian, 2013; Morton, 
Caylor, McCulley, & Hashemian, 2012).  This diagnostic 
system provides continuous online monitoring of the 
CRDM and associated hardware.  The results obtained from 
these analyses may be extensible to prognostic systems, but 
no such studies have been found.   

Deformation of the graphite cores in AGRs can inhibit 
control rod movement.  Currently, infrequent channel 
inspections are supplemented by expert analysis of 
monitoring data to detect rod movement restrictions due to 
dimensional changes in the core and control channels. 
Wallace et al. (2010) developed an automated algorithm to 
detect restrictions in control rod motion based solely on rod 
height measurements.  Because specific drive orders are not 
recorded during operation, the rod drive orders are estimated 
based on the simultaneous movement of groups of rods. The 
correlation of the estimated control rod drive orders to the 
measured height indicates which rods are moving in concert 
with the orders and which are anomalous. Though the 
method was developed specifically for detecting restriction 
of rod motion, the authors suggest the same approach for 
characterizing control rod performance in predictive 
maintenance regimes. 
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4.2. Monitoring and Prognostics for Passive Components 

Passive SSCs can be further divided into large structures 
(e.g., pipes, reactor vessel, and concrete structures), which 
are monitored via NDE, and so-called semi-passive 
components (e.g., heat exchangers, transformers, and 
cables), which may be monitored through performance 
assessments and process parameters.  These semi-passive 
components can be monitored and prognosed in much the 
same way that active components are considered.  Passive 
structures require alternate data collection methods that 
typically interrogate the structure (or a select area of the 
structure) and record responses.  The following subsections 
summarize the key research in select semi-passive 
components and passive structures. 

4.2.1. Heat Exchangers 

Heat exchanger (Hx) fouling occurs when unwanted 
material accumulates on the heat transfer surfaces of the hot 
or cool side of the Hx.  This fouling degrades heat transfer 
performance by increasing the thermal resistivity, which 
reduces the heat transfer across the boundary, and by 
reducing the cross sectional area for flow, which increases 
the pressure drop across the flow path (Kakaq, 1991).  Hx 
condition can be monitored and characterized with process 
parameters such as inlet and outlet temperature and flow 
rate on the primary side and inlet water temperature and 
flow rate and outlet steam flow rate and pressure on the 
secondary side.  A variety of approaches to using these data 
have been explored, from first-principle models to purely 
empirical approaches. Wakui and Yokoyama (2008) use 
physics-based models to predict the shell inside pressure, 
water outlet temperature, and Hx performance.  These 
estimated values are compared with the measured values 
(and calculated performance) to identify deviations and 
detect deterioration of the Hx; deviations of ~2% of the heat 
transfer coefficient were detected. Penha, Hines, and 
Upadhyaya (2002) develop a hybrid model by combining a 
physics-based model with neural networks to improve the 
overall model performance. The hybrid model shows 
improved prediction of both primary- and secondary-side 
outlet temperature.  Although these model results are not 
used for anomaly detection or prognostics, the approach 
may allow for more accurate prediction of nominal 
performance, leading to more accurate anomaly detection 
and performance trending. Ardsomang, Hines, and 
Upadhyaya  move toward a more data-based technique by 
applying auto-associative kernel regression to prediction of 
measured (temperature difference across the primary and 
secondary sides, primary side flow rate) and calculated 
parameters (log mean temperature difference). The log 
mean temperature difference residual was used as a 
degradation indicator for detecting and characterizing Hx 
fouling; RUL was predicted with an average error of ~10 
hours. Welz, Nam, Sharp, Hines, and Upadhyaya (2014) 
further update this approach by including additional 

parameters in the regression model, including calculated 
primary and secondary heat transfer coefficients, primary 
inlet pressure, secondary flow rate, etc. A similar general 
path model resulted in an average error of ~3 hours.  
Finally, a purely data-driven approach was taken in (Coble, 
Humberstone, & Hines, 2010) where the effects of Hx 
fouling were seen in the residuals of steam generator exit 
temperature.  A general path model using these residuals as 
the prognostic parameter was able to predict RUL within 
5% error five months prior to failure.  The results reported 
in the literature suggest that Hx fouling can be detected, 
diagnosed, and prognosed using process parameters already 
collected.  

4.2.2. Transformers 

High-voltage transformers are critical to the reliability of the 
electric transmission grid. Bartley (2003) identifies twelve 
failure modes, two of which are of particular interest for 
monitoring and prognostics because of their relative 
ubiquity in aging transformers:  insulation failure and oil 
contamination.  Several monitoring methods exist to detect 
anomalies and characterize the condition of oil-filled 
transformers: dissolved gas analysis (Heathcote, 1998), 
insulating oil quality testing (USDI, 2000, 2003), moisture 
content measurements (USDI, 2003), various methods of 
power factor testing, winding resistance and ratio testing, 
thermography, recovery voltage testing, winding insulating 
oil monitoring, tap changer monitoring, internal temperature 
measurement, and others (Lapworth, Jarman, & Funnell, 
1995; Wang, Vandermaar, & Srivastava, 2002).  Several 
measurements can be obtained online while the transformer 
is energized (Gavrilovs, 2011).  A survey of the literature 
describing available and developing transformer monitoring 
techniques indicates that it may be possible to perform 
prognostics using data that can be collected with existing 
transformer monitoring technologies.  Initial investigations 
in using existing data sources for prognostics are reported in 
(Strong, Coble, O'Reilly, & Hines, 2011) and (Coble, 
Strong, O'Reilly, & Hines, 2011). 

4.2.3. Cables 

NPPs have over 1000 km of cables, including power, 
control, and instrumentation cables; replacing these cables is 
widely considered to be too expensive to support long term 
operation (LTO).  Inspection of the full length of cables is 
also prohibitive.  However, cable aging and degradation has 
emerged as a key concern as cables are exposed to 
temperature, irradiation, moisture and humidity, local 
oxygen concentration, vibration, flooding, and other causes 
of degradation (IAEA, 1997, 2000).  Under these 
conditions, cable insulation and jacket materials may be 
vulnerable to changes that can challenge the operational 
reliability of the cables.  In fact, licensee data has shown 
that the number of cable failures is already increasing with 
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plant age, even within the rated 40-year lifetime (Villaran & 
Lofaro, 2010). 

Several laboratory tests are available for cable assessment; 
however, these tests tend to be destructive (e.g., elongation 
at break) and require cable samples that have been exposed 
to the same environments as in-service cables.  A number of 
in-situ cable monitoring techniques are also available: visual 
inspection, the compressive modulus test, dielectric loss 
test, insulation resistance and polarization index, AC voltage 
withstand test, partial discharge test, DC high potential test, 
step voltage test, infrared thermography, etc., but these all 
come with significant disadvantages. Many are only 
applicable to accessible lengths of cable, such as visual 
inspection and the compressive (or indenter) modulus test.   
Some techniques require the cable to be disconnected at one 
or both ends, including the dielectric loss test, insulation 
resistance and polarization index, AC voltage withstand, DC 
high potential, and step voltage tests.  Additionally, several 
of the electrical tests involve high voltage, which can 
damage the insulation during testing (i.e., AC voltage 
withstand, partial discharge, and DC high potential tests).   

Two methods have been developed and demonstrated that 
overcome these issues: time domain reflectometry (TDR) 
(IEC, 2010) and line resonance analysis (LIRA) (Fantoni & 
Toman, 2006; Fantoni, 2010; Fantoni, Toman, & Cano, 
2009). TDR is currently widely used in NPPs to assess 
instrumentation cable condition; however, this technique 
cannot be applied during plant operation because the cable 
must be disconnected at one end.  It detects local, significant 
anomalies but is not as effective for minor flaws and some 
insulation degradation, which may be precursors to larger 
faults.  Additionally, the method requires accurate baselines 
for comparison to determine the location and magnitude of a 
fault.  LIRA overcomes many of the disadvantages of TDR, 
and can detect small changes in electrical parameters.  
However, research in LIRA is ongoing.  Currently, the test 
is not simple to perform nor the results to interpret; 
execution and analysis will need to be largely automated for 
wide-scale application in NPPs. 

4.2.4. Passive Structures 

Similar measurement capabilities are not as readily available 
for passive structures.  Damage in passive structures takes 
many forms (e.g., corrosion, chemical species migration 
causing changes at grain boundaries and cracking) and 
typically results in a localized change in material properties 
(e.g., electrical or thermal conductivity, magnetic 
permeability, and elastic modulus (Raj, Moorthy, 
Jayakumar, & Rao, 2003)).  Measurements that are sensitive 
to these discontinuities are generally used to detect damage 
in passive components in a nondestructive manner.  
Nondestructive measurement methods available for passive 
structures include radiography, ultrasonic imaging, visual 
inspection, electromagnetic inspection (including eddy 

currents, potential drop methods, etc.), and thermal imaging 
(Meyer, Bond, Ramuhalli, & Doctor, 2010; Meyer, Coble, 
Ramuhalli, & Bond, 2011).  Almost all of these methods 
(with the exception of visual inspection) are focused on the 
detection of hidden damage in components, and rely on the 
interaction of applied energy with the material damage sites.  
In most cases, the inspection process requires progressive 
scanning to inspect the entire component, and may require 
significant intervention (i.e., not autonomous, online, or 
unobtrusive).  Reliable detection and characterization of 
early degradation below the limits of traditional NDE poses 
a significant challenge. 

Research in accurate monitoring, flaw detection and 
diagnosis (location and size), and prognostics for passive 
components is ongoing (Bond, 1999; Meyer, Bond, & 
Ramuhalli, 2012), although few PHM systems for passive 
components have been deployed in operating NPPs to date. 
One notable exception is the use of acoustic emission to 
monitor crack growth (Hutton, Friesel, & Dawson, 1993a; 
Hutton & Kurtz, 1985; Hutton, Kurtz, & Friesel, 1987).  
The combination of new (and possibly currently unknown) 
degradation mechanisms and the increase in the number of 
components that become susceptible to aging-related 
degradation as plants transition to long-term operations are 
likely to challenge the capabilities of available ISI 
technology and application methodologies (Bond, Doctor, 
Griffin, Hull, & Malik, 2009; Dobmann, 2006; Doctor, 
1988).  Current nondestructive evaluation techniques used 
for ISI are typically applied to detect relatively large flaws 
that occur near the end of component life. Concerns 
regarding the ability of available NDE techniques to detect 
critical flaws in safety-related components in NPPs caused 
the NRC and other organizations to conduct a series of 
studies on the reliability of ultrasonic NDE techniques 
(Doctor, 2007; Miller, 2008). 

In order to manage aging, recent years have seen a move 
towards NDE for early damage detection in NPP materials 
(Bond, Doctor, et al., 2011; Fantoni et al., 2009).  There is a 
possibility that such early physical damage can be detected 
as the change of locally averaged material properties with 
appropriate sensors. There is also growing interest in 
sensors and technology for on-line monitoring for the 
detection of early damage in structural materials (Bond, 
Doctor, & Taylor, 2008; Inman, Farrar, Lopes, & Steffen, 
2005). A range of acoustic and electromagnetic 
measurement methods may be suitable, including nonlinear 
acoustics (Matlack et al., 2012), eddy current (Lois & Ruch, 
2006; Raj et al., 2003), and magnetic Barkhausen emission 
(Dobmann, 2006; Raj et al., 2003).  However, there are still 
no accepted measurement technologies for the detection and 
assessment of some degradation mechanisms unique to 
NPPs, such as void swelling.  Recent reviews of monitoring 
techniques for passive systems are given in (Meyer et al., 
2011) and (IAEA, 2013).  
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Exceptions (for passive structure nondestructive condition 
measurements) include wide-area inspection methods such 
as acoustic emission (AE) monitoring and guided ultrasonic 
waves (GW).  AE relies on the (usually long-range) 
detection of stress waves that emanate from damage sites, 
either intrinsically due to the growth process of the damage 
or as a result of an external applied load to the component.  
AE is well suited for online monitoring of passive structures 
in nuclear power plants, and has been applied for crack 
growth detection (Ai, Liu, Chen, He, & Wang, 2010; Harris 
& Dunegan, 1974; Hutton, 1993; Hutton, Dawson, Friesel, 
Harris, & Pappas, 1984; Hutton, Friesel, & Dawson, 1993b; 
Lybeck et al., 2011), leak detection (IAEA, 2008), and loose 
part monitoring (IAEA, 2008).  GW also relies on the 
interaction of long-range stress waves with damage in the 
component (Meyer, Ramuhalli, Braatz, & Doctor, 2012; 
Rose, 1999).  However, GW is an active technique that uses 
transducers to generate guided waves in the structure, and 
records the result of the interaction.  The guided waves that 
are used in GW inspection are able to propagate over long 
distances (10s of meters) enabling wide-area inspection 
(Rose, 2002).  A brief review of applications of GW for 
nuclear power plant components is provided in (Meyer, 
Ramuhalli, et al., 2012).  Issues remain with the reliability 
of sizing based on GW measurements, demonstration of the 
probability of detection, and appropriately accounting for 
changes in performance related to temperature.   

The methods described above are focused on detecting the 
presence of damage in materials that result in a change in 
the local material properties.  Inspection methods that rely 
on modal frequency analysis for structural monitoring have 
been proposed in other application spaces (Vipperman, 
1999; Zimmerman, Shiraishi, Swartz, & Lynch, 2008).  
These methods typically use accelerometers to measure 
displacements at different points in the components and use 
the result to analyze changes in primary modes of vibration 
of the structure.  Changes in the modal structure are usually 
correlated to the level of structural damage.   

Prognostics and health management for both active and 
passive components is a key need for maintaining the high 
level of safety and improving the economics of nuclear 
power generation moving forward with both LTO and new 
builds.  The development of PHM systems to date has been 
largely driven by non-nuclear industries and applications, 
and adapting these developments to NPPs (either LWRs or 
advanced reactor designs) faces significant challenges.  The 
following section briefly introduces some of the key 
technical gaps that currently limit the adoption of PHM in 
nuclear systems.   

5. RESEARCH NEEDS AND TECHNICAL GAPS 

Research in PHM for active and passive SSCs in NPPs is 
ongoing and active in the laboratory setting; however, 
development and deployment of solutions in the commercial 

field has been limited. For the most part, efforts have 
focused on enhanced methods for fault detection and 
diagnostics. Several technical gaps exist that preclude or 
restrict the application of fully developed PHM systems in 
NPPs, including sensors that can measure the parameters 
and stressors necessary to assess the health of SSCs; 
identification of risk-significant components and locations 
to support optimal sensor placement, particularly in large 
passive structures; availablility of data and first-principles 
models describing the complex degradation mechanisms in 
nuclear components; uncertainty quantification for sensor 
measurements, models, and RUL estimations; online 
assessment of prognostic model performance; and 
verification and validation of advanced models for PHM.  
Additionally, well-defined methods for incorporating the 
results of PHM algorithms into a more holistic view of plant 
operation, maintenance, and decision making are needed to 
provide a practical advantage for the use of PHM in terms of 
safety and economics.  While some of these gaps are 
relevant to other areas and industries, the unique operational 
framework and licensing requirements of nuclear power 
pose additional challenges. 

5.1. Sensors and Sensor Placement 

Novel methods for the measurement and inspection of large 
passive structures are needed to provide the information 
necessary to assess their current and evolving condition. In 
particular, sensors are needed that can accurately and 
reliably provide these measurements over long periods of 
time in harsh environments. Research is ongoing to evaluate 
the long-term performance of piezoelectric sensors in 
radiation environments (Parks & Tittmann, 2011). 

Another challenge to applying PHM to NPPs is sensor 
placement, particularly for passive components.  The 
proposed NDE methods for monitoring passive components 
offer limited coverage with a single measurement; multiple 
measurements at different locations (and perhaps multiple 
types of measurements) will be necessary to provide 
coverage of an entire passive structure.  Due to cost 
concerns of deploying many sensors (either through 
retrofitting legacy reactors or embedded in new plant 
designs), it may not be feasible to provide 100% coverage of 
every important passive structure.  Risk analyses may be 
used to determine the components and locations of most 
interest in monitoring for degradation in order to reduce the 
monitoring burden. Research in sensor placement for 
detecting sub-surface cracks in aircraft structures found that 
the selection of frequency and placement could only be 
determined with a good understanding of the failure 
mechanisms and application problem (Teo, Chiu, Chang, & 
Rajic, 2009); research in accurate physics-of-failure models 
of material degradation will be necessary for optimal sensor 
placement. 
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5.2. Data and Models 

As discussed in Section 3, prediction algorithms for PHM 
require either data from a population of failures or well-
developed physics-of-failure models. Because NPPs are 
safety-critical systems with a high risk to public perception 
for any abnormal occurrence, components and systems are 
not allowed to run to failure in situ. However, the 
development of high-fidelity physics-of-failure models may 
not be possible for certain failure modes that are not well 
enough understood. Development of accurate models for 
monitoring, diagnostics, and prognostics for both active and 
passive SSCs will require both physics models and 
experimental data.  

5.3. Uncertainty Quantification 

A systematic analysis of uncertainty can help reveal both 
reducible and irreducible uncertainty sources to aid in 
managing the overall RUL uncertainty. Current research 
trends focus on Bayesian methods for quantifying the 
uncertainty in both diagnostic and prognostic predictions 
(Byington, Watson, Edwards, & Stoelting, 2004; Liang, 
Kacprzynski, Goebel, & Vachtsevanos, 2009; Saha & 
Goebel, 2008). In addition to understanding and quantifying 
uncertainty in RUL estimates, we need to understand how 
uncertainty in each module of a PHM system propagates to 
later modules and how to control this uncertainty.  For 
example, uncertainty in the data collected from a system 
will contribute to uncertainty in the fault detection, the 
diagnosis, and the eventual prognosis.  The uncertainty 
calculated at each stage needs to account for the uncertainty 
in the stage(s) before it.  Additionally, the uncertainties for 
specific components will propagate through to subsystems, 
systems, and the plant as a whole. 

5.4. Online Performance Assessment 

Uncertainty quantification can give some indication of 
prognostic performance metrics, but additional measures are 
needed to characterize the performance of a prognostic 
model online.  Online performance measures for 
monitoring, fault detection, and fault diagnostics are well 
established and understood (Hines, Garvey, et al., 2008a), 
but performance metrics for prognostics have largely 
focused on offline analysis of algorithms (Goebel, Saxena, 
Saha, Saha, & Celaya, 2011; Saxena, Celaya, Saha, Saha, & 
Goebel, 2010a; Saxena, Celaya, Saha, Saha, & Goebel, 
2010b; Saxena et al., 2008). Methods to evaluate the 
accuracy, robustness, and confidence level of RUL 
predictions as they are made will determine if the results 
provide actionable information for O&M planning. 

5.5. Integration with O&M Planning and Control 

In addition to the research needed to fully develop and 
deploy accurate, reliable, robust PHM systems for NPPs, 
there is a need for research into how these results can be 

applied for practical improvements in plant safety, 
operations, and economics. Methods to integrate PHM 
results into online PRA are being investigated to provide a 
more realistic view of the risk of operating a specific plant 
under specific usage conditions (Coble, Coles, Meyer, & 
Ramuhalli, 2013). The results of PHM systems could also 
be incorporated into O&M planning by determining if an 
aging component can be operated under planned or reduced 
loads until the next convenient maintenance opportunity 
without affecting the safety margins of the plant.  The 
integration of PHM results into risk assessment and O&M 
planning can improve the economics of nuclear generation 
while maintaining high safety margins. 

5.6. Verification and Validation 

Some research has begun to address verification and 
validation (V&V) for prognostic algorithms, though none 
specific to the nuclear industry; a review of V&V research 
to date is given by Liu et al. (Liu, Yu, Zhang, & Li, 2011). 
One significant challenge in V&V for NPP PHM systems is 
the lack of statistically sufficient data for testing the variety 
of algorithms applied across all SSCs.  A rigorous V&V 
methodology that utilizes available data and high-fidelity 
models specific to nuclear applications is needed with 
endorsement by the NRC. 

6. SUMMARY 

Over the years, operational experience has shown that 
greater situational awareness of the state of safety-critical 
nuclear plant systems, structures, and components is 
necessary, particularly as they age over time due to 
exposure to harsh service conditions.  While replacement of 
a subset of components is possible, it may be economically 
prohibitive to replace several of the larger components, such 
as the reactor pressure vessel or primary piping.  Thus, 
detection, management, and mitigation of aging-related 
degradation in these critical components become important 
to maintain safety margins. Appropriate PHM systems can 
potentially preclude serious consequences due to aging-
related faults while supporting the reduction of unnecessary 
inspection and maintenance that challenges the economics 
of nuclear generation. 

PHM technologies can be beneficial to NPP operations, 
potentially providing improvements in safety, reliability, 
uptime, O&M optimization, and plant economics, both for 
the current fleet of LWRs and future reactor designs. 
Additionally, some Gen III/III+, Gen IV, and SMR reactor 
designs will potentially have increased monitoring needs 
due to extended fuel cycles, reduced access to critical 
components, and remote siting with reduced maintenance 
staff.  

While significant research, development, and deployment 
has occurred for prognostics and health management in 
several complex and safety-critical industries, the nuclear 
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industry has largely lagged behind. Several gaps, both 
technological and regulatory, will need to be addressed 
before these methods are deployed in operating NPPs. Some 
of these needs are specific to the application to NPPs and 
nuclear components, including high-fidelity physics-of-
failure models for failure modes of interest in NPPs; 
experimental failure and aging data for nuclear SSCs; 
development of long-lived, radiation resistant sensors; and 
optimal sensor placement strategies for monitoring passive 
component condition.  Some areas of research are more 
general to the PHM community as a whole (e.g., uncertainty 
analysis and propagation, online prognostic performance 
assessment, and verification and validation of PHM 
algorithms and models), and ongoing research in other fields 
can likely be leveraged to address these needs for NPPs.  
Finally, well-defined methods for incorporating the results 
of PHM algorithms into a more holistic view of plant 
operation, maintenance, and decision making are needed to 
provide a practical advantage for the use of PHM in terms of 
both safety and economics. 
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ACRONYMS AND ABBREVIATIONS 

10 CFR Title 10 of the Code of Federal Regulations 
AE acoustic emission 
AGR advanced gas-cooled reactor 
AMP aging management plan 
CBM condition-based maintenance 
CEDM control element drive mechanism 
CRDM control rod drive mechanism 
DOE Department of Energy 
DRPI digital rod position indication 
EBR-II Experimental Breeder Reactor II 
EdF Électricité de France 
EM electromagnetic 
EPRI Electric Power Research Institute 
FW-PHM Fleet-Wide Prognostics and Health Management 
GALL Generic Aging Lessons Learned 
GW guided wave 
HFIR High Flux Isotope Reactor 
Hx heat exchanger 
I&C instrumentation and control 
IAEA International Atomic Energy Agency 
IGALL International Generic Aging Lessons Learned 
iPWR integral pressurized water reactor 
ISI in-service inspection 
LIRA line resonance analysis 
LTO long term operation 
LWR light water reactor 

MCSA motor current signature analysis 
MOV motor-operated valve 
NDE nondestructive evaluation 
NPP nuclear power plant 
NRC Nuclear Regulatory Commission 
O&M operations and maintenance 
OLM online monitoring 
ORNL Oak Ridge National Laboratory 
PHM prognostics and health management 
POF probability of failure 
PRA probabilistic risk assessment 
RCP reactor coolant pump 
RCPVMS reactor coolant pump vibration monitoring 
system 
RI-ISI risk-informed in-service inspection  
RUL remaining useful life 
SBIR Small Business Innovation Research 
SMR small modular reactor 
SPRT sequential probability ratio test 
SSC systems, structures, and components 
TDR time domain reflectometry 
TVA Tennessee Valley Authority 
NDT nondestructive test 
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