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ABSTRACT 

As the licenses of many nuclear power plants in the US and 
abroad are being extended, accurate knowledge of system 
and component condition is becoming increasingly 
important. The US Department of Energy (DOE) has funded 
a project with the primary goal of developing lifecycle 
prognostic methods to generate accurate and continuous 
Remaining Useful Life (RUL) estimates as components 
transition through unique stages of the component lifecycle. 
Specific emphasis has been placed on creating and 
transitioning between three distinct stages of operational 
availability. These stages correspond to Beginning Of Life 
(BOL) where little or no operational information is 
available, early onset operations at various expected and 
observed stress levels where there is the onset of detectable 
degradation, and degradation towards the eventual End Of 
Life (EOL). This paper provides an application overview of 
a developed lifecycle prognostic approach and applies it to a 
heat exchanger fouling test bed under accelerated 
degradation conditions resulting in an increased 
understanding of system degradation. Bayesian and 
Bootstrap Aggregation methods are applied to show 
improvements in RUL predictions over traditional methods 
that do not utilize these methods, thereby improving the 
lifecycle prognostic model for the component. The analyses 
of results from applying these lifecycle prognostic 
algorithms to a heat exchanger fouling experiment are 
detailed. 

1. INTRODUCTION 

The field of prognostics for system reliability focuses on the 
determination of both component and system health and 
RUL to provide safety, reliability, and financial benefits. 
Interest in this field is growing as more commercial reactor 

licenses seek to extend operations past original 40 year 
lifetimes, causing increased concern for the reliability and 
safety of the system components. A primary goal of 
prognostic models is to lessen plant down time and the 
resulting loss of revenue, which can lead to a reduction in 
the number of total nuclear power plant shutdowns (Meyer, 
Bond, & Ramuhalli, 2012). To this end, the development of 
online prognostic models estimating RUL of components 
can lead to more efficient maintenance scheduling, and 
when used for on-line monitoring, can reduce sudden loss of 
operations from unexpected component failure (Coble, 
Ramuhalli, Bond, Hines, & Upadhyaya, 2012).  
 
Current research focuses on the development of prognostic 
methods and models for estimating RUL throughout the 
lifetime of a component. By utilizing several different 
methods and combining them in calculated ways, a lifecycle 
prognostic model for a component or system can be 
developed that handles the predictive maintenance from data 
acquisition to RUL prediction. To validate the lifecycle 
prognostics methods developed during this project, an 
accelerated degradation test bed was constructed that 
simulates fouling in a shell and tube style heat exchanger. A 
Nuclear Power Plant (NPP) contains many heat exchangers, 
which are crucial to the overall performance of the plant, 
making accurate monitoring and modeling of the RUL for 
these heat exchangers vitally important. Possibly the most 
important heat exchanger for maintenance purposes is the 
main turbine condenser. Failure to remove waste heat in the 
system by the condenser can significantly reduce plant 
capability to maintain vacuum, which has occurred during 
hot summer months at several NPPs such as Watts Bar, 
resulting in a derating from loss of efficiency (Buecker, 
2009). Between 2008 and 2010, the North American 
Electric Reliability Corporation (NERC) stated that 
condenser associated performance issues were responsible 
for the removal of over 9.1 million megawatt hours from the 
energy grid (Fayard, 2011). This loss of energy is partly 
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from loss of efficiency in the condenser, which can reach 
20% loss from typical seawater fouling (Ibrahim & Attia, 
2015). In an effort to reduce the effects of this efficiency 
loss for NPPs, the algorithms detailed in this paper are 
implemented on the data collected from the small-scale heat 
exchanger fouling experiment onsite at the University of 
Tennessee. This paper presents the development of data-
driven models capable of degradation detection, evaluation 
of system health indicators, and finally lifecycle prognostic 
RUL prediction.   
 
The structure of this paper starts with a brief discussion of 
the background for heat exchanger fouling research and the 
steps necessary to develop a lifecycle prognostic model for a 
heat exchanger system with a short explanation of each step. 
Next is a description of the heat exchanger setup and 
operating procedure used to generate the accelerated 
degradation data for lifecycle prognostic model generation. 
This will be followed by a detailed report of the steps taken 
to develop the lifecycle model including signal/feature 
selection, auto-associative kernel regression model 
development, prognostic parameter generation, general path 
model generation, Bayesian updating application, and 
bootstrap aggregating (bagging) implementation. The paper 
ends by presenting the results of a developed lifecycle 
prognostic model and concluding remarks.  

2. BACKGROUND 

There has been much research into physics driven heat 
exchanger modeling such as plate heat exchangers with 
mathematical first principles methods (Gut & Pinto, 2003), 
as well as physics of failure models for heat exchanger 
degradation due to milk fouling (Georgiadis & Macchietto, 
2000). Unlike a physical heat exchanger test bed, first 
principles models provide the ability to quickly generate 
large sample data sets with multiple failure modes. 
Ardsomang, Hines, and Upadhyaya (2013) utilized physics 
models for heat transfer and effectiveness to estimate the 
RUL of a developed heat exchanger first principles model. 
Physics based methods for detecting fouling in heat 
exchangers, such as Kalman filtering utilizing first 
principles models, are also currently used. These physics 
based models have been historically proven to be effective 
at predicting moderate fouling (Jonsonn, Lalot, Palsson, & 
Desmet, 2007). Heat exchanger first principles modeling is 
presently used mainly for on-line monitoring, diagnostics 
and fault detection (Upadhyaya & Hines, 2004).  
 
While there are several advantages to first principles 
models, a physical test bed allows for validation of the 
degradation models with real world signals collected from 
the heat exchanger. First principles models must be 
designed to include a robust set of different conditions and 
failure mechanisms, whereas with real world 
experimentation different natural failure mechanisms, 

operations, and natural data fluctuations (process noise) are 
inherent to the experimental setup. An advantage of test 
beds is that unexpected developments in testing need not be 
known unlike when designing first principles models. For 
example, if a simulation of an induction motor system is 
developed to model the conditions of onset bearing failure, 
there may actually be several different failure modes, such 
as insulation degradation, shaft warping or bearing faults, 
which the model will not implement. Using a physical test 
bed reduces the concern to preemptively model every 
possible form of degradation and their cross-signal 
cumulative effects. However, physical systems do create the 
additional burden of obtaining high fidelity “unfaulted” 
baseline data with which to build comparison models. 
Unlike many first principle models, empirically driven 
models can be developed almost exclusively on historic 
unfaulted data. Once a robust baseline reference model has 
been established using unfaulted data, incoming real-time 
data can be passed through to these models and monitored 
for deviations from expected normality.  
 
One type of empirical modeling technique to measure the 
deviations discussed is the Auto-Associative Kernel 
Regression (AAKR) (Wand & Jones, 1995). AAKR models 
are typically built using vector selection techniques on 
unfaulted data to construct a memory matrix representative 
of the expected operating space of the system. The AAKR 
model used in this study is an error correction model 
constructed with fault-free data and built from methods 
developed by Garvey and Hines (2006). AAKR was chosen 
because it is non-parametric, making it flexible and adaptive 
through additions to the memory matrix. This is important 
when the operating space is not known a priori. When 
faulted data is input to the model, the output is a corrected 
version of the faulted input data.  When the corrected data is 
compared to the actual data, the difference between them is 
termed residuals.  As a component degrades, the residuals 
are expected to increase until failure. Figure 1 shows the 
basic arrangement of the AAKR based prognostic system. 
Operational data is input and residuals are calculated. These 
residuals can then be combined into a prognostic parameter, 
which is related to the health of the system.  A prognostic 
model is developed to predict the degradation process and 
the system RUL. The remaining three steps, residual 
calculation, prognostic parameter generation and prognostic 
modeling, are discussed in subsequent sections. 
 

 
Figure 1. Basic arrangement of an AAKR based prognostic 

system. 
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Prognostic models can be classified into three types based 
on the category of data used in the model (Hines, Garvey, 
Preston, & Usynin, 2007). The first of these, Type I, or 
simple time-to-failure distribution models, are used to 
estimate the failure times of a system, generally before 
operation begins or if there is no information available from 
the query system other than failure times. Type I 
prognostics is very common for preventative maintenance, 
and often takes the form of a Weibull distribution of the 
failure times. Type I models can be prone to high 
uncertainty for systems with multiple operating conditions, 
or other operational variables that broaden the range of the 
system’s failure times. In Type II prognostic models, 
stressor information such as the flow rates for heat 
exchangers can be used to improve the estimates starting at 
the early stages of operation when expected or continuing 
stress levels are known. This can be thought of like different 
Type I models for each operating condition. We expect to 
see improvements in RUL predictions when transitioning 
from Type I to Type II models as a result of an increase in 
understanding of system degradation. When quantifiable 
measured or inferred degradation is detected in the system, 
Bayesian techniques can be used to further transition to a 
Type III model, for more accurate RUL estimates. These 
Type III models use directly measured signals to track the 
system/component degradation and are expected to offer the 
highest accuracy RUL predictions. Use of the general path 
model for extrapolating an empirical model to failure is the 
most common of the Type III models (Coble, Ramuhalli, 
Bond, Hines, & Upadhyaya, 2012), and was the used in the 
development of this work’s lifecycle prognostic model. 
 
The General Path Model (GPM) was first proposed by Lu 
and Meeker (1993), and was initially used for prognostics 
by Upadhyaya, Naghedolfeizi, and Raychaudhuri (1994). 
The GPM is commonly used to extrapolate some measure of 
system health, called the prognostic parameter, built from 
degradation data by means of a regression fit. For 
prognostics, past degradation cycles can be analyzed, and an 
appropriate functional fit type (linear, quadratic, etc.) can be 
determined and then applied to an unfailed case with 
detectable levels of degradation. The regression model is 
then extrapolated to some failure threshold and the time to 
failure (TTF) is calculated. Using the GPM attempts to 
capture the overall shape of the degradation. In this 
experiment, the heat exchanger undergoes constant 
degradation. While there is some self-healing, and 
deviations from the path, the overall the increase in 
degradation is clear. In most cases, the paths have linear or 
near linear shapes that can be accurately modeled using 
quadratic fits within the GPM. This method of utilizing 
GPM, along with Bayesian inference, was applied to the 
heat exchanger test bed.  
 
 

Bayesian methods for including prior information are based 
on Bayes’ theorem and can be used for regression problems. 
It has been shown by Coble and Hines (2011) that Bayesian 
inference for application in prognostics problems can be 
successfully used to update GPM regression weights based 
on prior information. By appending weighted inputs to the 
data matrices, GPM regression can be purposefully biased 
towards historical paths or failure times. For data with high 
variability in the BOL, this method may drastically improve 
RUL predictions during this period. This method of 
Bayesian updating was chosen for use on the heat exchanger 
experiment data, which suffers from rapidly inconsistent 
faulted data during the BOL, and is discussed in section 4.4. 
 
Bootstrap aggregating, also known as bagging, is a variance 
reduction technique that combines outputs from several 
predictive models and merges them into a new prediction. 
The most general form of this merging technique is referred 
to as ensemble learning (Bryll, Gutierrez-Osuna, & Quek, 
2003), with bagging and boosting being the most widely 
used specific methods. The purpose of ensemble learning is 
to reduce the output variance through improved 
classification accuracy of the different machine learning 
models. Bagging is a method of ensemble learning that 
produces a number (n) of training sets by randomly 
sampling an original training data set n times. By 
significantly perturbing the n training sets (through random 
sampling) with respect to the original set, the resulting 
predictors can be used to improve accuracy (Breiman, 
1996). Another form of ensemble learning related to 
bagging is subgroup bagging, or subagging. This separate 
method is denoted for techniques used when conducting 
empirical research involving bagging as in the case of 
decision trees. This subagging method has been shown to 
significantly reduce the variance of empirical data sets in a 
more computationally efficient way (Büchlmann & Yu, 
2002). The general subagging scheme used for this research 
is shown in Figure 2.  

 
Figure 2. Bootstrap aggregation scheme using multiple 
subgroups (Baraldi, Gola, Zio, Roverso, & Hoffman, 

2011)(Baraldi, Roozbeh, & Zio, 2010) 
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Figure 2 shows the path taken to implement the subagging 
routine. It starts with the process data, which is then 
grouped into signal sets. Each of the n subgroups is a 
different combination of signals or process data features. 
The different subgroups are then used to build models 
(training group), and the model results are combined to 
reduce the variance (Büchlmann, 2003). Specifics of the 
subagging method used for this research are discussed in 
Section 4.6. 

3. EXPERIMENTAL SETUP AND DATA ACQUISITION 

The heat exchanger fouling test bed experiment was 
designed to increase the rate of fouling degradation of a 
shell and tube heat exchanger by accelerated process-side 
fouling. This structure contains 8 sensors to monitor 
temperature, flow, and pressure within the 64 tube cross-
flow heat exchanger, shown in Figure 3 and summarized in 
Table A1. 
 

 
Figure 3. Schematic of heat exchanger physical setup  

 
As seen in Figure 3, there are thermocouples at each of the 
four entrances and exits of the heat exchanger used to 
measure the incoming and outgoing temperature of the hot 
and cold legs: sensors 1, 2, 3, and 4, respectively.  Pressure 
transducers are at both ends of the heat exchanger hot leg to 
measure the pressure variation (sensors 7 and 8). There are 
two turbine style flow meters to measure flow velocity of 
the hot and cold legs (sensors 5 and 6, respectively). A 
LabVIEW data acquisition (DAQ) system is used to sample 
and record the signals at 0.1 Hz. Three 250 watt heaters are 
used to heat the reservoir water for the hot leg supply, and a 
0.5 horsepower (HP) pump is used to facilitate flow. The 
heat exchanger used for this test bed is the Basco 64 shell 
and tube. Each hot leg tube is 0.25 inches in diameter and 
24 inches in length. A full list of system components is 
given in Table 1.  
 
 
 
 

 Component Brand Location 

Se
ns

or
s 

Thermocouple Omega 

Hot Leg Inlet 
Hot Leg Outlet 
Cold Leg Inlet 
Cold Leg Outlet 

Turbine Flow 
Meter Blancett Hot Leg Inlet 

Cold Leg Outlet 
Pressure 
Transducer Dwyer Hot Leg Inlet 

Hot Leg Outlet 

Data Acquisition 
System 

Texas 
Instruments N/A 

C
om

po
ne

nt
s 

Heat Exchanger Basco N/A 

250 Watt  Heater Tempco Two on top of tank 
One on bottom of tank 

15 Gallon 
Reservoir Tank 

McMaster-
Carr 

Hot Leg - Below Heat 
Exchanger 

0.5 HP Pump Berkeley Below Tank 

Table 1. Major systems components, brand, and location 

Shell and tube heat exchanger degradation occurs most 
commonly as continuous fouling within the tubes, which 
results in a reduction in heat transfer to the point where it no 
longer meets specifications (Upadhyaya, 2004). For the 
scope of this experiment, this reduction in heat transfer is 
due to particulate fouling inside the process side tubes. To 
accelerate fouling of the test bed experiment, kaolin (china 
clay) is added to the hot leg water. At startup, a mixture of 
water and 105 grams of clay is added to the system, with 
additions of 75 grams of clay in solution every 48 hours 
during the cycle. This regular addition of clay helps to 
maintain a consistent clay density in solution within the 
system. Without these regular additions, the clay has a 
tendency to fall out of solution and settle in the reservoir 
tank. In commercial reactors, and more specifically 
condensers, fouling occurs gradually over time, therefore 
the consistent clay concentration within the heat exchanger 
tubes is critical to produce realistic degradation data that 
simulates real behavior. A typical cycle is 14 days of 
continuous operation at 1 gallon-per-minute in the hot and 
cold legs (excluding down time during clay addition).  
 
Operational data has been collected for eight cycles run at 
one gallon-per-minute. For the purposes of this paper, the 
average flow rate can be considered a stress related variable 
as it is directly related to the fouling rate. The flow rate is 
important for the stressor-based prognostic algorithms, and 
in future research will be varied during a data collection 
cycle; for the extent of this paper, each cycle is held at near 
constant flow rate.  

4. MODEL DEVELOPMENT 

To study the difference in RUL predictions based on signal 
selection, multiple competing models are created which rely 
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on different signal sets. It is expected that there will be 
significant differences is each model’s prediction accuracy.  

4.1. Signal and Feature Sets 

From the data, certain features such as log mean 
temperature difference (LMTD), heat rate, and delta 
temperatures are calculated. The two features used in the 
prognostic models are heat rate and overall heat transfer 
coefficient given by Eq. (1) and (2b) respectively.  
 

𝑄!/! =   𝑚𝐶! 𝑇! − 𝑇!                         (1) 
 

LMTD =  
𝑇ℎ1−𝑇𝑐2 − 𝑇ℎ2−𝑇𝑐1

log
𝑇ℎ1−𝑇𝑐2
𝑇ℎ2−𝑇𝑐1

                 (2a) 

 

𝑈!/! =
!!/!

!"#$∗!
                         (2b) 

 
where A is the surface area of heat transfer. 
 
These signals and features define the state of the system and 
are selected for inclusion into the AAKR models. When 
cleaning the training data for the AAKR model, it is 
important that the data is fault-free and the test cases operate 
in the same conditions. To reduce system noise, especially 
for the mass flow rates, a median filter was applied to 
remove outliers exceeding three standard deviations. This 
procedure removed many of the anomalously large spikes 
that had been seen in the mass flow rate signals, which 
would be unexpected given that the signal was in a near 
steady state condition.  
 
One way to improve performance is to ensure that AAKR 
models are created with groups of related variables. In order 
to assist in creating related groupings of signals, the linear 
relationships between the signals and features were analyzed 
via correlation coefficients. As a rule of thumb, absolute 
coefficient values of greater than 0.7 correspond to strong 
correlations between signals, and coefficients of 0.25 and 
below are considered to show no significant linear 
correlation. Figure 4 shows a plot of the correlation 
coefficients for the raw data and calculated feature indices, 
where variable indices 1-8 are signals and 9-15 are features. 
The variable indices are summarized in Table A1 in the 
Appendix.  
 
Figure 4 shows that there is a strong correlation between 
signal indices 1 to 4 (measured temperatures). There is also 
a strong correlation between signals 1 and 2 and features 13 
to 15 (LMDT and heat transfer coefficients). There are 
moderate correlations between signals 1 to 6 (5 and 6 are 
flow rates) and 13 to 15. 
 
 

 
Figure 4. Correlation coefficients of signals and features 

 
Four sets of related variables were chosen based on 
correlation coefficients and understanding of the system 
processes. Other signal sets were tested during initial 
modeling attempts, but did not return desirable residual 
values and trends, and therefore were not considered for 
final lifecycle prognostic methods. The selected signals and 
features were chosen either for being moderately-to-highly 
correlated to one another or for the strong trend observed in 
them, such as increasing trends of the hot leg temperatures 
and decreasing trends of the heat transfer coefficients. The 
indices chosen for each signal set are given in Table 2. 
 

Signal Set Signal/Feature Indices Used 

1a 2, 3, 11, 12, 14, 15 

2a 1, 2, 3, 4, 11, 12, 14, 15 

3a 1, 2, 3, 4 

4a 1, 2, 3, 4, 14, 15 

Table 2. Signal sets used for modeling (with the label ‘a’ to 
distinguish these from future signal sets) 

 
The flow rate was designed to remain relatively constant, 
and both flow signals are used in the development of the 
heat transfer coefficients (variable indices 14 and 15), which 
are included in the signal sets. Therefore, flow rates signals 
(variable indices 5 and 6) were not selected for explicit use 
in the signal sets. Similarly, the LMTD was not included in 
the signal sets because it was believed that the heat transfer 
coefficients would more accurately contain the thermal 
transfer information. In signal sets 1a, 2a, and 4a, the heat 
transfer coefficients, heat rates, and temperature signals are 
used.  Since the overall heat transfer coefficients (indices 
14-15) are calculated from first principles models that are 
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dependent on temperature signals (Schmidt, Henderson, & 
Wolgemuth, 1993), including them in an empirical AAKR 
model has the effect of increasing both the model’s and 
prognostic parameter’s weightings toward the temperature 
signals. This may improve modeling attempts when the 
temperature signals have strong increasing trends, and is 
expected to be more effective than other methods of 
artificially increasing the weightings, as it collapses signals 
to known, important dimensionalities.   

4.2. Auto-Associative Kernel Regression 

After feature selection is completed, the unfaulted heat 
exchanger data is divided into three data sets termed 
training, testing, and validation.  Training data is used to 
train the model through historic memory vector selection 
and should consist of unfaulted data that covers the range of 
operating values. Testing data is used for bandwidth 
optimization, and validation data is used to quantify the 
model performance. AAKR models for the heat exchanger 
were developed and evaluated with the PEM toolbox (Hines 
& Garvey, 2006). Kernel regression requires a parametric 
kernel function, in this case a Gaussian function, defined by 
a bandwidth that specifies the region of localized weighting 
for an input vector to the memory matrix output. An optimal 
bandwidth can be selected by altering it to minimize the 
error between known unfaulted observations and the model 
output. This method of determining the bandwidth increases 
the accuracy of the kernel regression model (Wand, 1995). 
Example training residuals from an AAKR model of signal 
set 2a are shown in Figure 5. 

 
Figure 5. Example training residuals for signal set 2a. 

 
Only one residual for each signal type is shown to improve 
visibility. For this experiment, the training residuals of the 
temperature signals are desired to be less than 1oC since the 
temperature signals change less than 10°C over the faulted 
range. The training residuals of the heat rate should 
optimally be less than 50 W, and the heat transfer coefficient 
residuals should be less than 10 𝑊/𝑚!𝐾. These levels were 
chosen based off knowledge of signal and feature operating 

ranges over normal cycles as well as the expected signal-to-
noise ratios for the heat exchanger system. The expected 
signal deviation due to normal process and signal noise is 
determined by visual inspection. After the model is built, 
faulted data is passed through and residuals for each faulted 
cycle are calculated. An example of faulted residuals for the 
temperature sensors in signal set 2a is plotted in Figure 6. 

 
Figure 6. Faulted residuals of temperature signals (indices 1-

4) using the signal set 2a model 
 
From the failure residuals shown, strong increasing trends 
can be seen for the hot leg temperature signals. Dominantly 
monotonic trends are important when combining residuals 
to make a prognostic parameter. When combining the 
residuals, the objective is for the resulting health indicator to 
increase or decrease over the lifecycle to help indicate the 
degree of system or component degradation. If the observed 
trends of the residuals show a strong increasing/decreasing 
trend then the resulting prognostic parameter will also have 
a strong trend and be more useful for RUL predictions. 

4.3. Prognostic Parameter Generation 

A prognostic parameter is a metric that signifies the amount 
of deviation from normal behavior of the system, and is 
ideally linked to the overall health of the system.  In this 
project, it is calculated as a linear combination of the 
residuals from the AAKR model. While the genetic 
algorithm was used to find a linear combination of weights 
for the residuals was investigated, it was found to be too 
computationally expensive. Instead, an ordinary least 
squares (OLS) regression is applied that mimics the 
optimization and is less computationally intense for smaller 
data sets. The model residuals of multiple runs to failure are 
collected into a single matrix by concatenating each test 
case. This creates an n x s matrix, X, where n is total data 
points in all test cases, and s is the number of signal in the 
model. This X matrix is regressed against an n x 1 vector 
“y” where each yi corresponds to the percent of the total 
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unit life at that observation. This means that the residuals of 
each test case are fitted to a linear curve from 0 to 1. The 
linear weights are then  
 

     𝛽 = 𝑋!𝑋 !!𝑋!𝑦     (3) 

where 𝛽 is an s x 1 vector.  

4.4. General Path Model and Bayesian Updating 

When using the GPM approach, a parametric function is fit 
to the degradation parameter, and extrapolated until it 
crosses a predefined failure threshold. Typically, the failure 
threshold is based on historical failures but need not directly 
indicate a point of catastrophic failure.  The failure 
threshold can be set as any point where a system no longer 
conforms to the necessary specifications and demands 
placed upon it.  
 
Because of the limited number of test cases, the GPM and 
resulting predictions are created by the use of a Leave One 
Out Cross Validation (LOOCV) technique. Hence, when 
creating a model to calculate the RUL of a specific case, the 
information from that case is removed and information from 
every other case is used to build the model. This avoids 
invalidating a model by keeping training and validation data 
separate, yet general enough to compare over all cases. With 
more data, an alternative approach could be to simply divide 
the cases in half and build one model.  
 
Individual failure thresholds for the LOOCV method were 
generated with respect to each of their corresponding data 
subsets. The values were chosen as a reflection of an 
unacceptable amount of degradation, limited by the least 
degraded cycle for any given model. Any data collected 
after this point was considered past the point of failure and 
was removed from the data analysis. A histogram plot of 
failure times for the lifecycle prognostic models is shown in 
Figure 7. 
 
As stated above, each time a prediction is made, the run 
being predicted is the one left out of the model 
development. Therefore, in order to make a prediction for 
‘n’ number of runs, the LOOCV method must be iterated ‘n’ 
times. 
 
Once the failure threshold from the LOOCV subset is 
selected, the RUL estimations for the target case can be 
calculated at each time step by extrapolating the current path 
to that threshold. To do this, a suitable parametric fit must 
be chosen. With the OLS method, the fit can be of any 
linearly separable form such as linear, quadratic, 
exponential, etc. 

 
Figure 7. Histogram of failure thresholds 

 
The OLS method is used for regression of the parametric 
fittings because the OLS regression on a joint Gaussian 
distribution of parameters gives the maximum likelihood 
estimate. This method assumes that the error is normally 
distributed around zero.  The OLS solution can be found 
using the pseudo-inverse given in equation 3. By adjusting 
the functions in the columns of the input matrix X, 
parametric fits can be applied to the test paths. It is assumed 
that for a certain failure mode the degradation paths will 
follow similar fits. Therefore, once a suitable fit is chosen 
for the failed data, it is assumed the censored faulted data 
will follow the same fit.  
 
Bayesian priors can also be incorporated into the OLS 
model (Gelman, Carlin, Stern, & Rubin, 2004) to reduce the 
uncertainty and increase the stability of RUL estimates. 
Bayesian statistics combines prior distributions with 
sampling data to create a posterior distribution. When few 
data points are available, without incorporating any form of 
Bayesian prior estimations, the model can easily be affected 
by noise and give widely varying predictions of Time To 
Failure (TTF).  Coble and Hines (2011) use Bayesian 
methods to incorporate prior knowledge of regression 
parameters in the GPM.  This approach requires historical 
run-to-failure data in order to evaluate the prior distributions 
of regression parameters.  An alternative approach instead 
uses RUL estimates from Type I prognostic models as prior 
information (Nam, Sharp, Hines, & Upadhyaya, 2013).  In 
this approach, the Type I RUL distribution is treated as an 
additional data point in the OLS regression.  The measured 
data is augmented with the distribution according to Eq. (4): 

⎥
⎦

⎤
⎢
⎣

⎡

Σ

Σ
=Σ⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

RUL

y

MTTF
X

X
thresh
y

Y
0

0
,,

   
 (4) 

 
where y is the observed prognostic parameter, thresh is the 
failure threshold, x is the timestamps (or appropriate 
transformation thereof), MTTF is mean failure time from the 
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Type I distribution (or appropriate transformation thereof), 
𝛴! is the noise or uncertainty associated with the observed 
prognostic parameter, and 𝛴!"#  is the uncertainty in the 
Type I RUL estimate.  The OLS regression is then solved 
according to Eq. (5)-(7): 

β = X!Σ-‐!X
-‐!
X!Σ-‐!y                       (5) 

 
𝑉𝜎! = 𝑋!𝛴!!𝑋 !!                     (6) 

 
σ! = !

!-‐!
y-‐Xβ

!
Σ-‐! y-‐Xβ                 (7) 

where k is the degree of the parametric function used in the 
GPM. 
 
The weight of the prior information in the OLS regression 
depends on two main factors: the uncertainty of the prior 
relative to the uncertainty of the measurements, and the 
number of observations collected (Ghosh, Delempady, & 
Samanta, 2006). If the uncertainty of the prior is small 
compared to the uncertainty of the data, the prior 0β  will be 
weighed more heavily. However, no matter the difference in 
uncertainties, with enough observations, the data should 
eventually swamp out the prior in calculating the posterior. 

4.5 Bayes Method Implementation 

For each of the four AAKR models, two prognostic 
modeling methods are used: 

GPM Method 1: No Bayesian updating 

GPM Method 2: Type 1 Bayes priors 

To compare the two methods, plots of the predicted TTF 
versus the actual TTF are examined. In each plot, the 
multiple blue lines correspond to the determined TTF of 
each cycle over time. Figure 8 shows a plot of the TTF 
comparison when no Bayesian updating is used. 
 
Without Bayesian updating, TTF prediction times have 
large spikes, and prediction accuracy is reduced. While 
some peaks are due to the noise and artifacts in the heat 
exchanger data acquisition system, the somewhat larger and 
broader peaks at regular intervals are most likely the result 
of the regular additions of clay into the hot fluid. The extra 
clay would change the thermodynamics as well as mass 
flows of the otherwise closed system. In an attempt to 
improve TTF estimation, past cycle failure times are 
incorporated as prior information (Type I) as shown in 
Figure 9. Using Eq. (8), the variance of the regression model 
can be quantified. This variance decreases due to the 
inclusion of the prior. Using Monte Carlo sampling from the 
regression coefficient distribution, probability distributions 
of the RUL can be made. These distributions will have a 
smaller confidence interval and standard deviation, due to 

the decreased regression variances. The result is a decrease 
in prediction uncertainty when Bayesian priors are included. 

 
Figure 8. Plot of the GPM method 1 TTF predictions across 

cycles without Bayesian updating 
 

 
Figure 9. Plot of the GPM method 2 TTF predictions across 

cycles with Type I Bayesian updating 
 

The predictions using Type I prior information show visual 
improvement over those with no Bayesian updating. 
Improvements in model uncertainty will be discussed in 
following sections.  

4.6 Bootstrap Aggregating (Bagging) Implementation 

As discussed previously, bagging is a method of ensemble 
learning that utilized bootstrapped training sets to develop 
perturbed models, which can then be combined to facilitate 
variance reduction. The general form of bagging involves 
randomly sampled training sets to form the predictors. For 
the purpose of this lifecycle model, subgroups of signal sets 
based on understanding of the heat exchanger system are 
chosen rather than randomly sampled. These subgroups are 
similar to those in Table 2, but were improved upon to 
illustrate the effectiveness of bagging while retaining the 
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system information from the original 4 subgroups.  The five 
signal set subgroups for the heat exchanger bagging models 
are given in Table 3. 
 

Signal Set 
Subgroup Signal/Feature Indices Used 

1b 1, 2, 3, 4, 13 

2b 1, 2, 3, 4, 11, 12 

3b 1, 2, 3, 4, 14, 15 

4b 1, 2, 3, 4, 11, 12, 14, 15 

5b 2, 3, 11, 12, 14, 15 

Table 3. Subgroup signal set combinations for bagging 
(with the label ‘b’ to distinguish these from the subgroups 

listed in Table 2) 

 
The signal groups contain all four temperature signals, the 
log mean temperature difference, and the overall heat 
transfer coefficients. After the subgroups are created, they 
are used to train kernel regression models as shown earlier 
in Figure 1 using the LOOCV. Once the residuals from the 
AAKR model are calculated, they are combined into a 
prognostic parameter using OLS. This means that each sub-
data set will have a unique prognostic parameter result. 
Finally, the prognostic parameters are passed to the GPM 
and used to create RUL estimations.  After the RULs are 
calculated for each observation in the validation data set, 
they are aggregated for each observation across the signal 
subsets. The result is a single RUL prediction for each 
observation.  
 
After this initial bagging method was tested, alternative 
bagging methods were also investigated on the heat 
exchanger data set. One such method involved directly 
aggregating the residuals from the individual AAKR models 
to create a singular prognostic parameter. This was then 
passed to the standard GPM algorithm to determine the 
RUL. This method resulted in similar results to those for the 
RUL bagging method but was not included due to 
ineffective variance reduction. Additionally, subagging was 
conducted both with and without Bayesian updating. It was 
found that there was no benefit to conducting bagging 
without the Bayesian updating discussed earlier. Therefore, 
the RUL prediction results will only be given for Bayesian 
updating with subagging and Bayesian updating without 
subagging.  
 
It is expected that the RUL bagging will significantly reduce 
the variance in the Middle Of Life (MOL) for the heat 
exchanger. RUL bagging is expected to reduce the variance 
in the BOL, but incorporating the Bayes Type I priors into 
the model during testing reduced the subagging effect on the 

BOL RUL estimates. We do not expect the subagging 
technique to effect the EOL predictions because in this 
period of life there is significantly less variance in the RUL 
predictions. To provide an easy to interpret output, each 
cycle will be divided into BOL, MOL and EOL to compare 
the RUL error with and without bagging. Each period of life 
represents a third of the cycle length. The error reported for 
the case without bagging is the average total error of the 
best performing individual model as a conservative 
comparison. 

5. RESULTS AND DISCUSSION 

While it was previously discussed that both linear and 
quadratic fits were used for the GPMs, initial modeling 
attempts revealed that using a quadratic parametric fit is 
more accurate than using a linear parametric fit; therefore 
results will be confined to quadratic fit models. The 
different GPM methods and signal sets (models) are 
compared using several performance metrics. 
 
The first model comparison metric used is the absolute error 
mean (AEM), which returns the average absolute difference 
between the predicted RUL and the true RUL in real time 
units, shown in Figure 10, where GPM 1 and GPM 2 
correspond to the models without and with Bayesian 
updating respectively.  Signal sets 1a and 3a have the lowest 
AEM, and GPM method 2 further improves the predictions.  
Signal set 1a with GPM method 2 results in the most 
accurate RUL predictions for this data set. 

 
Figure 10. Absolute error mean for four signal set (1a-4a) 

models and two GPM methods using LOOCV 
 

The second metric used to evaluate the prognostic models is 
the absolute error standard deviation (AES), which is a 
measure of the variation in error through time of each model 
and GPM method, shown in Figure 11.  Again, the model 
built with signal set 1a and GPM method 2 shows the best 
performance, with highest precision in estimating the RUL.  
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Figure 11. Absolute error standard deviation for four signal 
set (1a-4a) models and two GPM methods using LOOCV 

 
To quantitatively compare the different GPM methods, the 
AEM, AES, spread, and coverage metrics are used (Sharp, 
2013)(Saxena, Celaya, Saha, Saha, & Goebel, 2010). A plot 
showing the results of these metrics for each GPM method 
for signal set 1a is shown in Figure 12 and the un-
normalized metric scores are provided in Table 4.   

 
Figure 12. Plot of normalized performance metrics for two 

GPM methods and signal set 1 using LOOCV 

The figure above compares the AEM, AES, spread, and 
coverage of the two models. The spread is a measure of the 
prediction uncertainty, weighted at each percent of life. The 
weight is based on a Gaussian kernel centered on the EOL 
with a bandwidth of half the total life, giving importance to 
EOL predictions. The associated confidence intervals, in 
this case 95%, are taken from distributions of prediction 
errors. The overall metric is the difference between the 
upper and lower error intervals, and shows how widely the 
accuracy can vary. The coverage is the fraction of binned 
true RUL that fall within the confidence interval. A 
coverage of 100% shows the model is reasonably accurate, 

dependent on the size of the confidence interval, over the 
entire life.  By incorporating Bayesian updating, the spread 
of the model, which is a measure of variability, has 
decreased. This is a positive result that indicates that the 
uncertainty in our model predictions has been reduced. 
Together, these metrics indicate that the Bayesian updating 
method (GPM Method 2) is more accurate than vanilla 
GPM for predicting RUL for this data set. 
 

G
PM

-1
 

AEM 1.70E4 

AES 9.62E3 

Spread 131 

Coverage 83.0 

G
PM

-2
 

AEM 1.14E4 

AES 5.14E3 

Spread 70.8 

Coverage 99.0 

Table 4. Performance Metrics Scores 

 

The comparison of model uncertainty between GPM 
without and with incorporating Bayes priors (GPM-1 and 
GPM-2 respectively) is also of concern. The following table 
shows the standard deviation (STD) of the quadratic 
regression parameters a, b, and c for each period of cycle 
life (BOL, MOL, and EOL).  

Period Model a-STD b-STD c-STD 

BOL 
GPM-1 7.30E-10 2.94E-06 2.48E-03 

GPM-2 2.04E-11 7.62E-07 3.21E-10 

MOL 
GPM-1 8.36E-11 1.25E-06 2.59E-10 

GPM-2 4.36E-11 7.68E-07 1.04E-10 

EOL 
GPM-1 1.93E-11 5.21E-07 5.98E-11 

GPM-2 1.88E-11 5.14E-07 5.74E-11 

Table 5. Quantified model uncertainties 

This data shows that the uncertainty in the BOL has the 
highest reduction between the periods of life, which is what 
was expected based on the concept of incorporating the 
Bayes priors. Another useful thing to note is that the use of 
the prior information does not increase uncertainty in the 
MOL and EOL periods. The results show that it is 
appropriate to apply Bayes priors for similar applications 
across the operating life.  
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To determine the extent to which subagging improves the 
RUL predictions, the results in Figure 13 are given as 
average total percent error for the three periods of life: 
beginning, middle, and end of life.  
 

 
Figure 13. Total percent error for each method and time of 

life grouped by cycle using LOOCV 

From the figure it can be seen that the average total error is 
reduced for 5 of the 7 cycles in the BOL, 6 of the 7 in the 
MOL, and 5 of the 7 in the EOL. While the reductions and 
increases for the BOL and EOL are relatively small, there is 
an error reduction of up to ~22% in the MOL when 
subagging is conducted compared to the best individual 
model without bagging. The one cycle with increased error 
also showed a uniquely low signal variance across perturbed 
subsets before subagging. This resulted in an increase in the 
total error, which is believed to have resulted from model 
error when conducting the AAKR model and GPM. 

6. CONCLUSION AND FUTURE WORK 

In this paper, a method of lifecycle prognostic modeling is 
presented and applied on data collected from a heat 
exchanger test bed setup at the University of Tennessee. 
This method relies upon predicting the progression of 
system residuals and how they relate to the overall system 
health to create estimations of the system’s Remaining 
Useful Life (RUL). Due to restrictions on available data, a 
Leave One Out Cross Validation (LOOCV) method was 
used to evaluate and validate the effectiveness of the 
modeling techniques. Several methods to reduce the 
variance and improve the accuracy of the resulting RUL 
estimations were explored and analyzed within this work. 
The results of this analysis show that across all test cases the 
Bayesian transition using Type I priors outperformed the 
GPM with no Bayesian updating, and resulted in up to a 
99% reduction in regression parameter standard deviation. 
From the results of incorporating subgroup bootstrap 
aggregating (subagging), it is concluded that subagging has 

a positive impact on error reduction for Middle Of Life 
(MOL) RUL predictions, and should be used in tandem with 
the Bayesian techniques discussed, which drastically reduce 
the beginning of life average total error.  
 
The authors have identified areas of potential future work to 
improve the prognostics method presented here in several 
ways. First, it is recommended that investigations into 
optimally reducing the noise of the prognostics parameter 
through improved filtering be pursued for prognostics 
parameter optimization. Second, with the addition of more 
sample cases, a more robust prognostics parameter with a 
well-defined degradation threshold could be created, both 
increasing the prognosability and decreasing the End Of 
Life (EOL) RUL and Time-To-Failure (TTF) prediction 
errors. Third, a crucial future implementation is the 
application of a fault detection method to remove beginning 
of life test data before a fault is detectable from any GPM 
style extrapolation model. Trying to trend and extrapolate a 
progressive degradation parameter prior to any detectible 
degradation will cause poor predictions and undue errors in 
the overall model. This was left out of this particular 
investigation due to the fact that all test cases are seeded 
with clay in the system from the initial data collection time.  
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APPENDIX 

Signal Index Signal/Feature 
1 Hot Leg Inlet Temperature 
2 Hot Leg Outlet Temperature 
3 Cold Leg Inlet Temperature 
4 Cold Leg Outlet Temperature 
5 Hot Leg Flow Rate 
6 Cold Leg Flow Rate 
7 Hot Leg Inlet Pressure 
8 Hot Leg Outlet Pressure 
9 Delta Hot Leg Temperature 
10 Delta Cold Leg Temperature 
11 Hot Leg Heat Rate 
12 Cold Leg Heat Rate 
13 Log Mean Temperature Difference 
14 Hot Leg Overall Heat Transfer Coefficient 
15 Cold Leg Overall Heat Transfer Coefficient 

Table A1. Measured signals and calculated features and 
their indices 

 


