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ABSTRACT

Iminoacetonitriles participate as reactive dienophiles in intermolecular and intramolecular Diels-
Alder cycloadditions leading to quinolizidines, indolizidines, and piperidines. The resultant a-
amino nitrile cycloadducts are versatile synthetic intermediates which can be further elaborated
by stereoselective alkylation, reduction, reductive cyclization, and Bruylants reactions. The first
part of this thesis describes the full details of our studies on the synthesis of iminoacetonitriles,
the scope of their Diels-Alder reactions, and the synthetic elaboration of the a-amino nitrile
cycloadducts to provide access to a variety of substituted quinolizidine and indolizidine
derivatives. The second part of this thesis reports on the total synthesis of quinolizidine (-)-
217A and our efforts directed toward the total synthesis of indolizidine (-)-235B'.
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Part I

Introduction and Background



Chapter 1 - Introduction

Cyclization and Annulation Strategies

The vast number of natural products and pharmaceutical agents that contain a ring system

has motivated our research group's interest in developing practical, reliable, and efficient

methods for the preparation of cyclic and polycyclic molecules. Cyclizations and annulations'

represent the two general strategies for constructing cyclic systems (Scheme 1). A cyclization

strategy involves the intramolecular formation of one new bond whereas an annulation strategy

involves the formation of two new bonds in either an intramolecular or intermolecular fashion to

form the cyclic structure. With the formation of two new bonds, annulations provide a more

convergent and powerful strategy than cyclizations for the synthesis of cyclic compounds.

Annulation strategies also provide the possibility of creating multiple stereocenters in a single

step, and intramolecular versions allow for the efficient and rapid assembly of polycyclic

systems.

Scheme 1

Cyclization

Annulation

I I

SFor the definition of an annulation, see Danheiser, R. L.; Gee, S. K.; Sard, H. J Am. Chem. Soc. 1982, 104, 7670.
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Cycloadditions of Conjugated Enynes

Cycloaddition reactions comprise the most common type of annulation and rank among

the most powerful transformations available to synthetic chemists.2  The Diels-Alder

cycloaddition, first reported in 1928 by Otto Diels and Kurt Alder,3 is perhaps the most

important of all six-membered ring-forming reactions and has been widely employed as the

pivotal step in numerous natural product syntheses.4 The [4+2] cycloaddition reaction of dienes

and "dienophiles," each of which can incorporate a wide range of functionality, allows access to

a diverse range of carbocyclic and heterocyclic molecules. In recent years, our laboratory has

explored the possibility of reacting an enyne with an enynophile, in a process akin to the Diels-

Alder cycloaddition, to form new aromatic and dihydroaromatic systems (Scheme 2).

Scheme 2

[•c- o]

-~

Despite a few scattered reports in the literature describing intramolecular [4+2]

cycloadditions of conjugated enynes, the generality and scope of this fascinating reaction

remained undefined until our laboratory began to investigate this transformation as an efficient

route to highly substituted aromatic and heteroaromatic compounds. In 1994, our laboratory was

the first to report studies that established the feasibility of these cycloadditions as a practical

2 Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon Press: New York, 1990.
3 Diels, O.; Alder, K. Liebigs Ann. Chem. 1928, 460, 98.
4 For reviews of the Diels-Alder reaction, see: (a) Fringuelli, F.; Taticchi, A. The Diels-Alder Reaction: Selected
Practical Methods; John Wiley & Sons: New York, 2002. (b) Fringuelli, F.; Taticchi, A. Dienes in the Diels-Alder
Reaction; John Wiley & Sons: New York, 1990. (c) Oppolzer, W. In Comprehensive Organic Synthesis; Trost, B.
M.; Fleming, I. Eds.; Pergamon Press: Oxford, 1991, Vol. 5, pp 315-399.



method for organic synthesis and discussed possible mechanisms for these reactions. 5

Subsequent work in our group has demonstrated that enyne cycloadditions can be conducted

under thermal conditions, as well in the presence of protic and Lewis acids, with a variety of

substituents on the enyne, enynophile, and connecting tether.6

Our laboratory has also investigated the possibility of incorporating a heteroatom into the

enyne or enynophile in variants of the cycloaddition leading to heterocyclic molecules. Initially,

we explored the feasibility of replacing a carbon atom in the enyne with an oxygen atom as

shown in eq 1. Melanie Wills discovered that the [4+2] cycloaddition of conjugated alkynyl

carbonyl compounds provides access to dihydroisobenzofurans with a variety of functionality

(eq 1).7

R1  R1

X 0 (1)
\ X0

Zz
Next, we became interested in the development of new types of activated imine

derivatives with the ability to function as reactive 2a components. For example, the ability to

use an imine as a reactive 2a component would allow access to substituted nitrogen heterocycles

and would provide a powerful extension of the scope of the enyne cycloaddition.

Examination of the literature on activated imines that participate in related cycloadditions

revealed that none of the conventional imine derivatives were ideal for the enyne cycloadditions

we envisioned. 8 We consequently turned our attention to iminoacetonitriles, a class of electron-

deficient imines whose cycloaddition chemistry had not previously been examined. Our interest

5 Danheiser, R. L.; Gould, A. E.; Fernandez de la Pradilla, R.; Helgason, A. L. J. Org. Chem. 1994, 59, 5514.6 (a) Dunetz, J. R.; Danheiser, R. L. J. Am. Chem. Soc. 2005, 127, 5776. (e) Hayes, M. E.; Shinokubo, H.;
Danheiser, R. L. Org. Lett. 2005, 7, 3917.
7 For a discussion regarding the scope and mechanism of this cycloaddition, see Wills, M. S. B.; Danheiser, R. L. J.

Am. Chem. Soc. 1998, 120, 9378.
8 For a discussion of [4+2] cycloadditions of imines, see Chapter 2.



in this class of imines derived from the expectation that they should function as reactive partners

in a variety of cycloaddition and annulation processes, providing access to cyclic a-amino

nitriles of diverse ring size (Scheme 3). a-Amino nitriles are exceptionally versatile

intermediates for the synthesis of nitrogen heterocycles. Metalation provides opportunities for

alkylation and other carbon-carbon bond-forming processes, while exposure to Lewis acids

furnishes iminium ions which can be intercepted with Grignard reagents (Bruylants reaction) and

organosilanes, or engaged in Mannich reactions and other useful "cation-n"-type cyclization

processes. 9

Scheme 3 R
NaBH4H

cycloaddition
or

annulation R R'MgX ,R

SCN R1

GR

"-"H

C-C bond formation
via Mannich, Cation-g, etc.

In fact, it appeared to us that iminoacetonitriles would be a valuable 2a component in a

variety of different annulation and cycloaddition processes including, in particular, the hetero

Diels-Alder reaction. To place our work in perspective, the next chapter provides a brief

9 For reviews on the chemistry of oa-amino nitriles, see: (a) Ender, D.; Shilvock, J. P. Chem. Soc. Rev. 2000, 29,
359. (b) Husson, H.-P.; Royer, J. Chem. Soc. Rev. 1999,28, 383. (c) Shafran, Y. M.; Bakulev, V. A.; Mokrushin,
V. S. Russ. Chem. Rev. 1989, 58, 148. (d) Rubiralta, M.; Giralt, E.; Diez, A. In Piperidine: Structure, Preparation,
Reactivity, and Synthetic Applications ofPiperidine and its Derivatives; Elsevier: Amsterdam, 1991; pp 225-312.



overview on the state of the art with regard to imino dienophiles in intramolecular and

intermolecular aza Diels-Alder cycloadditions.



Chapter 2- Diels-Alder Reactions of Imino Dienophiles

The development of imine derivatives as 2a components in aza Diels-Alder reactions has

greatly facilitated the ease with which nitrogen heterocycles can be synthesized in an efficient

manner.10 This chapter provides a brief overview of the most commonly used imino dienophiles

in intermolecular and intramolecular Diels-Alder cycloadditions. This discussion will emphasize

the reactions of "activated" imines, since these imines tend to be the most reactive in hetero

[4+2] cycloadditions. Although simple unactivated imines can participate as 2a components in

Diels-Alder cycloadditions, these reactions often require harsh conditions and tend to be limited

in substrate scope. The two general approaches employed to activate imine derivatives involve

(a) attaching an electron-withdrawing group to the carbon and/or nitrogen of the imine, and (b)

the use of the iminium ions as dienophiles.

Intermolecular Diels-Alder Reaction of Imino Dienophiles

The use of activated imines as dienophiles in the intermolecular Diels-Alder reaction has

attracted considerable attention.10 Among the most important classes of activated imino

dienophiles are N-sulfonylimines (e.g., 1),11,12 N-acylimines (e.g., 2 and 3),13,14 C-acylimines

10 For reviews on the hetero Diels-Alder reaction of imino dienophiles, see: (a) Heintzelman, G. R.; Meigh, I. R.;
Mahajan, Y. R.; Weinreb, S. M. Org. React. 2005, 65, 141. (b) Buonora, P.; Olsen, J.-C.; Oh, T. Tetrahedron 2001,
57,6099. (c) Jorgensen, K. A. Angew. Chem. Int. Ed. 2000, 39, 3558.
11 (a) Kresze, G.; Albrecht, R. Chem. Ber. 1964, 97, 490. (b) Kresze, G.; Wagner, U. Liebigs Ann. Chem. 1972, 762,
106. (c) Albrecht, R.; Kresze, G. Chem. Ber. 1965, 98, 1431.
12 For examples in total synthesis, see: (a) Holmes, A. B.; Thompson, J.; Baxter, A. J. G.; Dixon, J. J. Chem. Soc.,
Chem. Commun. 1985, 37. (b) Maggini, M.; Prato, M.; Scorrano, G. Tetrahedron Lett. 1990, 31, 6243. (c) Hamada,
T.; Zenkoh, T.; Sato, H.; Yonemitsu, O. Tetrahedron Lett. 1991, 32, 1649.
1 For examples of acyclic N-acylimines, see: (a) Merten, R.; Muller, G. Angew. Chem. 1962, 74, 866. (b) Merten,
R.; Muller, G. Chem. Ber. 1964, 97, 682. (c) Baldwin, J. E.; Forrest, A. K.; Monaco, S.; Young, R. J. J. Chem. Soc.,
Chem. Commun. 1985, 1586. (d) Fischer, G.; Frits, H.; Prinzbach, H. Tetrahedron Lett. 1986, 27, 1269.
14 For examples of cyclic N-acylimines, see: (a) Goldstein, E.; Ben-Ishai, D. Tetrahedron Lett. 1969, 2631. (b)
Ben-Ishai, D.; Goldstein, E. Tetrahedron 1971, 27, 3119.



(e.g., 4), oximino ester derivatives (e.g., 515 and 616), and iminium ions (e.g., 7).17 '18 Although

several types of imino dienophiles exist for the aza Diels-Alder reaction, the most useful are the

C-acylimines developed by Bailey and coworkers and these imines will be the focus of this

section.

O
ArO2SN N ,CO2R1  T NR R N

NC0
2R 

"N
CO2R RO CO2R

1 2 3 4

R = alkyl, aryl

TsO. NTsO., ooN

NC CN O O II

5 7

6

Bailey and coworkers have shown that the C-acylimine 9 represents the state of the art

for imino dienophiles in terms of ease of synthesis, substrate scope, stereocontrol, and synthetic

utility of the resulting Diels-Alder cycloadducts. 19 Imine 9 was synthesized in 94% yield as a

stable white solid by simply stirring ethyl glyoxylate hydrate with benzhydrylamine (eq 2).

Reaction of imine 9 with a variety of dienes in the presence of 1 equiv of TFA in trifluoroethanol

delivers the desired cycloadducts 10-14 in 42-95% yield. In the case of acyclic dienes, the endo

15 (a) Biehler, J.-M.; Perchais, J.; Fleury, J.-P. Bull. Soc. Chim. Fr. 1971, 2711. (b) Biehler, J.-M.; Fleury, J.-P. J.

Heterocycl. Chem. 1971, 8, 431. (c) Perchais, J.; Fleury, J.-P. Tetrahedron 1972, 28, 2267. (d) Fleury, J.-P.;
Desbois, M.; See, J. Bull. Soc. Chim. Fr. 1978, 11-147.
16 (a) Renslo, A. R.; Danheiser, R. L. J. Org. Chem. 1998, 63, 7840. (b) Danheiser, R. L.; Renslo, A. R.; Amos, D.
T.; Wright, G. T. Org. Synth. 2003,80, 133.
17 (b) Parker, D. T. In Organic Synthesis in Water; Grieco, P. A., Ed.; Blackie Academic & Professional: London,
1998; pp 47-81. (b) Larsen, S. D.; Grieco, P. A. J. Am. Chem. Soc. 1985, 107, 1768. (c) Grieco, P. A.; Larsen, S. D.;
Fobare, W. F. Tetrahedron Lett. 1986, 27, 1975.
18 For the use lanthanide(III) triflates as catalysts, see: (a) Yu, L.; Chen, D.; Wang, P.-G. Tetrahedron Lett. 1996,
37, 2169. (b) Zhang, W.; Xie, W.; Fang, J.; Wang, P. G. Tetrahedron Lett. 1999, 40, 7929. (c) Yu, L.-B.; Chen, D.;
Li, J.; Ramirez, J.; Wang, P. G.; Bott, S. G. J. Org. Chem. 1997, 62, 208.
19 Bailey, P. D.; Smith, P. D.; Pederson, F.; Clegg, W.; Rosair, G. M.; Teat, S. J. Tetrahedron Lett. 2002, 43, 1067.



cycloadduct is formed exclusively with complete regiocontrol. However, in the case of cyclic

dienes (e.g., cyclopentadiene and cyclohexadiene), the exo cycloadduct is formed predominantly

(>97:3). Also, reaction of imine 14 with trans-2,4-hexadiene occurs with suprafacial addition to

give the cis-substitued cycloadduct 14 consistent with the Woodward-Hoffminann rules.20

R2  R3

n uI HIN/ R \ R4

S2% -1 2

CH 2CI2  TFA, CF3CH2OH

O .. CO2Et 4 °C, 16 h Ph N. •CO2Et -40 oC, 20 min

H Ph H

.R2

(2)
'R
3

8 9 10 R2, R3 = CH3  95%

11 R3 = CH3  87%
12 R1 = CH 3  62%
13 R1, R2 = CH3  42%
14 R1, R4 = CH3  60%

(other R = H)

Bailey and coworkers have extended this chemistry to include asymmetric reactions by

using imines such as 15 with a 1-phenylethyl auxiliary on nitrogen; both enantiomeric forms of

this imine are readily available. Cycloadditions of chiral imine 15 with cyclic dienes provide

products with good asymmetric induction (84-100% de), but reactions with acyclic dienes

produce products with varying levels of selectivity (26-68% de).21 However, Bailey has shown

that excellent asymmetric induction for acyclic dienes can be achieved if a second matched chiral

auxiliary is introduced into the ester functionality (e.g., 16).22 Finally, Bailey and coworkers

have demonstrated the synthetic utility of the cycloadducts of these reactions by applications to

the efficient total synthesis of pinidine23 and the asymmetric synthesis of pipecolic acid

20 Woodward, R. B.; Hoffimnann, R. The Conversation of Orbital Symmetry; Verlag Chemie: Weinheim, 1970.
2 1 (a) Bailey, P. D.; Wilson, R. D.; Brown, G. R. J. Chem. Soc., Perkin Trans. 1 1991, 1337. (b) Bailey, P. D.;
Wilson, R. D.; Brown, G. R.; Korber, F.; Reid, A.; Wilson, R. D. Tetrahedron: Asymmetry 1991, 2, 1263.
22 Bailey, P. D.; Londesbrough, D. J.; Hancock, T. C.; Heffernan, J. D.; Holmes, A. B. Chem. Commun. 1994, 2543.
23 Bailey, P. D.; Smith, P. D.; Morgan, K. M.; Rosair, G. M. Tetrahedron Lett. 2002, 43, 1071.



derivatives. 21b However, it is important to note that Bailey's methodology only provides access

to cis-2,6-disubstituted piperidines. Several important natural products possess a trans-2,6-

disubstituted piperidine, and thus a method that would allow access to both diastereomers would

be a valuable addition to synthetic methodology. 24

CH3  Ph
, H3C _,CH 3CH3 Ph N

Ph O H3C CH3
JCO2Et 0 H

6 H3 Pinidine
15 16 CH3

Intramolecular Diels-Alder Reactions of Imino Dienophiles

The most extensive investigations of the intramolecular imino Diels-Alder reaction have

been carried out by Weinreb and Grieco using N-acylimines and iminium ions, respectively.

Weinreb's strategy employs the thermolysis of N-acetoxymethyl amides 17 to generate N-

acylimines 18 as reactive dienophiles which then undergo cycloaddition in situ (eq 3). By

varying the length of the tether, Weinreb and coworkers have synthesized both indolizidines (n =

1) and quinolizidines (n = 2) 19 using this approach.25

) n 180-370 oC F
n -AcOH

A n =19

n n (3)
O

17 19

24 For recent examples on the stereoselective synthesis of 2,6-dialkylpiperidines, see: (a) Agami, C.; Couty, F.;

Mathieu, H. Tetrahedron Lett. 1998, 39, 3505. (b) Felpin, F. X.; Lebreton, J. Eur. J. Org. Chem. 2003, 3693. (c)
Kuethe, J. T.; Comins, D. L. Org. Lett. 2000, 2, 855. (d) Carbonnel, S.; Troin, Y. Heterocycles 2002, 10, 1807. (e)
Monfray, J.; Gelas-Mailhe, Y.; Gramain, J. C.; Remuson, G. Tetrahedron: Asymmetry 2005, 16, 1025.
25 Khatri, N. K.; Schmitthenner, H. F.; Shringarpure, J.; Weinreb, S. M. J. Am. Chem. Soc. 1981, 103, 6387.

I



In some cases, Weinreb obtained cycloadducts with excellent stereoselectivity as

illustrated with the example shown in eq 4. This cycloaddition apparently proceeds via a

transition state where the carbonyl group adopts an endo orientation and the benzyloxymethyl

group is pseudoequatorial on the developing six-membered ring.26 However, in cycloadditions

leading to indolizidines, the level of stereoselectivity drops significantly with respect to the

allylic substituent. 27

180 oC, 2 h H
dichlorobenzene N OR

O /(4)
0 93% N

Weinreb and coworkers extended their method to include imine dienophiles bearing acyl

groups on both carbon and nitrogen.28 For example, thermolysis of 20 affords imine 21 which

then undergoes Diels-Alder cycloaddition to afford the bicyclic carbamate 22 as a single

diastereomer in 83% yield. It was suggested that the N-acyl group, rather than the C-acyl group,

occupies an endo orientation with the alkyl substituent in a pseudoequatorial position in the

transition state. Weinreb and coworkers have applied this elegant methodology to the total of

synthesis of several natural products including epi-lupinine,26  slaframine,27  and

anhydrocannabiasativene.2 9

26 (a) Brenmmer, M. L.; Weinreb, S. M. Tetrahedron Lett. 1983, 24, 261. (b) Bremmer, M. L.; Khatri, N. A.;
Weinreb, S. M. J. Org. Chem. 1983, 48, 3661.2 7 Gobao, R. A.; Bremmer, M. L.; Weinreb, S. M. J. Am. Chem. Soc. 1982, 104, 7065.
28 (a) Bland, D. C.; Raudenbush, B. C.; Weinreb, S. M. Org. Lett. 2000, 2, 4007. (b) Nader, B.; Franck, R. W.;
Weinreb, S. M. J. Am. Chem. Soc. 1980, 102, 1153. (c) Nader, B.; Bailey, T. R.; Franck, R. W.; Weinreb, S. M. J.
Am. Chem. Soc. 1981, 103, 7573.29 Bailey, T. R.; Garigipati, R. S.; Morton, J. A.; Weinreb, S. M. J. Am. Chem. Soc. 1984, 106, 3240.



toluene
CAH,1 i-PrEt 2N MeO2  1H H

H 215 =C, 3 h N CH 1  N

AcO - YNC•/ 0 83%
MeO 2C 0 LO MeO 2C O

20 21 22

Grieco and coworkers have shown that simple iminium ions generated in situ undergo

smooth Diels-Alder cycloadditions to give nitrogen heterocycles. 30 For example, addition of

dienyl amines 23 to aqueous HCl and formaldehyde leads to the expected indolizidine 25 or

quinolizidine 26 in good to excellent yield via cycloaddition of the corresponding iminium ions

24. Unfortunately, Grieco reports that utilizing other aldehydes in place of formaldehyde (such

as acetaldehyde) lead to low yields and a complex mixture of products. Consequently, this

method does not provide access to C-4 substituted quinolizidines or indolizidines. Although

Wang and coworkers have shown that lanthanide triflates catalyze intermolecular cycloadditions

of simple iminium ions,18 the use of lanthanide triflates for related intramolecular cycloadditions

has not been reported.

Hr HOr'I

H20, 50 *C, 48 h

H2N fl

23 2 12
n =1,2

2a n =1 959/
23 24 26 n=2 65%

Unlike Weinreb's N-acylimines, iminium ions do not react with good stereocontrol in

Diels-Alder reactions. For example, treatment of dienyl aldehyde 27 with aqueous ammonium

chloride delivers cycloadducts 28a and 28b as a 69:31 mixture of diastereomers in 55% yield (eq

7).31 It is also important to note that by using a dienyl aldehyde such as 27 instead of a dienyl

30 (a) reference 17 (b) Grieco, P. A.; Larsen, S. D. J. Org. Chem. 1986, 51, 3553. (c) Grieco, P. A.; Parker, D. T. J.
Org. Chem. 1988, 53, 3325.
31 Grieco, P. A.; Parker, D. T. J. Org. Chem. 1988, 53, 3658.

n CN) n (6)



amine, Grieco has extended the methodology to the synthesis of nitrogen heterocycles in which

the nitrogen atom is not located at the ring juncture of the new bicyclic system.

NH4CI, EtOH/H 20
75 'C, 48 h

55%

H3C H

+b (7)
N Pr

HH

27 28a 69:31 28b

Summary

Although elegant methodology exists for the intermolecular and intramolecular Diels-

Alder cycloaddition of imino dienophiles, we believed that iminoacetonitriles would have several

advantages as 2n components in [4+2] cycloadditions and would provide access to substituted

nitrogen heterocycles not easily obtained via previous methodology. 32 This thesis describes the

full details of our studies on the synthesis of iminoacetonitriles, the scope of their Diels-Alder

reactions, and the synthetic elaboration of the oa-amino nitrile cycloadducts to provide access to a

variety of substituted quinolizidine and indolizidine derivatives. Part III also reports on the total

synthesis of quinolizidine (-)-217A and our efforts directed toward the total synthesis of

indolizidine (-)-235B'.

NC

32 It should be mentioned that the related 1-aza-2-cyanodienes (e.g., R-N \ R1) have been utilized in both
intermolecular and intramolecular Diels-Alder cycloadditions by Fowler and coworkers. See: (a) Sisti, N. J.; Zeller,
E.; Grierson, D. S.; Fowler, F. W. J. Org. Chem. 1997, 62, 2093. (b) Motorina, I. A.; Fowler, F. W.; Grierson, D. S.
J. Org. Chem. 1997, 62, 2098. (c) Teng, M.; Fowler, F. W. Tetrahedron Lett. 1989, 30, 2481. (d) Teng, M.;
Fowler, F. W. J. Org. Chem. 1990, 55, 5646. (e) Trione, C.; Toledo, L. M.; Kuduk, S. D.; Fowler, F. W.; Grierson,
D. S. J. Org. Chem. 1993, 58, 2075.



Part II

Diels-Alder Cycloadditions of Iminoacetonitriles



Chapter 3 - Preparation of Iminoacetonitriles

The limitations associated with the Diels-Alder reactions of known imine derivatives

motivated us to explore the cycloadditions and annulations of a new class of activated imines:

iminoacetonitriles. Initial studies by Adam Renslo focused on the application of

iminoacetonitriles in intramolecular enyne cycloadditions (eq 8); however, subsequently we

decided to undertake the systematic investigation of a wide range of cycloadditions involving

these species, beginning with the Diels-Alder reaction. In order for iminoacetonitriles to serve as

useful building blocks, however, it was first necessary to develop effective procedures for the

synthesis of this novel class of activated imines. This chapter describes the development and

implementation of a Mitsunobu reaction as a key step in the synthesis of iminoacetonitriles, and

it also reviews the literature procedures that existed for the preparation of this class of imines

prior to our work.

R1

(8)CM R2
N,..z.CN

Previous Approaches to the Preparation of Iminoacetonitriles

At the outset of the investigations in our laboratory, iminoacetonitriles were relatively

unknown compounds. In 1970, Boyer and Dabek had reported the first synthesis of an

iminoacetonitrile, demonstrating that chlorination of N-t-butylaminoacetonitrile (prepared via the

Strecker reaction) with t-butyl hypochlorite followed by elimination of HCI with triethylamine

afforded 33 in 46% yield.33 In a subsequent report, Boyer and Dabek found that using calcium

33 Boyer, J. H.; Dabek, H. J. Chem. Soc., Chem. Commun. 1970, 1204.



hypochlorite and calcium hydroxide led to increased yields and improved substrate scope (eq

9).34

1) Ca(OCI) 2
H 2) Ca(OH) 2  , CN (9)R" N.N•CN _VN R"-N.ý ,c N  (9)

29 30 R=Me 25%
31 R = Et 50%
32 R= i-Pr 72%
33 R = t-Bu 76%

After we began our investigations on the synthesis of iminoacetonitriles, a modification of

Boyer's protocol, involving a one-pot procedure, was reported by Selva and coworkers. 35 Selva

discovered that treatment of several a-amino nitriles with 1.5 equiv of aqueous NaOCl at 10 'C

afforded the expected iminoacetonitriles in good yield (67-90%) with preference for the E isomer

(eq 10).

H NaOCI R1  N CNR-I N cN RC (1)
R2 67-90% 2 E/Z 90:10

34 35
R1, R2 = H, alkyl, or aryl

Initially, we focused on extending this approach to the synthesis of iminoacetonitrile

Diels-Alder substrates such as 38. Since we were concerned about the stability of the dienyl

portion of 38 to hypochlorite reagents, we decided to employ the mild chlorinating reagent N-

chlorosuccinimide in our studies. As shown in Scheme 4, Adam Renslo developed a "one-flask"

procedure for conversion of a-amino nitriles (e.g., 37) to the desired iminoacetonitriles.

Treatment of 37 with 1 equiv of NCS followed by addition of 1 equiv of sodium methoxide

delivered iminoacetonitrile 38 as a mixture of E and Z isomers in 66% yield.36

34 Boyer, J. H.; Kooi, J. J. Am. Chem. Soc. 1976, 98, 1099.
35 Perosa, A.; Selva, M.; Tundo, P. Tetrahedron Lett. 1999, 40, 7573.
36 Amos, D. T.; Renslo, A. R.; Danheiser, R. L. J. Am. Chem. Soc. 2003, 125,4970.



Scheme 4

NCS, THF, rt, 15 min
1.0 equiv BrCH 2CN then NaOMe

CH2CI2, rt, 36 h (H0 oC 30 min N
57% 66% \\,CN

CN E/Z 80:20

36 37 38

Recently, we discovered that a slightly modified procedure leads to improved yields of

iminoacetonitriles (Scheme 5). For example, alkylation of phenethylamine 39 with 1 equiv of

bromoacetonitrile delivered ao-amino nitrile 40 in 96% yield. Reaction of 40 with NCS followed

by elimination by treatment with 1 equiv of potassium ethoxide at 0 'C for 2 h then afforded

iminoacetonitrile 41 in 77% yield. This modified procedure is superior to our previous

procedure in that the elimination is extremely clean (by tlc analysis), which allows for a simple

purification by column chromatography.

Scheme 5 1.0 equiv NCS

1.0 equiv BrCH 2CN THF, rt, 30 min;
2.1 equiv i-PrEt2N 1.0 equiv KOEt
CH3CN, rt, 18 h Ph 0 C, 2 h PhPh N2, PhpN CN , PhpN •CN

NH2  96% H 77%
E/Z 70:30

39 40 41

Mitsunobu Approach to the Preparation of Iminoacetonitriles

Although the method described above reliably furnished access to the desired

iminoacetonitriles, for the preparation of our cycloaddition substrates we were not satisfied with

employing amines such as 36 as starting materials. Even though amines are fairly simple to

synthesize, all of the synthetic sequences we envisioned for the preparation of our cycloaddition

substrates would involve the preparation of the amine from an alcohol derivative via substitution

with azide or cyanide, followed by reduction. Consequently, a more expeditious route was



developed by David Amos that begins with readily available alcohols and utilizes the previously

unknown sulfonamide 43.36 Sulfonamide 43 is easily prepared by treating the commercially

available hydrochloride salt of aminoacetonitrile 42 with one equiv of triflic anhydride in the

presence of Htinig's base (eq 11). This simple procedure provides muti-gram quantities of 43 in

high purity as a low-melting solid that is stable for months when stored under argon at ca. 4 'C.

1.0 equiv Tf20
2.2 equiv i-Pr2NEt

CN CH 2CI2, -78 °C 1 h CN

<NH CIe 56-64% NH2SO2CF 3  (11)

42 43

A typical example of the application of this approach developed by David Amos is shown in

Scheme 6. Mitsunobu coupling reaction of alcohol 44 with sulfonamide 43, followed by

elimination of trifluoromethanesulfinate, provides the desired iminoacetonitrile via a simple two-

step protocol in excellent yield.

Scheme 6

43, Ph3,P, DEAD 4 equiv Cs 2CO3
4' THF, rt, 30 min THF, 55 °C, 2.5 h

87-94% ( N 87-90% N
Tf CN

44 45 38 E/Z 80:20

Preparation of Iminoacetonitriles

As discussed previously, the method outlined in Scheme 6 was applied by David Amos to

the synthesis of a variety of iminoacetonitrile cycloaddition substrates. This section details the

preparation of several new cycloaddition substrates that were required in my further studies on

the scope of the iminoacetonitrile cycloaddition reaction. The first target molecules I examined

were the indolizidine (n = 1) and quinolizidine (n = 2) precursors 58, 60, and 62 shown in Table



1. The requisite alcohols 51 and 52 were prepared utilizing a Suzuki cross-coupling reaction

between 1-iodocyclohexene 37 and the vinyl boronic acids 48. To prepare the requisite boronic

acids (48), commercially available alkynols 46 were protected as the corresponding pivalate

esters and then hydroborated with dibromoborane and converted to the boronic acid via the

method of Brown.38 The coupling of vinyl iodide 49 and boronic acids 48 (used without

purification) under standard Suzuki cross-coupling conditions39 afforded the desired dienes 50 in

80-88% yield. DIBAL reduction then cleaved the pivalate group to provide alcohols 51 and 52

in 85-88% yield.

Scheme 7
1.2 equiv t-BuOCCI

0.1 equiv DMAP 1.3 equiv Br2BH-SMe 2
3.0 equiv pyridine CH2CI2, rt, 8 h; then

CH2CI2, rt, 2 h H20, 0 °C, 10 min . B(OH)2HO 0 PivO"0' 2n ý
91-96% n OPiv

46 47 48

1 mol% Pd(dppf)CI 2  2.2 equiv DIBAL
3 equiv NaOH CH2CI2

I + 48 THF, H20, rt, I h O-78 "C, 1 h
+ 48 ON n O iv1

n O~n OH
80-88% 85-88%

49 50 n = 0 51
n=1 52

Next, we turned our attention to synthesizing an alcohol substrate of type 56 with a C-6

methyl substituent. Compound 55 was prepared according to the method of Noyori. Thus,

allylation of dihydropyran 53 via in situ generation of 2-methoxytetrahydropyran (54) afforded

tetrahydropyran 55 in 71% yield.40  Exposing 55 to Schlosser's base then provided dienyl

37 1-lodocyclohexene was prepared by treating the hydrazone derivative of cyclohexanone with iodine according to
Pross, A.; Sternhell, S. Aust. J. Chem. 1970, 23, 989.
38 (a) Brown, H. C.; Campbell Jr., J. B. J. Org. Chem. 1980,45,389. (b) Brown, H. C.; Bhat, N. G.; Somayaji, V.
Organometallics 1983, 2, 1311.
39 For reviews on the Suzuki cross-coupling, see: (a) Bellina, F.; Carpita, A.; Rossi, R. Synthesis 2004, 15, 2419.
(b) Miyaura, N. In Metal-Catalyzed Cross-Coupling Reactions, 2nd ed; Diederich, F., de Meijere, A.; Wiley-VCH:
New York, 2004; Chapter 2.40 Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron Lett. 1980, 21, 71.



alcohol 44 as a single isomer (Scheme 8).41 The large coupling constant (J= 17.5 Hz) observed

between the protons on C-5 and C-6 indicated the presence of an E-olefin. Swern oxidation of

44 followed by addition of methylmagnesium bromide afforded the desired secondary alcohol 56

in 80% yield.

Scheme 8

Me3SiCH2CH=CH 2
MeOH, cat. PPTS cat. TMSOTf
CH2CI2, rt, 2.5 h -78 to -20 C, 2 h

o5 30 Me 71% 0

53 54 55

1) Swern oxidation
2) 1.2 equiv MeMgBr 6

Et20, 0O0C, 2 h

80% OH 79%

44
56

As summarized in Table 1, our Mitsunobu-elimination protocol allowed for the efficient

conversion of the alcohols described above to the desired iminoacetonitriles in excellent yield.

In each case, the iminoacetonitriles were produced as a mixture of E and Z isomers.42'43 Thus,

subjecting alcohols 51 and 52 to our standard Mitsunobu reaction conditions afforded triflamides

57 and 59 in 83-90% yield. The subsequent elimination reactions proceeded uneventfully on

exposure of these intermediates to Cs2CO 3 to give iminoacetonitriles 58 and 60, each in 86%

41 Margot, C.; Rizzolio, M.; Schlosser, M. Tetrahedron 1990, 46, 2411.
42 The stereochemical assignment of the imine isomers was obtained from the four-bond coupling observed between
the imino hydrogen and the a-methylene hydrogen atoms. For example,

38(E) N H 38(Z)
15H ._H H C N

1.5 Hz 2.3 Hz
43 The stereochemistry of the iminoacetonitrile (e.g., 38) is not crucial, as we will demonstrate in chapter 4 that
iminoacetonitrile isomers interconvert under the conditions of the [4+2] cycloaddition.



yield. Under our standard conditions, however, the Mitsunobu reaction of secondary alcohol 56

was extremely sluggish at room temperature and delivered a low yield of the desired triflamide

61. Fortunately, we found that by switching the solvent to benzene and heating at 55 oC for 4 h,

triflamide 61 could be obtained in 78% yield. The slow rate of this reaction was not unexpected

as Mitsunobu reactions proceed via a SN2 mechanism and therefore are greatly affected by the

steric environment of the reacting carbon.

Table 1. Synthesis of Iminoacetonitriles

ROH CF3SO2NHCH 2CN R 1 CN Cs2CO3b R NCNROH , N C N C

Ph3,P, DEAD a  SO 2CF3  THF

yield (%)c
entry alcohol triflamide yield (%)c iminoacetonitrile (E/Z ratio)

1,.83-85 'N,(78:22)

52 57 CN 58

90 8690CN (70:30)

60

78 90-95
N N CN (79:21)

\\,j.C

- - io'lI 3
56 61 62

a 1.05 equiv TfNHCH 2CN, 1.2 equiv Ph3P, 1.2 equiv DEAD, THF-toluene, rt, 0.5-4 h (entry 3:
benzene, rt, 12 h then 55 °C, 4 h). b 3-4 equiv Cs2CO3, THF, 45-55 °C, 2-4 h. c Isolated yield
of products purified by column chromatography.

Optimization studies on the trifluoromethanesulfmate elimination step showed that

cesium carbonate and potassium carbonate both furnish the desired product. However, by using

51

51

3



cesium carbonate the reaction proceeds faster and leads to fewer side products and higher yields

(by ca. 20%) of the desired imine. Although 4 equiv of cesium carbonate were used in every

case, the reaction does proceed with 1 equiv although at a slower reaction rate. Also, the optimal

temperature for the elimination proved to be 55 'C; however, the reaction does proceed fairly

efficiently at room temperature if carried out over ca. 24 h.

In general, iminoacetonitriles are susceptible to hydrolysis under slightly acidic

conditions and tend to slowly decompose at room temperature (ca. 30% decomposition after two

weeks). Therefore, we do not usually store iminoacetonitriles for extended periods of time.

However, iminoacetonitriles are easily purified by column chromatography as long as the silica

gel is pretreated with one percent triethylamine to avoid acidic hydrolysis.



Chapter 4 - Intramolecular [4+2] Cycloadditions of

Iminoacetonitriles

Although the Diels-Alder cycloaddition of a number of iminoacetonitriles had previously

been studied by David Amos, 36 we felt there were several aspects of this chemistry that required

further investigation. This chapter describes the details of our studies aimed at examining the

mechanism of the iminoacetonitrile cycloaddition, expanding the scope of the cycloaddition to

include the synthesis of tricyclic systems, and our investigation of the feasibility of promoting

the cycloaddition under mild conditions with either Lewis or Bronsted acids.

Thermal Iminoacetonitrile Cycloadditions

In our original study, David Amos had discovered that simply heating the appropriate

iminoacetonitriles in toluene leads to the formation of the desired Diels-Alder cycloadducts,

usually as a single diastereomer. For example, heating a toluene solution of 38 (80:20 mixture of

E and Z imine isomers) at 120 oC in the presence of 3 equiv of BHT in a sealed tube affords

cycloadduct 63 in 67-70% yield after purification by column chromatography (eq 12).

Interestingly, in this and other cases the cycloadduct with an exo-oriented axial cyano group is

obtained as the exclusive product of the reaction. 36 Experiments carried out by David Amos"44

suggest that the initially formed epimeric cycloadducts equilibrate through an iminium ion to

afford the axial cyano isomer which is favored as a consequence of the "a-amino nitrile

anomeric effect."45

44 Amos, D. T. Ph. D. Thesis, Massachusetts Institute of Technology, June 2003, pp 109-116.
45 Bonin, M.; Romero, J. R.; Grierson, D. S.; Husson, H.-P. J. Org. Chem. 1984, 49, 2392.



3.0 equiv BHT, H
toluene, 120 °C 20 h

N 0N 4 (12)67-70%

CN CN
38 E/Z 80:20 63

In order to better understand the mechanism of the iminoacetonitrile cycloaddition, I

carried experiments to carefully monitor the cycloaddition of iminoacetonitrile 38 by 1H NMR.

These experiments were conducted in sealed NMR tubes by dissolving iminoacetonitrile 38, 3

equiv of BHT, and a known amount of anisole (as internal standard) in 1 mL of benzene-d 6 (ca.

concentration of 0.05 M). A 1H NMR spectrum was taken at time zero and then the tube was

heated at 120 'C for 21-25 h. At several points during the cycloaddition, the reaction tube was

removed from the heating bath, and a 1H NMR spectrum was recorded. With the assumption

that the amount of internal standard did not change during the course of the experiment, the

amount of iminoacetonitrile 38 and cycloadduct 63 was calculated.

As can be seen in Figure 1, the cycloaddition follows first order kinetics with respect to

iminoacetonitrile 38. As expected, the rate of disappearance of iminoacetonitrile 38 was

unaffected by the addition of BHT; however, BHT did significantly increase the yield of the

reaction by ca. 40%. In an attempt to reduce the amount of BHT used in the cycloaddition, we

screened the reaction using various concentrations of this additive. Unfortunately, we discovered

that 3 or more equiv of BHT gave the best results. Based on the result that BHT does not affect

the rate of disappearance of iminoacetonitrile 38, we hypothesized that BHT is in fact inhibiting

decomposition of the cycloadduct, presumably through radical pathways. This is not

unreasonable, as one might envision the possibility of loss of a hydrogen atom generating a

captodatively stabilized radical at C-4. In order to confirm this hypothesis, we subjected

cycloadduct 63 to our standard cycloaddition conditions (toluene, 120 'C) with and without



BHT. After 12 h, the cycloadduct in the absence of BHT had decomposed by 20% relative to the

cycloadduct with BHT (3 equiv).

CN
38 E/Z 80:20

C6D6 , 120 °C 21-25 h

anisole

0 5 10 15 20 25 30

time (h)

Figure 1. Effect of BHT on the Rate of the

0 5 10 15 20 25 30

time (h)

Iminoacetonitrile Diels-Alder Cycloaddition

In addition to studying the effect that BHT has on the rate of the cycloaddition, we were

also interested in monitoring the relative reactivity of the E and Z iminoacetonitrile isomers in

the cycloaddition. Interestingly, we discovered that the initial ratio (80:20) of E and Z isomers of

iminoacetonitrile 38 equilibrates to a thermodynamic ratio (60:40) of E and Z isomers before any

cycloadduct is formed, and this ratio then remains constant throughout the course of the

cycloaddition. This observation suggests that either the imine isomers undergo cycloaddition at

the same rate, or one isomer is reacting faster but interconversion occurs rapidly and maintains

the thermodynamic ratio. Unfortunately, this provides little insight into the reactivity of each

imine isomer, and further studies are required.



Acid-Promoted Iminoacetonitrile Cycloadditions

In an effort to expand the scope of the iminoacetonitrile cycloaddition, particularly to

substrates that react sluggishly or are completely unreactive under thermal conditions, we next

shifted our focus to the development of an acid-promoted cycloaddition. Examples have been

reported in the literature of acid-promoted Diels-Alder cycloadditions of related imino

dienophiles, and it therefore appeared possible that our reactions might be accelerated by acid.'0

At first, we investigated the use of Lewis acids with a known affinity for cyano groups,

such as copper, silver, and zinc salts. In this case we hypothesized that ionization of cyanide

might produce a nitrilium ion that could undergo an accelerated Diels-Alder reaction. We also

explored Lewis acids known to catalyze related imine cycloadditions, I0 such as Yb(OTf)3,

Sc(OTf)3, and BF 3-OEt2. Surprisingly, under completely anhydrous conditions, attempted

cycloaddition of imine 38 in the presence of these additives led to recovery of unreacted starting

material (38) in 95% yield. It is important to recall that iminoacetonitriles are extremely

susceptible to hydrolysis under slightly acid conditions and therefore it is crucial to run acid-

catalyzed reactions under completely anhydrous conditions. Interestingly, in one experiment we

noticed that cycloaddition of 38 with Cu(OTf)2 in the presence of a trace of H20 delivered a 1:1

mixture of 63 and the hydrolysis byproduct 64 in 40% yield (eq 11).

LU•u I 1)2, 2 U

CH2C 2, rt, 2 h

ca. 40%
CN

38 
E/Z 80:20

+ H (13)

CHO

64

Encouraged by the possibility that the reaction in the above experiment was actually

being promoted by trifluoromethanesulfonic acid generated in situ, we investigated the use of

several Bronsted acids, such as TsOH, CSA, TFA, AcOH, and H3PO4. We discovered that acids



with pKa values less than -1 are effective promoters of the cycloaddition, whereas reaction in the

presence of weaker acids such as TFA and AcOH afford the cycloadduct in low yields (less than

15%) accompanied by extensive decomposition. Presumably, decomposition is initiated by acid-

catalyzed hydrolysis or nucleophilic addition to the iminoacetonitrile moiety.

Optimization studies revealed that methanesulfonic acid in CH 2C 2 (0.1 M) is the most

effective promoter of the iminoacetonitrile cycloaddition. For example, treatment of

iminoacetonitrile 38 with 1 equiv of MsOH in CH 2C12 under anhydrous conditions delivers the

desired a-amino nitriles 63a and 63b in 80% yield as a 55:45 mixture of epimers (Scheme 9).

The mixture of epimers at C-4 is inconsequential due to the fact that further transformations at

the C-4 carbon are controlled by stereoelectronic effects independent of the C-4 cyano group

stereochemistry (for a discussion, see Part III). If desired, heating the mixture in CH 3CN

equilibrates the isomers to afford exclusively the thermodynamically favored axial oriented

nitrile (Scheme 9). It is important to note that the addition of 4A molecular sieves (ca. 10 mg of

4 A molecular sieves per 1 mL CH 2C 2) is crucial to the success of the cycloaddition. Sieves

presumably serve to completely inhibit hydrolysis of the iminoacetonitrile which otherwise

significantly reduces the yield of the cycloaddition. Also, 1 equiv of MsOH is required for

complete consumption of the starting material; this is not unexpected as the nitrogen atom in the

cycloadduct is more basic than the nitrogen atom in the imine.



Scheme 9

N
C N

H

+ CN
38 E/Z 80:20 63a 63b

3.0 equiv BHT, 67-70% 100:67-70% 100: 0
toluene, 120 °C, 20 h

1 equiv MsOH, 4A MS 80% 55: 4580% 55 :45
CH2CI2, rt, 30 min

1 equiv MsOH, 4A MS
CH2CI2, rt 30 min; 80% 100 : 0
CH3CN, 45 °C, 1.5 h

Mechanism of the Acid-Promoted Cycloaddition of Iminoacetonitriles

Analysis of the mechanism and stereochemical course of the iminoacetonitrile

cycloaddition is challenging due to the possibility for isomerization of the isomeric imine

substrates as well as the a-amino nitrile cycloadducts under the conditions of the reaction. As

mentioned above, axial nitriles are the major or exclusive products of the reaction, and several

observations suggest that this is the result of thermodynamic control. In the case of acid-

promoted cycloadditions, treatment of iminoacetonitrile 65 with 1 equiv of MsOH at -78 'C for 1

h followed by quenching with aqueous sodium bicarbonate at -78 'C furnishes 66b (equatorial

nitrile) as a single diastereomer. However, all attempts to purify this compound by column

chromatography led to a mixture (ca. 55:45) of 66a and 66b. This experiment demonstrates that

the kinetic product of the cycloaddition is the equatorial nitrile and the cycloadducts equilibrate

through an iminium ion to afford the thermodynamic product (axial nitrile). Also, a-amino

nitrile cycloadducts (e.g., 81 in Scheme 14) with electron-withdrawing groups in the connecting



tether have been found to equilibrate more slowly due to inductive destabilization of the

intermediate iminium ion.

1 equiv MsOH
4A MS, CH 2CI2  H

OSiR 3  -78 oC 1 h O S iR 3  (14)

NCCN . N (14)
\\ CN 87%

65 (55:45) R1 R2

66a R1 = CN, R2 = H
SiR 3 = Sit-BuMe 2  66b R1 = H, R2 = CN

The facility of the acid-promoted cycloaddition of iminoacetonitriles is remarkable and of

great synthetic importance. With regard to mechanism, in iminoacetonitriles such as 38 there are

two possible sites of protonation. Protonation of the cyano group could lead to ionization to

form nitrilium ion 67 which could then undergo [4+2] cycloaddition. Alternatively, protonation

of the imine could generate the iminium ion 69 which might then be the intermediate undergoing

Diels-Alder cycloaddition (Scheme 10).

Scheme 10

\\-CN
38 E/Z 80:20

UMS

63

H
(NN

NH 6N CH

67a 67b OMs 68 OMs

,N

•mlk I I



It will be recalled that the intramolecular Diels-Alder reaction investigated by Grieco and

coworkers involved the in situ generation of a reactive iminium ion as a dienophile (see p 18).

Cycloadditions involving iminium 69 (Scheme 10) should be more facile than the iminium ions

studied by Grieco because the cyano group should destabilize the adjacent carbocation thereby

increasing the reactivity of the dienophile. In order to test this hypothesis, we examined the

reactivity of imine 71 lacking the cyano group. As shown in eq 15, treatment of imine 71 (E

isomer by 1H NMR analysis) with 1 equiv of MsOH led to recovered starting material with no

sign of the desired cycloadduct. Although this experiment seems to support the hypothesis that

the increased reactivity of 69 is a result of destabilization of the adjacent carbocation by the

cyano group, the increased reactivity of imine 38 versus imine 71 could also be the result of

steric hindrance in the transition state (cyano versus ethyl) or increased reactivity of the Z-imine

isomer versus the E-isomer. As previously discussed, the E and Z isomers of iminoacetonitriles

such as 38 equilibrate under the Diels-Alder reaction conditions whereas the E and Z isomers of

imines such as 71 do not equilibrate. Therefore, if the Z isomer is the reactive imine isomer in

the cycloaddition, then this could account for the difference in Diels-Alder reactivity between

imines 38 and 71.

EtCHO, CH2Cl 2  1 equiv MsOH
4 A MS, rt, 24 h CH2C 2, rt, 24h- (15)

4N*H2  100% N\ -Et- - -- N(5

36 (80% purity) 71 Et
36 71 72

Scope of the Intramolecular [4+2] Cycloadditions of Iminoacetonitriles

Having developed conditions for acid-promoted cycloadditions of iminoacetonitriles, we

turned our attention to investigating the scope of this process. This section begins with the



results of an examination of the acid-promoted cycloaddition of several iminoacetonitriles

previously prepared by David Amos. 36 Of particular interest were iminoacetonitriles that Amos

discovered were either sluggish or unreactive under the original thermal cycloaddition

conditions. The second part of this section explores the application of the iminoacetonitrile

cycloaddition to the synthesis of tricyclic systems which had not previously been investigated.

Initially, we decided to investigate the acid-promoted Diels-Alder cycloaddition of

iminoacetonitrile 65 (Scheme 11). In the event, cycloaddition of imine 65 with 1 equiv of MsOH

afforded 66a in 88-89% yield as a single diastereomer after heating the crude product in CH 3CN

at 45 'C for 1.5 h.

Scheme 11

S c OSit-BL
N

65

OSiR3

CN

73

SiR3 = Sit-BuMe2 1 a

1 equiv MsOH, 4A MS
CH2CI2, rt, 15 min;

CH3CN, 45 °C, 1.5 h
Me2  88-89%

or
3.0 equiv BHT,

toluene, 120 0C, 15 h
79-87%

H
N OSiR3  +

CN
74a

H
OSit-BuMe 2

CN

66aN

H
OSiR 3

CN
74b

CH2CI2 , rt, 90 min;
CH3CN, 45 0C, 1.5 h

3.0 equiv BHT,
toluene, 130 oC, 48 h

83%

58%

81:19

73:29

v iu MsOH 
4A Ms



Next, we explored the preparation of indolizidine 74 via the acid-promoted cycloaddition

of iminoacetonitrile 73. As shown in Scheme 11, cycloaddition of imine 73 in the presence of

MsOH furnishes indolizidines 74a and 74b as a 30:70 mixture of C-5 isomers. In this case,

heating the mixture of cycloadducts (74) in CH3CN at 45 'C for 1.5 h affords an 81:19 mixture

of 74a and 74b which represents the thermodynamic ratio. Interestingly, the rate of the

cycloaddition of imine 73 (3-carbon tether) is significantly slower than imine 50 (4-carbon

tether) under thermal conditions. However, the acid-promoted cycloadditions of imines 65 and

73 are extremely facile at room temperature and produce the desired cycloadducts in consistently

higher yields as compared to the thermal reactions.

Our attention was next focused on the feasibility of using silyl enol ethers as part of the

diene component. These experiments were aimed at laying the groundwork for applications of

the cycloaddition in the total synthesis of certain alkaloid natural products. As shown in eq 16,

thermal cycloaddition of imine 75 affords 76 in 71-78% yield as a single diastereomer. Initial

investigations of the acid-promoted cycloaddition of imine 75 were completely unsuccessful due

to decomposition of the silyl enol ether under the acidic reaction conditions. However, by

conducting the reaction at -78 'C with dropwise addition of MsOH, we were able to obtain

cycloadduct 76 in 60% yield with only a trace of decomposition. It should be emphasized that

for the cases shown in Scheme 11 and eq 16 exactly 1 equiv of MsOH was used to avoid

competing desilylation reactions.

1 equiv MsOH, 4A MS
CH2Cl2, -78 *C, 1 h;
n'LJ f'0k A" of' 4 r k

H3C, , 4t5 C, I.5 I
<. . OSit-BuMe 2  60%

Nor. CN . or
\\w, C N

(16)

3.U 0qUiV De l i, CN
75 toluene, 120 *C, 24 h 76

71-78%



The next stage of our investigation of the scope of the iminoacetonitrile cycloaddition

involved the synthesis of the tricyclic systems 77, 78, and 80 (Scheme 12 and eq 17). The first

two cases we examined involved vinylcyclohexenes as diene components. Subjecting imines 58

and 60 to thermal and acid-promoted cycloadditions afforded cycloadducts 77 and 78, in each

case as a single diastereomer. To assign the stereochemistry of the cyano group at C-4, we first

calculated the dihedral angles for both epimers and then used the Karplus curve to predict

coupling constants for the proton at C-4. For an axial cyano group (calculated dihedral angle of

800), the coupling constant would be expected to fall between 0 and 1 Hz. On the other hand, for

an equatorial cyano group (calculated dihedral angle of 450), the coupling constant would be

expected to fall between 4 and 8 Hz.46,47 The proton at C-4 of cycloadduct 77 appeared as a

singlet in the 'H NMR spectrum and thus is consistent with an axially disposed cyano group cis

to the C-3 proton (Scheme 12).48

46 Dihedral angles calculated with Chem3D, version 7.0.1; CambridgeSoft: Cambridge, MA, 2002.
47 Friebolin, H. Basic One- and Two-Dimensional NMR Spectroscopy, 2 nd ed.; VCH: New York, 1993, pp 88-91;
translated by J. K. Becconsall.
48 The stereochemistry of indolizidine 78 was established by comparing its NMR spectra to that of quinolizidine 77.



Scheme 12

C CN

58

CN

60

1 equiv MsOH, 4A MS
CH2C2, rt, 15 min;

CH3CN, 45 *C, 1.5 h
84%

or
3.0 equiv BHT,

toluene, 120 *C, 14 h
70%

1 equiv MsOH, 4A MS
CH2CI2, rt, 15 min;

CH3CN, 45 *C, 1.5 h
70%

or
3.0 equiv BHT,

toluene, 120 oC, 48 h
44%

77 \

3.44 ppm, s 800
dihedral angle

CN
78

Once again, the acid-promoted cycloadditions proceeded in consistently higher yield as

compared to thermal reactions. As expected, suprafacial cycloaddition leads to a single product

in which the two ring junction hydrogens are cis. As expected from previous results, the rate of

the thermal cycloaddition leading to 78 was considerably slower than the homologous case

leading to 77. An important trend to point out is that thermal cycloadditions of imines such as 60

and 73 leading to indolizidines are relatively sluggish and generally proceed in modest yield.

The final tricyclic case we studied involved the preparation of benzoquinolizidine 80

(Scheme 13). As previously reported by Amos, cycloaddition of imine 79 under thermal

conditions afforded cycloadducts 80a and 80b in 44-45% yield as a 79:21 mixture of epimers. 36

However, acid-promoted cycloaddition of this imine produced cycloadducts 80a and 80b in

improved yield (60%). It should be mentioned that at elevated temperatures, especially in polar



solvents such as CH3CN, cycloadducts 80a and 80b suffered from instability, which most likely

contributed to the relatively low yield observed in this case. 49

Scheme 13

N O-
CN

+

IV 80a 80b

1 equiv MsOH, 4A MS 60%
CH2CI2, rt, 1 h; 6

CH3CN, 45 °C, 1.5 h (79:21)

3.0 equiv BHT, 44-45%
toluene, 120 0C, 36 h (79:21)

Our next goal was to investigate the acid-promoted cycloaddition of iminoacetonitrile 81.

We were particularly interested in the reactivity of imine 81 due to the presence of the electron-

withdrawing sulfonamide nitrogen in the connecting tether. As previously reported by Amos,

thermal cycloaddition of 81 in toluene afforded 82a and 82b in 90-95% yield as a 37:63 mixture

of C-4 isomers. Interestingly, Amos had found that conducting the reaction in a more polar

solvent such as CH3CN afforded cycloadduct 82a in 61-64% yield as a single diastereomer,

albeit in lower yield. The relatively slow equilibration rate of cyano isomers 82a and 82b

compared to other quinolizidine cycloadducts is a result of inductive destabilization of the

intermediate iminium ion by the electron-withdrawing sulfonamide group. As expected from

these results, the acid-promoted cycloaddition of imine 81 at room temperature affords

cycloadduct 82b (kinetic product) in 71% yield as a single diastereomer. Once again, heating

49 For the stereochemical assignment of 80a and 80b, see reference 44 (pp 103-104).



82b in CH3CN equilibrates the C-4 cyano group to afford exclusively the thermodynamically

favored axial oriented nitrile. It should be mentioned that cycloadducts 82a and 82b both

possess a cis-relationship between the methyl group and ring junction hydrogen atom consistent

with suprafacial cycloaddition to the diene.

Scheme 14
H H

T s N T s N" H T s N

N 'CHN
CN 6N

81 82a 82b

3.0 equiv BHT, 90-95%
toluene, 120 oC, 36 h (37:63)

3.0 equiv BHT, 61-64%
CH3CN, reflux, 24 h (100:0)

1 equiv MsOH, 4A MS 71%
CH2CI2, rt, 1 h (0:100)

1 equiv MsOH, 4A MS 71%
CH2CI2, rt, 1 h; (100:0)

CH3CN, 45 *C, 18 h

At this stage, we decided to examine the feasibility of preparing cycloadducts with

substituents at the C-6 position such as 83. These cycloadducts are of particular importance due

to the abundance of biologically active 4,6-disubstituted quinolizidine natural products.50 Amos

had found in our previous studies that iminoacetonitriles with substituents alpha to the imine

such as 62 are completely unreactive under thermal conditions. 36 Unfortunately, the acid-

50 For a recent review of the chemistry and biology of quinolizidine alkaloids, see: Daly, J. W.; Garraffo, H. M.;
Spande, T. F. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Pergamon: New York,
1999; Vol. 13, pp 1-161.



promoted cycloaddition of iminoacetonitrile 62 (1 equiv MsOH, CH2Cl 2, It) also failed to

produce the desired cycloadduct 83 (unreacted 62 was recovered in ca. 90% yield). However,

we discovered that reaction in a more polar solvent (CH3CN instead of CH 2C12) affords

cycloadducts 83a and 83b in 70% yield as a 67:33 mixture. One possible explanation for this

solvent effect is that protonation of 62 to form either the key iminium ion of type 69 (see Scheme

10) or nitrilium ion of type 67b is much more favorable in acetonitrile. Alternatively, perhaps

the nitrilium ion of type 67b is the species undergoing cycloaddition and its formation is much

faster in the more polar solvent. Finally, it is possible that the rate of cycloaddition of the

intermediate carbocation (either of type 67b or 69) is faster in the more polar solvent, perhaps

due to the formation of a more reactive solvent-separated ion pair.

1 equiv MsOH, 4A MS
CH3CN, -30 *C to rt, 4 h; H

N CH3CN, 45 TC, 1.5 h 6+
CN 70% +

(17)

tH3  (67:33) CH 3
62 83a 83b

The stereochemistry of cycloadducts 83a and 83b was established by NMR analysis. The

protons at C-4 of 83a and 83b appeared as doublets and therefore were assigned as equatorial.

The carbon of the methyl group in 83a is shifted downfield (19.3 ppm vs 11.6 ppm) relative to

the carbon of the methyl group in 83b. The equatorial methyl group lies in the deshielding cone

of a C-C bond of the ring skeleton and therefore is expected to appear further downfield than the

axial methyl group.5 1

s51 Silverstein, R. M.; Webster, F. X. Spectrometric Identification of Organic Compounds, 61 ed.; John Wiley &
Sons, Inc.: New York, 1998; pp 155-156.



H-

CN

6 4
N

HzC H

H
1H NMR 3.74 ppm,

CH3  d,J=5.8 HZ
13C NMR 19.3 ppm 83a H NMR4.26 ppm, 83b 13CMR 11.6ppm

1CNMR 19.3 ppm 83b56Hd, J = 5.6 Hz 1CNR1. p

Next, we were interested in exploring the acid-promoted cycloaddition of

iminoacetonitrile 84 (Scheme 15). Previous work by David Amos showed that under thermal

conditions cycloadducts 85a and 85b are obtained in 73% yield as a 55:45 mixture of isomers at

C-9. 36' 52 Acid-promoted cycloaddition of imine 84 under standard conditions (1 equiv MsOH,

CH 2C12, rt) also furnishes 85a and 85b as a 55:45 mixture, albeit in slightly improved yield.

However, we discovered that conducting the reaction at -78 'C afforded cycloadduct 85a in 81%

yield as a single diastereomer after heating the crude product in CH 3CN at 45 'C for 1.5 h. This

is an exciting result as it provides the opportunity to use a C-9 stereogenic center as a directing

group in a diastereoselective cycloaddition.

52 For the stereochemical assignment of 85a and 85b, see reference 36 (pp 106-107).



85a 85b

3.0 equiv BHT, 73% 55:45
toluene, 120 oC, 22 h

1 equiv MsOH, 4A MS
CH2CI2, rt, 1 h; 81% 50:50

CH3CN, 45 0C, 1.5 h

1 equiv MsOH, 4A MS
CH2CI2, -78 0C, 1 h; 81% 100:0

CH3CN, 45 oC, 1.5 h

Enantioselective Intramolecular [4+2] Cycloadditions of Iminoacetonitriles

Having investigated the scope of the acid-promoted iminoacetonitrile cycloaddition, we

turned our attention to the possibility of using chiral Bronsted acids for an enantioselective

version. Recently, several laboratories have shown that chiral phosphoric acids (e.g., 88)

function as powerful organocatalysts for activation of imine functional groups which then

participate in a number of useful asymmetric reactions. 53 Of particular relevance to our work,

the laboratories of Akiyama54 and Gong55 have developed enantioselective aza Diels-Alder

reactions catalyzed by chiral phosphoric acids.

53 For a review of chiral phosphoric acids, see: Connon, S. J. Angew. Chem. Int. Ed. 2006, 45, 3909.
54 (a) Akiyamna, T.; Tamura, Y.; Itoh, J.; Morita, H.; Fuchibe, K. Synlett 2006, 141. (b) Itoh, J.; Fuchibe, K.;
Akiyama, T. Angew. Chem. Int. Ed. 2006, 45, 4796. (c) Akiyama, T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc.
2006, 128, 13070.
55 Liu, H.; Cun, L. F.; Mi, A. Q.; Jiang, Y. Z.; Gong, L. Z. Org. Lett. 2006, 8, 6023.
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As shown in Scheme 16, Akiyama and coworkers discovered that chiral phosphoric acid

88, derived from (R)-BINOL, catalyzes the Diels-Alder cycloaddition of aryl imines (e.g., 86)

with Danishefsky's diene to give piperidinone derivatives 89 in 72-100% yield and 78-91% ee.

Akiyama and coworkers attribute the good levels of enantioselectivity to a nine-membered

transition state in which one face of the imine is blocked by the acid catalyst. Akiyama and

coworkers have also shown that the steric bulk of the aryl groups at the 3 and 3' positions are

crucial for high levels of enantioselectivity. 54

Scheme 16
HO 5 mol % 88 OH

HOMe 1.2 equiv AcOH OH

N + OSiMe3  toluene, -78 *C, 12h o N

ArOSiM3 72-100% Ar 0
78-91% ee

86 87 89

-4

)

88 Ar1 = C6H6[2,4,6-(i-Pr)31

Gong and coworkers developed a direct asymmetric aza Diels-Alder reaction catalyzed

by chiral phosphoric acid 92, which involves the in situ generation of the diene (Scheme 14).

Gong reasoned that under the acidic reaction conditions cyclohexenone (91) would enolize and

the resulting dienol would behave as a 4a component in the cycloaddition. In the event,

treatment of aldimine 90 with cyclohexenone and 92 afforded cycloadduct 93 with good

enantioselectivity. Although substitution at the 3 and 3' positions of the catalyst is important

. 1



for high levels of enantioselectivity, Gong noticed that sterically congested aryl groups, such as

4-t-BuC6H6, actually had a deleterious effect on enantioselectivity. Gong and coworkers also

found that H8-BINOL-derived phosphoric acids (e.g., 92) lead to higher selectivity than the

corresponding BINOL-derived acids.55

Scheme 17

5 mol % 77
toluene, 20 =C, 6 d

70-82%
76-87% ee

0 AH

PMP
93

ca. 85:15 (endo:exo)

Encouraged by this work, our efforts were directed toward the development of an

enantioselective Diels-Alder cycloaddition of iminoacetonitriles. Our initial efforts focused on

the cycloaddition of imine 65 with commercially available phosphoric acid 95 (Scheme 18).

Treatment of imine 65 with 1 equiv of 95 in CH 2C02 for 24 h afforded the desired cycloadduct,

which upon reductive decyanation afforded 94 as racemic mixture. Although this reaction was

not enantioselective, we were glad to see that phosphoric acids of type 95 do promote the

iminoacetonitrile cycloaddition. Therefore, we decided to try the bulkier phosphoric acid 96,

N' O Me

Ar
90

0

+6

91



which is readily accessible from commercially available (R)-BINOL.56  In this case,

quinolizidine 94 was obtained in ca. 25% ee, albeit in low yield (ca. 10%). It should be

mentioned that the cycloaddition step in both cases is extremely sluggish and affords several by-

products. In order to increase the rate and success of the cycloaddition, the acidity of the

phosphoric acid needs to be increased as discussed in the section on acid-promoted

cycloadditions.57 Although the overall yield (ca. 10%) and enantiomeric excess are low, we are

confident that manipulation of the steric bulk and electronic properties of the 3 and 3' aryl groups

will lead to an effective chiral phosphoric acid for our iminoacetonitrile cycloaddition.

Scheme 18
1) 1 equiv 95 or 96

A A MAS t-HrI, 2 2

rt, 24 h
2) Na, NH3, THF H

OSit-BuMe2 -78 oC, 1 h OH

SCN ca. 10%
2• 0/

0O
RýO-H

65 v-/
95 Ar = H
96 Ar = Ph

Summary

In conclusion, iminoacetonitriles participate in acid-promoted intramolecular [4+2]

cycloadditions affording quinolizidine and indolizidine ring systems. In comparison to thermal

cycloadditions, acid-promoted cycloadditions of iminoacetonitriles generally afford cycloadducts

in higher yields, with better selectivity, with faster reaction rates, and under milder reaction

conditions.

56 For the synthesis of 80, see: (a) Simonsen, K. B.; Gothelf, K. V.; Jorgensen, K. A. J. Org. Chem. 1998, 63, 7536.
(b) Wipf, P.; Jung, J. K. J. Org. Chem. 2000, 65, 6319.
57 Acids 79 and 80 have pka values of ca. -I to 0.



Chapter 5- Intermolecular [4+2] Cycloadditions of

Iminoacetonitriles

Introduction

The piperidine substructure is one of the most common motifs found in natural products

and pharmaceutical compounds. According to Watson and coworkers, the piperidine

substructure was mentioned in over 12,000 compounds in clinical or pre-clinical studies from

July 1988 through December 1998.58 The important biological activities of piperidines have thus

stimulated the development of new methods, and considerable synthetic effort has been invested

in this area.59

One of the most important methods for the synthesis of six-membered rings is the Diels-

Alder reaction. Therefore, the development of imine derivatives as 2n components in aza Diels-

Alder reactions has greatly facilitated the ease with which piperidines can be synthesized in an

efficient manner. Although several types of imino dienophiles exist for the aza Diels-Alder

reaction, the most useful are the C-acylimines developed by Bailey and coworkers. As discussed

in chapter 2, Bailey and coworkers have demonstrated that imine 9 represents the state of the art

for imino dienophiles. As shown in eq 18, cycloadditions of imine 9 with a variety of dienes

afford piperidine cycloadducts (10-14) in good yield with excellent diastereoselectivity. It is

important to note that Bailey's methodology only provides access to cis-2,6-disubstituted

piperidines. Since a number of important natural products possess a trans-2,6-disubstituted

piperidine structure, a method that would allow access to both diastereomers would be a

valuable addition to synthetic methodology.

58 Watson, P. S.; Jiang, B.; Scott, B. Org. Lett. 2000, 23, 3679.
59 For reviews on the synthesis of piperidines, see: (a) Bailey, P. D.; Millwood, P. A.; Smith, P. D. J. Chem. Soc.,
Chem. Commun. 1998, 633. (b) Laschat, S.; Dickner, T. Synthesis 2000, 1781. (c) Weintraub, P. M.; Sabol, J. S.;
Kane, J. M.; Borcherding, D. R. Tetrahedron 2003, 59, 2953. (d) Buffat, M. G. P. Tetrahedron 2004, 60, 1701.



R2  R3

R Rl D4

TFA, CF3CH2OH
Ph N CO 2 Et -40 *C, 20 min

Ph H

(R

2

"R3 (18)

R4

9 10 R2, R3 = CH3  95%
11 R3 = CH3  87%
12 R1 = CH3  62%
13 R1, R2 = CH3  42%
14 R1, R4 = CH3  60%

(other R = H)

2,6-Disubstituted piperidines represent a subclass of naturally occurring piperidines that

have stimulated considerable synthetic interest due to their wide range of pharmacological

activities.60 Two prominent examples are (-)-solenopsin A, a constituent of the venom of the

Solenopsis species, 61 and (+)-himbacine, a piperidine alkaloid isolated from the bark of

Galbulimina baccata of the magnolia family.62 These two natural products have appeared as

novel drug candidates for the treatment of Alzheimer's disease.63

OH H

0

H 2 N

(-)-Solenopsin A (+)-Himbacine H
CH3

The importance of piperidines, specifically 2,6-disubstituted piperidines, encouraged us

to explore the feasibility of intermolecular [4+2] cycloadditions of iminoacetonitriles. As shown

in eq 19, the ability to use an iminoacetonitrile as a reactive 27t component in intermolecular

60 Schneider, M. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Pergamon: Oxford,
1996; Vol. 10, pp 155-299.

61 Jones, T. H.; Blum, M. S.; Fales, H. M. Tetrahedron 1982, 38, 1949.
6 2 Pinhey, J. T.; Ritchie, E.; Taylor, W. C. Aust. J. Chem. 1961, 14, 106.
63 Takadoi, M.; Yamaguchi, K.; Terashima, S. Bioorg. Med. Chem. 2003, 11, 1169.



hetero Diels-Alder cycloadditions would provide access to substituted piperidines in a highly

convergent fashion. The synthetically versatile a-amino nitrile moiety of the resulting

cycloadduct would then allow for the synthesis of a variety of both cis- and trans-2,6-

disubstituted piperidines in contrast to Bailey's methodology.

R1 R 1

R +N + R2  [4+2] R

CN KR3 NC
R4

a-amino nitrile
transformations ,R2

(19)
R
3

Synthesis of Benzyliminoacetonitrile

For our initial studies, we decided to focus on iminoacetonitrile 98 with the expectation

that a benzyl group would be readily removable from the cycloadducts. Iminoacetonitrile 98 was

previously synthesized by Selva and coworkers as shown in eq 20. 35 Selva discovered that

treatment of amino nitrile 97 with aqueous NaOCl at 10 'C affords imines 98 and 99 as a 90:10

mixture in 90% yield. Unfortunately, we found that separation of the desired iminoacetonitrile

98 from 99 was extremely difficult and not practical for large scale applications. Therefore, we

decided to explore alternative methods for the synthesis of iminoacetonitrile 98.

aq NaOCl E/Z 67:33

Phl N CN 10 *C, 50 min . Ph N ^CN + Ph 'N CN (20)
H

97 90% 98 90:10 99

We next investigated the synthesis of 98 via elimination of trifluoromethanesulfinate

from triflamide 100 which was synthesized from the corresponding alcohol via our Mitsunobu

strategy. Disappointingly, under standard elimination conditions (Cs2CO 3) the regioisomeric

imine 99 was isolated in 85% yield with no sign of the desired iminoacetonitrile 98. After



screening a variety of bases, however, NaH was found to provide the best ratio of imines 98 and

99, but still as a mixture (65:35 ratio) (eq 21).

1 equiv NaH

Ph N .CN THF, 0 oC, T2 h Ph N CN + Phf' N CN (21)Tf
100 98 65:35 99

Discouraged by these results, we next examined the use of our original elimination

protocol (NCS, base). Treating amine 97 with NCS followed by KOEt afforded the desired

iminoacetonitrile 98 in 70-75% yield (eq 22). The crude 'H NMR spectrum indicated less than

1% of the conjugated imine 99 had formed under these conditions. However, immediate

purification on acetone-deactivated silica gel was crucial to avoid isomerization to the alternative

imine. Also, benzyliminoacetonitrile 98 is fairly unstable at room temperature and can only be

stored for a few weeks in CH 2 C12 solution at 4 'C before isomerization takes place.

1.0 equiv NCS
THF, rt, 30 min;
1.0 equiv KOEt

0°C, 2h
Phl N CN 0 Phl N/ CN (22)

H 70-75%
97 98 E/Z 70:30

Scope of the Intermolecular Iminoacetonitrile Cycloaddition

With an effective method for preparation of benzyliminoacetonitrile 98 in hand, our

efforts were next directed at exploring the reactivity of 98 as a 27r component in hetero Diels-

Alder cycloadditions. Heating imine 98 with isoprene and 3 equiv of BHT in toluene at 120 'C

led to recovered imine with no sign of the desired cycloadduct. Notably, however, none of the

isomerized imine was formed under these conditions. Undeterred by these results, we shifted our

focus to acid-promoted cycloadditions. As shown in Scheme 19, reaction of imine 98 with 3



equiv of isoprene and 1 equiv of MsOH in CH 2Cl2 at -78 'C for 1 h followed by a basic workup

afforded the known cycloadduct 10264 in 91% yield as a single regioisomer. Comparison of the

coupling constants for the indicated proton at C-6 to literature values confirmed the presence of

an axial oriented nitrile.65 Optimization studies demonstrated that the number of equiv of

isoprene could be reduced to 1.5 equiv without a decrease in the yield. As expected from our

intramolecular cycloaddition studies, 1 equiv of MsOH was required for complete consumption

of iminoacetonitrile 98.

Scheme 19
1 equiv MsOH

Ph N H CH2CI2, -78 oC, 1 h PhN N
kUCN CH3 91% NC CH3

98 101 102

II

Lt u Found:i 3.78 ppm, dd, J= 6.5, 1.4 Hz --

HLit. 

value 
for 

axial 

nitrile 

3.84 
ppm, 

dd, 

6.0, 
1.5 

Hz

CN CH3

In order to rationalize the observed regiochemistry of the intermolecular iminoacetonitrile

cycloaddition, one must invoke frontier molecular orbital theory. As is the case with more

conventional Diels-Alder reactions, the HOMOdiene and LUMOdienophile frontier molecular orbitals

(FMOs) control the regiochemistry of aza Diels-Alder reactions.66 As shown below, in the case

of imino dienophiles, a larger atomic coefficient on the carbon atom of the C=N bond (A) leads

to a preference for product I, while a larger coefficient on the nitrogen atom (B) favors the

64 Bonin, M.; Romero, J. R.; Grierson, D. S., and Husson, H.-P. J. Org. Chem. 1984, 49, 2392.
65 Husson and coworkers assigned the nitrile as axial due to the lack of a large coupling constant (axial-axial) for the
proton at C-2.66 Fleming, I. Frontier Orbitals and Organic Chemical Reactions; John Wiley & Sons: New York, 1976.



regioisomeric product II. The majority of imino dienophiles react to provide products with the

substitution pattern of I.10 However, imines with two electron-withdrawing groups on the carbon

atom tend to afford products with substitution pattern II. The observation that iminoacetonitrile

98 affords cycloadduct 102, consistent with substitution pattern I, suggests that the largest

atomic coefficient in the LUMO is located on the carbon atom of the C=N bond as is the case

with simple imines baring only alkyl and aryl substituents.

R1 z z
+ I

N z

R2

T~iA

z z
R2

R1 z

Z Z
R 2

Z

Z

Z

Z

11

With conditions for the intermolecular cycloaddition of iminoacetonitriles in hand, efforts

were directed toward exploring the scope of the cycloaddition. As shown in Scheme 20, the

cycloaddition of imine 98 with 2-methyl-l,3-pentadiene afforded cycloadduct 104 in 87% yield

as a single diastereomer with an axial oriented cyano group. As shown below, the structure and

stereochemical assignment of cycloadduct 104 were confirmed by comparison to the known

piperidine 105.64
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Scheme 20

Phl N

CN
98

CH3

CH3
103

1H NMR3.69ppm
dd, J= 5.7, 1.7 Hz

1H NMR 3.70 ppm
dd, J = 6.0, 2.0 Hz

1 equiv MsOH CH3
CH2CI2, -78 oC, 1 h Ph N6

87% NC"% CH3
104

1 H NMR 12 9R nnm dri .I = R H7
, , , . , ,v r " ' .u v v.v

13C NMR 20.6 ppm

H NMR 3.22 ppm, m

No 1H NMR 1.31 ppm, d, J= 5 Hz
BnN 3  13C NMR 20.1 ppm

H
CN H,

105 1H NMR 3.25 ppm, m

Next, cycloaddition of imine 98 and 2,4-hexadiene was examined and was found to

produce cycloadduct 107 as a single diastereomer in 79% yield (Scheme 21). The cis-

relationship between the C-3 and C-6 methyl groups is consistent with suprafacial addition of the

diene to the imine. Comparison of the chemical shifts and coupling constants in 107 to the

known piperidine 105 established the stereochemistry at C-2, C-3, and C-6. The absence of an

equatorial-equatorial J-coupling of ca. 2.0 Hz for the C-2 proton in compound 107 indicated that

the C-3 methyl group occupies an equatorial orientation. Based on the observed difference in

chemical shift between the C-6 protons of 107 and 105, we concluded that the C-6 proton of 107

was equatorial.



Scheme 21
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CN~

105 'H NMR 3.25 ppm, m105

The last case we explored involved the cycloaddition of imine 98 and silyl enol ether

10867 to provide cycloadduct 109 in 51% yield as a single diastereomer (Scheme 22). As shown

in Scheme 22, comparison of the chemical shift and coupling constant values for cycloadduct

109 and the known piperidine 10564 elucidated the stereochemistry of the key stereocenters, at C-

6 and C-2. The lower yield in this case is most likely a result of competing decomposition of

silyl enol ether 108 under the acidic conditions of the reaction. In contrast to 104 and 107,

cycloadduct 109 was initially isolated as a mixture of nitrile isomers. However, simply heating

the mixture at 45 'C in CH 3CN for 1.5 h affords the thermodynamically favored product with an

axial cyano group. Cycloadduct 109 should be a useful intermediate as it should be possible to

selectively install substituents at C-2, C-5, and C-6 utilizing the oa-amino nitrile moiety and the

masked carbonyl at C-4.

67 For the synthesis of silyl enol ether 91, see: Jacobi, P. A.; Cai, G. Heterocycles 1993, 35, 1103.
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Summary

In conclusion, benzyliminoacetonitrile participates in acid-promoted intermolecular [4+2]

cycloadditions with a variety of dienes affording piperidine ring systems. The cycloadducts are

obtained as single regioisomers and diastereomers with axial oriented cyano groups in good

yield.



Part III

Synthetic Utility of

a-Amino Nitrile Cycloadducts



Chapter 6- Transformations of ac-Amino Nitrile

Cycloadducts

As discussed in Chapter 1, one of our primary reasons for exploring iminoacetonitriles as

27 components in aza Diels-Alder cycloadditions was our expectation that the a-amino nitrile

cycloadducts would serve as versatile synthetic intermediates amenable to further elaboration.

This chapter begins with a brief overview of previous studies on a-amino nitrile transformations

and then provides details of our work involving the synthetic elaboration of a-amino nitrile

cycloadducts to give substituted quinolizidines and indolizidines.

Introduction and Background

As shown in Scheme 23, a-amino nitriles are exceptionally versatile intermediates for the

synthesis of nitrogen heterocycles. 9 The simplest and most well-known reaction of u-amino

nitriles is hydrolysis to produce amino acids, as demonstrated by Strecker in 1850.68 Several

other useful transformations such as reduction and nucleophilic addition are possible based on

the nitrile moiety, but the focus of this chapter will be on the application of a-amino nitriles as

latent iminium ions.

68 Strecker, A. Liebigs. Ann. Chem. 1850, 75, 27.
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The ability of a-amino nitriles to function as stable precursors to iminium ions and the

ease with which ionization of the cyano group occurs provides for a wide range of further

reactions, such as Mannich condensations, cation-n type cyclizations, and Bruylants reactions.9

A complementary mode of reactivity involves metallation of the nitrile to afford stabilized

lithium derivatives that can then undergo a variety of carbon-carbon bond-forming reactions.

Thus, by proper choice of reaction conditions, the carbon atom of the a-amino nitrile can

function as either a nucleophilic or electrophilic species.

The simplest transformation in which a-amino nitriles function as latent iminium ion

precursors is reductive decyanation (Scheme 23). This type of reduction is usually carried with

NaBH 4 in EtOH, with either heat or a large excess of reducing agent (10 equiv).69 However, a

variety of other reagents have been reported for the reductive decyanation of a-amino nitriles,

69For a review on reductive decyanations, see Mattalia, J. M.; Marchi-Delapierra, C.; Hazimeh, H.; Chanon, M.
Arkivoc 2006, 4, 90.



including LiAlH 4,70 BH 3,71 Zn(BH)4,72 NaBH 3CN,73 KBH4 74 and alkali metals in liquid NH3.75

Although several methods are well known for this transformation, David Amos found that

consistently superior yields (ca. 10% higher) are obtained using NaBH 3CN in AcOH. For

example, Amos found that treatment of 66a with NaBH 3CN and AcOH in CH 3CN delivered

quinolizidine 110 in 91-92% yield (eq 23), while with NaBH 4 in refluxing EtOH 110 was

obtained in 83% yield.36

6 equiv NaBH3CN

H 12 equiv AcOH H
N OSit-BuMe 2  MeCN, rt, 20 h OSit-BuMe2 (23)

91-92%
CN

66a 110

A unique mode of reactivity of a-amino nitriles that deserves special mention is the

76Bruylants reaction.76 Typically, organometallic species such as alkyllithium compounds react

with nitriles via a 1,2-addition pathway. However, reaction of an a-amino nitrile with a

Grignard reagent usually leads to ionization of the cyano group to generate an iminium ion due

to the Lewis acidic nature of the magnesium species present in the Grignard reagent. The

iminium ion is then trapped by organomagnesium compounds to give the substitution product

rather than the "normal" addition product (eq 24). Several types of Grignard reagents have been

utilized in the Bruylants reaction including alkyl, vinyl, aryl, and alkynyl magnesium halides. 77'9

A modification of the Bruylants reaction involves reaction with Grignard reagents in the

70 Froelich, O.; Desos, P.; Bonin, M.; Quirion, J.-C.; Husson, H.-P. J. Org. Chem. 1996, 61, 6700.
71 Ogura, K.; Shimamura, Y.; Fujita, M. J. Org. Chem. 1991, 56,2920.
7 2 Zhu, J.; Quiron, J.-C.; Husson, H.-P. Tetrahedron Lett. 1989, 30, 5137.
73 Mitch, C. H. Tetrahedron Lett. 1988, 29, 6831.
74 Kuehne, M. J.; Xu, F. J. Org. Chem. 1997, 62, 7950.
75 Arseniyadis, S.; Huange, P. Q.; Husson, H.-P. Tetrahedron Lett. 1988, 29, 1391.
7
6 Bruylants, P. Bull. Soc. Chem. Belg. 1924, 33, 467.

77 For examples of the Bruylants reaction, see: (a) Albrecht, H.; Dollinger, H. Synthesis 1985, 743. (b) Agami, C.;
Couty, F.; Evano, G. Org. Lett. 2000, 2, 2085.



presence of a Lewis acid which enables the reaction to be conducted at low temperatures (-78

oC). 77 In addition to Grignard reagents, silyl enol ethers, 78 ketones, 79 malonates, 9a indoles, 9a and

organozinc compounds80 also react with these latent iminium ions to afford substitution products

analogous to those formed in the Bruylants reaction.

a ,R R1MgX

CN 
ON

I(R
a R (24)

R1

The chemistry discussed above has been elegantly utilized in the laboratories of Husson

and Polniaszek, among others. Husson and coworkers have exploited the reactivity of the a-

amino nitrile moiety of non-racemic N-(cyanomethyl)oxazolidines (e.g., 111) for the synthesis of

several natural products.8' As shown in Scheme 24, metallation of 111 with LDA followed by

alkylation with propyl bromide afforded 112 in 98% yield. Reduction of 112 with NaBH 4

followed by removal of the chiral auxiliary afforded (S)-(+)-coniine in good yield and excellent

enantiomeric purity. To access (R)-(-)-coniine, Husson and coworkers used the electrophilic

nature of the a-amino nitrile moiety. Ionization of the cyano group upon treatment of 111 with

silver tetrafluoroborate afforded an intermediate iminium ion, which upon addition of

propylmagnesium bromide provided the overall substitution product 113. Subsequent removal

of the chiral auxiliary afforded (R)-(-)-coniine in good yield with excellent stereochemical

purity.82

78 (a) Koskinen, A.; Lounasmaa, M. J. Chem. Soc., Chem. Commun. 1983, 821. (b) Grierson, D. S.; Bettiol, J.-L.;
Buck, I.; Husson, H.-P. J. Org. Chem. 1992, 57, 6414.79 Bonjoch, J.; Casamitjana, N.; Gracia, J.; Bosch, J. Tetrahedron Lett. 1989, 30, 5655.
80so Bemrnardi, L.; Bonini, B. F.; Capito, E.; Dessole, G. Fochi, M.; Comes-Franchini, M.; Ricci, A. Synlett 2003, 1778.
s81 For a review of Husson's CN(R,S) method, see: Husson, H.-P.; Royer, J. Chem. Soc. Rev. 1999, 28, 383.
82 Guerrier, L.; Royer, J.; Grierson, D. S.; Husson, H.-P. J. Am. Chem. Soc. 1983, 105, 7754.



Scheme 24
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Polniaszek and Belmont utilized a-amino nitrile 114 in the total synthesis of several

indolizidine alkaloids.83 As shown in Scheme 25, alkylation of the metalated nitrile with alkyl

bromides followed by reductive decyanation furnished indolizidine 115 in good yield as a single

diastereomer. Alternately, Bruylants reaction of a-amino nitrile 114 with Grignard reagents

delivered the stereocomplementary product 116, again as a single diastereomer.

Scheme 25
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then R-Br
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83 (a) Polniaszek, R. P.; Behnlmont, S. E. J. Org. Chem. 1990, 55, 4688. (b) Polniaszek, R. P.; Behnlmont, S. E. J. Org.
Chem. 1991, 56, 4868.



In summary, a-amino nitriles are extremely versatile intermediates for the synthesis of

nitrogen heterocycles. Our iminoacetonitrile cycloaddition methodology provides a general and

efficient route to polycyclic a-amino nitriles, and we were excited to investigate the elaboration

of these cycloadducts to demonstrate their utility as synthetic intermediates.

Transformations of a-Amino Nitrile Cycloadducts

Our early studies on the transformations of a-amino nitrile cycloadducts focused on

reactions involving quinolizidine 66a and indolizidine 74 as prototype systems. These

cycloadducts are readily accessible on a multigram scale, stable to long term storage, and easy to

handle. The first part of this chapter discusses the reductive decyanation, alkylation, and

Bruylants reaction of a-amino nitriles 66a and 74. The second part of this chapter then describes

our efforts toward the synthesis of quinolizidines and indolizidines incorporating quaternary

centers, including spiroquinolizidines.

Alkylation/Reductive Decyanation

Previous studies by David Amos had established conditions for the tandem alkylation-

reductive decyanation of our a-amino nitrile cycloadducts. For example, as illustrated in

Scheme 26, treatment of 66a with 2.1 equiv of LDA 84 at -78 'C followed by quenching with

ethyl iodide afforded the tertiary ac-amino nitrile 117 in quantitative yield, though with only 90%

purity. Further purification was not attempted as tertiary a-amino nitriles such as 117

decompose upon purification by silica gel chromatography. Therefore, treatment of 117 without

prior purification with NaBH 3CN under our standard reductive decyanation conditions delivered

84 Employing less LDA led to the recovery of starting material.



quinolizidine 119 in 87% yield (overall from 66a) as a single diastereomer. 36 As expected, the

reductive decyanation of the tertiary a-amino nitrile 117 was considerably faster than the

reduction of the secondary a-amino nitrile 66a due to the increased stability of the

tetrasubstituted iminium ion intermediate. Using similar conditions, I extended the tandem

alkylation-reductive decyanation protocol developed by Amos to the synthesis of 120. Thus,

alkylation of 66a with allyl bromide followed by reductive decyanation afforded quinolizidine

120 in 86% overall yield as a single diastereomer. The allyl group of 120 was assigned as

equatorial (endo) based on NMR analysis and comparison with the spectra previously reported

by Amos 36 for the related compounds 119 and 121 as shown below.

Scheme 26
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The stereochemical control observed in the reductive decyanation step is of particular

significance. As shown in eq 25, the stereochemistry of the tertiary a-amino nitrile 117 is

irrelevant as the first step in the reductive decyanation involves ionization of the cyano group to

generate iminium ion 122. This carbocation is then trapped via exo (axial) addition of a

nucleophile (hydride in this case) which is predicted by stereoelectronic considerations to occur

such that approach of the nucleophile maintains maximum orbital overlap with the developing

lone pair on nitrogen.8

H [ t Nuc
OSiR3  R3SiO Nuce R3SiO (21)

C NN N (21)

Et' CN L_

100 SiR3 = Sit-BuMe2  104 102

As mentioned previously, several biologically active indolizidine alkaloids are substituted

at the C-5 carbon. Therefore, our efforts were next directed at applying the tandem alkylation-

reductive decyanation to the synthesis of indolizidine 123 (Scheme 27). In the event, treatment

of a-amino nitrile 74 with 2.1 equiv of LDA followed by quenching the metalated nitrile with 4-

bromobutene afforded the tertiary a-amino nitrile in quantitative yield (85% purity) as a single

diastereomer. Subjecting the unpurified tertiary a-amino nitrile to our standard reductive

decyanation conditions then delivered indolizidine 123 in 49% yield as a 65:35 mixture of

isomers. As discussed below, spectroscopic studies (vide infra) confirmed that both isomers

possess an equatorial butenyl substituent, trans to the ring junction hydrogen, and that the two

isomers in fact differ as conformational isomers, with trans and cis azaindane systems,

respectively.

85 (a) Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry; Pergamon: New York, 1983, pp 211-221.
(b) Stevens. R. V. Acc. Chem. Res. 1984, 17, 289.



Scheme 27
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In order to confirm the structure of indolizidine 123, we hydrogenated the mixture to

afford indolizidines 124 and 125 in quantitative yield as a 77:23 mixture of isomers which were

shown to differ only by the configuration at the new C-7 center determined in the hydrogenation.

This finding indicates that the original indolizidine isomers 123 must both have the same

configuration at C-5, and thus must be conformational isomers differing with regard to having a

cis or trans azabicyclic skeleton. The assignment of the C-7 stereocenter was established by

comparison of the chemical shifts of the protons at C-10 of 124 and 125 to related compounds. 86

As shown below, the butenyl group (R') in 124 was assigned as equatorial (endo) based on NMR

analysis and comparison of the H3a chemical shift in each compound with the spectra previously

reported by Polniaszek and coworkers 83a for the related compounds 126 and 127.

OR
10

86
SWyman and coworkers found that the C-10 protons of N are deshielded by ca. 0.15 ppm relative to

the equatorial (CH 2OR) isomer, see Wyman, P. A.; Gaster, L. M.; King, F. D.; Sutton, J. M.; Ellis, E. S.; Wardle, K.
A.; Young, T. J. Bioorg. Med Chem. 1996, 4, 255.
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In order to obtain further support for our assignment for 123, we investigated the energy

difference between cis- and trans-fused indolizidines I and II using ab initio methods. As can be

seen in Figure 2, the trans-fused saturated indolizidine (1a) was calculated to be 2.5 kcal/mol

more stable than the cis-fused saturated indolizidine (Ib), consistent with literature values. 87 In

contrast, calculation of the energy difference between the trans- and cis-fused unsaturated

indolizidines II revealed that trans-fused form IHa is only 0.1 kcal/mol more stable than the cis-

fused form IIb. This is in accordance with our observation that the related unsaturated

indolizidine 123 exists as a mixture of trans- and cis-fused indolizidines whereas the

hydrogenation products are observed to be only trans-fused systems.

87 The trans-fused indolizidine is 2.4 kcal/mol more stable than the cis-fused indolizidine, see Aaron, H. S.;
Ferguson, C. P. Tetrahedron Lett. 1968, 9, 6191.
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Figure 2. Relative energies for saturated and unsaturated indolizidines calculated
using MacSpartan '04 (ab initio HF-6-311+G**) (Wavefunctions, Irvine, CA).

Bruylants Reaction

We next turned our attention to the Bruylants reaction of a-amino nitrile 66a. Some of

the earlier results obtained by David Amos are shown in Scheme 27. Thus, Amos had found that

treatment of 66a with 3 equiv of ethylmagnesium bromide in Et20 affords quinolizidine 121 in

85% yield as an 88:12 mixture of P3 and ac ethyl stereoisomers. 36  As predicted by

stereoelectronic principles (vida supra), the intermediate iminium ion is trapped via axial

addition of the Grignard reagent to give the major diastereomer 121. Interested in exploring the

scope of this process with respect to different types of Grignard reagents, Amos found that aryl

and alkynyl Grignard reagents deliver the expected quinolizidines 128 and 129 in excellent yield

as a single diastereomer in each case (Scheme 27). Of particular importance is the

stereocomplementary nature of transformations 66a--+119 (Scheme 26) and 66a--+121, in which

the C-4 stereocenter can be controlled to provide either diastereomer depending on the protocol

employed.



Scheme 27
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It should be noted that the ability of our strategy to provide efficient access to substituted

quinolizidines and indolizidines such as 119 and 121 is of particular importance, since nitrogen

heterocycles of this type are not available via the intramolecular Diels-Alder reactions of

iminium ions described by Grieco. As discussed in Chapter 2, Grieco reported that iminium ions

derived from formaldehyde readily undergo the desired cycloaddition, but in the case of iminium

ions derived from acetaldehyde "the reaction rate was substantially retarded and the number of

byproducts was significantly increased." 30 To obtain more specific data on the scope of the

Grieco iminium ion Diels-Alder reaction, David Amos investigated the reactions shown in eq

26.36 As expected, the formiminium ion derived from 130 and HCHO afforded the expected

cycloadduct 131 in good yield; however, the analogous reaction of 130 with propionaldehyde

failed to deliver the expected cycloadduct 132 and instead resulted in the formation of a complex

mixture of products. In contrast, as discussed above, our iminoacetonitrile cycloaddition strategy

2 N 88:12
121 Et

'it-BuMe 2



not only provides access to substituted quinolizidines and indolizidines such as 132, but also

allows us to selectively generate either of the two stereoisomers.

4 equiv R1CHO
LCI, H12 U

OSit-BuMe 2  65 OC 24 h
N H2

130 R1
131 R'=H 60-66%
132 RI=Et 0%

Synthesis of Quinolizidines and Indolizidines with Quaternary Centers

Next, we turned our attention to the application of this chemistry for the synthesis of

quinolizidines and indolizidines incorporating quaternary centers.88  The diastereoselective

installation of quaternary centers has always been a challenging problem in organic synthesis.

We envisioned that by using a combination of alkylation reactions and stereocontrolled additions

to iminium ions, stereoisomeric quinolizidines and indolizidines with quatemrnary centers would

be available with a high degree of stereocontrol. As illustrated in Scheme 28, this has indeed

turned out to be the case. Thus, alkylation of 66a with ethyl iodide followed by Bruylants

reaction with methylmagnesium bromide affords quinolizidine 133 as a single diastereomer. The

diastereomeric quinolizidine 134 was prepared by reaction of the metalated nitrile with methyl

iodide and subsequent reaction with ethylmagnesium bromide. It is crucial to the success of the

Bruylants reaction that upon scaling up the reaction (>100 mg) the Grignard reagent is pre-

cooled to 0 'C before addition to the alkylated a-amino nitrile. If the Grignard reagent is not

pre-cooled to 0 °C, the yield of the reaction is decreased (ca. 30-40%) because the alkylated a-

88 See reference 9 and Husson, H.-P.; Royer, J.; Yue, C. J. Org. Chem. 1992, 57, 4211.

)H26)
(26)



amino nitrile (obtained from the first step) rapidly decomposes upon addition of the Grignard

reagent.

Scheme 28
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The stereochemical assignments of the quaternary centers in 133 and 134 are based on

the observed resonances for the C- 11 methyl groups in the 1H NMR spectrum. The protons of

the C-11 methyl group in quinolizidine 134 are shifted downfield (1.10 ppm vs 0.88 ppm)

relative to the protons in the C-1 methyl group of 133. The equatorial methyl group lies in the

deshielding cone of a C-C bond of the ring skeleton and therefore is expected to appear further

downfield than the axial methyl group.51 This assignment is consistent with axial delivery of the

Grignard nucleophile to the iminium ion as previously discussed.

A second strategy for installing quaternary centers exploits the nucleophilic character of a

metalated a-amino nitrile and the electrophilic character of the nitrile group itself. Alkylation of

74 with ethyl iodide followed by addition of methyllithium provided the expected imine, which

upon hydrolysis by added silica gel afforded 136 in 73% yield (overall from 74) as a single



diastereomer (Scheme 29). The cyano group of the alkylated a-amino nitrile 135 was

anticipated to be axially disposed due to the anomeric effect, and thus ketone 136 is predicted to

have the stereochemistry shown.

Scheme 29
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The stereochemistry of the quaternary center in 136 was established using NOE

difference experiments. Irradiation of the ring junction hydrogen produced an NOE

enhancement at the acetyl methyl group confirming the equatorial disposition of the ethyl group.

Interestingly, irradiation of H3a89 produced an NOE enhancement at the C-6 axial hydrogen (H6a)

and not at the ring junction hydrogen leading to the conclusion that 136 exists as the cis-

azaindane conformational isomer as shown below.

89 The chemical shifts of the C-3 protons are well resolved in the 'H NMR spectrum of 136. The more deshielded
proton (2.98 ppm vs 2.55 ppm) was assigned as the equatorial proton (H3e) due to the fact that it lies in the
deshielding cone of a C-C bond of the ring skeleton.
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Next, indolizidine 138 was prepared in 67% yield by reacting the metalated cc-amino

nitrile with ethyl iodide to give tertiary a-amino nitrile 137 which was immediately treated with

ethynylmagnesium bromide. Again, as predicted on the basis of stereoelectronic considerations,

diastereomer 138 was obtained as the exclusive product of the reaction (Scheme 30). However,

in this case, we isolated a 65:35 mixture of trans- and cis-fused indolizidine conformational

isomers which could be separated by column chromatography.

Scheme 30
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Unambiguous assignment of the trans- and cis-fused indolizidine ring systems was

accomplished by employing difference NOE experiments. First, identification of H3e and H3a in

iR3



the spectra of the major and minor isomers was made by NMR analysis. The chemical shifts of

the C-3 protons are well resolved in the 'H NMR spectra of both isomers. The more deshielded

proton (for major-138 2.91 ppm vs 2.39 ppm and for minor-138 3.14 ppm vs 2.82 ppm) was

assigned as (H3e) due to the fact that it lies in the deshielding cone of a C-C bond of the ring

skeleton.5 Irradiation of the ring junction hydrogen in the major ring system produced NOE

enhancements at H3a and the acetylene hydrogen. These results rule out the possibility of the

structure of the major isomer being trans-139. However, irradiation of the H6a proton did not

produce an NOE enhancement at H3a. Therefore, we concluded that the major isomer is trans-

138. Next, irradiation of H3a of the minor product produced NOE enhancements at the C-6 axial

hydrogen (H 6a) and the ethyl group which supports the assignment of the minor isomer as cis-

138 instead of cis-139.

------------------------------------------------------

H

0.6% 2.7%
H H

R
3

SiO Et H3 e

N H3e

2.4%

NOE enhancements NOE enhancements
for trans-138 for cis-138

- - - - -- - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - -

H

Ha" ýEtH3a

Hu N H 3
e
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6

a

trans-39 cis-139trans-1 39 cis-1 39
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The preceding reaction sequences for the installation of quaternary centers take

advantage of all three reactive characteristics of the a-amino nitrile moiety. The alkylation

employs the nucleophilic character of metalated nitriles, while the formation of the ketone

demonstrates the electrophilic nature of the cyano group, and the Bruylants reaction exploits the

latent iminium ion character present in this functional group. Therefore, implementing the

appropriate tactics allows the incorporation of different functional groups with complementary

stereochemistry.

Synthesis of Spiroquinolizidines

Our attention was next focused on utilizing a-amino nitrile cycloadducts for the synthesis

of spiro-fused azatricyclic systems. Besides being structurally intriguing molecules, these

systems are also found in biologically active natural products such as halichlorine. Halichlorine,

a marine alkaloid isolated from the sponge Halichondria okadai Kadota, inhibits the expression

of VCAM-1 (Vascular Cell Adhesion Molecule-l) and therefore has been identified as a lead

compound for the development of antiinflammatory drugs.90' 91 Initially, we envisioned using

ring closing metathesis as shown in Scheme 31 to form the spirocyclic system of molecules such

as 141.92

90 Isolation and activity as inhibitor of VCAM-1: Kuramoto, M.; Tong, C.; Yamada, K.; Chiba, T.; Hayashi, Y.;
Uemura, D. Tetrahedron Lett. 1996, 37, 3867
91 Synthetic studies: (a) Trauner, D.; Schwarz, J. B.; Danishefsky, S. J. Angew. Chem., Int. Ed. 1999, 38, 3542. (b)
Matsumura, Y.; Aoyagi S.; Kibayashi, C. Org. Lett. 2004, 6, 965.
92 For a review on metathesis reactions in organic synthesis, see Grubbs, R. H. Handbook ofMetathesis; Wiley-
VCH: Germany, 2003; vol. 2.
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Unfortunately, attempts to synthesize the RCM quinolizidine substrate 140 were

unsuccessful (Scheme 32). Alkylation of cycloadduct 66a proceeded normally, but the resulting

tertiary a-amino nitrile 142 decomposed upon addition of the alkyl Grignard reagent (precooled

to 0 TC) to give a mixture of several products, two of which we have been tentatively assigned as

144 and 145. The Grignard reagent appears to deprotonate the iminium ion 143 at C-3 or C-11I

to give the dienamine byproducts. It also appears that the rate of deprotonation of 143, probably

at the activated allylic C-11 position, occurs at a much faster rate than nucleophilic addition to

the iminium ion in this case. Unfortunately, we did not try any other Grignard reagents in the

Bruylants reaction of 142 and therefore we cannot say with certainly that it is the substrate

structure that is solely responsible for the failure of the Bruylants reaction.

a h% 31 - - - - -- - - - - -

mm• •J•



Scheme 32
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145 CH
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N 3
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143
CH3

iR3
--------------

SIR 3 = Sit-BuMe2

A second approach we explored is shown in Scheme 33 and involves an enyne ring

closing metathesis strategy to deliver the spiroquinolizidine. 93 Thus, alkylation of the metalated

nitrile with 4-bromobutene followed by addition of ethynylmagnesium bromide afforded

quinolizidine 146 in 65% yield as a single diastereomer.94 The success of the Bruylants reaction

in this case is attributable to two factors which we believe suppress the rate of deprotonation.

First, ethynylmagnesium bromide is less basic than allylmagnesium bromide. Second, the side

chain does not have a double-bond located so as to allow formation of a conjugated dienamine

similar to 144. With 146 in hand, we investigated the enyne ring closing metathesis reaction and

found that treatment of 146 with 5 mol % of 147 in toluene at 85 'C for 2 h affords

spiroquinolizidine 148 in 82% yield. Efforts to employ less catalyst led to incomplete

conversion and low yields.

93 For reviews on enyne metathesis, see: (a) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. (b) Poulsen,
C. S.; Madsen, R. Synthesis 2003, 1. (c) Villar, H.; Frings, M.; Bolm, C. Chem. Soc. Rev. 2007, 36, 55.
94 The assignment of the quaternary center in 146 was confirmed by a NOE enhancement produced at the acetylenic
proton upon irradiation of the ring junction hydrogen.
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Finally, we explored the feasibility of using a reductive cyclization to form the

spirocyclic system. Our interest in reductive cyclization of nitriles originated from consideration

of the elegant work of Rychnovsky and coworkers. As shown in Scheme 34, Rychnovsky has

shown that exposure of cyanohydrin 149 to 4,4'-di-t-butylbiphenylide (LiDBB) affords

spirocycle 153 in excellent yield as a single diastereomer. 95 Mechanistic studies of the reductive

lithiation of cyanohydrins showed that the stereochemistry of the organolithium intermediate is

controlled by the preference of the unpaired electron in 150 to occupy an orbital with axial

orientation due to anomeric stabilization. Following a second electron transfer, the lithium

compound 152 cyclizes to deliver spirocycle 153.96

95 (a) Rychnovsky, S. D.; Takaoka, L. R. Angew. Chem. Int. Ed. 2003, 42, 818. (b) La Cruz, T. E.; Rychnovsky, S.
D.J. Org. Chem. 2006, 71, 1068.9 6 Rychnovsky, S. D.; Powers, J. P.; LePage, T. J. J. Am. Chem. Soc. 1992, 114, 8375.

Scheme 33
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Scheme 34

excess LiDBB, THF
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9 153

R R2 R R2
H H Li

150 152

Rychnovsky and coworkers have also extended this methodology to a-amino nitriles with

pendant phosphate leaving groups (e.g., eq 27). Reductive lithiation of 154 with LiDBB and

subsequent cyclization affords spirocycle 155 in 85% yield. Consistent with previous

cyanohydrin reductive cyclization studies, this reductive spiroannulation is highly stereoselective

and produces a 92:8 mixture of trans- and cis-155.97

CN
H3 C' •, P(OEt)2

CSn

D
excess LiDBB D

THF, -78 C H3C  +

85% 
BnN

154 trans-155 92:8 cis-155

Inspired by this work, we decided to explore the reductive spiroannulation of a-amino

nitrile cycloadducts. As shown in Scheme 35, alkylation of the metalated nitrile with 1-chloro-5-

iodopentane afforded tertiary a-amino nitrile 156, which without purification underwent

reductive cyclization with LiDBB to deliver spiroquinolizidine 157 in 51% overall yield from

66a. Although this is a fairly simple example, it does demonstrate that the reductive cyclization

of a-amino nitrile cycloadducts is a powerful method for the stereocontrolled synthesis of

spirocyclic systems.

97 (a) Wolckenhauer, S. A.; Rychnovsky, S. D. Tetrahedron 2005, 61, 3371. (b) Wolckenhauer, S. A.; Rychnovsky,
S. D. Org. Lett. 2004, 6,2745.

(27)



Scheme 35
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Summary

In conclusion, our a-amino nitrile cycloadducts undergo a variety of useful synthetic

transformations leading to a variety of substituted quinolizidines and indolizidines. These

transformations take advantage of the latent iminium ion character of a-amino nitriles, along

with the reactivity of the cyano group. These studies provided a better understanding of the

reactivity of our a-amino nitrile cycloadducts, enabling us to apply this methodology to the total

synthesis of quinolizidine and indolizidine natural products as described in the following two

chapters.



Chapter 7 - Total Synthesis of Quinolizidine (-)-217A

As discussed in the previous chapter, the intramolecular [4+2] cycloaddition of

iminoacetonitriles provides access to oa-amino nitrile cycloadducts that are versatile synthetic

intermediates for the synthesis of quinolizidines and other nitrogen heterocyclic systems. This

chapter describes the total synthesis of the natural product quinolizidine (-)-217A utilizing an

iminoacetonitrile cycloaddition as the key step.

Introduction

The importance of substituted quinolizidines and indolizidines as synthetic targets is well

established. The skeletons of a number of bioactive natural products incorporate these

structures, and many of these compounds are available in very limited amounts from their natural

source." Highly toxic quinolizidine and indolizidine alkaloids isolated from the skin of

poisonous amphibians have attracted much interest as research tools for neurophysiological

investigations, and recently quinolizidine alkaloids obtained from marine sources have been

identified as lead compounds for the development of anticancer, anti-inflammatory, and

cardiovascular drugs. A number of ingenious methods have been developed in response to the

synthetic challenge posed by these molecules, and these alkaloids have served as a popular

testing ground for methods for the construction of pyrrolidines, piperidines, and various

azabicyclic systems.99

98 For a recent review of the chemistry and biology of indolizidine and quinolizidine alkaloids, see Daly, J. W.;
Garraffo, H. M.; Spande, T. F. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Pergamon:
New York, 1999; Vol. 13, pp 1-161.
99 Reviews: (a) Michael, J. P. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 2001; Vol. 55, pp
91-258. (b) Michael, J. P. Nat. Prod. Rep. 2004, 21, 625 and references therein.



A majority of these "izidine" type alkaloids can be classified as either 1,4-disbustituted

quinolizidines or 5,8-disubstituted indolizidines. As shown in Scheme 36, there are four possible

diastereomers for each class and currently there are known examples of each type of alkaloid

except 159, 164, and 165.100 Even though elegant methods exist for the synthesis of these types

of alkaloids, 10 1 we felt that our iminoacetonitrile cycloaddition chemistry would be a valuable

addition to the synthetic methodology because we should be able to access all possible

stereoisomers from a few common ac-amino nitrile cycloadducts. As discussed in Chapter 6, the

stereochemistry at C-4 of quinolizidines (and C-5 of indolizidines) can be controlled by

employing the proper choice of reagents in the synthetic elaboration of a-amino nitriles. For

example, the tandem alkylation-reductive decyanation affords the equatorial oriented side chain

(R2), whereas the Bruylants reaction produces the axial oriented side chain. On the other hand,

the stereochemistry at C-1 of quinolizidines and C-8 of indolizidines can be manipulated by the

proper application of thermodynamic or kinetic control. For example, thermodynamic control

can provide routes to systems such as 158, 160, 162, and 164 where R' is an equatorial side

chain. Alternatively, hydrogenation of a C1-C2 (quinolizidine) or C7-C8 (indolizidine) alkene

double bond is expected to occur from the less hindered exo face of the azabicyclic system to

afford the axial R' side chain.

1'00 For a review of quinolizidines and indolizidines isolated from nature, see Daly, J. W.; Spande, T. F.; Garraffo, H.
M. J. Nat. Prod. 2005, 68, 1556.
o101 For reviews on the synthesis of 1,4-disubstituted quinolizidines and 5,8-disubstituted indolizidines, see: (a)

Michael, J. P. In The Alkaloids; Cordell, G. A., Ed; Academic Press: New York, 2001; Vol. 55, pp 91-258. (b)
Michael, J. P. Nat. Prod. Rep. 2007, 1, 191 and references cited therein.



Scheme 36
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In order to further test and refine our iminoacetonitrile cycloaddition methodology, we

have undertaken the synthesis of several bioactive quinolizidine and indolizidine alkaloids such

as 217A, 10 2 
2 0 7 I,102b and 235B'. 10 3 By employing an intramolecular Diels-Alder cycloaddition

of iminoacetonitriles, we expected to be able to efficiently access the bicyclic core of these

quinolizidine and indolizidine alkaloids in only 5-6 steps. With an a-amino nitrile handle, we

would then be able to elaborate the aforementioned cycloadducts into the fully adorned natural

products.

H CH3
H --

Quinolizidine (-)-2071 Indolzidine (-)-235B'

102 (a) Garrafo, H. M.; Caceres, J.; Daly, J. W.; Spande, T. F.; Andriamaharavo, N. R.; Andriantsiferana, M. J. Nat.
Prod. 1993, 56, 1016. (b) Jain, P.; Garraffo, H. M.; Yeh, H. J. C.; Spande, T. F.; Daly, J. W.; Andriamaharavo, N.
R. J. Nat. Prod. 1996, 59, 1174.
103 Edwards, M. W.; Daly, J. W. J. Nat. Prod. 1988, 51, 1188.
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This chapter describes the application of the iminoacetonitrile cycloaddition as a key step

in the total synthesis of quinolizidine (-)-217A, an amphibian alkaloid isolated in minute

quantities by Daly in 1993 from skin extracts of the Madagascan frog Mcantella baroni. Alkaloid

(-)-217A, along with several other 1,4-disubstituted quinolizidines and 5,8-disubstituted

indolizidines, is believed to be dietary in origin based on the fact that many of the "izidine" type

alkaloids have also been detected in ants, which the Mantelline and Dendrobates frogs are known

to eat. 04 Our goal was the development of an efficient approach to the synthesis of quinolizidine

217A capable of supporting the preparation of significant quantities of the target alkaloid.

C-HH z

Quinolizidine (-)- 217A

Previous Total Sýyntheses of217A

Pearson and coworkers published the first total synthesis of 217A in 1998, producing

racemic 217A in 20 steps.115 As shown in Scheme 37, Pearson's synthesis commences with the

preparation of lactone 167. Addition of allyltrimethylsilane to aldehyde 166' 1 followed by

cyclization of the resultant hydroxy ester gave lactone 167 in 73% yield. Methylation of 167

followed by oxidation and protection afforded lactone 168 as a 1:1 mixture of diastereomers

104 Daly, J. W.: Kaneko, T.: Wilham, J.: Garraffo. H. M.: Spande, T. F., Espinosa, A.: Donnelly, M. A. PAAIS 2002.
99. 13996.
'0s Pearson. W. H.; Suga, H. J Org. Chem. 1998, 63. 9910.
106 Aldehyde 166 was prepared in 2 steps from commercially available valerolactone. see HIuckstep. M.: Taylor. R.
J. K. Synthesis 1982, 130.



which were separated later in the synthesis. Reduction of lactone 168 and subsequent olefination

afforded 169 in 52% yield.

Scheme 37

1) Me3SiCH 2CH=CH 2, TiCI4
2) TsOH, benzene

73%

14% overall
from 167

0

167
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The next stage of Pearson's synthesis utilized an azide cycloaddition and subsequent

stereoselective imine reduction to form the trisubstituted piperidine subunit 173 (Scheme 38).

Thus, installation of the azide group via standard displacement chemistry afforded 170 in 84%

yield with inversion of the C-4 stereocenter. Next, dipolar cycloaddition of azide 170 afforded

an intermediate triazoline which decomposed via elimination of N2 to give imine 171.

Stereoselective reduction of imine 171 with NaBH 4 then produced piperidine 172 as a 57:43

CO2Me

CH166
166



mixture of epimers at C-1. Finally, saponification of 172 and separation of the diastereomers

afforded 173 in 34% yield (overall from 170).

Scheme 38

2 Et
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With the stereocenters at C-4 and C-10 set, piperidine 173 was converted into alkaloid

217A in a straightforward fashion (Scheme 39). Reduction of the carboxylic acid and

cyclization of the resulting alcohol afforded quinolizidine 174 in 65% yield. Liberation of the

aldehyde and subsequent olefination using Yamamoto's method107 provided the enyne 175 in

42% yield as a single isomer. Finally, desilylation of 175 afforded racemic quinolizidine 217A

(176) in 90% yield. Although the synthesis provided racemic material and was fairly lengthy, it

did confirm the relative stereochemistry proposed by Daly and coworkers. 102

107 Furuta, K.; Ishiguro, M.; Haruta, R.; Ikeda, N.; Yamamoto, H. Bull. Chem. Soc. Jpn. 1984, 57, 2768.

-



Scheme 39
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In 2003, Panek and coworkers reported the first enantioselective synthesis of

quinolizidine (-)-217A via an approach requiring 20 steps.'0 8 The key step in Panek's route is

an intramolecular imine crotylation using a chiral organosilane to give a highly enantioenriched

tetrahydropyridine. As shown in Scheme 40, enantiopure vinylsilane 177,109 prepared via

resolution, was converted into 178 via a DCC-mediated esterification. Silyl enol ether formation

and subsequent heating afforded the Ireland ester Claisen rearrangement product 179 in 70%

yield as a single diastereomer. Esterification of 179 followed by reduction of the azide provided

amine 180 in 74% yield.

108 Huang, H.; Spande, T. F.; Panek, J. S. J. Am. Chem. Soc. 2003, 125, 626.
109 Vinylsilane 177 was prepared in 5 steps from trans-crotonaldehyde, see Panek, J. S.; Sparks, M. A. Tetrahedron:
Asymmetry 1990, 1, 801.
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Scheme 40

H3C SiMe 2Ph

OH

177

NH2

H3C- -CO2M e

SiMe 2Ph

180

N3CH2CO 2H
DCC

90%

H3C A SiMe 2Ph

O N3
0

178

TBSOTf, Et3N
CH2CI2, rt
then reflux

70%

1) SOCI 2, then MeOH
2) Ph3P, then H20

74%

N3
H3C---__CO2H

SiMe2Ph

179

With the synthesis of chiral silane 180 complete, the stage was set for the key [4+2]

tetrahydropyridine annulation (Scheme 41). In the event, condensation of amine 181 with

aldehyde 182 afforded imine 183. Subsequent cyclization via an intramolecular crotylsilane

addition and Cbz-protection afforded tetrahydropyridine 184 in 60% yield as a single

diastereomer. Hydrogenation and deacetylation of 184 provided piperidine 185 in 90% yield.



Scheme 41
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As depicted in Scheme 42, cyclization of alcohol 186 afforded quinolizidine 187 in 93%

yield. Homologation of the ester via reduction to the aldehyde and Wittig olefination provided

enol ether 188 in 67% yield as an E/Z mixture of isomers. Hydrolysis of enol ether 188 and

subsequent Yamamoto olefination installed the enyne side chain which upon desilylation

afforded alkaloid (-)-217A (176) in 57% yield (overall from 188).

CH3

P,,'(CH2)40H

NH

CO 2Me

185



Scheme 42
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Total Synthesis of Quinolizidine (-)-217A

Retrosynthetic Analysis

Our goal was the development of an approach to the synthesis of quinolizidine 217A

considerably more efficient than these earlier syntheses and capable of supporting the

preparation of significant quantities of the target alkaloid. Scheme 43 outlines our retrosynthetic

strategy, which features the intramolecular iminoacetonitrile cycloaddition 191--190 as a pivotal

step. Alkylation of 190 would then be employed to install the enynylmethyl side chain, and

stereoelectronic control in the subsequent reductive decyanation step was expected to deliver the

desired stereochemistry at C-4. Control of the stereochemistry at C-1 would be established by

epimerization of the ketone intermediate 189 derived from the silyl enol ether cycloadduct. In

this first generation synthesis, we elected to employ resolution to provide access to the natural

11



(-)-isomer as well as the unnatural isomer, deferring for future study the possibility of

employing chiral Bronsted acids to catalyze an asymmetric version of the cycloaddition.

Scheme 43

CH.. u
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176 189
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CNCN CN
191 190

Preparation of a-Amino Nitrile Cycloadduct 190

Our first synthetic subgoal was the development of an efficient route to cycloaddition

substrate 191. Based on our previous studies, we anticipated that 191 would be available from

sulfonamide 196 by elimination of trifluoromethanesulfinate on exposure to a weak base such as

carbonate. Scheme 44 outlines our efficient four-step route to 196. Mitsunobu coupling of

commercially available 5-hexenol with CF3SO 2NHCH 2CN provided the expected sulfonamide,

and ozonolysis then furnished aldehyde 193 in excellent yield. Wittig olefination of 193 using

the acylphosphorane 194110 produced the desired (E)-c,f3-unsaturated ketone 195 in 85-87%

110 Aitken, A. R.; Atherton, J. I. J. Chem. Soc., Perkin Trans. 1 1994, 1281.

H •""•_ 
H •-n3-

176 
189



yield after purification by column chromatography."' Finally, conversion to the desired enol

ether was achieved using the general procedure of Dunogues et al. 112 to afford 196 in excellent

yield after purification by column chromatography on acetone-deactivated silica gel. Attempts

to use stronger bases, such as NaH and LDA, for formation of the silyl enol ether were

unsuccessful due to decomposition of the base-sensitive triflamide moiety.

Scheme 44
1) 1.0 equiv CF3SO2NHCH 2CN

1.2 equiv Ph3P-DIAD
rt, 2 h 89-92% Z

OH NN :: \
2) 03, CH2CI2,-78 C; CN

1.05 equiv Ph3P Tf

rt, 18 h 92-93% 192 Z = CH 2
193 Z= O

Otoluene

H3C PPh 3 70 oC, 7 h

194 CH3  85-87%
,4 , . . . :. ,•I'•. &/i t"•/"Y

I. I ~L~UIV L~DUIVI~9~I~.jI

1.5 equiv Nal, 2 equiv Et3N
CH3CN, rt, 18 h

90-96%

196 195

Inspired by the recent advances made in olefin metathesis, l 3 we envisioned a more direct

route for the synthesis of 195 employing a cross-metathesis strategy (eq 28). However, all

attempts to synthesize 195 via the cross-metathesis reaction of triflamide 192 and 3-methyl-3-

111 The crude product of the Wittig reaction consisted of a 90:10 mixture of E and Z enones.
112 Cazeau, P.; Duboudin, F.; Moulines, F.; Babot, O.; Dunogues, J. Tetrahedron 1987, 43, 2075.
113 For reviews on cross metathesis, see: (a) reference 92 (b) Connon, S. J.; Blechert, S. Angew. Chem., Int. Ed.
2003, 42, 1900. (c) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. 2003, 125,
11360.



buten-2-one were frustrated by the homodimerization of 192. Also, efforts to isolate and re-

subject the homodimer of 192 to the cross-metathesis reaction were completely unsuccessful

leading to the conclusion that the dimer is unreactive in secondary metathesis. Interestingly, the

cross-metathesis reaction of triflamide 192 with methyl vinyl ketone afforded the expected enone

198 in 90% yield as a single isomer.

O

3 equiv H3CA R
R 

0
- 5 mol % 197, CH 2CI 2 , rt, 2 h

Tf (28)

MesN_-,NMes

197

CN

195 R = CH3 0%
198 R = H 90%

As shown in Scheme 45, exposure of 196 to the action of cesium carbonate led to the

elimination of trifluoromethanesulfinate and formation of iminoacetonitrile 191 as the expected

mixture of E and Z imine isomers. The stereochemistry of this intermediate is not crucial, since

iminoacetonitrile isomers interconvert under the conditions of the [4+2] cycloaddition. Heating

iminoacetonitrile 191 at 130 'C for 36 h then produced the desired a-amino nitrile cycloadduct

190a in good yield. As discussed in Chapter 4, addition of BHT was found to be beneficial in

suppressing decomposition of the desired product. As expected, the isomer with an exo-oriented

(axial) cyano group was isolated as the exclusive product of the reaction as a consequence of the

"cr-amino nitrile anomeric effect."45

i CN
Tf

192 I



Scheme 45

4.0 equiv Cs2CO3
THF, 550, 2 h

196 O
85-92%

CH3 CH

NOSiR3 : OSiR 3

N CN N

E/Z 3:1 CN
191 190a

SiR 3 = Sit-BuMe 2
3.0 equiv BHT,

toluene, 120 oC, 20 h

1.0 equiv MsOH
CH2 CI2, -78 0C, 1 h

1.0 equiv MsOH
CH 2CI2, -78 0C, 1 h;

CH 3CN, 45 °C, 1.5 h

55-59% 100: 0

68%

68%

55: 45

100 : 0

Next, we explored the acid-promoted cycloaddition of iminoacetonitrile 196. Initial

attempts were frustrated by decomposition of 196 presumably via competing reaction of the silyl

enol ether moiety with MsOH. However, conducting the reaction at -78 'C with dropwise

addition of MsOH afforded cycloadducts 190a and 190b in 68% yield as a mixture of epimers at

C-4. As previously discussed, simply heating the mixture in CH 3CN at 45 'C for 1.5 h delivers

190a as a single diastereomer (axial nitrile). It should be emphasized that the a/P mixture of

nitriles is inconsequential due to the fact that further transformations at the C-4 carbon are

controlled by stereoelectronic principles independent of the C-4 cyano group stereochemistry

(see Chapter 6).

Alkylation/Reductive Decyanation of a-Amino Cycloadduct 190

For the next stage of the synthesis, alkylation of a-amino nitrile 190, we initially focused

our attention on the enynylmethyl compounds 203-206. As shown in Scheme 46, alcohol 202

iR3

190b



was prepared from ethyl propiolate in good yield utilizing a previously published method. 114

Alkylating agents 203-206 were then prepared from alcohol 202 as previously described in good

yield.115

Scheme 46

1.2 equiv LiBr
1.2 equiv AcOH

CH3CN, reflux, 24 h

199

1.2 equiv Me3Si
cat. Pd(PPh3)2Cl2
cat. Cul, 7.0 equiv Et3N

Br \_CO 2Et CH3CN, rt, 2 h

58%
200 (overall from 199)

Me3Si

CO2Et

201

Me3Si

ýX

203 X = I

204 X = Br

205 X = CI

206 X = OMs

Me3Si
a
A \ - OH

a MsCI, Et3N, CH2CI2 rt 1 h, 202

then Nal, rt, 30 min 50%
a MsCI, Et3N, THF, rt, 1 h,
then LiBr, rt, 2.5 h 76%

a MsCI, collidine, LiCI,
DMF, rt, 24 h 86%

a MsCI, Et3N, CH2CI2,
rt, 1 h 100% (90% purity)

2.2 equiv DIBAL-H
CH2CI2, -78 OC, 1 h

84%

Surprisingly, the desired enyne 170 was obtained at best in only 30% overall yield after

alkylation of 190a with any of these enynes followed by reductive decyanation (Scheme 47). It

is important to recall that purification of the intermediate alkylation product is best avoided due

to decomposition of the tertiary cc-amino nitrile on silica gel. Although alkylation with model

alkylating agents such as allyl bromide proceeded smoothly (quantitative yield), complex

114 Hartung, I. V.; Eggert, U.; Haustedt, L. O.; Niess, B.; Schafer, P. M.; Martin, H.; Hoffmann, R. Synthesis 2003,
1844.
115 For 203 and 206, see: Feldman, K. S. Tetrahedron Lett. 1982, 23, 3031. For 204 and 205, see Tsushima, K.;
Murai, A. Tetrahedron Lett. 1992, 33, 4345.



mixtures resulted from the reaction of 190 with enynylmethyl derivatives 203-206. Interestingly,

the addition of additives known to improve alkylation reactions, such as DMPU, HMPA, DMSO,

and LiC1, had no effect on the reaction.

Scheme 47
1) LDA, THF

9A -75 or 1 R h
.V - , v ,o .•.

2) NaBH 3CN, AcOH
.OSiR3 CH3CN, rt, 2 h

•AON iMe 3
CN OU 70

CN -------------------------------
!

190a SiMe 3  203X= I 207
204X Br
205 X= CI
-206 X = OMs, SiR 3 = Sit-BuMe2

L-----------------------------------I

Although we have been unable to characterize any of the byproducts of this reaction, we

speculate that electron transfer to the enynylmethyl halide from the metalated nitrile (thus

generating a captodative stabilized amino nitrile radical) may be complicating this alkylation. 116

Other conceivable side reactions include the deprotonation of the enynylmethyl halide'"17 and

addition of the lithiated nitrile to the enyne moiety.' 18 We therefore turned our attention to a less

unsaturated allylic halide, (Z)-3-bromo-1-chloro-propene, with the idea of later elaborating the

full enyne moiety via a Sonogashira coupling reaction.

In the event, we were pleased to find that alkylation of 190 with (Z)-3-bromo-1-chloro-

propene proceeded cleanly, and reductive decyanation of the unpurified alkylation product with

116 For a review of the capto-dative effect, see Viehe, H. G.; Mernyi, R.; Stella, L.; Janousek, Z. Angew. Chem. Int.
Ed. 1979, 18, 917.
117 For examples of the metalation of allylic halides, see Julia, M.; Verpeaux, J.-N.; Zahneisen, T. Synlett 1990, 769.
118 For addition of organolithium compounds to conjugated enynes, see Brandsma, L. Synthesis ofAcetylenes,

Allenes, and Cumulenes; Elsevier: Oxford, 2004; p 74.



sodium cyanoborohydride then afforded the desired quinolizidine 207 in 74-77% overall yield

(eq 29).

1) 2.1 equiv LiHMDS, THF
2.4 equiv Br Cl
-78 C, 2 h

H CH3  2) 4.0 equiv NaBH 3CN H CH3
- OSit-BuMe 2  8.0 equiv AcOH, CH3CN, rt, 2 h OSit-BuMe2

•' (29)
N 74-77% N CI•(29)

CN
190a 207

As discussed in chapter 6, axial delivery of hydride to the intermediate iminium ion leads

to formation of the desired diastereomer as the exclusive product of the reaction. The allyl group

of 207 was assigned as equatorial (endo) based on NMR analysis and comparison with the

spectra previously reported by Amos 36 for the related compounds 119 and 121 as shown below.

r---------------------------------------------------------------------------- I

CH 3H H H C

N 
SO BuMe2

N C
/H

3.21 ppm 119 2.77 ppm 121 3.13 ppm 207

Preparation and Reductive Deoxygenation ofKetone 207

With the synthesis of quinolizidine 207 complete, we were poised to unmask the C-2

carbonyl. Treatment of silyl enol ether 207 with 1.1 equiv of n-Bu4NF in THF generated ketone

208 as a single diastereomer with the C-1 methyl group in the desired equatorial orientation

(Scheme 48). The stereochemical assignment of the C-1 methyl group was based on the

comparison of its chemical shift to that of an equatorial and axial oriented methyl group in the

!



related compounds 209 and 210.119 Comparison of the C-6 equatorial proton of 208 to that of

119 confirmed the assignment of the C-4 stereocenter as shown below. As expected, reactions

employing less than 1 equiv of n-Bu4NF afforded a mixture of epimers at C-1 confirming that

excess n-Bu4NF was in fact equilibrating the C-1 methyl group to the thermodynamically

favored equatorial orientation.

Scheme 48 1.01 ppm

CH CHI I
H  TBAF, THFOSit-BuMe2 C1.h\-78 °C, 1.5 h
v -- CI 93%

HUdAldi

U , .ZZ ppm (+)-208 methyl was
1.22 ppm

H 1.02 ppm

O It-BuIuMe 2  .LU ppm - 3
NI

N
,H Et

3.21 ppm 119 209 210

At this stage of the synthesis, we decided to investigate the resolution of quinolizidine

(+)-208. We chose (R)-(-)-1,1'-binaphthyl-2,2'-diylphosphoric acid (211)120 as our resolving

agent based on the fact that several examples exist in the literature of 211 being used to resolve

related quinolizidines. 121 Thus, treatment of (+)-208 with 1.0 equiv of 211 afforded a white solid

which was recrystallized twice from MeOH and then treated with 10% ammonium hydroxide

solution to give enantiomerically pure (-)-208 in 44% overall yield from the racemate. The

119 Queguiner, G.; Ribereau, P.; Godard, A. Tetrahedron 1995, 51, 3247.
120 Jacques, J.; Fouquey, C. Tetrahedron Lett. 1971, 12, 4617.
121 For examples, see: (a) Imhof, R.; Kyburz, E.; Daly, J. J. J. Med. Chem. 1984, 27, 165. (b) Bogeso, K. P.; Arnt,
J.; Lundmark, M.; Sundell, S. J. Med. Chem. 1987, 30, 142.
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enantiomeric purity of the product was determined by 1H NMR analysis of the salt formed by

reaction with (R)-(-)-1,1'-binaphthyl-2,2'-diylphosphoric acid: 122 the phosphoric acid (1.0

equiv) was added to a solution of 208 in ca. 0.7 mL of CDCl3. The C-1 methyl group appeared

as a doublet (J = 6.5 Hz) at 1.01 ppm; no doublet at 1.19 ppm could be detected. Similar

analysis of racemic 208 showed two doublets (1:1 ratio) at 1.19 and 1.01 ppm.

CH - CH C.
z 

3

H = CH 0 CH 0H H =

50 OC, 10 min NH40H

I 44%
(overall yield

(30)

(±)-208 212 from racemate) (-)-208

The next stage of the synthesis, involving reductive excision of the carbonyl group,

proved unexpectedly difficult. Initial attempts to effect deoxygenation of ketone 208 (as well as

derivatives of the corresponding alcohol) were complicated by the formation of a byproduct

tentatively identified as the tricyclic amine 215.123 As shown in Scheme 49, treatment of

tosylhydrazone 213 with NaBH 3CN in acidic DMF/sulfolane 124 afforded a 30:70 mixture of the

desired deoxygenated product 214 and tricyclic amine 215. Similarly, Barton-McCombie

reduction 125 of 216 with n-Bu 3SnH and AIBN delivered a 50:50 mixture of 214 and 215.126

122 Shapiro, M. J.; Archinal, A. E.; Jarema, M. A. J. Org. Chem. 1989, 54, 5826.
123 The structure of 215 was tentatively assigned based on its molecular formula, C13H22NC1 (MW = 227 found by
mass spectrometry), and 'H NMR spectrum. The absence of vinyl protons and the presence of a primary alkyl
chloride with the C-13 methylene protons coupled to the C-12 methine proton suggest a tricyclic structure. In
addition, the presence of Bohlmann bands in the FT-IR indicate a trans-fused quinolizidine.124 Hutchins, R. O.; Milewski, C. A.; Maryanoff, B. E. J. Am. Chem. Soc. 1973, 95, 3662.
125 Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. 1 1975, 1574.
126 Ratio of products (214:215) determined by gas chromatography.
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NaBH 3CN
cat. TsOH

DMF, sulfolane
110 oC, 7 h

214:215
30:70

n-Bu 3SnH
AIBN, C6H6

214:215
50:50

CHI

Z14

CH3

13
+ CI

N 215 12

215

Although two seemingly unrelated methods afforded the same byproduct, this was not

totally unexpected in view of the fact that both reactions proceed through radical intermediate

218 (Scheme 50). For example, hydride reduction of tosylhydrazone 213 is expected to afford

the intermediate diazene 217 which then fragments to give radical intermediate 218. Cyclization

onto the vinyl chloride furnishes 215 whereas intermolecular hydrogen abstraction delivers 214.

Consistent with this mechanistic explanation, we found that the ratio of the two products was

influenced by the concentration of the reaction mixture with lower concentrations favoring the

cyclization product.

Scheme 50

NaBH 3CN
213 O

-ArSO 2H

217 CI

CI

HC" N 2

-N2

218

-- 214 + 215
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Scheme 49

H CH3

NTs

,OPh

S
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Since this byproduct appeared to arise from cyclization of a C-2 radical intermediate onto

the vinyl chloride appendage, we focused our attention on strategies in which the reduction step

could be carried out in the presence of efficient hydrogen atom transfer agents so as to more

effectively intercept the intermediate radical prior to cyclization. Success was achieved by

means of the one-pot protocol outlined in Scheme 51. Thus, reduction of the tosylhydrazone of

(-)-208 with NaBH 3CN in the presence of tert-butyl mercaptan completely suppressed the

undesired radical cyclization and furnished vinyl chloride 214 in 63-66% overall yield.

Scheme 51

CH3

H = 1.2 equiv TsNHNH2, cat TsOH

DMF, sul folane, 110 C, 2 h

CH3H :
NHTs

208 213

63-66%

214

Endgame

Having effectively removed the C-2 carbonyl group, we were poised to conquer the total

synthesis of quinolizidine 217A. As shown in eq 31, Sonogashira coupling with

trimethylsilylacetylene proceeded smoothly, provided that the acetylene was added slowly to

suppress competing alkyne dimerization. Finally, desilylation with K2CO3 in methanol afforded
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quinolizidine (-)-217A ([a]22D -14 (c 0.8, CHCl3), lit.108 [a] 20D -13.75 (c 0.4, CHCl3)) with

spectral characteristics identical with those reported for synthetic 217A by Pearson and Panek

(Tables 6 and 7).105,108 The only structural information that exists in the literature for natural

217A is the 'H NMR of 217A*DC1.104 Therefore, Pearson and coworkers converted their

synthetic material to its DCl salt, and then compared their 'H NMR spectrum with that of an

authentic sample of the alkaloid. This experiment showed that their synthetic 217A had spectral

characteristics identical with those reported for the natural product. Since the spectral data for

our synthetic 217A matches that of Pearson's synthetic material, we are confident that our

material is in fact the natural product 217A.

1) cat. PdCl2(PhCN) 2
cat. Cul

2.0 eq Me3Si
piperidine, rt, 24 hCH.. .... . . . . CH-•

e) IM 1 q rx2COu3 , mvmeH,

rt, 2 h

80-82%

214 176
Quinolizidine (-)-217A

Summary

In conclusion, the intramolecular iminoacetonitrile [4+2] cycloaddition functions as a key

step in an efficient assembly of the quinolizidine core of the amphibian alkaloid (-)-217A,

enabling the total synthesis of this natural product in only 12 steps. The application of

iminoacetonitrile cycloadditions in the synthesis of other bioactive alkaloids is currently under

investigation.
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Table 6. "H NMR i

Atom # m
H(14) dt (1H)
H(13) ddt (1 H)
H(6) br d (1H)
H(16) d (1 H)

H(12,10) m (2H)
H(12) m(1H)
H(6) m (1H)

H(1-4, 7-9) m (12H)
H(11) d (3H)

CDCI3) Spectral Data for Quinolizidine 217AO,"

Table 7. 13C NMR (,DCI3) Data for Quinolizidine 217A6 8 71

Pearson (100 MHz) Panek (75 MHz) Maloney (75 MHz)
8 8 6

143.5 143.4 143.9
109.5 109.2 109.6
81.8 81.5 82
80.8 81.5 81
69.8 69.5 69.9
63.2 63 63.4
51.9 51.7 52
36.4 36.3 36.7
35.1 34.9 35.3
34 33.8 34.2

31.9 31.7 32.1
30.3 30.1 30.5
26.3 26.2 26.6
24.8 24.6 25
19.4 19.2 19.6

104

11
CH3H:

91
6 N 1116

12 14

Quinolizidine (-)-217A

Pearson (400 MHz) Panek (400 MHz) Maloney (500 MHz)
6 J (Hz) 8 J (Hz) 8 J (Hz)

6.1 11 6.09 10.8, 7.25 6.1 10.9, 7.1
5.52 1.9,10.7,1.6 5.49 10.8,1.3 5.48 10.9, 2.0,1.6
3.27 11 3.25 10.5 3.29 11.1
3.07 1.6 3.05 1.6 3.09 2

2.50-2.65 2.47-2.62 2.53-2.63
2.07 2.03 2.05-2.10
1.91 1.89 11.9 1.93 11.9

0.94-1.80 0.94-1.75 1.02-1.79
0.85 6.6 0.83 6.6 0.87 6.5



Chapter 8- Studies Directed Toward the Total Synthesis of

Indolizidine (-)-235B'

As demonstrated in the previous chapters, intramolecular [4+2] cycloaddition of

iminoacetonitriles provide access to a-amino nitrile cycloadducts, which have proved to be

versatile synthetic intermediates for the synthesis of nitrogen heterocycles. This chapter

discusses our efforts toward the total synthesis of indolizidine 235B' utilizing an

iminoacetonitrile cycloaddition as the key step.

Introduction

The isolation, biological evaluation, and total synthesis of naturally occurring alkaloids

isolated from the skin extracts of the Dendrobatidae family of neotropical arrow poison frogs has

been an active area of research.98  In particular, a small sub-group of 5,8-disubstituted

indolizidines have been identified as inhibitors of nicotinic acetylcholine receptors. 127 These

receptors act as key components in the physiological processes of reward, cognition, learning,

and memory, and are widely expressed in the mammalian brain. Thus, nicotinic acetylcholine

receptors are implicated in several neurological disorders such as Alzheimer's disease,

schizophrenia, and bipolar disorder.

One 5,8-disubstituted indolizidine that has generated considerable interest in the past few

years is alkaloid (-)-235B'. Indolizidine (-)-235B' was isolated in minute quantities by Daly and

coworkers in 1988 from skin extracts of the Panamanian poison frog Dendrobates speciosus.128

127 Daly, J. W.; Nishizawa, Y.; Padgett, W. L.; Tokuyama, T.; Smith, A. L.; Holmes, A. B.; Kibayashi, C.;
Aronstam, R. S. Neurochem. Res. 1991, 16, 1213.
128 Daly, J. W.; Edwards, M. W.; Myers, C. W. J. Nat. Prod. 1988, 51, 1188.
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Recently, Toyooka and coworkers discovered that alkaloid (-)-235B' is a potent noncompetitive

inhibitor of t2132-neuronal acetylcholine receptors in a highly subtype-selective manner. These

results suggest that alkaloid (-)-235B' is a promising lead compound for the development of

drugs to treat cholinergic disorders such as autosomal dominant nocturnal frontal lobe

epilepsy.129

CH3

8
HN5

Indolzidine (-)-235B'

This chapter describes the application of the iminoacetonitrile cycloaddition as a key step

in the total synthesis of indolizidine (-)-235B'. Our goal is the development of an efficient

approach to the synthesis of this alkaloid capable of supporting the preparation of significant

quantities of material.

Previous Syntheses of 235B'

Holmes and coworkers published the first total synthesis of 235B' in 1991, producing

racemic 235B' in 14 steps. 130 Their approach employed an intramolecular nitrone dipolar

cycloaddition as a key step to control the relative stereochemistry of the substituents of the

piperidine subunit. As shown in Scheme 52, the first stage of the synthesis involved the

29 (a) Toyooka, N.; Tsuneki, H.; Kobayashi, S.; Dejun, Z.; Kawasaki, M.; Kimura, 1.; Sasaoka, T.; Nemoto, H.
Curr. Chem. Biol. 2007, 1, 97. (b) Tsuneki, H.; You, Y.; Toyooka, N.; Kagawa, S.; Kobayashi, S.; Sasaoka, T.;
Nemoto, H.; Kimura, 1.; Dani, J. A. Mol. Pharmacol. 2004, 66, 1061.
130 Collins, I.; Fox, M. E.: Holmes, A. B.; Williams, S. F.; Baker, R.; Forbes, I. J.; Thompson, M. J Chem. Soc.,
Perkin Trans. 1 1991, 1 75.
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preparation of cycloaddition substrate 222. The synthesis began with the formation of hydrazone

220 from commercially available hex-5-en-2-one in 67% yield. Regioselective alkylation of

hydrazone 220 with 6-bromohexene followed by treatment with hydroxylamine hydrochloride

delivered oxime 221 in 69% yield. Oxime 221 was then reduced with sodium cyanoborohydride

and the resulting hydroxylamine was condensed with 4-acetoxybutanal to give nitrone 222 in

60% yield.

Scheme 52

0

219

2
OAc G0

222

H2NNMe 2, EtOH

67%

1) NaBH 3CN, EtOH
2) 4-acetoxybutanal

6%
60%

NNMe2

220

1) n-BuLi; Br(CH 2)4CH=CH 2
2) H2NOH-HCI, NaOAc

69%

NOH

221

221

With the synthesis of nitrone 222 complete, the stage was set for the key intramolecular

dipolar cycloaddition (Scheme 53). In the event, heating a toluene solution of 222 afforded

cycloadduct 223 which upon hydrolysis delivered alcohol 224 in excellent yield as a single

diastereomer. Mesylation of alcohol 224 led to spontaneous cyclization to give the quaternary

ammonium salt, and subsequent reductive cleavage of the N-O bond with zinc in acetic acid

furnished indolizidine 225 in excellent yield.
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Scheme 53

OAc 'N O

222

toluene, reflux

86%

0
Aco

223

K2CO3, MeOH

98%

OH

225N

225

1) MsCI, Et3N
2) Zn, AcOH

49
96%

0
HO2

\/N'

224

As depicted in Scheme 54, indolizidine 225 was converted into the target alkaloid in a

straightforward fashion. Inversion of the C-8 stereochemistry of 225 was achieved by Swern

oxidation to give aldehyde 226, followed by epimerization on basic alumina to give

predominantly the equatorial isomer (ca. 13:1). Subsequent reduction and purification of the

resulting equatorial alcohol afforded 227 in 46% yield. Lastly, mesylation of alcohol 227 and

reduction with LiBEt3H gave racemic indolizidine 235B' in 58% yield.
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Scheme 54
OH CHO

N Swern oxidation N 8

225 226

1) basic A1203
2) NaBH 4, EtOH

46%

CH-,
1) MsCI, Et3N
2) LiBEt 3H ON ýOH

58%
227

Indolizidine 235B'

In 1997, Toyooka and coworkers reported the first enantioselective synthesis of

indolizidine (-)-235B' via a 29 step route.131 Although the length of this synthesis precludes it

from providing useful quantities of material, the synthesis does display a high level of selectivity

in generating the three stereocenters. Toyooka controlled the stereochemistry at C-5 by

employing a 9-azabicyclo[3.3.1]nonene derivative in a cyclic template strategy, cleaving an

internal olefin to afford the piperidine subunit of 235B' with the desired C-5 stereochemistry. A

subsequent stereoselective cuprate addition afforded the piperidine subunit with all three

stereocenters set.

As shown in Scheme 55, the synthesis commenced with meso diacetate 228, prepared in

9 steps from 1,5-cyclooctadiene.132 Lipase-catalyzed hydrolysis of diacetate 228 followed by

oxidation afforded ketone 229 in 65% yield as a single enantiomer. Enol ether formation

131 (a) Toyooka, N.; Tanaka, K.; Momose, T. Tetrahedron 1997, 53, 9553. (b) Momose, T.; Toyooka, N. J. Org.
Chem. 1994, 59, 943. (c) Momose, T.; Toyooka, N.; Jin, M. Tetrahedron Lett. 1992, 33, 5389.
132 Portman, R. E.; Ganter, C. Helv. Chim. Acta. 1973, 56, 1991.
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followed by ozonolysis, reduction, and silylation provided piperidine 230 in 79% yield as a

single diastereomer. Sodium hydride elimination of acetic acid from 230 afforded the cuprate

addition precursor 231 in 92% yield.

Scheme 55

1) lipase
2) PCC

65%
228 229

1) HC(OMe) 3, cat. H2SO4

2) 03; NaBH 4
3) R3SiCI, Et3N, DMAP

79%

R3SiO NaH, benzene R3SiO ,,OAc

'N CO 2Me 92% N 'CO 2 Me
I I
CO2Me CO2Me

231 SiR 3 = Sit-BuMe 2  230

With the synthesis of 231 complete, the stage was set for the key stereoselective cuprate

addition to set the final two stereocenters. As depicted in Scheme 56, addition of methyl cuprate

to 231 followed by hydride reduction of the ester group afforded piperidine 232 in 86% yield as

a single diastereomer. The stereochemistry of the methyl cuprate addition is a result of preferred

axial attack of the cuprate reagent, leading to a chair-like intermediate where the C-5 side chain

occupies a pseudo-axial orientation owing to A1,3 strain. Subjecting 232 to a series of functional

group manipulations afforded piperidine 233. This series of steps elongated the C-9 side chain
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by two carbons. Protection of the free hydroxyl group of 233 and subsequent desilylation

delivered alcohol 234 in 88% yield.

Scheme 56

R3SiO

N CO2Me
I

CO2Me

231

OH

" N, "',- pOMOM

CO2Me

234

1) Me2CuLi
2) LiBEt 3H

86%

1) MOMCI, i-Pr2EtN
2) TBAF

88%

SiR3 = Sit-BuMe 2

R3SiO , c H3

CO2Me

232

1) Swern
2) NaH, (EtO) 2P(O)CH 2CO2Me
3) H2, Pd/C
4) LiBEt 3H

82%

R3SiO
C H3

C N ',...OH
I

CO2Me

233

With the C-5, C-8, and C-9 stereocenters set, alcohol 234 was converted into alkaloid

235B' in a straightforward manner (Scheme 57). The carbon chain homologation of 234 at the

C-5 position to give 236 was performed via a sequence involving mesylation of the hydroxyl

group, substitution of the resulting mesylate group with Nal to give 235, and subsequent cross

coupling. Finally, cyclization of the amino alcohol resulting from liberation of the amino and

hydroxyl groups delivered indolizidine (-)-235B' in 65% yield.
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Scheme 57

OCH3  1) MsCI, Et3N CH
OH , 2) Nal

, N"'- pOMOM >"N"-' pOMOM
85%

CO2Me CO2Me

234 235

CH2=CH(CH 2)3MgBr
cat. Cul

82%

CH3  
1) n-PrSLi

H - 2) HCI MeOH .CH

3) Ph3P, CBr4, Et3N
0 "" N ",,ýO OMOM

63% 3 I
CO2Me

236

Indolizidine (-)-235B'

Efforts Toward the Total Synthesis of Indolizidine (-)-235B'

Retrosynthetic Analysis

Our goal was the development of an approach to the synthesis of indolizidine (-)-235B'

that would be considerably more efficient than these earlier syntheses and capable of supporting

the preparation of significant quantities of the target alkaloid. Our retrosynthetic strategy closely

resembles that of quinolizidine 217A with the only major difference being that it involves the

synthesis and elaboration of an indolizidine cycloadduct instead of a quinolizidine cycloadduct.

Scheme 51 outlines our retrosynthetic strategy, which features the intramolecular

iminoacetonitrile cycloaddition 239--+238 as a pivotal step. Alkylation of 238 would then be

employed to install the heptenyl side chain, and stereoelectronic control in the subsequent

reductive decyanation step was expected to deliver the desired stereochemistry at C-5. Control

of the stereochemistry at C-8 would be established by epimerization of the ketone intermediate
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237 derived from the enol ether cycloadduct. In this first generation synthesis, we elected to

employ resolution to provide access to the natural (-)-isomer as well as the unnatural isomer,

deferring for future study the possibility of employing chiral Bronsted acids to catalyze an

asymmetric version of the cycloaddition.

Scheme 58

H CH3

Indolzidine (-)-235B'

CH 3
OR

\\.. NCN
Kzzzz

239

237

H CH3

OR

CN

6N
238

Preparation of a-Amino Nitrile Cycloadduct

Our first synthetic subgoal was the development of an efficient route to cycloaddition

substrate 239. Based on our previous studies on the total synthesis of 217A, we anticipated that

239 would be available from sulfonamide 243. Scheme 59 outlines our efficient four-step route

to 243 which closely resembles the analogous sequence in our synthesis of 217A. Mitsunobu

coupling of commercially available 4-pentenol (240) with TfNHCH 2CN provided the expected

sulfonamide 241 in 92% yield. Ozonolysis of triflamide 241 and subsequent Wittig olefination
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of the resulting aldehyde using the acylphosphorane 194110 produced the desired (E)-a,3-

unsaturated ketone 242 in 81% overall yield after purification by column chromatography.

Unexpectedly, the intermediate aldehyde was unstable to silica gel and therefore was used in the

Wittig olefination without further purification. We also discovered that switching from toluene

at 70 oC (conditions used in our 217A route) to refluxing THF led to consistently higher yields

(ca. 10%) in the Wittig reaction. Finally, conversion to the desired silyl enol ether 243 was

achieved using the general procedure of Dunogues et al.112 to afford 243 in 91% yield after

purification on acetone-deactivated silica gel.

Scheme 59
1.0 equiv CF3SO2NHCH 2CN
1.2 equi Ph3P-DIAD, rt, 2 h N

OHCN
92% Tf

240 241

0
,H3C PPh3

194 CH3 -I! - --.. . .. ..-- - I

1) 03, CH2CI2,-78 *C;
1.05 equiv Ph3P, rt, 18 h

2) 194, THF, reflux, 12 h

81%
(overall from 241)

1.1 eauiv t-BuMe.,SiCI;1R3 1.5 equiv Nal, 2 equiv Et3N
1.5 equiv Nal, 2 equiv Et3N

CH3CN, rt, 18 h

91%

I•,1.1 ... .- D.. . .- . .

243 242

As shown in Scheme 60, exposure of 243 to the action of cesium carbonate led to the

elimination of trifluoromethanesulfinate and formation of iminoacetonitrile 239 as the expected
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mixture of E and Z imine isomers. Heating iminoacetonitrile 239 at 120 TC for 36 h then

produced the desired a-amino nitrile cycloadducts 238a and 238b in 10-15% yield as a 60:40

mixture of epimers (Scheme 60). Discouraged by this result, we shifted our focus to the acid-

promoted cycloaddition of 239. Unfortunately, cycloaddition of 239 at -78 TC failed to deliver

cycloadduct 238 and led to recovered iminoacetonitrile. This was not unexpected as previous

results have shown that cycloadditions affording indolizidines are extremely sluggish at -78 TC.

However, efforts to conduct the cycloaddition at higher temperatures (-40 to 0 TC) were

complicated by competing decomposition of the iminoacetonitrile presumably via reaction of the

silyl enol ether with acid. We also explored the possibility of increasing the reaction rate of the

cycloaddition by increasing the polarity of the solvent. However, switching the solvent from

dichloromethane to propionitrile afforded a complex mixture of several products with no sign of

the desired cycloadduct.

Scheme 60

4.0 equiv Cs2CO 3
1it-BuMe 2  THF, 55 OC, 1.5 h

86%

243 239

H CH3

. tr O S it-B u Me 2 +
+

N

E/Z 3:1

4Sit-BuMe

2

01 15%o
A . I '- I• IJ /

CN CN (40:60)
238b 238a
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Next, we explored the possibility of increasing the stability of iminoacetonitrile 239 by

increasing the acid stability of the silyl enol ether portion. We felt that by switching from a t-

butyldimethylsilyl group to a more acid stable group such as t-butyldiphenylsilyl or

triisopropylsilyl would allow the reaction temperature to be increased to promote the

cycloaddition while avoiding the competing decomposition pathway. As shown in Scheme 61,

imines 246 and 247 were synthesized in excellent yield from enone 242. Disappointingly, the

acid-promoted cycloadditions of 246 and 247 were completely unsuccessful. At -78 'C with 1

equiv of MsOH in dichloromethane, both imines were completely unreactive. However, upon

warming to -30 'C, cycloadducts 206 and 207 were obtained in ca. 5% yield with extensive

decomposition of the iminoacetonitriles.

Scheme 61

t-BuPh2SiCI
Nal, Et3N

CH3CN, rt, 18 h

or
i-Pr3SiOTf, CH2CI2

iR3

242 0 to 2 244 SiR3 = Sit-BuPh2 50%
245 SiR3 = SiI-Pr 3  79%

Cs2CO3, THF
55 *C, 1.5 h

iR3
1.0 equiv MsOH

CN
E/Z 3:1

248 SiR 3 = Sit-BuPh2  246 SiR 3 = Sit-BuPh2 82%
249 SiR 3 = SiI-Pr3 247 SiR3 = Sii-Pr3 89%
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Discouraged by these results, we shifted our focus to enol acetate derivatives (e.g., 251).

We felt that the less electron-donating acetate group would reduce the susceptibility of the dienyl

enol acetate towards protonation and subsequent decomposition in acid-promoted cycloadditions.

Although an enol acetate should be fairly stable under acidic conditions, we were concerned

about basic hydrolysis under our elimination conditions. Therefore, we decided to use an enol

pivalate which would be expected to be stable under both acidic and basic conditions.

As shown in Scheme 62, iminoacetonitrile 251 was synthesized in two steps from enone

242. Initially, the synthesis of enol pivalate 250 proved unexpectedly difficult. Attempts to

install the enol pivalate using pivaloyl chloride or trimethylacetic anhydride with a variety of

bases, such as pyridine and DMAP, were unsuccessful leading to recovered starting material.

However, we found that activation of the pivaloyl chloride with NaI in the presence of

triethylamine afforded 250 in 91% yield. Finally, elimination of trifluoromethanesulfinate

furnished iminoacetonitrile 251 in 86% yield as a 75:25 mixture of E and Z isomers.

Scheme 62
1 5- , D;iP 'I. equv vV

1.5 equiv Nal, 2 equiv Et3N
CH3CN, rt, 18 h

91%

1O V
0

242 250

4.0 equiv Cs2CO3

THF, 55 oC, 1.5 h

86%

251 E/Z 3:1
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With imine 251 in hand, the stage was set for the key iminoacetonitrile cycloaddition. In

the event, the acid-promoted cycloaddition of iminoacetonitrile 251 afforded cycloadducts 252a

and 252b in 79% yield as a 50:50 mixture of epimers at C-5 (eq 32). As predicted, the enol

pivalate 251 was significantly more stable than the silyl enol ethers 246 and 247 under the acidic

reaction conditions allowing the cycloaddition to occur smoothly at 0 'C without significant

decomposition. It is important to emphasize that the mixture of epimers at C-5 is

inconsequential due to the fact that further transformations at the C-5 carbon are controlled by

stereoelectronic principles independent of the C-5 cyano group stereochemistry (see Chapter 6).

1.0 equiv MsOH
CH3  CH2CI2

0 0 C, 30 min

CN I 0 700/^

± (32)

\ CN

Z /E 3:1 (50:50) CN

251 252a 252b

Alkylation/Reductive Decyanation of a-Amino Cycloadduct 252

Having completed the synthesis of cycloadduct 252, we focused our attention on

installing the C-5 side chain of the target alkaloid. As depicted in Scheme 63, we were pleased

to find that alkylation of 252 with 7-bromoheptene proceeded cleanly; however, reductive

decyanation of the unpurified alkylation product with several hydride reagents (NaBH4, ZnBH4,

NaBH 3CN) afforded a complex mixture of several products. Presumably, the intermediate

iminium ion 253 is decomposing via dienamine 255. It should be mentioned that similar

problems were encountered in the attempted alkylation-reductive decyanation of cycloadduct

238 (silyl enol ether case). Interestingly, as seen in our 217A synthesis, the tandem alkylation-

reductive decyanation of the related quinolizidine 190 works beautifully. One possible

explanation is that the accelerated rate of formation of the dienamine byproduct (255) in the
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indolizidine case versus the quinolizidine case is a result of the increased angle strain in the

intermediate iminium ion (253).

Scheme 63

4 ) 4 , 1, . I MLA T CI.
) . equ V I,

7-bromoheptene
2) NaBH 4, EtOH

-------- --- ---- --- -DID.,

252 "- I

4
)Pv

253

,H CH3
H OPv

N/
R

255

We therefore next shifted our focus to a radical-based reductive decyanation procedure

that would avoid the formation of an iminium ion. As shown in Scheme 64, alkylation of 252

with 7-bromoheptene followed by reductive decyanation with sodium in liquid ammonia

afforded quinolizidine 254 in 25% yield (ca. 90% purity) as a single diastereomer. 133 As

expected, sodium in liquid ammonia not only removed the cyano group but also cleaved the enol

pivalate revealing the C-2 carbonyl. Unfortunately, the overall yield of the two-step reaction

sequence was fairly low, and difficulties were encountered in purifying ketone 254.

133 NMR analysis and comparison to quinolizidine 208 (p 95) confirmed the stereochemistry at C-5 and C-8.
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1) 2.1 equiv LDA, THF, then
1.1 equiv 7-bromoheptene
0 °C, 45 min

, .... .... ..... C H.,

e H 2) excess Na, NH3/I tI-
OPiv -78 oC, 2 h

N 25%
CN (ca. 90% purity)

1) 1.5 equiv TsNH 2NH2
MeOH, reflux, 12 h

(PIH. CH .
) excess NaBH14
MeOH, reflux 14 h

±

no olefin (95:5)
excess olefin (20:80)

Indolizidine 237D Indolizidine 235B'

However, with ketone 254 in hand we were poised to complete the total synthesis of

alkaloid (-)-235B'. Unexpectedly, deoxygenation of 254 via the tosyl hydrazone derivative

afforded a 95:5 mixture of indolizidine 237D and indolizidine 235B'. Based on the hypothesis

that reduction of the alkene was presumably occurring via the in situ generation of diimide, we

decided to employ a sacrificial olefin to inhibit the undesired reduction. Adding excess 1-hexene

or cyclopentene to the reaction mixture afforded a much improved 20:80 mixture of indolizidine

237D and the desired indolizidine 235B'. Unfortunately, attempts to completely suppress the

reduction through the addition of dicyclopentadiene and 1-hexyne, as well as the use of different

reaction solvents (dioxane, THF, EtOH, AcOH, and DMF), were fruitless. Therefore, we

decided to explore other deoxygenation methods.134

134 For general reviews on the deoxygenation of alcohols, see: (a) McCombie, S. M. In Comprehensive Organic

Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991, Vol. 8, pp 811-833. (b) Hartwig, W.
Tetrahedron 1983, 39, 2609.
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Interested in the possibility of using a Barton-McCombie deoxygenation reaction, 135 we

shifted our focus to the synthesis of alcohol 255 (Scheme 66). Surprisingly, we found that

simply adding ethanol to the sodium/liquid ammonia reduction flask delivered the desired

alcohol 255 in 65% yield as a single diastereomer. As shown below, the assignment of the C-7

stereocenter of 255 was based on the chemical shift of the C-7 proton which is consistent with an

axial orientation. 136  The C-5 side chain of 255 was assigned as equatorial based on NMR

analysis and comparison with the spectra reported by Polniaszek 83 for related indolizidine

compounds (see 126 and 127 on pp 66). Unfortunately, initial efforts using the classical Barton-

McCombie deoxygenation to remove the C-7 hydroxyl group have been unsuccessful due to

problems synthesizing the thiocarbonyl derivatives.

135 (a) Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. 1 1975, 1574. (b) Barton, D. H. R.;
Blundell, P.; Dorchak, J.; Jang, D. O.; Jaszberenyi, J. C. Tetrahedron 1991, 47, 8969. (c) Barton, D. H. R.;
Dorchak, J.; Jaszberenyi, J. C. Tetrahedron 1992, 48, 7435. (d) Lopez, R. M.; Hays, D. S.; Fu, G. C. J. Am. Chem.
Soc. 1997, 119, 6949.
1'36 For 1H NMR data of 256 and 257, see Rader, C. P.; Young, R. L.; Aaron, H. S. J. Org. Chem. 1965, 30, 1536.
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Scheme 66

H CH3
S OPiv

N

CN

252

H 4.02 ppm

H

256

1) 2.1 equiv LDA, THF, then
1.1 equiv 7-bromoheptene
0 'C, 45 min

2) excess Na, NH3/THF
5.0 equiv EtOH, -78 °C, 2 h

65%

3.47 ppm
257

In conclusion, this chapter describes our efforts toward the total synthesis of indolizidine

(-)-235B' utilizing the intramolecular Diels-Alder cycloaddition of iminoacetonitriles as a key

step. These studies are by no means complete, and further efforts are currently underway in the

Danheiser laboratory to complete the total synthesis of indolizidine (-)-235B'.
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Part IV

Experimental Procedures
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General Procedures. All reactions were performed in flame-dried or oven-dried glassware

under a positive pressure of argon. Reaction mixtures were stirred magnetically unless otherwise

indicated. Air- and moisture-sensitive liquids and solutions were transferred by syringe or cannula

and introduced into reaction vessels through rubber septa. Reaction product solutions and

chromatography fractions were concentrated by rotary evaporation at ca. 20 mmHg and then at ca.

0.1 mmHg (vacuum pump) unless otherwise indicated. Thin layer chromatography was performed

on Merck precoated glass-backed silica gel 60 F-254 0.25 mm plates. Column chromatography

was performed on EM Science silica gel 60 or Silicycle silica gel 60 (230-400 mesh).

Materials. Commercial grade reagents and solvents were used without further purification

except as indicated below. Dichloromethane and tetrahydrofuran were purified by pressure

filtration through activated alumnia. Toluene was purified by pressure filtration through activated

alumina and Cu(II) oxide. N,NV-Diisopropylamine, triethylamine, and diisopropylethylamine were

distilled under argon from calcium hydride. Methanesulfonic acid and trifluoromethanesulfonic

anhydride were distilled under argon from phosphorus pentoxide. NaI was dried under vacumm

(0.1 mmHg) at 70 oC for 24 h. Copper(I) iodide was extracted with THF for 24 h in a Soxhlet

extractor and then dried under vacuum (0.1 mmHg). Palladium(II) chloride

(bis)triphenylphosphine was recrystallized from boiling chloroform. n-Butyllithium was titrated in

tetrahydrofuran with diphenylacetic acid.137

Instrumentation. Melting points were determined with a Fisher-Johns melting point

apparatus and are uncorrected. Infrared spectra were obtained using a Perkin Elmer 2000 FT-IR

137 Kofron, W. G.; Baclawski, L. M. J Org. Chem. 1976, 41, 1879.
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spectrophotometer. Ozonolysis was performed using a Welsbach Ozone machine with an ozone

flow rate of ca. 2.75 mmol/3 min. 'H NMR and 13C NMR spectra were measured with an Inova

500, Inova 300, and Bruker 400 spectrometers. 1H NMR chemical shifts are expressed in parts

per million (8) downfield from tetramethylsilane (with the CHCl3 peak at 7.27 ppm used as a

standard). 13C NMR chemical shifts are expressed in parts per million (8) downfield from

tetramethylsilane (with the central peak of CHCl3 at 77.23 ppm used as a standard). High

resolution mass spectra (HRMS) were measured on a Bruker Daltonics APEXII 3 telsa Fourier

transform mass spectrometer. Elemental analyses were performed by E&R Microanalytical

Laboratory, Inc. of Parsippany, NJ.
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Experimental Procedures for

Synthesis of Alcohol Substrates
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HO \ý > PivO

46a 47a

2,2-Dimethylpropionic acid 4-pentynyl ester (47a). A 25-mL, two-necked, round-

bottomed flask equipped with a rubber septum and argon inlet adapter was charged with DMAP

(0.066 g, 0.54 mmol) and 10 mL of CH2C 2. 4-Pentyn-l-ol (0.50 mL, 0.45 g, 5.4 mmol) and

pyridine (1.30 mL, 1.30 g, 16.1 mmol) were added via syringe. Pivaloyl chloride (0.79 mL, 0.78

g, 6.4 mmol) was then added dropwise over 2 min via syringe, and the resulting solution was

stirred at room temperature for 1 h. The reaction mixture was diluted with 50 mL of ether and

washed with two 20-mL portions of 1.0 N aq HC1 solution and 20 mL of brine, dried over

MgSO4, filtered, and concentrated to give 0.938 g of colorless oil. Column chromatography on

20 g of silica gel (elution with 2% EtOAc-hexanes) provided 0.820 g (91%) of 47a as a colorless

oil: IR (film): 2974, 2874, 2121, 1730, 1482, 1463, 1399, 1366, 1285, 1230 cm-'; 1H NMR (500

MHz, CDCl3) 6 4.16 (t, J= 6.3 Hz, 2 H), 2.30 (dt, J= 7.1, 2.6 Hz, 2 H), 1.97 (t, J= 2.6 Hz, 1

H), 1.87 (app quint, J= 6.7 Hz, 2 H), 1.20 (s, 9 H); 13C NMR (75 MHz, CDCl3) 3 178.4, 83.2,

69.1, 63.0, 39.0, 27.9, 27.4, 15.5; HRMS (m/z) [M+Na]+ calcd for Clo0H1602Na, 191.1043; found,

191.1047.
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PivO •__ _ _ B(OH) 2
<,OPiv

47a 48a

5-Trimethylacetoxy-(E)-1-pentenyl boronic acid (48a). A 25-mL, two-necked, pear-

shaped flask equipped with a rubber septum and argon inlet adapter was charged with 47a (0.334

g, 1.99 mmol) and 3 mL of CH2C12. Dibromoborane-dimethylsulfide solution (2.6 mL, 1.0 M in

CH2CI2, 2.6 mmol) was added dropwise via syringe over 3 min. The pale yellow solution was

stirred at rt for 17 h, then cooled at 0 'C, and transferred via cannula to a 25-mL round-bottomed

flask containing 6 mL of ether and 2 mL of water cooled at 0 'C. The resulting mixture was

stirred at 0 'C for 10 min and was then diluted with 40 mL of ether. The organic layer was

washed with two 25-mL portions of ice-cold water, and the combined aqueous layers were

extracted with 20 ml of ether. The combined organic layers were washed with 25 mL of brine,

dried over MgSO 4, filtered, and concentrated to give 0.420 g (99% crude yield) of 48a as a pale

yellow solid, which was used in the next step without further purification.
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B(OH) 2  .

48a 50a

5-(1-Cyclohexenyl)-1-trimethylacetoxy-(E)-4-pentene (50a). A 100-mL, round-

bottomed flask equipped with a rubber septum and argon inlet needle was charged with the crude

boronic acid 48a (1.863 g, 8.70 mmol), 40 mL of THF, 1-iodocyclohexene3 7 (1.533 g, 7.37

mmol), and PdCl2dppf.CH2C12 (0.054 g, 0.07 mmol). Sodium hydroxide solution (3.0 M in

water, 7.37 mL, 22.11 mmol) was then added, and the reaction mixture was stirred at rt for 1.5 h.

The resulting orange solution was then diluted with 50 mL of water, and the aqueous layer was

separated and extracted with three 40-mL portions of ether. The combined organic layers were

washed with 50 mL of brine, dried over MgSO 4, filtered, and concentrated to give 2.011 g of an

orange oil. Column chromatography on 20 g of silica gel (elution with 5% EtOAc-hexanes)

provided 1.474 g (80%) of 50a a colorless oil: IR (film): 3024, 2931, 2838, 1731, 1480, 1284

cm-1; 'H NMR (500 MHz, CDC13) 6 6.05 (d, J= 15.9 Hz, 1 H), 5.65 (br s, 1 H), 5.53 (dt, J=

15.6, 7.3 Hz, 1 H), 4.07 (t, J= 6.4 Hz, 2 H), 2.17 (q, J= 7.3 Hz, 2 H), 2.11 (m, 4 H), 1.73 (quint,

J= 6.4 Hz, 2 H), 1.63-1.70 (m, 2 H), 1.56-1.62 (m, 2 H), 1.21 (s, 9 H); '3C NMR (75 MHz,

CDCl3) 6 178.7, 135.6, 134.5, 127.9, 125.1, 64.1, 39.1, 30.0, 29.0, 27.6, 26.4, 25.0, 23.0, 22.9;

HRMS (m/z) [M+Na] + calcd for C16H260 2Na, 273.1825; found, 273.1816.
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50a 51

5-(1-Cyclohexenyl)-(E)-4-penten-1-ol (51). A 25-mL, two-necked, round-bottomed

flask equipped with a rubber septum and argon inlet adapter was charged with pivalate ester 50a

(0.505 g, 1.91 mmol) and 5 mL of CH 2 Cl2 . The flask was cooled at -78 'C while DIBAL

solution (1.0 M in toluene, 2.4 mL, 2.42 mmol) was added dropwise over 3 min via syringe. The

solution was stirred at -78 oC for 1 h and then diluted with 10 mL of 10% aq Rochelle salt

solution. The cooling bath was removed, and the reaction mixture was stirred at rt for 2 h. The

biphasic mixture was then diluted with 20 mL of water, the aqueous layer was separated and

extracted with three 20-mL portions of CH 2C 2, and the combined organic layers were washed

with 25 mL of brine, dried over MgSO 4, filtered, and concentrated to give 0.215 g of a colorless

oil. Column chromatography on 10 g of silica gel (elution with 20% EtOAc-hexanes) afforded

0.142 g (85%) of 51 as a colorless oil: IR (film): 3328, 3022, 2985, 2928, 2858, 2836, 1651,

1625, 1447, 1436 cm-1; 1H NMR (500 MHz, CDCl3) 3 6.07 (d, J= 15.6 Hz,1 H), 5.65 (br s, 1

H), 5.55 (dt, J= 15.6, 7.0 Hz, 1 H), 3.67 (t, J= 6.5 Hz, 1 H), 2.10-2.22 (m, 6 H), 1.56-1.73 (m, 6

H), 1.36 (br s, 1 H); 1 3C NMR (125 MHz, CDCl3) 8 135.5, 134.1, 127.6, 125.7, 62.6, 32.8, 29.4,

26.0, 24.9, 22.9, 22.8; HRMS (m/z) [M+Na] + calcd for ClIH 18ONa, 189.1250; found, 189.1254.
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HO_,__.-,__ PivO

46b 47b

2,2-Dimethylpropionic acid 5-hexynyl ester (47b). A 250-mL, three-necked, round-

bottomed flask equipped with a glass stopper, rubber septum, and argon inlet adapter was

charged with DMAP (0.443 g, 3.63 mmol), 75 mL of CH2C 2, 5-hexyn-1-ol (4.0 mL, 3.6 g, 36

mmol), and pyridine (8.8 mL, 8.6 g, 109 mmol). Pivaloyl chloride (5.4 mL, 5.3 g, 44 mmol) was

then added dropwise over 5 min via syringe, and the resulting solution was stirred at rt for 2 h.

The reaction mixture was diluted with 120 mL of ether and 60 mL of satd aq NaHCO 3 solution.

The organic layer was separated and washed with two 50-mL portions of aq 1.0 M HCI solution,

60 mL of brine, dried over MgSO 4, filtered, and concentrated to give 6.62 g of colorless oil.

Column chromatography on 80 g of silica gel (elution with 2% EtOAc-hexanes) provided 6.34 g

(96%) of the 47b as a colorless oil: IR (film): 2959, 2872, 2118, 1728, 1481, 1459, 1398, 1366,

1284 cm-; 1H NMR (500 MHz, CDCl3) 6 4.05 (t, J= 6.3 Hz, 2 H), 2.21 (dt, J= 7.0, 2.8 Hz, 2

H), 1.94 (t, J= 2.6 Hz, 1 H), 1.71-1.76 (m, 2 H), 1.54-1.61 (m, 2 H) 1.17 (s, 9 H); 13C NMR (75

MHz, CDCl3) 8 178.7, 84.0, 68.9, 63.9, 38.9, 27.8, 27.3, 25.1, 18.2; HRMS (m/z) [M+Na]+

calcd for CIH 18sO2Na, 205.1204; found, 205.1209.
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PivO •___B(OH) 2
.OPiv

47b 48b

6-Trimethylacetoxy-(E)-1-hexenylboronic acid (48b). A 100-mL, two-necked, pear-

shaped flask equipped with a rubber septum and a 60-mL pressure-equalizing addition funnel

with a claisen head fitted with a rubber septum and argon inlet adapter was charged with 47b

(6.34 g, 34.8 mmol) and 18 mL of CH2C 2. The addition funnel was charged with

dibromoborane-dimethylsulfide solution (1.0 M in CH2C 2, 45.2 mL, 45.2 mmol), which was

added dropwise over 20 min. The pale yellow solution was stirred at rt for 8 h, was then cooled

to 0 'C and transferred via cannula to a 250-mL round-bottomed flask containing 60 mL of ether

and 20 mL of water cooled to 0 'C under argon. The biphasic mixture was stirred at 0 'C for 10

min and was then diluted with 120 mL of ether, and the organic layer was washed with two 50-

mL portions of cold water. The combined aqueous layers were extracted with 30 mL of ether,

and the combined organic layers were washed with 80 mL of brine, dried over MgSO 4, filtered,

and concentrated to give 7.96 g (100 % crude yield) of 48b as a tan solid, which was used in the

next step without further purification.
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48b 50b

6-(1-Cyclohexenyl)-1-trimethylacetoxy-(E)-5-hexene (50b). A 100-mL, round-

bottomed flask equipped with a rubber septum and argon inlet needle was charged with crude

boronic acid 48b (0.843 g, 3.69 mmol), 25 mL of THF, 1-iodocyclohexene 37 (0.500 g, 2.40

mmol), and PdCl2dppf.CH2C12 (0.020 g, 0.02 mmol). Sodium hydroxide solution (3.0 M in

water, 2.6 mL, 7.20 mmol) was then added in one portion, and the reaction mixture was stirred at

rt for 1 h. The resulting orange solution was then diluted with 50 mL of water, and the aqueous

layer was separated and extracted with three 40-mL portions of ether. The combined organic

layers were washed with 50 mL of brine, dried over MgSO 4, filtered, and concentrated to give

1.017 g of an orange oil. Column chromatography on 25 g of silica gel (elution with 3% EtOAc-

hexanes) provided 0.558 g (88%) of 50b a colorless oil: IR (film): 3023, 2932, 2838, 1730,

1480, 1459, 1285, 1157 cm-1; 'H NMR (500 MHz, CDCl 3) 3 6.04 (d, J= 15.6 Hz, 1 H), 5.65 (br

s, 1 H), 5.53 (dt, J= 15.6, 6.7 Hz, 1 H), 4.06 (t, J= 6.7 Hz, 2 H), 2.12 (m, 6 H), 1.58-1.69 (m, 6

H), 1.46 (q, J= 7.9 Hz, 2 H), 1.20 (s, 9 H); 3C NMR (125 MHz, CDCl3) 6 178.9, 135.8, 134.1,

127.7, 126.2, 64.5, 39.0, 32.6, 28.4, 27.5, 26.2, 26.0, 24.9, 22.9, 22.8; HRMS (m/z) [M+Na]÷

calcd for C17H280 2, 287.1982; found, 287.1977.
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6-(1-Cyclohexenyl)-(E)-5-hexen-1-ol (52). A 50-mL, two-necked, round-bottomed flask

equipped with a rubber septum and argon inlet adapter was charged with pivalate ester 50b

(0.505 g, 1.91 mmol) and 10 mL of CH2C 2. The flask was cooled at -78 oC while DIBAL

solution (1.0 M in toluene, 4.2 mL, 4.20 mmol) was added dropwise over 6 min via syringe. The

solution was stirred at -78 'C for 1 h and then diluted with 20 mL of 10% aq Rochelle salt

solution. The cooling bath was removed, and the reaction mixture was stirred at rt for 2 h. The

biphasic mixture was then diluted with 35 mL of water, the aqueous layer was separated and

extracted with three 20-mL portions of CH2C12, and the combined organic layers were washed

with 35 mL of brine, dried over MgSO 4, filtered, and concentrated to give 0.463 g of a colorless

oil. Column chromatography on 20 g of silica gel (elution with 20% EtOAc-hexanes) afforded

0.303 g (88%) of 52 as a colorless oil: IR (film): 3335, 3022, 2927, 2858, 2837, 1650, 1625,

1448, 1436 cm-'; 'H NMR (500 MHz, CDC13) 3 6.04 (d, J= 15.6 Hz, 1 H), 5.64 (br s, 1 H), 5.54

(dt, J= 15.6, 6.7 z, 1 H), 3.66 (q, J= 6.4 Hz, 2 H), 2.13 (m, 6 H), 1.57-1.69 (m, 6 H), 1.47 (m, 2

H), 1.28 (s, 1 H); 13C NMR (125 MHz, CDCl3) 6 135.8, 134.1, 127.6, 126.4, 63.2, 32.8, 32.5,

26.0, 25.9, 24.8, 22.9, 22.8; HRMS (m/z) [M+Na] + calcd for C12H20ONa, 203.1412; found,

203.1403.
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1-Methyl-(E)-5,7-octadien-1-ol (56). A 100-mL, three-necked, round-bottomed flask

equipped with a rubber septum, glass stopper, and argon inlet adapter was charged with 8 mL of

CH2C12 and oxayl chloride (0.138 mL, 0.205 g, 1.61 mmol). The solution was cooled at -78 oC

while DMSO (0.249 mL, 0.252 g, 3.22 mmol) was added dropwise via syringe over 1 min. The

solution was stirred at -78 'C for 10 min and then a solution of alcohol 44 (0.156 g, 1.24 mmol)

in 4 mL of CH 2C12 was added dropwise over 2 min. After the reaction mixture was stirred at -78

oC for 20 min, Et3N (0.691 mL, 0.502 g, 4.96 mmol) was added over 2 min, and the solution was

stirred at -78 oC for 10 min and rt for 45 min. The cloudy, yellow solution was diluted with 10

mL of CH2C12 and 10 mL of satd aq NaHCO 3 solution, and the aqueous layer was separated and

extracted with three 15-mL of CH2C 2. The combined organic layers were washed with 10 mL

of brine, dried over MgSO4, filtered, and concentrated to give 0.154 g of a yellow oil, which was

used in the next step without further purification.

A 25-mL, two-necked, round-bottomed flask equipped with a septum and argon inlet

adapter was charged with the crude aldehyde from the previous step (0.154 g, 1.24 mmol) and 8

mL of Et20. The reaction mixture was cooled at 0 'C while methylmagnesium bromide solution

(3.0 M in ether, 0.496 mL, 1.49 mmol) was added via syringe over 1 min, and the reaction

mixture was stirred at 0 oC for 2 h, and then diluted with 10 mL of satd aq NH 4Cl solution and

15 mL of Et20. The aqueous layer was separated and extracted with three 12-mL portions of

ether, and the combined organic layers were washed with 10 mL of brine, dried over MgSO 4,

filtered, and concentrated to give 0.235 g of a yellow oil. Purification by column

chromatography on 20 g of silica gel (gradient elution with 20-35% EtOAc-hexanes) afforded
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0.139 g (80%) of 56 as a colorless oil: IR (film): 3353, 3086, 298, 2932, 2860, 1652, 1603,

1458, 1415, 1374 cm-1; 1H NMR (500 MHz, CDCl3) 8 6.33 (ddd, J= 17.0, 10.3, 10.3 Hz, 1H),

6.07 (dd, J= 15.2, 10.3 Hz, 1 H), 5.71 (dt, J= 15.2, 6.9 Hz, 1 H), 5.11 (d, J= 17.0 Hz, 1 H), 4.98

(d, J= 10.3 Hz, 1 H), 3.82 (m, 1 H), 2.13 (app q, J= 7.1 Hz, 2 H), 1.43-1.59 (m, 4 H), 1.30 (d, J

= 4.8 Hz, 1 H), 1.21 (d, J= 6.3 Hz, 3 H); 13C NMR (75 MHz, CDC13) 8 137.4, 135.2, 131.5,

115.2, 68.2, 39.0, 32.7, 25.5, 23.8; HRMS (m/z) [M+H]÷ calcd for C9H 170, 141.1280; found,

141.1279.
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Experimental Procedures for

Synthesis of Triflamides
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51 59CN

N-(Cyanomethyl)-N-(5-(1-cyclohexenyl)-(E)-4-

pentenyl)trifluoromethanesulfonamide (59). A 50-mL, two-necked, round-bottomed flask

equipped with a rubber septum and argon inlet adapter was charged with triphenylphosphine

(0.519 g, 1.98 mmol), a solution of HN(Tf)CH 2CN (0.341 g, 1.82 mmol) in 10 mL of THF, and a

solution of alcohol 51 (0.275 g, 1.65 mmol) in 10 mL of toluene. DEAD (0.31 mL, 0.345 g, 1.98

mmol) was added dropwise via syringe over 2 min, and the resulting reaction mixture was stirred

at rt for 2 h and then concentrated to give 1.243 g of a yellow semi-solid. A solution of this

material in CH2C12 was concentrated onto 2.5 g of silica gel and transferred to the top of a

column of 40 g of silica gel. Elution with 10% EtOAc-hexanes provided 0.498 g (90%) of 59 as

a colorless oil: IR (film): 3025, 2989, 2932, 2860, 2839, 1651, 1625, 1398, 1230 cnf; 1H NMR

(500 MHz, CDCl3) 8 6.09 (d, J= 15.6 Hz, 1 H), 5.69 (br s, 1 H), 5.48 (dt, J= 15.6, 6.7 Hz, 1 H),

4.33 (br s, 2 H), 3.55 (br s, 2 H), 2.18 (q, J= 6.7 Hz, 2 H), 2.10-2.12 (m, 4 H), 1.82 (quint, J=

7.3 Hz, 2 H), 1.58-1.70 (m, 4 H); 13C NMR (75 MHz, CDCl3) 8 135.7, 128.9, 128.6, 123.3,

119.0 (q, J = 322 Hz), 113.3, 49.2, 36.0, 29.5, 27.6, 26.0, 24.8, 22.8, 22.7; HRMS (m/z)

[M+Na]÷ calcd for C14HI9F 3N30 3SNa, 359.1012; found, 359.1017.
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52

N-(Cyanomethyl)-N-(6-(1-cyclohexenyl)-(E)-5-hexenyl)trifluoromethanesulfonamide

(57). A 50-mL, two-necked, round-bottomed flask equipped with a rubber septum and argon

inlet adapter was charged with triphenylphosphine (0.312 g, 1.19 mmol), a solution of

HN(Tf)CH 2CN (0.224 g, 1.19 mmol) in 8 mL of THF, and a solution of alcohol 52 (0.178 g,

0.99 mmol) in 8 mL of toluene. DEAD (0.19 mL, 0.207 g, 1.19 mmol) was added dropwise via

syringe over 2 min, and the resulting reaction mixture was stirred at rt for 2 h and then

concentrated to give 1.213 g of a yellow semi-solid. A solution of this material in CH2C 2 was

concentrated onto 2.5 g of silica gel and transferred to the top of a column of 30 g of silica gel.

Elution with 10% EtOAc-hexanes provided 0.293 g (85%) of 57 as a colorless oil: IR (film):

3024, 2988, 2932, 2860, 2838, 1651, 1625, 1398 cm'; 'H NMR (500 MHz, CDCl3) 6 6.06 (d, J

= 15.7 Hz, 1 H), 5.67 (br s, 1 H), 5.49 (dt, J= 15.6, 6.9 Hz, 1 H), 4.32 (br s, 2 H), 3.55 (br s, 2

H), 2.12-2.18 (m, 6 H), 1.58-1.75 (m, 6 H), 1.47 (quint, J= 7.5 Hz, 2 H); 13C NMR (75 MHz,

CDCl3) 8 135.6, 134.9, 128.3, 125.0, 119.9 (q, J= 322 Hz), 113.3, 49.3, 35.8, 32.2, 26.9, 26.1,

26.0, 24.8, 22.8, 22.7; HRMS (m/z) [M+H]÷ calcd for ClsH22F3N20 2S, 351.1349; found,

351.1340.
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N-(Cyanomethyl)-N-(1-Methyl-(E)-5,7-octadienyl)trifluoromethanesulfonamide

(61). A 50-mL, two-necked, round-bottomed flask equipped with a rubber septum and argon

inlet adapter was charged with triphenylphosphine (1.18 g, 4.49 mmol), a solution of

HN(Tf)CH 2CN (0.774 g, 4.11 mmol) in 8 mL of benzene, and a solution of alcohol 56 (0.525 g,

3.74 mmol) in 7 mnL of benzene. DIAD (0.868 mL, 0.908 g, 4.49 mmol) was added dropwise via

syringe over 2 min, and the resulting mixture was stirred at rt for 12 h and then at 60 'C for 4 h.

The reaction mixture was allowed to cool to rt and then concentrated to give 3.91 g of a red

solid. This material was concentrated onto 8 g of silica gel and added to a column of 100 g of

silica gel. Gradient elution with 10-35% EtOAc-hexanes provided 0.912 g (78%) of 61 as a

colorless oil: IR (film): 3089, 3056, 2989, 2939, 2864, 1653, 1603, 1462, 1422, 1396, 1303,

1266 cm-1; 1H NMR (500 MHz, CDCl3) 3 6.32 (ddd, J= 17.0, 10.4, 10.3 Hz, 1H), 6.08 (dd, J =

15.2, 10.6 Hz, 1 H), 5.67 (dt, J= 15.1, 7.1 Hz, 1 H), 5.14 (d, J= 17.1 Hz, 1 H), 5.01 (d, J= 10.3

Hz, 1 H), 4.12-4.23 (m, 3 H), 2.16 (app q, J= 7.1 Hz, 2 H), 1.62-1.72 (m, 2 H), 1.50 (app quint,

J= 7.5 Hz, 2 H), 1.40 (d, J= 6.9 Hz, 3 H); 13C NMR (75 MHz, CDCl3) 3 137.1, 133.8, 132.2,

117.6 (q, J= 322 Hz), 115.8, 115.0, 57.5, 34.1, 32.1, 30.8, 26.0, 24.6; HRMS [M+H]+ Calcd. for

C12H18F3N20 2S: 311.1036. Found: 311.1046.
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Experimental Procedures for Synthesis of

Iminoacetonitriles
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59 60

5-(1-Cyclohexenyl)-(E)-4-pentenyliminoacetonitrile (60). A 25-mL, one-necked,

round-bottomed flask equipped with a reflux condenser fitted with an argon inlet adapter was

charged with Cs2CO3 (2.131 g, 6.54 mmol) and 4 mL of THF. A solution of triflamide 59 (0.550

g, 1.64 mmol) in 6 mL of THF was added, and the reaction mixture was heated at 55 'C for 2.5

h. The resulting mixture was allowed to cool to rt and then diluted with 20 mL of ether and 40

mL of water. The aqueous layer was separated and extracted with two 25-mL portions of ether,

and the combined organic layers were washed with 40 mL of brine, dried over MgSO 4, filtered,

and concentrated to give 0.371 g of a yellow oil. Column chromatography on 15 g of Et3N-

deactivated silica gel (elution with 10% EtOAc-hexanes containing 1% Et3N) provided 0.245 g

(74%) of 60 (80:20 mixture of E and Z imine isomers by 'H NMR analysis) as a pale yellow oil:

IR (film): 2928, 2858, 1624, 1436, 1349 cm-1'; For E isomer: 'H NMR (500 MHz, CDCl3) 8

7.38 (app td, J= 1.5, 0.3 Hz, 1 H), 6.04 (d, J= 15.7 Hz, 1 H), 5.67 (s, 1 H), 5.44-5.58 (m, 1 H),

3.66 (td, J= 6.8, 1.4 Hz, 2 H), 2.12-2.21 (m, 6 H), 1.80-1.86 (m, 2 H), 1.58-1.78 (m, 4 H); 13C

NMR (75 MHz, CDCl 3) 6 136.1, 135.6, 135.0, 128.3, 124.7, 114.7, 62.6, 30.3, 29.8, 26.0, 24.8,

22.8, 22.7: For Z isomer: 'H NMR (500 MHz, CDCl3) 6 7.39 (t, J = 2.3 Hz, 1 H), 6.07 (d, J=

15.5 Hz, 1 H), 5.67 (s, 1 H), 5.44-5.58 (m, 1 H), 3.85 (td, J= 6.8, 2.3 Hz, 2 H), 2.12-2.21 (m, 6

H), 1.80-1.86 (m, 2 H), 1.58-1.78 (m, 4 H); 13C NMR (75 MHz, CDCl3) 6 135.7, 134.9, 131.6,

128.2, 124.8, 114.7, 59.4, 30.5, 30.1, 26.0,24.8, 22.8, 22.7.
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6-(1-Cyclohexenyl)-(E)-5-hexenyliminoacetonitrile (58). A 25-mL, one-necked,

round-bottomed flask equipped with a reflux condenser fitted with an argon inlet adapter was

charged with Cs2CO3 (1.490 g, 4.57 mmol) and 5 mL of THF. A solution of triflamide 57 (0.380

g, 1.08 mmol) in 3 mL of THF was added in one portion, and the reaction mixture was heated at

55 oC for 2.5 h. The resulting mixture was allowed to cool to rt and then diluted with 20 mL of

ether and 20 mL of water. The aqueous layer was separated and extracted with two 20-mL

portions of ether, and the combined organic layers were washed with 40 mL of brine, dried over

MgSO 4, filtered, and concentrated to give 0.244 g of a yellow oil. Column chromatography on

20 g of Et3N-deactivated silica gel (elution with 10% EtOAc-hexanes containing 1% Et3N)

provided 0.174 g (74%) of 58 (77:23 mixture of E and Z imine isomers by 1H NMR analysis) as

a pale yellow oil: IR (film): 3022, 2928, 2857, 2837, 1623, 1448, 1436, 1349, 1334, 1268 cmf;

For E isomer: 1H NMR (500 MHz, CDCl3) 6 7.38 (m, 1 H), 6.04 (dt, J= 15.6, 5.8 Hz, 1 H),

5.66 (br s, 1 H), 5.51 (dt, J= 15.6, 7.0 Hz, 1 H), 3.66 (t, J= 7.0 Hz, 1 H), 2.11-2.19 (min, 6 H),

1.57-1.77 (min, 6 H), 1.40-1.52 (inm, 2 H); 13C NMR (125 MHz, CDCl3) 6 135.9, 134.5, 128.0,

126.0, 114.9, 63.4, 32.7, 29.7, 27.4, 26.2, 25.0, 23.0, 22.9: For Z isomer: 1H NMR (500 MHz,

CDCl3) 6 7.38 (min, 1 H), 6.05 (dt, J= 15.6, 5.8 Hz, 1 H), 5.66 (br s, 1 H), 5.51 (dt, J= 15.6, 7.0

Hz, 1 H), 3.84 (td, J= 6.7, 2.1 Hz, 1 H), 2.11-2.19 (min, 6 H), 1.57-1.77 (m, 6 H), 1.40-1.52 (m, 2

H); 13C NMR (125 MHz, CDCl3) 8 135.9, 134.5, 131.7, 128.0, 110.0, 60.1, 32.8, 29.8, 27.5,

26.2, 25.0, 23.0, 22.9.
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1-Methyl-(E)-5,7-octadienyliminoacetonitrile (62). A 100-mL, one-necked, round-

bottomed flask equipped with a reflux condenser fitted with an argon inlet adapter was charged

with Cs 2CO3 (2.66 g, 8.16 mmol) and 14 mL of THF. A solution of triflamide 61 (0.634 g, 2.04

mmol) in 6 mL of THF was added, and the reaction mixture was heated at 55 'C for 2 h. The

resulting mixture was allowed to cool to room temperature and then diluted with 30 mL of ether

and 25 mL of water. The aqueous layer was separated and extracted with two 20-mL portions of

ether, and the combined organic layers were washed with 40 mL of brine, dried over MgSO 4,

filtered, and concentrated to give 0.449 g of a yellow oil. Column chromatography on 20 g of

Et3N-deactivated silica gel (elution with 10% EtOAc-hexanes containing 1% Et3N) provided

0.331 g (90%) of 62 (as a 92:8 mixture of E and Z imine isomers by 1H NMR analysis) as a pale

yellow oil: IR (film): 3086, 2973, 2935, 2861, 2361, 1652, 1619, 1603, 1457, 1377, 1319 cmn- ;

ForE isomer: 1H NMR (500 MHz, CDCl3) 6 7.37 (s, 1H), 6.31 (ddd, J= 17.0, 10.3, 10.3 Hz, 1

H), 6.06 (dd, J= 15.2, 10.3 Hz, 1 H), 5.70 (dt, J= 15.2, 6.9 Hz, 1 H), 5.12 (d, J= 17.2 Hz, 1 H),

4.99 (d, J= 10.1 Hz, 1 H), 3.36 (m, 1 H), 2.09 (app q, J= 7.1 Hz, 2H), 1.56-1.67 (m, 2 H), 1.26-

1.36 (m, 2 H), 1.25 (d, J = 6.6 Hz, 3 H); 13C NMR (75 MHz, CDCl3) 6 137.3, 134.6, 134.7,

131.7, 115.5, 114.7, 68.7, 36.6, 32.4, 26.0, 21.9: For Z isomer: 1H NMR (500 MHz, CDCl3) 6

7.33 (s, 1H), 6.31 (ddd, J= 17.0, 10.3, 10.3 Hz, 1 H), 6.06 (dd, J= 15.2, 10.3 Hz, 1 H), 5.70 (dt,

J= 15.2, 6.9 Hz, 1 H), 5.12 (d, J= 17.2 Hz, 1 H), 4.99 (d, J= 10.1 Hz, 1 H), 3.93 (m, 1 H), 2.09

(app q, J= 7.1 Hz, 2H), 1.81 (d, J= 7.3 Hz, 3 H), 1.56-1.67 (m, 2 H), 1.26-1.36 (m, 2 H); 13C

NMR (75 MHz, CDCl3) 6 137.3, 134.7, 134.1, 131.7, 115.4, 114.7, 67.7, 36.7, 32.4, 26.0, 21.8.
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Experimental Procedures for

Intramolecular Cycloadditions of

Iminoacetonitriles
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N CN

CN 6aCN
38 63a

cis-1,2-Didehydro-4-cyanoquinolizidine (63a) (Acid-Promoted Cycloaddition). A 50-

mL, two-necked, round-bottomed flask equipped with a rubber septum and argon inlet adapter

was charged with imine 38 (0.150 g, 0.92 mmol), 4A molecular sieves (ca. 0.050 g), and 9 mL of

CH2C12. Methanesulfonic acid (0.060 mL, 0.089 g, 0.92 mmol) was added dropwise via syringe

over 1 min and the reaction mixture was stirred at rt for 30 min. The reaction mixture was

diluted with 15 mL of satd aq NaHCO 3 and 10 mL of CH 2C 2, and the aq layer was separated and

extracted with three 15-mL portions of CH2C 2. The combined organic layers were washed with

15 mL of brine, dried over MgSO 4 , filtered, and concentrated to give 0.181 g of an orange oil. A

solution of this material in 10 mL of CH 3CN in a 25-mL round-bottomed flask was stirred at 45

'C under argon for 1.5 h, and then allowed to cool to rt and concentrated to give 0.181 g of an

orange oil. Purification by column chromatography on 10 g of silica gel (elution with 10%

EtOAc-hexanes containing 1% Et3N) afforded 0.120 g (80%) of 63a as a yellow oil: IR (film):

3035, 2936, 2855, 2807, 2221, 1442, 1396, 1332, 1287, 1237, 1205 cm-1; 1H NMR (500 MHz,

CDCl 3) 3 5.63-5.67 (m, 1 H), 5.54 (d, J= 10.1 Hz, 1 H), 3.79 (d, J= 6.1 Hz, 1 H), 2.86 (br d, J

= 11.6 Hz, 1 H), 2.70-2.77 (m, 2 H), 2.51 (dt, J= 3.1, 11.4 Hz, 1 H), 2.29 (m, 1 H), 1.79-1.85 (m,

1 H), 1.59-1.77 (m, 3 H), 1.26-1.46 (m, 2 H); 13C NMR (75 MHz, CDCl3) 3 130.5, 120.4,

116.9, 56.7, 54.0, 51.9, 31.7, 29.5, 25.7, 24.5; Anal. Calcd for C10H14N2: C, 74.03; H, 8.70; N,

17.27. Found: C, 74.12; H, 8.74; N, 17.29.
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65 66a

2-(tert-Butyldimethylsiloxymethyl)-cis-1,2-didehydro-4-cyanoquinolizidine (66a)

(Acid-Promoted Cycloaddition). A 100-mL, two-necked, round-bottomed flask equipped with

a rubber septum and argon inlet adapter was charged with imine 65 (0.615 g, 2.01 mmol), 4A

molecular sieves (ca. 100 mg), and 20 mL of CH2C 2. Methanesulfonic acid (0.193 mL, 0.130 g,

2.01 mmol) was added dropwise via syringe over 1 min and the reaction mixture was stirred at rt

for 15 min. The reaction mixture was diluted with 35 mL of satd aq NaHCO3 and 30 mL of

CH2C12. The aq layer was separated and extracted with three 25-mL portions of CH2C12. The

combined organic layers were washed with 20 mL of brine, dried over MgSO 4, filtered, and

concentrated to give 0.738 g of an orange oil. A solution of this material in 10 mL of CH3CN in

a 25-mL round-bottomed flask was stirred at 45 'C under argon for 1.5 h, and then allowed to

cool ot rt and concentrated to give 0.738 g of an orange oil. Purification by column

chromatography on 25 g of silica gel (elution with 10% EtOAc-hexanes 1% Et3N) afforded

0.550 g (89%) of 66a as a pale yellow oil: IR (film): 2934, 2856, 2807, 2767, 2222, 1471, 1462,

1388, 1360, 1326, 1289, 1256, 1229 cm-; 1H NMR (500 MHz, CDCl 3) 6 5.47 (s, 1 H), 4.06 (s,

2 H), 3.85 (d, J= 6.4 Hz, 1 H), 2.84 (dd, J= 11.6, 1.6 Hz, 1 H), 2.76 (dd, J= 11.0, 2.0 Hz, 1 H),

2.64-2.70 (m, 1 H), 2.51 (dt, J= 3.1, 11.6 Hz, 1 H), 2.24 (d, J= 17.1 Hz, 1 H), 1.70-1.84 (m, 3

H), 1.63 (app tq, J= 4.1, 12.2 Hz, 1 H), 1.42 (app tq, J= 4.0, 12.8 Hz, 1 H), 1.30 (app dq, J=

3.4, 11.6 Hz, 1 H), 0.93 (s, 9 H), 0.09 (s, 6 H); 13C NMR (125 MHz, CDCl 3) 6 131.9, 124.2,

117.0, 65.9, 56.6, 54.0, 52.3, 32.0, 29.8, 26.0, 25.9, 24.7, 18.5, -5.1; Anal. Calcd for

C17H30N2OSi: C, 66.61; H, 9.87; N, 9.14. Found: C, 66.43; H, 10.05; N, 9.28.
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73 74a CN 74b CN

2-(tert-Butyldimethylsiloxymethyl)-cis-1,2-didehydro-4-cyanoquinolizidine (74a) and

2-(tert-Butyldimethylsiloxymethyl)-trans-1,2-didehydro-4-cyanoquinolizidine (74b) (Acid-

Promoted Cycloaddition). A 100-mL, two-necked, round-bottomed flask equipped with a

rubber septum and argon inlet adapter was charged with imine 73 (0.592 g, 2.02 mmol), 4A

molecular sieves (ca. 100 mg), and 20 mL of CH2Cl2. Methanesulfonic acid (0.131 mL, 0.194 g,

2.02 mmol) was added dropwise via syringe over 1 min and the reaction mixture was stirred at rt

for 30 min. The reaction mixture was diluted with 20 mL of satd aq NaHCO3 and 20 mL of

CH2C12, and the aq layer was separated and extracted with three 15-mL portions of CH2C02. The

combined organic layers were washed with 15 mL of brine, dried over MgSO 4, filtered, and

concentrated to give 0.729 g of an orange oil. A solution of this material in 15 mL of CH 3CN in

a 25-mL round-bottomed flask was stirred at 45 'C under argon for 1.5 h, and then allowed to

cool to rt and concentrated to give 0.181 g of an orange oil. Purification by column

chromatography on 20 g of silica gel (gradient elution with 10-25% EtOAc-hexanes containing

1% Et3N) afforded 0.491 g (83%) of 74a and 74b (81:19 mixture by 1H NMR analysis) as a pale

yellow oil: IR (film): 2956, 2930, 2857, 1472, 1463, 1361, 1253 cm-1; For 74a: 1H NMR (500

MHz, CDCl3) 6 5.80 (s, 1 H), 4.15 (dd, J= 7.0, 1.5 Hz, 1 H), 4.06 (s, 2 H), 3.01-3.09 (m, 1 H),

2.96 (dt, J= 8.5, 3.4 Hz, 1 H), 2.62-2.68 (m, 1 H), 2.58 (app q, J= 8.5 Hz, 1 H), 2.32 (d, J= 17.4

Hz, 1 H), 1.79-2.05 (m, 3 H), 1.43-1.51 (m, 1 H), 0.91 (s, 9 H), 0.07 (s, 6 H); 13C NMR (75

MHz, CDCl3) 6 132.9, 122.1, 117.1, 66.2, 56.7, 49.9, 48.0, 29.7, 28.9, 26.2, 21.8, 18.7, -4.9:

For 74b: 1H NMR (500 MHz, CDC13) 8 5.69 (d, J= 1.5 Hz, 1 H), 4.06 (s, 2 H), 3.90 (dd, J
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8.5, 4.9 Hz, 1 H), 3.43-3.46 (m, 1 H), 2.96 (dt, J = 8.5, 3.4 Hz, 1 H), 2.62-2.68 (m, 1 H), 2.58

(app q, J= 8.5 Hz, 1 H), 2.44 (dd, J= 16.8, 8.5 Hz, 1 H), 1.79-2.05 (m, 3 H), 1.60-1.68 (m, 1 H),

0.91 (s, 9 H), 0.07 (s, 6 H); 13C NMR (75 MHz, CDC13) 3 133.0, 123.4, 120.0, 66.1, 59.2, 49.3,

48.0, 30.3, 27.2, 26.2, 23.1, 18.6, -4.9; HRMS (m/z) [M]÷ calcd for C16H2 8N2 OSi, 292.1965;

found, 292.1954.
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N CN>
.C75

75

2-(tert-Butyldimethylsiloxy)-cis-1,2-didehydro-4-cyanoquinolizidine (76) (Acid-

Promoted Cycloaddition). A 25-mL, two-necked, round-bottomed flask equipped with a

rubber septum and argon inlet adapter was charged with imine 75 (0.178 g, 0.61 mmol), 4A

molecular sieves (ca. 50 mg), and 6 mL of CH2C12. The reaction mixture was cooled at -78 'C

while methanesulfonic acid (0.039 mL, 0.058 g, 0.61 mmol) was added dropwise via syringe

over 1 min. The solution was stirred at -78 TC for 1 h, and then diluted with 10 mL of satd aq

NaHCO 3 and 10 mL of CH2C 2. The aq layer was separated and extracted with three 12-mL

portions of CH2C02. The combined organic layers were washed with 10 mL of brine, dried over

MgSO 4, filtered, and concentrated to give 0.191 g of an orange oil. A solution of this material in

5 mL of CH3CN in a 25-mL round-bottomed flask was stirred at 45 TC under argon for 1.5 h, and

then allowed to cool to rt and concentrated to give 0.191 g of an orange oil. Purification by

column chromatography on 10 g of silica gel (gradient elution with 5-10% EtOAc-hexanes

containing 1% Et3N) afforded 0.092 g (52%) of 76 as a white solid: mp 61-62 'C; IR (CH2C12):

2933, 2857, 1678, 1472, 1372, 1287, 1256 cm-'; 1H NMR (500 MHz, CDCl3) 5 4.67 (app t, J=

1.8 Hz, 1 H), 3.81 (d, J= 5.5 Hz, 1 H), 2.86 (br d, J= 10.2 Hz, 1 H), 2.73-2.79 (m, 2 H), 2.49

(dt, J= 11.5, 3.1 Hz, 1 H), 2.16 (dt, J= 17.0, 1.8 Hz, 1 H), 1.76-1.79 (m, 1 H), 1.61-1.73 (m, 3

H), 1.38 (tq, J= 12.8, 3.8 Hz, 1 H) 1.25-1.34 (m, 1 H), 0.92 (s, 9 H), 0.17 (s, 3 H), 0.16 (s, 3 H);

13C NMR (125 MHz, CDCl3) 8 145.4, 116.8, 107.1, 56.1, 53.7, 53.1, 33.9, 33.0, 25.9, 25.8,

24.3, 18.2, -4.2, -4.4; Anal. Calcd for C16H28N2OSi: C, 65.70; H, 9.65; N, 9.58. Found: C,

65.56; H, 9.63; N, 9.44.
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60-Cyano-1,3,4,6,6ap3,7,8,9,10,1lap3-decahydro-2H-benzo[blquinolizine (77) Acid-

Promoted Cycloaddition). A 25-mL, two-necked, round-bottomed flask equipped with a

rubber septum and argon inlet adapter was charged with imine 58 (0.121 g, 0.56 mmol), 4A

molecular sieves (ca. 50 mg), and 5 mL of CH2C12. Methanesulfonic acid (0.040 mL, 0.059 g,

0.62 mmol) was added dropwise via syringe over 1 min and the reaction mixture was stirred at rt

for 1 h. The reaction mixture was then diluted with 15 mL of saturated NaHCO3 solution and 10

mL of CH2Cl2 , and the aqueous layer was separated and extracted with three 8-mL portions of

CH 2C 2 . The combined organic layers were washed with 10 mL of brine, dried over MgSO 4,

filtered, and concentrated to give 0.125 g of yellow oil. A solution of this material in 4 mL of

CH3CN in a 25-mL round-bottomed flask was stirred at 45 'C under argon for 1.5 h, and then

allowed to cool to rt. Concentration gave 0.124 g of a yellow oil which was purified by column

chromatography on 10 g of silica gel (elution with 10% EtOAc-hexanes containing 1% Et3N) to

give 0.102 g (84%) of 77 as a pale yellow oil: IR (film): 2933, 2856, 2807, 2763, 2222, 1683,

1443 cml; 1H NMR (500 MHz, CDCl 3) 3 5.15 (s, 1 H), 3.44 (s, 1 H), 2.75 (br d, J= 11.3 Hz, 1

H), 2.67 (dt, J= 11.0, 2.1 Hz, 1 H), 2.45 (td, J= 11.3, 3.1 Hz, 1 H), 2.19 - 2.23 (m, 2 H), 1.96

(m, 1 H), 1.73 - 1.86 (m, 4 H), 1.56- 1.71 (m, 4 H), 1.22- 1.53 (m, 4 H); 13C NMR (75 MHz,

CDCl3) 3 136.8, 121.1, 117.5, 58.4, 56.3, 54.0, 43.5, 35.4, 34.1, 32.7, 28.8, 26.6, 26.0, 24.6;

HRMS [M+H]+ Calcd for C14H20N2 : 217.1699. Found: 217.1691.

(Thermal Cycloaddition). A threaded Pyrex tube (ca. 50-mL capacity) equipped with a

rubber septum and argon inlet needle was charged with imine 58 (0.174 g, 0.80 mmol), BHT
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(0.532 g, 2.41 mmol), and 16 mL of toluene. The solution was degassed by four freeze-pump-

thaw cycles and then sealed with a threaded Teflon cap. The reaction mixture was heated in a

120 oC oil bath for 13 h, and then allowed to cool to rt and concentrated to afford 0.708 g of a

brown oil. A solution of this material in CH 2C 2 was concentrated onto 1.5 g of silica gel and

transferred to the top of a column of 40 g of silica gel. Gradient elution with 5-10% EtOAc-

hexanes containing 1% Et3N yielded 0.121 g (70%) of 77 as a colorless oil.
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60

50-Cyano-1,2,3,5,5ap3,6,7,8,9,10ap-decahydro-benzo[b]indolizine (78) (Acid-

Promoted Cycloaddition). A 25-mL, two-necked, round-bottomed flask equipped with a

rubber septum and argon inlet adapter was charged with imine 34 (0.145 g, 0.72 mmol), 4A

molecular sieves (ca. 50 mg), and 7 mL of CH2C12. Methanesulfonic acid (0.051 mL, 0.076 g,

0.79 mmol) was added dropwise via syringe over 1 min and the reaction mixture was stirred at rt

for 1.5 h. The reaction mixture was then diluted with 15 mL of saturated NaHCO3 solution and

10 mL of CH2C12, and the aqueous layer was separated and extracted with three 8-mL portions of

CH2C12. The combined organic layers were washed with 10 mL of brine, dried over MgSO4,

filtered, and concentrated to give 0.187 g of yellow oil. A solution of this material in 4 mL of

CH3CN in a 25-mL round-bottomed flask was stirred at 45 'C under argon for 1.5 h, and then

allowed to cool to rt. Concentration gave 0.187 g of a yellow oil which was purified by column

chromatography on 8 g of silica gel (elution with 10% EtOAc-hexanes containing 1% Et3N) to

give 0.101 g (70%) of 78 as a yellow oil (83:17 mixture of trans- and cis-fused indolizidines by

1H NMR analysis): IR (film): 3049, 2932, 2856, 2769, 2221, 1670, 1459, 1446, 1370, 1320,

1258 cm-'; for trans-fused indolizidine: 1H NMR (500 MHz, CDCl3) 6 5.54 (s, 1 H), 3.66 (d, J

= 1.4 Hz, 1 H), 2.98 (dt, J= 8.8, 2.7 Hz, 1 H), 2.92 (m, 1 H), 2.56 (app q, J= 9.1 Hz, 1 H), 2.35

(br d, J= 13.1 Hz, 1 H), 2.24 (br d, J= 13.1 Hz, 1 H), 1.97-2.03 (m, 1 H), 1.87-1.97 (m, 2 H),

1.77-1.84 (m, 2 H), 1.39-1.60 (m, 4 H), 1.23-1.32 (m, 2 H); 1 3C NMR (75 MHz, CDC13) 9

137.8, 119.5, 117.4, 57.2, 54.8, 50.5, 43.6, 35.4, 34.4, 29.3, 28.2, 26.5, 21.7; for cis-fused

indolizidine: 1H NMR (500 MHz, CDCl3) 6 5.54 (s, 1 H), 4.12 (br s, 1 H), 3.11 (dt, J= 8.5, 3.2
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Hz, 1 H), 2.92 (m, 1 H), 2.66 (app q, J= 8.8 Hz, 1 H), 2.24 (br d, J= 13.1 Hz, 1 H), 2.17 (br d, J

= 13.1 Hz, 1 H), 2.07-2.12 (m, 1 H), 1.87-1.97 (m, 2 H), 1.77-1.84 (m, 2 H), 1.39-1.60 (m, 4 H),

1.23-1.32 (m, 2 H); 13 C NMR (75 MHz, CDCl3) 3 137.8, 120.1, 117.4, 55.7, 54.8, 52.5, 40.0,

34.7, 30.7, 30.2, 27.3, 25.9, 21.5; HRMS [M+Na] Calcd. for C13H18N2Na: 217.1699. Found:

217.1691.

(Thermal Cycloaddition). A threaded Pyrex tube (ca. 100-mL capacity) equipped with

a rubber septum and argon inlet needle was charged with imine 60 (0.214 g, 1.06 mmol), BHT

(0.701 g, 3.18 mmol), and 21 mL of toluene. The solution was degassed by four freeze-pump-

thaw cycles and then sealed with a threaded Teflon cap. The reaction mixture was heated in a

120 TC oil bath for 36 h, and then allowed to cool to rt and concentrated to afford 0.921 g of a

white solid. A solution of this material in CH2C12 was concentrated onto 2 g of silica gel and

transferred to the top of a column of 30 g of silica gel. Elution with 7% EtOAc-hexanes

containing 1% Et3N yielded 0.094 g (44%) of 78 as a yellow oil (83:17 mixture of trans- and cis-

fused indolizidines by 1H NMR analysis).
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79 80a 80b

cis-3,6,7,11b-Tetrahydro-4-cyano-4H-pyrido[2,1-a]isoquinoline (80a) and trans-

3,6,7,11b-Tetrahydro-4-cyano-4H-pyrido[2,1-a]isoquinoline (80b) (Acid-Promoted

Cycloaddition). A 25-mL, two-necked, round-bottomed flask equipped with a rubber septum

and argon inlet adapter was charged with imine 79 (0.173 g, 0.82 mmol), 4A molecular sieves

(ca. 50 mg), and 8 mL of CH2C 2. Methanesulfonic acid (0.053 mL, 0.079 g, 0.82 mmol) was

added dropwise via syringe over 1 min and the reaction mixture was stirred at rt for 30 min. The

reaction mixture was then diluted with 15 mL of satd aq NaHCO3 and 10 mL of CH2C 2, and the

aq layer was separated and extracted with three 15-mL portions of CH2C 2. The combined

organic layers were washed with 15 mL of brine, dried over MgSO 4, filtered, and concentrated to

give 0.181 g of an orange oil. A solution of this material in 10 mL of CH3CN in a 25-mL round-

bottomed flask was stirred at 45 'C under argon for 1.5 h, and then allowed to cool to rt and

concentrated to give 0.181 g of an orange oil. Purification by column chromatography on 10 g

of silica gel (elution with 25% EtOAc-hexanes containing 1% Et3N) afforded 0.104 g (60%) of

80a and 80b (79:21 mixture by 1H NMR analysis) as a white solid: For 80a: IR (CH2C02):

3054, 2934, 2826, 2736, 1494, 1432, 1332 cm-1 ; 1H NMR (500 MHz, CDCl 3) 67.31 (d, J= 7.6

Hz, 1 H), 7.16-7.23 (m, 2 H), 7.12 (dd, J= 7.0, 0.9 Hz, 1 H), 6.30 (d, J= 10.4 Hz, 1 H), 5.82-

5.86 (m, 1 H), 4.39 (s, 1 H), 4.06 (dd, J= 6.1, 0.6 Hz, 1 H), 3.18-3.27 (m, 1 H), 2.97-3.02 (m, 2

H), 2.76-2.86 (m, 2 H), 2.36-2.42 (m, 1 H); 13C NMR (75 MHz, CDCl3) 3 135.5, 133.9, 129.4,

127.9, 126.7, 126.2, 124.7, 122.3, 117.0, 56.4, 52.4, 51.0, 29.5, 29.4; Anal. Calcd for C14H14N2:

C, 79.97; H, 6.71; N, 13.32. Found: C, 80.00; H, 7.02; N, 13.52. For 80b: IR (CH2C 2): 3053,
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2985, 2933, 2849, 1637, 1496, 1422, 1273 cm-1; 1H NMR (500 MHz, CDCl3) 5 7.12-7.26 (m, 4

H), 7.12 (dd, J= 7.0, 0.9 Hz, 1 H), 5.93 (dt, J= 8.2, 2.0 Hz, 1 H), 5.77-5.82 (m, 1 H), 4.54 (br s,

1 H), 4.12 (dd, J = 11.0, 4.9 Hz, 1 H), 3.18-3.27 (m, 1 H), 2.92-3.05 (m, 4 H), 2.56-2.66 (m, 1

H), 2.30-2.38 (m, 1 H); 13C NMR (75 MHz, CDC13) 3135.9, 134.5, 129.8, 129.1, 126.9, 126.4,

126.2, 122.7, 119.2, 58.7, 51.1, 43.4, 29.3, 25.7; Anal. Caled for C14H14N2 : C, 79.97; H, 6.71;

N, 13.32. Found: C, 79.62; H, 6.55; N, 13.10.
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81 82a CN

cis-7-Methyl-2(toluene-4-sulfonyl)-1,3,4,6,7,9a-hexahydro-6-cyano-2H-pyrido[1,2-

a]pyrazine (82a) A 25-mL, two-necked, round-bottomed flask equipped with a rubber septum

and argon inlet adapter was charged with imine 81 (0.151 g, 0.46 mmol), 4A molecular sieves

(ca. 50 mg), and 9 mL of CH2C 2. Methanesulfonic acid (0.030 mL, 0.044 g, 0.46 mmol) was

added dropwise via syringe over 1 min and the reaction mixture was stirred at rt for 15 min. The

reaction mixture was then diluted with 15 mL of satd aq NaHCO3 and 10 mL of CH2C02, and the

aq layer was separated and extracted with three 15-mL portions of CH2C 2. The combined

organic layers were washed with 15 mL of brine, dried over MgSO 4, filtered, and concentrated to

give 0.185 g of an orange oil. A solution of this material in 15 mL of CH3CN in a 25-mL round-

bottomed flask was stirred at reflux under argon for 18 h, and then allowed to cool to rt and

concentrated to give 0.180 g of an orange oil. Purification by column chromatography on 20 g

of silica gel (elution with 25% EtOAc-hexanes) provided 0.107 g (71%) of 82a as a white solid:

mp = 152-153 'C; IR (CH2C12): 3054, 2986, 2305, 1598, 1451, 1422, 1345, 1273, 1257 cm-'; 1H

NMR (500 MHz, CDCl 3) 6 7.66 (d, J= 8.2 Hz, 2 H), 7.34 (d, J= 8.5 Hz, 2 H), 5.72 (ddd, J=

10.0, 5.0, 2.5 Hz, 1 H), 5.43 (d, J= 10.1 Hz, 1 H), 3.74-3.78 (m, 2 H), 3.44 (s, 1 H), 3.14 (dt, J=

11.0, 2.1 Hz, 1 H), 2.80 (dt, J= 11.3, 3.1 Hz, 1 H), 2.63 (dt, J= 11.1, 2.5 Hz, 1 H), 2.53 (dt, J=

11.5, 3.2 Hz, 2 H), 2.44 (s, 3 H), 2.09 (t, J= 11.0 Hz, 1 H), 1.11 (d, J= 6.7 Hz, 3 H); 13C NMR

(125 MHz, CDCl3) 8 144.1, 133.0, 130.0, 129.7, 127.9, 124.3, 116.2, 56.5, 55.5, 51.7, 50.2,

45.8, 35.1, 21.7, 19.9; Anal. Calcd for C17H21N30 2S: C, 61.61; H, 6.39; N, 12.68. Found: C,

61.57; H, 6.35; N, 12.47.
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CH3 CN

62 83a 83b

cis-6-Methyl-cis-1,2-didehydro-4-cyanoquinolizidine (83a) and cis-6-Methyl-cis-1,2-

didehydro-4-cyanoquinolizidine (83b) (Acid-Promoted Cycloaddition). A 25-mL, two-

necked, round-bottomed flask equipped with a rubber septum and argon inlet adapter was

charged with imine 62 (0.141 g, 0.78 mmol), 4A molecular sieves (ca. 50 mg), and 8 mL of

CH3CN. The reaction mixture was cooled at -35 'C while methanesulfonic acid (0.051 mL,

0.075 g, 0.78 mmol) was added dropwise via syringe over 1 min. The solution was stirred at -35

oC for 1 h, 0 'C for 2 h, and then allowed to warm to rt over 1 h. The reaction mixture was then

diluted with 15 mL of satd aq NaHCO3 and 10 mL of CH2C 2, and the aq layer was separated and

extracted with three 15-mL portions of CH2C12. The combined organic layers were washed with

15 mniL of brine, dried over MgSO 4, filtered, and concentrated to give 0.150 g of an orange oil. A

solution of this material in 10 mL of CH3CN in a 25-mL round-bottomed flask was stirred at 45

'C under argon for 1.5 h, and then allowed to cool to rt and concentrated to give 0.150 g of an

orange oil. Purification by column chromatography on 10 g of silica gel (gradient elution with 5-

10% EtOAc-hexanes containing 1% Et3N) afforded 0.098 g (70%) of 83a and 83b (67:33

mixture by 1H NMR analysis) as a yellow oil: IR (film): 3035, 2969, 2933, 2856, 2797, 2221,

1456, 1439, 1378, 1266 cm-1; For 83a: 1H NMR (400 MHz, CDCl 3) 6 5.64-5.69 (m, 1 H), 5.54

(app dt, J= 10.1, 1.3 Hz, 1 H), 4.26 (d, J= 5.6 Hz, 1 H), 2.98 (br d, J= 9.3 Hz, 1 H), 2.63-2.73

(m, 1 H), 2.43-2.50 (m, 1 H), 2.33 (dm, J= 17.7 Hz, 1 H), 1.68-1.81 (m, 3 H), 1.20-1.65 (m, 3

H), 1.13 (d, J= 6.2 Hz, 3 H); 13C NMR (75 MHz, CDCl3) 6 131.1, 120.6, 117.0, 56.0, 49.9,
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45.9, 35.1, 32.5, 30.0, 24.6, 19.3; For 83b: 1H NMR (400 MHz, CDC13) 6 5.64-5.69 (m, 1 H),

5.59 (app dt, J= 10.4, 1.8 Hz, 1 H), 3.74 (d, J= 5.8 Hz, 1 H), 3.49 (dm, J= 12.2 Hz, 1 H), 3.20

(m, 1 H), 2.63-2.73 (m, 1 H), 2.44 (dm, J= 17.0 Hz, 1 H), 1.68-1.81 (m, 3 H), 1.20-1.65 (m, 3

H), 1.27 (d, J= 6.8 Hz, 3 H); 13C NMR (75 MHz, CDC13) 6 132.1, 120.5, 117.0, 57.3, 49.3,

45.9, 33.0, 32.8, 31.6, 20.0, 11.6; HRMS [M+H]÷ Calcd. for CI1IH17N2: 177.1386. Found:

177.1389.
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t-BuMe.SiO

84 85a CN

cis-9-(tert-Butyldimethylsiloxy)-2-methyl-cis-1,2-didehydro-4-cyanoquinolizidine

(85a) (Acid-Promoted Cycloaddition). A 25-mL, two-necked, round-bottomed flask equipped

with a rubber septum and argon inlet adapter was charged with imine 84 (0.150 g, 0.49 mmol),

4A molecular sieves (ca. 50 mg), and 6 mL of CH2Cl2. The reaction mixture was cooled at -78

oC while methanesulfonic acid (0.032 mL, 0.047 g, 0.49 mmol) was added dropwise via syringe

over 1 min. The solution was stirred at -78 'C for 2 h, and then diluted with 15 mL of satd aq

NaHCO3 and 10 mL of CH2C12, and the aq layer was separated and extracted with three 12-mL

portions of CH2C 2. The combined organic layers were washed with 10 mL of brine, dried over

MgSO 4, filtered, and concentrated to give 0.205 g of an orange oil. A solution of this material in

5 mL of CH3CN in a 25-mL round-bottomed flask was stirred at 45 oC under argon for 1.5 h, and

then allowed to cool to rt and concentrated to give 0.205 g of an orange oil. Purification by

column chromatography on 10 g of silica gel (gradient elution with 2-5% EtOAc-hexanes

containing 1% Et3N) afforded 0.122 g (81%) of 85a as a pale yellow oil: IR (film): 2929, 2856,

2804, 2759, 2222, 1472, 1462, 1388, 1368, 1252 cm-; 1H NMR (500 MHz, CDCl3) 6 5.19 (s, 1

H), 3.91 (s, 1 H), 3.84 (d, J= 6.1 Hz, 1 H), 2.87 (br s, 1 H), 2.75 (br d, J= 10.7 Hz, 1 H), 2.61-

2.68 (m, 1 H), 2.43-2.49 (m, 1 H), 1.98-2.08 (m, 1 H), 2.05 (d, J= 16.5 Hz, 1 H), 1.75-1.83 (m, 1

H), 1.70 (s, 3 H), 1.47-1.58 (m, 2 H), 0.86 (s, 9 H), 0.05 (s, 3 H), 0.03 (s, 3 H); 13C NMR (125

MHz, CDCl3) 1 129.4, 123.4, 117.2, 69.2, 61.2, 53.6, 52.7, 33.7, 32.4, 26.0, 22.7, 20.5, 18.4, -

4.2, -4.5; HRMS [M+H] ÷ Calcd for C17H31N2OSi: 307.2200. Found: 307.2198.
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Experimental Procedures for

Intermolecular Cycloadditions of

Iminoacetonitriles
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Ph N CN Ph N CN
H

97 98

Benzyliminoacetonitrile (98). A 50-mL, two-necked, round-bottomed flask equipped

with a rubber septum and argon inlet adapter was charged with NCS (0.311 g, 2.33 mmol) and 8

mL of THF. A solution of amine 97 (0.340 g, 2.33 mmol) in 4 mL of THF was added in one

portion, and the reaction mixture was stirred at rt for 40 min. The resulting mixture was cooled

at 0 'C while KOEt (1.41 M in ethanol, 1.65 mL, 2.33 mmol) was added dropwise via syringe

over 3 min. The reaction mixture was stirred at 0 'C for 2 h, and then diluted with 15 mL of

ether and 15 mL of water. The aqueous layer was separated and extracted with two 12-mL

portions of ether, and the combined organic layers were washed with 15 mL of brine, dried over

MgSO 4, filtered, and concentrated to give 0.395 g of an orange oil. Purification by column

chromatography on 10 g of acetone-deactivated silica gel (elution with 5% EtOAc-hexanes)

provided 0.240 g (72%) of 98 (88:12 mixture of E and Z imine isomers by 1H NMR analysis) as

a yellow oil: IR (film): 3226, 3065, 3033, 2906, 1622, 1496, 1454, 1361 cm-1 ; For E isomer:

1H NMR (400 MHz, CDCl3) 6 7.36 (t, J= 1.6 Hz, 1 H), 7.29-7.35 (m, 3 H), 7.23 (d, J= 6.8 Hz,

2 H), 4.84 (d, J = 1.6 Hz, 2 H); 13C NMR (100 MHz, CDCl 3) 6 136.9, 129.2, 128.7, 128.3,

114.7, 66.1: For Z isomer: 1H NMR (400 MHz, CDC13) 8 7.38 (t, J= 2.2 Hz, 1 H), 7.29-7.35

(m, 3 H), 7.23 (d, J= 6.8 Hz, 2 H), 4.99 (d, J= 2.2 Hz, 2 H); 13C NMR (100 MHz, CDC13) 6

135.6, 132.1, 129.1, 128.1, 114.7, 63.6.
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CN +CH 3  NC CH3
98 101 102

1-Benzyl-2-cyano-4-methyl-1,2,3,6-tetrahydopyridine (102). A 25-mL, two-necked,

round-bottomed flask equipped with a rubber septum and argon inlet adapter was charged with

imine 98 (0.120 g, 0.83 mmol), 4A molecular sieves (ca. 0.040 g), isoprene (0.125 mL, 0.085 g,

1.25 mmol), and 5 mL of CH2C 2. The solution was cooled at -78 'C while methanesulfonic acid

(0.054 mL, 0.080 g, 0.83 mmol) was added via syringe. The reaction mixture was stirred at -78

0C for 1 h and then diluted with 12 mL of satd aq NaHCO 3, and the aqueous layer was separated

and extracted with three 12-mL portions of CH2C12 . The combined organic layers were washed

with 10 mL of brine, dried over MgSO 4, filtered, and concentrated to give 0.170 g of an orange

oil. Purification by column chromatography on 10 g of silica gel (gradient elution with 1-10%

EtOAc-hexanes containing 1% Et3N) afforded 0.152 g (91%) of 102 as a colorless oil: IR

(CH2C12): 3027, 2932, 1603, 1496, 1453, 1383 cm-1; 1H NMR (400 MHz, CDCl3) 8 7.25-7.35

(m, 5 H), 5.43 (d, J= 2.3 Hz, 1 H), 3.78 (dd, J= 6.5, 1.4 Hz, 1 H), 3.77 (d, J= 13.2 Hz, 1 H),

3.53 (d, J= 13.1 Hz, 1 H), 3.27 (dm, J = 16.5 Hz, 1 H), 3.01 (dm, J= 16.5 Hz, 1 H), 2.52 (dm, J

= 17.2 Hz, 1 H), 2.07 (d, J= 17.2 Hz, 1 H), 1.70 (s, 3 H); 13C NMR (100 MHz, CDCl3) 3 136.8,

129.3, 129.2, 128.8, 128.0, 119.6, 116.8, 60.1, 49.3, 48.8, 34.0, 22.9; HRMS (m/z) [M+H]+ calcd

for C14H16N2: 213.1386. Found: 213.1389.
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CH3  CH3

Ph 1 N Ph NK

CN NC -N"

CH3  CH3

98 106 107

1-Benzyl-2-cyano-3,6-dimethyl-1,2,3,6-tetrahydopyridine (107). A 25-mL, two-

necked, round-bottomed flask equipped with a rubber septum and argon inlet adapter was

charged with imine 98 (0.090 g, 0.62 mmol), 4A molecular sieves (ca. 0.030 g), 2,4-hexadiene

(0.106 mL, 0.076 g, 0.93 mmol), and 3 mL of CH2CI2. The solution was cooled at -78 'C while

methanesulfonic acid (0.041 mL, 0.060 g, 0.62 mmol) was added via syringe. The reaction

mixture was stirred at -78 'C for 1 h and then diluted with 12 mL of satd aq NaHCO3, and the

aqueous layer was separated and extracted with three 10-mL portions of CH2C 2. The combined

organic layers were washed with 10 mL of brine, dried over MgSO 4, filtered, and concentrated to

give 0.170 g of an orange oil. Purification by column chromatography on 10 g of silica gel

(elution with 10% EtOAc-hexanes containing 1% Et3N) afforded 0.111 g (79%) of 107 as a

yellow oil: IR (CH2C02): 3030, 2968, 2877, 1722, 1495, 1454, 1379, 1326 cm-1'; 'H NMR (400

MHz, CDCl 3) 3 7.24-7.36 (min, 5 H), 5.73 (dt, J= 10.2, 3.2 Hz, 1 H), 5.48 (dt, J= 10.2, 1.8 Hz, 1

H), 3.99 (d, J= 13.7 Hz, 1 H), 3.86 (d, J= 13.7 Hz, 1 H), 3.56-3.65 (min, 1 H), 3.59 (d, J= 5.9 Hz,

1 H), 2.58-2.62 (m, 1 H), 1.32 (d, J= 7.0 Hz, 3 H), 1.09 (d, J= 7.4 Hz, 3 H); '3C NMR (100

MHz, CDC13) 6 137.7, 131.4, 128.9, 128.8, 127.8, 126.9, 119.5, 56.3, 53.0, 50.8, 32.4, 17.5,

14.9; HRMS (m/z) [M+H]÷ calcd for C15HisN2: 227.1543. Found: 227.1550.
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98 103 104

1-Benzyl-2-cyano-4,6-dimethyl-1,2,3,6-tetrahydopyridine (104). A 25-mL, two-

necked, round-bottomed flask equipped with a rubber septum and argon inlet adapter was

charged with imine 98 (0.110 g, 0.76 mmol), 4A molecular sieves (ca. 0.030 g), 2-methyl-l,3-

pentadiene (0.130 mL, 0.094 g, 1.14 mmol), and 4 mL of CH2C 2. The solution was cooled at -

78 'C while methanesulfonic acid (0.049 mL, 0.073 g, 0.76 mmol) was added via syringe. The

reaction mixture was stirred at -78 'C for 1 h and then diluted with 12 mL of satd aq NaHCO 3,

and the aqueous layer was separated and extracted with three 10-mL portions of CH2C02. The

combined organic layers were washed with 10 mL of brine, dried over MgSO 4, filtered, and

concentrated to give 0.184 g of an orange oil. Purification by column chromatography on 10 g

of silica gel (elution with 5% EtOAc-hexanes containing 1% Et3N) afforded 0.150 g (87%) of

104 as a yellow oil: IR (CH 2C12): 3064, 3029, 2972, 2917, 1495, 1454, 1382, 1345, 1330 cm- ;

'H NMR (400 MHz, CDCl3) 6 7.24-7.35 (m, 5 H), 5.31 (d, J= 1.5 Hz, 1 H), 4.19 (d, J = 13.7

Hz, 1 H), 3.69 (dd, J= 5.7, 1.7 Hz, 1 H), 3.26 (d, J= 13.7 Hz, 1 H), 3.18-3.22 (m, 1 H), 2.40

(dm, J= 17.0 Hz, 1 H), 1.99 (d, J= 17.0 Hz, 1 H), 1.70 (s, 3 H), 1.28 (d, J= 6.5 Hz, 3 H); '13C

NMR (100 MHz, CDCl3) 6 137.8, 129.1, 128.8, 128.6, 127.8, 126.3, 117.6, 55.9, 53.0, 48.3,

33.7, 22.9, 20.6; HRMS (m/z) [M]÷ calcd for C15HI8N2: 227.1543. Found: 227.1545.
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98 108 109

1-Benzyl-4-(tert-butyldimethylsiloxy)-2-cyano-6-methyl-1,2,3,6-tetrahydopyridine

(109). A 25-mL, two-necked, round-bottomed flask equipped with a rubber septum and argon

inlet adapter was charged with imine 98 (0.250 g, 1.73 mmol), 4A molecular sieves (ca. 0.100 g),

2-(tert-butyldimethylsiloxy)-l,3-pentadiene (0.515 g, 2.60 mmol), and 18 mL of CH2C 2. The

solution was cooled at -78 'C while methanesulfonic acid (0.112 mL, 0.166 g, 1.73 mmol) was

added via syringe. The reaction mixture was stirred at -78 'C for 1 h and then diluted with 20

mL of satd aq NaHCO 3, and the aqueous layer was separated and extracted with three 20-mL

portions of CH2C 2. The combined organic layers were washed with 15 mL of brine, dried over

MgSO 4, filtered, and concentrated to give 0.184 g of an orange oil. A solution of this material in

10 mL of CH3CN in a 25-mL round-bottomed flask was stirred at 45 'C under argon for 1.5 h,

and then allowed to cool to rt and concentrated to give 0.195 g of an orange oil. Purification by

column chromatography on 25 g of silica gel (elution with 2% EtOAc-hexanes containing 1%

Et3N) afforded 0.302 g (51%) of 109 as a yellow oil: IR (CH2C 2): 3065, 3032, 2931, 2858,

1682, 1496, 1463, 1373, 1256 cm-1; 1H NMR (400 MHz, CDCl 3) 3 7.25-7.32 (m, 5 H), 4.74 (t, J

= 2.1 Hz, 1 H), 4.18 (d, J= 13.7 Hz, 1 H), 3.70 (dd, J= 5.7, 1.8 Hz, 1 H), 3.25 (d, J= 13.7 Hz, 1

H), 3.24-3.30 (m, 1 H), 2.48 (dm, J= 16.7 Hz, 1 H), 2.03 (dt, J= 16.7, 1.8 Hz, 1 H), 1.27 (d, J=

6.3 Hz, 3 H), 0.89 (s, 9 H), 0.15 (s, 6 H); 13C NMR (100 MHz, CDCl 3) 3 145.7, 137.8, 129.0,

128.8, 127.9, 117.2, 108.6, 55.5, 52.3, 48.7, 33.7, 25.8, 21.4, 18.2, -4.2; HRMS (m/z) [M]+ calcd

for C20H3oN2OSi: 343.2200. Found: 343.2205.
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196



H
it-BuMe2 OSit-BuMe 2

CN66a 120

2-(tert-Butyldimethylsiloxymethyl)trans-1,2-didehydro-4-(2-propene)quinolizidine

(120). A 25-mL, two-necked, round-bottomed flask equipped with a rubber septum and argon

inlet adapter was charged with diisopropylamine (0.144 mL, 0.104 g, 1.03 mmol) and 3 mL of

THF. The solution was cooled at 0 TC while n-BuLi (2.54 M in hexanes, 0.406 mL, 1.03 mmol)

was added dropwise via syringe over 1 min. The resulting solution was stirred at 0 oC for 10 min

and then cooled at -78 TC while a precooled (-78 oC) solution of amino nitrile 66a (0.15 g, 0.49

mmol) in 2 mL of THF was added dropwise via cannula over 1 min. The resulting solution was

stirred at -78 oC for 1.5 h, and then allyl bromide (0.089 mL, 0.125 g, 1.03 mmol) was added

rapidly dropwise. The reaction mixture was stirred at 0 °C for 1 h and then diluted with 15 mL

of water and 15 mL of ether. The aqueous layer was separated and extracted with three 10-mL

portions of ether, and the combined organic layers were washed with 10 mL of brine, dried over

K2CO 3, filtered, and concentrated to give 0.201 g of an orange oil that was used immediately in

the next step without further purification.

A 25-mL, two-necked, round-bottomed flask equipped with a rubber septum and argon

inlet adaptor was charged with NaBH 3CN (0.123 g, 1.96 mmol) and 3 mL of CH3CN. Acetic

acid (0.225 mL, 0.235 g, 3.92 mmol) was added dropwise via syringe over 1 min. The resulting

solution was stirred at rt for 30 min, and then a solution of the crude nitrile (0.170 g, 0.49 mmol)

prepared in the previous step in 2 mL of CH 3CN was added over 1 min by cannula. The reaction

mixture was stirred at rt for 2 h and then diluted with 15 mL of water and 12 mL of CH2C 2. The

aqueous layer was separated and extracted with three 10-mL portions of CH2C 2, and the
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combined organic layers were washed with 10 mL of brine, dried over MgSO 4, filtered, and

concentrated to give 0.201 g of an orange oil. Column chromatography on 10 g of silica gel

(elution with 10% EtOAc-hexanes containing 1% Et3N) afforded 0.136 g (86%) of the

quinolizidine 120 as a pale yellow oil: IR (film): 3076, 2930, 2856, 2784, 2739, 1641, 1462,

1442, 1361, 1255 cm-1; 1H NMR (300 MHz, CDCl3) 3 5.82 (ddt, J= 17.5, 10.3, 6.9 Hz, 1 H),

5.36 (s, 1 H), 5.05-5.11 (min, 2 H), 4.03 (s, 2 H), 3.24 (br d, J= 11.4 Hz, 1 H), 2.59 (br s, 1 H),

2.46-2.53 (inm, 1 H), 2.37-2.41 (min, 1 H), 2.17-2.20 (min, 1 H), 1.89-1.99 (inm, 3 H), 1.58-1.74 (inm, 4

H), 1.26-1.42 (min, 2 H), 0.90 (s, 9 H), 0.07 (s, 6H); 13C NMR (125 MHz, CDC13) 3 135.8, 135.5,

124.5, 117.4, 66.5, 62.4, 59.0, 38.0, 33.2, 32.5, 26.7, 26.7, 26.4, 24.8, 18.8, -4.8; HRMS (m/z)

[M+H]÷ calcd for C19H36NOSi, 322.2566; found, 322.2566.
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74 123

2-(tert-Butyldimethylsiloxymethyl)trans-1,2-didehydro-4-(3-butene)indolizidine

(123). A 25-mL, two-necked, round-bottomed flask equipped with a rubber septum and argon

inlet adapter was charged with diisopropylamine (0.200 mL, 0.145 g, 1.43 mmol) and 3 mL of

THF. The solution was cooled at 0 TC while n-BuLi (2.41 M in hexanes, 0.593 mL, 1.43 mmol)

was added dropwise via syringe over 1 min. The resulting solution was stirred at 0 oC for 10 min

and then cooled at -78 'C while a precooled (-78 'C) solution of amino nitrile 74 (0.20 g, 0.68

mmol) in 2 mL of THF was added dropwise via cannula over 1 min. The resulting solution was

stirred at -78 oC for 1.5 h, and then 4-bromobutene (0.076 mL, 0.101 g, 0.75 mmol) was added

rapidly dropwise. The reaction mixture was stirred at 0 oC for 1 h and then diluted with 12 mL

of water and 10 mL of ether. The aqueous layer was separated and extracted with three 10-mL

portions of ether, and the combined organic layers were washed with 10 mL of brine, dried over

K2CO3, filtered, and concentrated to give 0.236 g of an orange oil that was used immediately in

the next step without further purification.

A 25-mL, two-necked, round-bottomed flask equipped with a rubber septum and argon

inlet adaptor was charged with NaBH 3CN (0.171 g, 2.72 mmol) and 3 mL of CH 3CN. Acetic

acid (0.313 mL, 0.327 g, 5.44 mmol) was added dropwise via syringe over 1 min. The resulting

solution was stirred at rt for 30 min, and then a solution of the crude nitrile (0.236 g, 0.68 mmol)

prepared in the previous step in 2 mL of CH3CN was added over 1 min by cannula. The reaction

mixture was stirred at rt for 2 h and then diluted with 15 mL of water and 12 mL of CH 2C12. The

aqueous layer was separated and extracted with three 10-mL portions of CH 2C 2, and the
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combined organic layers were washed with 10 mL of brine, dried over MgSO 4, filtered, and

concentrated to give 0.241 g of an orange oil. Column chromatography on 10 g of silica gel

(elution with 5% EtOAc-hexanes containing 1% Et3N) afforded 0.107 g (49%) of the

indolizidine 123 (63:37 mixture of trans- and cis-fused indolizidines by 1H NMR analysis) as a

yellow oil: IR (film): 3077, 2956, 2929, 2856, 1641, 1471, 1361 cm-'; For trans-fused

indolizidine: 1H NMR (500 MHz, CDCl3) 6 5.85 (ddt, J = 17.0, 10.4, 6.6 Hz, 1 H), 5.58 (s, 1

H), 5.05 (dd, J= 17.1, 1.6 Hz, 1 H), 4.97 (d, J= 10.3 Hz, 1H), 4.02 (s, 2 H), 3.26 (br s, 1 H),

2.82 (dt, J= 5.9, 2.7 Hz,l H), 2.74 (app q, J= 8.8 Hz, 1 H), 2.44 (app q, J= 5.9 Hz, 1 H), 1.95-

2.26 (m, 4 H), 1.61-1.89 (m, 4 H), 1.46-1.55 (m, 2 H), 0.92 (s, 9 H), 0.08 (s, 6 H); '3C NMR (75

MHz, CDCl3) 8 138.9, 135.7, 123.7, 114.8, 66.7, 61.1, 56.1, 45.7, 34.5, 30.6, 29.5, 28.3, 26.2,

22.1, 18.7, -5.0: For cis-fused indolizidine: 'H NMR (500 MHz, CDC13) 6 5.85 (ddt, J = 17.0,

10.4, 6.6 Hz, 1 H), 5.51 (s, 1 H), 5.02 (dd, J= 17.2, 1.6 Hz, 1 H), 4.95 (d, J= 10.3 Hz, 1H), 4.00

(s, 2 H), 3.60 (br s, 1 H), 2.86-2.95 (m, 1 H), 2.74 (app q, J= 8.8 Hz, 1 H), 2.44 (app q, J= 5.9

Hz, 1 H), 1.95-2.26 (m, 4 H), 1.61-1.89 (m, 4 H), 1.46-1.55 (m, 2 H), 0.92 (s, 9 H), 0.08 (s, 6 H);

13C NMR (75 MHz, CDCl3) 1 139.1, 133.2, 123.7, 114.6, 67.0, 54.3, 53.2, 50.3, 32.5, 31.3, 30.4,

26.2, 24.2, 22.8, 18.7, -5.0; HRMS (m/z) [M+H]÷ calcd for C19H36NOSi, 322.2566; found,

322.2561.
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2-(tert-Butyldimethylsiloxymethyl)-1,2-didehydro-cis-4-methyl-4-ethylquinolizidine

(133). A 50-mL, two-necked, round-bottomed flask equipped with a rubber septum and argon

inlet adapter was charged with 7 mL of THF and diisopropylamine (0.259 mL, 0.187 g, 1.85

mmol). The solution was cooled at 0 'C while n-BuLi (2.32 M in hexanes, 0.797 mL, 1.85

mmol) was added dropwise via syringe over 1 min. The resulting solution was stirred at 0 'C for

10 min and then cooled at -78 'C while a precooled (-78 'C) solution of amino nitrile 66a (0.270

g, 0.88 mmol) in 3 ml of THF was added dropwise over 2 min. The resulting solution was

stirred at -78 0C for 2 h, and then ethyl iodide (0.211 mL, 0.412 g, 2.64 mmol) was added rapidly

dropwise. The reaction mixture was stirred at 0 'C for 1 h and then diluted with 20 ml of water

and extracted with three 30-mL portions of ether. The combined organic layers were washed

with 25 mL of brine, dried over K2CO 3 , filtered, and concentrated to give 0.281 g of orange oil

that was used immediately in the next step without further purification.

A 50-mL, round-bottomed flask equipped with a rubber septum and argon inlet needle

was charged with the crude nitrile from the preceding step (0.281 g, 0.88 mmol) and 4 mL of

ether. The solution was cooled at -78 'C while methylmagnesium bromide solution (3.0 M in

ether, 0.88 mL, 2.64 mmol) cooled at 0 'C was added dropwise via cannula over 2 min. The

resulting solution was allowed to slowly warm to rt over 4.5 h and then was diluted with 15 ml of

satd aq NH4Cl solution and 15 mL of ether. The aqueous layer was separated and extracted with

three 20-mL portions of ether. The combined organic layers were washed with 20 mL of brine,

dried over MgSO 4, filtered, and concentrated to afford 0.270 g of red oil. Column
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chromatography on 10 g of silica gel (gradient elution with 5-20% EtOAchexanes containing 1%

Et3N) provided 0.176 g (63%) of 133 as a yellow oil: IR (film): 2930, 2856, 2787, 2741, 1472,

1463, 1380, 1361 cm-'; 1H NMR (500 MHz, CDCl3) 6 5.35 (s, 1 H), 4.03 (d, J= 13.1 Hz, 1 H),

3.99 (d, J= 13.1, 1 H), 2.94 (br d, J= 11.3 Hz, 1 H), 2.72 (br d, J= 8.2 Hz, 1 H), 2.15 (d, J=

16.5 Hz, 1 H), 1.99 (app dt, J= 11.5, 2.3 Hz, 1 H), 1.61-1.78 (m, 3 H), 1.42-1.58 (m, 4 H), 1.27-

1.35 (m, 2 H), 0.90 (s, 9 H), 0.88 (t, J= 7.5 Hz, 3 H), 0.86 (s, 3 H), 0.06 (s, 3 H), 0.06 (s, 3 H);

13C NMR (125 MHz, CDCl3) 6 133.9, 123.5, 66.6, 56.9, 54.5, 45.2, 36.5, 33.5, 33.3, 26.9, 26.1,

25.3, 18.6, 14.6, 8.0, -5.0, -5.1; HRMS (m/z) [M]÷ calcd for Cs18H35NOSi, 323.2639; found,

323.2647.
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2-(tert-Butyldimethylsiloxymethyl)-1,2-didehydro-4-methyl-cis-4-ethylquinomizidine

(134). A 25-mL, two-necked, round-bottomed flask equipped with a rubber septum and argon

inlet adapter was charged with 4 mL of THF and diisopropylamine (0.202 mL, 0.146 g, 1.44

mmol). The solution was cooled at 0 'C while n-BuLi (2.20 M in hexanes, 0.654 mL, 1.44

mmol) was added dropwise via syringe over 1 min. The resulting solution was stirred at 0 'C for

10 min and then cooled at -78 'C while a precooled (-78 'C) solution of amino nitrile 66a (0.210

g, 0.69 mmol) in 2 ml of THF was added dropwise over 1 min. The resulting solution was

stirred at -78 0C for 2 h, and then methyl iodide (0.106 mL, 0.242 g, 1.71 mmol) was added

rapidly dropwise. The reaction mixture was stirred at 0 'C for 1 h and then diluted with 20 ml of

water and extracted with three 20-mL portions of ether. The combined organic layers were

washed with 25 mL of brine, dried over K2CO3, filtered, and concentrated to give 0.226 g of

orange oil that was used immediately in the next step without further purification.

A 25-mL, round-bottomed flask equipped with a rubber septum and argon inlet needle

was charged with crude nitrile from preceding step (0.226 g, 0.69 mmol) and 4 mL of ether. The

solution was cooled at -78 'C while ethylmagnesium bromide solution (3.0 M in ether, 0.69 mL,

2.01 mmol) cooled at 0 'C was added dropwise via cannula over 1 min. The resulting solution

was allowed to slowly warm to rt over 4.5 h and then was diluted with 15 ml of satd aq NH4Cl

solution and 15 mL of ether. The aqueous layer was separated and extracted with three 15-mL

portions of ether. The combined organic layers were washed with 20 mL of brine, dried over

MgSO4, filtered, and concentrated to afford 0.238 g of red oil. Column chromatography on 10 g
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of silica gel (elution 5% EtOAc-hexanes containing 1% Et3N) provided 0.144 g (64%) of 134 as

a yellow oil: IR (film): 2930, 2856, 2785, 1462, 1379, 1360, 1333 1252 cm-1; 1H NMR (500

MHz, CDCl3) 6 5.35 (s, 1 H), 4.00 (d, J= 13.1 Hz, 1 H), 3.97 (d, J= 13.1, 1 H), 3.04 (d, J=

11.0 Hz, 1 H), 2.80 (br d, J= 6.1 Hz, 1 H), 2.15 (dt, J= 11.3, 2.1 Hz, 1 H), 2.01 (d, J= 17.1 Hz,

1 H), 1.85 (d, J= 17.1 Hz, 1 H), 1.62-1.75 (m, 3 H), 1.46-1.58 (m, 2 H), 1.25-1.38 (m, 3 H), 1.10

(s, 3 H), 0.89 (s, 9 H), 0.79 (t, J= 7.5 Hz, 3 H), 0.05 (s, 3 H), 0.04 (s, 3 H); 13C NMR (125 MHz,

CDCl3) 3 134.1, 124.2, 66.5, 56.4, 55.1, 45.1, 35.6, 33.3, 27.0, 26.2, 26.1, 25.2, 20.1, 18.6, 9.6, -

5.0, -5.1; HRMS (m/z) [M]÷ calcd for C18H35NOSi, 323.2639; found [M-CH 3]+; 308.2405.
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1-[2-(tertý-Butyldimethylsiloxymethyl)-1,2-didehydro-4-ethylindolizidinyl)]ethanone

(136). A 25-mL, two-necked, round-bottomed flask equipped with a rubber septum and argon

inlet adapter was charged with 3 mL of THF and diisopropylamine (0.150 mL, 0.108 g, 1.07

mmol). The solution was cooled at 0 'C while n-BuLi (2.54 M in hexanes, 0.421 mL, 1.07

mmol) was added dropwise via syringe over 1 min. The resulting solution was stirred at 0 'C for

10 min and then cooled at -78 'C while a precooled (-78 'C) solution of amino nitrile 74 (0.150

g, 0.51 mmol) in 2 mL of THF was added dropwise over 1 min. The resulting solution was

stirred at -78 'C for 2 h, and then ethyl iodide (0.102 mL, 0.199 g, 1.28 mmol) was added rapidly

dropwise. The reaction mixture was stirred at 0 'C for 1 h and then diluted with 20 mL of water

and extracted with three 10-mL portions of ether. The combined organic layers were washed

with 8 mL of brine, dried over K2CO 3, filtered, and concentrated to give 0.153 g of orange oil

that was used immediately in the next step without further purification.

A 25-mL, round-bottomed flask containing the crude amino nitrile (0.153 g, 0.51 mmol)

from the preceding step was fitted with a rubber septum and argon inlet needle, purged with

argon, and charged with 3 mL of ether. The solution was cooled at -10 'C while MeLi solution

(1.52 M in ether, 0.503 mL, 0.76 mmol) was added dropwise via syringe over 1 min. The

resulting solution was stirred for 90 min while it slowly warmed to 0 'C and then was diluted

with 10 mL of water. The aqueous layer was extracted with three 10-mL portions of ether, and

the combined organic layers were washed with 10 mL of brine, dried over MgSO 4, filtered, and

concentrated to a volume of ca. 5 mL. The flask was then fitted with an argon inlet adapter and
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purged with argon. Silica gel (1.5 g) was added and the resulting slurry was stirred at rt for 12 h.

The mixture was then filtered, with the aid of 10 ml of ether, and concentrated to afford 0.247 g

of yellow oil. Column chromatography on 8 g of silica gel (elution with 5% EtOAc-hexanes

containing 1% Et3N) provided 0.116 g (67%) of 136 as a yellow oil: IR (film): 2957, 2856,

1714, 1463, 1422, 1388, 1348 cm-; 1H NMR (400 MHz, CDC13) 6 5.36 (s, 1 H), 4.01 (s, 2 H),

3.58 (br s, 1 H), 2.98 (s, 1 H), 2.55 (q, J= 8.2 Hz, 1 H), 2.41 (d, J= 16.8, 1 H), 2.19 (s, 3 H),

2.06-2.13 (m, 1 H), 1.66-1.88 (m, 5 H), 1.48-1.55 (m, 1 H), 0.91 (s, 9 h), 0.77 (t, J= 7.6 Hz, 3

H), 0.07 (s, 6 H); 13C NMR (75 MHz, CDCl3) 6 211.3, 134.0, 123.8, 69.8, 66.7, 56.3, 45.4,

31.1, 30.7, 26.1, 25.0, 24.5, 22.4, 18.7, 8.5, -5.0; HRMS (m/z) [M+H]÷ calcd for C19H36NO2Si,

338.2510; found, 338.2493.
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2-(tert-Butyldimethylsiloxymethyl)-1,2-didehydro-cis-4-ethynyl-4-ethylindolizidine

(138). A 25-mL, two-necked, round-bottomed flask equipped with a rubber septum and argon

inlet adapter was charged with 3 mL of THF and diisopropylamine (0.181 mL, 0.131 g, 1.29

mmol). The solution was cooled at 0 'C while n-BuLi (2.41 M in hexanes, 0.535 mL, 1.29

mmol) was added dropwise via syringe over 1 min. The resulting solution was stirred at 0 'C for

10 min and then cooled at -78 'C while a precooled (-78 'C) solution of amino nitrile 74 (0.18 g,

0.62 mmol) in 2 ml of THF was added dropwise over 1 min. The resulting solution was stirred

at -78 'C for 2 h, and then ethyl iodide (0.123 mL, 0.240 g, 1.54 mmol) was added rapidly

dropwise. The reaction mixture was stirred at 0 'C for 1 h and then diluted with 15 ml of water

and extracted with three 15-mL portions of ether. The combined organic layers were washed

with 15 mL of brine, dried over K2 CO3, filtered, and concentrated to give 0.197 g of orange oil

that was used immediately in the next step without further purification.

A 25-mL, round-bottomed flask equipped with a rubber septum and argon inlet needle

was charged with the crude nitrile from the preceding step (0.197 g, 0.62 mmol) and 6 mL of

ether. The solution was cooled at -78 'C while ethynylmagnesium bromide solution (0.5 M in

THF, 3.69 mL, 1.85 mmol) cooled at 0 'C was added dropwise via cannula over 1 min. The

resulting solution was allowed to slowly warm to rt over 15 h and then was diluted with 10 mL

of satd aq NH4Cl solution and 10 mL of ether. The aqueous layer was separated and extracted

with three 12-mL portions of ether. The combined organic layers were washed with 15 mL of

brine, dried over MgSO 4, filtered, and concentrated to afford 0.191 g of red oil. Column
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chromatography on 10 g of silica gel (gradient elution with 10-20% EtOAc-hexanes) provided

0.143 g (73%) of 138 (65:35 mixture of trans- and cis-fused indolizidines by 1H NMR analysis)

as an orange oil. Further purification by column chromatography provided analytical samples of

each pure isomer: For trans-fused conformer: IR (film): 3308, 2957, 2883, 2857, 2709, 1680,

1473, 1464, 1360, 1302, 1257 cm-1; 1H NMR (500 MHz, CDC13) 8 5.73 (s, 1 H), 4.05 (s, 2 H),

3.17 (br s, 1 H), 2.91 (td, J= 8.7, 3.4 Hz, 1 H), 2.39 (app q, J= 8.7 Hz, 1H), 2.24 (s, 1 H), 2.23

(d, J= 17.0 Hz, 1 H), 2.17 (d, J= 17.0 Hz, 1 H), 1.94-2.00 (m, 1 H), 1.75-1.91 (m, 3 H), 1.56-

1.65 (m, 1 H), 1.45-1.53 (m, 1 H), 1.08 (t, J = 7.5 Hz, 3 H), 0.91 (s, 9 H), 0.07 (s, 6 H); 13C

NMR (75 MHz, CDCl3) 5 134.4, 121.9, 83.6, 72.2, 66.6, 58.1, 56.6, 45.1, 36.9, 34.0, 28.7, 26.2,

21.4, 18.6, 8.8, -5.0; HRMS (m/z) [M+H] ÷ calcd for C19H33NOSi, 320.2404; found, 320.2408.

For cis-fused conformer: IR (film): 3312, 2957, 2857, 1653, 1473, 1464, 1374, 1361 cm-'; 1H

NMR (500 MHz, CDCl3) 8 5.49 (s, 1 H), 4.00 (s, 2 H), 3.62 (br s, 1 H), 3.14 (m, 1 H), 2.82 (app

q, J= 8.8 Hz, 1 H), 2.40 (d, J= 16.8 Hz, 1 H), 2.28 (s, 1 H), 2.02-2.09 (m, 1 H), 1.97 (d, J= 17.3

Hz, 1 H), 1.74-1.81 (m, 3 H), 1.56-1.67 (m, 2 H), 1.05 (t, J= 7.4 Hz, 3 H), 0.92 (s, 9 H), 0.08 (s,

6 H); 13C NMR (100 MHz, CDCl3) 8 133.1, 123.5, 83.5, 71.4, 66.8, 55.6, 55.1, 48.0, 31.0, 30.5,

30.3, 26.3, 22.8, 18.8, 9.5, -5.0; HRMS (m/z) [M+H]÷ calcd for C19H34NOSi, 320.2404; found,

320.2408.
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2-(tert-Butyldimethylsiloxymethyl)-1,2-didehydro-cis-4-ethynyl-4-(3-

butene)quinolizidine (146). A 25-mL, two-necked, round-bottomed flask equipped with a

rubber septum and argon inlet adapter was charged with 3 mL of THF and diisopropylamine

(0.150 mL, 0.108 g, 1.07 mmol). The solution was cooled at 0 'C while n-BuLi (2.54 M in

hexanes, 0.421 mL, 1.07 mmol) was added dropwise via syringe over 1 min. The resulting

solution was stirred at 0 'C for 10 min and then cooled at -78 'C while a precooled (-78 'C)

solution of amino nitrile 66a (0.156 g, 0.51 mmol) in 2 ml of THF was added dropwise over 1

min. The resulting solution was stirred at -78 0C for 2 h, and then 4-bromobutene (0.057 mL,

0.076 g, 0.56 mmnol) was added rapidly dropwise. The reaction mixture was stirred at 0 'C for 1

h and then diluted with 15 ml of water and extracted with three 15-mL portions of ether. The

combined organic layers were washed with 15 mL of brine, dried over K2CO 3, filtered, and

concentrated to give 0.186 g of orange oil that was used immediately in the next step without

further purification.

A 50-mL, round-bottomed flask equipped with a rubber septum and argon inlet needle

was charged with the crude nitrile from the preceding step (0.186 g, 0.51 mmol) and 6 mL of

ether. The solution was cooled at -78 'C while ethynylmagnesium bromide solution (0.5 M in

THF, 3.06 mL, 1.53 mmol) cooled at 0 'C was added dropwise via cannula over 1 min. The

resulting solution was allowed to slowly warm to rt over 15 h and then was diluted with 10 ml of

satd aq NH4Cl solution and 10 mL of ether. The aqueous layer was separated and extracted with

three 12-mL portions of ether, and the combined organic layers were washed with 15 mL of
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brine, dried over MgSO 4, filtered, and concentrated to afford 0.191 g of red oil. Column

chromatography on 10 g of silica gel (gradient elution with 5% EtOAc-hexanes) provided 0.120

g (65%) of 146 as an orange oil: IR (film): 2930, 2856, 1641, 1472, 1462, 1360, 1257 cm-1 ; 1H

NMR (500 MHz, CDCl3) 3 5.86 (ddt, J= 17.0, 10.3, 6.6 Hz, 1 H), 5.39 (s, 1 H), 5.06 (d, J=

17.0 Hz, 1 H), 4.98 (d, J= 10.3 Hz, 1 H), 4.04 (s, 2 H), 3.05 (br d, J= 10.9 Hz, 1 H), 2.87 (br d,

J= 7.4 Hz, 1 H), 2.24 (s, 1 H), 2.19-2.30 (m, 3 H), 2.06-2.14 (m, 2 H), 1.94 (td, J= 13.4, 5.3 Hz,

1 H), 1.67-1.75 (m, 4 H), 1.53-1.58 (m, 1 H), 1.37 (app t, J= 9.5 Hz, 2 H); 13C NMR (125 MHz,

CDCl 3) 6 138.7, 132.7, 124.3, 114.8, 83.8, 71.9, 66.4, 58.1, 56.1, 46.7, 39.2, 37.5, 33.0, 28.3,

26.6, 26.2, 25.0, 18.7, -5.0; HRMS (m/z) [M+H]+ calcd for C23H42NOSi, 360.2723; found,

360.2714.
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2'-(tert-Butyldimethylsiloxymethyl)-1 ',2 '-didehydrospiro[2-vinyl-2-cyclopentene-

1,4'(3'H)-quinolizidine] (148). A 50-mL, round-bottomed flask equipped with a rubber septum

and argon inlet needle was charged with Grubbs 2 nd catalyst (0.0 14 g, 0.017 mmol) and 10 mL of

toluene. A solution of quinolizidine 146 (0.120 g, 0.33 mmol) in 4 mL of toluene was added via

cannula and the reaction mixture was heated at 850 C for 2 h. The reaction mixture was allowed

to cool to rt and then concentrated to give 0.140 g of a black oil. Purification by column

chromatography on 15 g of silica gel (gradient elution with 20-35% EtOAc-hexanes) afforded

0.097 g (81%) of the spiroquinolizidine 148 as a yellow oil: IR (film): 3081, 3035, 2929, 2855,

2795, 1680, 1610, 1462, 1360,1321 cm-1; 1H NMR (500 MHz, CDCl3) 3 6.30 (dd, J = 17.3,

10.7 Hz, 1 H), 6.01 (s, 1 H), 5.42 (s, 1 H), 5.40 (d, J= 17.3 Hz, 1 H), 4.87 (d, J= 10.9 Hz, 1 H),

4.05 (s, 2 H), 2.93 (br s, 1 H), 2.87 (br d, J= 11.5 Hz, 1 H), 2.47 (d, J= 17.6 Hz, 1 H), 2.05-2.33

(m, 5 H), 1.91 (dt, J= 14.1, 9.0 Hz, 1 H), 1.57-1.74 (m, 4 H), 1.30 (app t,J= 11.2 Hz, 2 H), 0.91

(s, 9 H), 0.07 (s, 6 H); 13C NMR (100 MHz, CDC13) 6 144.4, 135.0, 134.1, 128.5, 125.1, 114.0,

69.0, 66.4, 58.0, 47.0, 40.5, 39.4, 33.9, 31.3, 27.0, 26.4, 25.4, 18.9, -4.9; HRMS (m/z) [M+H] ÷

calcd for C22H38NOSi, 360.2717; found, 360.2713.
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2'-(tert-Butyldimethylsiloxymethyl)-1 ',2'-didehydrospiro[cyclopentane-1,4'(3'H)-

quinolizidine] (157). A 25-mL, two-necked, round-bottomed flask equipped with a rubber

septum and argon inlet adapter was charged with 5 mL of THF and diisopropylamine (0.184 mL,

0.133 g, 1.31 mmol). The solution was cooled at 0 'C while n-BuLi (2.54 M in hexanes, 0.516

mL, 1.31 mmol) was added dropwise via syringe over 1 min. The resulting solution was stirred

at 0 TC for 10 min and then cooled at -78 TC while a precooled (-78 'C) solution of amino nitrile

66a (0.192 g, 0.63 mmol) in 2 ml of THF was added dropwise over 1 min. The resulting

solution was stirred at -78 'C for 2 h, and then 1-chloro-4-iodobutane (0.084 mL, 0.15 g, 0.69

mmol) was added rapidly dropwise. The reaction mixture was stirred at 0 'C for 1 h and then

diluted with 15 ml of water and extracted with three 12-mL portions of ether. The combined

organic layers were washed with 10 mL of brine, dried over K2CO 3, filtered, and concentrated to

give 0.249 g of 156 as an orange oil that was used immediately in the next step without further

purification.

A 50-mL, two-necked, round-bottomed flask equipped with a rubber septum and argon

inlet adapter was charged with LiDBB (0.4 M in THF, 9.45 mL, 3.78 mmol). The solution was

cooled at -78 'C while the crude nitrile from preceding step (0.249 g, 0.63 mmol) was added

dropwise via cannula. The reaction mixture was stirred at -78 TC for 1 h, and then diluted with 2

mL of MeOH and allowed to warm to rt. The reaction mixture was diluted with 10 mL of satd

aq NH 4Cl solution and 20 mL of ether. The aqueous layer was separated and extracted with

three 15-mL portions of ether. The combined organic layers were washed with 12 mL of brine,
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dried over MgSO 4, filtered, and concentrated to give 1.211 g of a white solid. A solution of this

material in CH2C12 was concentrated onto 2 g of silica gel and transferred to the top of a column

of 20 g of silica gel. Gradient elution with 10-35% EtOAc-hexanes yielded 0.107 g (51%) of

157 as a yellow oil: IR (film): 2928, 2787, 2738, 1463, 1361, 1256 cm-1 ; 1H NMR (500 MHz,

CDC13) 8 5.36 (s, 1 H), 4.03 (s, 2 H), 3.20 (br s, 1 H), 2.59 (br s, 1 H), 2.29 (br s, 1 H), 2.06 (br

d, J= 17.2 Hz, 1 H), 1.90 (m, 2 H), 1.58-1.73 (m, 5 H), 1.24-1.39 (m, 8 H), 0.91 (s, 9 H), 0.07 (s,

6 H); 13C NMR (75 MHz, CDCl3) 6 135.4, 124.5, 66.4, 62.2, 59.4, 49.7, 33.0, 32.8, 31.6, 28.0,

26.5, 26.2, 24.6, 23.4, 18.7, 14.3, -5.0; HRMS (m/z) [M+H]+ calcd for C2oH38NOSi, 336.2717;

found, 336.2728.
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N-(Cyanomethyl)-N-(5-hexenyl)trifluoromethanesulfonamide (192). A 500-mL,

three-necked, round-bottomed flask equipped with a rubber septum, argon inlet adapter, and

glass stopper was charged with triphenylphosphine (15.711 g, 59.9 mmol), 80 mL of THF, and

TfNHCH 2CN (10.330 g, 54.91 mmol). 5-Hexen-l-ol (6.00 mL, 5.00 g, 49.9 mmol) was then

added in one portion, and then DIAD (11.60 mL, 12.11 g, 59.9 mmol) was added dropwise by

syringe over 20 min. The resulting mixture was stirred at rt for 2 h and then concentrated to give

43.11 g of a yellow solid. A solution of this material in CH2C 2 was concentrated onto 30 g of

silica gel and transferred to the top of a column of 100 g of silica gel. Gradient elution with 10-

20% EtOAc-hexanes yielded 12.357 g (92%) of 192 as a colorless oil: IR (film): 3081, 2997,

2942, 2866, 1642, 1393, 1355, 1296, 1271, 1231, 1143 cm-'; 'H NMR (500 MHz, CDCl 3) 5

5.78 (ddt, J= 17.1, 10.1, 6.7 Hz, 1 H), 5.01-5.08 (m, 2H), 4.35 (br s, 2 H), 3.55 (br s, 2 H), 2.13

(app q, J= 7.0 Hz, 2 H), 1.72 (quint, J= 7.6 Hz, 2 H), 1.47 (quint, J= 7.6 Hz, 2 H); 3C NMR

(125 MHz, CDCl 3) 3137.1, 119.8 (q, J = 322 Hz), 115.8, 113.4, 49.3, 35.8, 33.0, 26.7, 25.3;

Anal. Calcd for C9H13F3N20 2 S: C, 40.00; H, 4.85; N, 10.36. Found: C, 39.62; H, 4.81; N,

10.22.
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N-(Cyanomethyl)-N-(5-hexanal)trifluoromethanesulfonamide (193). A 200-mL,

recovery flask containing triflamide 192 (5.808 g, 21.49 mmol) was fitted with a rubber septum

and argon-inlet needle and purged with argon. CH2C12 (80 mL) was added, and the flask was

cooled at -78 °C while ozone was bubbled through the solution for 25 min. The resulting blue

solution was degassed with a stream of argon for 10 min. Triphenylphosphine (5.918 g, 22.56

mmol) was added, and the solution was allowed to slowly warm to rt over 16 h. Concentration

by rotary evaporation afforded 12.09 g of a cloudy, white oil. A solution of this material in

CH2C12 was concentrated onto 24 g of silica gel and transferred to the top of a column of 110 g

of silica gel. Elution with 25% EtOAc-hexanes provided 5.359 g (92%) of 193 as a colorless oil:

IR (film): 2997, 2954, 2877, 2838, 2735, 1723, 1467, 1394, 1360, 1294, 1269, 1229, 1145 cm-;

'H NMR (500 MHz, CDCl3) 39.80 (t, J= 1.0 Hz, 1 H), 4.39 (br s, 2 H), 3.57 (br s, 2 H), 2.59 (t,

J= 6.4 Hz, 2 H), 1.69-1.78 (m, 4 H); 13C NMR (125 MHz, CDCl3) 201.7, 119.7 (q, J= 322

Hz), 113.5, 49.1, 42.8, 35.7, 26.4, 18.2; Anal. Calcd for CsH,,F 3N20 3S: C, 35.29; H, 4.07; N,

10.29. Found: C, 35.42; H, 4.02; N, 10.30.
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N-(Cyanomethyl)-N-(6-methyl-(E)-5-octen-7-one)trifluoromethanesulfonamide

(195). A 300-mL, round-bottomed flask equipped with a rubber septum and argon inlet needle

was charged with aldehyde 193 (7.394 g, 27.16 mmol) and 54 mL of toluene. 3-

(Triphenylphosphoranylidene)butan-2-one 194 (10.010 g, 30.12 mmol) was then added in one

portion, and the rubber septum was replaced with a reflux condenser equipped with an argon

inlet adapter. The reaction mixture was heated at 70 'C for 7 h. Concentration by rotary

evaporation afforded 17.92 g of a brown oil. A solution of this material in CH 2C 2 was

concentrated onto 30 g of silica gel and transferred to the top of a column of 150 g of silica gel.

Gradient elution with 20-30% EtOAc-hexanes provided 7.686 g (87%) of 195 as a yellow oil:

IR (neat): 2994, 2945, 2869, 1735, 1666, 1396, 1230 cmn'; 1H NMR (500 MHz, CDCl3) 36.58

(td, J= 7.3, 1.2 Hz, 1 H), 4.38 (br s, 2 H), 3.58 (br s, 2 H), 2.33 (m, 5 H), 1.78 (m, 5 H), 1.57

(app quint, J = 7.6 Hz, 2 H); 13C NMR (75 MHz, CDCl3) 8199.7, 141.6, 138.6, 113.9, 49.5,

36.2, 28.7, 27.5, 26.0, 25.5, 11.8; Anal. Calcd for C12HI7F3N20 3S: C, 44.17; H, 5.25; N, 8.58.

Found: C, 43.95; H, 5.27; N, 8.84.
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195 196

N-(Cyanomethyl)-N-(7-(tert-butyldimethylsiloxy)-6-methyl-(E)-5,7-

octadienyl)trifluoromethanesulfonamide (196). A 250-mL, two-necked, round-bottomed flask

equipped with a rubber septum and argon inlet adapter was charged with Nal (6.254 g, 41.72

mmol), a solution of enone 195 (9.076 g, 27.81 mmol) in 60 mL of CH 3CN, and Et3N (5.86 mL,

4.22 g, 41.7 mmol). tert-Butyldimethylsilyl chloride (4.611 g, 30.59 mmol) was added in one

portion, and the resulting mixture was stirred at rt in the dark for 18 h. The reaction mixture was

then diluted with 50 mL of satd aq NaHCO 3 solution, and the aqueous layer was separated and

extracted with three 40-mL portions of ether. The combined organic layers were washed with 30

mL of IM NaOH solution, 30 mL of brine, dried over MgSO 4, filtered, and concentrated to

afford 12.37 g of a yellow oil. Column chromatography on 150 of acetone-deactivated silica gel

(elution with 10% EtOAc-hexanes containing 1% Et3N) provided 11.814 g (96%) of 196 as a

yellow oil: IR (film): 3127, 2933, 2860, 1645, 1596, 1464, 1398, 1231, 1197 cm-1; 1H NMR

(500 MHz, CDCl3) 85.98 (t, J= 7.3 Hz, 1 H), 4.43 (s, 1 H), 4.28-4.44 (br s, 2 H), 4.24 (s, 1 H),

3.55 (br s, 2 H), 2.20 (app q, J= 7.3 Hz, 2 H), 1.77 (s, 3 H), 1.73 (app quint, J= 7.3 Hz, 2 H),

1.47 (app quint, J = 7.6 Hz, 2 H), 0.98 (s, 9 H), 0.18 (s, 6 H); 13C NMR (75 MHz, CDCl3)

6 157.2, 132.2, 127.0, 119.8 (q, J= 322 Hz), 113.3, 91.7, 49.4, 35.8, 27.6, 27.2, 26.1, 25.9, 18.5,

13.5, -4.4; Anal. Calcd for C18H 31F3N20 3SSi: C, 49.07; H, 7.09; N, 6.36. Found: C, 48.82; H,

6.99; N, 6.55.
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7-(tert-Butyldimethylsiloxy)-6-methyl-(E)-5,7-octadienyliminoacetonitrile (191). A

250-mL, round-bottomed flask equipped with a reflux condenser fitted with an argon inlet

adapter was charged with Cs2 CO3 (19.65 g, 60.3 mmol) and 60 mL of THF. A solution of

triflamide 196 (6.643 g, 15.08 mmol) in 15 mL of THF was then added in one portion, and the

reaction mixture was heated at 55 'C for 1.5 h. The resulting mixture was allowed to cool to rt

and then diluted with 100 mL of water. The aqueous layer was separated and extracted with

three 55-mL portions of ether, and the combined organic layers were washed with 50 mL of

brine, dried over MgSO 4, filtered, and concentrated to give 5.88 g of a yellow oil. Column

chromatography on 25 g of acetone-deactivated silica gel (elution with 10% EtOAc-hexanes

containing 1% Et3N) afforded 4.160 g (90%) of 191 (84:16 mixture of E and Z imine isomers by

1H NMR analysis) as a colorless oil: IR (film): 2931, 2859, 1644, 1595, 1472, 1463, 1362, 1255

cm'; For Z isomer: 'H NMR (500 MHz, CDCl3) 87.38 (t, J= 2.1 Hz, 1 H), 6.00 (app t, J= 7.6

Hz, 1 H), 4.42 (s, 1 H), 4.26 (s, 1 H), 3.85 (td, J= 7.0, 2.1 Hz, 2 H), 2.16 (app q, J= 7.6 Hz, 2

H), 1.69-1.76 (m, 5 H), 1.41-1.57 (m, 2 H), 0.97 (m, 9 H), 0.17 (m, 6 H); 13 C NMR (75 MHz,

CDCl3) 1157.4, 131.7, 131.5, 127.9, 114.7, 91.5, 59.9, 29.9, 27.9, 27.2, 26.1, 18.6, 13.5, -4.4;

For E isomer: 'H NMR (500 MHz, CDCl3) 87.37 (t, J= 1.5 Hz, 1 H), 6.00 (app t, J= 7.6 Hz, 1

H), 4.42 (s, 1 H), 4.26 (s, 1 H), 3.66 (td, J = 6.7, 1.5 Hz, 2 H), 2.16 (app q, J = 7.6 Hz, 2 H),

1.69-1.76 (m, 5 H), 1.41-1.57 (m, 2 H), 0.97 (m, 9 H), 0.17 (m, 6 H); 13C NMR (75 MHz,

CDCl3) 8157.4, 135.9, 131.7, 127.8, 114.7, 91.5, 63.2, 29.8, 28.0, 27.3, 26.1, 18.6, 13.5, -4.4;

Anal. Calcd for C17H30N2OSi: C, 66.61; H, 9.87; N, 9.14. Found: C, 66.43; H, 9.96; N, 9.11.
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191 190a

2-(tert-Butyldimethylsiloxy)-1-methyl-cis-1,2-didehydro-4-cyanoquinolizidine (190a)

(Thermal Cycloaddition). A threaded Pyrex tube (ca. 350-mL capacity) equipped with a rubber

septum and argon inlet needle was charged with BHT (9.30 g, 42.2 mmol), imine 191 (4.312 g,

14.07 mmol), and 175 mL of toluene. The solution was degassed by four freeze-pump-thaw

cycles and then sealed with a threaded Teflon cap. The reaction mixture was heated in a 130 oC

oil bath for 36 h and then allowed to cool to rt. Concentration by rotary evaporation afforded

13.71 g of a yellow oil. A solution of this material in CH2C 2 was concentrated onto 25 g of

acetone-deactivated silica gel and transferred to the top of a column of 180 g of acetone-

deactivated silica gel. Elution with 7% EtOAc-hexanes containing 1% Et3N provided 2.415 g

(56%) of 190a as a white solid: mp 74-77 'C; IR (CH2C 2): 2938, 2857, 2760, 1686, 1462,

1382, 1359, 1295, 1253, 1195, 1176 cmin'; 1H NMR (500 MHz, CDCl3) 6 3.78 (dd, J= 5.5, 1.2

Hz, 1 H), 2.73-2.79 (m, 3 H), 2.52 (td, J= 11.9, 3.1 Hz, 1 H), 2.17 (dd, J= 15.6, 1.2 Hz, 1 H),

1.98-2.01 (mn, 1 H), 1.82-1.85 (m, 1 H), 1.57-1.71 (m, 2 H), 1.56 (s, 3 H), 1.33-1.42 (m, 1 H),

1.08-1.17 (m, 1 H), 0.95 (s, 9 H), 0.14 (s, 6 H); 13C NMR (100 MHz, CDC13) 3 139.0, 117.2,

113.7, 60.5, 54.6, 53.3, 34.2, 30.4, 26.1, 25.9, 24.9,18.5, 2.4, -3.5; Anal. Calcd for C1 7H30N2OSi:

C, 66.61; H, 9.87; N, 9.14. Found: C, 66.74; H, 9.80; N, 9.08.

(Acid-Promoted Cycloaddition). A 25-mL, two-necked, round-bottomed flask

equipped with a rubber septum and argon inlet adapter was charged with imine 191 (0.210 g,

0.69 mmol), 4A molecular sieves (ca. 50 mg), and 7 mL of CH2C12. The reaction mixture was

cooled at -78 'C while methanesulfonic acid (0.044 mL, 0.066 g, 0.69 mmol) was added
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dropwise via syringe over 1 min. The solution was stirred at -78 oC for 1 h, and then diluted with

15 mL of satd aq NaHCO 3 and 10 mL of CH 2C 2. The aq layer was separated and extracted with

three 15-mL portions of CH2C12. The combined organic layers were washed with 10 mL of

brine, dried over MgSO4, filtered, and concentrated to give 0.225 g of an orange oil. This

material was diluted with 5 mL of CH 3CN and stirred at 45 *C for 2 h, and then concentrated to

give 0.225 g of an orange oil. Purification by column chromatography on 10 g of silica gel

(elution with 10% EtOAc-hexanes containing 1% Et3N) afforded 0.142 g (68%) of 190a as a

white solid.
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2-(tert-Butyldimethylsiloxy)-1-methyl-trans-1,2-didehydro-4-(3-chloro-(Z)-2-

propene)quinolizidine (207). A 50-mL, two-necked, round-bottomed flask equipped with a

rubber septum and argon inlet adapter was charged with HMDS (1.68 mL, 1.28 g, 7.9 mmol) and

10 mL of THF. The solution was cooled at 0 oC while 3.38 mL of n-BuLi solution (2.35 M in

hexane, 7.9 mmol) was added dropwise via syringe over 1 min. The resulting solution was

stirred at 0 TC for 10 min and then cooled at -78 oC while a precooled (-78 'C) solution of amino

nitrile 190a (1.015 g, 3.31 mmol) in 5 mL of THF was added dropwise via cannula over 5 min.

The resulting solution was stirred at -78 oC for 3.5 h, and then a precooled (-78 oC) solution of 3-

bromo-1-chloropropene (1.234 g, 7.94 mmol) in 5 mL of THF was added dropwise via cannula

over 1 min. The reaction mixture was stirred at -78 oC for 1 h and then allowed to warm to 0 oC

and stirred for an additional hour. The reaction mixture was diluted with 80 mL of ether and 30

mL of water. The aqueous layer was extracted with three 25-mL portions of ether, and the

combined organic layers were washed with 30 mL of brine, dried over K2CO 3, filtered, and

concentrated to give 1.917 g of an orange oil that was used immediately in the next step without

further purification.

A 50-mL, two-necked, round-bottomed flask equipped with a rubber septum and argon

inlet adaptor was charged with NaBH 3CN (0.832 g, 13.24 mmol) and 10 mL of CH3CN. Acetic

acid (1.52 mL, 1.59 g, 26.5 mmol) was added dropwise via syringe over 4 min. The resulting

solution was stirred at rt for 30 min, and then a solution of the oc-amino nitrile (1.917 g) prepared

in the previous step in 8 mL of CH 3CN was added over 3 min by cannula. The reaction mixture
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was stirred at rt for 2 h and then diluted with 35 mL of water and 35 mL of dichloromethane.

The aqueous layer was separated and extracted with three 25-mL portions of dichloromethane,

and the combined organic layers were washed with 30 mL of bine, dried over MgSO 4, filtered,

and concentrated onto 3.5 g of silica gel. The free-flowing powder was placed at the top of a

column of 60 g of silica gel and eluted with 15% EtOAc-hexanes containing 1% Et3N to provide

0.902 g (77%) of the quinolizidine 207 as a yellow oil: IR (neat): 2931, 2857, 2791, 2741,

1698, 1629, 1472, 1362, 1257, 1195 cm-1 ; IH NMR (300 MHz, CDCl3) 86.13 (app d, J= 6.60

Hz, 1 H), 5.86 (app q, J= 7.05 Hz, 1 H), 3.13 (app d, J= 11.21 Hz, 1 H), 2.40-2.54 (m, 4 H),

2.16-2.23 (m, 1 H), 1.90-2.01 (m, 3 H), 1.53-1.71 (m, 6 H), 1.20-1.34 (m, 2 H), 0.95 (s, 9 H),

0.12 (s, 6 H); 13C NMR (125 MHz, CDCl3) 8 142.5, 129.2, 120.6, 113.2, 65.8, 58.6, 36.7, 31.0,

30.6, 26.4, 26.2, 24.8, 18.5, 12.4, -3.5, -3.9; Anal. Calcd for C19H34CINOSi: C, 64.10; H, 9.63;

N, 3.93. Found: C, 64.25; H, 10.62; N, 4.03.
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(13, 4a, 10)-4-(3-Chloro-(Z)-2-propene)-1-methyl-quinolizidin-2-one (208). A 50-

mL, two-necked, round-bottomed flask equipped with a rubber septum and argon inlet adapter

was charged with silyl enol ether 207 (1.60 g, 4.5 mmol) and 20 mL of THF. The reaction

mixture was cooled at -78 oC while 4.94 mL of TBAF solution (1.0 M in THF, 4.9 mmol) was

added dropwise via syringe over 2 min. The resulting solution was stirred at -78 oC for 1.5 h and

then the reaction mixture was diluted with 35 mL of ether and 15 mL of water. The aqueous

layer was separated and extracted with three 20-mL portions of ether, and the combined organic

layers were washed with 25 mL of brine, dried over MgSO 4, filtered, and concentrated onto 3 g

of silica gel. The free-flowing powder was placed at the top of a column of 25 g of silica gel and

eluted with 15% EtOAc-hexanes containing 1% Et3N to provide 0.951 g (88%) of the ketone 208

as a yellow oil: IR (neat): 2934, 2859, 2794, 1718, 1629, 1443, 1337, 1237, 1112 cnfm1; 1H

NMR (500 MHz, CDCl3) 36.17 (d, J= 7.3 Hz, 1 H), 5.87 (app q, J= 7.0 Hz, 1 H), 3.24 (app d, J

= 11.3 Hz, 1 H), 2.46-2.59 (m, 4 H), 2.33-2.38 (m, 2 H), 1.89-1.97 (m, 3 H), 1.70-1.78 (m, 2 H),

1.57 (qt, J= 12.8, 3.7 Hz, 1 H), 1.24-1.40 (m, 2 H), 1.01 (d, J= 6.7 Hz, 3 H); 13C NMR (125

MHz, CDC13) 9210.3, 127.1, 120.7, 68.5, 62.8, 50.6, 49.4, 46.4, 31.7, 31.4, 26.0, 24.0, 10.4;

Anal. Calcd for C13H20CINO: C, 64.59; H, 8.34; N, 5.79. Found: C, 64.79; H, 8.13; N, 6.14.
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(1R, 4S, 10S)-4-(3-Chloro-(Z)-2-propene)-1-methyl-quinolizidin-2-one (208). A 100-

mL, one-necked, pear-shaped flask was charged with the ketone (+)-208 (0.430 g, 1.78 mmol),

(R)-(-)-1,1'-binaphthyl-2,2'-diylphosphoric acid (0.681 g, 1.96 mmol), 10 mL of CH2C12, and 25

mL of methanol. The reaction mixture was heated at 50 'C for 30 min and then allowed to cool

to rt. The reaction mixture was concentrated to a volume of ca. 10 mL and then placed in a

freezer at -18 'C for 15 h. The resulting crystals were collected on a sintered funnel and air-

dried to yield 0.364 g of white solid. Recrystallization of the solid obtained from the mother

liquor from 25 mL of methanol afforded 0.132 g of a white solid. The two crops of crystals were

combined and treated with 30 mL of EtOAc and 15 mL of 10% ammonium hydroxide solution.

The aqueous layer was separated and extracted with three 20-mL of portions EtOAc, and the

combined organic layers were washed with 25 mL of brine, dried over MgSO 4, filtered, and

concentrated to give 0.189 g (44% from (+)-208; i.e., 88% of theoretical) of ketone (-)-208 as a

yellow oil: [M]D 22 -42o (c 2.76, CHCl3).
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(1R, 4S, 10S)-4-(3-Chloro-(Z)-2-propene)-1-methyl-quinolizidine (214). A 50-mL,

one-necked, round-bottomed flask equipped with a reflux condenser fitted with an argon inlet

adapter was charged with ketone 208 (0.184 g, 0.76 mmol), TsOH (0.045 g, 0.26 mmol), 1.5 mL

of DMF, and 1.5 mL of sulfolane. The reaction mixture was heated at 110 'C for 2 h.

NaBH 3CN (0.191 g, 3.04 mmol), t-BuSH (1.29 mL, 1.03 g, 11.4 mmol), and 3 mL of

cyclohexane were added in one portion and the resulting mixture was heated at 110 oC for 5 h.

The reaction mixture was allowed to cool to rt and then diluted with 15 mL of ether and 40 mL

of water. The aqueous layer was separated and extracted with three 10-mL portions of ether, and

the combined organic layers were washed with 10 mL of water, 10 mL of satd NaHCO3, 25 mL

of brine, dried over MgSO 4, filtered, and concentrated to give 0.29 g of a yellow oil. Purification

by column chromatography on 20 g of silica gel (elution with 0-20% EtOAc-hexanes containing

1% Et3N) afforded 0.144 g (66%) of the quinolizidine 214 as a pale, yellow oil: [M]D 22 -600 (c

2.4, CHCl3); IR (film): 2928, 2852, 2787, 2754, 1628, 1442, 1376, 1331, 1305, 1264 cm-1; 1H

NMR (500 MHz, CDCl3) 66.08 (dt, J= 7.1 Hz, 1.7 Hz, 1 H), 5.88 (q, J= 7.0 Hz, 1 H), 3.24

(app d, J= 11.0 Hz, 1 H), 2.42-2.49 (m, 2 H), 2.04-2.08 (m, 1 H), 1.90-1.94 (m, 1 H), 1.60-1.78

(m, 5 H), 1.45-1.53 (m, 3 H), 1.03-1.33 (m, 4 H), 0.86 (d, J = 6.5 Hz, 3 H); 13 C NMR (125

MHz, CDCl3) 6129.4, 119.4, 69.8, 62.9, 52.1, 36.7, 34.2, 32.2, 32.1, 30.6, 26.6, 25.0, 19.6;

Anal. Calcd for C13H22C1N: C, 68.55; H, 9.74; N, 6.15. Found: C, 68.49; H, 9.72; N, 6.12.
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(1R, 4S, 10S)-4-(Z)-(Pent-2-en-4-ynyl)-1-methyl-quinolizidine 217A (176). A 25-mL,

two-necked, round-bottomed flask equipped with a rubber septum and argon inlet adapter was

charged with quinolizidine 214 (0.065 g, 0.29 mmol), PdCl2(PhCN) 2 (0.011 g, 0.03 mmol), Cul

(0.011 g, 0.06 mmol), and 1 mL of piperidine. A solution of trimethylsilylacetylene (0.081 mL,

0.056 g, 0.57 mmol) in 1 mL of piperidine was added dropwise via cannula over 1 h and then the

reaction mixture was stirred at rt for 1 h. The reaction mixture was diluted with 15 mL of ether

and 10 mL of 10% ammonium hydroxide solution. The aqueous layer was extracted with three

10-mL portions of ether, and the combined organic layers were washed with 10 mL of brine,

dried over MgSO 4, filtered, and concentrated to give 0.150 g of a black oil. This material was

dissolved in 2 mL of CH2C 2 and stirred with charcoal (0.150 g) and 3-mercaptopropyl-

functionalized silica gel (0.150 g) at rt for 18 h. Filtration through a 1-in plug of Celite in a

disposable pipette gave 0.104 g of an orange oil which was used immediately in the next step

without further purification.

A 25-mL, one-necked, round-bottomed flask equipped with a rubber septum and argon

inlet needle was charged with K2 CO3 (0.040 g, 0.29 mmol), 1.5 mL of MeOH, and the

quinolizidine (0.104 g) prepared in the previous step. The reaction mixture was stirred at rt for 2

h and then diluted with 15 mL of water and 15 mL of diethyl ether. The aqueous layer was

separated and extracted with three 10-mL portions of diethyl ether, and the combined organic

layers were washed with 10 mL of brine, dried over MgSO 4, filtered, and concentrated onto 0.5 g

of silica gel. The free-flowing powder was placed at the top of a column of 8 g of silica gel and
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eluted with 0-25% EtOAc-hexanes containing 1% Et3N to provide 0.051 g (82%) of

quinolizidine (-)-217A 176 as a yellow oil: [cL]D 22 -14o (c 0.8, CHCl3) [lit:2 [a] 20 D -13.75o (c

0.4, CHCl 3)]; IR (film): 3312, 2973, 2852, 2784, 2097, 1615, 1452, 1376 cm-1; 1H NMR (300

MHz, CDCl3) 36.10 (dt, J= 10.9, 7.1 Hz, 1 H), 5.48 (ddt, J= 10.9, 2.0, 1.6 Hz, 1 H), 3.29 (br d,

J= 11.1 Hz, 1 H), 3.09 (d, J= 2.0 Hz, 1 H), 2.53-2.63 (m, 2 H), 2.05-2.10 (m, 1 H), 1.93 (br d, J

= 11.9 Hz, 3 H), 1.02-1.79 (m, 12 H), 0.87 (d, J= 6.5 Hz, 3 H); 13C NMR (125 MHz, CDCl3)

6143.9, 109.6, 82.0, 81.0, 69.9, 63.4, 52.0, 36.7, 35.3, 34.2, 32.1, 30.5, 26.6, 25.0, 19.6; Anal.

Calcd for C15H23N: C, 82.89; H, 10.67; N, 6.44. Found: C, 82.83; H, 10.62; N, 6.42.

The enantiomeric purity of the product was determined by 1H NMR analysis of the salt

formed by reaction with (R)-(-)-1,1'-binaphthyl-2,2'-diylphosphoric acid: the phosphoric acid

(0.018 g, 0.051 mmol, 1.1 equiv) was added to a solution of 176 (0.010 g, 0.046 mmol) in ca. 0.7

mL of CDCl3. The C- 1 methyl group appeared as a doublet (J = 6.5 Hz) at 0.69 ppm; no doublet at

0.77 ppm could be detected. Similar analysis of racemic quinolizidine 217A showed two doublets

(1:1 ratio) at 0.77 and 0.69 ppm.
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Experimental Procedures for Synthesis of

Indolizidine (-)-235B'
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N-(Cyanomethyl)-N-(4-pentenyl)trifluoromethanesulfonamide (241). A 200-mL,

three-necked, round-bottomed flask equipped with a rubber septum, argon inlet adapter, and

glass stopper was charged with triphenylphosphine (5.59 g, 21.3 mmol), 50 mL of THF, and

TfNHCH 2CN (3.64 g, 19.4 mmol). 5-Hexen-1-ol (1.99 mL, 1.67 g, 19.4 mmol) was then added

in one portion, and then DIAD (4.13 mL, 4.31 g, 21.3 mmol) was added dropwise by syringe

over 20 min. The resulting mixture was stirred at rt for 1.5 h and then concentrated to give 16.11

g of a yellow solid. A solution of this material in 30 mL of CH 2C12 was concentrated onto 30 g

of silica gel and transferred to the top of a column of 150 g of silica gel. Gradient elution with

10-20% EtOAc-hexanes yielded 4.56 g (92%) of 251 as a colorless oil: IR (film): 3083, 2995,

2946, 1643, 1397, 1286, 1231 cm-1; H NMR (300 MHz, CDCl 3) 3 5.79 (ddt, J= 17.0, 10.2, 6.6

Hz, 1 H), 5.05-5.13 (m, 2H), 4.35 (br s, 2 H), 3.58 (br s, 2 H), 2.14 (app q, J= 7.0 Hz, 2 H), 1.82

(quint, J = 7.5 Hz, 2 H); 13C NMR (75 MHz, CDCl3) 3136.3, 119.8 (q, J = 322 Hz), 116.7,

113.5, 49.2, 36.0, 30.3, 26.7; Anal. Calcd for C8HIF 3N20 2S: C, 37.50; H, 4.33; N, 10.93.

Found: C, 37.37; H, 4.27; N, 11.03.
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N-(Cyanomethyl)-N-(6-methyl-(E)-4-hepten-6-one)trifluoromethanesulfonamide

(242). A 200-mL, recovery flask containing triflamide 241 (2.34 g, 9.13 mmol) was fitted with a

rubber septum and argon-inlet needle and purged with argon. CH 2Cl 2 (50 mL) was added, and

the flask was cooled at -78 oC while ozone was bubbled through the solution for 30 min. The

resulting blue solution was degassed with a stream of argon for 15 min. Triphenylphosphine

(2.40 g, 9.13 mmol) was added, and the solution was allowed to slowly warm to rt over 16 h.

Concentration by rotary evaporation afforded 4.81 g of a cloudy, white oil that was used

immediately in the next step without further purification.

A 100-mL, round-bottomed flask equipped with a rubber septum and argon inlet needle

was charged with a solution of the aldehyde (4.81 g) prepared in the previous step in 50 mL of

THF. 3-(Triphenylphosphoranylidene)butan-2-one 194 (3.19 g, 9.59 mmol) was then added in

one portion, and the rubber septum was replaced with a reflux condenser equipped with an argon

inlet adapter. The reaction mixture was heated at reflux for 12 h, and then allowed to cool to rt

and concentrated by rotary evaporation to give 8.11 g of an orange solid. A solution of this

material in 30 mL of CH 2C 2 was concentrated onto 15 g of silica gel and transferred to the top

of a column of 150 g of silica gel. Gradient elution with 20-35% EtOAc-hexanes provided 2.30

g (81%) of 242 as a yellow oil: IR (neat): 2995, 2953, 2869, 1667, 1396, 1275, 1230 cm-1; H

NMR (400 MHz, CDCl3) 66.53 (t, J= 7.3 Hz, 1 H), 4.32 (br s, 2 H), 3.56 (br s, 2 H), 2.28-2.33

(m, 2 H), 2.29 (s, 3 H), 1.89 (app quint, J= 7.5 Hz, 2 H), 1.76 (s, 3 H); 13C NMR (100 MHz,
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CDC13) 6199.7, 139.9, 139.4, 119.8, 113.3, 49.2, 36.1, 26.7, 25.8, 25.7, 11.6; Anal. Calcd for

Ci IHs15F3N20 3S: C, 42.30; H, 4.84; N, 8.97. Found: C, 42.35; H, 4.91; N, 8.91.
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N-(Cyanomethyl)-N-(6-trimethyacetoxy)-5-methyl-(E)-4,6-

heptadienyl)trifluoromethanesulfonamide (250). A 250-mL, three-necked, round-bottomed

flask equipped with a rubber septum, argon inlet adapter, and glass stopper was charged with Nal

(4.25 g, 28.3 mmol), a solution of enone 242 (5.90 g, 18.9 mmol) in 100 mL of CH 3CN, and

trimethylacetyl chloride (3.49 mL, 3.42 g, 28.3 mmol). Et3N (5.31 mL, 3.82 g, 37.8 mmol) was

added dropwise via syringe over 5 min, and the resulting mixture was stirred at rt in the dark for

18 h. The reaction mixture was then diluted with 50 mL of satd aq NaHCO 3 solution, and the

aqueous layer was separated and extracted with three 40-mL portions of ether. The combined

organic layers were washed 30 mL of brine, dried over MgSO 4, filtered, and concentrated to

afford 11.72 g of a yellow oil. Column chromatography on 100 of silica gel (elution with 20%

EtOAc-hexanes) provided 6.80 g (91%) of 250 as a yellow oil: IR (film): 2978, 2876, 1745,

1646, 1616, 1481, 1462, 1397, 1267 cm-1; 'H NMR (400 MHz, CDCl 3) 65.56 (t, J= 7.5 Hz, 1

H), 5.01 (s, 1 H), 4.72 (s, 2 H), 4.28 (br s, 1 H), 3.48 (br s, 2 H), 2.18 (app q, J= 7.3 Hz, 2 H),

1.75-182 (m, 2 H), 1.80 (s, 3 H), 1.27 (s, 9 H); 13C NMR (100 MHz, CDCl3) 3176.9, 154.4,

130.5, 125.6, 119.8 (q, J= 322 Hz), 113.6,101.8, 49.4, 39.2, 36.2, 27.4, 27.2, 24.8, 13.5; Anal.

Calcd for C16H23F3N20 4S: C, 48.48; H, 5.85; N, 7.07. Found: C, 48.55; H, 5.81; N, 7.06.
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5-Methyl-6-trimethyacetoxy-(E)-4,6-heptadienyliminoacetonitrile (251). A 250-mL,

round-bottomed flask equipped with a reflux condenser fitted with an argon inlet adapter was

charged with Cs 2CO3 (18.08 g, 55.5 mmol) and 60 mL of THF. A solution of triflamide 250

(5.50 g, 13.9 mmol) in 20 mL of THF was then added in one portion, and the reaction mixture

was heated at 55 'C for 1.5 h. The resulting mixture was allowed to cool to rt and then diluted

with 50 mL of water. The aqueous layer was separated and extracted with three 35-mL portions

of ether, and the combined organic layers were washed with 25 mL of brine, dried over MgSO 4,

filtered, and concentrated to give 5.91 g of a yellow oil. Column chromatography on 25 g of

silica gel (elution with 20% EtOAc-hexanes containing 1% Et3N) afforded 3.13 g (86%) of 251

(75:25 mixture of E and Z imine isomers by 1H NMR analysis) as a yellow oil: IR (film): 2975,

2873, 1747, 1645, 1618, 1480, 1416, 1368, 1263 cm-1; For Z isomer: 1H NMR (400 MHz,

CDCl 3) 37.36 (t, J= 2.2 Hz, 1 H), 5.62 (app t, J= 6.9 Hz, 1 H), 4.99 (s, 1 H), 4.69 (s, 1 H), 3.79

(td, J= 6.8, 2.2 Hz, 2 H), 2.13-2.26 (m, 2 H), 1.73-1.80 (m, 2 H), 1.78 (s, 3 H), 1.25 (s, 9 H); 13C

NMR (100 MHz, CDCl3) 3176.9, 154.6, 136.4, 131.8, 127.0, 114.6, 101.5, 59.3, 39.3, 29.7,

27.2, 25.9, 13.5; For E isomer: 1H NMR (400 MHz, CDCl3) 67.33 (t, J = 1.4 Hz, 1 H), 5.55

(app t, J= 7.3 Hz, 1 H), 4.99 (s, 1 H), 4.69 (s, 1 H), 3.59 (td, J= 6.8, 1.4 Hz, 2 H), 2.13-2.26 (m,

2 H), 1.73-1.80 (m, 2 H), 1.78 (s, 3 H), 1.26 (s, 9 H); 13C NMR (100 MHz, CDCl3) 3176.9,

154.6, 136.4, 129.9, 126.8, 114.6, 101.5, 62.2, 39.3, 29.5, 27.4, 25.5, 13.5; Anal. Calcd for

C 15H 2 2N 20 2 : C, 68.67; H, 8.45; N, 10.68. Found: C, 68.49; H, 8.49; N, 10.70.
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8-Methyl-cis-7,8-didehydro-7-trimethyacetoxy-5-cyanoindolizidine (252a) and 8-

Methyl-trans-7,8-didehydro-7-trimethyacetoxy-5-cyanoindolizidine (252b). A 250-mL, two-

necked, round-bottomed flask equipped with a rubber septum and argon inlet adapter was

charged with imine 251 (2.73 g, 10.4 mmol), 4A molecular sieves (ca. 0.300 g), and 100 mL of

CH2C 2. The solution was cooled at 0 'C while methanesulfonic acid (0.676 mL, 1.00 g, 10.4

mmol) was added dropwise via syringe over 3 min. The reaction mixture was stirred at 0 'C for

30 min and then diluted with 60 mL of satd aq NaHCO 3, and the aqueous layer was separated

and extracted with three 25-mL portions of CH2C 2. The combined organic layers were washed

with 20 mL of brine, dried over MgSO4, filtered, and concentrated to give 2.91 g of an orange

oil. A solution of his material 20 mL of CH3CN in a 25-mL round-bottomed flask was stirred at

45 'C for 1.5 h, and then allowed to cool to rt and concentrated to give 2.91 g of an orange oil.

Purification by column chromatography on 80 g of silica gel (elution with 1% Et3N-25% EtOAc-

hexanes) afforded 2.155 g (79%) of 252a and 252b (50:50 mixture by 1H NMR analysis) as an

orange oil: IR (CH 2C 2): 2974, 2874, 2817, 1743, 1703, 1481, 1462, 1397, 1368, 1328, 1277

cm-1 ; For 252a: 1H NMR (400 MHz, CDCl3) 3 4.10 (d, J= 5.7 Hz, 1 H), 3.13 (br s, 1 H), 2.87-

2.98 (m, 2 H), 2.57-2.67 (m, 1 H), 2.37 (dm, J= 16.1 Hz, 1 H), 1.98-2.08 (m, 1 H), 1.88-1.97 (m,

1 H), 1.76-1.83 (m, 1 H), 1.63-1.72 (m, 1 H), 1.24 (s, 9 H); 13C NMR (100 MHz, CDCl3) 3

176.4, 137.1, 122.0, 116.8, 60.0, 50.0, 47.7, 39.1, 30.6, 28.5, 27.3, 21.9, 12.1: For 252b: 1H

NMR (400 MHz, CDCl3) 3 3.02 (dd, J= 9.2, 4.6 Hz, 1 H), 3.44 (t, J= 7.1 Hz, 1 H), 2.87-2.98

(m, 2 H), 2.57-2.67 (m, 1 H), 2.24 (d, J= 16.0 Hz, 1 H), 1.98-2.08 (m, 1 H), 1.88-1.97 (m, 1 H),
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1.76-1.83 (m, 1 H), 1.63-1.72 (m, 1 H), 1.24 (s, 9 H); 13C NMR (100 MHz, CDC13) 8 176.6,

137.1, 122.5, 119.3, 62.3, 49.1, 47.7, 39.1, 29.3, 28.5, 27.3, 23.1, 12.2; Anal. Calcd for

C 15H22N2 0 2 : C, 68.67; H, 8.45; N, 10.68. Found: C, 68.49; H, 8.49; N, 10.70.
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252 255

(5a,83,93)-5-(6-heptene)-8-methyl-7-indolizidinol (255). A 50-mL, two-necked,

round-bottomed flask equipped with a rubber septum and argon inlet adapter was charged with

HMDS (0.323 mL, 0.247 g, 1.53 mmol) and 5 mL of THF. The solution was cooled at 0 'C

while 0.571 mL of n-BuLi solution (2.68 M in hexane, 1.53 mmol) was added dropwise via

syringe over 1 min. The resulting solution was stirred at 0 'C for 10 min and then cooled at -78

'C while a precooled (-78 'C) solution of amino nitrile 252 (0.160 g, 0.61 mmol) in 3 mL of THF

was added dropwise via cannula over 5 min. The resulting solution was stirred at -78 'C for 3.5

h, and then a precooled (-78 'C) solution of 7-bromoheptene (0.102 mL, 0.119 g, 0.67 mmol)

was added rapidly via syringe. The reaction mixture was stirred at 0 'C for 1 h, and then diluted

with 80 mL of ether and 30 mL of water. The aqueous layer was extracted with three 25-mL

portions of ether, and the combined organic layers were washed with 30 mL of brine, dried over

K2CO 3, filtered, and concentrated to give 0.631 g of an orange oil that was used immediately in

the next step without further purification.

A 50-mL, three-necked, round-bottomed flask equipped with a rubber septum, argon inlet

adaptor, and cold-finger condenser was charged Na (0.351g, 15.3 mmol) and 25 mL of NH 3 at -

78 'C. The resulting blue solution was stirred at -78 'C for 30 min, and then a solution of the C-

amino nitrile (0.631 g) prepared in the previous step in 8 mL of THF was added over 2 min via

cannula. The reaction mixture was stirred at -78 'C for 1 h, and then EtOH (0.178 mL, 0.141 g,

3.05 mmol) was added via syringe and the resulting reaction mixture was stirred at -78 'C for 30

min. NH4 Cl (0.815 g, 15.3 mmol) was added in one portion and the colorless reaction mixture
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was allowed to warm to rt over 30 min. The reaction mixture was then diluted with 15 mL of

satd aq NaHCO3 solution, and the aqueous layer was separated and extracted with three 15-mL

portions of CH 2C12. The combined organic layers were washed with 15 mL of brine, dried over

MgSO 4, filtered, and concentrated to afford 0.158 g of an orange oil. Purification by column

chromatography on 5 g of A12 0 3 (elution with 50% EtOAc-hexanes) afforded 0.099 g (65%) of

255 as a yellow semi-solid: IR (neat): 3355, 2930, 2789, 2694, 1641, 1460, 1375 cm-'; 'H NMR

(400 MHz, CDCl3) 65.74 (ddt, J= 17.0, 10.2, 6.7 Hz, 1 H), 4.93 (dm, J= 17.1 Hz, 1 H), 4.87

(dm, J= 10.2 Hz, 1 H), 3.10-3.17 (m, 2 H), 1.55-2.00 (m, 10 H), 1.19-1.45 (m, 11 H), 0.93 (t, J=

6.5 Hz, 3 H); 13C NMR (100 MHz, CDCl3) 6 139.2, 114.4, 75.2, 69.4, 61.0, 51.4, 44.5, 40.5,

34.4, 33.9, 29.6, 29.0, 28.9, 25.6, 21.3, 14.6.
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