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ABSTRACT 

Large, slow turning bearings remain difficult to analyze for 
diagnostics and prognostics. This poses a critical problem 
for high value assets, such as drilling equipment top drives, 
mining equipment, wind turbine main rotors, and helicopter 
swash plates. An undetected bearing fault can disrupt 
service, and cause delays, lost productivity, or accidents. 
This paper examines a strategy for analysis of large slow 
bearings to improve the fault detection of condition 
monitoring systems. This helps reduce operations and 
maintenance cost associated with these bearing faults. This 
analysis is primarily concerned with vibration, and is 
compared to temperature and grease analysis. Data was 
available from three wind turbines, where one of the turbine 
was suspected of having a faulted main bearing. 

1. INTRODUCTION 

This paper demonstrates a number of techniques in the 
diagnostics of large, slow turning bearings. Specifically, the 
use of: vibration (from 3 wind turbines), with temperature 
and grease analysis those three wind turbine and six other 
machines for comparison. The data is from the wind turbine 
main bearing. This analysis was initiated because one 
machine is suspected of having a main bearing fault. That 
initial fault assessment was based on temperature and grease 
analysis. The primary focus of the analysis is vibration-
based diagnostics. 

1.1. Bearing Fault Phenomenology  

Large, slow rotating bearings are based on a rolling element 
bearing design. They are common in all large rotating 
machines and one of the most frequent reasons for machine 
failures.   In general, because rolling element bearings are so 
fundamental to rotating machines, their vibration signals 
have been widely studied.  

When a rolling element strikes a local fault (or the rolling 
element fault hits the inner or outer race), an impact is 
produced on the structure. The resonance is a result of the 
natural frequency of the bearing/support structure. The 
modulation rate is associated with the bearing pass 
frequency, such as:  

• Cage Pass Frequency (CPF):  
  𝑓!!! 1 − 𝐵𝐷 𝑃𝐷 𝑐𝑜𝑠 𝛽                     Eq 1. 

• Ball Fault Frequency (BFO): 
   𝑓! 𝑃𝐷 𝐵𝐷 1 − 𝐵𝐷 𝑃𝐷 𝑐𝑜𝑠 𝛽

!
           Eq 2. 

• Ball Pass Frequency Inner Race (BPFI): 
 𝑓!! ! 1 + 𝐵𝐷 𝑃𝐷 𝑐𝑜𝑠 𝛽                    Eq 3. 

• Ball Pass Frequency Outer Race (BPFO): 
 𝑓!! ! 1 − 𝐵𝐷 𝑃𝐷 𝑐𝑜𝑠 𝛽                    Eq 4. 

Where: 

n = number of balls or rolling elements 

fr = relative rate between inner and outer races (e.g. 
usually the shaft rate for a fixed bearing) 

PD = pitch diameter: (inner + outer race) / 2 

BD = ball diameter, and 

β = contact angle. 

Consider the example inner race fault used in Bechhoefer 
(2013). The bearing rolling element diameter is 0.235 
inches, pitch diameter of 1.245, with eight rolling elements 
and zero contact angle. The BPFI is 4.7550 × 25 (with a 
shaft rate of 25 Hz), or 118.2 Hz. One revolution of the 
shaft takes 0.04 seconds, in which the inner race impact will 
be seen approximately four times, or in two revolutions 
(0.08 seconds), nine times (Figure 1). The impacts are seen 
to be 1/BPFI in time, or spaced 0.0084 seconds. Note that 
the magnitude of the impacts varies with 1/Rev, as the inner 
race fault passes under the load zone of the bearing. In the 
frequency domain, the 1/Rev modulation results in side 
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bands around the fault frequency. This is an indicator of an 
inner race fault. 

Zooming into one impact (time 0.0135 to 0.017), the 
resonance of the bearing structure is seen. Usually, there are 
a number of resonant modes. The period is approximately 
0.0027 seconds, or a first resonant mode of 380 Hz.  

 
Figure 1 Inner Race Fault, Time Domain 

Because this is an inner race fault, the impacts are 
modulated in time over the shaft rate. This results in 1 per 
revolution side bands around the ball pass frequency inner 
race rate (Eq 3). For a ball pass frequency outer race 
(BPFO) fault, the amplitude of the impacts would not be 
modulated by shaft rate (Figure 2.). 

2. LARGE SLOW BEARING ANALYSIS USING VIBRATION 

Large slow bearings present an analysis challenge due to 
four considerations: resolution, small acceleration feature, 
inexperience (e.g. lack of test data) and nonstationary 
signals. These issues in one way relate to the nature of the 
operating environment. That said, these techniques used 
here are derived from those techniques developed for 
bearing analysis in general.  

2.1. Cyclostationarity Signal Analysis 

This class of signals is characterized by signals whose 
statistical properties change periodically with time (Antoni, 
2007). While not periodic and random in nature, these 
signals are the result of a periodic phenomenon. In the time 
domain, these signals exhibit periodic variation of statistical 
descriptors, such as the instantaneous power, or auto-
correlation. 

By defining a cyclostationary signal (CS) X[n] with n as the 
temporal index, the signal has a joint probability density 
function which is quasi periodic function of time. This 
implies that the ensemble statistics are stationary and 

ergodic. For the purposes of bearing analysis, one can model 
the CS as periodically modulated white noise:  

𝑋 𝑛 = 𝑝 𝑛 ∙𝑊 𝑛                          Eq 5. 

Where  p[n] = p[n + N] is a N periodic function and W[n] is 
strictly Gaussian noise. This model accounts for random 
process including slippage of the bearing elements (e.g. no 
Hertzian contact of the rolling element with the inner/outer 
race, see Boskoski 2013). 

The signal X[n] from an outer race fault (Figure 2) exhibits 
cyclic amplitude modulation of the rolling element over the 
outer race spall. This examples shows that the CS does not 
in general have a periodic waveform, but a quasi-random 
behavior that is caused by a periodic mechanism. The 
period, N, e.g. the cycle of the signal, is the ball pass 
frequency outer race fault frequency.  

 
Figure 2 Outer Race Fault signal X[n] and its instantaneous 
auto-correlation function. 

2.1.1. Temporal and Frequency Description of CS 

The second order statistics, which of the instantaneous auto 
correlation function (as per Antoni, 2013) is: 

ℛ!! 𝑛, 𝜏 = 𝐸 𝑋 𝑛 + 𝛽𝜏 𝑋 𝑛 − 𝛽𝜏
∗

  Eq 6. 

where 𝛽 + 𝛽  = 1, with β  = ½ for the symmetric 
instantaneous auto-correlation function. The random signal 
from the bearing impact will then have a periodic 
instantaneous auto-correlation function of:  

ℛ!! 𝑛, 𝜏 =  ℛ!! 𝑛 + 𝑁, 𝜏           Eq 7. 

This defines the signal as a second order CS.  

By definition, the instantaneous auto-correlation function of 
CS has a Fourier representation 

 ℛ!! 𝑛, 𝜏 = ℛ!! 𝜏;𝛼! 𝑒!!!!!!!!!∈𝒜   Eq 8. 

over the spectrum 𝒜 = 𝛼!  of cyclic frequencies 𝛼!, where 
Δ denotes the sampling period. 
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The instantaneous autocorrelation function ℛ!! 𝑛, 𝜏  is a 
function of the time variables n and τ. For analysis, the 
frequency domain representation allows the identification of 
α, the cyclic frequency (e.g. the bearing material response) 
and f, the bearing component frequency. The frequency 
domain is a 2D Fourier transform of the two frequency 
variables α and f: 

ℜ!! 𝛼, 𝑓 = ∆! ℛ!! 𝜏;𝛼! 𝑒!!!!"#!𝑒!!!!"#!!
!!!!

!
!!!!  

Eq. 9. 

This is the spectral correlation of the power distribution of 
the signal with respects to the spectral frequency f (the 
bearing fault rate) and the cyclic frequency α (the cyclic 
evolution of the waveform as a result of the bearing material 
response to f). For a more detailed analysis, see Antoni 
2009.  Figure 3 is the spectral correlation of the main 
bearing for machine 2, which is suspected of a bearing fault. 
The spectral frequency has number harmonics of 4.3 Hz, 
which happens to be the BPFO frequency. The cyclic 
frequency indicates change in phase response of the bearing 
support material 0 and about 25 Hz. 

 
Figure 3 Spectral Correlation of Main Bearing, Machine 2 

2.2. The Relationship between Cyclostationarity and 
Envelope Analysis 

The spectral correlation is the 2D Fourier transform of 
spectral frequency f (the bearing fault rate) and the cyclic 
frequency α. Fixing α to a given frequency, the spectrum is 
the envelope analysis of the signal. Defining the envelope 
for a signal instance of α greatly reduces the computational 
burden and allows for more automated/embedded 
diagnostics. The implementation of the embedded 
diagnostic system then requires proper window selection 
(Ganeriawala, 2006). This is done by holding constant the 
cyclic frequency α, and selecting both a window bandwidth 
and spectrum length. Then for each fault frequency (Eq 1 – 
Eq4), the energy spectral density associated with the 

frequency spectrum is the fault condition indicator.  Eq 9 
then reduces to: 

ℜ!! 𝑓 = ∆! ℛ!! 𝜏 𝑒!!!!"#!𝑒!!!!"#!!
!!!!     Eq 10. 

The pseudo code for this is simply: 

𝑦ℎ = 𝑦 × exp −𝑖2𝜋𝛼𝑡  

𝑙𝑜𝑤𝑝𝑎𝑠𝑠 𝑓𝑖𝑙𝑡𝑒𝑟 𝑓𝑖𝑙𝑡𝑒𝑟 𝑦ℎ 𝑡𝑜 𝑟𝑒𝑚𝑜𝑣𝑒 𝑖𝑚𝑎𝑔𝑒 

Υ = ℑ 𝑦ℎ  

𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚(𝑓) = Υ × Υ∗                     Eq 11. 

where y is the vector of vibration data, yc is the heterodyned 
(complex) vibration signal, and  as per definition 𝑡 = 𝑛Δ. 
Note that in implementation, exp(-i2παt) is calculated using 
Euler’s formula, where the real(yh) is the product of y[n] 
and the cosine of 2παt, and the imag(yh) is the product of 
y[n] and sine of 2παt. Because p[n] is a periodic signal it is 
modeled as the cosine of fault frequency f. It then follows 
that the trigonometric identity applies: 

cos 𝑓 × cos 𝛼 = 1 2 cos 𝑓 − 𝛼 + cos 𝑓 + 𝛼   Eq. 12 

This requires low pass filtering to remove the image of yh 
(e.g. cos 𝑓 + 𝛼 ). The bandwidth of the low pass filter must 
be greater than maximum fault frequency, and should 
encompass resonance bandwidth of the cyclic frequency. 
For example, Figure 3, the bandwidth should be greater than 
25 Hz. It is usual practice to decimate the resultant by the 
ratio of Nyquist of the sample rate to the filter bandwidth. 
The product of the Fourier transform of yh with its 
conjugate is the envelope power spectrum of y. 

Window selection (e.g. α, and bandwidth) greatly affects 
the performance of analysis. Figure 4, with a bandwidth of 
100 Hz, shows that for α = 1 Hz, the CPF is modulating the 

 
Figure 4 Comparison of Cyclic Frequency of Machine 2 
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BPFO, causing side bands around the fault frequency of 
0.12 Hz. An automated system would select the energy 
associated with the side band vs. the BPFO fault. When α = 
125 Hz, the CPF sidebands are eliminated, the peak is 
associated with the BPFO. Further the energy associated 
with the BPFO is the same for  α = 1 Hz and α = 125 Hz. 

For α = 250 Hz, the energy associated with the BFPO is 
greatly reduced (α is now outside of the resonance of the 
structure). For this study, α = 125 Hz was selected. Note 
that for α = 0 Hz, equation 10 reduces to: 

ℜ! 𝑓 = ∆! ℛ! 𝜏 𝑒!!!!"#!!
!!!!           Eq 13. 

which is just the Fourier transform. No bearing fault 
features were visible in the raw spectrum, which is why the 
envelope analysis is used (see Figure 7). 

2.3. Resolution 

Resolution is the ability to discern one feature from another. 
Consider analysis of the main bearing of a commercial, 1.25 
MW wind turbine. The main rotor shaft speed is 
approximately 20 RPM, or 0.34 Hz. The main bearing fault 
rates are given as:  

• Cage fault frequency is 0.45 Hz, 
• Ball/Rolling element fault frequency is 10.8,  
• Inner race fault frequency is 15.3 and  
• Outer race fault frequency is 12.7.  

Assume that one needs at least 10, preferable 30 bins 
between the frequencies of interest. To distinguish between 
DC and the cage CPF, the frequency resolution must be 
between 0.015 and 0.005 Hz.  

For a sample rate of 3,000 samples per second (Nyquist of 
1,500 Hz), this is 300,000 data points. Since the Fast Fourier 
Transform (FFT) typically uses radix 2, i.e. 
2^ceil(log2(300,000), or 524,288 data points, or 175 seconds 
of data! 

Of course, in most applications, the torque/load is not 
constant over time. In this wind turbine application, due to 
tower shadow and wind shear, there is a three per revolution 
change in speed (Figure 5). 

In this two minute acquisition, the mean rotor speed was 
20.39 RPM with a standard deviation of 0.2 RPM, or 0.003 
Hz. Numerically, for inner race fault of 15.3 Hz, 68% of the 
time (given the 0.005 Hz/bin resolution), the spectral 
content is smeared across +/-3 bins in the frequency domain. 
In order to correct for variation and shaft rate and improve 
the envelope analysis, a time synchronous resampling 
algorithm was implemented (Bechhoefer et al., 2013). 

2.3.1. Resampling vs. Time Synchronous Averaging 

The time synchronous average, (TSA, McFadden, 1987) has 
long been used for gear and shaft analysis to control 

variation in shaft speed. However, this technique is not 
appropriate for bearing analysis. The TSA is only 
appropriate in instances were the features are both an integer 
of the shaft rate and synchronous with the shaft. This is not 
the case for bearing analysis, where the fault features are not 
an integer of the shaft, and are only quasi-synchronous (due 
to slippage of the bearing).   

Figure 5 Main Rotor RPM over 120 Seconds 

While the resampling algorithm is similar to the TSA, it 
does not average the data points over each revolution. 
Instead, the builds a new array of data, which is locked 
synchronous with shaft position by using a tachometer key 
phasor (Figure 6). 

For example, say the sample rate was 1000 samples per 
second, and the lowest shaft rate was 10 Hz, for a .5 second 
acquisition. The resample length, m, is 128. The number of 
data points between each key phasor was: 87, 92, 100, 95, 
89, 37. For each shaft revolution, the data is resampled to 
length l.:  Rev 1: 87->128, Rev 2: 92->128, Rev 3: 100-
>128, Rev 4: 95->128, Rev 5: 89->128. Note that for half of 
a second of data, there is 640 data points – the remaining 37 
data were in the next, incomplete revolution, so the last 37 
data points are dropped. The resample length is taken as the 
next largest power of 2 over the maximum length of all 
revolutions, again, assuming a radix 2 DFT. 

Because of interpolation, the sample rate for each revolution 
is now changed. To accurately determine the frequency 
associated with a DFT bin, an apparent sample rate is 
calculated. This is the original sample rate × length of the 
resampled data / length of the original data: 1000 × 
640/(463), or 1382. 

For the main shaft, given the approximately 0.34 Hz shaft 
rate, it takes approximately 2.9 seconds for a revolution. For 
a sample rate of 3,000 sps, there are, on average, 8,800 data 
points. In the resampling algorithm, for each revolution, the 
data is up-sampled to 16,384 data points. This effectively 
removes any variation in shaft speed. 
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Figure 6 TSA vs. Resampling Algorithm 

2.4. Energy Associated with the Bearing Fault Features  

Faults associated with slowly rotating equipment are 
difficult to measure because the energy is small, as a result 
of measuring acceleration, and not displacement. Consider a 
30 Hz output shaft, with a 0.001” (1 mil) displacement fault 
on the outer race (e.g. BPFO rate of 5). Because acceleration 
is the second derivative of displacement, the estimated 
acceleration of this fault would be 0.0511 × (30 × 5)2 × 
0.001 = 1.15 Gs. This is not an unreasonable value, as we 
can see in Figure 1, an RMS of 1.76 Gs on a 25 Hz shaft.  

For the wind turbine example, which is shaft rate of 0.34 Hz 
and a BPFO frequency of 4.3 Hz, the same damage, 0.001”, 
would generate an acceleration of 0.0511×4.32×0.001 = 
0.00094 Gs. This is a very small value to measure in the 
presence of noise. 

2.5. Few Data Sets 

While not a technical hurdle, programmatically there is a 
lack of experience in working with large bearings. This is 
due in part to little, if any, documentation of the structural 
resonance of these bearings. This is, as noted, essential for 
envelope analysis. Further, because of the size, weight and 
cost of these types of bearings, there are few seeded fault 
tests conducted to learn about this type of bearing fault 
phenomenology. 

3. LARGE SLOW BEARING EXAMPLE 

This example is based on the availability of three 
commercial wind turbines (1.25 MW), where one of the 
turbines had a suspected main bearing fault. The machines 
were equipped with a bused condition monitoring system, 
which collected vibration data on two accelerometers 
mounted on the main bearing, and a tachometer signal. The 
accelerometers were based on MEMS technology, where 

• Accelerometer 1 has a bandwidth of 0 to 32 KHz, and a 
noise density of 4mg/√Hz, +/-70Gs 

• Accelerometer 2 has a bandwidth of 0 to 2.5 KHz, and 
a noise density of 110 µg/√Hz, +/-18Gs 

 
Figure 7 Resampled Spectrum in Order Domain 

Each sensor was configured to sample at 3,052 sps for 120 
seconds using a 24-bit ADC. The resampled spectrum, in 
order domain (which corrects for the variance in the main 
rotor RPM across the three machines) is seen in Figure 7. 
The order domain is the frequency divided by shaft rate. 
This is done to normalize each plot by the machine RPM. 
Each machine has a large spectral tone at order 89 (this is 
equivalent to 30.52 Hz), which is associated with the 
planetary gearbox mesh frequency. This was also clearly 
visible in the time domain.  

Machine 2 shows multiple harmonics order 76 and 400 (26 
and 140 Hz). This is likely due to resonance. As noted the 
envelope window α = 125 Hz, with a bandwidth of 100 Hz. 
This means that for operation on Eq. 7, the vibration signal 
y was low pass filtered with a normalized frequency of: 100 
/ (5,580 /2) = 0.03585, then decimated by 27 prior to the 
Fourier transform being taken. This allows for improved 
spectral resolution for a given FFT length. Further, the 
accelerometer’s spectral noise, which is a function of 
1 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ, improving SNR by 7.2 dB.  

In Figure 8 (zoomed to show 0 to 40 Hz), Machine 2 
indicates a BPFO (outer race fault), with multiple higher 
order harmonics associated with the outer race fault 
frequency. These fault features are missing from machine 1 
and 3. The fault energy in Machine 2 is approximately 10 
times the noise density (e.g. floor energy) of Machine 1 and 
3.  

Note that after resampling the apparent sample rate is 5,580 
sps, with a Nyquist of 2,760 Hz. The bandwidth of the 
window, being 100 Hz, allows a large decimation in time, 
by 27, decreasing in the accelerometer spectral noise by 7.1 

For i = 1:N  
Revolutions

Resample r data 
points into M data 

points 

Set TSA Length
m = 2ceil(log2(r))

tsa = zero(m,1)

tsa = tsa + M

tsa = tsa/N

TSA Algorithm

TSA = DFT(tsa)

For i = 1:N  
Revolutions

Resample r data 
points into M data 

points 

Set Segment Length
m = 2ceil(log2(r))

samp = zero(m*N,1)

samp(indx) = M

Resample Algorithm

Spectrum = Welches(samp)

indx = i*m+1:m

Get Apparent Sample Rate
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dB.   Even with a modest 16,384 point FFT (about the 
largest that can be done without numerical errors with 32 bit 
floating point resolution) the bin width of 0.0125 Hz. This 
gives enough resolution to resolve the cage fault from DC. 

 
Figure 8 Envelope Spectrum Clearly Showing an Outer Rate 
Fault (first 4 Harmonics) on Machine 2 

3.1. Cepstrum Analysis 

The real cepstrum analysis was defined by Oppenheim 
(1965) and is a way to de-convolute homomorphic systems. 
The cepstrum is defined as: 

𝑐𝑒𝑝 = ℱ!! 𝑙𝑜𝑔 ℱ 𝑓 𝑡                  Eq 14. 

This is the real part of the inverse FFT of the log of the FFT. 
The concept is that the product of two signals is the sum of 
the logs of the signals. Since a bearing fault is the 
modulation of the fault frequency on the resonance 
frequency (e.g. multiplication of two signals), the cepstrum 
should be sensitive to this fault (Figure 9). Because the 
inverse Fourier analysis has been called, the cepstrum is a 
time domain analysis.  

 
Figure 9 Cepstrum of the Main Bearings 

The x-axis of the analysis is called the quefrency (in 
seconds), and is the reciprocal of the frequency spacing. 

For machine 2, the peak at quefrency of 0.231 presents a 
frequency of 4.3 Hz. This coincides with the outer race 
fault. For machine 3, the quefrency peak at 0.0346 
represents approximately 30 Hz in the frequency domain, 
which was seen in the envelope spectrum (Figure 8). This is 
likely due to gear mesh and is not a feature of a bearing 
fault.   

As the cepstrum is a time domain analysis, a number of 
condition indicators can be generated from it for automated 
analysis. In this example the cepstrum kurtosis or cepstrum 
RMS was tested as fault indicators. RMS was selected as it 
is a standard measure of noise. The cepstrum of a signal 
with multiple harmonics will have greater noise than the 
cepstrum with no harmonics present. Kurtosis is used to 
measure the “tailedness” of the PDF. Similarly, harmonics 
as a result of impact will have a more heavily tailed PDF in 
the cepstrum.  

As seen in Table 1, machine 3 generated largest cepstrum 
RMS and kurtosis (see Table 1). This was generated by the 
0.0346 quefrency features that corresponded to gear mesh. 
These condition indicators values were based on the average 
of 10 acquisitions. This information would not be actionable 
for the bearing fault, but may indicate a potential planetary 
gear ring fault.  

Table 1 Cepstrum Condition Indicators 
Machine Cepstrum 

RMS 
Cepstrum 
kurtosis 

Machine 1 0.0038 63.33 

Machine 2 0.0036 48.28 

Machine 3 0.0045 98.42 

 

It is felt that additional work needs to be performed on 
automated cepstrum analysis. It is likely that other cepstrum 
based condition indicators could work better than RMS and 
kurtosis.  

For automated fault detection, a method is needed to both 
quantify the bearing damage and to recommend a 
maintenance action when appropriate. The quantification of 
damage is done using a condition indicator (CI), which is a 
descriptive statistics of the component under analysis. 
Condition indicators for bearings include the energies 
associated with the bearing’s pass frequencies: CPF, BPO, 
BPFI, BPFO. Other possible CIs are the average spectral 
energy, the spectral kurtosis (although more commonly used 
for window selection, see Randall 2011), and as noted, the 
cepstrum RMS and kurtosis. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

7 

4. BEARING CONDITION INDICATORS AND HEALTH 

For this experiment, 16 acquisitions were available from 
Machine 1, nine acquisitions from Machine 2, and 15 from 
Machine 3. This allowed a population of CIs to be 
developed for the cage, ball, and inner and outer race 
energies. 

4.1. Threshold Setting and Component Health 

Because the physics of failure is poorly understood (e.g. 
from a given CI value, the absolute level of damage cannot 
be calculated), threshold setting is typically a data driven 
process: maintenance is performed when a statistically set 
threshold is exceeded. The concept of thresholding was 
explored by Byington et al. (2004) where for a given, single 
CI, a probability density function (PDF) for the Rician/Rice 
statistical distribution was used to set a threshold based on a 
probability of false alarm (PFA). This is contrasted with 
Dempsey (2008), where the relationship between CI 
threshold and PFA was explored to describe the receiver 
operating characteristics (ROC) of the CI for a given fault. 
Additionally, Dempsey used the ROC to evaluate the 
performance of the CI for a fault type. These methods 
support a data driven approach for condition monitoring by 
formalizing a method for threshold setting.  

Because no single CI has been identified that works with all 
fault modes, the concept of fusing n number of CIs into a 
bearing health indicator (HI) was presented in Bechhoefer 
(2012). Computationally, the use of an HI is attractive. The 
HI provides a decision-making tool for the end user on the 
status of the system health. The HI consists of the 
integration of several CIs into one value that provides the 
health status of the component to the end user. 

This concept is similar to that proposed by Djurdjanovic et 
al. (2003) of a Watchdog Agent. The Watchdog Agent fuses 
multiple inputs and extracted features relevant to the 
components performance. This performance is then 
evaluated with a performance confidence value (CV) 
ranging between 0 and 1. In this paradigm, the higher CV 
signifies performance closer to nominal. 

Highlighted in (Bechhoefer, 2007) are a number of 
advantages of the HI over CIs, such as: controlling false 
alarm rate, improved detection, and simplification of user 
display. This approach allows the use of well established 
statistical methods. Further, it is a generalized process for 
threshold setting, where the HI is a function of distribution 
of CIs, regardless of the correlation between the CIs. 

Prior to detailing the mathematical methods used to develop 
the HI, a nomenclature for component health is needed. To 
simplify presentation and knowledge creation for a user, a 
uniform meaning across all components in the monitored 
machine should be developed. The measured CI statistics 
(e.g. PDFs) will be unique for each component type (due to 
different rates, materials, loads, etc.). This means that the 

critical values (thresholds) will be different for each 
monitored component. By using the HI paradigm, one can 
normalize the CIs, such that the HI is independent of the 
component. 

The HI can be designed such that there are two alert levels: 
warning and alarm. This paradigm also provides a common 
nomenclature for the HI, such that: 

• The HI ranges from 0 to 1, where the probability of 
exceeding an HI of 0.5 for a nominal component (e.g. 
no damage) is the PFA. 

• A warning alert is generated when the HI is greater than 
or equal to 0.75.  

• An alarm alert is generated when the HI is greater than 
or equal to 1.0. Continued operations could cause 
collateral damage. 

This nomenclature does not define a probability of failure 
for the component, or that the component fails when the HI 
is 1.0. Rather, it suggests a change in operator behavior to a 
proactive maintenance policy: perform maintenance prior to 
the generations of cascading faults. For example, by 
performing maintenance on a bearing prior to the bearing 
shedding extensive material, costly gearbox replacement can 
be avoided. 

4.1.1. Controlling for the Correlation Between CIs:  

All CIs have a probability distribution (PDF). Any operation 
on the CI to form a health index (HI) is then a function of 
distributions. For this study, the HI function is taken as the 
norm of n CIs (energy). 

In general, the correlation between CIs is non-zero. This 
correlation implies that for a given function of distributions 
to have a threshold that operationally meets the design PFA, 
the CIs must be whitened (e.g. de-correlated). Fukunaga 
(1990) presented a whitening transformation using the 
Eigenvector matrix multiplied by the square root of the 
Eigenvalues (diagonal matrix) of the covariance of the CIs: 
A = Λ1/2 ΦT, where ΦT is the transpose of the Eigenvector 
matrix and Λ  is the Eigenvalue matrix. The transformation 
is not orthonormal; the Euclidean distances are not 
preserved in the transformation. While ideal for maximizing 
the distance (separation) between classes (such as in a 
Bayesian classifier), the distribution of the original CI is not 
preserved. This property of the transformation makes it 
inappropriate for threshold setting. 

If the CIs represented a metric, such as bearing energy, then 
an HI can be constructed, which is the square of the 
normalized power (e.g. square root of the squared 
acceleration). A generalized whitening solution can be 
found using Cholesky decomposition (see Bechhoefer and 
Dempsey 2011). The Cholesky decomposition of a 
Hermitian, positive definite matrix results in A = LL*, 
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where L is a lower triangular, and L* is its conjugate 
transpose. By definition, the inverse covariance is a positive 
definite Hermitian.  It then follows that if  

𝑳𝑳∗ =  𝚺!!                              Eq 15. 

then 

 𝒀 = 𝑳×𝑪𝑰!                                Eq 16. 

The vector CI is the correlated CIs used for the HI 
calculation, and Y is 1 to n independent CIs with unit 
variance (one CI representing the trivial case). The 
Cholesky decomposition, in effect, creates the square root of 
the inverse covariance. This in turn is analogous to dividing 
the CIs by their standard deviations (the trivial case of one 
CI). This creates the necessary independent and identical 
distributions required to calculate the critical values for a 
function of distributions. 

4.1.2. HI Based on Rayleigh PDFs 

The CIs for bearing used the spectral energy associated with 
the fault frequency of the cage, ball, inner and outer race. 
The energy was the square root of the power spectrum. 
Energy was used because is relatively linear with damage 
size and, assuming nominal bearing condition, has Rayleigh 
like PDFs (e.g. heavily tailed). Further, for a white noise 
signal, it can be shown that the Fourier transform for a given 
bin is Rayleigh distribution is Consequently, the HI function 
was designed using the Rayleigh distribution. The PDF for 
the Rayleigh distribution uses a single parameter, β, 
defining the mean 

 µ = β × (π/2)0.5    Eq 17. 

and variance  

σ2 = (2 - π/2) × β2   Eq 18. 

The PDF of the Rayleigh is:  

x/β2exp(x/2β2)    Eq 19. 

Note that when applying these equations to the whitening 
process, the value for β for each CI will then be: σ2 = 1, and 

 β = σ2 / (2 - π/2)0.5 = 1.5264              Eq 20. 

The HI function using the norm of n CIs can be shown to 
define a Nakagami PDF (Bechhoefer and Bernhard 2007). 
The statistics for the Nakagami are η = n, and  

ω = 1/(2-π/2) ×2×n,       Eq 21. 

where n is the number CIs used in the calculation of Y. The 
critical value for the HI, based on four CIs (cage, ball, inner 
and outer race energy), i.e. η = 4 and ω = 18.64. For a PFA 
of 10-6, the threshold 9.97, with the HI function calculated 
as:  

𝐻𝐼 = !.!
!.!"

𝒀𝒀!                            Eq 22. 

The 0.5 value normalized the HI, such that the probability of 
an HI being greater than 0.5 for a nominal bearing is 10-6. 
The HI for the machines are given as in Figure 10. 

 
Figure 10 Main Bearing Health 

5. EFFECT OF ACCELEROMETER NOISE DENSITY 

The prior analysis was conducted with accelerometer 2, with 
a noise density110 µg/√Hz. This is because there was no 
fault detection with accelerometer 1, with a noise density of 
4mg/√Hz, i.e. accelerometer 1 had a 36×, or a 15.6 dB 
increase in the noise floor of accelerometer 2. By increasing 
the acquisition time by 4×, the signal to noise can be 
improved by 3 dB (2× ). This is because the Welch’s 
spectrum averages the power, reducing random noise by 
1/√n, where n is the number of averages.  

This was verified by increasing the data length to 480 
seconds, and 960 seconds (4× or 3dB and 8× or 4.5 dB, 
Figure 11). 

 
Figure 11 Reducing Noise by Increasing Sample Length 

Increasing the Signal to Noise by 3 dB allows the outer race 
fault to be detectable. The acquisition is eight minutes and 
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1,464,960 data points. This may exceed the memory of 
some embedded systems. Additionally, because of the large 
variation is speed seen over eight minutes, it necessitates the 
use of a time synchronous resampling algorithm 
(Bechhoefer et al 2013). 

6. OTHER CONDITION ANALYSIS TECHNIQUES 

Both temperature (from the supervisory control and data 
acquisition, SCADA) and grease analysis was available for 
these machines. While it may be assumed that temperature 
analysis is a simple method, this is not the case. 
Temperature measured from the main bearing is related to 
ambient temperature (which was not available) and turbine 
power output. If the wind speed is low, or the turbine has 
been ordered to curtail production, the main bearing 
approaches the ambient temperature. If the machine is in 
production, the temperature is related to load (e.g. power 
production), ambient temperature and damage.  

Further complicating this is that the wind at one area of the 
wind farm is likely to be different from another part of the 
wind farm, such that the power production from one 
machine varies in time with other machines (Figure 12).  

 
Figure 12 Temperatures from 9 Wind Turbines 

The periodic daily variation in temperature is based on the 
increased wind speed at night. Increased wind speed 
increases the load on the main bearing, which in turn results 
in a elevated temperatures. Initially, exploratory analysis 
was performed to measure the correlation between 
temperature and power production (11,000 data points): whe 

M1 M2 M3 M4 M5 M6 M7 M8 M9 
.59 .63 .59 .57 .41 .47 .61 .62 .51 

This shows that approximately 50% of the variance is 
associated with power production. Note that machine 2 had 
the largest correlation between power and temperature. 

A boxplot of the machines (1 through 9) shows that there is 
a large difference between the mean temperatures of each 

machine (Figure 13). Machine 2 vibration and grease 
analysis (Table 2) suggest that that it is the most damaged 
machine. Yet the median temperature of machine 2 is less 
than that of machine 3. 

 
Figure 13 Boxplot of Temperature vs. Machine 

Because machine 2 had the highest correlation between 
power production and temperature, a residual model was 
built that remove the mean temperature (Figure 14).  

 
Figure 14 Boxplot of Residual Temperature vs. Machine 

There is no significance between machine 2 and the other 
machines. 

When ANOVA (analysis of variance) is conduced on the 
temperature, the F statistic with 8 degrees of freedom is 
1083: the hypothesis is rejected that the temperature are the 
same. Because it is assumed (via grease analysis) that 
machines 2 and 3 are biased high, they can be removed from 
the ANOVA (along with machine 4, which is running cool). 
This should allow one to test the hypothesis that the 
temperatures of the nominal machines are the same. The F 
statistic for this test is 121.8 with 5 degrees of freedom. The 
probability of this exceeding F is 0, hence rejecting the null 
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hypothesis that the nominal machines have similar 
temperatures.  

It is clear that for temperature analysis to be effective, the 
data must be normalized by ambient temperature 
(unfortunately unavailable from the SCADA system) and 
turbine power output. Without reducing the between 
machine variance, temperature appear to be a poor analysis 
tool for early stage, automated fault detection.  

6.1. Grease Analysis 

Oil analysis has had a long history of acceptance and is 
recognized as an effective condition monitoring technique. 
This is not the case with grease. Grease analysis presents a 
challenge in obtaining representative samples. One most 
important functions of grease is to stay in place – it is 
precisely this property that makes reliable sampling 
difficult. Grease does not readily circulate. This means that 
valid samples must be taken in an area close to the target 
bearings, know as the “live zone”.  

Based on a number of studies (Electrical Power Research 
Institute, (2010), Møller, H., et. al., (2014)), the American 
Society of Testing and Materials (ASTM) Grease 
subcommittee established a working group. Over a two-year 
period, the committee worked on delivering a peer reviewed 
document to obtain industry consensus on grease sampling 
practices. This was balloted by the ASTM Main Committee, 
resulting in the release of ASTM D7718, “Standard Practice 
for Obtaining In-Service Samples of Lubricating Grease.” 

The standard gives guidance on how to take representative 
grease samples. Much evidence suggest that grease samples, 
take in accordance with the standard, allows for trending of 
wear levels in bearings and gearboxes.  

Grease analysis was available for 8 of the 9 machines on 
which temperature SCADA data was available. It was the 
case that machines 1, 2 and 3 had marginally higher levels 
of wear materials than the other machines. Since vibration 
data was available for machines 1, 2 and 3, only these are 
compared.  

The grease analysis was performed by an ISO 9001:2008 
and ISO/IEC 17025:2005 certified laboratory (Table 2). 

Table 2 Main Bearing Grease Analysis (ppm) 

Aqueous	Metals	 Machine	1	 Machine	2	 Machine	3	

Silver,	Aq.	ppm		 <9.37		 <10.98		 <10.05		

Aluminum,	Aq.	pp		 <10.8		 **268.5		 **175.6		

Boron,	Aq.	ppm		 <7.9		 <9.3		 <8.5		

Barium,	Aq.	ppm		 <5.8		 <6.8		 <6.2		

Calcium,	Aq.	ppm		 *34.1		 *43.1	 <17.8		
Cadmium,	Aq.	
ppm		 <5.8		 <6.8		 <6.2		

Chromium,	Aq	 <10.8		 **136.4		 **91.3		

ppm		

Copper,	Aq.	ppm		 **71.5		 **16483.0		 **11679.7		

Iron,	Aq.	ppm		 121.8	 **27499.3		 **16084.7		

Potassium,	Aq.	p		 <14.4		 <16.9		 <15.5		

Magnesium,	Aq.	p		 <7.2		 <8.4		 <7.7		

Manganese,	Aq.	p		 <5.8		 *171.3		 *77.2		

Molybdenum,	Aq.		 <13.0		 39.8	 <13.9		

Sodium,	Aq.	ppm		 <15.9		 <18.6		 <17.0		

Nickel,	Aq.	ppm		 <7.2		 <8.4		 <7.7		

Phosphorus,	Aq.		 *<50.5		 *991.2		 *669.1		

Lead,	Aq.	ppm		 <31.7		 **236.3		 **132.0		

Antimony,	Aq.	pp		 <16.6		 <19.4		 <17.8		

Silicon,	Aq.	ppm		 20.7	 **241.5		 **147.2		

Tin,	Aq.	ppm		 <20.9		 <24.5		 <22.4		

Titanium,	Aq.	pp		 <3.6		 <4.2		 <3.9		

Vanadium,	Aq.	pp		 <3.6		 <4.2		 <3.9		

Zinc,	Aq.	ppm	 *134.6	 *10629.7	 *7173.2	

 
The table is coded by the laboratory such that (*) yellow 
indicates a caution limit and (**) red is an alarm limit. 
Machine 2 had the highest level of aqueous metals in the 
grease. Both machine 2 and machine 3 grease analysis 
indicates a fault, yet, machine 3 vibration health is nominal, 
i.e. not actually higher than machine 1. Further, both 
machine 2 and 3 tend to have higher temperatures than 
machine 1. Hence, there is some collaboration that machine 
2 is faulted (high vibration, high grease particulates, and 
higher temperature). There is ambiguity in the condition on 
machine 3, as the vibration analysis appears nominal, but 
grease and temperature are elevated. 

7. CONCLUSION 

The availability of both vibration, temperature and grease 
analysis from three wind turbines, where one turbine is 
suspected of having damaged main bearing, allows for an 
opportunity to develop a strategy for fault detection of large, 
slow bearings. Approximately 10 acquisitions from two 
accelerometers (high bandwidth, high noise, and low 
bandwidth, low noise) and a tachometer were taken. 
Temperature was available from the SCADA system every 
10 minutes. Grease analysis from an ISO certified 
laboratory was also available from these machines. 

In order to detect faults using vibration data, long 
acquisition times are needed (120+ seconds). Because of the 
long acquisitions, there were large changes in shaft speed. 
This is detrimental to the analysis because it smears the 
spectral content in the Fourier analysis. A time synchronous 
resampling algorithm used tachometer data to correct for 
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changes in shaft speed, improving the analysis (The Fourier 
analysis assumes a stationary signal).  

The envelope analysis was conducted using resampled 
vibration data (120 seconds at 3,052 sps) and a 50 to 150 Hz 
window with a 16,384-point spectrum. This facilitated the 
detection of an outer race fault on machine 2. Machine 1 
and 3 were found to be normal. The fault was detected with 
the low noise density (110 µg/√Hz ) sensor. The high noise 
density accelerometer could not detect the fault until the 
acquisition was increased to 480 seconds (3 dB 
improvement in SNR).  

The cepstrum analysis was performed on the vibration data, 
but the results were not actionable.  The cepstrum detected 
ring mesh gear on machine 1 and 3, which were assumed 
nominal. The condition indicators (cepstrum RMS, kurtosis) 
of the cepstrum analysis did not indicate if machine 2 had a 
faulted bearing. Further condition indicator development for 
cepstrum is recommended.  

The health of the main bearing was calculated using a data 
driven method. Using the Nakagami distribution and a 
probability of false alarm of 10-6, the bearing condition 
indicator data was mapped to a health indicator, where a 
health indicator of less than 0.5 is nominal, greater than 0.75 
and less than 1 is warning, and greater than 1 is alarm. The 
health indicator for the main bearing of machine 2 was 1.45. 

ANOVA analysis of the bearing temperatures rejected the 
hypothesis that the temperature of nominal machines was 
similar. In general, while machine 2 ran someone hotter than 
machine 4 through 9, the difference was not statistically 
significant. In fact, machine 3 ran hotter than machine 2.  

The grease analysis indicated that both machine 2 and 3 
were faulted, as many aqueous metals were in alarm. Grease 
analysis indicated that machine 2 was most damaged. 

Typically, vibration based detection on large slow bearings 
is difficult. However, using long acquisition times to 
improve resolution and proper window selection, the 
vibration data were easier to interpret, and gave more 
actionable information, than temperature and grease 
analysis. With online condition monitoring, using the trend 
of the health indicator, it is likely that remaining useful life 
of the bearing could be calculated. The vibration data, as 
presented, can give operations and maintenance 
organizations valuable information to enhance logistic 
support of the machine. 

ACKNOWLEDGEMENT 

The research presented in this paper has received funding 
from the Norwegian Research Council, SFI Offshore 
Mechatronics, project number 237896. 

REFERENCES 

Antoni, J., (2007) Cyclic spectral analysis in practice, 
Mechanical Systems and Signal Processing 21, 597-
630. 

Antoni, J., (2009) Cyclostationarity by examples, 
Mechanical Systems and Signal Processing, 23(2009) 
987-1036. 

Bechhoefer, E. (2013), Condition Based Maintenance Fault 
Database for Testing Diagnostics and Prognostic 
Algorithms. Retrieved from 
http://www.mfpt.org/FaultData/FaultData.htm 

Bechhoefer, E., & Bernhard, A. (2007). A Generalized 
Process for Optimal Threshold Setting in HUMS. IEEE 
Aerospace Conference, Big Sky. 

Bechhoefer, E., Duke, A., & Mayhew, E. (2007). A Case for 
Health Indicators vs. Condition Indicators in 
Mechanical Diagnostics. American Helicopter Society 
Forum 63, Virginia Beach. 

Bechhoefer, E., & Fang, A., (2012) Algorithms for 
Embedded PHM, Prognostics and Health Management 
(PHM), IEEE.  

Bechhoefer, E., He, D., & Dempsey, P. (2011). Gear 
Threshold Setting Based On a Probability of False 
Alarm. Annual Conference of the Prognostics and 
Health Management Society. 

Bechhoefer, E., & He, D., A Process for Data Driven 
Prognostics, (2012), MFPT 2012: Dayton, Ohio. 

Bechhoefer, E., Van Hecke, B., & He, D., Processing for 
Improved Spectral Analysis, PHM Conference, 2013. 

Boskoski, P., & Juricic, D. (2013), Modeling localized 
bearing faults using inverse Gaussian mixtures, Annual 
Conference of the Prognostics and Health Management 
Society 2013. 

Byington, C., Safa-Bakhsh, R., Watson., M., & Kalgren, P. 
(2003). Metrics Evaluation and Tool Development for 
Health and Usage Monitoring System Technology. 
HUMS 2003 Conference, DSTO-GD-0348 

Darlow, M.S., Badgley, R. H. & Hogg, G.W., (1974). 
Application of high frequency resonance techniques for 
bearing diagnostics in helicopter gearboxes. US Army 
Air Mobility Research and Development Laboratory, 
Technical Report pp 74-76.  

Dempsy, P., & Keller, J. (2008).  Signal Detection Theory 
Applied to Helicopter Transmissions Diagnostics 
Thresholds. NASA Technical Memorandum 2008-
215262 

Djurdjanovic, D., Jay L., & Jun N.,. "Watchdog Agent—an 
infotronics-based prognostics approach for product 
performance degradation assessment and prediction." 
Advanced Engineering Informatics 17.3 (2003): 109-
125. 

Electrical Power Research Institute, (2010), “Nuclear 
Maintenance Applications Center: Effective Gear 
Practices”, Technical Report #1020247. 

Fukunaga, K., (1990), Introduction to Statistical Pattern 
Recognition, Academic Press, London, 1990, page 75. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

12 

Ganeriawala, S., (2006) Some Observations of the Detection 
of Rolling Bearing Outer Race Faults, SpectraQuest, 
www.spectraquest.com  

Ho, D. & Randall, R. B. (2000)  Optimization of bearing 
diagnostic techniques using simulated and actual 
bearing fault signals. Mechanical Systems and Signal 
Processing. 14 (5), 763-788. 

McFadden, P., (1987) “A revised model for the extraction of 
periodic waveforms by time domain averaging”, 
Mechanical Systems and Signal Processing 1 (1) 1987, 
pages 83-95  

Møller, H., et. al., (2014) “Analysis of Grease in Wind 
Turbine bearing – a tool for condition monitoring. Part 
2“, LUBMAT 2014 Proceedings, Manchester, UK. 

Oppenheim, A.V. (1965) "Superposition in a class of 
nonlinear systems" (Ph.D. dissertation), Res. Lab. 
Electronics, Massachusetts Institute of Technology, 
Cambridge, MA. 

Randall, R. (2011) Vibration-based Condition Monitoring: 
Industrial, Aerospace & Automotive Application, John 
Wiley, New York, 2011. 

BIOGRAPHIES  

Eric Bechhoefer is the president of GPMS, Inc., a company 
focused on the development of low-cost condition 
monitoring systems. Dr. Bechhoefer is the author of over 
100+ juried papers on condition monitoring and prognostics 
health management, and holds 23 patents in the field of 
CBM. 

Rune Schlanbusch received his MSc in Space Technology 
from Narvik University College (NUC), Norway in 2007, 
and a PhD in Engineering Cybernetics from NTNU, 
Norway in 2012. He currently holds positions as Senior 
Researcher at Teknova, Norway and II Associate Professor 
at The Arctic University of Norway (UiT). 

Tor Inge Waag works as Specialist Engineer at MHWirth 
AS and holds a part time position as Senior Researcher at 
Teknova AS in Norway. He has received both his MSc and 
PhD in Physics from NTNU, Norway. His primary work 
focus is at present on prognostics and health management, 
signal processing, and condition monitoring. 

 


