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ABSTRACT

In this paper, we propose and study a new bivariate Weibull

model, called Bi-level Weibull Model, which arises when one

failure occurs after the other. Under some specific regularity

conditions, the reliability function of the second event can

be above the reliability function of the first event, and is al-

ways above the reliability function of the transformed first

event, which is a univariate Weibull random variable. This

model is motivated by a common physical feature that arises

from several real applications. The two marginal distributions

are a Weibull distribution and a generalized three-parameter

Weibull mixture distribution. Some useful properties of the

model are derived, and we also present the maximum likeli-

hood estimation method. A real example is provided to illus-

trate the application of the model.

1. INTRODUCTION

Consider two ordered events A and B with event A occurring

before event B, and event B may not occur within a time win-

dow right after event A. This kind of two ordered events arise

from many real problems in reliability, supply chain, manu-

facturing and other fields. It is desirable to develop a new bi-

variate distribution with physical meaningful interpretations.

Motivated by the real aerospace problems as described below,

we propose a new Bi-level Weibull model in this paper.

Many failure mechanisms can be traced to an underlying degra-

dation process. However, we often do not have detailed degra-

dation measurement. In unscheduled maintenance data, what

we typically observe is the time when a part is removed due to

evident failure. While in scheduled maintenance data, what

Shuguang Song et al. This is an open-access article distributed under the

terms of the Creative Commons Attribution 3.0 United States License, which

permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

we typically observe is either non-fault finding, or fault find-

ing (called latent failure). That is, a component may have

two-level observed failures with latent failure before evident

failure. Aircraft corrosion can be classified into three differ-

ent levels: Level 1, Level 2, and Level 3. Level 1 corrosion

occurs before Level 2 corrosion, and Level 2 corrosion oc-

curs before Level 3 corrosion. It is important for maintenance

crew to understand the behavior of Level 1 and Level 2 cor-

rosion in order to prevent the Level 3 corrosion. Here, we are

interested in two ordered events: latent failure vs evident fail-

ure, Level 1 corrosion vs Level 2 corrosion. In particular, we

would like to predict the second event (evident failure, Level

2 corrosion) based on the occurrence of the first event (latent

failure, Level 1 corrosion).

The univariate Weibull distributions have been widely used in

many different fields. Research on two-parameter and three-

parameter Weibull distributions can be found in Lai, Xie, and

Murthy (2003). For some recent works, see McCool (2011),

Singla, Jain, and Sharma (2012), Alzaatreh, Famoye, and Lee

(2013), Almalki and Yuan (2013), Bidram, Alamatsaz, and

Nekoukhou (2015), and Nourbakhsh, Mehrali, Jamalizadeh,

and Yari (2015). However, study of bivariate or multivari-

ate Weibull distributions is rather limited. Some recent ref-

erences on bivariate Weibull distributions include D. Hana-

gal (2006), Johnson and Lu (2007), Jose, Ristic, and Joseph

(2011), Yeh (2012), Verrill, Evans, Kretschmann, and Hat-

field (2015), Nadar and Kzlaslan (2016), and the references

therein. The applications of a bivariate Weibull model can be

found in many contexts, such as the times to the first and the

second failures of a repairable device, the breakdown times of

dual generators in a power plant, the survival times of the or-

gans in a two-organ human body system. For more informa-

tion, see Lu and Bhattacharyya (1990). Most of the existing

literature on the construction of bivariate Weibull models is
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based on making a power transformation on the marginals of

bivariate exponential distributions, see Balakrishnan and Lai

(2009), D. D. Hanagal (2010), and Kundu and Gupta (2011).

However, it is more desirable to derive bivariate Weibull dis-

tributions from physical motivations. Also, the property that

the marginal reliability function of one random variable is

above that of the other random variable under some regularity

conditions does not hold for existing bivariate lifetime mod-

els. Motivated by the maintenance tasks in aerospace indus-

try, we propose a new bivariate Weibull mode, i.e., Bi-level

Weibull Model, to model the case that the reliability function

of the second-level event is greater than that of the first-level

event. The marginal distribution for the first-level event is

a two-parameter Weibull distribution, and the marginal dis-

tribution for the second-level event is a generalized three-

parameter Weibull mixture distribution. This model can be

used quite effectively if the bivariate data show a non-constant

hazard rate.

The remainder of this paper is organized as follows. The Bi-

level Weibull model is presented in Section 2. The distri-

butional properties and parameter-estimation methods of the

bi-level Weibull model are studied in Section 3 and Section

4, respectively. We present an application to a real data in

Section 5. Finally, we provide some concluding thoughts in

Section 6.

2. MODEL DEVELOPMENT

Consider two random events A and B as shown in Fig. 1. The

event A always occurs before event B. Let X and Z be the

random occurrence times of event A and event B such that

Z ≥ X + δ for some δ ≥ 0.

Figure 1. The occurrences of events A and B.

Define Y ≡ Z − X − δ. Assume that X and Y have the

exponential probability density functions as follows:

fX(x) = θ1e
−θ1x,

fY (y) = θ2e
−θ2y,

for x > 0. The conditional probability density function of Z
given that event A occurs at time x is

fZ|X(z|X = x) = θ2e
−θ2(z−x−δ)

for 0 < x ≤ x + δ < z. Since X and Y are two independent

variables, the joint PDF of (X, Z) is then

fX,Z(x, z) = θ1θ2e
−(θ1−θ2)x−θ2(z−δ)

for 0 < x ≤ x + δ < z. Taking transformation X = Tσ1

1

and Z − δ = (T2 − δ)σ2 , where σ1 > 0 and σ2 > 0. We

then obtain the following Bi-level Weibull probability density

function:

fT1,T2
(t1, t2) = θ1θ2σ1σ2t

σ1−1
1 (t2 − δ)σ2−1 ×

e−θ2(t2−δ)σ2−(θ1−θ2)t
σ1

1 , (1)

where t2 > t
σ1/σ2

1 + δ > δ, θ1 > 0, θ2 > 0 are two scale

parameters, σ1 > 0 and σ2 > 0 are two shape parameters,

and δ ≥ 0 is a location parameter. We denote this Bi-level

Weibull distribution as BLW (θ1 , θ2, σ1, σ2, δ). Fig. 2 and

Fig. 3 show the density plot and the contour plot of a Bi-level

Weibull distribution with parameters (θ1, θ2, σ1, σ2, δ) =
(0.005, 0.001, 1.5, 2.5, 10).

Figure 2. Density plot of BLW (0.005, 0.001, 1.5, 2.5, 10).

Figure 3. Contour plot of BLW (0.005, 0.001, 1.5, 2.5, 10).

This bi-level Weibull model is different from the dependent

competing risk model and the time delay model, see Cooke

(1996), Cooke and Bedford (2002), and Christer (1999) for

detailed review. In the BLW (θ1 , θ2, σ1, σ2, δ), we observe

2
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(T1, T2) instead of min(T1, T2) for each subject, and model

(T1, T2) jointly. The introduction of the parameter δ in the

proposed model will play an important role in determining the

maintenance time in order to prevent the second-level event,

and to provide a safe time window in order to optimize sched-

uled maintenance actions. We explicitly derive the marginal

distribution of T2 instead of computing the convolution of

T1 and T2 − T1. In particular, this model is flexible enough

to model the cases that an event always occurs after another

event.

3. SOME RELIABILITY PROPERTIES

This Bi-level Weibull distribution has been developed based

on physical phenomena, and has some interesting distribu-

tional and structural properties. In the following, we assume

that the two scale parameters are distinct, namely θ1 6= θ2.

The case θ1 = θ2 is considered in Appendix A.

We first derive the two marginal distribution functions. Note

that the first marginal distribution of BLW (θ1 , θ2, σ1, σ2, δ)
is a two-parameter Weibull distribution with cumulative dis-

tribution function

FT1
(t) = 1 − e−θ1tσ1

, t > 0. (2)

The second marginal distribution of BLW (θ1 , θ2, σ1, σ2, δ)
is a generalized three-parameter Weibull mixture distribution

with cumulative distribution function

FT2
(t) =

θ1[1 − e−θ2(t−δ)σ2

]

θ1 − θ2
−

θ2[1− e−θ1(t−δ)σ2

]

θ1 − θ2
(3)

and probability density function

fT2
(t) =

θ1θ2σ2(t − δ)σ2−1

θ1 − θ2

[

e−θ2(t−δ)σ2

− e−θ1(t−δ)σ2

]

.

for t > δ. Also, the joint cumulative distribution function and

survival function of BLW (θ1 , θ2, σ1, σ2, δ) are

FT1,T2
(t1, t2) =

[

1 − e−θ2(t2−δ)σ2

+ (1/(θ1 − θ2) − 1)

×e−θ1(t2−δ)σ2

]

I

(

t1 > 0, δ < t2 ≤ t
σ1

σ2

1 + δ

)

+

[

1 − e−θ1t
σ1

1 −
θ1

θ1 − θ2
e−θ2(t−δ)σ2

×

(1 − e−(θ1−θ2)t
σ1

1 )
]

I

(

t2 > t
σ1

σ2

1 + δ > δ

)

,

ST1,T2
(t1, t2) = e−θ1t

σ1

1 I

(

t1 > 0, 0 < t2 ≤ t
σ1

σ2

1 + δ

)

+

[

θ1

θ1 − θ2
e−θ2(t2−δ)σ2−(θ1−θ2)t

σ1

1 −

θ2

θ1 − θ2
e−θ1(t−δ)σ2

]

I

(

t2 > t
σ1

σ2

1 + δ > δ

)

.

The bivariate failure rate function can be readily obtained us-

ing h(t1, t2) = f(t1, t2)/S(t1 , t2). As we are interested in

predicting the occurrence time of the second-level event, it is

recommended to give the formulae of the unconditional sur-

vival function P (T2 > t) for t > δ:

P (T2 > t) =

(

θ1

θ1 − θ2
e−θ2(t−δ)σ2

−
θ2

θ1 − θ2
e−θ1(t−δ)σ2

)

,

and the conditional survival function P (T2 > t | T1 = t1)
for t > δ + t1:

P (T2 > t|T1 = t1) = e−θ2(t−δ)σ2+θ2t
σ1

1 .

We now show that this BLW (θ1 , θ2, σ1, σ2, δ) can be used

to model two ordered events with the survival function of the

second event being always above that of the first event.

Proposition 1 The Bi-level Weibull model BLW (θ1 , θ2, σ1,
σ2, δ) preserves the property that the survival function of the

second event is always above that of the first event, i.e. P (T2 >
t) ≥ P (T1 > t) for all t ≥ 0, if (i) σ1 = σ2 and δ ≥ 0, or

(ii) σ1 > σ2 and δ ≥ (σ2/σ1)
σ2/(σ1−σ2).

Proof. If 0 ≤ t < δ, then P (T2 > t) = 1 and 0 ≤ P (T1 >
t) ≤ 1. Thus, P (T2 > t) − P (T1 > t) ≥ 0. If t ≥ δ,

it follows from the above two marginal distribution functions

that

P (T2 > t) − P (T1 > t) =

θ1

θ1 − θ2
e−θ2(t−δ)σ2

−
θ2

θ1 − θ2
e−θ1(t−δ)σ2

− e−θ1tσ1

.

Note that the function [θ1/(θ1−θ2)]e
−θ2t−[θ2/(θ1−θ2)]e

−θ1t

is decreasing in t for t > 0. If (t − δ)σ2 ≤ tσ1 for fixed σ1,

σ2 and δ, then

P (T2 > t) − P (T1 > t) ≥
θ1

θ1 − θ2
e−θ2tσ1

− e−θ1tσ1

−
θ2

θ1 − θ2
e−θ1tσ1

=
θ1

θ1 − θ2
(e−θ2tσ1

− e−θ1tσ1

) > 0

for all t ≥ δ.

If σ1 = σ2, it follows that the condition (t − δ)σ2 ≤ tσ1

holds for t ≥ δ. If σ1 > σ2, define g(t) = tσ1/σ2 + δ −
t for t ≥ δ. Note that g′(t) = (σ1/σ2)t

(σ1/σ2)−1 − 1 ≥
(σ1/σ2)δ

(σ1/σ2)−1 − 1. Thus, if δ ≥ (σ2/σ1)
σ2/(σ1−σ2) and

σ1 > σ2, then g′(t) ≥ 0 for t ≥ δ. Since g(δ) = δσ1/σ2 > 0,

then g(t) ≥ 0 for t ≥ δ. Thus is, the condition (t−δ)σ2 ≤ tσ1

holds for t ≥ δ, when σ1 > σ2 and δ ≥ (σ2/σ1)
σ2/(σ1−σ2).

2

Remark 1 Since the shape parameters σ1 and σ2 can differ,

it is possible that the time of occurrence of event B is smaller

than that of event A.

Remark 2 Note that T
σ1/σ2

1 = X1/σ2 . It follows that T
σ1/σ2

1

3
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has a two-parameter Weibull distribution with shape param-

eter σ2 and scale parameter θ
−1/σ2

1 . Thus, the time of the

second level failure event is always greater than or equal to

the time of a two-parameter Weibull distribution random vari-

able plus a constant δ ≥ 0.

Proposition 1 is a key reason why this proposed bivariate dis-

tribution can have many applications. More exactly, if the

two empirical marginal distribution functions show the phe-

nomenon described in Proposition 1, then the Bi-level Weibull

distribution may be considered as an underlying distribution.

As shown above, the first marginal distribution function is a

two-parameter Weibull distribution and the second marginal

distribution function is a generalized three-parameter Weibull

distribution. All these are the reasons why we name this

proposed bivariate distribution function as Bi-level Weibull

model.

Since the two marginal distributionsof BLW (θ1 , θ2, σ1, σ2, δ)
are Weibull and generalized three-parameter Weibull mixture,

the moments of different orders can be easily obtained, which

are conducive in determining the expected event time and the

dispersion, skewness and kurtosis in a given set of observa-

tions. From (2), the mean and variance of T1 can be expressed

as

E[T1] =

(

1

θ1

)1/σ1

Γ

(

1 +
1

σ1

)

,

V ar[T1] =

(

1

θ1

)2/σ1
[

Γ

(

1 +
2

σ1

)

− Γ2

(

1 +
1

σ1

)]

.

Here, Γ(a) =
∫∞

0
za−1e−zdz is the gamma function for a >

0. The moment-type estimates of parameters θ1 and σ1 can

thus be obtained, denoted by θ̂1 and σ̂1. Similarly, the mean,

the variance and the Fisher skew of T2 can be obtained as

follows:

E[T2] =
θ̂1

θ̂1 − θ2

(

1

θ2

)1/σ2

Γ

(

1 +
1

σ2

)

−
θ2

θ̂1 − θ2

(

1

θ̂1

)1/σ2

Γ

(

1 +
1

σ2

)

+ δ,

V ar[T2] = 2δE[T2] + δ2 − E2[T2] +
θ̂1

θ̂1 − θ2

(

1

θ2

)2/σ2

×Γ

(

1 +
2

σ2

)

−
θ2

θ̂1 − θ2

(

1

θ̂1

)2/σ2

Γ

(

1 +
2

σ2

)

,

Sk[T2] =
µ[T2] + 3δ(V ar[T2] + E2[T2]) + 3δ2E[T2] + δ3

(V ar[T2])3/2
,

µ[T2] =
θ̂1

θ̂1 − θ2

(

1

θ2

)3/σ2

Γ

(

1 +
3

σ2

)

−

θ2

θ̂1 − θ2

(

1

θ̂1

)3/σ2

Γ

(

1 +
3

σ2

)

.

To study the correlation between T1 and T2, one needs to

compute the joint moments E(T1T2) =
∫

t1t2f(t1 , t2)dt1dt2
and this term does not have an analytical expression and can

only be computed using numerical methods. Given a bivari-

ate data set of (T1, T2), we can transform them into (X, Y ).
If the transformed data shows linear independence, then it

implies that the bi-level Weibull model is suitable. From the

equations above, the moment estimators of parameters θ2, σ2

and δ are not available in closed form and have to be solved

numerically. Considering this, maximum likelihood estima-

tion method will be presented in Section 4 for estimating the

unknown parameters.

We now study more about the marginal distribution function

FT2
(t) in (3) and its corresponding hazard rate function:

hT2
(t) =

fT2
(t)

1 − FT2
(t)

=

θ1θ2σ2(t − δ)σ2−1
[

e−θ2(t−δ)σ2

− e−θ1(t−δ)σ2
]

θ1e−θ2(t−δ)σ2 − θ2e−θ1(t−δ)σ2

for t > δ. It is observed that FT2
(t) is a weighted sum of two

univariate three-parameter Weibull distributions with weights

w1 = θ1/(θ1 − θ2) and w2 = −θ2/(θ1 − θ2). The two three-

parameter Weibull distributions have the same shape and lo-

cation parameters, but different scale parameters. Note that

w1 + w2 = 1 and w1 × w2 < 0. Thus, FT2
(t) is a general-

ized three-parameter Weibull mixture distribution. A physical

interpretation of FT2
(t) being a lifetime distribution can be

given in the context of imperfect maintenance. Suppose the

lifetime of a newly installed system follows a three-parameter

Weibull distribution, and maintenance is imperfect such that

the system is restored to somewhere between as bad as old

and as good as new. Then the lifetime of the system after im-

perfect maintenance can be modeled by the FT2
(t). The nega-

tive mixing weight reflects the maintenance efficiency, lessen-

ing the probability (risk) of failure. Mixture distributionswith

negative mixing weights have been studied previously. Jiang,

Zuo, and Li (1999) found that when components of a sys-

tem follow a Weibull or an inverse Weibull distribution with

a common shape parameter, the system can be represented

by a Weibull or inverse Weibull mixture model with negative

weights. More recent research on generalized mixture dis-

tribution includes investigation of constraints on the mixing

weights under which the generalized mixture of Weibull dis-

tributions is a valid probability model, see Franco and Vivo

(2009), and Franco, Balakrishnan, Kundu, and Vivo (2014),

the comparison of different estimation methods for the mix-

ture Weibull models, see Karakoca, Erisoglu, and Erisoglu

(2015), and Panteleeva, Gonzlez, Huerta, and Alva (2015),

and classification of the aging properties of generalized mix-

tures of two or three Weibull distributions, see Franco, Vivo,

and Balakrishnan (2011). The generalized three-parameter

Weibull mixture distribution in this study can be used in op-

erational research to characterize maintenance efficiency.

4



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

The structural property of the hazard rate function hT2
(t) is

given by the following proposition.

Proposition 2 Let T2 be a random variable that follows a

generalized three-parameter Weibull mixture distribution with

survival function

S(t) =
θ1

θ1 − θ2
e−θ2(t−δ)σ

−
θ2

θ1 − θ2
e−θ1(t−δ)σ

, t > δ,

where θ1 > 0 and θ2 > 0 are two scale parameters, σ > 0
is a common shape parameter, δ ≥ 0 is a location param-

eter. Then T2 has increasing hazard rate iff σ ≥ 1. t2 has

decreasing hazard rate if σ ≤ 0.5. Moreover, T2 has de-

creasing hazard rate if 0.5 < σ < 1 and min(θ1, θ2) +
max(θ1 , θ2)τ

2−(θ1+θ2)τ−|θ1−θ2|σ(1−σ)−1τ log τ ≥ 0,

where τ = [0.5σ(max(θ1, θ2))
−1|θ1−θ2|(1−σ)−1][1+(1+

4(σ − 1)2σ−2θ1θ2(θ1 − θ2)
−2)1/2].

Proof. Note that the monotonicity of the failure rate func-

tion does not depend on the values of the location parameter

δ. Readers are referred to Franco et al. (2011) for the proof of

the general case where the mixing weights are two indepen-

dent arguments. (In our case, a1 and a2 are two functionals

of θ1 and θ2.) 2

Take parameters (θ1, θ2, δ) = (200, 100, 10) and σ2 = 0.5,
0.9, 1.5, Fig. 4 shows the probability density function fT2

(t)
and Fig. 5 shows the hazard rate function hT2

(t). Unlike

the common Weibull distributions, fT2
(t) changes its shape,

from monotone decreasing to unimodal, depending on θ1, θ2

and σ2 together. The changing point is not available in an-

alytical form, but can be obtained using numerical methods.

It is observed that we have an increasing (decreasing) hazard

rate function when σ2 = 1.5 (σ2 = 0.5, 0.9).

Figure 4. Density plot of fT2
(t).

Figure 5. Hazard rate plot of hT2
(t).

4. PARAMETER ESTIMATION

In this section, we present the maximum likelihood estima-

tion method. Given a random sample z = {(zi1, zi2), i =
1, ..., n} from BLW (θ1 , θ2, σ1, σ2, δ) with sample size n, the

log-likelihood function is

l(θ1 , θ2, σ1, σ2, δ; z) = n (log θ1 + log θ2 + log σ1 + log σ2)

+(σ1 − 1)

n
∑

i=1

log zi1 + (σ2 − 1)

n
∑

i=1

log(zi2 − δ)

−θ2

n
∑

i=1

(zi2 − δ)σ2 − (θ1 − θ2)

n
∑

i=1

zσ1

i1 . (4)

Set the partial derivatives of the log-likelihood function (4)

with respect to θ1, θ2, σ1, σ2 and δ to be zeros. Then, we have

θ1 = n/
∑n

i=1 zσ1

i1 , θ2 = n/(
∑n

i=1(zi2 − δ)σ2 −
∑n

i=1 zσ1

i1 ),
and equations

n

σ1
+

n
∑

i=1

log zi1−

n

∑n
i=1 zσ1

i1 log zi1 × [
∑n

i=1(zi2 − δ)σ2 − 2
∑n

i=1 zσ1

i1 ]
∑n

i=1 zσ1

i1 × [
∑n

i=1(zi2 − δ)σ2 −
∑n

i=1 zσ1

i1 ]
= 0,

n

σ2
+

n
∑

i=1

log(zi2−δ)−n

∑n
i=1(zi2 − δ)σ2 log(zi2 − δ)

∑n
i=1(zi2 − δ)σ2 −

∑n
i=1 zσ1

i1

= 0,

−
n
∑

i=1

σ2 − 1

zi2 − δ
+ nσ2

∑n
i=1(zi2 − δ)σ2−1

∑n
i=1(zi2 − δ)σ2 −

∑n
i=1 zσ1

i1

= 0.

The maximum likelihood estimates σ̂1, σ̂2 and δ̂ can be ob-

tained by solving the above three non-linear equations using

numerical algorithms. The maximum likelihood estimates θ̂1

and θ̂2 are then obtained once we have σ̂1, σ̂2 and δ̂. We im-

plemented the developed algorithms in R by using the Nelder-

Mead method in package “optimx”.

Let 0 ≤ t11 ≤ t21 ≤ ∞ be an observation of T1. If 0 < t11 =
t21 < ∞, then we obtain an exact event time at t11

(

i.e., t21
)

.

5
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If 0 < t11 < t21 = ∞, then T1 is right-censored at time t11.

If 0 ≤ t11 < t21 < ∞, then T1 is interval-censored within
(

t11, t
2
1

)

. Also, let 0 ≤ t12 ≤ t22 ≤ ∞ be an observation of T2.

If 0 < t12 = t22 < ∞, then we obtain an exact occurrence time

at t12
(

i.e., t22
)

. If 0 < t12 < t22 = ∞, then T2 is right-censored

at time t12. If 0 ≤ t12 < t22 < ∞, then T2 interval-censored

within
(

t12, t
2
2

)

. Given a random sample (t1i1, t
2
i1; t

1
i2, t

2
i2) for

i = 1, . . . , n, where 0 ≤ t1i1 ≤ t2i2 ≤ ∞, 0 ≤ t1i2 ≤ t2i2 ≤ ∞,

we have

Proposition 3 Assume that
∫ a

a

∫ b

b
fT1,T2

(t1, t2)dt2dt1 =
fT1,T2

(a, b). The likelihood function

ln(θ1, θ2, σ1, σ2, δ) =

n
∏

i=1

(

∫ t2
i1

t1
i1

∫ t2
i2

t1
i2

fT1,T2
(t1, t2)dt2dt1

)

has a closed-form expression.

The proof is quite straightforward and is given in Appendix

B. The elegant property of closed-form likelihood function

is very important as the maximization of the likelihood can

be easily achieved when the objective function is in analyt-

ical form. Many bivariate-type distributions have been for-

mulated: bivariate gamma-type distribution (Saboor, Provost,

& Ahmad, 2012), Marshall-Olkin bivariate Weibull distribu-

tion (Jose et al., 2011), bivariate distributions based on copula

(Vrac, Billard, Diday, & Chedin, 2012, and Kojadinovic &

Yan, 2012). However, the limited availability of closed-form

mathematical representations in dealing with incomplete data

makes those models not easy to use.

5. AN APPLICATION EXAMPLE

In this section, we fit the Bi-level Weibull model to the Ger-

man breast cancer study data given by Sauerbrei and Royston

(1999). The purpose here is to illustrate the application of the

BLW model instead of comparing the results with previous

analysis of this dataset.

From July 1984 to December 1989, 720 patients with pri-

mary node positive breast cancer were recruited for this breast

cancer study. In the study, patients were followed from the

date of breast cancer diagnosis until censoring or dying from

breast cancer. The total number of events, or the number of

deaths due to breast cancer, is 171. There are 8 covariates in

the study, with 3 of them being categorical: Menopausal Sta-

tus (2 levels), Hormone Therapy (2 levels) and Tumor Grade

(3 levels). Based on the levels of the categorical covariates,

we divide the original data into 12 subgroups. The 12 sub-

groups are summarized in Table 1.

Here, the first-level event is the recurrence of the breast can-

cer and the second-level event is the death due to the cancer.

cp1 denotes the censoring percentages of the first-level event

which is defined as the time to the recurrence. cp2 denotes the

censoring percentage of the second-level event which is de-

fined as the time to death. For each subgroup, we first fit the

meno- hormone tumor group
group pausal therapy grade size cp1 cp2

1 yes yes 1 25 0.8000 0.9600
2 yes yes 2 144 0.5625 0.7986
3 yes yes 3 62 0.5323 0.6290
4 yes no 1 8 0.8750 1
5 yes no 2 39 0.6154 0.7436
6 yes no 3 12 0.5000 0.6667
7 no yes 1 23 0.6957 0.8696
8 no yes 2 137 0.4599 0.7153
9 no yes 3 49 0.4490 0.5918
10 no no 1 25 0.8000 0.9200
11 no no 2 124 0.5968 0.7661
12 no no 3 38 0.5526 0.7105

Table 1. Summary of the 12 subgroups.

marginal distribution FT1
(t) to the first-level data to get an es-

timate of (θ1, σ1), then fit the marginal distribution FT2
(t) to

the second-level data to get an estimate of (θ2, σ2, δ). Using

these estimates as initial values, we fit the BLW to each sub-

group data by maximizing the corresponding log-likelihoods.

The results are given in Table 2. Here, ql is the maximized

log-likelihood value divided by the corresponding group size.

As shown in Table 2, the estimates σ̂1 and σ̂2 are close to each

other for each subgroup. By comparing ql, it is observed that

the BLW is more suitable for the data from patients with tu-

mor grade 1. To show the goodness of fit, we plot the original

complete data within the contours for subgroup 11 with 29

pairs of complete observations. As shown in Figure 6, the 29

complete values scatter closely in the area where the likeli-

hood is high, indicating that the fitted bi-level Weibull model

conforms to the data set very well.

group θ̂1 θ̂2 σ̂1 σ̂2 δ̂ ql
1 2.12e-6 4.94e-6 1.5765 1.5765 0.1287 -2.2829
2 0.0001 0.0002 1.1926 1.1938 5.2963 -5.4476
3 0.0003 0.0012 1.0581 1.0581 2.59e-5 -6.7107
4 1.28e-8 0.0001 2.1280 2.0252 2.1088 -1.2746
5 4.39e-5 0.0002 1.2485 1.2489 1.3777 -5.4234
6 0.0031 0.0108 0.7329 0.7349 2.4287 -6.7771
7 1.87e-6 3.46e-6 1.6678 1.6682 4.1749 -3.8659
8 0.0001 0.0002 1.2169 1.2170 0.0051 -6.8595
9 0.0003 0.0014 1.0876 1.0906 28.4457 -7.4764
10 1.53e-6 0.0001 1.6399 1.5730 7.8029 -2.3637
11 3.13e-5 0.0001 1.3179 1.3184 2.2094 -5.4017
12 0.0003 0.0007 1.0733 1.0764 4.3181 -6.0925

Table 2. Maximum likelihood estimation of the 12 subgroups.

Figure 6. Contour graph with 29 complete observations)
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6. CONCLUSION AND DISCUSSION

In this paper, a new Bi-level Weibull Model was proposed to

jointly study the usual stochastic order of two random events.

The marginal distribution of the first event follows an univari-

ate Weibull distribution; while the marginal distribution of the

second event follows a generalized three-parameter Weibull

distribution with negative mixing weights. The marginal dis-

tribution of the second event can be used in operation research

to characterize maintenance efficiency. Maximum likelihood

method is implemented to estimate the parameters in the model.

A nice feature of the BLW is that the likelihood function has

analytical forms for complete and censored data. Analysis of

the German Breast Cancer Study data was also provided to

illustrate the application of this model.

The main purpose of this paper is to propose this Bi-level

Weibull model to address the two-level failure events, espe-

cially the case that the failure time of one event is always ob-

served to be greater that the failure time of another event. This

model can be further developed in many aspects like model-

ing the location parameter δ in the Bi-level Weibull model as

a random variable, developing the corresponding regression

model, developing the goodness-of-fit test for model selec-

tion, and comparing various parameter estimation methods

for a robust and fast algorithm. In particular, we believe that

this model can be extended to multi-level events 0 < Z1 <
Z2 < · · · < Zn < ∞ such that Z1, Zi − Zi−1 − δi−1 > 0
for i = 2, . . . , n and nonnegative δ1, . . . , δn−1 are indepen-

dent random variables following certain distributions. Similar

transformation as shown in Section 2 should yield a multi-

level model equivalent to (1).
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APPENDIX

A. Case θ1 = θ2

Replace θ1 by θ2 when θ1 = θ2. It follows that the joint

density function (1) becomes fT1,T2
(t1, t2) = θ2σ1t

σ1−1
1 ×

θ2σ2(t2 − δ)σ2−1e−θ2(t2−δ)σ2

for t2 > t
σ1/σ2

1 + δ > δ. The

first marginal density function is fT1
(t) = θ2σ1t

σ1−1e−θ2tσ1

for t > 0. The second marginal density function is fT2
(t) =

θ2
2σ2(t − δ)2σ2−1e−θ2(t−δ)σ2

for t > δ. It follows that the

second marginal distributional function is

FT2
(t) = 1 − e−θ2(t−δ)σ2

− θ2(t − δ)σ2e−θ2(t−δ)σ2

for t > δ. The hazard rate function of T2 is given by

hT2
(t) =

θ2
2σ2(t − δ)2σ2−1

1 + θ2(t − δ)σ2

,

for t > δ. When σ2 ≥ 1, hT2
(t) is a monotone increasing

function in t. When 0.5 < σ2 < 1, the hazard rate function

is inverted-bathtub shaped, and the change point is at t∗ =
δ + [(2σ2 − 1)θ−1

2 (1 − σ2)
−1]1/σ2 . When σ2 ≤ 0.5, hT2

(t)
is a monotone decreasing function in t. Thus, the hazard rate

function of T2 still has different shapes when θ1 = θ2.

B. Derivation of the likelihood function

Let I(·) denote the indicator function which equals to 1 if

the argument is true, 0 otherwise. Denote the ith observa-

tion as ti = (t1i1, t2i1; t1i2, t2i2), i = 1, ..., n. If ti is a com-

plete datum, we have the likelihood l(ti; θ1, θ2, σ1, σ2, δ) =
fT1,T2

(t1i1, t1i2). If 0 < t1i1 = t2i1 < ∞ and 0 < t1i2 < t2i2 =
∞, we have the likelihood

l(ti; θ1, θ2, σ1, σ2, δ) =

∫ ∞

t1
i2

fT1,T2
(t1i1, t2)dt2

= θ1σ1t
1
i1

σ1−1
e−θ1t1

i1

σ1

× I
(

t1i2 ≤ t1i1
σ1

σ2 + δ
)

+ θ1σ1t
1
i1

σ1−1
e−(θ1−θ2)t

1

i1

σ1−θ2(t
1

i2
−δ)

σ2

×

I
(

t1i2 > t1i1
σ1

σ2 + δ
)

.

If 0 < t1i1 = t2i1 < ∞ and 0 ≤ t1i2 < t2i2 < ∞, we have the

likelihood

l(ti; θ1, θ2, σ1, σ2, δ) =

∫ t2
i2

t1
i2

fT1,T2
(t1i1, t2)dt2

= θ1σ1t
1
i1

σ1−1
e−(θ1−θ2)t

1

i1

σ1

×
[

e−θ2(t1
i2
−δ)

σ2

− e−θ2(t
2

i2
−δ)

σ2

]

I
(

t1i2 > t1i1

σ1

σ2 + δ
)

+ θ1σ1t
1
i1

σ1−1
e−(θ1−θ2)t

1

i1

σ1

×
[

e−θ2t1
i1

σ1

− e−θ2(t
2

i2
−δ)

σ2

]

I
(

t1i2 ≤ t1i1

σ1

σ2 + δ < t2i2

)

.

If 0 < t1i1 < t2i1 = ∞ and 0 < t1i2 = t2i2 < ∞, we have the

likelihood

l(ti; θ1, θ2, σ1, σ2, δ) =

∫ ∞

t1
i1

fT1,T2
(t1, t1i2)dt1

=
θ1θ2σ2(t

1
i2 − δ)

(σ2−1)

θ1 − θ2
e−θ2(t

1

i2
−δ)

σ2

×
[

e−(θ1−θ2)t
1

i1

σ1

−e−(θ1−θ2)(t
1

i2
−δ)

σ2

]

× I
(

0 < t1i1 < (t1i2 − δ)
σ2

σ1

)

.

If 0 < t1i1 < t2i1 = ∞ and 0 < t1i2 < t2i2 = ∞, we have the

likelihood

l(ti; θ1, θ2, σ1, σ2, δ) =

∫ ∞

t1
i1

∫ ∞

t1
i2

fT1,T2
(t1, t2)dt2dt1

= e−θ1t1
i1

σ1

I
(

t1i2 ≤ t1i1
σ1

σ2 + δ
)

+

θ1

θ1 − θ2
e−θ2(t

1

i2
−δ)

σ2−(θ1−θ2)t
1

i1

σ1

I
(

t1i2 > t1i1

σ1

σ2 + δ
)

−
θ2

θ1 − θ2
e−θ1(t1

i2
−δ)

σ2

× I
(

t1i2 > t1i1
σ1/σ2

+ δ
)

.
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If 0 < t1i1 < t2i1 = ∞ and 0 < t1i2 < t2i2 < ∞, we have the

likelihood

l(ti; θ1, θ2, σ1, σ2, δ) =

∫ t2
i2

t1
i2

∫ ∞

t1
i1

fT1,T2
(t1, t2)dt1dt2

=
θ1e

−(θ1−θ2)t
1

i1

σ1

θ1 − θ2

[

e−θ2(t
1

i2
−δ)

σ2

− e−θ2(t
2

i2
−δ)

σ2

]

×I
(

t1i2 > t1i1

σ1

σ2 + δ
)

+
θ1

θ1 − θ2
e−(θ1−θ2)t

1

i1

σ1

[

e−θ2t1
i1

σ1

− e−θ2(t
2

i2
−δ)

σ2

]

×I
(

t1i2 ≤ t1i1

σ1

σ2 + δ < t2i2

)

−
θ2

θ1 − θ2

[

e−θ1(t1
i2
−δ)

σ2

− e−θ1(t
2

i2
−δ)

σ2

]

×I
(

t1i2 > t1i1

σ1

σ2 + δ
)

−
θ2

θ1 − θ2

[

e−θ1t1
i1

σ1

− e−θ1(t
2

i2
−δ)

σ2

]

×I
(

t1i2 ≤ t1i1
σ1

σ2 + δ < t2i2

)

.

If 0 < t1i1 < t2i1 < ∞ and 0 < t1i2 = t2i2 < ∞, we have the

likelihood

l(ti; θ1, θ2, σ1, σ2, δ) =

∫ t2
i1

t1
i1

fT1,T2
(t1, t1i2)dt1

=
θ1θ2

θ1 − θ2
σ2(t

1
i2 − δ)

(σ2−1)
e−θ2(t

1

i2
−δ)

σ2

×

[

e−(θ1−θ2)t
1

i1

σ1

− e−(θ1−θ2)t
2

i1

σ1

]

I
(

t1i2 > t2i1
σ1

σ2 + δ
)

+
θ1θ2σ2(t

1
i2 − δ)

(σ2−1)

θ1 − θ2
e−θ2(t

1

i2
−δ)

σ2

[

e−(θ1−θ2)t
1

i1

σ1

−

e−(θ1−θ2)(t
1

i2
−δ)

σ2

]

I
(

t2i1
σ1

σ2 + δ ≥ t1i2 > t1i1
σ1

σ2 + δ
)

.

If 0 < t1i1 < t2i1 < ∞ and 0 < t1i2 < t2i2 = ∞, we have the

likelihood

l(ti; θ1, θ2, σ1, σ2, δ) =

∫ t2
i1

t1
i1

∫ ∞

t1
i2

fT1,T2
(t1, t2)dt2dt1

=
[

e−θ1t1
i1

σ1

− e−θ1t2
i1

σ1

]

I
(

t1i2 ≤ t1i1

σ1

σ2 + δ
)

+
[

e−(θ1−θ2)t
1

i1

σ1

− e−(θ1−θ2)t
2

i1

σ1

]

×

θ1

θ1 − θ2
e−θ2(t1

i2
−δ)

σ2

I
(

t1i2 > t2i1

σ1

σ2 + δ
)

+ e−θ2(t1
i2
−δ)

σ2

[

e−(θ1−θ2)t
1

i1

σ1

− e−(θ1−θ2)(t
1

i2
−δ)

σ2

]

×

θ1σ2(t
1
i2 − δ)

(σ2−1)

θ1 − θ2
I
(

t2i1

σ1

σ2 + δ ≥ t1i2 > t1i1

σ1

σ2 + δ
)

+
[

e−θ1(t
1

i2
−δ)

σ2

− e−θ1t2
i1

σ1

]

I
(

t2i1
σ1

σ2 ≥ t1i2 − δ > t1i1
σ1

σ2

)

.

If 0 < t1i1 < t2i1 < ∞ and 0 < t1i2 < t2i2 < ∞, we have the

likelihood

l(ti; θ1, θ2, σ1, σ2, δ) =

∫ t2
i1

t1
i1

∫ t2
i2

t1
i2

fT1,T2
(t1, t2)dt2dt1

= l1 × I
(

t1i2 ≤ t1i1
σ1

σ2 + δ, t1i1
σ1

σ2 < t2i2 − δ ≤ t2i1
σ1

σ2

)

+l2 × I
(

t1i2 ≤ t1i1
σ1

σ2 + δ, t2i2 > t2i1
σ1

σ2 + δ
)

+l3 × I
(

t1i1

σ1

σ2 < t1i2 − δ ≤ t2i1

σ1

σ2 , t1i2 < t2i2 ≤ t2i1

σ1

σ2 + δ
)

+l4 × I
(

t1i1
σ1

σ2 < t1i2 − δ ≤ t2i1
σ1

σ2 , t2i2 > t2i1
σ1

σ2 + δ
)

+l5 × I
(

t1i2 > t2i1
σ1

σ2 + δ, t2i2 > t1i2

)

,

where

l1 = e−θ1t1
i1

σ1

+
θ2

θ1 − θ2
e−θ1(t

2

i2
−δ)

σ2

−

θ1

θ1 − θ2
e−(θ1−θ2)t

1

i1

σ1−θ2(t
2

i2
−δ)

σ2

,

l2 = e−θ1t1
i1

σ1

− e−θ1t2
i1

σ1

−
θ1

θ1 − θ2
×

(

e−(θ1−θ2)t
1

i1

σ1−θ2(t
2

i2
−δ)

σ2

− e−(θ1−θ2)t
2

i1

σ1−θ2(t
2

i2
−δ)

σ2

)

,

l3 =
θ1e

−(θ1−θ2)t
1

i1

σ1

θ1 − θ2

(

e−θ2(t
1

i2
−δ)

σ2

− e−θ2(t
2

i2
−δ)

σ2

)

−
θ2

θ1 − θ2

(

e−θ1(t
1

i2
−δ)

σ2

− e−θ1(t
2

i2
−δ)

σ2

)

,

l4 = e−θ1(t
1

i2
−δ)

σ2

− e−θ1t2
i1

σ1

+
θ1

θ1 − θ2

(

e−(θ1−θ2)t
1

i1

σ1−θ2(t
1

i2
−δ)

σ2

− e−θ1(t
1

i2
−δ)

σ2

)

−

θ1e
−θ2(t

2

i2
−δ)

σ2

θ1 − θ2

(

e−(θ1−θ2)t
1

i1

σ1

− e−(θ1−θ2)t
2

i1

σ1

)

,

l5 =
θ1

θ1 − θ2

(

e−θ2(t1
i2
−δ)

σ2

− e−θ2(t2
i2
−δ)

σ2

)

×

(

e−(θ1−θ2)t
1

i1

σ1

− e−(θ1−θ2)t
2

i1

σ1

)

.
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