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ABSTRACT

Creating a unified fault diagnosis model that can detect
faults across systems with different ratings (system indepen-
dent fault diagnosis) would be of great interest in making
condition-based maintenance (CBM) more popular. In this
work, three phase synchronous generators with 3 and 5 kVA
ratings are used for detecting stator inter-turn short circuit
faults.

Our baseline is a 3 kVA generator working at 1 A load dur-
ing training and testing, to emulate the system/load depen-
dent fault diagnosis. We obtained a classification accuracy of
99.75%, 100% and 100% for R phase, Y phase and B phase
faults respectively. Subsequently, we evaluated the system for
its load independent performance. Performance accuracy de-
teriorated due to the load specific variations (LSV) in the in-
put feature vector (IFV). LSV is undesired, and we used nui-
sance attribute projection (NAP) to remove them. Using NAP,
we obtained a performance improvement of 23.13%, 17.75%
and 20.72% for three fault models on the 3 kVA generator and
similar performance improvement was obtained for 5 kVA
generator also.

Further, we experimented for load and system independent
fault diagnosis. In this case, we consider LSV and system
specific variations (SSV) on IFV as undesired. We exper-
imented with two types of NAP, (1) single step NAP, (2)
stacked NAP. Experimental results show that the two staged
stacked NAP outperforms. We obtained an improvement of
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23.99%, 16.06% and 28.39%, in classification accuracy for
three fault models, resulting in overall classification accuracy
of 89.22%, 94.67% and 94.59% for R phase, Y phase and B
phase fault models respectively.

1. INTRODUCTION

Condition-based maintenance (CBM) is becoming increas-
ingly important due to its ability to reduce maintenance cost
and improve productivity (Jardine, Lin, & Banjevic, 2006).
It involves continuously monitoring of system condition by
observing different parameters, and maintenance decision is
taken if machine starts behaving abnormally. Fault diagno-
sis is an integral part of CBM, which involves fault detection,
fault isolation and fault identification.

CBM can be performed using three approaches: model based,
data driven and hybrid approaches. Model based approach
involves mathematical modeling of a physical system, hence
it requires complete knowledge of the system design and its
specifications. For complex systems, it is very difficult to im-
plement mathematical model incorporating all design specifi-
cations, hence model based approach is not very popular for
such systems. Data driven approach does not involve model-
ing of the system, hence complete knowledge of system de-
sign and its specifications is not required (Yin, Ding, Xie,
& Luo, 2014). It involves recording of system parameters
during good and faulty conditions, and analysis of recorded
signals to determine fault signatures.

Fault diagnosis of synchronous generator has been explored
by many researchers to date. Nanidi et al. (Nandi, Toliyat,
& Li, 2005) described various types of faults generally oc-
curring in electrical machines, out of which almost 30% to
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40% faults are stator winding related faults. Stator winding
short circuit faults develop from inter-turn faults, which oc-
curs mainly because of insulation failure. If not addressed,
inter-turn faults increase winding temperature and lead to in-
sulation failure, which may result in coil to coil shorting, and
even entire machine could breakdown. Hence prior diagno-
sis of inter-turn faults is very important for condition based
monitoring of synchronous generators (Siddique, Yadava, &
Singh, 2005). Siddique et al. (Siddique et al., 2005) illus-
trated various monitoring techniques for stator winding fault
diagnosis of induction machines. Among all monitoring tech-
niques, motor current is most widely used, because current
sensors are already available in most machines and measure-
ment is non-invasive. Gandhi et al. (A. Gandhi, Corrigan,
& Parsa, 2011) reviewed recent trends in diagnosis of stator
winding inter-turn faults.

Various signal processing techniques have been experimented
to analyze recorded signals and to identify distinguishable
fault signatures. Neti et al. (Neti & Nandi, 2009) analyzed
different harmonics in stator current and investigated their
applicability for fault detection. Since stator current is non-
stationary, time resolution is lost while performing Fourier
transform. Hence analyzing signal in frequency domain is not
sufficient for the fault diagnosis. For such non-stationary sig-
nals, Hilbert-Huang Transformation (HHT) or wavelet trans-
form (WT) can be used for better time-frequency representa-
tion. Wang et al. (Wang, Liu, & Chen, 2014) experimented
Hilbert-Huang Transformation (HHT) to diagnose incipient
stator insulation fault in permanent magnet synchronous gen-
erator. Dash et al. (Dash, Subudhi, & Das, 2010) used
discrete wavelet transform (DWT) for analyzing behavior of
interturn fault in induction motor.

Artificial intelligence (AI) based techniques have also been
experimented to discover knowledge about health of the sys-
tem, so that diagnosis can be performed with less human
intervention (Awadallah & Morcos, 2003). Bessam et al.
(Bessam, Menacer, Boumehraz, & Cherif, 2017) used stator
current signals with wavelet transform and neural network
classifier to diagnose and locate inter-turn faults in induc-
tion motor. Rajeswari et al. (Rajeswari & Kamaraj, 2007)
used wavelet based adaptive neuro-fuzzy inference system
(ANFIS) to detect inter-turn faults in synchronous genera-
tor. Gopinath et al. (Krishna et al., 2016; Gopinath, Kumar,
Vishnuprasad, & Ramachandran, 2015) used feature mapping
technique with support vector machine (SVM) classifier for
inter-turn fault detection in synchronous generators.

From literature survey, it can be found that existing CBM
realizations use synchronous generator of specific rating for
data collection, and developed diagnosis model is tested on
machine with same ratings only. However in factory environ-
ment, many machines with different power ratings are gen-
erally used, and these approaches require separate diagno-

sis model for each machine with different ratings. To over-
come this problem, machine independent fault diagnosis sys-
tem can be used, where single diagnosis model can be used
to detect faults in synchronous generators of same character-
istics but having different power ratings.

Because of different power ratings and different loading con-
ditions, fault signatures captured by diagnosis model will
have system specific variations (SSV) and load specific varia-
tions (LSV) (Gopinath, Kumar, & Ramachandran, 2016). Be-
cause of these variations, performance of the fault diagnosis
model deteriorates. These variations can be considered as a
nuisance for classification (J. Gandhi et al., 2017; Gopinath,
Kumar, Ramachandran, Upendranath, & Kiran, 2016), and
their effect on fault signatures should be reduced to have a
robust fault diagnosis model. Such nuisance attributes can
be projected out from the input feature vector (IFV) using
nuisance attribute projection (NAP). NAP was proposed by
Solomonoff et al. (Solomonoff, Campbell, & Quillen, 2007;
Solomonoff, Campbell, & Boardman, 2005) for automatic
speaker recognition (ASR) system, where biggest challenges
for performance improvement were channel and handset vari-
ations. Because of different microphones used and environ-
ment noise, there were variations in utterances recorded from
same speaker and classification performance was degraded
because of these variations. NAP was used to project out such
nuisance attributes from original feature space. NAP was also
experimented in face recognition system to diminish effect of
environmental factors such as illumination (Štruc et al., 2010;
Tome et al., 2012; Yifrach et al., 2016).

In this work, we experimented two NAP approaches to reduce
multiple nuisance variations from IFV, stacked NAP and sin-
gle stage NAP (Solomonoff et al., 2007). In stacked NAP
approach, SSV can be removed in first layer and LSV can be
removed in second layer, or LSV can be removed in first layer
and SSV can be removed in second layer. In single stage NAP
approach, both LSV and SSV can be removed simultaneously
using composite weight matrix. From experiments, we note
that by removing SSV in first layer and LSV in second layer
in stacked NAP, optimum classification performance can be
obtained.

This paper is organized as follows. Section 2 explains exper-
imental setup and design of stator winding for fault injection.
Data collection is explained in section 3. Discrete wavelet
transform (DWT) and nuisance attribute projection (NAP) are
discussed briefly in section 4. Experiments and results are de-
scribed in section 5 and section 6 concludes the paper.

2. EXPERIMENTAL SETUP

Normally in synchronous generators, taps are provided at 0%
and 100% of winding coils in stator and field windings. How-
ever more terminals are required to introduce faults for condi-
tion based maintenance. In this work, two custom-made syn-
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Figure 1. Design of stator winding for fault injection Figure 2. Synchronous generator test setup

Figure 3. Current signals from the synchronous generator during healthy and fault condition
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chronous generators with power ratings of 3 kVA and 5 kVA
are used. Three taps are provided at 30%, 60% and 82% in
each coil and six coils are present in each phase, i.e. R phase,
Y phase and B phase. Hence 18 taps are there for each phase
and 54 total taps in stator winding. These taps are accessible
from terminal board situated on the machine and can be used
to inject inter-turn faults. Design of stator winding is shown
in Figure 1 and synchronous generator test setup is shown in
Figure 2. Detailed description of test setup is elaborated in
(Gopinath et al., 2013).

3. DATA COLLECTION

CBM requires recording of signals during healthy and faulty
conditions to understand fault behavior of the system. Inter-
turn faults of different severity are injected through taps pro-
vided in each coil of stator winding using terminal board.
Since load may change during operation in industrial envi-
ronment, three phase resistive load bank is used to emulate
these variations and experiments are carried out at different
loads i.e. 0.5 A, 1 A, 1.5 A, 2 A, 2.5 A, 3 A, 3.5 A. Hall ef-
fect current sensors are used with National Instruments (NI)
PXI 6221 data acquisition system and LabVIEW SignalEx-
press software to record stator current signals. In each exper-
iment, machine is operated for 10 seconds and sampling fre-
quency of 1 kHz is used, hence 10000 samples are recorded
for each case. We have partitioned recorded samples into dif-
ferent frames of length 512 with overlap of 256 samples. This
procedure is carried out for both systems with all working
conditions. The acquired current signal from the synchronous
generator during healthy and fault condition is shown in the
Figure 3.

4. METHODOLOGIES USED

4.1. Feature extraction using discrete wavelet transform
(DWT)

For non-stationary signals like stator current, time resolution
is lost while performing Fourier transform. For better time
and frequency localization, wavelet transform is the best op-
tion for time-frequency representation. It is multi-resolution
analysis technique, where better frequency localization can
be achieved at lower frequencies and better time localization
can be achieved at higher frequencies (Yan, Gao, & Chen,
2014).

Continuous wavelet transform (CWT) involves scaling and
shifting of mother wavelet function, in which scale and trans-
lation parameters are varied continuously. This results in re-
dundant information and it requires very high computation
time. To avoid this, DWT can be used for faster computation
in which scale and translation parameters are discretized on
dyadic scale. DWT can be performed using filter banks con-
taining high pass and low pass filters. Input signal is passed
through filter bank and then down-sampled by 2. One level
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Figure 4. Discrete wavelet transform decomposition

of decomposition is carried out by following this procedure,
which can be formulated as

yhigh[k] =
∑
n

x[n] · g[2k − n] (1)

ylow[k] =
∑
n

x[n] · h[2k − n] (2)

where yhigh and ylow represents detailed and approximate co-
efficients respectively, and g[n] and h[n] represents impulse
response of high pass filter and low pass filter respectively.
DWT decomposition procedure is illustrated in Figure 4.

Selection of level of decomposition and wavelet function is
very crucial for particular application. Minimum level of de-
composition depends upon signal frequency f and sampling
frequency fs (Dash et al., 2010), which can be formulated as

Nf = integer

[
log(fs/f)

log(2)

]
(3)

For our problem, with signal frequency of 50 Hz and sam-
pling frequency of 1 kHz, calculated minimum level of de-
composition is 4. In this work, we have experimented 4, 5 and
6 levels of decomposition. For machine fault diagnosis, most
popular wavelets used are Haar, Daubechies, Symlets, Coiflet
and Morlet. Because of its orthonormal bases and smoother
function (Daubechies, 1988), daubechies wavelets have been
widely experimented in machine fault diagnosis (Bendjama,
Bouhouche, & Boucherit, 2012; Wu & Liu, 2008). In this
work, daubechies family wavelets db2, db4, db6, db8 and
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db10 were experimented.

To avoid redundancy in coefficients and large computational
time, features need to be extracted from wavelet coeffi-
cients. Statistical features can be calculated for each level
detailed coefficients and for final level approximate coeffi-
cients. In this work, following statistical features were calcu-
lated (Erişti, Uçar, & Demir, 2010):

1. Mean f1 =
∑N

i=1 ci
N

2. Standard deviation f2 =
√∑N

i=1(ci−f1)2

(N−1)

3. Skewness f3 = N
(N−1)

∑N
i=1

 (ci−f1)
3

f3
2


4. Kurtosis f4 =

{
N(N+1)

(N−1)(N−2)(N−3)

∑N
i=1

[
ci−f1
f2

]4}
−

3(N−1)2

(N−2)(N−3)

5. RMS f5 =
√

1
N

∑N
i=1 c

2
i

6. Form Factor f6 = f1
f5

7. Crest Factor f7 = peak
f5

8. Energy f8 =
∑N

i=1

∣∣c2i ∣∣
9. Shannon entropy f9 = −

∑N
i=1 c

2
i log(c2i )

10. Log energy entropy f10 =
∑N

i=1 log(c2i )

11. Interquartile range f11 = c75 − c25
where ci is wavelet coefficient, c25 and c75 are 25th and
75th quantile respectively and N is the length of coeffi-
cients.

4.2. Nuisance attribute projection (NAP)

Nuisance attribute projection has been extensively used in
pattern recognition to reduce influence of nuisance attributes
(Solomonoff et al., 2007, 2005; Štruc et al., 2010; Tome et
al., 2012; Yifrach et al., 2016). In system independent fault
diagnosis, system capacity variations and load variations lead
to deviation in fault signatures, which degrades the perfor-
mance of diagnosis model. These variations can be consid-
ered as nuisance attributes, and effect of such nuisance at-
tributes should be reduced for robust fault diagnosis.

One of the simplest way to diminish effect of nuisance at-
tributes is using projection. NAP identifies subspace carry-
ing nuisance attributes and remove such subspace from orig-
inal feature space. This can be represented pictorially as
shown in Figure 5, where m(s,c) indicates feature carrying

ms= Pm(s,c)

vv t (s,c)mvv t

Sub-space representing
system capacity (v)

m(s,c)

Figure 5. Nuisance attribute projection (NAP)

nuisance variations and m(s) indicates transformed feature
without nuisance variations. This projection can be repre-
sented mathematically as

P = I − V V T (4)

where V is the matrix whose columns represent nuisance at-
tributes, and P is projection matrix to be used for removing
nuisance attributes.

In NAP, each training feature vector is labeled with desired at-
tribute and/or target attribute. Weight matrix W is formulated
from these labels, whose entries depict relationship between
pairs of training feature vectors. Entry of W matrix, repre-
sented by Wij , should be positive if both feature vectors need
to be moved together, should be negative if both feature vec-
tors need to be moved apart, and should be zero if there is no
relationship between pair of feature vector.

NAP involves minimization of following figure of merit with
projection matrix P.

δ =
∑
ij

Wij ‖P (xi − xj)‖2 (5)

which can be solved using following eigenvalue problem

AZATV = V Λ (6)

where V is a matrix, in which k most principal eigenvectors
are arranged column wise, matrix Z = diag(W1)−W , and
A is training feature matrix. Eq. (6) is called ”NAP equation”.
Projection matrix P can be found using V matrix as specified
in Eq. (4).

Steps to perform nuisance attribute projection (NAP) are
mentioned below:

1. Label training samples with desired attribute and/or tar-
get attribute.

2. Create square symmetric matrix Wij using these labels.
Different definitions of weight matrix are mentioned in
section 5.
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Figure 6. Overall block diagram of proposed approach

3. Calculate matrix M = AZAT , whose eigenvectors rep-
resents basis vectors of subspace containing nuisance at-
tributes. Here A is training feature matrix and Z =
diag(W ∗ 1)−W .

4. Find eigenvalues and eigenvectors of matrix M and sort
them in descending order to find basis vectors for sub-
space having nuisance attributes.

5. Form matrix V whose columns are k most principal
eigenvectors.

6. Calculate projection matrix P using (4), that will project
out nuisance attributes.

7. Multiply train feature matrix and test feature matrix with
projection matrix to get transformed features having least
nuisance variations.

Overall process work flow is explained in Figure 6.

5. EXPERIMENTAL RESULTS

We have considered two synchronous generators with power
rating of 3 kVA and 5 kVA as two different systems. Three
phase stator current signals were recorded in healthy and
faulty conditions at different load conditions. Recorded sam-
ples of each phase current were partitioned into different
frames of length 512. Then we applied DWT on these par-
titioned frames using db8 mother wavelet and 5 levels of de-
composition. After performing DWT, we obtained six coef-
ficient frames which include detailed coefficients of 5 levels
and approximate coefficients of the final level. As mentioned
in Section 4.1, 11 statistical feature were calculated on each
coefficient frames. Hence we obtained 66 statistical features
for each phase current. Then we combined these features cal-
culated for all three phase current samples and we obtained
198 statistical features as an output. These 198 features were
used as an input to SVM classifier. In all the experiments,
we used binary SVM classifier for each phase fault models,

i.e. R phase fault vs no fault, Y phase fault vs no fault and B
phase fault vs no fault. We used 70% of recorded samples for
training and 30% of recorded samples for testing. Number of
samples used for training and testing for all experiments are
mentioned in Table 1.

Table 1. Dataset used for training and testing for all experi-
ments (no-fault data: 55%, fault data: 45%)

Fault No fault Total

Training data 13300 10640 23940
Test data 5852 4683 10535

Total 19152 15323 34475

The following experiments were performed:

1. Load dependent fault diagnosis
2. Load independent and system dependent fault diagnosis
3. Baseline system for system independent fault diagnosis
4. Removing system specific variations using NAP
5. Removing load specific and system specific variations

using stacked NAP
6. Removing load specific and system specific variations

using single stage NAP

5.1. Load dependent fault diagnosis

In this experiment, current signals were collected at differ-
ent load conditions for 3 kVA and 5 kVA system. Signals
collected for each load and for specific machine were used
separately to train and test individual fault diagnosis models.
Wavelet domain statistical features were extracted and used
with linear support vector machine (SVM) back-end classi-
fier. Classification accuracy of load dependent fault diagnosis
models is listed in Table 2. Because of same load condition
and system ratings for training and testing, we were able to
obtain very good classification performance.

5.2. Load independent and system dependent fault diag-
nosis

Since load conditions may change during operation in in-
dustrial environment, fault diagnosis model should be inde-
pendent of load changes. In this experiment, we aggregated
current signals acquired at different load conditions for each
machine separately to emulate load independent behavior.
Wavelet domain statistical features and linear support vec-
tor machine (SVM) back-end classifier were used to develop
baseline models. Classification accuracy of system dependent
fault diagnosis baseline models are listed in Table 3.

Extracted features contain LSV, which degrades classifier
performance. To remove LSV from IFV, nuisance attribute
projection (NAP) was experimented. Definition of weight
matrix is mentioned below.
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Table 2. Classification performance of load dependent fault
diagnosis models (in % accuracy)

Rating Load
Fault

R Y B

3 kVA

0.5 99.37 99.56 100
1 99.75 100 100
1.5 100 99.94 100
2 99.75 100 100
2.5 99.25 99.31 99.00
3 100 99.94 99.94
3.5 95.99 99.50 100

5 kVA

0.5 100 99.94 99.88
1 100 100 100
1.5 100 97.56 99.94
2 99.88 99.94 98.88
2.5 98.18 99.44 98.00
3 92.04 100 97.56
3.5 93.11 98.37 99.06

Wij =


1, if class (xi) = class (xj) and

load (xi) 6= load(xj)

0, otherwise

(7)

Using this weight matrix definition, NAP tries to move those
feature vectors together that belong to same class but different
loading conditions. Projection matrix P was calculated by us-
ing Eq. (4) and it was multiplied with IFV to get transformed
features. Transformed features were used with SVM classi-
fier and classification accuracy was improved significantly as
compared to baseline models. Performance of system depen-
dent diagnosis models are compared in Table 2.

Table 3. Performance comparison of load independent and
system dependent fault diagnosis models (in % accuracy)

fault Baseline Models
Performance Improvement

using NAP
3 kVA
model

5 kVA
model

3 kVA
model

5 kVA
model

R 72.52 66.43 95.65 95.75
Y 77.84 66.54 95.59 97.81
B 75.17 90.92 95.89 95.53

5.3. Baseline system for system independent fault diagno-
sis

To develop system independent fault diagnosis model, cur-
rent signals acquired for both systems at different load con-
ditions were aggregated. In our previous work (J. Gandhi et
al., 2017), baseline model for system independent fault diag-
nosis was implemented using wavelet domain feature extrac-
tion and support vector machine (SVM) back-end classifier.
For extracting statistical features in wavelet domain, different
mother wavelet functions and different levels of decomposi-
tion were experimented. We obtained optimum performance
with ’db8’ wavelet and 5 level of decomposition. Classifica-
tion performance of baseline system for different SVM ker-
nels are listed in Table 4. We obtained optimum classification
accuracy of 65.23%, 78.61% and 66.2% using linear SVM.
Alarm accuracy and No-Alarm accuracy are mentioned in Ta-
ble 5.

Table 4. Performance comparison of system independent
baseline model for different kernels (in % accuracy)

Fault
SVM kernel

Linear RBF Polynomial Sigmoid

R 65.23 69.30 55.34 55.34
Y 78.61 60.10 55.65 55.65
B 66.20 49.56 55.31 55.31

Table 5. Classification performance of system independent
baseline model for linear kernel (in % accuracy)

Fault
Overall

Accuracy
Alarm

Accuracy
No-Alarm
Accuracy

R 65.23 63.2 66.86
Y 78.61 73.58 82.68
B 66.20 66.23 66.14

5.4. Removing system specific variations using NAP

Because of SSV, performance of system independent base-
line model was deteriorated as compared to system dependent
baseline models. Nuisance attribute projection (NAP) can be
used to remove SSV. Definition of weight matrix plays an im-
portant role while applying NAP. We used following weight
matrix definition in previous work(J. Gandhi et al., 2017).

Wij =

1, if system (xi) 6= system(xj)

0, otherwise
(8)

By using this weight matrix, NAP tries to move those fea-
ture vectors together that belong to different systems, how-
ever condition of the machine was not considered in this def-
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Figure 7. Stacking of NAP layers LSS-NAP

inition. Hence feature vectors belonging to different classes
and different systems were also moved together, and classifi-
cation performance was not improved much. This approach
is referred as system NAP (S-NAP). In this work, we have
incorporated condition of the machine along with system rat-
ings in weight definition, which is mentioned below.

Wij =


1, if class (xi) = class (xj) and

system (xi) 6= system(xj)

0, otherwise

(9)

By using this weight matrix, NAP tries to move those feature
vectors together that belong to same condition but different
systems. Hence feature vectors belonging to different classes
and different systems were not moved together. This NAP
approach is referred as extended system NAP (ES-NAP).

Projection matrix P was created by using Eq. (4) and used
for transforming IFV. Transformed features were used with
SVM back-end classifier. For ES-NAP, classification accu-
racy of 88.05%, 93.56% and 91.12% was achieved for R,
Y and B fault models respectively as compared to 84.86%,
86.92% and 78% in S-NAP.

Since extracted features also contain LSV, effect of SSV and
LSV should be reduced from IFV to have robust system in-
dependent fault diagnosis. In this work, we experimented
stacked NAP and single stage NAP approaches to project out
multiple nuisance attributes.

5.5. Removing load specific and system specific variations
using stacked NAP

We experimented stacking of NAP layers in two ways: load-
system stacked NAP (LSS-NAP) and system-load stacked
NAP (SLS-NAP). In LSS-NAP, we removed LSV in first
layer and SSV in second layer, which is shown graphically
in Figure 7. In SLS-NAP, SSV is removed in first layer and
LSV is removed in second layer, which is shown graphically
in Figure 8. Definition of weight matrices to project out LSV
and SSV are mentioned in Eq. (7) and Eq. (9) respectively.

In both methods, projection matrix P1 was calculated using
NAP in first layer and transformed features were obtained by

Remove System 

dependent 

variations using 

projection matrix P1

Remove Load 

variations using 

projection matrix P2

NAP 1st layer NAP 2nd layer

Original 

feature vector
Transformed 

feature vector

Figure 8. Stacking of NAP layers SLS-NAP

multiplying IFV with P1. These transformed features from
the first layer were used as an input to second layer. Pro-
jection matrix P2 was calculated in second layer and mul-
tiplied with first layer transformed features to obtain final
transformed features. Using LSS-NAP, classification accu-
racy of 89.01%, 94.53% and 93.58% was achieved, whereas
using SLS-NAP, classification accuracy of 89.22%, 94.67%
and 94.59% was achieved for R, Y and B fault models re-
spectively.

5.6. Removing load specific and system specific variations
using single stage NAP

In this approach, LSV and SSV were removed simultaneously
using composite weight matrix, which is weighted sum of
two NAP weight matrices responsible for removing LSV and
SSV respectively. This NAP approach is referred as compos-
ite NAP (C-NAP).

W = α ∗Wload + β ∗Wsystem (10)

Definition of Wload and Wsystem is specified in (7) and (9)
respectively. Different values of α and β were experimented
in range of 0 to 1 with step size of 0.1 and classification re-
sults were compared. We obtained optimum classification ac-
curacy using α = 1 and β = 1. Using these values in above
equation, composite weight matrix was created and projec-
tion matrix P was found by using Eq. (4). IFV was multi-
plied with projection matrix P and used as an input to SVM
classifier. Using C-NAP, classification accuracy of 89.07%,
94.37% and 93.90% was achieved for R, Y and B fault mod-
els respectively. Classification accuracy of all NAP experi-
ments for system independent fault diagnosis are compared
in Table 6.

Table 6. Performance comparison of different NAP ap-
proaches for system independent fault diagnosis model (in %
accuracy)

Fault S-NAP (J. Gandhi et al., 2017) ES-NAP LSS-NAP SLS-NAP C-NAP

R 84.86 88.05 89.01 89.22 89.07
Y 86.92 93.56 94.53 94.67 94.37
B 78.00 91.12 93.58 94.59 93.90

From these results (Table 6), we can see that SLS-NAP out-
performs as compared to other approaches. Table 7 lists the
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alarm accuracy and no-Alarm accuracy of SLS-NAP model.

Table 7. Classification performance of SLS-NAP model (in
% accuracy)

Fault
Overall

Accuracy
Alarm

Accuracy
No-Alarm
Accuracy

R 89.22 83.97 93.45
Y 94.67 91.37 97.34
B 94.59 90.78 97.67

6. CONCLUSION

In this work, we proposed concept of system indepen-
dent fault diagnosis model for condition-based maintenance
(CBM). This unified approach can be useful in industry en-
vironment, where single model can be used to detect faults
in machines with different power ratings. To verify proposed
approach, we used two fault injection capable synchronous
generators with power rating of 3 kVA and 5 kVA as different
systems. Statistical features were extracted from raw current
signals using DWT. Extracted features were used with sup-
port vector machine (SVM) for fault classification.

First, we experimented for the load dependent fault diagno-
sis of synchronous generator. Since same loading condition
and same capacity generator were used for training and test-
ing, we obtained good classification performance. Subse-
quently, load independent fault diagnosis models were devel-
oped for each machine separately. However, classification
performance was deteriorated due to load specific variations
(LSV) in input feature vector (IFV), which were considered
as a nuisance. In this work, we experimented with nuisance
attribute projection (NAP) algorithm to remove LSV from the
IFV and the performance was improved significantly for load
independent fault diagnosis.

We then experimented for system independent fault diagnosis
by using the data from 3 kVA and 5 KVA generators. Classifi-
cation accuracy of 65.23%, 78.61% and 66.20% was obtained
for R, Y and B baseline fault models respectively. Since fea-
tures extracted for two systems contain system specific varia-
tions (SSV) and LSV, classification performance was deteri-
orated as compared to load dependent and system dependent
fault models. The nuisance attributes, LSV and SSV, were re-
moved by using stacked NAP and single stage NAP (C-NAP)
approaches. By removing SSV in first layer and LSV in sec-
ond layer using stacked NAP approach (SLS-NAP), we ob-
tained best classification performance and improved the clas-
sification accuracy by 23.99%, 16.06% and 28.39% for three
fault models as compared to baseline models. Our experi-
ments and results show that SLS-NAP has the potential in
minimizing the system dependent factors from the input fea-
ture space for improving the performance of system indepen-

dent fault diagnosis.
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