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Abstract

In daily life, animals including humans make a wide repertoire of limb movements effort-
lessly without consciously thinking about joint trajectories or muscle contractions. These
movements are the outcome of a series of processes and computations carried out by mul-
tiple subsystems within the central nervous system. In particular, the cerebrocerebellar
system is central to motor control and has been modeled by many investigators. The bulk of
cerebrocerebellar control involves both forward command and sensory feedback information
inextricably combined. However, it is not yet clear how these types of signals are reflected in
spiking activity in cerebellar cells in vivo. Segmentation of apparently continuous movements
was first observed more than a century ago. Since then, submovements, which have been
identified by non-smooth speed profiles, have been described in many types of movements.
However, physiological origins of submovement have not been well understood.

This thesis demonstrates that a currently proposed recurrent integrator PID (RIPID)
cerebellar limb control model (Massaquoi 2006a) is consistent with average neural activity
recorded in a monkey by developing the Recurrent Integrator-based Cerebellar Simple Spike
(RICSS) model. The RICSS formulation is consistent with known or plausible cerebro-
cerebellar and spinocerebellar neurocircuitry, including hypothetical classification of mossy
fiber signals. The RICSS model accounts well for variety of cerebellar simple spike activity
recorded from the monkey and outperforms any other existing models. The RIPID model is
extended to include a simplified cortico-basal ganglionic loop to capture statistical charac-
terization of intermittency observed in individual trials of the monkey. In order to extend
the capability of the RIPID model to a larger workspace and faster movements, the model
needs to be gainscheduled based on the local state information. A linear parameter varying
(LPV) formulation, which shares a similar structure to that suggested by the RICSS model,
is performed and its applicability was tested on human subjects performing double step tasks
which requires rapid change in movement directions.
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Chapter 1

Introduction

1.1 Motivation

In daily life, animals including humans can make a wide repertoire of limb movements

effortlessly without consciously thinking about joint trajectories or muscle contractions to

bring about specific motions. These movements are the outcome of a series of processes

and computations carried out by the central nervous system (CNS). Even to make a simple

reaching movement, to a tea cup for example, a number of distinct neuroanatomical areas

participate to complete the task, and each area consists of numerous neurons that are densely

interacting to each other.

In the study of motor control, or brain functions in general, a major obstacle is the fact

that the CNS is a densely interconnected large scale system. With a rapid growth in the

field of neuroscience, knowledge of the CNS at all levels of granularity, from molecular biol-

ogy to behavioral psychology, has been expanding literally on a daily basis. Each discipline

contributes to characterizations of parts of the CNS at corresponding resolutions. However,

there is need for more effort in attempting to explain how and why individual cells in a

particular area fire as observed and the role of anatomical connections in determining neural

firing patterns as well as behavioral outcome. In order to answer to these questions, we

need to apply a systems approach to develop computational models that are neurophysio-



logically and neuroanatomically consistent. Such computational models can be a gateway

for researchers from different disciplines to complement each other's view to enhance the

understanding of motor control.

The cerebrocerebellar system is central to motor control (Allen and Tsukahara 1974;

Brooks 1986; Kelly and Strick 2003) and has been characterized in terms of its anatomical

connections among the areas in the system (Allen and Tsukahara 1974; Kelly and Strick

2003). Furthermore, the neurophysiology of each area or network of cerebral cortical areas

has been characterized quite extensively (Georgopoulos et al. 1982b; Kalaska et al. 1990;

Matsuzaka and Tanji 1996; Sergio and Kalaska 1998; Marconi et al. 2001; Hoshi and Tanji

2004a; Scherberger et al. 2005). The cerebellum is intimately connected to almost all major

motor and sensory areas in the CNS, and to high level cognitive areas in primates as well.

Furthermore, cerebellar pathology usually results in uncoordinated movements (Bastian et al.

1996) or errors of directions, force (Maschke et al. 2004), amplitudes and delayed movement

initiations (Holmes 1939). Therefore, an importance of the cerebellum in motor control

should be emphasized in the analysis and modeling of cerebrocerebellar system. Given

these considerations, some notable cerebellar motor control models are introduced here.

They represent mathematically well-accepted neuroanatomy and neurophysiology and can

explain kinematic behaviors as well as some internal signals or adaptation. Massaquoi and

Slotine (1996) incorporated a control theory to account for stability of cerebellar control in

the presence of transmission delay and has reproduced some neural firing activities. Jo and

Massaquoi (2004) used the idea related to Massaquoi and Slotine (1996) with a gain scheduled

control scheme and more anatomical details to achieve upright postural stabilization in their

human model. Contreras-Vidal et al. (1997), Kettner et al. (1997) and Schweighofer et al.

(1998b) followed a similar path to include fairly detailed cerebrocerebellar anatomy and

physiology, and not only did their models manage to reproduce kinematic features, but also

learning ability attributed to the cerebellum. The models by Contreras-Vidal et al. (1997)

and Kettner et al. (1997) did not attempt to directly reproduce any specific cerebellar activity

recorded in vivo. Note, however, that Schweighofer et al. (1998b) showed cerebellar Purkinje



cell firing patterns which qualitatively reproduced the directional preference observed in

Fortier et al. (1989). However, there has not been any anatomical model that directly

included and modeled recorded firing activity of cerebellar neurons. Thus, in order to make

a contribution to the motor control community, it is crucial to develop a cerebrocerebellar

model that can model both kinematics and cellular activity at the same time.

Kinematic segmentation of apparently continuous limb movements was first observed by

Woodworth (Woodworth 1899) in a speed-accuracy trade-off study. Since then, submove-

ments, which have been identified by non-smooth multi-peaked speed profiles, have been

described in many types of movements. It has been noted that movements can be decom-

posed into scaled and dilated unit velocity templates, or unit movements (Flash and Henis

1991; Milner 1992). However, kinematic characteristics and physiological origins of sub-

movements have not been well understood. The cerebrocerebellar system has already been

connected to the fronto-cortico basal ganglionic system (Houk and Wise 1995a; Brown et al.

2004; Mao 2005). In particular, Brown et al. (2004) focused on saccades and qualitatively

captured firing activities of more than a dozen of cell types from different brain areas -

frontal eye field, basal ganglia and superior colliculus. Mao (2005) formulated a function of

the basal ganglia to be a general context dependent controller and accounted for arm kine-

matic patterns of a few cases of basal ganglionic pathology. However, no equivalent system

to explain intermittency observed in normal limb movements has been formulated.

Taken together, it is critical to develop neurophysiologically and neuroanatomically ac-

curate cerebrocerebellar control models. The recurrent integrator Proportional-Integral-

Derivative (RIPID) model has been suggested as a characterization of the cerebrocerebellar

interaction for the long loop control. It has been applied to postural balance (Jo and Mas-

saquoi 2004) and point-to-point arm reaching movements (Massaquoi 2006a). One potential

advantage of the RIPID model is that like the model by Schweighofer et al. (1998b) and

unlike a number of other models is that it makes fairly specific predictions at the neuronal

circuitry and the corresponding firing patterns. Thanks to our collaborators, Prof. Ebner

and Dr. Roitman at University of Minnesota, I was fortunate to have an access to a sizable



cerebellar Purkinje cell recording while a monkey was performing a set of tasks. Therefore,

the RIPID model can be specifically tested for its feasibility against the actual neuronal

data. Although such a test should be performed during continuous movements, as it is not

clear how each cell contributes to the overall cerebellar signal processing, it is logical to show

that the averaged Purkinje cell data at least does not falsify the RIPID model.

Given the construction of the currently proposed RIPID model, the model cannot gen-

erate individual continuous trajectories without detailed knowledge of high level cognitive

and motor commands. However, it is reasonable to assume that a RIPID type model could

control a continuous movement in such a way that similar statistical characteristics of the

intermittency observed in individual trials could emerge by supplementing additional com-

ponents to the RIPID model.

If a RIPID type model could account for detailed neuroanatomy and neurophysiology as

well as statistical characteristics of individual trajectories, then a natural extension would

be to explore the capability of the RIPID model for more dynamically demanding tasks in

an entire plane.

1.2 Problem formulation

There are three major goals in my thesis work.

(a) Demonstrate that a currently proposed modified recurrent integrator Proportional-Integral-

Derivative (RIPID) cerebellar limb control model (Massaquoi 2006a) is consistent with

neuronal activity recorded in an experimental primate by collaborators at the University

of Minnesota (Roitman et al. 2004). Specifically, I will attempt to determine whether the

RIPID control model when extended by modeling neuroanatomical circuits in greater

detail can be used to reproduce signals in primate Purkinje cells during arm motion.

(b) Characterize the kinematic intermittency observed in individual trajectories of the non-

human primate in terms of its statistics. Suggest and evaluate a plausible and simple

mechanism possibly based on cerebrocortico-cerebello-basal ganglionic interaction that



is extended from the RIPID model and that is consistent with the statistical characteri-

zation of the monkey data. Specifically, I will attempt to extend the currently proposed

RIPID model (Massaquoi 2006a) by including a cortico-basal ganglia model suggested

by Mao (2005) to account for task parameter dependent and invariant statistical char-

acterization of intermittencies in individual trajectories.

(c) Analyze the performance of a gain-scheduled control model which is inspired from the

results in Objective (a) above to extend the size of the workspace and to account for

more dynamically demanding movements. Assess its likely validity for biological control

in general, and its possible utility for more general control problems. Specifically, I will

attempt to extract a structural essence of the detailed model from Objective (a) and

cast it into an existing engineering framework.

1.3 Approach

The following approaches have been taken to tackle the objectives in the previous section.

* Objective (a) is to be addressed by developing a neuroanatomically and neurophys-

iologically realistic cerebrocerebellar regression model based on the RIPID model to

capture averaged simple spike activities of Purkinje cells recorded from the monkey

performing visuomotor circular tracking tasks.

* Objective (b) is to be addressed by analyzing the non-smoothness of individual trials

of the monkey kinematic data. The RIPID model is going to be modified to include

a functional, but anatomically and physiologically feasible intermittent command gen-

erator.Furthermore, to investigate performance limit of the generator and possible

coupling of the intermittent command and gain-scheduling scheme in Objective (c),

more dynamically demanding tasks will be carried out to human subjects.

* Objective (c) is to be addressed by proposing a specific gain-scheduling or gain-modulating

control scheme based on the results of Objective (a). Next, more dynamically de-



manding horizontal planar movements are to be carried out by human subjects in our

movement laboratory. These experiments are designed to test the limits of control

performance.

1.4 Thesis organization

The rest of this thesis is organized as follows: Chapter 2 presents background materials in

neuroanatomy and neurophysiology that are relevant to the work presented here. In addition,

the currently proposed motor control models, cerebellar models in particular, are introduced.

In Chapter 3, the modified RIPID model is extended to include more anatomical details on

cerebrocerebellar interactions to further investigate the feasibility of the RIPID model. In

order to capture Purkinje cell (PC) simple spike activity, the Recurrent Integrator-based

Cerebellar Simple Spike (RICSS) model is developed. The quality of fit provided by the

RICSS model compares favorably with fits using hand kinematics signals alone and that

its structure accounts for the system nonlinearity predicted recently by a simpler empirical

model (Roitman et al. 2005). The sufficiency of the RICSS model in accounting for a large

PC data set supports the plausibility of the RIPID model formulation and the proposed

cerebrocerebellar connection architecture in particular. Chapter 4 describes the intermit-

tency analysis on the end point kinematics of a non-human primate. In particular, two

features are illustrated: linear scaling properties of speed pulses against target speeds and

invariant distributions of speed pulse intervals over a range of speeds. In order to explain

both features, a simple model that is a one-dimensional version of a reduced RIPID model is

introduced. Motivated from the RICSS model in the previous chapter, Chapter 5 describes

Linear Parameter Varying (LPV) control systems as a possible control engineering model

to characterize gain scheduled nature of the cerebrocerebellar control system. In addition,

relation between the existing cerebrocerebellar limb control systems and LPV is discussed to

possibly complement the weakness of the existing models. Chapter 6 summarizes the result

of a set of human experiments using a double-step tracking task to test if we need more

than one controller to account for the behavioral data, when the task becomes dynamically



demanding. Finally Chapter 7 concludes the thesis and provides possible extensions of the

current work.





Chapter 2

Background

In this thesis, there are several areas of the central nervous system (CNS) that are particularly

emphasized to understand a gross sensorimotor control system for upper limb movements in

a neurophysiological and neuroanatomical manner. The first part of this chapter introduces

relevant neuroanatomy and neurophysiology of the major areas related to the motor control.

The second part lists notable motor control models whose emphasis is placed on cerebellum

or cerebellum and its connection to other brain areas. The last part gives brief introduction

on movement intermittency.

2.1 Relevant anatomy and physiology

Even for a simple reaching movement, many parts of the CNS are involved in serial and

parallel fashion. In this section, several important building blocks in CNS for motor control,

particularly, upper limb control, are introduced.

2.1.1 Cerebellum

Cerebellum, or "little brain" in Latin, is the second largest structure, measured in volume,

in the CNS next to the cerebral cortex, but is the most numerous in terms of the number

of the neurons. The human cerebellum would extend about one meter if unfolded in its



anteroposterior direction (Ito 1984). The cerebellum has been known as one of the key

components in motor control through its pathological studies (Holmes 1939).

The cerebellar cortex has a notable structural difference from the cerebral cortex. The

cerebellar cortex is more uniform in its cytoarchitectonics. Thus, functional differentiation

largely, if not exclusively, depends on differences in the afferent and efferent connections.

Note, however, that underlying molecular heterogeneity has been found in the rat cerebellar

cortex using monoclonal antibodies to position particular molecular makers (Gravel et al.

1987). Functional implication of such heterogeneity is yet unknown, but it may suggest an

organizational difference among individuals or regional organizational differences reflecting

particular input-output relations (Hawkes and Leclerc 1987).

Organization

The cerebellum can be divided into three parts each of which has its distinctive connec-

tions with the rest of the brain: The vestibulocerebellum, the spinocerebellum, and the

cerebrocerebellum, which appears to correspond loosely to the evolutional progression (Ito

1984).

* The vestibulocerebellum, or flocculonodular lobe, is different from the other two parts

in that it does not have any deep cerebellar nucleus (DCN). Although in many ways

the vestibular nuclei play a corresponding role. It receives its primary input, via mossy

fiber, directly from the vestibular nuclei. Its output from Purkinje cells (PC) is sent

back to the vestibular nuclei. Its major function is to control eye movements relative

to body position and movements (vestibular ocular reflexes), axial musculature, and

balance (Ito 1984).

* The spinocerebellum owes its name because most of its input from spinal cord. It con-

sists of vermis and intermediate parts of the cerebellum. It receives sensory information

from the periphery and from the primary motor cortex as well as somatosensory cortex.

The PC's in vermis project to the fastigial nucleus and those in the intermediate part

to the interpositus nucleus, in the monkey, interposed nuclei, globose and emboliform,



Figure 2-1: Zones of the cerebellum

in humans. The fastigial nucleus is concerned with posture and locomotion as well

as gaze. The interpositus nucleus controls mainly distal muscle components in the

execution of the movements. Both nuclei project to the motor cortex as well to form

loops. Lesions of the intermediate cerebellum cause action tremor of the limb.

* The cerebrocerebellum, or lateral cerebellum, is the largest part of the three divisions.

It receives its input from many parts of the cerebral cortex, including motor cortex,

premotor cortex, parietal cortex, as well as sensorimotor cortex. Its output through

PC's project to the dentate and thence to the premotor and other cortical areas via

ventrolateral nucleus in the thalamus. The current hypotheses on the cerebrocere-

bellum functions include planning, initiation, timing of the movements, and mental

process of motor actions, but also higher cognitive non-motor functions. The impair-

ment of the lateral cerebellum consists principally of delays in movement initiation

timing, decomposition of the multi-joint movements and even distal joints, as well as



some cognitive deficits.

to thalamus and red nucleus

Figure 2-2: Area 3a and surrounding cortical areas in a flattened left hemisphere. Adapted
from .

The cerebellar cortex can be divided into a number of sagittal zones, or microzones

(Oscarsson 1979) each of which form, with its group of neurons, the operational unit of

the cerebellum. This organization may be analogous to the modular columnar organization

in the cerebral cortex (Mountcastle 1998). Ito (1984) extended this idea to a cerebellar

microcomplex, consisting of a cerebellar microzone, projecting to a distinct group of nuclei,

receiving two types of inputs, mossy fibers and climbing fibers, and sending the output

through deep cerebellar nuclei. An estimate of such cerebellar modules in primates is yet

unknown, but based on the mouse cerebellar cortex, there exist about 4000 modules or 40

Purkinje cells and their associated interneurons for each module (Hawkes and Eisenman

1997). An interesting suggestion by Hawkes and Eisenman (1997) is that the size, not the

number, of modules would be expected to increase with increasing cerebellar surface area.



Cell types

There are three layers between the white matter and the surface of the cerebellar cortex

as shown in Fig. 2.1.1 (adapted from http://www.tnb.ua.ac.be/models/models.shtml). The

molecular layer is the most superficial in the cortex. The Purkinje cell layer is the middle

layer containing cell bodies of Purkinje cells. The most inner layer is the granular layer

on top of the white matter. Among these three layers, several types of cerebellar neurons

reside. The input to the cortex is granule cell in granular layer. There are three types

of interneurons: the Golgi cell in the granular layer and basket and stellate cells both in

molecular layer. The sole output of the cerebellar cortex is Purkinje cell in Purkinje layer.

Purkinje Parallel

Figure 2-3: Cell types and layer structure in the cerebellar cortex.

* There are approximately 15 million Purkinje cells in human cerebellum. The cell

bodies of the PC's are flask shaped and their axons go through the white matter

to reach up to 30 or 40 DCN's or vestibular nuclei to provide the strong inhibitory

sole output of the cerebellar cortex. The extensively, especially in primates, branched



dendrites form a coral-like structure into the molecular layer in a plane perpendicular

to the longitudinal axis of the folium. PC's receive excitatory input from two distinct

anatomical structures, the parallel fibers (PF) and the climbing fibers (CF). Each

Purkinje cell is innervated by over 10' parallel fibers which synapse on its dendric

arbor. Parallel fibers contain signals from mossy fibers and induce simple spike (SS)

in PC's. SS activity is thought to encode sensory information or central commands

depending on the origins of the mossy fibers. In contrast, only one climbing fiber

makes strong synapses on to a PC and wraps around the proximal dendrites of the PC

to make hundreds and thousands of synaptic connections. Climbing fiber originates

from the inferior olivary nucleus, induces another type of very slow spiking activity of

roughly one spike per second, complex spike in PC, and is thought to send an error, or

teaching, signal for cerebellar adaptation at the parallel fiber - Purkinje cell synapses

induced by long term depression (LTD) (Ito 1984).

* Basket and stellate cells are inhibitory interneurons in the molecular layer. Basket

cells are named after the fact that their axon travels across the folium just above the

Purkinje cell bodies, descending collaterals at right angles, which surround Purkinje

cell somata like a basket. On average,

Stellate cells are usually found in the outer two-thirds of the molecular layer and are

different from basket cells in that stellate cell axons form synapses only on dendric

shafts of PC's.

* Granule cells are the smallest and the most numerous cell type, about 1010 , 1011,

in the cerebellar cortex. They relay mossy fiber afferents to the cerebellar cortex to

excite all the other cell types in the cerebellar cortex. Each ascending granule cell axon

has a T-shaped bifurcation in the molecular layer, giving rise to a pair of long thin

fibers, parallel fibers. In general, the parallel fibers in the lower third of the molecular

layer are myelinated and thicker than those in the upper thirds that are unmyelinated.

These difference prompted a question regarding their functional difference (Ito 1984;

Wyatt and Wang 2003; Ekerot 2005). The patches of PC responses may be attributed



to the patchy pattern of the underlying granule cells (Bower and Woolston 1983).

* Golgi cells in the granular layer receive excitatory inputs from mossy fibers as well

as granule cells. Golgi cells inhibit granule cells in the glomeruli and its inhibition

counteracts the excitatory effect of the mossy fiber synapses. In addition, Golgi cells

inhibit also stellate and basket cells. Vos et al. (2000) suggested that Golgi cells in

the network of mossy fiber, granule cell, and parallel fiber perform poorly as gain

controllers at time scale of interest for cerebellar motor control, but also suggested

that common parallel fiber inputs cause synchronization of beams of Golgi cells, which

cause strong lateral inhibition to produce more regulated granule cell spiking activity

for a relevant duration (Ito 1984) .

There are few other cell types found in the cerebellar cortex. The unipolar brush cells

(UBC's) are identified in granular layer and are characterized by its dendric termination

resembling a brush to receive mossy fiber terminals. UBC's are found in vestibulocerebellum

and less often in spinocerebellum, but not in cerebrocerebellum. Their functions are yet to

be determined, but appear to be involved in reflex mechanism through their excitatory to

enhance the mossy fiber afferent to PC's with higher firing rates than Golgi cells (Simpson

et al. 2005). Another class of cell type is Lugaro cell. It lies in the granular layer close to

the Purkinje cell layer, but its physiological and functional characterizations have not been

established (Ito 1984).

Learning/Adaptation

Based on the pioneering modeling work by Marr (1969) and Albus (1971), they proposed

that the climbing fiber to PC's modified the response of the neurons to mossy fiber inputs

and this change was sustained for a prolonged duration. This proposal was supported by a

series of experiments on vestibulo-ocular reflex by Ito and his colleagues (Ito 1984, 2002).

As introduced earlier, the climbing fiber weakens the parallel fiber-PC synapse by simulta-

neous stimulation of both climbing fiber and mossy fibers. This process is called long term

depression (LTD). In this original formulation, climbing fibers detect discrepancies between



actual and expected sensory inputs, where the expected inputs are modified with successive

movements by suppressing flawed activity patterns. Significant efforts have been made to

study this type of cerebellar learning since 70's. There have been other suggestions, through

physiology, genetics, and modeling, as to possible cites of such plasticity in the cerebellum

as well as mechanism itself, depression alone or a combination of depression and potentia-

tion. One standing question, however, is whether climbing fiber can produce the appropriate

signals suggested by the proposals in vivo.

2.1.2 Motor cortical areas

The motor cortical areas are a heavily interconnected entity and include the primary motor

cortex, premotor cortex, and supplementary motor cortex, and cingulate motor areas. The

primary cortex and premotor areas receive input from the basal ganglia and the cerebellum

via different set of thalamic nuclei. There appears to be segregated cortical-subcortical

loops, and each loop makes different contribution to different aspect of motor and non-motor

functions(Kelly and Strick 2003).

Primary motor cortex

The primary motor cortex (Ml) owes its name to the fact that thresholds for evoking move-

ment with electrical stimulation are lower here than in any other cortical regions (Dum and

Strick 2005). MI, or cytoarchitectonically classified as area 4, is located in the anterior bank

of the central sulcus and is usually identified by the presence of huge pyramidal output cells

in cortical layer 5. Functionally, M1 has been considered as the executive locus of voluntary

limb movements, although other cortical areas participate in these movements. The spiking

activity of M1 has been shown to correlate with many aspects of the motor control and even

cognitive functions.

Each individual neuron in M1 has a preferred direction (PD) for reaching or tracking

movements (Georgopoulos et al. 1982b; Johnson et al. 1999). This typically refers to the

direction of hand movement for which the neuron fires most intensely. When individual M1
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Figure 2-4: Major cortical areas (adapted from http://cti.itc.virginia.edu/ psyc220/)

neurons were represented as vectors that make weighted contributions along the axis of their

PD (according to changes in their activity during the movement under consideration) the

resulting vector sum of all cell vectors (population vector) was in a direction congruent with

the direction of movement (Georgopoulos et al. 1988). In a recent study, Amirikian and

Georgopoulos (2003) found that cells with similar PD's tended to segregate into vertically

oriented minicolumns ( 50-100 pm wide and at least 500 /t m deep). Such minicolumns

aggregated across the horizontal dimension in a secondary structure of higher order. In this

structure, minicolumns with similar PDs were - 200pm apart and were interleaved with

minicolumns representing nearly orthogonal PD's. Furthermore, this directional preference

does not change even when the origin of the movements are different (Kettner et al. 1988).

The PD's characterized in the workspace coordinate may not be the most natural conse-

quence of the fact that many layer 5 neurons in M1 have strong monosynaptic connections



to motoneurons. Thus, the population vector hypothesis has been tested against different

coordinate systems, such as muscle coordinate, joint coordinate, body-centered coordinate,

to name a few (Caminiti et al. 1990; Scott et al. 1997; Sergio and Kalaska 1997). However

there is no consensus on a unique coordinate system inherent in M1. Recently study specif-

ically showed (Wu and Hatsopoulos 2006) that none of the coordinate was dominant in M1

activities.

Recent series of study by (Graziano et al. 2002, 2005) show that, by applying electrical

stimulation each of which was 500 ms to approximate the time scale of normal reaching and

grasping movements, coordinated and complex, and probably more importantly behaviorally

relevant, movements were evoked. Stimulation of one site, for example, caused a mouth to

open, the hand to form a grip posture, and moved to the mouth, regardless of the initial

configuration of the whole body. Furthermore, the evoked behaviors were found to be robust

against reasonable load as well. Postures that involved the arm were arranged across cortex

to form a map of hand end positions around the body. Thus, M1, and the premotor areas,

appear to have somatopic map of the workspace around the body in terms of behavioral

relevance. These results are still controversial in that there are no evidence of whether long

sustained electrical stimulation train resembles actual cellular activity (Strick 2002).

Another series of focal and short intracortical stimulation evoked contractions of a single

muscle at threshold (Asanuma and Rosen 1972). This observation could be explained by the

limited branching patterns of some corticomotoneuronal neurons as well as the observation

that small clusters of corticomotoneuronal neurons tend to innervate the same motoneu-

ron pool (Shinoda et al. 1979). The motor system, or CNS for that matter, is a densely

connected network system and the transsynaptic spread of signal through this network is

a manifestation of the function of the network. Thus, to understand what the "natural"

stimulus is an issue to be debated.

The presence of multiple representations of an individual movement/muscle in M1 has

been proposed as an arrangement that allows a muscle to engage in multiple synergies with

other muscles acting at the same or different joints (Schieber 2001). In addition, the so-



matotopic map in M1 is overlapping, intermingled, and fractured as observed by cortical

stimulation and imaging (Donoghue et al. 1992; Sanes and Schieber 2001)

Rathelot and Strick (2006) used retrograde transneuronal transport rabies virus injected

to digital muscles of macaques. In M1, the cortico-motoneuronal (CM) cells that make

monosynaptic connections with the motoneurons of the injected muscles are found to be

restricted to the caudal portion of M1 buried in the central sulcus. The CM cells are

found to be widely distributed and even overlapping with the known-to-be shoulder regions.

Furthermore, there are no focal representation of single muscles in M1.

Premotor areas

Premotor areas, or cytoarchitectonically classified as area 6, can also elicit movements by

electrical stimulation, but the intensity threshold necessary to evoke movement is greater

than that of M1. Area 6 lies anterior to the precentral gyrus, on the lateral and medial

surfaces of the cerebral cortex. Pyramidal cells in the layer 5 are found in the premotor

areas and do project to M1 and the spinal cord, but they tend to be smaller and fewer

than that of MI. PD representations as well as hand end position map centered around

the body as discussed above are still in tact in the lateral premotor areas. However, the

premotor areas in the medial wall of the hemisphere do not appear to show such organization.

The origins of corticospinal and cortico-cortical projections to M1 do not show somatotopic

organization. This hypothesis is made based on the fact that the origin of corticospinal

neurons in the premotor areas that projected to cervical or to lumbar segments of the spinal

cord corresponded remarkably well to the origin of neurons in the premotor areas that

projected directly to the M1 arm or to the M1 leg representations, respectively. The inputs

to the premotor areas are quite different from those to MI. Damage to premotor areas cause

more complex motor impairments than the case of M1. In particular, an animal with such

damage cannot incorporate visuospatial information about the target into a kinematic plan

(Kandel et al. 2000).

There are at least four anatomical divisions in the premotor areas in primates. Two on



the lateral convexity are the (lateral) ventral, PMv, and (lateral) dorsal, PMd. The other

two in the medial wall of the hemisphere are the supplementary motor area, SMA (SMA

proper and preSMA) and the cingulate motor areas, CMA, which are buried in the cingulate

sulcus. In the motor planning hierarchy,Movement initiated and guided by internal cues

appears to involve SMA. Movement initiated and guided by external cues appears to involve

lateral PM.

Vca 10 mm

Figure 2-5: Locations of the motor areas of the medial wall of the hemispheres of the monkey.
Adapted from Picard and Strick (1996).

SMA or preSMA itself could evoke movements, but movements elicited in the preSMA

were typically slow, involved multiple joints, and resembled natural postural movements.

PreSMA neurons often responded to visual but not to somatosensory stimuli, whereas SMA

neurons had the opposite characteristics, responding to somatosensory but not visual stimuli

(Matsuzaka et al. 1992; Inase et al. 1999). SMA and preSMA are attributed to the internal

representation of sequence of movements, and their neurons primarily fire only to the mem-

orized sequences. Hoshi and Tanji (2004b) found functional specialization between these



two areas as follows: 1) neuronal activity preceding the appearance of visual cues was more

frequent in the pre-SMA; 2) a majority of pre-SMA neurons, but much fewer SMA neurons,

responded to what was shown or instructed; 3) in addition, pre-SMA neurons often reflected

information combining the instructions in the first and second cues; 4) during the motor-

set period, pre-SMA neurons preferentially reflected the location of the target, while SMA

neurons mainly reflected which arm to use; and 5) when executing the movement, a major-

ity of SMA neurons increased their activity and were largely selective for the use of either

the ipsilateral or contralateral arm. In contrast, the activity of pre-SMA neurons tended

to be suppressed. Thus, these two structures have fairly distinct functional specialization

with respect to receiving associative cues, information processing, motor behavior planning,

movement execution, and motor learning.

Within the lateral premotor areas, PMd and PMv differ in many aspects. First, PMd

receives inputs from the medial dorsal parietal (MDP) and medial intraparietal (MIP) areas

in parietal cortex. This connection is responsible for integration of visuomotor transformation

of the object to be reached and information about which arm to use. On the other hand, PMv

receives parietal input from anterior intraparietal area (AIP) and mostly reflects properties

of an objet to be reached (Hoshi and Tanji 2006).

Very little is known about the functional role of the cingulate motor area in arm move-

ments compared to other motor areas. The rostral CMA played a part in processing the

reward information for motor selection when there were many possible choices to choose from

(Shima and Tanji 1998). Wang et al. (2004) found that the cells in CMA that project to

frontal eye field and M1 scarcely overlapped, and that each of the two areas receive different

sets of information from the cingulate cortex for possible integration of multimodal signals

for high level motor functions. For visually guided reaching movements, CMA appeared to

context-dependent movement related activity such as movement direction and target loca-

tions (Crutcher et al. 2004).



2.1.3 Parietal cortex

Parietal lobe contains many parietal association areas, but in this section only area 5 in

posterior parietal cortex that is relevant to the work in this thesis is reviewed.

Arm related area 5 neurons showed graded changes in spiking activity in different direc-

tions which are similar to what's observed in MI. One critical difference was that activity of

the area 5 neurons were insensitive to the load while M1 cells showed significant sensitivity

to the force (Kalaska et al. 1990). In addition, populations of neurons in area 5 coded either

the starting point, the final point, or the combination of the two in the body centered coordi-

nate and each coordinate axis was coded in different subpopulations Lacquaniti et al. (1995).

Further, the cells in the area 5 appeared to code spatial attributes of the hand trajectory

that was influenced by arm geometry (Scott et al. 1997). Desmurget et al. (1999) suggested

that area 5 neurons, or more extended posterior parietal network, computed ongoing error

signal used by other motor areas to make corrections to the ongoing trajectory. The origin

of the error signal was not clearly stated, but the above studies showed that area 5 neurons

represent kinematic trajectory of the arm, not the hand alone, and ongoing error signals.

Another interest feature of the area 5 neurons was demonstrated to explain how the timing

of action were coded with respect to external cue or internal cue (self-timed). Neurons in

cortical area 5 exhibited phasic discharge modulations that were generally comparable for

both modes of action, with some neurons increasing and others decreasing their firing rates

with movement. For self-timed movements, however, there was an additional, slow ramp-up

or ramp-down of activity in the few hundred milliseconds before the phasic discharge. These

ramping modulations occurred well before any detectable changes in arm-muscle activity and

their time course bore a striking resemblance to activity in the putamen preceding self-timed

movements, observed previously. Together, the results suggest a possible mechanism for the

internal timing of action within the motor system. In this model, reverberant activity in

cortico-basal ganglia circuits reaches a threshold level resulting in much larger perimovement

discharges within the same network, consequently driving the initiation of action(Maimon

and Assad 2006).



2.1.4 Somatosensory cortex

The anatomical organization of anterior parietal somatosensory cortical areas such as 1,

2, and 3b has been well documented (Pons and Kaas 1985). However, the somatosensory

system must be tightly linked with the motor system to generate discrete, coordinated move-

ments necessary for fine tactile discrimination, hand/mouth coordination, and goal-directed

reaching. Area 3a, which receives most of its afferent input from muscle spindles (Hore et al.

1976).

Area 3a

The cortical connections of area 3a are distinct from other somatosensory areas in that area

3a receives its densest input from cortical areas associated with the motor system, including

Ml, SMA, and premotor areas. Area 3a is also densely interconnected with areas in the

posterior parietal cortex (Huffman and Krubitzer 2001a,b).

A surprising result from Rathelot and Strick (2006) is that about 15% of the cortico-

motoneuronal cells originate from area 3a, which supports the finding of Wu et al. (2000)

that the electrical stimulation to area 3a evoked hand movements of prosimian primates.

In terms of the sensory response, Carolyn W.-H. Wu (2003) found that the neurons in

area 3a were typically unresponsive to light touch and the movement of hairs, but they often

could be activated by tapping and manipulating body parts, suggesting the activation of deep

receptors in muscles and joints. Occasionally, neurons could be activated by moderately

intense pressure, especially on the digits of the hand. Area 3a was also distinguished by

larger layer V pyramidal cells and was responsive to muscle spindle receptor activation and

cutaneous receptors in monkeys (Krubitzer and Kaas 1990).

2.1.5 Basal Ganglia

Basal ganglia (BG) have been known as major components of the motor system (Kandel

et al. 2000). The BG consist of four major nuclei: the striatum, the globus pallidus (GP),

the substantia nigra, and the subthalamic nucleus. Almost all the cerebral cortical areas



Figure 2-6: Area 3a and surrounding cortical areas in a flattened left hemisphere. Adapted
from Huffman and Krubitzer (2001a).

send excitatory projections to the striatum. The striatum also receives dense excitatory

inputs from the thalamus. Within the striatum, the caudate receives inputs mainly from

the prefrontal cortex and this connection is sometimes attributed to motor planning. The

putamen is mostly connected to the cortical motor areas and its connection is thought to

regulate the level of the motor execution.

This group of nuclei are involved in many neural pathways implicating not only motor

functions, but also wider cognitive functions (Brown et al. 1997) such as learning, working

memory (Levy et al. 1997), and attention. In addition to its multi functionality in normal

behavior, dysfunction of the BG has been related to brain disorders including Parkinson's

disease, Huntington's disease, and schizophrenia. For this reason, the BG has attracted

a very intense clinical interests which have suggested numerous functions of the BG. An

interesting point is that the basal ganglia is not directly connected to the spinal cord unlike

most other motor systems. Therefore, its motor function is attributed via other systems,



especially, motor areas of the cerebral cortex (Kandel et al. 2000)). The basal ganglionic

neural circuit seems to do discrete operation of context-to-control mapping (Mao 2005).

2.2 Examples of current motor control models

Because of the its uniform structure and the relevance to its function in motor control, the

cerebellum has attracted many theorists and modelers over the years. A significant number

of models have been suggested to account for functions of the cerebellum (for a survey on a

variety of cerebellar models, see Barlow (2002)), but in this section a few configurations of

control models are shown first, then a several models that have relevance to the work in this

thesis are presented.

One of the reasons why there is a long-standing controversy in motor control modeling

is the presence of an afferent delay in the biological systems (Contreras-Vidal et al. 1997;

Kawato 1999). Especially for limb movements, afferent delays in proprioceptive and visual

feedback can be fairly significant.

In the three figures below, P is a plant to be controlled, G is a controller, x(t) is the

input to the controller, y(t) is the output from the plant, d(t) is a disturbance signal, P-1

is an approximation of the inverse of the plant (if exists), A is a delay operator such that

its input-output relation is characterized by the following: 1(t) = m(t - A) where 1(t) is the

output of the operator and m(t) is the input to the operator.

d(t)

x(t) -- o G P --- y(t)

Figure 2-7: Feedforward/inverse control system

Fig. 2-7 shows a feedforward/inverse dynamics configuration. The plant output y(t) will

be identical to the input x(t) if G = P- 1 and d(t) = 0. Suppose P is an unstable system. If

d(t) $ 0, then y(t) is divergent unless the unstable part of P is canceled by d(t). Even without



the presence of the disturbance, in order to achieve a perfect tracking of the input to the

output, the controller needs to be a perfect inversion of the plant. Such a perfect inversion is

extremely difficult to achieve, especially given the variability of neuronal activities. However,

the controller in this scheme was suggested to be a function of cerebellum by Shidara et al.

(1993).

x(t) y(t)

Figure 2-8: Feedback control system

Another configuration is a feedback control system as shown in Fig. 2-8. Anatomically

it has been known that transcortical feedback loop exists (Brooks 1986) and is involved in

motor control. Stabilization in this case is achieved by feedback induced changes in the closed

loop dynamics that are more robust against the parameter variation as well as disturbances

than explicit cancelation of the plant modes as in the feedforward scheme in Fig. 2-7. The

models by Kettner et al. (1997), Barto et al. (1999), and Massaquoi (2006a) explicitly use

this type of formulation and the cerebellum is posited as part of the controller.

X (t) y(t)

Figure 2-9: Feedback learning inverse/internal dynamics system

The last configuration is a combination of the feedforward and feedback configurations.



Many models which claim this type are learning models. The controller G is crude and as the

system learns an accurate estimate of an inverse of the plant, P- 1, the real time execution

depends more on the feedforward path, through P-1 and P, than the feedback (Gomi and

Kawato 1992a; Kawato and Gomi 1992b). It has been proposed that the cerebellum is a

locus of the approximation of the plant inverse (Kawato and Gomi 1992b; Gomi and Kawato

1992a; Miall et al. 1993c; Wolpert and Kawato 1998; Schweighofer et al. 1998b).

2.2.1 Cerebrocerebellar communication system by Allen and Tsuka-

hara (1974)

Allen and Tsukahara (1974) suggested a functional two-stage, planning and execution sys-

tem involving the interaction between cerebral cortex and cerebellum. Fig. 2-10 shows a

schematic connection of the suggested system.
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Figure 2-10: Cerebrocerebellar communication system (Allen and Tsukahara 1974). See the
text for details.

A thin dashed line connecting the somatosensory feedback to association cortex (ASSN

CX) represents a pathway whose function/importance was unknown at the time of the for-

mulation. The dense dashed lines noted with A and B represent cooling of cerebellar dentate

and sectioning of the dorsal columns, respectively. In the formulation, it was proposed that

the lateral cerebellum and the basal ganglia were involved with ASSN CX in planning and



programming an appropriate patterned of certain motor cortical columns and their corre-

sponding movements (Asanuma and Rosen 1972). Once the movement was planned within

the planning center, the motor cortex issued a descending command to execute a movement.

The intermediate cerebellum updated the ongoing movement based on the motor command

from the motor cortex and somatosensory information of the limb's state. The lower execu-

tion loop did not participate in a long term planning, but only in a short term planning and

follow-up corrections.

In order to test this two-stage classification, two pathological studies were performed.

First, upon cooling of the cerebellar dentate of a monkey, a few behavioral changes were

observed: Movement became slower, auditory and visual cues were used to locate the targets,

and errors were developed in rate and range in attempting the movements. Thus, the

authors concluded that these observations were consistent with the notion that the movement

was primarily preprogrammed. Second, sectioning of the dorsal columns did not cause

performance deterioration. That supported the idea that ASSN CX and lateral cerebellum

were involved in preprogramming of movements.

2.2.2 Inverse/Internal models

One standing issue on computational neuroscience, motor control in particular, is whether

internal models (Shidara et al. 1993; Gomi et al. 1998) exist in the brain or not, and if

so, where they are located. Although a few researchers have tried to straighten confusions

among neuroscientists as to what feedforward, inverse, or internal model means (Karniel

2002), there still has fair amount of confusion on what it means possibly due to its sources.

A series of studies (Kawato and Gomi 1992b; Gomi and Kawato 1992a) have suggested

that the cerebellum is a locus of the plant inverse in relation to the adaptive feedback learning

models. In the formulation by Gomi and Kawato (1992a), the proposed adaptive feedback

control model is developed in detail as a specific neural circuit model for three different

regions of the cerebellum and the learning of the corresponding representative movements:

(i) the flocculus and adaptive modification of the vestibulo-ocular reflex and optokinetic eye-



movement responses, (ii) the vermis and adaptive posture control, and (iii) the intermediate

zones of the hemisphere and adaptive control of locomotion.

Biological plausibility of the internal model being implemented in cerebellum was first

suggested by Shidara et al. (1993) using kinematics of eye movements for a step-tracking

task and simultaneously recorded Purkinje cells' simple spike firing activities. The authors

showed that simple spike activities of majority of the task-relevant Purkinje cells, 19 out of

23, in the ventral paraflocculus (VPFL) of the cerebellum were accounted well for by the

inverse-dynamics representation as below:

f(t - A) = aý(t) + be(t) + ce(t) + d, (2.1)

where f(t), ý(t), 6(t), e(t), and A are the firing frequency at time t, the eye acceleration,

velocity, and position at time t, and the time delay between firing frequency and movement,

respectively. Therefore, they assumed that the forward dynamics of the eye movement could

be derived as below:

N L

MW(t) + Be(t) + Ke(t) = m(t - Am) = wifi(t - Ai) + pjgj (t - Aj), (2.2)
i=1 j=1

where M, B, and K are the acceleration, velocity, and position coefficients, m(t), the final

motor command to be the weighted sum of the firing fi(t) of the i-th PC weighted by wi,

and the firing (rate) gj (t) of the j-th neuron weighted by pj in another brain region.

However, in this analysis, Eqn's 2.1 and 2.2 merely show that the firing rates of the

Purkinje cells is a linear summation of kinematic variables. Thus, it should not be concluded

that the cerebellum is a site of the inverse dynamics of the plant.

Gomi et al. (1998) followed a similar manner by studying ocular following response (OFR)

and found that 86% of the well-modulated temporal firing patterns taken from those 30 Purk-

inje cells from the VPFL were reconstructed successfully from eye movement. Further, the

estimated coefficients of the regression model were larger (statistically significant) for slow



stimuli than for fast stimuli, suggesting changes in sensitivities under different conditions.

However, firing patterns of each cell under several different conditions were frequently well

reconstructed by an inverse dynamics representation with a single set of coefficients, which,

as the authors claimed, possibly implied that within the stimulus range tested the relation

between the eye movement response and VPFL PC simple spike firing patterns was roughly

linear. An interesting observation was that without positional component, remarkable dif-

ferences between observed and reconstructed firing patterns were noted especially in the

initial phase of the movements, indicating that the negative positional component was not

negligible during OFR. Therefore, individual PC's was not capable to generate final motor

position command to the OFR system.

One of the issues in the above two studies is their logical construct to conclude that the

cerebellum implements inverse dynamics simply because the firing rates of Purkinje cells

can be approximated by kinematic signals. Furthermore, in order to check if the cerebellum

receives feedback signals, there should have been an application of disturbances.

There has never been any electrophysiological studies to show that this inverse dynamics

argument holds for multi-joint arm movements, where the arm dynamics is more complicated.

Yet, there has been a significant amount of literatures arguing, based on the two studies

above, that the cerebellum is a site of inverse dynamics implementation to mimic a map

from position motor command to force/torque output. The following three models are just

examples of such an argument.

2.2.3 Smith predictor (Miall et al. 1993c)

One of the most critical issues of the biological feedback control system is how to account

for various types of delays present in the neural system. Smith predictor is a particular

controller structure for systems with long loop delay by having a model of the plant and the

delay. As long as the predictive plant and the delay models are accurate, then the delays are

effectively moved outside of the feedback loop, as the actual and predicted feedback signals

cancel each other out. One specific implementation of Smith predictor is shown below.



Controller Pat Wy

D2 

Plant

* ava

Figure 2-11: Smith predictor architecture (Miall et al. 1993c). Two internal predictive loops
are indicated by dashed lines. Comparators are indicated by circles with one filled quadrant,
and the empty circle is a positive feedback connection.

Miall et al. (1993c) suggested that the cerebellum formed two types of internal model.

One was a forward predictive model of the motor apparatus, limb and muscle for arm move-

ment, to provide rapid prediction of the sensory consequences of movement. The second

model was of the time delays in the control loop to account for receptor and effector de-

lays, axonal conductances, and cognitive processing delays. The reasons why the cerebellum

was an obvious candidate was that a number of constraints posed on the Smith predictor

structure fit with cerebellar anatomy and physiology. In particular, although there was no

modeling or simulation was performed, the authors suggested that the comparison between

expected, or reafference, and actual sensory signals, from which a teaching signal was pro-

vided for the cerebellum, was carried out by the inferior olive. One key weakness of Smith

predictor formulation, at least based on a series simulations shown in the paper, was that

both the delay model and the plant model had to be perfect. It is not clear how robust the

Smith predictor formulation is against disturbances and parametric uncertainty in the plant

and the delay models, especially with high dimensional nonlinear systems.

Miall and Jackson (2006) reported a study on adaptation to delayed visual feedback

during a manual tracking task, testing the nature of the adapted responses with frequency

analysis. Introduction of the visual feedback delay significantly disrupted tracking perfor-

mance, with an increase in errors and a reduction in frequency of corrective movements.



Subjects showed clear evidence of adaptation during the 5 day experiment, decreasing track-

ing error and decreasing the mean power of intermittent corrections. However, there was no

evidence of a return towards the initial high frequency intermittent tracking. The authors

suggest that the adaptation observed in this study reflects the modification of predictive

feedforward actions, but that these data do not support control based on Smith Prediction

due to the fact that the Smith predictor uses a single adaptive forward model both for

predicting the consequences of actions and for control at the same time.

2.2.4 Schweighofer et al. (1998a,b) models

Another model which incorporates basic components of CNS, cerebellum in particular, is

suggested by Schweighofer et al. (1998a,b). As the virtual trajectory model (Bizzi et al.

1984; McIntyre and Bizzi 1993) was not successfully extended to account for rapid reaching

movements in the order of 0.5 second because the controllers operating at each joint were

not coupled, Schweighofer et al. (1998a) proposed a distributed functional model in which

the CNS acquired a crude inverse dynamics of the arm in the motor cortex and spinal cord,

Then, the model was complemented with the cerebellum for the interaction torques among

the limb segments by learning a portion of the inverse dynamics model. Therefore, there are

at least two sites distributed over the motor cortex and the cerebellum where the inverse

dynamics are implemented.

In Schweighofer et al. (1998b), this model was modified into a more biologically feasible

model with additions of inferior olive and specific cell types of the cerebellum as well as

afferent and efferent delays present in the neural pathways. the inferior olive made the

model adaptable. The updated model learned the part of inverse dynamics of the arm not

provided by explicit feedback/feedforward controller. The authors found that only long

parallel fibers allowed the proper learning of appropriate coordination of movement at two

joints. If the parallel fibers were too short, then the PC's inputs originated mostly from the

same joint so that proper associations between the joints were not learned. One interesting

feature after learning was that the modeled PC's exhibited directional tuning (compare with
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Figure 2-12: Functional diagram of the model for on-line control of arm movements with
the inferior olive (IO) which computes the feedback error for adaptation (Schweighofer et al.
1998b). See the text for more details.

physiological results from Coltz et al. (1999)). Another interesting finding was that during

learning, two peaks of inferior olive activity occurred at the beginning and the end of the

movement, but after learning only the early peak that was locked with movement onset was

present.

2.2.5 Wolpert and Kawato (1998) models

Wolpert and Kawato (1998) extended the hypothesis, that the CNS learned and maintained

internal models of sensorimotor system and of objects in the external environment, by in-

corporating an idea that specific sensorimotor transformations must have been employed

that were tailored to particular context or environment in order to deal with a variety of

behavioral paradigms associated with different objects and environments. It is proposed that

a new computationally intensive and anatomically reasonable model in which each inverse

controller was augmented with a corresponding forward predictive model, the pair being

tightly coupled during acquisition, motor learning, and use, through gating dependent on
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Figure 2-13: Model architecture of multiple paired forward-inverse model including n mod-
ules that are shown as stacked sheets. The detail of the each module is shown in the first
module. from Wolpert and Kawato (1998).

the behavioral context. Ensembles of such pairs were called multiple forward inverse model

as shown in Fig. 2-13. Each module consisted of three interacting parts. The first two, the

forward model and the responsibility predictor, were used to determine the responsibility,

or extent of participation, of the module. This responsibility signal reflected the degree to

which the module captured the current context and hence should participate in control. The

aim was that the multiple forward models learned to divide experience so that at least one

forward model was active to predict the consequence of performed actions at any moment. It

was assumed that the cerebellum was the most logical site for the location of the forward and

inverse models and that a pair were localized within microzone or possibly larger functional

unit in the cerebellar cortex. It was also assumed that both forward and inverse models

were used in mental simulation of movement to account for a series of fMRI studies. One



issue that was not addressed in this formulation, unlike Miall et al. (1993c) and Schweighofer

et al. (1998b), was the generality of the formulation against neural delays and its robustness

against disturbance.

2.2.6 Kettner et al. (1997) and Barto et al. (1999) models

Kettner et al. (1997) suggested a neural network model of pursuit movement based on the

anatomy and physiology of the cerebellum without having any explicit implementation of

inverse dynamics unlike the few models introduced earlier. The model allowed the prediction

of complex movements by adding a feature that an array of inputs were distributed over a

range of physiologically justified delays and over different parts of state space, i.e., position

and velocity space. It was confirmed against a primate experiment that both the model and

the eye make short-term predictions about future events to compensate for visual feedback

delays in receiving information about the direction of a target moving along a changing

trajectory. In addition, both the eye and the model could adjust to abrupt changes in target

direction on the basis of visual feedback, but did so after significant processing delays.

In a similar spirit to that of Kettner et al. (1997), Barto et al. (1999) developed a cerebellar

model that was much simpler than that of Kettner et al. (1997), but for a single degree of

freedom limb with a muscle which had the nonlinear velocity dependence of the stretch reflex.

The model explored its potential for adaptive, predictive control based on delayed feedback

information as in Kettner et al. (1997). An abstract representation of a single Purkinje

cell with multi-stable properties was interfaced, using a formalized premotor network. The

input command was chosen to be series of pulses, non-smooth transitions, of equilibrium

points. By including realistic mossy fiber signals, a sparse expansive encoding of MF signals,

as well as realistic conduction delays in afferent and efferent pathways, the model allowed

the investigation of timing and predictive processes relevant to cerebellar involvement in the

control of nibvdment.z (Fig. 2-15). This idea was motivated by the activity of the discharge

patterns of MF's involving a diverse combinations of tonic and phasic components as well as

the firing onset variability relative to the movement onset (van Kan et al. 1993). The model
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Figure 2-14: Block diagram of the model. Although the brain stem integrator and the
eye plant are modeled by the same set of equations in the model, these 2 functions are
distinguished in the diagram to emphasize their different neural substrates and the idea
that both proprioceptive and efference copy signals may provide eye position and velocity
information. All lines indicate the flow of multivariate information, with the heavier arrow
indicating the wider bandwidth associated with the expansive recoding of mossy inputs.
Smaller boxes: pure delays in the model. Open arrowhead: indirect action climbing fiber
training signals have on information throughput by the alteration of network weights via the
learning rule. Visual input to the system is assumed to take the form of retinal error signals
that are obtained by a subtraction at the node labeled S of target and eye position signals
(Kettner et al. 1997).

regulates movement by learning to react in an anticipatory fashion to sensory feedback.

Learning depends on training information generated from corrective movements and uses a

temporally asymmetric form of plasticity for the parallel .ber synapses on Purkinje cells.

These two models suggested that, although the arm model was of single degree of free-

dom and the eve model was an uncoupled two dimensional plant, in order to account for

realistic kinematics as well as to achieve biologically feasible adaptation mechanism, realistic

biological implementations were sufficient and strong notion such as internal model was not

necessary.



Figure 2-15: Model architecture. PC, Purkinje cell; MFs, mossy fibers; PFs, parallel fibers;
CF, climbing fiber; Ti, i = 1,..., 5 conduction delays. The labels A and B mark places in
the system to which Barto et al. (1999) refer discussing the model's behavior.

2.2.7 RIPID model (Massaquoi 2006a)

Many of the motor control models, the ones based on cerebellar functions in particular, fo-

cused more on achieving biologically feasible learning, but not much on cerebrocerebellar long

loop compensation that the CNS is capable of. Thus in order to tackle this issue, Massaquoi

(2006a) formulated a recurrent integrator proportional-integral-derivative, RIPID, control

system that was based on anatomically feasible cerebrocerebellar communication.

This system appear to characterize a dominant role of cerebrocerebellar long-loop system

in postural stabilization and two-joint arm and three-link leg (Jo and Massaquoi 2004) control

without explicit dynamic inversion or internal forward predictive models. In addition, several

signals from the model that have anatomical correspondence resembled various cell types

recorded from M1 and area 5, which support biological feasibility of the model over the

other existing models. At this point, however, the adaptation mechanism of this model is

not clear.

This particular cerebrocerebellar long loop formulation is a basis of the modeling work

shown in Chapters 3 and 4.
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Figure 2-16: One version of RIPID model. Colored circles designate functional subcategories
of sensorimotor cortical groups.

2.3 Intermittency

Movement 'intermittency' or 'segmentation' refers to the commonly observed characteris-

tic of continuous movements to have brief intermittent reductions in speed without full

stops. Between the local speed minima, the speed profile is typically a smooth roughly bell-

shaped curve. Physically, this corresponds to the appearance that continuous movements

are generated as segments that are blended together. Segmentation of apparently continu-

ous movements was first observed by Woodworth (1899) in a speed-accuracy trade-off study.

Since then, submovements, which have been identified by non-smooth speed profiles, have

been described in many types of movements: pursuit tracking (Miall et al. 1986, 1988),

reaching (Meyer et al. 1982) with or without visual feedback (Doeringer and Hogan 1998),

interception of moving targets (Lee et al. 1997), cursor movement during isometric force

task (Massey et al. 1992), and rapid hand movements (Novak et al. 2000, 2002). Submove-

ments characterize both human and non-human primate limb movements (Miall et al. 1986).

Emergence of intermittency is not only limited to end effectors of interest, but also to EMG.

Segmentations were found in the EMG activity during slow finger movements (Vallbo and

Wessberg 1993) and during point-to-point reaching movement with a wide range of speeds

(Dipirtro et al. 2005), demonstrating that the descending command can also be inherently



intermittent. Furthermore, motor disorders, including Parkinson's disease, often increase

segmentation (Flash et al. 1992; Hocherman and Aharon-Peretz 1994). The kinematic study

of stroke patients, with different brain lesions, demonstrated that severely irregular inter-

mittency during a continuous arm motion, but the speed profile of each submovement was

verified to be invariant with speed (Krebs et al. 1999) and the severeness of the intermittency

improved to decrease numbers of the submovements in a given movement and to increase

peak speed as well as duration during recovery (Rohrer et al. 2004). These pathological cases

indicate that some component of the CNS is responsible for integrating unit movements to

make smooth movements.

Many researchers have noted the invariance of the velocity template, mainly in point-

to-point movements. This invariance led to the hypothesis that a series of stereotypical

submovements were used to make one composite movement (Milner 1992) and a few speed

profile templates have been suggested such as minimum jerk criterion (Flash 1987) or indi-

vidually fitted prototypes (Milner 1992). An example in (Milner 1992) as well as numerous

point-to-point reaching studies showed that velocity profiles of accurate movements were

asymmetric. Woodworth (1899) noticed this and suggested that accurate movements con-

sisted of two phases: An initial phase in which the limb was brought near the target, and

the current control phase make corrections to reduce terminal accuracy. Even with this

classification, the initial phase of movements were still highly invariant (Milner and Ijaz

1990)

However, based on the observations of tracing of various geometric figures, Todorov and

Jordan (1998) suggested that correlation between speed and curvature might be a con-

sequence of an underlying motor strategy to produce smooth movements by maximizing

smoothness along a predefined path, and the resultant intermittency is a byproduct of such

an optimization principle. This correlation was stronger for movement with shorter dura-

tions and was not affected by the spatial scale or speed. Thus, even to maximize smoothness,

existence of discrete and highly invariant unit movement emerged.

There are many suspects of possible causes of intermittency. One might wonder if the



intermittency is a manifestation of anisotropic neuromuscular dynamics. Massey et al. (1992)

suggested that arm dynamics played no major role in the temporal correlation between

tangential velocity minima and curvature maxima. The neuromuscular dynamics might not

be a major player in the intermittency, but might be a minor contributor to intermittency.

Neural noise could be another source of intermittency, but regardless of the templates used to

decompose speed profiles into submovements, the high invariance of the speed profile implies

that the intermittency is not a consequence of neural noise alone. Visual feedback delay could

be another source of intermittency because in pursuit tasks with visual feedback, the speed

profiles contained frequency content concentrated between 1 - 2 Hz (Miall et al. 1993a).

However, as Doeringer and Hogan (1998) showed that intermittency in that frequency still

persisted after removing visual feedback, and further showed that the intermittency was not

the result of a feedback delay alone whether the system was linear or nonlinear. A recent

imaging study by Vaillancourt et al. (2006) showed that intermittency in visually guided

force control task was a function of frequency of visual feedback and different brain regions

were involved depending on the feedback frequency. Infrequent (0.4 Hz) visual feedback did

not result in visuomotor activation in lateral cerebellum (lobule VI/Crus I), whereas frequent

(25 Hz) intermittent visual feedback did. This is in contrast to the anterior intermediate

cerebellum (lobule V/VI), which was consistently active across all force conditions compared

with rest. Second, confirming previous observations, the parietal and premotor cortices were

active during grip force with frequent visual feedback. The novel finding was that the parietal

and premotor cortex were also active during grip force with infrequent visual feedback. Third,

right inferior parietal lobule, dorsal premotor cortex, and ventral premotor cortex had greater

activation in the frequent compared with the infrequent grip force condition. Therefore, in

order to understand the underlying mechanism of intermittency generation, it is critical to

look into actual neural implementations.



Chapter 3

Recurrent Integrator Cerebellar

Simple Spike (RICSS) Model

3.1 Introduction

A number of studies have examined simple spike firing in cerebellar Purkinje cells (Bauswein

et al. 1984; Fu et al. 1997; Gilbert and Thach 1977; Gomi et al. 1998; Ojakangas and Ebner

1992). Those analyzing the firing patterns in anterior intermediate and lateral cerebellum

(motor cerebellum) have generally found correlations between Purkinje cell (PC) simple spike

frequency and position and/or velocity. However, a functional model that accounts for the

temporal details of these signals during arm movement control is still lacking.

In regard to modeling, it is important to note that typically PCs have been found to fire in

relation to both passive and active motion of the body part under study, though perhaps not

as vigorously in the former condition with respect to the latter (Bauswein et al. 1983; MacKay

and Murphy 1974). This suggests that these cells may be involved in both monitoring and

controlling body parts. Because the cerebellum is a site of considerable convergence of both

peripheral sensory information via the spinocerebellar tracts and brainstem counterparts,

and copies of motor outflow via pontine nuclei (Kakei et al. 1995) and spinocerebellar tracts

(Bosco and Poppele 2001) it is natural to consider that PC activity may be a function of both



sensory information and motor outflow. This would be consistent with the observation that

interpositus and dentate firing activity modulates during point-to-point movement control

(Fortier et al. 1989; MacKay 1988; Thach 1975), passive body movement (MacKay and

Murphy 1974) and postural maintenance (Horak and Diener 1994).

The preceding observation is not of trivial consequence because important motor con-

trol models emphasizing feedforward control based on desired, rather than sensed, move-

ment trajectories (e.g., Contreras-Vidal et al. (1997); Gomi et al. (1998); Houk and Wise

(1995b); Keifer and Houk (1994)) do not necessarily predict that sensory information would

be prominent in cerebellar movement control signals. Other formulations (Massaquoi and

Slotine 1996; Miall et al. 1993c; Paulin 1993; Wolpert and Kawato 1998) in principle include

the possibility or prediction that sensory signals are prominently represented in at least

some Purkinje cells. A minority of investigators have, in fact, promoted the view that the

cerebellum is principally an organ that processes sensory signals and that motor function

is secondary (Bower 1997). Massaquoi and Slotine (1996) showed an anatomically feasible

feedback formulation that predicted interpositus nucleus firing activity. However, the model

did not specifically show how PC simple spike activity could be accounted for. Gomi et al.

(1998) showed that ventral paraflocculus PC simple spike firing activity can be fit by a lin-

ear combination of signals needed for dynamic control of the eyes. Although presented in

support of a feedforward model, the data do not specifically indicate as to whether the PC

signal is or is not dependent upon sensory information.

More recently, a model of cerebellar control based upon the processing of error-type sig-

nals has been proposed (Jo and Massaquoi 2004). The Recurrent Integrator PID (RIPID)

cerebrocerebellar control model that evolved from a wave variable model (Massaquoi and

Slotine 1996) posits that certain recurrent signals from cerebellum stabilize long-loop pro-

prioceptive responses so that they may participate strongly in both postural maintenance

(Jo and Massaquoi 2004) and point-to-point movement control (Massaquoi 2006a). From

the perspective of these models, the bulk of cerebrocerebellar control involves both forward

command and sensory feedback information inextricably combined. This view has poten-



tially significant practical implications. For example, it predicts that forward commands may

be fairly simple or crude and still be highly effective because refinement will occur due to

feedback. This would imply in turn that cerebral cortical command generation circuitry may

be simpler than might otherwise be surmised. The view also predicts that fundamentally

most motor cortical and cerebellar signals recorded in intact animals will not be entirely

representative of the signals recorded in deafferented animals. If true, this fact could be rel-

evant to optimizing the design of decoding algorithms for neuroprostheses (Donoghue 2002;

Shenoy et al. 2003) to be used when afferent pathways have been compromised. Conceivably,

if the role of sensory input is correctly understood, appropriate adjustments can be made to

signals recorded in their absence.

Thus, it is potentially valuable to have an accurate representation of cerebellar waveforms

in terms of the control signals that are processed there. The situation with two degree-of-

freedom nonlinear arm control is more complicated than with single degree-of-freedom eye

movements. Control is presumably implemented by a distributed population of units and

the biomechanics of the arm about which the cerebellum is very likely concerned, are more

complex. Moreover a full quantitative accounting for the role of a given set of experimentally

recorded PCs in arm control is in principle difficult to achieve. First, the dataset must include

a substantial fraction of the PCs involved in the control, and the relative degree to which

each contributes to the total cerebellar output must be determined. To date, such data

are not available. However, it is both possible and important to at least check whether

a functional formulation such as the RIPID control model could account for observed PC

activity waveforms while it controls motion of the arm.

Here it is demonstrated that a basic RIPID cerebrocerebellar control model can be elabo-

rated to include plausible representations of cerebral, cerebellar and spinocerebellar circuitry

in a manner such that a large number of waveforms recorded experimentally in primates dur-

ing circular arm movement can be explained in terms of arm control signals. The resulting

model will be referred to here as the Recurrent Integrator-based Cerebellar Simple Spike

(RICSS) signal model. It is shown that the quality of fit provided by the RICSS model com-



pares favorably with fits using hand kinematics signals alone and that its structure accounts

for the system nonlinearity predicted recently by a simpler empirical model (Roitman et al.

2005). The sufficiency of the RICSS model in accounting for a large PC dataset supports the

plausibility of the RIPID model formulation in general, and the proposed cerebrocerebellar

connection architecture in particular.

3.2 Methods

3.2.1 Purkinje cell simple spike data

The experimental setup is described in detail elsewhere (Roitman et al. 2004, 2005) and

Chapter ?? in this thesis. Briefly, a right-handed female monkey (Macaca mulatta, Monkey

M in Roitman et al. (2005)) was trained to use a two-joint manipulandum to make visually

guided horizontal planar multi-joint arm movements. Targets and hand cursor were displayed

on a vertically placed LCD monitor in front of monkeys. This investigation used the data

from more than 25000 movement trials. Each trial consisted of four phases: Hold, Cue,

Intercept, and Tracking. The monkey initially held the cursor at the centrally located hold

target for a random duration between 1 and 2 seconds. Next, a cue target appeared at one

of four angles (0, 90, 180, and 270 degrees) on an (invisible) 5 cm radius circle centered

on the hold target, and began clockwise (CW) or counterclockwise (CC) circular motion

while the monkey held the cursor at the hold target. After the target moved 180 degrees,

its color changed to signal the onset of the Interception phase. The monkey was trained

to intercept the target before the target moved 65 degrees farther. Once the target was

acquired, the monkey was to track the target for 360 degrees. For the earlier experiments,

the four target speeds ranged from 3.1 cm/s to 8.3 cm/s by 1.7 cm/s increments. For later

experiments, five target speeds were used over the same range, differing by 1.3 cm/s. In

contrast to the data used for analysis in Chapter 4, both speed increments are used in this

chapter. Target speeds, initial launch angles, and rotational directions were varied randomly

such that 10 trials were given for each target speed, initial angle, and rotational direction.



Target locations and hand locations in terms of x- and y- coordinate relative to the center

of the workspace were recorded at 200 Hz.

e.

Figure 3-1: Arm configuration relative to the workspace of the monkey. The origin of
Cartesian hand coordinate is set at the center of the circle on which the target cursor travels.
The hand location is defined relative to this origin. The shoulder and elbow angles are defined
as shown in the figure. Three functional muscle groups: shoulder flexors/extensors, elbow
flexors/extensors, and two-joint flexors/extensors as in Katayama and Kawato (1993) and
Flash (1987) are modeled.

3.2.2 Purkinje cell recording and properties

The recording chamber was placed over the parietal cortex ipsilateral to the tracking arm

and was stereotactically positioned to target the electrode recordings in the intermediate

and lateral zones of cerebellar lobules V-VI where arm related PCs have been described

(Ojakangas and Ebner 1992; Fu et al. 1997). Simple spike data was sampled at 1 kHz and was

examined qualitatively to test the responsiveness of individual PCs to passive manipulation

of the shoulder, elbow, and wrist joints.
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Figure 3-2: Recording sites are denoted with filled circles as shown in the lateral view of the
cerebellum. The primary fissure is marked with the arrow labeled PF. Not all the recording
sites for the cells used in the analysis are displayed and some recording sites correspond
to several cells). Inset shows dorsal view of the cerebellum, with the ovals denoting the
penetration regions. The figure is modified from Roitman et al. (2005).

Sixty-nine Purkinje cells were used for this study. Twenty-six cells were recorded with four

target speeds and 43 cells with five target speeds. It was found that the majority of the tested

PCs were modulated by passive arm movements (Roitman et al. 2005). The histological

study showed that the locations of the recordings are consistent with previous studies that

Purkinje cell activities were involving visually guided arm movements, but hardly, if any,

related to eye movements (Coltz et al. 1999; Fu et al. 1997; Roitman et al. 2005).



3.2.3 Synopsis of the RIPID two-joint arm control model

The PC signal model is based on an elaboration and refinement of the RIPID two-joint arm

control model (Fig. 3-3) that is presented in detail elsewhere (Massaquoi 2006a).

The model is seen to contain a nonlinear plant P that represents the two-joint, six-

muscle group, arm musculoskeletal system with equations of motion given by Eq. (3.1) , see

Katayama and Kawato (1993), together with its segmental spinal reflex control. For this

study, spinal reflexes were subsumed within the stiffness of the muscular system Eq. (3.2):

r = H()0 + C(0, 6)6 (3.1)

S= -A T [Km [-A (le(u) - 1)] - Bm (-A(-1))]+ (3.2)

where 0 = [09, Oe]T are joint angles as defined in Fig. (3-1), H(O) is the 2 x 2 configuration

dependent inertia matrix, C(O, 9) is the 2 x 2 configuration and velocity dependent matrix

of velocity cross terms, r is vector of joint torques, A is a 2 x 6 moment arm matrix, Km is

a 6 x 6 stiffness matrix, Bm is a 6 x 6 viscosity matrix, 1 is a 6 dimensional vector of muscle

lengths, le(u) = ATU is a vector of equilibrium muscle lengths controlled by a 2 x 1 vector

of joint signals u, and [x]+ = max(x, 0). The structure and parameters for this model were

adapted from Katayama and Kawato (1993) to be appropriate for the monkey and are given

in the appendices.

The neural control is represented by lumped parameters describing the scaling afforded by

various components of the cerebro-cerebellar system driven by the intended motion reference

command Otarget(t), in contrast to the static reference position command Oref(t) in Jo and

Massaquoi (2004). The dynamics of individual neurons are not modeled explicitly. Values

for the 2 x 2 cerebral gain matrices Ia and MC, the cerebellar gain matrices Gk, Gb, 1,

12 and 13 and feedback gain matrices F 2 and F 3 were selected empirically to afford nearly

circular hand motions while exhibiting physiologically low stiffness values with respect to

peripheral disturbances. Physiological neural signal transmission delay values were used.

These values are given in the appendices.
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Figure 3-3: RIPID Model. Colored circles designate functional subcategories of sensorimotor
cortical (SMC) units. See text for details.

Prominently rendered in Fig.3-3 are long-loop pathways to areas 3a and 5 and motor

command paths direct through motor cortex (via MC) to spinal cord with efferent delay

teiff, and indirectly through cerebrocerebellar connections. Fundamentally, the signals that

percolate through the control system are posited to be functions of a principal tracking er-

ror formed in parietal area 5, Otarget(t) - F 3 0(t - taff) where taff is a sum of the spinal

and peripheral delay, and more direct afferent information received via Area 3a (via F 2 and

category 1 sensorimotor cortical units (SMC-1) in Fig.3-3). The nature of the inputs to

cerebellum depends upon the source. The signal from area 3a is proposed to travel to in-

termediate cerebellum and that from area 4 (SMC-2 units in Fig.3-3) to intermediate and

lateral cerebellum. These are considered the principal signals that in the cerebellum and

precerebellar nuclei undergo scaling, delay, recombination and reverberation to affect pro-

portional, derivative and integral processing (Gbs, Gk, and Ii/s, I2 /s, and 13 /s, respectively,

where s denotes Laplace variable). These actions contribute to phase advancement (due to

I2 /s feedback loop) for long-loop stabilization and sculpting forward control signals (Gbs,

Gk, I1/s path) that return to motor cortex where they are collected and redistributed via

SMC-3 and SMC-4 units before descending through the spinal cord as motor command u.

A second important set of inputs is posited to consist of modulating signals from spinocere-

Area 4



bellar tracts (77, dashed arrow, see below). These signals effectively modify the values of Gb,

Gk, I1 according to limb configuration and velocity as detailed below. In addition to the

principal transcerebellar pathways there is additional internal feedback to the parietal lobe

and/or motor cortex via I 3/s that contributes to loop stability.

The key prediction of the model is that many Purkinje cells in intermediate and lateral

cerebellum that are involved in arm control will receive the signals ecb(t) that can be seen to

be a function of the error-like vector signal ef2(t) = com(t ) - F20(t- taff). In particular,

eb(t) is approximately equal to the scaled and filtered derivative of ef2(t) (see Eq. (3.4)

below) that is generated by the recurrent integrator circuit.

3.2.4 Cerebrocerebellar interconnectivity and the RICSS model

Combining the studies of intra-cortical connectivity (Asanuma and Rosen 1972; Kaneko

et al. 1994) with recent data on cerebrocerebellar connectivity (Kelly and Strick 2003), and

established concept of distributed representation of signals in terms of population vectors

(Georgopoulos et al. 1982a), a slightly more detailed but still simple picture of the cerebro-

cerebellar connection architecture can be proposed as shown in Fig. 3-4. The cortical com-

ponent of the RICSS model is organized in terms of proposed functional groups or categories

of cortical columns (Asanuma and Rosen 1972) that would be simultaneously consistent with

known cerebrocerebellar connectivity and the RIPID control model. Here, it is assumed that

ecb in area 3a is represented as a population vector and then distributed to different PCs

via SMC-2 columns (Figs. 3-3, 3-4). It is also considered that the particular SMC-1 column

projecting to a given PC could vary according to cursor tracking direction. Hence, from the

perspective of each PC, ecb it is represented more specifically as the scalars edr.(t), whereecb () hr

dir = cw (clockwise) or cc (counterclockwise) and- = + or - as will be shown below. Thus,

we associate with each column r a nominal tuning direction q3, that would be the direction,

in joint coordinates, in which a unit magnitude error would maximally activate the column

(the "preferred direction" for a unit amplitude signal). It is assumed therefore that the major

component of firing activity in column r is then determined by the projection of the vector



signal being represented onto the unit vector along 0r.

It was seen empirically that a second activity component in these units is a tonic back-

ground signal that scales with the square root of the intended (constant) hand speed, Vh(see

Eq.(3.3) for the detailed expression). The neurophysiological source of this signal is not

specified in the model. However, some models of muscle spindle function (Hasan 1983; Houk

et al. 1981) include a forward bias signal and a subunity exponent for the speed dependence

of spindle output that appear to be consistent with this feature.

alder
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Figure 3-4: Cerebral cortical component of RICSS model from the perspective of a single cere-
bellar Purkinje cell. 8 cerebral cortical columns in Sensorimotor Cortical Area 3a (SMC-1,
unit 1 in Fig.3-3) implementing a neural population-based representation, e.g. Georgopoulos
et al. (1982a), of the tracking error-like vector (red arrow) and subsequent distribution after
cerebellar processing (see text for details).

Activity is then transmitted to other sensorimotor cortical columns (SMC-2) and thence

to the cerebellum. Fortier et al. (1989), Coltz et al. (1999) and others have pointed out

that cerebellar PCs exhibit population vector-like tuning curves as do those in motor cortex.

However, there are some characteristic differences from the latter. A number of cells, around

15 % in Coltz et al. (1999), have more bimodal curves with activity peaks that occur at two

angles separated roughly by 7r instead of a single peak. In the current scheme, this could be



accounted for by assuming that occasionally columns with oppositely-directed odr (Asanuma

and Rosen 1972) project to the same PCs. Both unimodal and bimodal firing patterns

in cerebellar PCs are represented in the model depending upon the relative dominance of

parameters 3dir+ or 3dir- in Eq. (3.3) below. The RICSS model also assumes that the

columnar source of cerebellar input can differ according to intended cursor tracking direction.

Thus it allows oc' 0"

The return signals from cerebellum Ucb are afforded by cerebellar dentate (DN) and

interposed nuclei, relayed via the VLc subnucleus of the thalamus (Asanuma et al. 1983)

and distributed to selected motor cortical neuronal groups (SMC-3 and 4, in Figs. 2,3).

Fig.3-5 depicts the cerebellar component of the RICSS model. Here an array of Purkinje

cells as would lie within a microzone (Oscarsson 1979) projects to a single group of deep

cerebellar nuclear cells to form a functional corticonuclear microcomplex (Ito 1984). PCs

are assumed to receive two types of parallel fiber input. Descending signals edr. (t) from area

3a or 4 travel by mossy fibers designated here as signal mossy fibers (sigMF) to reach signal

parallel fibers (sigPF) that are considered here to be those whose ascending axons synapse

multiply on proximal PC dendrites to afford a strong excitatory connection (Bower 2002;

Santamaria et al. 2002). A given set of sigPF inputs is presumed to synapse upon many

PCs within the microzone and upon the associated deep nuclear cell. On the other hand,

the distal dendrites of each PC are influenced more subtly by passing parallel fibers (Bower

2002; Santamaria et al. 2002). These are termed here selector parallel fibers (selPFs). The

principal action of these fibers in the present model is to inhibit laterally adjacent PCs via

basket cells (shown in red in Fig. 3-5). Thus, each PC is potentially suppressible by 'beams'

of active parallel fibers to either side. Conversely, PC activity along an active beam of selPFs

is comparatively preserved. This mechanism is consistent with the experimental observations

of active centers and inhibitory surrounds within the cerebellar cortex (Cohen and Yarom

2000; Dunbar et al. 2004). The quantitative formulation is very similar to that described

in Jo and Massaquoi (2004) but updated to be more consistent with the work of Bower

(2002) and Santamaria et al. (2002). Selector parallel fibers are assumed to be supplied



by spinocerebellar tracts among other input pathways and thus to carry information about

body state (Poppele et al. 2002) and other context variables.
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Figure 3-5: Cerebellar Architecture proposed to underlie PC SS activity, (see text for details).

Based on the architecture outlined above, PC simple spike firing depends upon both

descending signal parallel fiber inputs and modulation by coincident selector fiber activity.

It is assumed that in general that the descending cortical inputs may come from different

SMC-2 units depending upon behavioral intent (roughly "motor set" by Brooks (1986)). In

the current experiment it is assumed in particular that sigPF signals (as opposed to the

selPF activity) differ for the two directions of cursor tracking. This assumption is reasonable

based on a study of M1 cells for spiral drawing (Schwartz and Moran 1999) and on a study of

parietal cells for movement intention (Scherberger et al. 2005). In these studies it was found

that motor cortical cells fire differently depending on the rotational direction of spirals to be

traced and cells in parietal reach region appear to encode the direction of currently planned

arm movement.

Thus, for the RICSS (RC) model we represent the tracking direction dependent activity



of a Purkinje cell

pRC(c(h) = abg + [1 - sela - Selb]+ (dir+e dir+ /dir- edir-)

where abg is a constant level of background firing in the PCs, /3dir+ and /dir- are connection

weights of the sigPFs onto the PC, and sela, selb represent the inhibitory effects of adjacent

selector parallel fibers. For simplicity we assume that dir = dir + 7r and that the connection

strengths of both inputs from SMC-1 to SMC-2 columns is equal so that ecr = -ec 'r, . In

this case, the descending signals are defined as

e dir+ = [a 05+ 6ir ecw + bdir ecc, 1
cb LVh Vh 6CW cb,r cc b ±J+(33edir- [ 0.5 dir cw dir cc
cb Vh Vh +cw cb,r cc cbr

where

,r = lecbI Cos(q, -e W)

ecb, i, = ecb cos(e - )

cbr = ebl COSe - c)

ecC,r ,  ecbI cos(q!e - r•,)

e = (SI + 12 1 2  -1 def, (3.4)
e (sI +I2) -  ef2 12 dt

if 12 is a diagonal matrix and each element is large

where Iecbi and Oe are the magnitude and angle, respectively, of the filtered derivative (Eq.

(3.4)) of the error vector signal, ecb described above, I is an identity matrix whose dimension

is compatible with 12, rdir designates an arbitrary nominal direction, and in Eq.(3.4), s is

the Laplace variable. dir , are simple binary switch variables such that dir, = 1 if dir = dir',



and 0 otherwise. This corresponds to the switch in cortical column according to rotational

tracking direction.

The modulatory effect of selPFs is represented by Eq. (3.5):

seli = pi [r7i+. qq(t - taff)]+ + (1 - pi) [ri- . qq(t - taf)]+, i = a, b

where

?7i+ - [- oi+, Til, ?7i2, 1 i3, ? i4 
T

'i- - [=io-, 7il, ?i2, ?i3, ?Ai4 T

qq = [1, 0s, Oe, Oe, Os] T.

Evidently, when either bracketed term representing the activity of a particular group of

selPFs in Eq. (3.5) is nonzero, the sum of seli (i = a, b) is nonzero and therefore PC activity

is suppressed. These terms consist of the (nonnegative, delayed) projections of the sensed

limb location in state space [0s), 0e, 6e, Os]T, onto nominal directions ±[qil, Ui2, ?R3, Wi4]T, that

are then thresholded by 7i0+ or iO0-. As a result, selPFs cooperatively select, by jointly failing

to suppress, PCs only when the limb state lies within certain regions of state space that are

bounded by the planes defined by ti+ and r7i_ (Jo and Massaquoi 2004). The parameter pi

affects the strength of the two selPF groups' contributions and thus the relative importance

of the two boundary planes. This PC modulation is hypothesized to implement switching

or scheduling of cerebellar gains to enable cerebellar dynamics to vary according to body

state (Jo and Massaquoi 2004) . This particular representation of selPF signal content

used here appears to be grossly consistent with that of spinocerebellar tract neurons (Bosco

and Poppele 2001). Similar, but not identical, formulations have been used previously in

cerebellar modeling (e.g. Kettner et al. (1997)). The 23 parameters a c , a, ' c, i,

?7i0+, Rio-, 7j (i = a, b; j = 1, 2, 3, 4), abg, 3 cw+ cw-, cc+, cc- are therefore free and

available for fitting. It may be noted that 9 are specific for tracking direction, while 14 are

related to arm state independent of direction.



3.2.5 Alternative models

The RIPID Cerebellar Simple Spike signal (RICSS) model was evaluated alongside several

models that include arm kinematic variables more simply. We chose to examine a range of

empirical models of the type that have been proposed previously (Coltz et al. 1999; Roitman

et al. 2005) that include arm kinematic variables linearly or in a simple nonlinear manner.

These models provide benchmarks with regard to model fitting performance and potentially

indicate the type of information and its complexity of representation in the PC single spike

data.

The first Arm Kinematics model AKic (Eq.(3.5)) is based upon the initial linear model

developed by Roitman et al. (2005) and represents arm kinematics in Cartesian coordinates.

This model intends to capture a significant fraction of the signal complexity and may have

particular functional relevance if the recorded Purkinje cells are involved primarily in mon-

itoring hand or limb position in a simple way. The AK1c model for the activity of a PC

response is

pcAKlc (h) = bo + blx(qh) + b2y(Oh) + b3
• ( • h) + b4 (Vh + b5Vh, (3.5)

Vh Vh

where Oh is the angular location of the monkey's hand on the circle, and X(Oh) and Y(Oh)

are and coordinates of the hand relative to the center of the workspace. z(€h) and Y(Oh)

are, respectively, the x and y components of the hand's velocity, and Vh is the hand's in-

tended speed. It was confirmed that for these very well trained monkeys, the target speed

represented the intended hand speed, and that it also very closely approximated the average

hand speed. The latter was confirmed in Roitman et al. (2004). For this reason, target

speed was used for Vh and was constant for any individual movement trial. The bi are free

parameters. The normalization of velocity components is undertaken to dissociate move-

ment direction from hand speed. Thus, AKlc is a linear sum of the target position, target

movement direction, and the intended speed of the hand.

The AK2c model (Eq.(3.6)) is very similar in form to that of AK1c, but it includes



two more terms to account for hand acceleration. Assuming that the actual motion is

quite similar to the intended motion, AK2c could have particular relevance if Purkinje cells

processed a feedforward signal based on the intended hand movement to approximate an

inverse dynamics model as proposed by several investigators (Gomi and Kawato 1992b;

Kawato and Gomi 1992a; Schweighofer et al. 1998a). Although Eq. (3.6) includes a velocity

normalization factor and a tonic bias term, for any individual movement trial, its structure

is otherwise that of a linear inverse dynamics model. This is especially so for the joint

coordinate version (see below). To be sure, feedforward arm control need not consist of the

simple combination of variables represented here. This model therefore represents only one

possible form of a feedforward control signal.

AK2 11)'t_(0h
pcAK 2c (h) = bo + blx(Oh) + b2y( h) + b3 Vh + b4 (V h) + b5(0h) + b6y(h) + b7vh . (3.6)

Uh Vh

Adding terms that represent jerk yields the AK3c model (Eq. (3.7)). Current models of

cerebellar function do not contain jerk processing. However, it has been argued that jerk

(Hogan 1985) or torque-change (related to jerk) (Uno et al. 1989) cost may be assessed in

optimizing motor performance and that cerebellar signals use higher derivatives in Taylor

expansions to reconstruct kinematic variables (Pellionisz and Llinas 1982). It is conceivable,

therefore that cerebellar signals could contain this higher derivative information.

pcAK3c (h) = bo + bx(Oh) + b2 y(h) + b3 (h)

Vh

+ b4Y( ¢ h + b5 (¢h) + b6y(¢h) + b7 i'(0h) + bs i (0h) + bgvh. (3.7)
Vh

Recently Roitman et al. (2005) have refined their initial kinematic model to better address

the speed dependent changes in PC signal modulation depth. The resulting UPVSc (unit

position, velocity and speed) model (Eq.(3.8)) is nonlinear but retains the underlying direct

dependence on arm kinematics in Cartesian coordinates.

pcUPVSC(0h) = b0 (1 + blVh) + (1 + b6vh) - (b2x(h) + b3y(Oh) + b4
• h + b5 (h)). (3.8)
Vh Vh



It was noted that the activity of some PCs is distinctly non-sinusoidal (Roitman et al.

2005). To possibly account for these more efficiently, joint-coordinate based models were

tested. Specifically, for the AKc and UPVSc (originally introduced as UPVS in Roitman

et al. (2005)) models which are all in Cartesian coodiantes denoted by the subscript, c,

the following substitutions were made: X(¢h) =: Os(kh), Y(Oh) =* 9 e(qh) and Vh = vj(0)h)

where 0, and 0e are shoulder and elbow angles as defined in Fig. 1 and vj is (non-constant)

intended joint speed, analogue of intended hand speed. In the following, the joint coordinate

counterpart models are designated by the subscript, j.

3.2.6 Simulations and data analysis

The RIPID control model was first tuned to reproduce arm movement kinematics reflecting

the tasks of the experiments. This was done before evaluation of fit to PC data. After the

model produced realistic motions, ef2(t) was computed and used in Eq. (3.4) above.

Because it is not necessary that the neural control of the intercept and tracking phases

are managed by the same neuronal populations, for simplicity we chose to restrict analysis

of all models to the steady state tracking phase. Accordingly, to minimize any residual

effects from the intercept phase, the first 150 degrees of both PC and simulation tracking

phase data were discarded. Then, PC simple spike counts were collected within 36 bins,

each representing 10 degrees of hand motion relative to the center of the circle. Counts

from the 10 trials having 4 different launch angles but the same rotational direction and the

same speed were pooled. Then, these PC firing data were stacked to create a single 36 x

2 x (4 or 5) element total data vector that was to be fit by the various models. To obtain

the corresponding input (regressor) signal vectors, three methods were used. For the AKc

and UPVSc models, cursor motion data was differentiated sufficiently and then averaged

within each 10 degree interval of hand motion This yielded 36 element signal vectors: X(Oh),

y(Oh), t(Oh), y(qh), X(qh), Y(qh), T(Oh), "(Oh), for each tracking direction and movement

speed.For fitting the AKj and UPVScj models, 36 element joint angular motion signal vectors

were estimated from the cursor motion (and motion derivative) data trigonometrically using



primate limb dimensions and the assumption that wrist motion was not marked. The latter

was reasonable based on the typical posture of the primates. For fitting the RICSS model,

kinematic signals 0 (0(h), 0e(0h), ks(0h), 6e(0h), and ecb (h) were derived from RIPID model-

simulated tracking motions in four launch directions, two rotational directions and all (4 or

5, depending on the trial) intended hand speeds. The simulation-derived data were averaged

within each 10 degree interval of hand motion and across the four different launch directions

to again yield a 36 element signal vector for each tracking direction and movement speed. For

each model, the 36 element input signal vectors were stacked to yield 36 x 2 x (4 or 5) input

signal vectors commensurate with the total firing data vector. A single set of parameters

was then identified for each model to address both movement directions and all movement

speeds. For the AK and UPVSc models the parameter set was found using least-squares

linear regression, the RICSS model was fit using the method as described below.

The coefficients for RICSS were found using a nonlinear optimization routine in MAT-

LAB starting with randomly chosen initial conditions within a certain range. The following

was performed to find the range of initial conditions. First, approximately 20 to 30 sets of

initial conditions were found by inspecting fits visually while manually changing parameters

for firing frequency of several cells. Second, for each initial condition a nonlinear optimiza-

tion was performed to minimize the sum of squares of the difference between the actual

firing and the fit. If some conditions did not perform well in terms of R 2, those conditions

were discarded. Third, a superset of the initial conditions for all cells was obtained. Fourth,

because exhaustive exploration of a fine grid of parameter values was computationally pro-

hibitive, for each cell, 5000 or 10000 initial conditions were randomly chosen uniformly for

each cell from the superset defined previously. A second series of nonlinear optimizations was

then run starting from each of these initial conditions to find the best parameters, except

for the background firing rates, abg, of each cell which were always chosen from the range of

(1 + 0.2) x mean firing rates across all the speeds and both rotational directions. For some

cells, it was tested with 100000 initial conditions to see if there was any significant effect of

a small number of initial conditions. However, there was no significant effect in terms of R 2



achieved through the optimization routine for the cells tested.

In order to assess the efficiency of the models in terms of their abilities to account for

data variance relative to their number of free parameters, the following formula is used for

adj-R 2 :
n--1

adj-R 2 = 1 - (1-R 2)
n-k-i'

where n is the number of data points used in the fit and k is the number of model parameters.

Fourier analysis was used to assess the sinusoidality of the firing activity in terms of

average fractional power of the fundamental (AFPF). At each speed and rotational direction,

the DC component of the firing signal was removed. Then the power due to the first frequency

mode of the residual signal was computed and divided by the total power over all frequencies.

This ratio was averaged across all hand speeds for each rotation direction.

3.3 Results

3.3.1 Simulation results

Arm control simulations using RIPID model are shown in Fig. 3-6 to demonstrate the quality

of fit to hand kinematics. The averaged hand path of the primate is slightly non-circular,

but is otherwise closely approximated by the RIPID model when it is driven as here with a

circular intended motion input command (corresponding to the joint coordinate command,

Otarget ) with constant tracking phase speed. Primate cursor tracking motion typically shows

minor speed fluctuations (Roitman et al. 2004) that are not captured by this RIPID model

simulation. In Fig. 3-7, the joint angles and especially their derivatives exhibit considerable

nonsinusoidal individuality.

3.3.2 AKc models

The performance of the AKic model applied to four or five target speeds and both rota-

tional directions was reported previously (Roitman et al. 2005). The quality of fit using
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Figure 3-6: Recorded and RIPID model-simulated hand motion. Left figure: Hand location.
Right figure: Hand speed. In both figures, the solid red lines show averaged data over 10
trials with the target moving at 6.5 cm/s in a CW direction at the starting angle of 180
degrees, the dashed blue the Cartesian intended hand position and speed corresponding to
Otarget and the solid blue lines the tracking simulation.

the higher order models though similar overall is slightly improved. Specifically, the mean

adj-R 2 are 0.34 ± 0.21(mean±SD),0.35 ± 0.21 and 0.35 ± 0.21 for AKIc, AK2c, and AK3c

respectively. The average improvement from AK1c to AK2c or AK3c can not considered to

be null (Wilcoxon paired signed rank test, a = 0.05) because 22% (15/69) and 30% (21/69)

of the cells appreciated the addition of higher derivative terms (F-test, a < 0.05) from AKic

to AK2c or AK3c respectively. However, the performance of AK2c and AK3c are statisti-

cally not distinguishable (Wilcoxon paired signed rank test, a = 0.05) because none of the

cells appreciated the addition of acceleration terms to AK2c (F-test, a < 0.05). The overall

distributions for all the three AKc models and the box plots for the differences of adj-R 2

AK2c-AK1c and AK3c-AK2c are shown in Fig. 3-8.

Approximately 26 % (18/69), 28% (19/69), and 28% (19/69) of the cells are fit with adj-

R 2 > 0.5 using AKIc, AK2c, and AK3c respectively, while 42% (29/69), 41% (28/69), and

41% (28/69) of the cells are fit with adj-R 2 < 0.3 using AKIc, AK2c, and AK3c respectively.
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Figure 3-7: Joint angles and their derivatives used in the regression. Left figure: Shoulder
angle, 0, and its derivatives. Right figure: Elbow angle, Oe and its derivatives. Blue line
denotes joint angle, green first derivative, red second derivative, and cyan third derivative
respectively in each plot. The signals shown are for the target speed 8.3 cm/s in the CC
direction.

Cells in the former group, such as Cell #49 shown in Fig. 3-9, tend to have substantially

sinusoidal activity patterns and to be reasonably well fit by all the AKc models. The AFPF

of this cell is 77% for CC and 52% for CW direction on average over intended speeds.

3.3.3 UPVSc and RICSS models

For the UPVSc, the mean adj-R 2 is 0.36 + 0.22. The RICSS achieved 0.44 + 0.23 for its

mean adj-R 2 . UPVSc and RICSS are statistically progressively better in terms of adj-R 2

than all the AKc models (Wilcoxon paired signed rank test, a = 0.05). The overall adj-

R2 distributions of UPVSc and RICSS, along with that of AK3c and the boxplot for the

differences of adj-R 2 , RICSS-AK3c and UPVSc-AK3c are shown in Fig. 3-10.

Approximately 29 % (20/69) and 42% (29/69) of the cells are fit with adj-R 2 > 0.5 using

Elbow
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Figure 3-8: (a) Histogram of adj-R 2of AKic, AK2c, and AK3c. (b) Box plots for the adj-
R 2 differences, AK2c-AK1c (left) and AK3c-AK2c (right). Each box indicates the lower
quartile, median, and upper quartile values. The whiskers indicate the extent of the rest of
the data, assuming that there is no outlier. The asterisks denote outliers which have values
more than 1.5 times the interquartile range away from the top or bottom of the box.

UPVSc and RICSS respectively, while 38 % (26/69) and 33% (23/69) of the cells are fit with

adj-R 2 <0.3 using UPVSc and RICSS respectively. In a cell-by-cell adj-R 2 analysis, AK3c

fits better than RICSS for only 6 % (4/69) of the cells while UPVSc better than RICSS for

only 13 % (9/69) of the cells. In terms of median, UPVSc outperforms AK3c statistically as

shown above, however its margin is much smaller compared to that of RICSS.

Among all the models tested, RICSS yields the highest mean (and median) adj-R 2 and

only RICSS has adj-R 2 values that can be considered from a normal distribution (Lillifors

+
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Figure 3-9: Comparison of AKc models for Cell #49, the small circles represent the average
firing rates over a ten degree interval. The blue line is for AKic, the green line for AK2c,
and the cyan for AK3c. adj-R 2 of each model is 0.62, 0.63, and 0.64 respectively.

test, a = 0.05).

3.3.4 Unit activity characteristics

Based on the Fourier analysis, 35% (24/69) of the cells have less than 20% of AFPF in CC

direction and 38% (26/69) have such low fundamental frequency power in CW direction. In
15 cells, AFPF is less than 20%. The firing activity of 14 cells among those 15 cells is fit
poorly (adj-R 2 < 0.2) by all the kinematic models. On the other hand, 16% (11/69) of the
cells have more than 50% of AFPF, i.e., are quite sinusoidal, in both rotational directions.

The adj-R 2 for these 11 cells are above 0.56 with all the models. Therefore, there is a clear
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Figure 3-10: (a) Histogram of adj- R 2 of AK3c, UPVSc, and RICSS. (b) Box plots for the
adj- R 2 differences, RICSS-AK3c (left) and UPVSc-AK3c (right).

correlation between the frequency content of the signals and the quality achievable by the

kinematic models on a cell-by-cell basis.

In Fig.3-11 an example of fits with AK3c, UPVSc, and RICSS models are shown for Cell

#50 which is one of the few that were poorly fit by all the models tested. Based on the

Fourier analysis, the signal appears to show little power due to the fundamental frequency,

18% for CC and 10% for CW directions respectively.

Some other qualitative features of the PC simple spike activity aside from sinusoidality

appeared to be related to model fit. The activity of Cell #22 (Fig.3-12) shows asymmetric

AFPF (65% for CC, 5% for CW) across rotation direction. It also shows consistent, but

+

+
+

- I-- I-+

- I



Firing AK3c UPVSC RICCS

90
cc

180 0

cw

55

50

45

40

35

Figure 3-11: Comparison of unit firing with AK3c, UPVSc, and RICSS fits for Cell #50.
Activity intensity is indicated by color, with red highest and indigo lowest. The radial
coordinate in each annular figure denotes the target (intended hand) speed ranging from 3.1
to 8.3 cm/s from inside out and the angular coordinate relative to the origin denotes the
hand position h of the monkey during tracking. The upper row contains the firing rates for
CC rotational direction and the lower row CW rotational direction. adj-R 2 are 0.05, 0.05,
and 0.09 for AK3c, UPVSc, and RICSS respectively.

different, locations of "hot" and "cold" regions across speeds for each rotation direction.

AK3c and UPVSc have similar adj-R 2, 0.43 and 0.43 respectively. On the other hand,

RICSS has an adj-R 2 of 0.75 due to its capability to account for depth of firing rates as well

as angular width of variability of firing intensity. AK3c and UPVSc account fairly well for

a "warm" range around 10 to 30 degrees in the CC rotational direction. However, it is the

RICSS model that captures firing intensity patterns on both CC and CW simultaneously.

Near 300 degrees hand location during CW tracking, and near 45 and 270 degrees during

CC hand motion, Cell #22 shows first an increase then a decrease in firing intensity with

increasing hand speed (Fig.3-12). Such sometimes subtle non-monotonic dependence of

simple spiking on hand speed was noted in approximately 10% (7/69) units. Only the

RICSS model could reproduce this feature.
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Figure 3-12: The furthest left column shows the averaged firing rate of simple spikes from
Cell #22. This cell shows asymmetric firing patterns across the rotational directions, the
maximum firing rate is attained at medium speed (around 5 o'clock direction) for CW, and
multimodal distribution. AK3c and UPVSc models can capture only naively extremities for
CC, while RICSS model captures all the three characteristics mentioned above for both CC
and CW. adj-R 2 are 0.43, 0.43, and 0.75 for AK3c, UPVSc, and RICSS respectively.

3.3.5 Joint coordinate models

As a whole, all models expressed in joint coordinates underperformed their Cartesian coun-

terparts in terms of adj-R 2 . However, some cells were fit better with the former, especially 41

% (28/69) and 52% (36/69) of the cells were fit better with AK3j and UPVScj respectively.

The activity of these cells (e.g., Cell #65, Fig. 3-13) was characteristically nonsinusoidal

and/or contained higher frequency components more similar to the joint kinematic signals

presented in Fig. 3-7. While, AK3c and UPVSc can capture the underlying sinusoidal wave-

form, their joint counterparts capture more local details, especially in the clockwise direction

where there are local minima around 100 and 300 degrees. The adj-R 2 of fits are 0.37 and

0.38 for AK3c and UPVSc while 0.47 and 0.62 for AK3j and UPVScj respectively.

Firing RICCS
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Figure 3-13: Comparison of Cartesian coordinate models and joint coordinate models for
Cell #65. The small circles represent the average firing rates over a ten degree interval.
The solid lines are the fits for AK3 and the dashdot lines for UPVSc. Green lines represent
models in Cartesian coordinates and blue in joint coordinates.

3.4 Discussion

3.4.1 Suitability of regression models examined.

Approximately 33% (23/69) of PC simple-spike activity profiles were poorly fit (adj-R 2 < 0.3)
by all the models. These units, such as Cell #50, typically exhibited firing activity that did

not have a simple speed dependency at a given hand location and/or did not have smooth

intensity variation with hand position at a given hand speed. In particular, the activity

of those cells, in general, had fairly low power content due to the first frequency mode.

0 100 300



Meanwhile, all the models considered have smooth, if not linear, amplitude dependence on

hand speed Vh and have locally smooth firing activity as a function of hand location Oh.

On the other hand, a nontrivial fraction of neurons, 42% (29/69) displayed simple spiking

activity that was reasonably well fit adj - R 2 > 0.5 by at least one of the models. The results

reemphasize, as has been pointed out previously (Roitman et al. 2005) that a significant

amount of the variance in PC simple spike signals during controlled arm motion can be

accounted for by kinematic signals that include position and velocity (speed and direction

information).

3.4.2 Higher order, nonsinusoidal, and nonlinear kinematic con-

tent of simple spike signals

The cells whose activities are strongly sinusoidal and were well fit by all of the Cartesian

AK models did not show great variation in modulation depth as a function of intended

hand speed. For these, AKic does as well as AK2c or AK3c. Other cells display some

amplitude increase with higher hand speed. For these, AK2c or AK3c could potentially

improve fit significantly because they include terms that increase in amplitude as a function

of, respectively, the square or cube of the rotational frequency, and hence of Vh. However, such

faster-than-linear speed dependencies are empirically too strong. Therefore, the additional

terms of AK2c and AK3c cannot be weighted strongly and these models in practice do not

provide much better performance.

In contrast to Cartesian kinematics models, higher derivative components in joint coordi-

nate models contribute significant change in waveform shape in addition to speed dependence

of amplitude. Thus, for cells such as Cell #65 that exhibit less sinusoidal waveforms, higher

order joint kinematic models typically performed better than the Cartesian counterparts.

However, the degree of sinusoidality observed varied considerably and therefore the kine-

matic models did not consistently support one coordinate frame over the other.

The distribution of adj-R 2 values indicates that AK3c, UPVSc and RICSS models im-

prove progressively with differences that are statistically significant. The particularly good



performance of the UPVSc and RICSS models with respect to AK3c appears to derive from

their inherent nonlinearity, especially given that the effective numbers of the regression coef-

ficients for AK3c and UPVSc are the same. Specifically, Roitman et al. (2005) have pointed

out that signal modulation depth changes in a manner that is reasonably described by a

model that includes a product relationship between speed and a linear combination of hand

location and direction of hand velocity. Although the UPVSc is cast in Cartesian coordi-

nates and the RICSS is expressed in joint coordinates, the underlying similarity between the

UPVSc and RICSS models can be demonstrated readily. To simplify the analysis, consider

movement in only one rotational direction so that the direction superscripts can be ignored.

Assume also that one selector PF in Eq. (3.3) is active (e.g., let selb = 0). In addition,

assume that

770+ 1718s + 728 e + 738 + N49,

-70- 7 110s + 7720e +773ks +4e,

I + 107o+ 1 O7s9 + 772e +73k8+ 749ek

and

VhVh + lecbl cos(Ce - ~r) > 0,

throughout motion. This corresponds to active contribution from all model components

(except one selector PF). In this case,

pcRC abg + (1 + 0+ - (7718s + 728e + 73s + 749))

.0+(a•vv . + ecbI Cos(O - ,)),



and then expanding, we obtain

pcRc = abg + (1 + po0+) 'avhV0h

-IJ•Oa vh (7710s + 7720e +W 73s + 74e) (3.9)

+(1 + /170+ - A(710s + 772e +3s + 4e))

0+ ecb I cos(e - r) -

It can be seen that Eqs. (??) and (3.9) contain two terms that are structurally similar:

A baseline term (the sum of the first two terms in Eq. (3.9)) consisting of the sum of

one constant and another modulated by (a function of) the intended hand speed Vh, and a

kinematics cross term (the third term of Eq. (3.9)) consisting of an interaction between Vh

and joint angles and velocities. These features common to the UPVSc and RICSS models

appear to better capture the variation of simple spike intensity with intended movement

speed than do the higher order AKc models.

Several other nonlinearities appear to contribute to its the particularly greater accuracy

of the RICSS model. First, Vh occurs with a subunity exponent that appears to represent the

speed dependence of waveform modulation especially well. Second, it includes a threshold

effect caused by the assumed constraint that firing rate never becomes negative. This affords

more marked transitions in firing intensity with changes in limb configuration and speed

yielding narrower local "hot" and "cold" regions as in Fig. 3-12.

A third feature is the variable product of leb cos( ,e - 0r) and a linear combination of

joint kinematics (the fourth term in Eq. (3.9)). When the selector PF mechanism is not

active, i.e., [1 - sela - selb] in Eq. (3.3) is unity, then the PC SS activity is predicted to

be simpler and more sinusoidal. This would be particularly true if ecbI were in Cartesian

coordinates (see below). However, when sela and/or selb is nonzero, as in the analysis above,

then interaction between joint coordinate signals affords much less sinusoidal signals. This

appears to account for the qualitative variation in degree of sinusoidality in different PCs

within a single model.



A fourth nonlinear effect is more subtle, but still noteworthy. Several units (7/69) display

modulation depth that is not monotonic with tracking speed. Instead, they appear to show a

'preferred' speed at which they best respond and become less active otherwise. This type of

firing behavior has been noted previously (Coltz et al. 1999). To a certain degree, the RICSS

can capture such non-monotonic speed dependence as in Fig. 3-12. This effect appears to

be partially attributable to speed dependence of the phase angle of the filtered error-like

vector, 0e = 0e(Vh, Oh) in Eq. (3.3). Thus, while the magnitude |ecb increases monotonically

as a function of at any given hand location, the values of cos ,e(and hence of cos( dir) and

cos( rr)) at certain positions decrease with Vh (e.g., at kh between 100 and 150 degrees) as

shown in Fig. 3-14. For this reason, if the latter effect dominates at some hand positions,

unit activity may be predicted to decline locally as speed increases even though the inherent

sensitivity of the transmitting neuron is not reduced at higher speeds. Thus, at least some

apparent "speed tuning" might be artifactual. Still, we note that the current experiment

does not involve fast arm movements. Dynamic demands on movement controllers change

dramatically with large accelerations and speeds. Therefore, it would not be surprising if

the cerebrocerebellar system was in fact scheduled according to speed or velocity. In any

case, the RICSS supports, extends and refines the principle of important nonlinearity put

forth in the UPVSc model.

3.4.3 Rationale for RICSS model structural details

The basic structure of the RICSS arose from neurophysiological and neuroanatomical con-

siderations. However, two principal features were developed more empirically. The first is

the dependence of cortical background firing rate on the square-root of movement speed.

The precise origin of cortical background activity is unknown. However, it is noteworthy

that some models of muscle spindle function (Hasan 1983; Houk et al. 1981) have used a

similar subunity exponent for the velocity dependence of stretch responses that include a

static bias offset. The latter is generally considered related to efferent static gamma action

that could well vary in intensity with intended movement speed. The signal could in turn
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bias the activity of cortical targets of spindle afferents.

The second empirically useful proposition is the simple nonlinear action of the hypothet-

ical selector PF's. Ongoing studies of the cerebellar cortex reveal increasing complexities in

its circuitry (e.g., Simpson et al. (2005)). It is conceivable that therefore Eq. (3.3) represents

an undue oversimplification. Especially given the large number of selPFs and interneurons

that potentially influence a given PC, it is arguable that the model should have greater

complexity. Although the incorporation of these elements could improve the fit, it would

not alter the overall implications of the model. The fact that the current model is effective

in describing the SS activity of most PCs, may indicate that it includes a good functional

description of selPF activity notwithstanding its relative simplicity.

The Lillifors normality test indicates that the simpler regression models are not able to
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treat all of the PC firing activity as being derived from a single population of similar neurons.

Although this may indicate physiological inhomogeneity of the PC population, the effect may

instead primarily reflect structural limitations in these simpler models. The normality of the

adj-R 2 distribution of RICSS model fits is consistent with the latter possibility. A clear

example of the value of the RICSS model's increased complexity is its unique ability among

the models of RICSS to account for firing activity that is highly asymmetric with respect to

rotational tracking direction.

3.4.4 Coordinate system in cerebellum

The often better performance of the AKc models than the AKj models suggests that Carte-

sian or possibly other workspace coordinate information may be present in PC signals. On

the other hand, the generally better performance of UPVSc and RICSS indicates that co-

ordinate frame is not the overriding factor in model performance. Still, these observations

suggest that the inclusion of more Cartesian information in the RICSS might provide even

more realistic modeling. The RICSS is based on a RIPID model that largely for convenience,

as with most other control models (e.g., Bhushan and Shadmehr (1999); Schweighofer et al.

(1998b)), are formulated entirely in terms of joint coordinate signals.

Many areas in cerebral cortex appear to conform different or mixed coordinate systems

depending on their functions. A number of studies suggest that motor cortex contain much

information in joint coordinates (Ajemian et al. 2001; Scott and Kalaska 1997), Cartesian

coordinates (Georgopoulos et al. 1982b), or muscle groups (Asanuma and Rosen 1972).

and motor cerebellum contain much information in joint coordinates (Ajemian et al. 2001;

Poppele et al. 2002; Scott and Kalaska 1997) . However, other physiological studies are con-

sistent with the possibility that especially parietal signals and perhaps some motor cortical

signals are in Cartesian (Kalaska et al. 1997) or body-centered (Graziano 2001), shoulder-

centered (Ferraina and Bianchi 1994; Soechting and Flanders 1989) workspace coordinates,

or a mixture of those (Reina et al. 2001). Moreover, simulation studies have demonstrated

that workspace to joint coordinate conversion can occur readily within a servo control loop



(Ayaso et al. 2002; Micci Barreca and Guenther 2001). Thus, it is plausible that a modified

RICSS model that included an interaction between Cartesian or other coordinate signals

from the cerebral cortex, and joint coordinate state feedback information on selector parallel

fibers, might provide further improvement in modeling.

3.4.5 Model implications

The central implication of the UPVSc (Roitman et al. 2005) and RICSS models is that

the PC simple spike activity patterns in a behaving monkey can be described by relatively

simple nonlinear models. The RICSS appears to provide an explanation for the effective-

ness of UPVSc in a manner that is consistent with known or plausible cerebrocerebellar and

spinocerebellar neurocircuitry as well as physical control of a primate limb using long-loop

servo control. In particular, the activity might be based upon processing of the filtered

error-like signal proposed by the RIPID cerebrocerebellar control model (Massaquoi 2006a).

Moreover, the nonlinearity that appears to be fundamentally important derives in part from

the multiplicative interaction between error-like signal transmitted by signal parallel fibers,

and state feedback information carried hypothetically by selector parallel fibers. This feature

is consistent with the hypothesized mechanism of cerebellar gainscheduling that is posited

to enable the cerebellum to adjust its feedback control according to body motion and config-

uration (Jo and Massaquoi 2004). Taken together, the findings herein support the validity

of RIPID control model.

Unfortunately, because the net cerebellar control signal is presumably related to the

output of the entire PC population as well as direct transnuclear signals from precerebellar

nuclei to deep cerebellar neurons, which are unknown to us, we cannot directly relate the PC

signals seen here to the motor command to the arm. In addition, the RIPID control model

also suggests that other extra-cerebellar pathways contribute significantly to arm control

which further reduces the likelihood of interpreting limb control directly in terms of the

recorded PC activity. Still, although the RIPID and RICSS models contain a number of

free parameters, their structures are specific and explicit. They therefore constrain internal



signal behavior and afford specific, quantitative predictions for future studies.

The regression findings do not in themselves exclude other models that have been pro-

posed for cerebellar function. However, taken together with other accumulating evidence,

the results highlight contrast to alternative formulations. The observation by the investiga-

tors here that most units responded to passive manipulation argues strongly for the presence

of feedback signals in PC firing activity, as used by the RICSS model, and against purely

feedforward cerebellar control models (Contreras-Vidal et al. 1997; Kawato et al. 1987). The

nonlinearity in the relationship between kinematics and cerebellar signals confirmed here had

not been emphasized before the UPVSc model, although purely linear formulations such as in

Pellionisz and Llinas (1982) and Gomi et al. (1998), do not appear to consider linearity as a

fundamental requirement. Other proposals (Kawato 1999; Kettner et al. 1997; Schweighofer

et al. 1998b) are already sufficiently general to be potentially consistent with PC data used

here. However, these models have not yet been explicitly reconciled with cerebrocebellar

circuitry and cerebellar signals recorded during arm movement.
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Chapter 4

Submovement analysis and modeling

of non-human primate manual

tracking

This chapter describes the analysis and modeling of submovements during manual tracking

in non-human primate. Segmentation of the speed profiles into the submovements has been

observed in various limb movements that include reaching, tracking, and isometric tasks. The

task in the experiment consisted of the interception and visually guided tracking of a target

moving along a circle. The submovements were characterized based on their durations, each

of which was defined by two consecutive local minima, and amplitudes being the maximum

speed within the duration. Speed intermittency was apparent both in the interception and

tracking phases. The distributions of durations across the speed tested were found to be

invariant. Amplitude of submovements had an affine relation to the duration, and the slope

was also an affine function of the target speeds in tracking condition. In order to capture

those observed features, the RIPID model was extended to include a cortico-basal ganglia

loop by Mao (2005),Mao and Massaquoi (2005), and Massaquoi (2006b). The modeling effort

was limited to a pseudo one dimensional angular tracking task, but the model qualitatively

reproduced the invariant distributions of durations across a range of speeds while receiving a
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smooth reference signal as well as the two affine relations: 1) between the durations and the

amplitudes of the submovements and 2) the slope of the first affine relation and the target

speeds.

4.1 Introduction

Most studies have emphasized submovements' role in feedback error corrections with a re-

fractory period of 170 - 250 ms (Miall et al. 1993a), feedforward control (Miall et al. 1986),

or both (Novak et al. 2000, 2002). It is also possible that the submovements are themselves

movement errors, i.e., the uncorrected consequences of musculoskeletal dynamics. Authors

of the early pursuit tracking studies argued that reversals of the velocity profile were de-

pendent on past visual input (Hartman and Fitts 1955). However, movement segmentation

persists in the absence of visual feedback (Doeringer and Hogan 1998). Very slow reaching

movements or those requiring extreme accuracy are also characterized by submovements

(Milner and Ijaz 1990), suggesting that submovements are corrective actions by which the

hand eventually achieves the target with a prescribed accuracy constraint (Milner 1992).

This led to a hypothesis that a series of stereotypical submovements are used to make one

composite movement (Milner 1992). Stereotypy is an appealing concept in that it reduces

the trajectory planning problem to manipulating scaled versions of a single prototype ve-

locity template. Based on this concept, submovements during reaching (Milner 1992) and

interception (Lee et al. 1997) tasks have been modeled based on velocity templates such as

minimum jerk criterion (Flash 1987) or individually fitted templates (Milner 1992). Thus it

is important to test if the stereotypy is a result of specific motor planning or if the kinematic

stereotypy is a result of an inherent neural mechanism that segments a continuous reference

signal.

The four figures below, Fig.4-1, through 4-3 briefly explain the structures of each type

of suggested intermittency generation mechanisms. In each figure, x(t), y(t) and e(t) denote

the reference command, the output, and the error signal respectively, P the plant, G a

system which may be a controller, A a delay operator such that its input-output relation is
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characterized by the following: 1(t) = m(t - A) where 1(t) is the output of the operator and

m(t) is the input to the operator.Finally, the box with a Gaussian-like curve is a template-

based command generator that can scale and dilate a given template.

The first class is a purely feedforward model suggested by Miall et al. (1986) where the

continuous reference command x(t) is fed to a system G which is a linear feedforward model

consisting of a lowpass filter with a delay. This model was suggested to explain a small

variation in magnitude and delay observed in a sinusoidal manual tracing task performed

by monkeys. As it can be seen that this model does not contain any active mechanism

to generate intermittency, the model could explain only overall frequency response of the

kinematics.

x(t) G P y(t)

Figure 4-1: Feedforward model to generate intermittency. The bidirectional arrow after e(t)
denotes a sample and hold mechanism.

In order to account for intermittency seen in individual trials, Miall et al. (1986) and Miall

et al. (1993b) used the idea by Craik (1947) that human manually tracking a visual target

behaved like an intermittent servo-controller and suggested a sampled feedback model with

a loop delay of 250-280 ms. Intermittency allows the monkeys to achieve a good frequency

response and maintain tracking stability despite an irreducible visuomotor loop delay of 250-

300 ms. The sampling frequency was fixed to be approximately 250 ms regardless of the

reference signal to be tracked. Another class of a sampled feedback system was suggested

by Navas and Stark (1968). In the latter scheme, the sampling was not performed based

on the timing, or clock-synchronized sampling, but rather on the input, or error induced

by the input. The actual implementation does not include sampling in proprioceptive loop,

but only in visual loop. An interesting feature suggested by Navas and Stark (1968), Miall

et al. (1986) and Miall et al. (1993b) is that there is a dead-zone to the error signal so that

if the error is smaller than a threshold of the dead-zone, then the effective signal sent to
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the sampler becomes 0. Another important feature of this model is that there is no velocity

template embedded in the formulation.

X(t) Y M)

Figure 4-2: Sampled feedback model to generate intermittency.

The model assumes that when a submovement is present, its onset is associated with

a change in the direction of the hand path and/or a zero crossing or inflection in at least

one of the components of the velocity vector. The model is consistent with a strategy in

which precision is achieved by periodic discrete actions which redirect the moving arm in

order to bring the hand closer to the target. Since submovements were also observed in slow

movements where accuracy constraints had been relaxed, we hypothesize that the strategy of

superimposing a series of submovements to make one composite movement may be a general

one. We suggest that it would be particularly appropriate for the process of learning a new

motor skill.

X (t) y(t)

Figure 4-3: Possible strategies to generate submovements.

Given the above stereotypy concept, the nature of the scaling properties remains un-

known. Understanding submovement scaling is important to independently examine the
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stereotypy hypothesis. The duration of a submovement is monotonically related to both the

distance it covers (Miall et al. 1986) and its velocity amplitude (Milner 1992).

It is important to note that the observation of stereotypy does not imply that scaled

and dilated template movement commands are submitted to the motor control system in a

feedforward manner as in Fig. 4-2. It is also possible, with the previously proposed notion of

intermittent feedback control with refractory period (Fig. 4-2), that movement trajectories

can display a segmented appearance. The latter possibility would be relevant to the RIPID

mode which places emphasis on the processing of error type signals rather than feedforward

signals.

However, the detailed properties of the scaling across a wide range of movement param-

eters have not been studied. Therefore the first aim of this study was to characterize the

amplitude-duration scaling properties of submovements across different speeds of circular

manual tracking in the monkey. These scaling properties were examined to identify the

concept of intermittency in the monkey's movements. The results demonstrate that sub-

movement amplitude scaled affinely with duration, and that this scaling was a function of

the tracking speed. Additional property found in this study during the tracking phase was

the invariant distributions of durations of submovements over the speeds tested.

If the submovements are an essential part of primate limb movements, then it is reason-

able to argue that the intermittency is a manifestation of the motor system. The RIPID

formulation was supported further by the RICSS formulation in Chapter 3 while accounting

for average behavior. Thus, the RIPID formulation was extended by including a cortico-

basal ganglia loop model recently developed by Mao (2005) to account for intermittency

observed in individual trials. The extended model was preliminarily aimed to qualitatively

reproduce statistical features observed in the monkey's individual trial data. The extended

model managed to qualitatively capture those two features in pseudo one dimensional track-

ing task. This suggests that intermittency can be seen as a result of internal segmentation

mechanism.
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4.2 Methods

4.2.1 Behavioral task

Experimentation was conducted according to the Guiding Principles in the Care and Use

of Animals as endorsed by the American Physiological Society and was approved by the

Institutional Animal Care and Use Committee of the University of Minnesota. One female

right-handed monkey was trained to use multi-joint arm movements in the horizontal plane

(Fu et al. 1993; Johnson et al. 1999) to move a cursor on a monitor vertically placed in front

of the monkey. The task included an initial interception of a circularly moving target from a

centrally located hold target and a subsequent visually guided pursuit of the target for one

rotation.

The trial sequence which is shown in Fig. 4-4 was initiated when the monkey held the

cursor (1-cm black cross-hair) on the hold target (1.8-cm-diam red circle) for a time period

randomly generated between 1 and 2 seconds (Hold period). A cue target (2.5-cm-diameter

yellow circle) then appeared at a radius of 5 cm and moved around a circle centered on

the hold target while the monkey maintained the cursor in the hold target (Cue period).

After 180 degrees of circular travel, the target changed color (red) signaling the onset of

interception. The monkey had 65 degrees of target travel to intercept the circularly moving

target (Intercept period). After intercepting the target, the monkey continued to track the

target for another 360 degrees (Track period). Target speed, starting angle, and direction

were varied in a randomized and blocked fashion. The five target speeds ranged from 3.1

to 8.3 cm/s, in 1.3-cm/s increments, or equivalently, from 35 deg/s to 95 deg/s in 15 deg/s

increments. The starting angle of the Cue period varied from 0 degree to 270 degrees in 90

degree increments. Target travel was also randomized between clockwise (CW) and counter

clockwise (CCW) directions. For each trial type, 5-10 repetitions were obtained for a total

of 200-400 trials per experiment. At any point in the trial sequence, deviation of the cursor

from the hold or moving target would abort the trial. The monkeys could see their hands

and manipulundum, but the task was set up such that the animal was only able to view the
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Figure 4-4: Experimental protocol. Adapted from Roitman et

vertically positioned monitor.

4.2.2 Data acquisition

Hand trajectory was digitized using two potentiometers in the joints of the manipulundum.

The position data was sampled at 200 Hz and used to drive the cursor position on the

monitor. Both the mechanical manipulundum system and electrical data acquisition system

will be referred to as instrumentation. Velocity was calculated by numerical differentiation

of the position data and was filtered using a low-pass 12th-order Butterworth filter with 6
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Hz cutoff frequency. The filter was applied successively in forward and reverse directions to

preserve the phase of the signal. The cutoff frequency of filtering was selected based on a

qualitative speed pulse analysis detailed in section 4.2.3, using 6 and 12 Hz low-pass filter.

The 6 Hz filter was selected because it kept the majority of the large speed pulses were kept

while attenuating high frequency noise effectively.

4.2.3 Speed pulse analysis

The analysis of the submovements in this study is based on the peaks in the hand speed

profile, which we will refer to as speed pulses. The bell-shaped profiles of the speed pulses

were identified by finding the local minima in the speed profiles (see Fig. 4-5). Each i-th

pulse in a given trial is characterized by the duration ATi and the amplitude Ui. Two

measurements, duration and amplitude, were recorded for each pulse. The duration, AT/, of

the i-th pulse was defined as the time interval between successive speed minima U_ 1 and

Ui , Ti - Ti- 1. The amplitude, Ui, of the i-th pulse was the peak speed within AT/. First,

the empirical distributions of the pulse durations were obtained to investigate the relation

between the duration distributions and the target speeds. Second, the linear regression

model

Ui = a0 + a1ATi + 6, (4.1)

where a0 and a, were constants to be determined and c the error term, was employed to

determine the relation between the duration and amplitude of the pulses.

The regression analysis was carried out for both Intercept and Track periods separately

at all experimental conditions. For consistency, all analyses were limited to 13 data sets.

Each data set consisted of 400 trials (2 directions, 4 starting angles, 5 speeds, 10 repetitions

for each condition) so that the results from 10 trials of each type could be averaged.
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Figure 4-5: Definition of the speed pulse used in this study.

4.2.4 Control experiment (Roitman et al. 2004)

A simple control experiment was designed to ensure that the submovements analyzed were

generated by the monkey and not by instrumentation artifacts. This control experiment

consisted of a balanced rotational setup (Rotational Inertial Accessory, PASCO Scientific

ME-8953, mounted on a Rotating Platform, PASCO Scientific ME-8951) connected to the

manipulundum via a low-friction pin coupling. Position data were recorded from the manip-

ulundum during free rotation at speeds comparable to those used in the tracking task. The

acquired control data were analyzed in the same manner as the primate tracking data. This

control experiment measured the instrumentation noise. A threshold of 3 cm/s was chosen

based on the results of this control experiment and on those obtained from the animals

during non-movement periods.

4.2.5 BG-RIPID model

In order to test if the intermittency can be a result of an internal neural mechanism, the

RIPID model was extended by including a cortico-basal ganglia loop model suggested by

Mao (2005). The basal ganglia is suggested to be a context dependent switching controller
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which monitors the context, the magnitude of the error signals in this study, and regulates

the amount of the error signal to be integrated to generate a command-like signal for the

motor execution. The particular part of the RIPID model, enclosed in the blue box in the

upper figure in Fig. 4-6 is enhanced with the cortico-BG interaction as shown in the lower

figure. In this schematic, the error signal generated at SUM 1, i.e., the difference between

Otarget(t)

An

1,ý

Oref com

Figure 4-6: The cortico-BG interaction embedded to the RIPID, BG-RIPID model.

Oref and Oaf is monitored by the basal ganglia, BG. BG, then compares the error signal
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against a threshold value. If the error is larger than the threshold, then the BG outputs 1,

otherwise 0. This pair of binary BG output regulate the activity of the thalamus (TH). If the

BG output is 1, then TH puts through its input signal, otherwise outs a constant background

activity. The output of TH and the output from the cerebellar integrator 1 are summed and
S

the magnitude of the sum is multiplied by a noise which consists of band-limited white noise.

Almost identical implementation was done to the error signal generated at SUM 2. For this

case, the signal coming into the saturation block is replaced with the error signal coming

out of SUM 2. Then, both error signals are monitored by BG. This multiplicative noise is

a model fluctuation of activity in a population of neurons and this type of multiplicative

model has been suggested (Grossberg and Kuperstein 1989) and for noise in particular by

Harris and Wolpert (1998) to affect motor planning and command generation.

Although the task that the monkey performed was a two-dimensional tracking task, the

extended model was designed to represent a pseudo-one degree of freedom arm movements.

In order to compare statistical similarities between the features found in the monkey data

and that from the simulation of the extended model, the tracking in one dimension was

simulated for over a range of speeds. Therefore, the aim of this part was to investigate a

possibility of the mechanism to reproduce kinematic variability seen in individual trials. In

order to collect substantial amount of submovements, 100 simulations were performed at five

different speeds during which the band-limited white noise was multiplicatively applied so

that each simulation showed difference in the kinematic output. The submovement extraction

procedure is the same as that used for the monkey data.

4.3 Results

4.3.1 General description of kinematics

Data from 69 data sets recorded from the monkey were used in this study, and only 13 data

sets, each consisted of 400 trials total, 10 trials for each type described in Section 4.2.3 were

analyzed. The monkey successfully intercepted and tracked the target with her right hand in
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Figure 4-7: Averaged trajectories on the left column and speed profiles on the right column
over 10 trials. Plotted are monkey hand data (solid blue) and target data (dashed red).
Starting angle was at 90 degree, and direction of motion was CCW. Zero time corresponds
to the onset of the Intercept period.
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this error-constrained task. Fig. 4-7 shows averaged movement trajectories and speed profiles

of the hand and target at the five target speeds. The position trajectories followed the target

reasonably well. The speed profiles are notable for an initial bell-shaped peak during the

Intercept period. This initial peak, usually the maximum, was followed by subsequent local

minima and maxima in amplitude of the hand speed. Single trial trajectories and speed

profiles demonstrated a significantly more noticeable variability compared with the averaged

traces during the Track period. The differences in the kinematics of the movement could

be appreciated by comparing the averaged (Fig. 4-7) versus single trial trajectories and

speed profiles (Fig.4-8). The single trial speed profiles were most notable for the prominent

peaks during tracking. Qualitatively these peaks have bell-shaped profiles similar to those

occurring during the Interception period. The spatial locations of the peaks did not exhibit

any patterns.

4.3.2 Speed pulse analysis

The results of the control experiment using the balanced rotational setup demonstrated that

the primate tracking speed irregularities are not due to the instrumentation noise during

movement of the manipulundum . The speed pulse amplitudes during passive movement

were comparable to those observed in the Hold and Cue periods. Furthermore, it was shown

in Roitman et al. (2004) that the speed pulse during movement in Intercept and Track peri-

ods reflected the properties of the monkey's movements, but not the artifacts caused by the

experimental setup. First, the relation between the pulse durations and the target speeds

was sought. During tracking phase at a given target speed, the durations of pulses took a

wide range of values. Fig 4-9 shows a set of empirical normalized distributions of the unit

movement intervals for the five target speeds. One striking feature is that although tar-

get speeds varied considerably, almost threefold, the interval distributions remained similar

across the speeds. Statistically, however, only three pairs are considered to have the same

medians; 95 deg/s and 80 deg/s, 95 deg/s and 65 deg/s, and 80 deg/s and 65 deg/s (rank

sum test, P > 0.05). The same finding was reported by Pasalar et al. (2005) in a human
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Figure 4-8: Individual trajectories on the left column and speed profiles on the right column
from single trial movement trajectories. The color scheme, the starting angle, and the
rotational direction are the same as that in Fig, 4-7. Speed overshoots and undershoots are
prominent in both Intercept and Track periods.
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Figure 4-9: Empirical probability distributions of speed pulse durations across the target
speeds.

study where the subjects performed the identical tasks with a different speed range.

The second goal for the speed pulse analysis was to seek the relationship between speed

pulse amplitude and duration. In Fig. 4-10, cluster plots of the Ui against ATi of the speed

pulses reveal an affine relation for both the Intercept and Track periods. The slope, a, in Eq.

(4.1), of the Intercept period differed significantly across speeds (P < 0.05). There were no

significant difference (P > 0.05) in the slope of the Intercept period between CW and CCW

directions, but there was a significant difference in the slope of the Intercept period across

the four starting angles (P < 0.05). Roitman et al. (2004) showed in a smaller data set that

only the two starting angles of 180 degrees and 270 degrees produced significantly different
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slopes. The slope of the Track period showed significant difference across speeds (P < 0.05),

but there was no significant difference (P > 0.05) in the slope of the Track period either

between CW and CCW directions or across four starting angles of tracking. Based on these

observations, tracking speed was determined to be the only significant factor consistently

affecting the slope. Thus for further analysis, the slope values for both Intercept and Track

periods were averaged across both directions and all starting angles of tracking.

Simple regression analysis between Uj and ATj (Eq. 4.1) confirmed the affine dependency

in the tracking condition. The regression coefficients (across starting angles and rotational

directions) for the regressions for the Intercept and Track periods, respectively, are summa-

rized below (Tables 4.1 and 4.2). The quadratic model was tested as well, but the coefficients

for the quadratic terms were non-significant for all speeds (sequential F-test, P > 0.005).

One difference between the result presented here and that in (Roitman et al. 2004) is that

the affine relation of the slope does not hold for Intercept phase in the current study. This

difference may be due to the fact that more data points were included in the analysis in this

study. Then, relatively less data points were added for smaller values of ATj as the target

speed increased. Thus, the bias term in the regression became dominant and the linear slope

became less prominent to account for this effect in Intercept phase. It is unclear whether

this discrepancy becomes apparent purely due to sizes of the data sets used or not. However,

it can still be concluded that speed pulse amplitude and duration are affinely related for at

least tracking condition.

coefficients \ speed (rad/s) 35 50 65 80 95
a0  2.1406 3.2133 6.1778 10.1961 13.8768
a, 29.3125 30.1105 21.6624 21.6624 16.9991

Table 4.1: Regression coefficients vs. target speeds for Intercept periods

It is reported (Roitman et al. 2004) that a similar target speed dependency on the slope

as shown above was found for another monkey performed the same task except at a higher

speed range. Therefore, this affine scaling property is not limited to a particular monkey's

strategy, but presumably is applicable as a general principle.
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coefficients \ speed (rad/s) 35 50 65 80 95
a0  2.2674 3.3687 4.4417 5.6602 7.0827
a, 5.7499 7.0322 8.5950 9.9362 10.9439

Table 4.2: Regression coefficients vs. target speeds for Track periods

4.3.3 BG-RIPID model with a cortico-basal ganglia system (Mao

2005)
The extended RIPID model was simulated over a range of speeds. The seed of the ban-

dlimited noise was varied in each trial to produce trial-by-trial variability. At each speed,

100 simulations were performed. To extract the submovements, the same detection method

was used as that in the monkey data except that only the tracking phase data was used in

the analysis. A tracking phase was defined to be after the temporarily second local minima.

Fig's 4-11 and 4-12 show an example of position traces and seed profiles at each speed.

The duration distributions are shown in Fig. 4-13 against the target speeds, the slowest

(top) to the fastest (bottom). Qualitatively, the ranges of the durations are similar as

well as the tapering of the both edges. These features were observed in the monkey data

as well. However, the unimodal nature of the distributions is violated in the simulated

distributions, especially when the target speed increased. The exact origin of emergence of

bimodal distributions as a function of target speeds is now known at this point.

In Fig. 4-14, cluster plots of the Uj against ATj of the speed pulses reveal an affine

relation between the two variables. The affine relation between the slope, a, in Eq. (4.1)

and the target speeds is shown in the lower right plot and the coefficients a0 and a, as

functions of the target speeds are summarized in Table 4.3.

coefficients \ speed 1 1.5 2 2.5 3
ao 7.836e-4 11.9493e-4 16.0524e-4 20.0213e-4 24.2759e-4
a, 3.0136e-4 3.9785e-4 4.8867e-4 6.1619e-4 6.7182e-4

Table 4.3: Regression coefficients vs. target speeds for the simulation data.

One significant difference in the cluster plots between that for the simulation and that
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Figure 4-10: A - E: Amplitude-duration distributions at each target speed for the Intercept
(red) and Track (blue) periods. F:Amplitude-duration regression slope dependence on the
target speed. Shown are the amplitude-duration slopes at each target speed for the Intercept
(red) and Track (blue) periods.
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for the monkey data is the spread of the data points at a given pulse duration. In particular,

there are much less data points of short durations with high amplitudes in the simulation

data. It is possible that such a type of pulses in the monkey data may reflect "catch-up"

movements where the monkey detected a large error and made a cognitive correction to reach

to the moving target.

4.4 Discussion

4.4.1 Existence and detection of submovements

The results demonstrated that arm movements during manual visual pursuit tracking in the

monkey were not continuous, but instead, consist of submovements. These results confirmed

previous findings that the speed traces of virtually all human and non-human primate move-

ments are not smooth (Doeringer and Hogan 1998; Lee et al. 1997; Massey et al. 1992; Meyer

et al. 1982; Miall et al. 1986, 1988; Milner and Ijaz 1990; Novak et al. 2000).

The amplitude of submovements and their other properties were clearly distinguishable

from any noise introduced by the acquisition system and were not present in passive move-

ment. The amplitude and duration of submovements were not constant but rather spanned

wide ranges with speed scaling properties, but submovements themselves were not fixed in

time or space.

The submovement detection method used in this study by definition did not allow for the

speed pulses to overlap. This method was chosen for its simplicity to enable us to deal with

a large data set of more than 5000 trials. There exist more elaborate submovement detection

algorithms available. Rohrer and Hogan (2003) introduced a branch-and-bound algorithm

for submovement extraction which can avoid spurious decompositions given a profile of the

unit movement and an error bound. However, the algorithm is computationally too expensive

(; 30 hours for one trial in Fig. 4 in the paper). Lee et al. (1997) assumed that the unit

profile took the form of minimum jerk (Flash 1987), then guessed a set of initial conditions

to be used for nonlinear optimization to minimize the error between the data and the fit.
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This approach is only useful when there is only a small number of the speed pulses in a trial

and a small number of the trials to be analyzed. For the submovements that overlap with

the speed minimum in between, this method will detect two speed pulses with amplitudes

and durations smaller than those of the overlapping submovements. For the submovements

that overlap without the speed minimum in between, this method will detect one speed

pulse with the larger amplitude and combined duration of the overlapping submovements.

The distortion produced by each type varies depending on the size of the submovements

and extent of overlap. Therefore when analyzing large numbers of speed pulses (more than

100,000 in this study), the two types of distortions should approximately compensate for

each other and average out.

4.4.2 Scaling properties of submovements

Analysis of the speed pulses revealed three properties of the submovements. The first prop-

erty is the invariant duration distributions over the speeds. This finding is not consistent

with a few previous findings (Milner 1992). One potential reason for this discrepancy is the

submovement decomposition methods. In Milner (1992), an empirical speed template was

obtained. If a movement consists of a series of overlapping speed templates, then depending

on the pulse magnitude scaling again speed as well as how consecutive submovements are

overlapped, it is possible to have a similar duration invariance.

The second property is the linear relation between the amplitude and the duration of

speed pulses at a fixed target speed. Since the target speed and the average speed of tracking

are nearly identical, this linear relation also holds true at a given tracking speed. The third

property is the linear relation between the scaling factor a, and the target speed in tracking

phase.

The third property suggests that the mean acceleration and deceleration during a sub-

movement in the tracking phase remain constant across the wide range of submovement

amplitudes and durations. From Eq. (4.1) one can infer the approximate mean acceleration

from the regression slope. For a given target speed, the mean acceleration is constant and
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can be related to a constant average force. Therefore the three scaling properties can be

restated as follows. For a given speed of tracking, the submovements are generated by a

constant average force applied to the hand/manipulundum. Similarly, the average amount

of force in a submovement increases linearly with tracking speed.

The acceleration/force arguments represent only a first approximation and could be chal-

lenged. First, it can be argued that the relationship between speed change and average

acceleration in two dimensions is more complex than proportionality because of their vec-

tor nature. However, because the speed pulses are relatively short and the corresponding

path segments are relatively straight, the average scaling properties can be well described by

proportionality. Second, the speed pulses are not necessarily symmetric. However, Roitman

et al. (2004) evaluated the average acceleration and deceleration for the pulses as a measure

of symmetry. The evaluation yielded absolute value differences not exceeding 2.3% across

all experimental conditions (average difference was 1.4 ± 0.7%). Therefore as a first approx-

imation, interpreting the amplitude-duration scaling properties in acceleration/force terms

is justified.

The scaling properties of the speed pulses are consistent with the notion of stereotypy

(Milner 1992), which states that a complex movement is composed of scaled versions of a

prototype velocity profile. Although submovements have been extracted based on minimum

jerk criteria (Flash 1987; Lee et al. 1997) or individually fitted velocity prototypes (Milner

1992), these approaches cannot verify the concept since they assume stereotypy. Without

making any assumptions, the results show that the amplitude of the speed pulses scales

with their duration; this is an independent confirmation of stereotypy at least in terms of

amplitude and duration, though not necessarily shape.

The second and third properties of submovement scaling further extend the stereotypy

concept (Milner 1992). The linear dependence on movement speed reflects the adjustment

of the prototype. Controlling faster movements may be achieved simply by scaling the

amplitude of a prototype submovement. On the musculoskeletal level, this can be performed

by increasing the average force applied to generate a submovement (Roitman et al. 2004).
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This is similar to the proposed pulse-height regulator that sets pulse size and thus the overall

speed of movements (Vallbo and Wessberg 1993). In addition, the validity of the trends in

slopes for both Intercept and Tracking phases supports the idea that underline control or

planning strategies for reaching and tracking are the same, as argued by Flash and Henis

(1991).

4.4.3 Underlying generation mechanism of submovements

A large body of literature exists on how to extract submovements (Rohrer and Hogan 2006,

2003; Krebs et al. 1999; Milner 1992) from speed profiles of the end effector which is usually a

hand. The "Unit" movement in each extraction algorithm differs from each other, but needs

to have a temporal template, whether it is defined in terms of symmetric functions such as

minimum jerk and gaussian, or asymmetric functions such as support-bounded lognormal

(Rohrer and Hogan 2003; Krebs et al. 1999). Although this type of submovement decompo-

sition may give a useful metric in terms of degree of blending of submovements to measure

smoothness of the movement, in practice it is computationally very expensive (Rohrer and

Hogan 2003), even after a significant improvement of the existing algorithm (Rohrer and

Hogan 2006), without explaining any underlying neural structure of intermittency genera-

tion. Psychophysically, both the direction and speed of the finger's motion are coordinated

in such a manner that the time to intercept, or possibly the distance the target travels be-

fore interception, is held constant (Engel and Soechting 2000). Todorov and Jordan (1998)

suggested that by maximizing the smoothness of the movements along a predefined path,

a continuous fluctuation of the tempo of discrete movements may appear as segmentation.

However, there has not been much research as to how intermittency is generated and which

neural circuitry is involved for such segmentation. It is still not even clear if the intermit-

tency of limb kinematics is a correction mechanism as suggested by Roitman et al. (2004)

or inherent manifestation of the motor system.

What central processes might be responsible for initiating and regulating these discrete,

corrective submovements? It is possible that spinal dynamics may contribute to movement
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segmentation. However, our hypothesis is that the brain detects the need for and generates

the commands required to produce the intermittent commands. Although a specific imple-

mentation was not performed, Novak et al. (2002) suggested a gross anatomical model that

might be responsible for initiating and regulating intermittency (see Fig. 9 in (Novak et al.

2002)). A similarity between the BG-RIPID model and the one suggested by Novak et al.

(2002) is that the specific channel through the basal ganglia is thought to be particularly

important in the initiation or crafting of the motor command. The pulse-like command in

their model may play the same role at the activation state of the basal ganglia in the BG-

RIPID model. This type is consistent with observations from patients with basal ganglia

deficits. In Parkinson disease, when the inhibitory output of the basal ganglia is hyperactive,

patients have trouble initiating movements (Flash et al. 1992). In contrast, in Huntington

disease, when inhibitory basal ganglia output is decreased, subjects tend to produce many

more unnecessary corrective submovements (Smith et al. 2000). While the basal ganglia

may be important for regulating the initiation of the commands for primary movements and

corrective submovements in motor cortex, the cerebellum is believed to regulate the dynam-

ics of the commands. This role of cerebellum is also consistent with the RIPID, hence the

BG-RIPID formulation as well.

Thus it is important to investigate what neural system may be responsible for the gen-

eration of intermittency. The RIPID formulation obtained further support from the RIPID

formulation and accounted for averaged movements. In order to explain intermittency in

individual trials, the basal ganglia (BG) model developed by Mao (2005) was added to the

RIPID model. The BG acts as a context-based switch regulator. In the RIPID, the BG

controls the signal flow of thalamus so that the output of the thalamus can be turned on or

off. By this switching action, the process of integrating error signal to generate the command

becomes intermittent. The extended model was applied to create a pseudo one dimensional

system to mimic the system which takes the location of the targeting moving along a circle

to control the hand always on the circle so that its dynamics can be described as a function

of the angular angle. The simulation showed that the extended model qualitatively cap-

127



tured invariant duration distributions across the target speeds and achieved relatively good

tracking performance of the speed when the input position command was a smooth ramp.

Thus, although it is preliminary, the extended RIPID formulation has a potential to explain

gross anatomy and physiology of cerebrocerebellar system coupled with cortico-basal ganglia

system that can explain not only the average behavior but also intermittency observed in

individual trials.

Roitman et al. (2004) suggested, based on the cross correlation of various error signals

and the speed profiles, that two types of errors may trigger a submovement. The first type

is the directional error (DE), which is the difference between the present direction and the

desired direction of the motion. The second type is modified speed error (MSE) which is

defined to be a linear sum of the difference between the present and desired position and

the difference between the present and desired velocity multiplied by a time constant, T. In

both error signals, T represents the interval for which the simple linear prediction about the

target behavior is made by the control system (Engel and Soechting 2000). The temporal

profiles of the correlograms between MSE and DE and tracking speed are consistent with

these signals participating in intermittent error correction mechanism.

Since the BG-RIPID model is only for one dimensional, it is not possible to test if the

DE can be a key factor to trigger a submovement. The MSE can be written as

MSE(t) r0 Xtarge(t) - x(t) + T(arget,(t) - (t))

MSE(s) r (1 + -rs) (Xtarget(S) - X(s)), (4.2)

where the second equation is in Laplace domain. Thus, the MSE can be seen as a first order

linear predictor of the error. In the RIPID model, the error signal fed to the BG, ea(t) can

be expressed, with an abuse of notations, as below:
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(- Iea(t) - F3x(t - a )ea(t) = Xtarget(t) - F2X(t- Tf) - 3 'a(t) -3(t - f(S+12 )S a!!)
ea( + 12) 1 (Xtarget - X(t - Taff))

ea(t) = s(s + I2) + 13/a

s((I - F2)(S + 1) + 2 la) 3Taf)

s(s + 12) + 13a

ea(t) = 1 - s + Ia (Xtarget - x(t - Ta!!))

~( (- + 12 3 aI(IF - (I - F2)132 X(t - Taff). (4.3)
8(8 + 42)+ 31a

So when the value of ea(t) reaches zero the motor command ends. ea(t) can be seen as a

predicted tracking error because it goes to zero more quickly than the true error because of

the pure derivative acting on the pure error signal Xtarget - x(t - raff) as in the first term

of Eq. (4.3). In addition, an integral of ea(t) can potentially become Xtarget(t) SO that by

choosing Ia and F3 properly, then (Lea(t)- F3 x(t - Ta/)) could participate to partially

cancel an error Xtar9 et(t) - F2x(t - Taf ). Thus based on this mechanism, movement ceases

when predicted error goes to zero. This mechanism is at least consistent with the mechanism

of neurosurgical ablation of tremor (Massaquoi 2006b). At this point, it is not clear about

the connection between two types of the errors defined by Eq. (4.2) and (4.3) each of which

is used in different model to characterize potential sources of submovement initiations. The

two mechanisms potentially function in a very similar way. Both formulations use the error

signals instead of position or velocity alone. In fact, in the BG-RIPID the integrator doesn't

get turned on again unless the error gets larger than a threshold. One possible difference

in the models is that the MSE based model may cause the motor command generation

mechanism to have to wait until the error is fairly large before initiating a submovement. The

BG-RIPID would start rapidly then turn off when caught up. Furthermore, One potentially

a huge difference between the two approaches is that the BG-RIPID model does not assume

any submovement template and performs scaling of submovements automatically according

to the reference command as in a model in Fig. 4-2, while the MSE model may require
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a template and corresponding scaling of such a template based on the reference command

as in a model in Fig 4-3. Thus, these possible similarity and difference should be explored

further.

Although the nature of the task is different from that used in this chapter, Vaillancourt

et al. (2003) used a visually guided force task with different frequency of visual feedback to

show three findings. First, force variability was reduced with more frequent visual feedback

and that infrequent visual feedback did not result in activation in lateral cerebellum whereas

frequent visual feedback did. On the other hand, anterior intermediate cerebellum was

consistently active. Second, the parietal and premotor cortex were also active during grip

force with infrequent visual feedback. Third, right inferior parietal lobule, dorsal premotor

cortex, and ventral premotor cortex had greater activation in the frequent compared with

the infrequent grip force condition. Thus, the frequency of the visual feedback can be used

to differentially modulate the neural activation related to visuomotor processing in the key

motor areas such as cerebellum, parietal and premotor cortices. Further study of this type

needs to be carried out in order to accumulate anatomical and physiological evidence to

understand the generation of intermittency from the neural circuitry.
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Chapter 5

Linear parameter varying (LPV)

formulation

5.1 Introduction

So far in the previous chapters, the feasibility of the RIPID formulation was supported by

developing an anatomical and physiological regression model, the RICSS model. The RICSS

model included anatomical specificity of the cerebrocerebellar system and was capable to

grossly reproduce the averaged simple spike firing patterns of a pool of the individual Purkinje

cells using the signals used to control the arm movements in the RIPID. Then, in order to

explain some features of the intermittency observed in the monkey data, an anatomically

and physiologically feasible intermittent command generator, based on a model of cortico-

basal ganglia loop suggested by Mao (2005), was integrated into the RIPID formulation.

This extended model, the BG-RIPID model, managed to, preliminarily in one dimension,

qualitatively account for the invariant distributions of the pulse durations across the target

speeds as well as the affine relation between the amplitudes and durations of the speed pulses

while the command to be traced was a smooth ramp position. Thus, now the next question is:

Is the RIPID formulation capable to account for a larger workspace and faster movements,

in particular, if the direction of a movement changes rapidly ? In Chapter 3, one set of
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controller gains in the RIPID was tuned to cover the speed range tested in the experiment.

However, if the gain set used can't achieve the same level of the tracking performance as

that of the speed range in the experiment, then it may be necessary to extend the control

structure. Fig. 5-1 below shows the kinematic performance for the tracking speed 1.5 times

faster than the fastest speed that the monkey performed in the experiment. The controller

gains used in the simulation are the same as those used in Chapter 3.
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Figure 5-1: RIPID model simulated hand motion for the tracking speed 1.5 times faster than
the fastest speed that the monkey performed in the experiment described in Chapter 3. In
all four figures, the dashed blue lines show the Cartesian intended hand position and the
solid blue lines the tracking simulation. A through D represent different launch angles, 0,
90, 180, and 270 degree respectively.

There are two distinct features in the response of the RIPID model. First, the scaling
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is inappropriate (see Fig. 3-6 for comparison). Second, the path is eccentric. In particular,

regardless of the launch angles, the paths are further away from the reference path along 2

o'clock through 8 o'clock. It is clear that the gain set that was appropriate for the low speed

range used in the primate experiment could not handle the more dynamically demanding

situation.

In the case of the RICSS model, it suggests that cerebellar PCs receive cortically-

processed signals that are modulated by the state information conveyed through DSCT

as shown with a dashed line with 17 in Fig. 3-3. More abstractly, such a scheme can be

shown as below:

r(t)

Figure 5-2: A realization of RIPID/RICSS structure as a gain-scheduling control system.

where p is a scheduling variable that may be a function (H(.)) of the state of the plant,

G(p), K(p) is a set of controllers modulated, and r(t) is an exogenous input, for example,

a reference signal.

There are many ways to design gainscheduling controllers. Classical gain scheduling

scheme is typically based on a set of linear time invariant (LTI) controllers designed on a

set of equilibrium points of a plant. At each equilibrium point, optimal and robust control

synthesis for LTI systems can be applied to meet robustness and performance criteria locally.

Often, a transition among the resulting LTI controllers is made by interpolating them based

on the evolution of the scheduling variables. However, this method can be problematic

especially when the scheduling variables have fast dynamics and usually requires extensive

simulations to ensure the stability and performance because the synthesis cannot account

133



for either stability or performance (Shamma and Athans 1990; Lawrence and Rugh 1995).

Kajiwara et al. (1999) presented a comprehensive application of linear fractional trans-

formation and polytopic control techniques for linear parameter varying (LPV) systems to

the control of an arm-driven inverted pendulum. The authors showed that when the con-

trollers were implementable, it has been observed that LPV controllers outperform fixed A

controllers both in robustness and performance. These observations were further confirmed

by simulations but more importantly by a number of records on the physical experiment.

Thus, in conjunction with the proposed structure of the RICSS model, it is reasonable to

use the LPV formulation as a first step feasibility test for the RIPID model.

Furthermore, an amount of theoretical progress and practical applications of gain schedul-

ing control has significantly increased in the past few decades, but applications of such control

scheme to physiological systems have not been performed until recently. Hunt et al. (1998)

applied a linear quadratic Gaussian (LQG) controller design procedure to control an ankle

joint of paraplegic patients by applying electrical stimulation. The authors were interested

in functional electrical stimulation (FES) in which the aim was to restore paralyzed muscles

to some normal motor activities. This idea was extended by an introduction of gain sched-

uled controllers. The scheduling variable was a knee joint position. Six local controllers

were designed and each controller was a state-feedback linear quadratic controller designed

around an operation point. The proposed controller showed good tracking and robustness

properties on the full range of extension on the knee joint angle of a physiological model sim-

ulator representing the knee joint dynamics. Furthermore, the authors showed that single

linear controller was not suitable for the considered application since its performance was

not satisfactory in the global operating range.

Taken together, it is important to develop a gain scheduling control synthesis to test

the extendability of the RIPID model. Based on the theoretical tractability as well as a

structural similarity to the RIPID model, an LPV formulation was used.
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5.2 Theoretical background

Basic background on LPV synthesis is briefly introduced in this section. For more thorough

materials, the readers should refer to Boyd et al. (1994); Apkarian and Gahinet (1995), and

Apkarian et al. (1995).

The synthesis procedure discussed here applied to affine parameter-dependent plants

described below:

ic =A(p)x + B(p)w + B2u

P(-,P)= y = Cj(p)x + D (p)w + D12u (5.1)

z = C2x + D 21w + D 22u

where

p(t) = [P1(t),. -- -,pn(t)], p 5< pi(t) _ ij (5.2)

is a time-varying vector of scheduling variables each component of which is bounded by its

minimum and maximum values p. and pi respectively, n is the number of the scheduling

variables, A(.), Bl(.), C 1 (.), and D 11 (.), are affine functions of p(t). Note that p(t) may

contain part of the state vector itself, assuming that the corresponding states are accessible

to measurement.

If the scheduling parameter vector p(t) takes values in a box of Rn with corners {Hi}, i =

1,..., N = 2n, the plant P(., p) ranges in a matrix polytope with vertices V(Hi). Namely,

given any convex decomposition

N N
pMt)= tirIj, ai_>O,0 Eaj~ (5.3)

i=1 i=1

of p over the corners of the parameter box, then the parameter dependent system is given

by

N

P(., p) = aiV(Hi). (5.4)
i==1
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Figure 5-3: Polytope configuration. This example shows the case of 3 scheduling variables.

Thus, we would like to find a set of parameter dependent controllers taking the following

form:

K(-,p) = -
U

= AK(p)( + BK(p)y

= CK(p)( + DK(p)y
(5.5)

with the following vertex property:

Given the convex decomposition p(t) = ENI aiHIi of the current parameter value p(t),

the values of AK(p), BK(p), CK(p), and DK(p) are expressed as a linear combination of

AK(IH), BK(IH), CK(i), and DK(Ii), i = 1,..., N at the corners of the parameter box

AK(p)

CK(p)

BK(p)

DK(p)

N "AK(I-) BK (i)
K () DK()

i=1 ( K ri) DK iL)
(5.6)

For this class of controllers, we would like to consider the gain-scheduled H4, problem

for the interconnection shown in Fig. 5-4.

The objective is to design a gain-scheduled controller K(., p) that satisfies:

* the vertex property (Eq.(5.6))
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Figure 5-4: Formal LPV formulation

* the closed-loop system is stable for all admissible parameter trajectories p(t)

* a guaranteed L2-gain bound 7y > 0 for the closed loop system from the generalized

disturbance signal w to the error signal z, i.e.,

/T  
1  T

zTz dt < 72
0 0

wTwdt, VT > 0 (5.7)

and all the admissible trajectories p.

Theorem (Apkarian and Gahinet 1995)

Suboptimal scaled Hoo problem is solvable if and only if there exist pairs of symmetric
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matrices R E R"xn and Q E R"'x such that

K A R + RAT RCT B Ki
- J12 0 S i 12 0

CliR -- I Dili < 0, (5.8)
0 I B T  DT -/I0 I

1 DIli

A(21 0 7A21 0/ T A Q +QAi QBi C1BTQ -7I DI < 0, (5.9)0 1Ii l 0 1
Cli Dili -7I

I 01 (5.10)

where

( A i B li A (H1i) B (H i)
Cli Dili Cl(HIi) Dl(Hi)

for i = 1,... , N and K 12 and K 21 are bases of the null spaces of (BT, DT2) and (C2, D21),

respectively. Recall that N = 2' where n is the number of the scheduling parameter. Thus,

there will be 2n + 1 linear matrix inequalities (LMI) such as ones in Eqn's 5.8 , 5.10. In

this formulation, it is assumed B 2 , C 2, D 12 , and D 21 to be independent of the scheduling

parameter vector p(t). This assumption (Apkarian et al. 1995) will be satisfied below by

placing a lowpass filter, an excitation-contraction coupling filter in the arm formulation,

so that the overall plant is realized as shown in Eq (5.1). To enforce the performance

and robustness requirements, we can use the loop shaping criterion summarizing RMS gain

constraint
WlS <1, (5.11)

W 2T
00where S and T are a sensitivity function and a complementary sensitivity function defined

where S and T are a sensitivity function and a complementary sensitivity function defined
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zi(t)

z2(t)r (t)

Figure 5-5: System diagram for loopshaping with two weighting transfer functions W1 and
W 2 . A is a delay operator.

as

S = (I+ G(p)K(p)) 1

T = G(p)K(p)(I + G(p)K(p)) - 1 .

5.3 Formulation for the two-link arm plant

In this formulation, we consider the nonlinearity only due to inertia and viscosity terms, i.e.,

Eq. (3.1) is simplified to have a linear muscle model:

r(t) = H(o(t))O(t) + C(O(t), (t))6(t) (5.12)

r(t) = Ku(t) (5.13)

u(t) = EC (r(t) - O(t - taff)) (5.14)

where H(0) and C(O, 0) are the inertia and viscosity matrices respectively, and K is a

muscle stiffness matrix, and the torque r is a linear function of the input signal u which

is the output of the EC filter as in Chapter 3. Eq. (5.14), should be interpreted as a

mapping of the difference between the reference signal r(t) and the delayed afferent joint
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angles O(t - taff), where taff is the afferent delay amount, and the output of the EC filter,

u through the LTI system EC. The inertia matrix can be seen as an affine function of the

elbow angle 0e:

H(0) = Ho + cos 0eHi, (5.15)

h, + h2 + m 2 11 h2
h2

Hi - m 2 1112

2 1

1 0
(5.16)

Following the similar manner, the viscosity matrix C(8, 0) can be affinely decomposed

as follows:

C(0, 6) = Co + sin 0.esC1 + sin 0QeOC2 ,

where

(5.17)

Co -= 0, C1 = m 2 1112 0 -1 ,
1 0

C -1
C2 - M21112

0

Thus, the arm dynamics can be expressed as:

H(O)b

(Ho + cos 0eHi) 0

0

= -C(O, 6)0 + Ku

= - (Co + sin OeOsCz + sin O0eeC2) + Ku

- (Ho + cos 0eHi) (Co + sin OeOsCi + sin OeeC 2) 6

+ (H0 + cos 0eH 1) Ku,
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where

Ho =

-10
.J (5.18)

(5.19)

(5.20)

(5.21)



= [ (Ho + cos eHi) (Co +sin esCi + sineeC2  0 0]
0 I0 0

e Ap(p) e
+ (Ho + cos eHi) K u (5.22)

0

Bp(p)

8 = [0 11. (5.23)

Cp

The input to the EC filter, UEC is related to the output, u as in the following transfer

function

U = 2 EC7
(s + a)2 0 1 U

where U and UEC are the Laplace transforms of u and UEC respectively. Its relation in the

state space form is given by:

C = AECC+ BECUEC

u = CECC.

Thus the augmented parameterized plant from the input of the EC filter to the joint angles

is

e Ap(p) Bp(P)CEC 1 0
= + u (5.24)

0 AEC J BEC

a AG(p) Ca Ba

[0 oC i ] (5.25)

Ca
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Then, the augmented system has parameter dependence only on Aa(P).

In this chapter, only the configuration dependency, i.e., the effect of the elbow angle, O0

through the inertial matrix H(0) is examined. This is because of the following reasons. First,

including angular velocity terms requires exponential addition of LMI's to be solved and

implementation of corresponding controllers. As there are two parameters in the viscosity

matrix in Eqn 5.17, i.e., sin 0e0s and sin 0e0e, total increase of the number of the scheduling

parameters would be 2 x 2 where additional 2 comes from the inversion of the inertial matrix.

Thus, the number of additional LMI's to be solved will be 22+4 - 22 = 60. Secondly, the

viscosity matrix contains terms with joint velocities, sin 0e0s and sin 0e0e. Thus, the size of

workspace is not sufficient to estimate the bounds of the scheduling parameters unless wide

variety of movements with varying velocity in the workspace is performed. Therefore, in the

case under the consideration, i.e., O, = 6, = 0, there is effectively only one parameter, 0e

characterizing the scheduling variables. Thus, Ap(p) is now a constant matrix as Co = 0

and at equilibrium Os = oe = 0, i.e.,

00Ap (p) = (5.26)IO0

Yet, H(0) -6 1 in Bp(p) contains two parameters both of which are functions of 0,:

h2 -+2 0 -m21112H (0) p= p(Oe) + P2 0e)
-h2 h, +2 +M2 I1 -M21112 2M21112

where

1,01(6 e) :1 hPh2  h2m 2l - (m2 1 2 cose)2

P2(e)cos O
hlh 2  h 2 lT - (m2 11 2 cos 0e)2

The LPV controller that depends on Pl and P2 are denoted as LPV2. Note that this formu-

lation does not account for the rate variation of p1 and P2 directly in addition to excluding
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the joint velocities themselves. Therefore, the arm dynamics used here is still a subset of the

arm dynamics which only contains the inertial effect.

Variation of the denominators in Eq's (5.27,5.27), or the determinant of the inertia matrix

H is relatively small given all the physical parameters used as well as the fact that I cos 0e < 1

for all possible values of 0e*. Thus, empirically we can approximate the determinant as a

constant by evaluating it at the center of the workspace. Then, the H(0)- 1 can be seen as

H(0)__)1 2 h2 -h2 1
hlH)h2 2+ -h2m12 2cos Oa)2 -h 2 h1 + h2 + m 2  J

0 -M2 12+ [ 0o (5.27)
hlh2  h2m2l - ( 2 11 2 cos )2  -m 2 11 2 2m 21112

where

p3(Oe) = cos 0e,

and 0a is the elbow angle corresponding to the configuration where the hand is at the center

of the workspace. Then, using this approximated inverse of the inertia matrix, an LPV

controller that depends only on one parameter, P3 is designed and is denoted as LPV1.

In order to use a polytope based LPV synthesis, we need to set, or find, the lower and

upper bounds for all the scheduling parameters, pi to define the vertices for the design

process. To find the bounds on pi, the inverse kinematic relation between the hand location

in Cartesian coordinate (Xh, Yh) and the joint angles (O~, 0e) and the size of the Cartesian

workspace are used as follows:

p = min pi,
-O eE[Oe,Oe]

pi = max pi,

P-i <  pi(t) < -Pi Vi

where 0 and Oe are the minimum and the maximum of the elbow joint angle computed from
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the size of the workspace through the inverse kinematics.

Low frequency tracking performance can be emphasized with a choice of the weighting

W1 to be a lowpass filter. In this study, a parameter independent frequency weighting matrix

shown below is used:

50 0
W1(s) = (s+5)2  50

0 (s+ 5)2

The weighting filter for the complementary sensitivity function, W 2 (s) is set to be unity.

5.4 Simulation method

The arm configuration is shown in Fig. 5-6. The workspace is a 40 cm x 40 cm square

box and is enclosed by the dashed-box. The two-joint arm is characterized by the two joint

angles O0 and 0e, the shoulder and elbow angles respectively. The location of the hand is

denoted by the purple circle with (Xh, Yh). First to see the effect of the LPV controllers

vs. one ?-tH controller over the workspace, tracking phase of the circular tracking similar

to that shown in Fig. 5-1 is performed. Second, a series of double step task is performed.

The motivation to perform a series of double step task is to see how LPV controllers handle

directional changes by looking at one directional change during a movement as opposed to

a series of directional changes in a continuous circular movement.

To implement a sudden direction change during a point-to-point movement, a set of

double step tasks is employed. Additional points are included in the workspace. The center

of the workspace is denoted by the red circle with (xe, yc). The center also acts as the

first target of the task described below. The four green circles are possible starting and

termination points of the task. Each green circle is denoted labeled with north (N), west(W),

south (S), and east (E), respectively. The plant parameters as well as the location of the

center of the workspace used in this section are shown in Appendix A.2. In each set, starting

position is one of the four green targets. Then, initially the hand is driven to the center
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N y

(xC, YC)

(Xh,

Figure 5-6: The arm configuration for the simulation.

target by a minimum jerk command with a duration of 350 ms. During or at the end of

the initial movement, a second segment of the movement aiming to a fixed target out of the

three green targets, excluding the starting point out of the four, is sent to the arm plant.

For example, one possible sequence is from N to center to W. The second segment of the

movement is also characterized by the minimum jerk profile with a duration of 350 ms and

is superimposed to the first segment. The timing of the initiation of the second movement

are 50, 100, 150, 200, 250, 300, and 350 ms from the onset of the first segment. Thus, seven

simulations are performed in each set. Total of 12 sets, 4 starting positions and 3 possible

second targets for each starting position, are performed.
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5.5 Simulation results

Two LPV controllers, LPV1 and LPV2, and an 7H,4 controller for the simplified two-joint

arm plant were designed. The single 7H,,, controller was designed based on the linearized

two-link arm plant around (xc, yc). The order, based on the number of the states, is 12 for

both the single 7-H,, controller and for each controller from the LPV syntheses at each vertex

as the arm plant itself has 4 states, the EC activation filter 4, and the weighing filter on

the error 4. The simulation was implemented in SimulinkTM. odel4x was chosen as the

integration scheme for numerical stability.

Achievable performance that is measured in terms of the spectral radius 7Y, as in Eqn 5.7,

is summarized in Table 5.1. For all designs, the achievable values of 7 are more than unity,

i.e., the objectives are not met. Note that weighting matrices for all the cases were the same

so that fine loopshaping was not performed.

single 7-4, LPV1 LPV2
7y 1.0140 1.0184 1.0211

Table 5.1: Achievable performance of the controllers.

5.5.1 Circular tracking performance

First, in order to compare the overall tracking performance of the single 7-R, controller and

LPV 2 controller, the circular tracking task similar to that in Fig. 5-1 is performed using the

set of parameters for a human arm used for the rest of the chapter. A set of simulation results

for four different launching directions and the target angular speed of 150 deg/s is shown in

Fig. 5-7. First, notice that both controllers do not achieve high tracking performance in the

upper right quadrant. This may be due to the fact that no viscosity terms are considered in

the controller design. However, for the rest of the circle, regardless of the launch angle, the

responses from LPV2 yield smaller deviation from the reference circle. In particular, along

the path from 7 o'clock to 10 o'clock the responses of 7-R are always significantly inside of

the reference circle. Without any afferent and efferent delays as well as nonlinear muscles,
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a single H-4 performs fairly well for this tracking task. However, there is some systematic

difference in tracking performance depending on the location in the workspace, which implies

that state dependent controller such as LPV2 does appear to improve tracking performance

over a large workspace. Thus, for the rest of the chapter, we would like to concentrate on

how there is a difference between a single R, controller and LPV controllers in terms of

how a rapid and sharp direction change can be handled.

5.5.2 Single H7- controller

For comparison, an H controller (L in the figures) with the same frequency weighing matrix

W, was designed for the arm plant linearized about the center of the workspace. First, in

order to see the effect on the nonlinearity in the plant, the same controller was applied to

both the linearized plant (L arm in the figures) and the nonlinear plant (NL arm in the

figures). The first example in Fig. 5-8 shows a comparison between a vertical movement

and a horizontal movement. For the vertical movement, there are almost no difference in

responses from the linear and nonlinear plants. In both cases, the paths are fairly straight.

For the horizontal movement, in comparison, there are two notable differences. First, the

response from the linear plant converges to the final target, while that from the nonlinear

plant shows some offset at the end of the movement. Second, the response from the linear

plant exhibits a bow-like path as well as slightly lower speed around the maximum peak,

while that from the nonlinear plant an S-like path with higher speed.

The second example in Fig. 5-9 shows a comparison between similar curved paths, but the

movement directions are reversed. When the target sequence is N-C-E, the responses from

both the linear and the nonlinear plants are very similar, while when the target sequence is

E-C-N, the path from the nonlinear plant diverges more to the right and has more significant

"terminal correction" seen in the path.
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Figure 5-7: LPV2 and H, controller models simulated
at 150 deg/s. In all four figures, the solid blue lines
position, the green dash-dot lines the responses of 7-H,
dotted lines the responses of LPV2 controller system.A
angles, 0, 90, 180, and 270 respectively.
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hand motion for the tracking speed
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controller system, and the magenta
through D represent different launch

5.5.3 LPV controllers

First, the simulation results of the LPV2 controller with the nonlinear plant are presented

in Fig. 5-10. For comparison, the results of the 7-Ho (L) are presented. From the common

starting point of S, three sets of hand speeds and paths are presented. Peak speeds for
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Figure 5-8: A simulation result on the H,, controller with the nonlinear plant and the
linearized plant about the center of the workspace. Upper row: Hand Speeds. Lower row:
Hand paths. Left column: Target sequence N-C-E and second movement initiated at 300 ms
after the first. Right column: Target sequence E-C-N and second movement at 200 ms.

LPV2 tend to be higher than those for the single controller response. The paths for S-C-E

and S-C-N do not differ much between the two controller types, but there is a noticeable

difference in the paths for S-C-W. Among the simulations performed, the LPV2 controllers

have slightly inferior performance to the linear controller in the segment between W and C.
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Figure 5-9: A simulation result on the 7-Ho controller with the nonlinear plant and the
linearized plant about the center of the workspace. Upper row: Hand Speeds. Lower row:
Hand paths. Left column: Target sequence N-C-S and second movement initiated at 300 ms
after the first. Right column: Target sequence W-C-E and second movement at 200 ms.

During the simulations for these three particular movements, the temporal variations

of the scheduling variables Pl and P2 as well as the corresponding controller weights aj,
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is initiated at 150 ms after the first is initiated.
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i = 1, 2, 3, 4 for LPV2 are shown in Fig. 5-11. Across all three directions for the second

segment, the variation of PI is much smaller than that of a 2. In fact, this is true for the

entire workspace. Thus, the variation of Pl may not affect the limb dynamics significantly.

Parameter trajectories Parameter trajectories Parameter trajectories

- p1

0 0.5 1 1.5
Time - sec Time - sec

0 0.5 1 1.5
Time - sec

Weighting trajectories

Time - sec

Weighting trajectories

Time - secTime - sec

Weighting trajectories

5
Time - sec

Figure 5-11: Trajectories of scheduling parameters pl and p2 and of the weights ai, i =
1, 2, 3, 4 for the LPV2 controller

To see the effect of each scheduling variable, the singular values of the arm dynamics at

each vertex are examined. As it can be seen from Eq. (5.26), all four eigenvalues of the
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Figure 5-12: Singular values of the frequency responses of arm dynamics evaluated at each
vertex. Solid lines denote the largest singular values, and the Dashed-dotted lines the smallest
singular values. A pair of lines for each color denotes the same scheduling variable values.

arm dynamics without the viscosity term are zero. Also, it is easy to check that there is no

zeros in the arm dynamics. Thus, the arm dynamics evaluated at each vertex is simply a

cascade of integrators with different gains. In order to see the effect of scheduling variables

on variations on singular values, it suffices to check the singular values at a frequency. Table

5.2 below shows the variations of the largest and the smallest singular values, - and a

respectively, against the extrema of the scheduling variables. While maintaining P2 or p2'

the singular values with different values of Pl do not change relatively much. Thus, the

empirical scheduling variable reduction outlined in 5.3 appears to be reasonable.

An example of the performance of parameter-reduced LPV controller, LPV1, is shown

in Fig. 5-13. The speed profiles as well as paths are slightly different between LPV1 and
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Varied Pl P2

Fixed P2 P• Pi 91

Au 0.0173 0.0485 0.0746 0.1040
Au 0.0173 0.0486 0.0747 0.1041

Table 5.2: Variations in the singular values of the arm plant as the scheduling variables
change. a and o denote the largest and the smallest singular values respectively.

LPV2 responses. The tracking performance of LPV1 is slightly worse than LPV2. The

overall difference is smaller than that between responses from LPV2 and 7-Ho,. However, one

significant difference can be seen in the speed profiles where the those from LPV1 tend to

decrease slower. This speed characteristics is fairly uniform in all the LPV1 responses.

The corresponding profiles of the scheduling variable and weights are shown in Fig. 5-14.

Note that P3 = cos 0e. In the scheduling parameter profile for the S-C-W path, it can be

clearly seen that the convergence of the parameter is fairly slow (between 1 and 1.5 seconds).

In addition, it is interesting to see that by comparing two trajectories for S-C-W and S-C-E

the variation of the elbow angle for those two trajectories are more similar than that for

S-C-N, although the movement directions are totally opposite for the second segment of the

movements.

5.6 Discussions

Two LPV controllers were designed in this study. For comparison, one 7-Ho controller based

on the center of the workspace was designed. All three controllers are designed based on a

simple two link arm model that does not include the viscosity term and shared the same

weighting matrix applied to the sensitivity transfer function. Based on this, the 7R,4 con-

troller achieved the smallest -y. The resultant controllers applied to the nonlinear arm model

showed similar responses for the vertically straight paths and the movements performed in

the down-right quadrant. However, all the other types of the movements showed some dif-

ference in curvature and terminal error, in particular the slow convergence to the final target

using the LPV1 controller. To achieve higher performance, parameter dependent weighting
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Figure 5-13: Simulation results on LPV1 controller and LPV2 controller. The reference
commands are the same as in Fig. 5-10

could have been used for better loop shaping as each plant used in the control synthesis has

a fairly different dynamics. This idea may be biologically feasible and is discussed below. In
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Figure 5-14: Trajectories of scheduling parameters p3 and of the weights a, and a 2 for the
LPV1 controller

addition, there was not explicit scheduling based on the velocity. Thus, building a quasi-LPV

system by including velocity terms explicitly would have improved the overall performance

of the LPV controllers. However, inclusion of velocity terms would increase the number of

LMI's to be solved exponentially as discussed below.
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5.6.1 Comparison of LPV with other control models

The ability to learn and retain the properties of several different environments has been

offered as evidence of a modular structure to motor learning (Ghahramani and Wolpert

1997; Wolpert and Kawato 1998; Haruno et al. 2001; Doya et al. 2002). As an example,

Ghahramani and Wolpert (1997) examined adaptation to opposite visual perturbations that

were applied during movements from two different starting locations. They presented evi-

dence consistent with the idea that subjects that learned the two mappings generalized to

intermediate starting positions by an interpolation process. According to the authors the

motor system uses two distinct visuomotor "expert modules" and interpolates to interme-

diate starting locations by using a weighted average of the two experts outputs. By this

account, the configuration of the limb stands as a contextual cue that indicates which of

the expert modules should intervene. Thus, in the sense that LPV system is similar to, and

could conceivably be used to formally represent a set of "expert modules" each of whichs

corresponds to a local controller characterized by a set of extrema of scheduling variables at

a vertex of the box of ]R where n is the number of the scheduling variables. Thus, the local

controllers are continuously recruited based on the scheduling parameters.

Narendra et al. (1995) suggested a control scheme with multiple models where there

are multiple models to approximate the input-output relation of a plant to be controlled in

the context of system identification. There are N models to be identified, M1, ., MN. Then,

corresponding to a model Mj there exists a parameterized controller Cj such that Mj together

with Cj in the feedback path would behave like the reference model, or alternatively achieve

the desired control design objectives. The estimation error is measured for each model such

and defined by ej = y - yj where y is the output of the true model and yj is the output of Mj.

The output of each controller Cj is used to control the plant. Then, the design problem is to

choose the models Mj and the controllers C, together with the rules for switching between

the controllers so that overall system is stable and achieves improved performance. Based

on a switching criterion (for potential choices, see Narendra et al. (2003)), the controller

corresponding to have the smallest error index is used at that instant. Mathematically it is
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proven that any of the switching criterion in Narendra et al. (2003) ensure the closed loop

stability. However, at the same time the parameters in each model Mj and the corresponding

controller Cj are adapted directly or indirectly (Narendra et al. 2003). Thus, switching is

rapid but not sufficiently accurate while tuning or adaptation is relative slow but is desirable

for improving the performance of the overall closed loop system.

In order to use multiple models simultaneously, an extended approach has been taken to

be more relevant to neural circuitry responsible for movements. A series of studies by Kawato

and his collaborators suggests (Wada et al. 2003; Imamizu et al. 2004; Haruno et al. 2001)

that an extended version of a set of paired feedforward internal models and corresponding

inverse internal models, MOSAIC (modular selection and identification for control) model

has been identified in cerebellum to account for context dependent activation, through fMRI

studies. They argue that this observed differential activation in cerebellum is a proof that

multiple internal models are implemented in cerebellum.

There are some similarities and differences between MOSAIC model and LPV. First

similarity is that both of them consist of local controllers each of which is responsible for

the corresponding local dynamics or tasks to be compensated for. Second similarity is the

interpolation scheme of local controllers. Both models use simple linear interpolation of local

controllers. Third similarity is that both of them have potential to account for afferent delays

as well as feedforward command delay, although such potentials had not been investigated

in this chapter. As a component of MOSAIC is a pair of feedforward internal model and

inverse internal model, MOSAIC is, in principle, capable of accounting for both types of

delays. For LPV, there are some ongoing research to develop LPV syntheses to account for

both types of delays (Fen and Grigoriadis 1997; Yuan et al. 2005).

However, there are some critical differences. First, each controller for MOSAIC model

consists of a pair of a feedforward internal model and a corresponding inverse internal model,

while each local controller for LPV is an LTI system. It is not clear at this point whether

the input-output relation of a pair for MOSAIC is similar to a local controller for LPV.

Second, as an optimal control synthesis, LPV comes with a closed-loop stability guarantee

158



and a performance and robustness guarantee with appropriate weighting filters when the

corresponding LMI's have a feasible solution. On the other hand, MOSAIC does not have

any guarantee and requires some preliminary inverse model designs which may or may not

be carried out easily. Third clear difference between MOSAIC model and LPV formulation

shown here is the level of the implementation. It is highly possible for the MOSAIC model to

be extended, or to be granulated to be more biologically accurate as claimed in Imamizu et al.

(2004) that each local controller may corresponds to a microzone in cerebellum. However,

it is not clear what processes or computations are performed in the activated areas or a

set of modules identified in the fMRI study in relation to MOSAIC formulation. Last clear

difference is that each local controller in LPV formulation is designed about a point in the

state space of the plant, while Imamizu et al. (2004) claims that each module of MOSAIC

model does not correspond to different kinematics or errors, but only corresponds to a

task or an external environment to compensate for. A recent study by (Milner and Hinder

2006) showed that during adaptation against force fields, only position information but not

force information is used. The authors concluded that the CNS uses only position error for

updating the inverse internal model of the environment dynamics and modifying feedforward

commands. This result appears to favor LPV to MOSAIC. In addition, even when the plant

becomes more complex, LPV offers a systematic approach to design a set of controllers with

closed-loop stability guaranteed and yield a guaranteed bound y as in Eqn 5.7. Furthermore,

with availability of such a systematic synthesis, LPV could predict how many controllers or

corresponding neural modules would be required to perform the task successfully. Therefore,

it is worthwhile to pursue LPV gainscheduling approach to characterize limb movements.

5.6.2 Feasibility/rationale of LPV/gainscheduling models for cere-

brocerebellar limb control system

As shown in Chapter 3, it may be argued that simple spike activity of each Purkinje cell

is modulated by a linear combination of both joint angels, 0, 0e and velocities, 98, 9 e. In

addition, it has been shown in primary motor and premotor cortices that both individual
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cells and populations of cells reflect changes to the location of the limb and velocity (Sergio

and Kalaska 1998). However,, assuming that these signals are in fact used to schedule the

control, it cannot be asserted clearly whether the scheduling variables are a linear feedfor-

ward, feedback, or mixed. RICSS formulation implies that there is a descending signal from

area 3a and primary motor cortex that chooses particular sets of mossy fibers (sigMF in the

RICSS model) and correspondingly Purkinje cells to process control signals, and those Purk-

inje cells are further modulated by the state information of the limb (selMF in the RICSS

model). Therefore, it is more likely to have scheduling signals which are both feedback and

feedforward.

r(t)

Figure 5-15: Control system gainscheduled by both feedforward and feedback signals.

Fig. 5-16 shows a set of examples of feedforward or feedback driven LPV2 systems.

Here, feedforward means that the scheduling variables are computed based on the reference

command, and feedback means that the scheduling variables are computed based on the

output of the plant. The difference in their performance is almost negligible. This result is

expected given that there is no afferent or feedback delay present in the system. Although

there is no pure delay in the system, there are some delay effects seen in the scheduling

variables (top row in Fig. 5-16). In addition, this slight difference yield different weighting

of local controllers even at the termination of the movement.

In order to investigate the issue of feedback vs. feedforward, delays, as shown in Fig. 5-5,

need to be included in the controller synthesis. An attempt was made to design an optimal

controller by including various degrees of Pade approximations of a feedback delay of 10 ms or
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longer in both single h.o. or LPV syntheses. However, no controllers with reasonable perfor-

mance were obtained, or the syntheses could not yield a feasible solution to the corresponding

LMI problem, especially with higher orders of Pade approximation. In fact, development of

optimal gainscheduling controller syntheses with presence of delay components is an active

area of research (Fen and Grigoriadis 1997; Wang and Wang 2004). Therefore, more recently

developed LPV syntheses accounting for delays should be implemented and tested.

5.6.3 Reduction of the number of scheduling variables

Although the design procedure appears to be fairly simple and to have efficient computational

tools, a practical limitation of LPV formulation is that the number of the controllers to be

designed, or the number of LMI's to be solved correspondingly, increases exponentially as

a function of the number of the scheduling variables. In addition, in order to secure the

scheduling parameter space to be large enough to cover all possible operation range, the

issue of the conservatism arises. In the formulation above, the original linearized arm plant

has the elbow joint angle 0e being the only scheduling variable, but because of the inversion

of the inertia matrix H(Oe), the resultant plant was characterized to have two scheduling

variables both of which were functions of 0e alone.

The actual variations of smaller varying parameter in corresponding to the LPV con-

troller designed, LPV1, in the range specified was approximately 5%. Thus, the resultant

LPV synthesis required only one pair of vertices. Thus, in our formulation, the resultant

LPV plants could contain only up to two scheduling variables that are purely based on the

geometric configuration of the limb. Thus, deriving the bounds on those scheduling pa-

rameter should be an easy task once the size of the workspace was determined. However,

these plants are clearly over-simplification of the original two-link dynamics which contains

velocity, or viscosity, terms as well as nonlinear muscle dynamics. As the RICSS model as

well as many other neural recording studies from variety of motor areas suggest that speed

or velocity is encoded in the brain. In addition, it has been shown that viscosity terms in

the limb dynamics indeed affects the movement performance. Therefore, the plant on which
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a controller design is based should include the velocity terms to be more realistic. With the

inclusion of the viscosity matrix in the arm dynamics described by Eq. (5.1), the number

of the scheduling variables becomes 8 and requires 2 - 1 = 255 LMI's to be simultaneously

solved. There is a scientific question as to whether this number is realistic or not in terms

of the actual number of individual or ensembles of neurons participating in real time com-

putation of the movement and how those ensembles emerge. However in order to perform a

functional characterization using an engineering model, it is desired to reduce the number

of the controllers or corresponding neural ensembles.

Kwiatkowski and Werner (2005) investigated this problem based on a pseudo-LPV model

of the two-link robotic arm plant as considered here. Their original plant that contains 10

scheduling parameters results in 211 - 1 = 2049 LMI's to be simultaneously solved. In order

to reduce the scheduling parameters, they took the following steps:

(i) Generating typical operating trajectories for the plant by measurement or simulation.

These trajectories should roughly span the expected range of operation of the controlled

plant and generate typical scheduling parameters' trajectories. It is noted, clearly, that

this approach is only useful for a given operating range tested.

(ii) Applying Principal Component Analysis (PCA) to determine a set of fewer principal

components that can be used to approximate the data.

(iii) Applying the same PCA reduction to the scheduling parameters of an LPV model to

obtain an approximated LPV model with fewer scheduling parameters.

With this method, the authors successfully reduced the scheduling parameters by 7 to 3

while maintaining the performance. This type of empirical reduction methods can potentially

cause conservatism as the design procedure does not fully account for the plant dynamics

and associated uncertainty. However, this approach may have some biological and behavioral

relevance in terms of organization of motor systems as well as learning as opposed to more

iterative algebraic approaches used to solve LMI's for example.

As it has been shown at the level of EMG limb kinematics in frog's hindlimb movement
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(d'Avella et al. 2003), human walking (Jo 2006), and DSCT neurons (Bosco and Poppele

2003), there appears to be a behaviorally relevant basis functions, or synergies, that can be

combined to produce a wide variety of natural movements. Also, in connection to the RICSS

formulation, the sensory feedback information through selMF may potentially approximate

the scheduling variables to recruit Purkinje cells that are responsible for a particular range

in the state space. As suggested by Hawkes and Eisenman (1997), if the number of the

microzones each of which is responsible for controlling a corresponding local region in a state

space, then adjusting the local controllers might be performed locally in space and slowly in

time while changing weight of those local controllers, hence the net output being the sums of

all the microzone modules, to achieve global performance objective can be fairly dramatic.

5.6.4 Cerebellum as a gain-scheduled controller

Although the model by Schweighofer et al. (1998b) included reasonably detailed anatomy

and physiology of cerebrocerebellar systems and successfully reproduced slow movements,

the model suffered from its slow learning rate for fast movements. Hence, the authors argued

that there should be an internal model. However, the slow learning rate may be attributed

to the structure of learning. It seems that all synaptic elements are adapted while the system

is learning the multiple paths. Furthermore, no a priori information as to where the limb is

moving is given to the system. Thus, it is likely that the adaptive elements in the system

are not partitioned accordingly to account for particular commands or particular states

of the limb dynamics. If such a partition scheme exists or the system chooses subsets of

adaptive gains based on the dynamic or kinematic demands of the task, then the number of

the adaptive elements can potentially reduce significantly thence to increase the adaptation

speed.

Another anatomical and physiological neural network cerebellar model by Kettner et al.

(1997) faced the same issues. One difference this model posses is the implementation of mossy

fibers each of which is tuned for a specific preferences in position or velocity as in selMF and

their errors similar to sigMF in the RIPID model. However, the activity of the corresponding
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parallel fibers (PFs) is assigned either 0 or 1 through the Golgi-granule interaction and lasts

for a very brief period, in the order - 10 ms (Fig. 4 in Kettner et al. (1997)). Thus,

each Purkinje cell (PC) which is responsible for either a horizontal or vertical movement

direction receives 6000 PF inputs to drive the continuous eye movement. This convergence

of the PFs to a PC seems biologically feasible, but there are two potential problems. First,

a temporal window within which each PF participates in the generation of motor command

is very short. Second, the learning mechanism adjusts each PF synaptic weight based on a

eligibility trace (a response induced by an activation of a PF) as well as the climbing fiber

activity characterized by the inner product of a PC's preferred direction and the velocity

error. Since each Golgi cell in the model received five randomly chosen mossy fiber inputs,

the adaptation of each PF synaptic weight occurs almost independently. Therefore, if there

is a more systematic grouping of signals at Golgi or PF level, then adaptation speed may be

reduced significantly.

The LPV formulation shown here does not imply any adaptive scheme, but it specifically

addresses the issue on how a partition of controllers can be achieved by having a set of

controllers each of which is specifically accounting for a local state of the limb dynamics.

Fuzzy, or neurofuzzy, control seems promising not only to reduce the number of the

scheduling variables, but also to adaptively find, or define, a set of ranges for which each

controller is responsible and how to interpolate them to ensure the performance in a system-

atic manner(Espinoza et al. 2004; Tanaka and Wang 2001). In fact, the LPV formulation can

be classified into a class of fuzzy control (Tanaka and Wang 2001). Furthermore, a recent

development in modular and reconfigurable robotics suggests hierarchical neurofuzzy control

systems be able to adapt both skill control, i.e., task and planning, as suggested in (Haruno

et al. 2001; Imamizu et al. 2004), and low level execution control, as shown by the LPV

scheme (Melek and Goldenberg 2003). Analogy and difference between such engineered con-

trol systems and CNS need to be further explored. In particular, it is yet unclear as to how

each controller is composed of groups of neurons or is related to anatomical segregation such

as cortical minicolumns or cerebellar microzones. This issue of actual neural implementation
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of a specific controller scheme needs further investigation.
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Chapter 6

Human double step experiment

6.1 Introduction

In Chapter 5, an LPV formulation was carried out to synthesize a set of controllers for the

two-link arm model with linear muscles. The eventual goal is to determine whether the

RIPID model can be extended to cover a larger workspace by controlling faster movements

that have changes in movement direction. Since there is as yet no straightforward method to

design gains for the RIPID model, a test was performed using the LPV controller which shares

a similar structure as that of the RICSS. In particular, both enable state-dependent selection

of gains. Behaviorally we will seek to model sequentially cued point-to-point movements.

In this case, the simplest hypothesis is that simple superposition of sequential point-to-

point targeting commands can be used as input and that the curvature of the hand path

following these commands is accounted for largely by the dynamics of the control (hence

by the cerebrocerebellar system), and not by the central kinematic plan. In addition, the

monkey, as observed (Roitman et al. 2004), stopped chasing the moving target cursor once

the target cursor disappeared. Thus, it is not unreasonable to assume that the monkey

was chasing a target to reach in a neighborhood of the moving target cursor. Therefore,

it is hypothesized that a circular tracking motion by the monkey can be approximated in

human by sequential point-to-point movements. In this chapter, the LPV models developed
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in Chapter 5 were adopted to fit the data of the human experiment in which the subjects

performed double step, or two sequential point-to-point movement tasks.

6.2 Methods

6.2.1 Behavioral task

The experimental protocol was approved by Committee on the Use of Humans as Experimen-

tal Subjects (COUHES) at MIT. None of the participants was aware of the tested hypotheses

or had reported any prior history of neurological disorders. Four right-handed subjects (B11,

B12, R12, Y11), two males and two females (22-34 years old), volunteered to participate in

the study.

Each subject sat on a chair and his/her body was stabilized by a back support as well

as four-point seat belt such that the upper body motion, particularly in sagittal plane, was

minimized to achieve two degrees of freedom arm motion in a horizontal plane as much as

possible. Each subject held a handle of the InMotion2TM two-link manipulundum to control

the location of the yellow cursor shown on the monitor which is mounted on the top motor of

the manipulundum. Further, to minimize wrist movements, a plastic sleeve that restricted

the arm motion to two degree of freedom was attached to the handle so that subjects could

rest their forelimb on the sleeve.

Each subject had practice trials to get accustomed to the apparatus, for 40 - 120 trials,

until s/he felt comfortable with moving the manipulundum. Then, there were four blocks of

trials where within each block the starting point, either North (N) or South (S), and the final

target, either on the Right (R) or the Left (L) side, all relative to the center (C), remained

fixed for 140 trials. Both starting targets, N and S, are located 15 cm vertically away from

the C respectively.

An example of an action sequence in each trial is shown in Fig. 6-1 and is explained

here for the case where the starting point is in S and the group of second targets is on the L

side. Each trial was initiated by a subject moving the small yellow cursor (1 cm diameter)
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Figure 6-1: Human double-step reaching protocol.

corresponding to the hand location to a large yellow circle (2 cm diameter) which was one

of the two start locations, N or S (Fig. 6-1-I). Once the small yellow cursor touched the

starting point, trial initiation was indicated by change in the color of the large circle from

yellow to green (Fig. 6-1-II). The subject was instructed to hold the cursor in the green

circle for 1 - 1.5 seconds until the circle disappears (Fig. 6-1-III), and the first target (2

171

120 deg

IV

0

O

V

I I I

0

III

0

VI



cm diameter) which was always at C of the workspace changed its color to red to cue the

subject to reach to C at a reasonably fast speed (Fig. 6-1-IV). The second target (2 cm

diameter) which was always blue appeared on the screen after some random time ranging

from 100 ms to 400 ms after the first cue (Fig. 6-1-V). On any given trial within a block,

the second target was randomly chosen from the seven possible targets which were denoted

as dashed circles in Fig. 6-1 such that the number of trials to each possible target was equal

to 20. The distance between the center of the cluster and the first target is 15 cm and the

angle made by the start-first-second targets is 120 deg (Fig. 6-1-I) such that those three

points are on a circle whose radius is 15 cm. This particular clustering of the possible second

targets was chosen for 3 reasons: 1) In order to see if the trajectory variability is due to the

effect of imprecision to aim a virtual point in a target circle to mimic the circular tracking

movements, the possible second targets had to be close enough so that the subjects would

not notice if they were aiming at a different target in each trial. 2) The targets did not

overlap each other so that it was easy to check if the subjects were reaching to the final

targets accurately. 3) The ratio between the radius (15 cm here) and the maximum range

of possible second target (2 x 3 = 6cm here) is close, but higher than that of the monkey's

circular tracking task, 5 cm radius and 2.5 cm target. The same ratio as that of the monkey

experiment was used in a set of experiments before finalizing the design of the task, but

human subjects (different volunteers from those whose data are used in this study) noticed

that they were moving to different targets most of the trials. The current ratio chosen (15

cm radius and 6 cm target) was the closest ratio to that of the monkey's experiment, but

was that none of the subjects would notice s/he was was moving to a different target in

each trial. Once the subject successfully reached and stopped at the second target, s/he was

instructed to stay in the blue target for a second (Fig. 6-1-VI). Subjects controlled the time

between trials on their will to reduce the effect on fatigue.

Before each experiment, a subject was told to try not to look at his/her arm and hand

location during movements, but to look at the monitor. It was observed by the experimenter

and reported by the subjects after the experiments that subjects rarely looked at their limbs
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in order to guide their hands to targets.

6.2.2 Data acquisition

In each trial, the location of the handle corresponding to the hand location of a subject was

recorded at 200 Hz in workspace coordinate, and the timings of the first and the second cues

were recorded by the two-link manipulundum and data acquisition system. Then, the hand

position data was bidirectionally lowpass filtered by a 6th order Butterworth filter with a

cutoff frequency of 6 Hz, and was numerically differentiated to obtain hand velocity signals.

As discussed in Chapter 4, the 6 Hz filter was used because it kept the majority of the large

speed pulses were kept while attenuating high frequency noise effectively.

6.2.3 Data analysis

Kinematic data, hand position and velocity, from each trial was fit with two minimum jerk

profiles in series as done in Flash and Henis (1991) to perform kinematic fitting and to

estimate reaction times to two consecutive targets.

The minimum jerk position profile in the x component can be defined as follows.

1, if t _> To + T

t- T
Ti = i else i = 1, 2 (6.1)

0, if t <_ To

xi(t) = xi + A X 1 (10T -- 15T,4 + 6T5 ) (6.2)

x2 (t) = Ax 2 (10T23 - 1524 + 6725) (6.3)

x(t) = x1 (t) + x 2 (t), (6.4)

where Tri is the time normalized by the temporal shift T0oi and the temporal scaling Ti, x1 is

the initial position of the hand, Axi is the distance between the initial and final positions of

each segment, x (t) and x2 (t) are the x component of the hand position profile in the first and
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the second segment respectively , and x(t) is the overall x component of the hand position

profile throughout both segments. The value of x1 is given as the value of the x component

of the actual hand location when the first cue is sent. Thus, there are six parameters to be

determined: Ax 1 , 'Ax 2, Toi, and Ti for i = 1, 2 in the x component. In the same way, yr can

be defined, and by finding Ay, and Ay2 with the same T0oi and Ti for i = 1, 2, the y position

profile can be defined as well. Therefore, the whole trajectory is kinematically characterized

by 8 parameters. The minimum jerk velocity profile is defined as a time derivative of the

minimum jerk position profile defined above.

Genetic algorithm command in MATLAB, ga, was used to find a set of eight coefficients

by first fitting a hand velocity in horizontal and vertical directions independently to obtain

a reasonable set of initial conditions for a subsequent optimization on position profiles.

The genetic algorithm was chosen over other nonlinear optimization routines as the genetic

algorithm was capable to take a set of initial conditions from predefined ranges for each

parameter as opposed to one initial condition so that the algorithm tests a series of different

initial conditions and tried to modify the initial conditions such that subsequent set of

optimizations tended to perform better than the previous stage. Furthermore, the ranges of

initial conditions were automatically changed slightly to extend a search space. The range

for each parameter was set manually by fitting several trajectories reasonably well. In order

to increase the performance of data fit, each hand speed profile was truncated at the first

local minima, ttr, after the hand speed becomes less than 0.1 m/sec. Then, both position

and velocity profiles were fit simultaneously by minimizing the squared error between the

data and the fit. The terminal condition for the first round was that a number of genetic

mutations, mixing a set of initial conditions to yield a better set of initial conditions, reached

100. In the second round of the minimization, the terminal set of parameters from the first

round was used as an initial condition with the same range for each parameter as in the

first round minimization. An equality constraint was added such that the end point of

the fit data characterized by the vector (Ax1 + Ax 2, AY1 + AY2) was equal to the vector

(XF - xI, YF - YI) where (XF, YF) corresponded to the location of the hand at t = ttr. The
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termination condition was that the error normalized by the sum of squares of both position

and velocity profile became less than 5%. The final fit was compared with the data visually

to make sure that the fit was reasonable.

After the kinematic fit by the genetic algorithm to obtain the movement distance and du-

ration for each movement segment, a simple reaction time analysis was performed. Reaction

time (RT) to the cues was defined to be

RTi = Initiation time of minimum jerk hand speed profile for i-th movement segment

- i-th Cue time , i = 1, 2. (6.5)

Next, the kinematic data was fit with the output of one of the LPV models, LPV2,

developed in Chapter 5. For this purpose, the arm's geometric configuration parameters as

well as a body weight for estimating the weight and inertia of each upper limb segment were

acquired from each subject after the whole experiment. Then, kinematically well fit data

with the minimum jerk profile being reference trajectories to the LPV model were chosen to

be fit with the LPV model. Again, the genetic algorithm command, ga was used to find the

eight parameters for the two sequential minimum jerk profiles with the initiation parameters

being the parameter values found in the kinematic fit. There were no equality constraints

posed this time for componentwise sums in x and y directions of the distance parameters to

match the end point of the movement since the output of the LPV2 system would not need

to have the zero error at the terminal point, as seen in some examples from Chapter 5. For

the LPV fit analysis, only qualitative assessments will be made.

6.3 Results

6.3.1 General description of kinematics

Data recorded from the four subjects were used in this study. Each data set consisted of

560 trials total, 140 trials for each of the combinations of the starting point (N,S) and final
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targets (L,R) described in Section 6.2.1. Although the distance between possible second

targets is fairly significant relative to the distances between the center target and possible

second targets, none of the subjects noticed that s/he was aiming to a different second target

at each trial. Nevertheless, the subjects successfully made initial straight movements to the

first target and reacted to the cue to reach to a second target. Figs. 6-2 and 6-3 show a

pair of examples of hand movement trajectories and their corresponding hand speed profiles

of one subject, Bl1. An example in Fig. 6-2 shows a hand path with smooth transition

from the first segment to the second segment of the movement. The hand speed has only

one clear peak before the hand reaches to the second target. On the other hand, another

example in Fig. 6-3 shows a hand path which appears to have two relatively straight paths

connected around the first target and a hand speed profile with two distinct peaks each of

which corresponds to each segment of the movement. Furthermore, the widths and heights

of the speed peaks appear to be fairly different.

However, during many trials all subjects showed a "hook" at the end of the movements

to attempt to eliminate the error to arrive at the second target accurately. An example of

this is shown in Fig. 6-4.

It is noteworthy that three subjects, B11, Y11, and R12 reported that one particular

set of movements, N to C to L (NL) was "difficult" compared to the other sequences. One

subject, B12, reported that a set of movements, S to C to R (SR), in particular, the second

segment was difficult to "learn" to make coordinated movements.

Furthermore, all four subjects reported, during or after the entire experiment, that it was

difficult to maintain her/his attention level to react to the cues as quickly as s/he wished

because of the repetitive nature of the tasks. In addition, all subjected reported that they

occasionally made their "own" movements in which they neglected or did not react to the

second cue as quickly as possible so that they could make "smooth" transitions and ensure

high accuracy in the terminal error.
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Figure 6-2: An example of hand path and speed for a movement from S to C to R. Only one
distinct speed peak is prominent. Red circles:Initial and target locations, Solid blue:Data,
Solid red:Overall fit, Dashed red:Individual segment fits

6.3.2 Kinematic Data Fit

Hand position as well as hand velocity data were fit kinematically using two sequentially

added minimum jerk profiles as in Eq's (6.1 - 6.4). The subjects exhibited various patterns

of trajectories, but in general in terms of quality of fit there were four, but not mutually

exclusive classes of trajectories: a) Those fit well by two minimum jerk trajectories, b) those

with a terminal "hook", c) those with a premature and abortive turn, and d) those with

speed profiles that were clearly not consistent with a minimum jerk trajectory.

a) Examples of good fits are shown in Figs. 6-2 and 6-3 which reproduce both hand paths

and speeds faithfully. Both examples show hand speeds that attenuate well once the hand

reaches to the second target.

b) Many trials had a "hook" at the end of the movement. Those movements did not have
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Figure 6-3: Another example of hand path and speed
There are two distinct speed peaks. Line types are the

2000 2500

for a
same

movement from N to C to R.
as in Fig. 6-2

nice kinematic fits. An example of such a case is shown in Fig. 6-4. The first segment is fit

reasonably well both in path and hand speed, while the second segment is not especially in

the path. c) Subjects made a transition from the first segment to the second too abruptly.

As a result, although the hand speed appear to be reasonable, the corresponding hand path

has a change in convexity as shown in Fig. 6-5, and occasionally even a swerve.

d) Either initiation or termination of the movement was extremely slow so that the

optimization resulted in faulty a movement initiation or movement duration. This can be

seen also in Fig. 6-5 where the hand speed decreases very slowly as the hand approaches to

the final target so that the duration of the second segment is not well approximated by a

minimum jerk speed profile.

Therefore, every fit was inspected visually to see if the fit was reasonable. If the fit was

reasonable, then it was retained for further analysis. The number of trials used for the rest
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Figure 6-4: An example of hand kinematics with a terminal hook and corresponding fit for
a movement from N to C to L. Line types are the same as in Fig. 6-2

of the analysis in this study is summarized in Table 6.1.

Subject \ Task NL NR SL SR Total
B11 35 32 21 46 134
B12 24 15 9 33 81
R12 31 20 21 28 100
Y11 12 25 34 47 118

Table 6.1: Number of trials used in the kinematic and reaction time analyses.
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Figure 6-5: An example of hand kinematics with convexity change and corresponding fit for
a movement from S to C to R. Line types are the same as in Fig. 6-2

The number of trials whose data was fit badly in a particular movement directions does

not appear to reflect how the subjects felt about the difficulty of the tasks.

Movement distance analysis

From the qualified kinematic fit, the movement distances characterized by Axi and Ayi,

i = 1, 2 were collected. The statistical summary of those parameters are shown in Table 6.2.

In this study, the first segments of all movements performed were either N to C or S to C

so that Ax, = 0 and Ay, = +15 cm. Note that the first target location, C, was always the
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Subject \ Task NL NR SL SR
Ax1  0.62 + 0.82 -0.02 + 0.72 0.32 + 0.87 0.19 + 0.90

Bil Ay, -15.20 ± 0.75 -15.57 ± 0.81 15.76 0.37 15.33 + 0.86
Ax2 -11.31 + 1.21 10.82 + 1.21 -11.02 + 1.04 11.32 + 1.25

Ay2 -10.21 ± 1.20 -10.28 ± 1.15 10.34 + 0.93 10.15 ± 1.25
Ax1  0.58 ± 1.68 0.02 ± 1.27 -0.80 + 1.53 -2.12 + 0.82

B12 Ay -14.88 ± 1.41 -14.95 ± 1.59 15.01 + 1.69 15.39 ± 1.01
Ax 2 -11.54 ± 1.63 10.26 ± 1.87 -9.86 + 1.02 13.01 ± 1.78
Ay2 -12.01 ± 1.98 -10.68 ± 1.73 10.18 + 1.82 10.89 ± 1.71
Ax1  0.70 ± 1.51 0.30 ± 0.90 -0.45 - 1.13 -1.48 ± 0.99

R12 Ay, -14.41 ± 1.52 -14.69 ± 1.32 14.52 + 1.64 15.50 ± 0.76
Ax 2 -13.51 ± 1.68 10.56 ± 1.54 -11.29 ± 1.91 13.07 1.49
Ay2 -12.17 ± 0.70 -10.75 ± 1.56 12.45 + 2.10 11.06 + 1.65
Ax1  -0.57 ± 1.47 0.14 ± 0.87 -0.54 + 1.31 -0.05 ± 1.25

Y Ay, -15.29 - 0.89 -14.88 ± 1.23 14.41 ± 1.92 15.06 + 1.23
Ax 2 -10.30 ± 1.21 9.95 + 1.23 -10.09 + 1.11 11.30 + 1.63
Ay2 -10.10 ± 0.80 -10.78 ± 2.01 12.21 ± 0.60 11.72 + 1.94

Table 6.2: Summary of the distance parameters in Eq's 6.1 - 6.4 characterizing the hand
position and velocity profiles in each type of paths in each subject. Each of the data entry
takes the form of mean ± std. Units are in cm.

same and therefore deterministic. The mean offset of Ax1 was fairly small except for the SR

task by the subjects B12 and R12. R12 reported that the SR task was difficult to "learn" to

make movements with coordinated elbow and shoulder movements. This large offset might

possibly be a reflection of a subject strategy to mainly use the shoulder movement first to

bring the hand to further left than necessary, so that the second segment was mostly driven

by the elbow movement to the final target.

The second segments of all movements performed were from C to L or R so that if

the second segment started from C to one of the targets in L or R the following should

hold on average: Ax 2 = +15/1V- = ±10.61 and Ay2 = +15/Vf2 = ±10.61 where the sign

was determined for a specific movement direction. For a given trial, the second target was

randomly but equally likely chosen from the seven possible targets within a cluster of targets

that were known to a subject prior to his/her making the first segment of each movement.

However, as seen in Table 6.1, not the same number for each of the seven possible targets
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was used for the analysis so that there should be some bias in the statistics shown in Table

6.2. Nonetheless, the combination of the statistics from the first and second segments would

indicate how a subject might have employed a biased movement strategy with a shifted first

target location.

Movement time analysis

First, the summary of movement duration distributions in terms of their means ± std's

for each subject for each movement direction is shown in Fig. 6-6. There was no active

constraints on the movement durations. Through a practice session, each subject found a

range of velocity and corresponding movement durations in which s/he could perform the

task comfortably.

First segment Second segment
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600

500

400

300

6-6: Summary of

B11 B12 R12 Y11

Subject

movement durations.

It can be seen that the durations for the first segment are consistently shorter (pairwise

t-test, a = 0.05) and have less variance than those for the second segment (two-sample
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F-test, a = 0.05). Although the degrees are not the same, subjects B11 and R12 made

movements of shorter durations than B12 and Y11 did (B11 against B12 and Y11, and R12

against B12 and Y11, pairwise t-test, a = 0.05) while each subject traveled for roughly the

same distance in each trial. For subject B12, the SR direction which was reported as the

most difficult direction to learn indeed has the longest duration (pairwise t-test, a~ = 0.05)

and the highest variance (two-sample F-test, a = 0.05, except for SR against SL) for both

segments. However, for the rest of the subjects, the same can't be said for the NL direction

which was claimed be the most difficult direction to move by the rest of the subjects. Thus,

the directional difficulty felt by the subjects does not seem to be explicitly reflected in longer

movement durations and wider variance in durations.

The summary of reaction time distributions in terms of their means + std's for each

subject for each movement direction is shown in Fig. 6-7. Across all subjects and all

movement directions, the reaction times to the first target are mostly positive except for

a small number of trails by the subject Y11 (5 trials (4.2 %)) and have smaller variances

than those for the second segment (two-sample F-test, a = 0.05). The reaction times to the

second target are, on average, much shorter than those to the first target (pairwise t-test,

a = 0.05), and sometimes even negative as shown in Fig. 6-8. Both hand path and speed

fits are extremely well, but RT2 for this particular trial is -152 ms. The exact sources of this

negative reaction time are unknown. One potential source is that data fitting method used in

the current study as the minimum jerk profile was used as the template. The minimum jerk

velocity profile is symmetric, but as reported previously (Milner 1992), an empirical velocity

profile tends to be asymmetric and to have a longer tail. Thus, such an asymmetric profile

enables the second profile to start later. Another, yet more likely, source is that subjects

reportedly made their own movements, i.e., subjects ignored the cue for the second target.

Thus, at some trials the subjects guessed when to turn toward the second target area before

the cue for the second target appeared. This could have been the case for many of the trials

with negative reaction times.
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Figure 6-7: Summary of reaction times.

6.3.3 LPV model fit

As shown in Chapter 5, LPV2, an LPV model with two scheduling parameters was developed

for a two-link arm model. Given the physical measurements from each subject, sets of neces-

sary parameters were used or estimated to characterize his or her arm dynamics. However,

the muscle stiffness used in the model remained the same for all the subjects. Based on those

parameters and muscle stiffness, a set of LPV controller gains were designed as in Chapter

5. Then, a reference trajectory was estimated as outlined in Secion 6.2.3 to yield the best

fit between the empirical hand position and velocity and those from the LPV model. From

each subject, only five trials for the S-C-R task and another set of five trials for the S-C-L

task, total of 10 trials were used to explore the quality of the fit.

Among the 40 trials used, ga algorithm converged for 39 trial data. Fig.6-9 shows an

example of a data fit well by the LPV2 model. A minor curvature of the hand path in the

first segment is not extremely accurately captured and there is a slight offset at the end point
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Figure 6-8: An example of kinematic fit resulted in negative reaction time to the second
target for a movement from N to C to R. Line types are the same as in Fig. 6-2

of the movement exists, but the overall the hand path is fit by the LPV2 model well. The

extrema of the hand speed slightly deviate from the data, but the LPV2 response faithfully

captures the hand speed of this data whose second segment command starts roughly at the

middle of the first movement segment.

The second example is shown in Fig. 6-10. The hand speed data has two well separated

and distinct peaks and the LPV2 response reproduce the data very well. However, the hand

path of the second segment shows almost constant offset till the end of the movement. This

type of slight offset between the data and the LPV2 response in the second segment of the

movements turned out to be fairly common, as seen for the following two examples as well,

even thought the genetic algorithm used in this study was minimizing the error between the

data and the LPV2 responses.
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Figure 6-9: An example of kinematic fit of the data with response of the LPV2 system.
Data from subject B11 performing S-C-R task. Experimental data (blue), LPV fit (red),
and Reference command for the LPV system (green dashed). Left: Hand path. Right: Hand
speed.

The first two examples show the case when the hand speed has distinct two peaks. Fig.

6-11 shows an example when the hand speed is unimodal. Overall, both the hand path and

speed are fit well with the LPV2 system. The LPV2 response manages to trace the first

segment of both the hand path and speed, however again, there is small deviation both in

the path and speed.

Fig. 6-12 illustrates an example of a fit of the movement of the target sequence S-C-L

to see if the LPV2 system can faithfully reproduce a direction that tracking performance

was shown to be worse than S-C-N or S-C-E direction in Chapter 5, see in particular Fig.

5-10. Although there is a small difference between the data and the LPV2 response, both the

hand path and speed are reproduced in S-C-L movements as well as in S-C-R movements.
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Figure 6-10: An example of kinematic fit of the data with response of the LPV2 system.
Data from subject B12 performing S-C-R task. Line types follow Fig.6-9.

In addition, the small offset of the hand path in the second segment shown in Fig. 6-10 for

S-C-R movements is present in many of the S-C-L movement as well.

6.4 Discussion

6.4.1 On movement variability

Despite simplicity of the task, or potentially because of the simple and repetitive nature of

the task, there are multiple sources of movement variability. Although the task was simple,

it is important to separate different sources of variability to how different components of

motor planning and execution are implemented in the CNS (Vindras et al. 2005) so that

the effect of the command in terms of its kinematics and the dynamic effects due to the
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Figure 6-11: An example of kinematic fit of the data with response of the LPV2 system.
Data from subject R12 performing S-C-R task. Line types follow Fig.6-9.

plant and the controller can be dissociated. Furthermore, it is desirable that the human

task includes many of the same sources of variability as the primate experiment, but is

constrained enough in terms of the probable reference command that you can have a chance

to model the fundamental mechanism of making a turn.

First is the variability in paths and the distances estimated by the optimization procedure

in each segment of the movement. There is a fairly large number of trials which were not

used in the analysis in this study as they were not fit well by the sequential minimum jerk

profiles. For example, the subjects overshot or miss-aimed the second target such that there

was a correctional hook movement as shown in Fig. 6-4. Furthermore, depending on what

strategy was employed by a subject, movement paths contained some biases such as the

shown in Fig. 6-2 where the subject chose to make an initial movement towards slightly to

left to make a smoother movement to turn right for the second segment. These classes of
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Figure 6-12: An example of kinematic fit of the data with response of the LPV2 system.
Data from subject B12 performing S-C-L task. Line types follow Fig.6-9.

movement variability can probably be reduced with a tighter experimental control. Subjects

could be asked to pay more attention to the location of the target or to abort a trial if the

initial direction exceeds a certain threshold. It would be still important however that subjects

remain relax while moving so that they would not change their limb stiffness significantly

from the value assumed by the model.

Second is the variability of the movement durations for each segment. There was no

duration constraint in the current study so that the movement durations were determined

completely by the subjects. However, the subjects were told to make movements as fast

as possible while maintaining the terminal accuracy as well as their comfort level, i.e., not

causing noticeable cocontraction of muscles. Thus, a certain degree of duration variability is

unavoidable and reflects a rough kinematic plan established by each subject. Furthermore,

it has been suggested (Tanaka et al. 2006) that movement duration is a result of a trade-off
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between speed (time optimality) and accuracy (acceptable endpoint scatter) and that such

a formulation reproduced movement duration as a function of the ratio of target distance to

target size known as Fitts's law. Thus, changing the target size in the current experiment

would test the feasibility of the hypothesis suggested by Tanaka et al. (2006).

Third, the variability of the reaction time estimated using the kinematic fit of the hand

speed with the minimum jerk profile was quite significant. Unlike other studies in which a

double-step paradigm was employed, each subject knew the exact location of the first target

and to which direction the second segment of a movement to be made before a trial started.

It was reported (de Rugy and Sternad 2003) that initiation timing of a discrete movement

during a periodic movement tended to be synchronized to a specific phase of a periodic singe

joint elbow movement that the subjects were performing. This tendency was greater when

the movements were self-paced than when the movements were of a reaction task. Although

the subjects in our study did not perform any periodic movements, it may be possible that the

CNS synchronizes multiple neural circuitries required to perform a task based on a phase of

oscillatory activities that many brain areas exhibit. It has been observed Rubino et al. (2006)

that during a preparation period of a point-to-point movement, many of simultaneously

recorded neurons in motor cortical areas exhibit strong beta oscillation of local field potential

(LFP) and evoked phase lock of beta oscillation across many motor cortical neurons to

generate a cortical wave of tens of millisecond to a few hundred millisecond. Such waves were

persistently generated during the instruction delay period and the beginning of movement

initiation. Therefore, whether a movement is periodic or discrete, it appears that the brain

utilizes phases of cortical oscillation. Thus, the movement initiation times estimated by the

method in this study may include neural processing times of such synchronizing activities

in the brain. To further investigate this issue, it would be interesting to record cortical

oscillation through LFP, EEG or MEG while the subjects are performing the same reaction

tasks.

Fourth, the resolution of choosing a virtual point to aim in the target circle may not

be extremely accurate. In our experiment, all subjects indeed did not notice that they
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targeted to a randomly chosen second target out of the seven possible ones. Thus it is

possible that when a subject was to move to a second target from the first target, s/he knew

approximately which direction and how far a movement needed to be, but the range of a

virtual point to aim could lie within a circle containing all the seven possible second targets.

However, once the virtual point was set from a smaller circle than the circle containing all the

seven possible second targets, in this experiment such a small circle was explicitly presented

to the subjects as one of the seven possible second targets, all the subjects could make a

reasonably accurate movement to that point. Because in the primate experiments, the target

cursor was relatively large (2.5 cm radius), the monkeys could move their hands to different

locations within the target and still satisfy the experimental tracking requirement. That

is, the endpoint locations of each catch-up movement to the target cursor were somewhat

under constrained. As a result, individual segments of monkey movements were somewhat

variable in duration and length. To provide an analogous situation for the human subjects,

the second target was moved randomly to 7 locations within a region of diameter of 6 cm

(Fig. 6-1 I VI). The ratio of region diameter to the average length of the last movement

segment (C-R or C-L)was 15/6 = 2.5 which approximates the ratio 5/2.5 = 2 of the monkeys

target cursor diameter to average movement length. We also verified that subjects did not

notice that the randomly presented target cursors actually changed position by as much as

6 cm. Thus, some trajectory variability was induced that was comparable to that displayed

by the monkeys, and the subjects did not have any sense that the task itself was varying.

The induced variability presumably reduced over learning that might be associated with

the static human task, and presumably helped keep the results comparable to the primate

experiment. Thus, if the hypothesis that a circular tracking motion by the monkey can be

approximated inhuman by sequential point-to-point movements holds, then some trajectory

variability may be explained by the imprecision to aim a virtual point within the target

circle.

Some, if not all, candidates for movement variability suggested above may well be cou-

pled. Thus, even kinematically dissociating each component in the experiment and the

191



consequential data analysis can be fairly challenging.

6.4.2 Sequential command

In this experiment, a slightly randomized, in terms of the second target variability, static

double step task was chosen because preliminary study (not shown) showed that human

subjects used a predictable strategy for a predictable circular cursor tracking task as that of

the monkey. Thus, in order to approximate a catch-up strategy employed by the monkey, a

double step task was chosen. In the current formulation, the sequential command consisting

of two minimum jerk templates was first used to perform kinematic fit to the data. The data

analysis showed that some hand kinematics could be accounted for by having a vectorial

superposition of two point-to-point movements each of which started and ended with zero

velocity. This observation is consistent with previous studies (Flash et al. 1992; Rohrer

et al. 2004; Vindras et al. 2005). The movement distances found to fit the minimum jerk

profile appear to be reasonable, but some reaction times, especially for the second segment,

turned out to be negative. One very likely cause for this negative reaction time is that

subjects anticipated the second cue and started making a second movement by ignoring the

second cue timing. Another, yet probably minor cause of this may be asymmetry of empirical

velocity profile. It has been noted (Rohrer et al. 2004; Milner 1992) that a kinematic template

to fit hand velocity can be asymmetric and be individually customized. Thus, short, but still

positive, reaction times can be partially explained by this possible velocity profile asymmetry.

As there was no record as to which trial a subject recognized that s/he did not follow the

cue, it was impossible to pin down which trails belong to this category.

Even when the reaction times are reasonable, it is yet not clear how such a sequential

command is generated physiologically. It was suggested that the generation of the reactive

arm movement to the second target would be based on retinal errors between the first and

the second targets (Boulinguez et al. 2001). In addition, the CNS appears to process the

amplitude and the direction of a motion independently (Gordon et al. 1994; Vindras et al.

2005). A series of studies (Desmurget et al. 2003, 2004) suggest that the basal ganglia are
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specifically involved in the planning of movement amplitude, but not in the movement direc-

tion. Thus, it is possible that the amplitude and the direction of a motion can be determined

based on the location of the cue, but movement duration and/or speed is controlled by a

different neural circuitry. Then, the high level command to the motor system may consist

of a step function defining the target location and speed gain. In relation to the RIPID

formulation, the reference command can be a step function and the speed gain can be a

multiplicative gain of a cortical integrator in the motor cortex. This mechanism can yield

a minimum-jerk-like velocity profile (Karameh and Massaquoi 2005). A similar approach

has been used to generate a position command based on motion error signal (Bullock et al.

1999). The resultant kinematic profile of the model by Bullock et al. (1999) reproduced a

velocity profile that is similar to what's seen in our experiment, i.e., it seems that it can be

fit reasonably well by a sequence of minimum jerk profiles, but the velocity profile showed

slight asymmetry. Thus, the minimum jerk command can account for the data to explain

gross kinematic features well, but without implementing a more detailed neural mechanism

such as BG-RIPID or the model by Bullock et al. (1999), some kinematic features such as

asymmetry in the velocity profile may be difficult to explain.

6.4.3 LPV system to characterize a double-step movement

As shown in Figs 6-9 through 6-12, some kinematic data were fit reasonably well with the

LPV2 model with a reference command consisting of two sequential minimum jerk profiles.

A few sets of data that were not fit well by the minimum jerk profile are fit with the LPV2

responses, but the results are either consistent with fits by a sequence of minimum jerk

profiles alone, or exhibiting some consistent trend of the fits by the LPV2 responses, such as

hand path off set as shown in Figs 6-13 and responses, such as hand path off set as shown

in Figs 6-14.

However, note that both examples have fairly accurate fits of the hand speeds. Although

the errors in the each component of the hand trajectory and the hand velocity are equally

weighted, generally the velocity components, hence correspondingly the hand speeds tended
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Figure 6-13: An example of kinematic fit of the data with response of the LPV2 system.
Data from subject B12 performing S-C-L task. The data was not fit well purely kinematically
by a sequence of the minimum jerk profiles. The hand path is fairly curved with varying
convexity with terminal hook. Line types follow Fig.6-9.

to be fit better than the hand paths.

Unlike the purely kinematic fit procedure which placed a constraint to have a perfect

match at the end point of the movements, the optimization routine used for the LPV fit could

not include such a constraint. Furthermore, each data point in the trajectory or velocity data

was treated equally. Thus a set of coefficients for a pair of minimum jerk reference command

for the LPV system was chosen to minimize the mean squared error between the data and

the fit. Therefore, we can't conclude with confidence that the characteristic deviation from

the data seen in LPV2 fits, such as the path offset (see Fig. 6-10) and smoother hand speeds

(see Fig. 6-11) may well be the result of a choice of uniform penalty in the optimization

routine over the hand path and hand speed, or over each point in the data.

Although there was significant performance difference of the LPV models based on the

directions of the movements as shown in Fig. 5-10, the LPV2 responses fit a set of data

reasonably well for both S-C-L and S-C-R movements. There are two potential reasons.

194



Hand path Hand speed

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

X-m Time - msec

Figure 6-14: Another example of kinematic fit of the data with response of the LPV2 system.
Data from subject R12 performing S-C-L task. The data was not fit well purely kinematically
by a sequence of the minimum jerk profiles. The hand path makes almost a right turn. Line
types follow Fig.6-9.

First, the durations of the movements in the experiment were usually longer, and thence the

movements were slower. The peak hand speeds of the LPV simulations in Chap 5 are above

0.8 m/s for most of the cases, sometimes even around 1.0 m/s, while in the experiments

most of the data that resulted in reasonable purely kinematic fit did not have such high

peak speeds, usually less than 0.7 m/s. Second, the second target arrangements are different

between the LPV simulations and the experiment. The LPV simulations had sharper turns to

make with faster speeds as above. Thus, the whole tasks were dynamically more demanding

than those that subjects ended up performing to result in reasonably fittable data. Based on

this argument, a single H-, controller might yield a response that fits the experimental data

well. Fig. 6-15 shows an performance comparison between 'H, and LPV2 responses. During

the first segment of the movement, the responses from both systems do not differ much either

in the hand path or speed, but in the second segment it appears that the initiation of the

second segment was not on time and the direction of the second segment was slightly off to
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the left. Furthermore, the end point error of Ho controller is much larger than that of the

LPV2. This is one of a few data set that show significantly inferior performance by the oH

controller to that by the LPV2 controller. Other data sets were fit comparably well by both

the R.o. controller and the LPV2 controller, usually slightly better by the LPV 2 controller.

Thus, despite these examples one cannot conclude that the actual experimental data could

be reproduced better with LPV2 system than a single H,, controller system. However, they

may indicate that the actual data can always be fit better with LPV2 systems especially

given the variability in kinematic data and the speed of the tasks that subjects performed.

In order to critically test if a LPV, or gainscheduling system is better than a single Ro,

or even a gainscheduling is necessary to explain behavioral data, more data with faster

speeds would be required. Furthermore, in order to avoid ambiguity of the effects between

the responses of dynamical systems and those of optimization procedures to minimize the

difference between the simulation responses and the experimental data, a better method of

combining dynamical controller design and data fitting need to be developed without setting

an extremely fine grid in both command and controller parameter spaces and searching those

spaces exhaustibly. A new development in fuzzy control Espinoza et al. (2004) may be used

to fit a data better while both a set of controllers and a command can be modified.

The LPV modeling suggests that physiological control might be implemented by schedul-

ing of linear controllers that are selected in a feedforward manner based on movement plan.

In this regard, it is of interest that based on the simultaneous recording of multiple single

neurons in M1 by Hatsopoulos et al. (2003), the correlated spike activities between pairs of

neurons differed when these sequences were planned as a whole as opposed to when they were

planned one segment at a time. This observation held even when the firing rates of these

neurons did not distinguish between the two conditions. One possible interpretation of this

result would be that based on the kinematic plan a set of neurons, at least partially, in M1 is

recruited in a feedforward manner. In our study, all subjects knew the template of the task

so that they just needed to react to the target cues to carry out a whole sequence. Further-

more, in our experiment the accuracy constraint was posed preferably more heavily toward
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Figure 6-15: Difference between the single 7-( controller response and the LPV2 response.
Data from subject RB11 performing S-C-L task. Experimental data (blue), LPV fit (red),
and -H, fit (yellow). Left: Hand path. Right: Hand speed.

the second target as most of the time the subjects needed not to stop at the first target.

Thus, it is interesting to note from Hatsopoulos et al. (2003) that the correlation between

two neurons in M1 which had statistically indistinguishable firing rates before and during

a movement was strengthened when the directional preferences of the neurons matched the

direction of final segment of the sequence. This may imply that there is a predetermined

sequence to recruit a set of neurons prior to a movement, and potentially corresponding

controllers in cerebellum that have connections to a particular group of neurons in M1 as

suggested by (Kelly and Strick 2003) , based on a trajectory plan, there is at least another set

of neurons that is responsible for the termination phase of the movement. Thus, in addition

to spinocerebellar selector mechanism based on afferent state information suggested by the

RIPID/RICSS, there may be a feedforward controller recruitment mechanism based on a
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trajectory plan. Such feedforward recruitment may be useful not to recruit more than nec-

essary number of neurons. An engineering model implementing a similar two-phase coarse

scheduling is suggested by Massaquoi (2006a).

Finally, the LPV model with a sequence of minimum jerk command is yet a simplification

made from the RIPID/RICSS so that a set of local controllers can be designed systematically

once a set of plant parameters are known. It is shown here that the LPV model with a se-

quence of minimum jerk commands could account for the human experiment data reasonably

well when a curvature of the hand path is relatively smooth. In order to make the model

more biologically realistic, the minimum jerk-like reference signals for the LPV controllers

could be generated by a sequence of step inputs to a RIPID model equipped with nonlinear

integration (Karameh and Massaquoi 2005). In addition, as RICSS suggested that afferent

feedback of velocity may be a component of selector or scheduling variable. Thus, in order

to be more faithful to the RIPID/RICSS formulation, velocity should be included in the

synthesis of LPV model to further test the validity of gain scheduling in a more theoretically

tractable way.
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Chapter 7

Conclusions and future extensions

7.1 Conclusions

This thesis demonstrates that a currently proposed recurrent integrator PID (RIPID) cerebel-

lar limb control model (Massaquoi 2006a) is consistent with average neural activity recorded

in a monkey by developing the Recurrent Integrator-based Cerebellar Simple Spike (RICSS)

model. The RICSS formulation is consistent with known or plausible cerebrocerebellar and

spinocerebellar neurocircuitry, including hypothetical classification of mossy fiber signals.

The RICSS model accounts well for variety of cerebellar simple spike activity recorded from

the monkey and outperforms any other existing models. The RIPID model is extended to

include a simplified cortico-basal ganglionic loop to capture statistical characterization of in-

termittency observed in individual trials of the monkey. A natural way to enable the RIPID

model to be effective throughout a larger workspace or more dynamically demanding tasks

is to schedule its control gains according to local state information. There appears to be a

neuroanatomically plausible mechanism to perform such a control scheme. Analytically, a

linear parameter varying (LPV) formulation, which shares a similar structure to that sug-

gested by the RICSS model, is used to check its feasibility. The LPV system reproduced

some kinematic features of the data of the human subjects performing double step tasks

which requires rapid change in movement directions.
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7.1.1 RIPID and RICSS models

The basic structure of the RICSS arose from neurophysiological and neuroanatomical con-

siderations. Ongoing studies of the cerebellar cortex reveal increasing complexities in its

circuitry and corresponding functional roles of each cell type (e.g., Simpson et al. (2005)). In

addition, multimodal nature of the inputs to the cerebellar cortex, such as visual-vestibular

interaction (Buttner et al. 2003) has been observed. Thus, actual computation performed

in the cerebellar cortex is most likely fairly convoluted. However, the central implication

of the RICSS model is that the average PC simple spike activity patterns in a behaving

monkey can be described by a relatively simple model. However, two principal features in

the RICSS model were developed more empirically as follows. The first is the dependence

of cortical background firing rate on the square-root of movement speed. The precise origin

of cortical background activity is unknown. However, it is noteworthy that some models of

muscle spindle function (Hasan 1983; Houk et al. 1981) have used a similar subunity expo-

nent for the velocity dependence of stretch responses that include a static bias offset. The

second empirically useful proposition is the simple multiplicative action of the hypothetical

selector PFs through lateral inhibition (Grossberg and Kuperstein 1989). It is conceivable

that therefore Eq. (3.3) represents an undue oversimplification. Especially given the large

number of selPFs and interneurons that potentially influence a given PC, it is arguable that

the model should have greater complexity. Although the incorporation of these elements

could improve the fit, it would not alter the overall implications of the model. The fact

that the current model is effective in describing the SS activity of most PCs, may indicate

that it includes a good functional description of selPF activity notwithstanding its relative

simplicity.

The RICSS appears to provide an explanation for the effectiveness of the UPVSc model

(Roitman et al. 2004) in a manner that is consistent with known or plausible cerebrocerebellar

and spinocerebellar neurocircuitry as well as physical control of a primate limb using long-

loop servo control. In particular, the activity might be based upon processing of the filtered

error-like signal proposed by the RIPID cerebrocerebellar control model (Massaquoi 2006a).
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Moreover, the nonlinearity that appears to be fundamentally important derives in part from

the multiplicative interaction between error-like signal transmitted by signal parallel fibers,

and in part from state feedback information carried hypothetically by selector parallel fibers

to control the effectiveness of the inhibition action through inhibitory cerebellar interneurons.

This feature is consistent with the hypothesized mechanism of cerebellar gainscheduling that

is posited to enable the cerebellum to adjust its feedback control according to body motion

and configuration (Jo and Massaquoi 2004). Taken together, the findings herein support the

validity of the RIPID control model.

Unfortunately, because the net cerebellar control signal is presumably related to the

output of the entire PC population as well as direct transnuclear signals from precerebellar

nuclei to deep cerebellar neurons, which are unknown to us, we cannot directly relate the PC

signals seen here to the motor command to the arm. In addition, the RIPID control model

also suggests that other extra-cerebellar pathways contribute significantly to arm control

which further reduces the likelihood of interpreting limb control directly in terms of the

recorded PC activity. Yet, although the RIPID and RICSS models contain a number of

free parameters, their structures are specific and explicit. They therefore constrain internal

signal behavior and afford specific, quantitative predictions for future studies.

The regression findings do not exclude other models that have been proposed for cerebel-

lar function. However, taken together with other accumulating evidence, the results highlight

contrast to alternative formulations. The observed behavior that most units responded to

passive manipulation argues strongly for the presence of feedback signals in PC firing activ-

ity, as used by the RICSS model, and against purely feedforward cerebellar control models

(Contreras-Vidal et al. 1997; Kawato et al. 1987). The nonlinearity in the relationship be-

tween kinematics and cerebellar signals confirmed here had not been emphasized before the

UPVSc model, although purely linear formulations such as in Pellionisz and Llinas (1982)

and Gomi et al. (1998), do not appear to consider linearity as a fundamental requirement.

Other proposals (Kawato 1999; Kettner et al. 1997; Schweighofer et al. 1998b) are already

sufficiently general to be potentially consistent with PC data used here. However, these
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models have not yet been explicitly reconciled with cerebrocerebellar circuitry and cerebel-

lar signals recorded during arm movements.

7.1.2 Intermittency

Segmentation, or irregularity, of apparently continuous movements was first observed by

Woodworth (1899) more than a century ago. There is still a debate as to what constitutes

a "unit" movement in the segmented kinematics (Roitman et al. 2004; Milner 1992; Flash

and Henis 1991; Novak et al. 2002), or its existence itself (Sternad and Schaal 1999), sub-

movements, which have been identified by non-smooth speed profiles with local minima and

maxima, have been described in many types of movements. Based on the simple template-

free submovement decomposition applied to a fairly large dataset, analysis of the speed pulses

revealed three properties of the submovements. The first property, which may be limited

to tracking for a long duration, is the substantial invariance of the duration distributions

across the target speeds during the tracking phase. This observation was confirmed in a hu-

man study by Pasalar et al. (2005). Therefore, the observation many imply that there may

exist a neural structure that is involved in generation of motor command irrelevant to the

speeds of the targets during the tracking phase. The second property is the affine relation

between the amplitude and the duration of speed pulses at a fixed target speed. Since the

target speed and the average speed of tracking are nearly identical, this affine relation also

holds true at a given tracking speed. The third property is the affine relation between the

scaling factor al and the target speed in the tracking phase. Roitman et al. (2004) found

a slightly different result that this third property held for both the intercept and tracking

phases. However, given that the exact intercept mechanism is not yet unknown and that

the definition of the intercept phase used in this study may include the transition from the

intercept to the tracking phase and furthermore the tracking phase itself. Nevertheless, all

three properties hold in the tracking phase.

Kinematically, it has been hypothesized that a series of stereotypical velocity templates

are used to make one composite movement (Flash and Henis 1991; Milner 1992). Stereotypy
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is an appealing concept in that it reduces the control problem to manipulating scaled versions

of a single prototype velocity template. This concept of stereotypy was supported by the

first set of kinematic analysis on individual trials of the monkey. Based on this mechanism,

in order to achieve a faster movement, the amplitudes of pulses increase as prescribed by the

affine relation between a, and the target speeds, while the duration distribution remains the

roughly constant regardless of the speeds.

In order to explain the intermittency observed in individual trials, the RIPID formulation

was extended to the BG-RIPID by including a cortico-basal ganglia loop which was consid-

ered to function as a context dependent switching controller (Mao 2005; Mao and Massaquoi

2005; Massaquoi 2006b). In this model, an adjusted error signals are generated potentially in

areas 4 and 5. Each error signal is compared against a threshold value in each corresponding

BG module. If the magnitude of the error signals are smaller than the threshold values, then

BG modules inhibit the activities of corresponding thalamic nucleus VLo so that the VLo

don't output any error signals to be integrated to generate the motor command to be sent

to the motor cortex.

The model was reduced to one dimension to hypothetically reproduce the two dimensional

circular tracking task of the monkey into an angular tracking task in one dimension. Thus,

it is not possible to test if the submovement initiation mechanism takes into DE account.

This simple model which takes a continuous command signal which is slightly leading

the visual target managed to reproduce at least two features observed in the monkey data,

substantially invariant duration distributions across the speed and relation between the am-

plitudes and the durations of the pulses. It is yet unclear as to how this model can be

extended into a higher dimension, the model suggests that the cortico-basal ganglia loop

structure proposed by (Mao 2005) may be responsible for intermittency in individual move-

ments.

Roitman et al. (2004) suggested, based on the cross correlation of various error signals

and the speed profiles, that two types of errors may trigger a submovement. The first type

is the directional error (DE), which is the difference between the present direction and the
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desired direction of the motion. The second type is modified speed error (MSE) which is

defined to be a linear sum of the difference between the present and desired position and

the difference between the present and desired velocity multiplied by a time constant, T. In

both error signals, T represents the interval for which the simple linear prediction about the

target behavior is made by the control system (Engel and Soechting 2000). This kinematic

error based mechanism may potentially function in a similar way to the BG-RIPID model.

In fact the BG-RIPID model the integrator doesn't get turned on again unless the error gets

larger than a threshold. One possible difference in the models is that MSE based model may

cause the motor command generation mechanism to have to wait until the error is fairly

large before initiating a submovement. The BG-RIPID would start rapidly then turn off

when caught up. This possible difference would have to be explored. The other, yet critical,

difference is that Roitman et al. (2004) does not explain how a scaling of the template is

performed while the BG-RIPID model does not require the template but performs scaling

automatically given the speed difference in the reference command. Further study similarity

and difference between these two types models should be explored.

7.1.3 Gainscheduling

The RIPID model received a strong support to account for the average kinematics of low-

speed movements in a small workspace while internal signal integrity was verified with the

RICSS model. Then, the RIPID formulation was extended to account for individual trials

which contained kinematic variability manifested in intermittency. The last attempt in this

thesis to extend the RIPID model was to account for faster movements in a larger workspace

with sudden directional changes.

The RICSS model suggested a particular multiplicative relation between the error-like

signal and state information at the PCs. This mechanism was realized in a well known

gainscheduling control scheme of linear parameter varying (LPV) systems. To test the

feasibility of such a formulation, the double step reaction task was performed to human

subjects. The LPV model accounted decently well for some of the human data. Thus, there
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is a potential to extend the RIPID formulation into a gainscheduled version.

Because of the nature of the data fit procedure, detailed performance analysis was not

performed. Furthermore, there were significant amount of simplifications made in the formu-

lation. First, the nonlinearity due to viscosity terms was not included due to the resultant

computational burden to synthesize a set of controllers. Second, signal delays, both afferent

and efferent directions, were not included in the formulation. Third, the muscle model was

completely linear to allow a straightforward application of the LPV synthesis. Therefore, the

LPV model alone should not be able to account for many details observed in the human data.

Furthermore, variability such as attention even within a given subject could not be modeled.

Therefore, the result presented here is a first step to check the feasibility of the LPV model

as an abstraction of RIPID/RICSS model. In addition, a theoretically tractable formulation

such as LPV allows to test specific hypothesis. A hypothesis is that higher cortical areas

modulate broadly based on the intention and decision made to pre-recruit populations of

cells in motor and sensorimotor cortical areas, then more fine modulations at the cerebellar

level based on the actual states are performed to selectively modulate cerebral and cerebellar

modules which are specialized for a particular part of state space, whether it is represented

in terms of work space, error space, or combined as suggested by the RICSS model. Further

theoretical development to test this hypothesis, such as inclusion of delays in the synthesis

procedure, needs to be made.

7.2 Possible extensions

7.2.1 Further extensions of RIPID

One feature in the RIPID model that has not been explicitly tested is its ability to track force

levels. Although there have been physiological studies to suggest that some brain areas are

related to force control (Hore and Flament 1986; Sergio and Kalaska 1997, 1998; Nowak et al.

2002), it is not yet clear as to how each area is connected to convey the force information

data. A few anatomically and physiologically feasible models have been suggested to handle
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both kinematic tracking under force loading (Contreras-Vidal et al. 1997; Bullock et al.

1998).

7.2.2 Adaptive RIPID/RICSS

Another major feature missing in the RIPID model as a cerebrocerebellar model is its ca-

pability of adaptation. Schweighofer et al. (1998a,b) suggested a model which included the

motor cortex, the spinal cord, and the intermediate cerebellum. The model emphasized the

importance of the cerebellum as a compensator for the interaction torques across different

joints. By including the inferior olive as a "teaching" signal, the model learned, through

long term depression (LTD), the part of inverse dynamics of interaction torques to achieve a

reasonable tracking performance (yet see Fig. 2 in (Schweighofer et al. 1998b)). Contreras-

Vidal et al. (1997) proposed an arm movement control model that illustrated how a central

pattern generator in cerebral cortex and basal ganglia, a neuromuscular force controller in

spinal cord, and cerebellum cooperate to reduce motor variability. This model not only in-

cluded LTD as many other cerebellar learning models, but also long term potentiation (LTP)

in response to uncorrelated parallel fiber signals. This LTP mechanism enables previously

weakened synapses to recover. Such a rebound mechanism has been recently proposed at the

neuroreceptor level (kakegawa and Yuzaki 2005). The two adaptive cerebellar models are

anatomically and physiologically reasonable, but their learning algorithms only incorporate

the global kinematic error.

Schaal and Atkeson (1998) suggested a incremental learning algorithm for regression

problems that models data by means of spatially localized linear models. The size and

shape of the receptive field of each locally linear model, as well as the parameters of the

locally linear model itself, are learned without the need for competition or any other kind of

communication by minimizing a weighted local cross-validation error.

This algorithm was evaluated to learn the inverse dynamics of two joint arm by having a

local approximation of the state space map. The algorithm required a fair amount of training

points (45000 points) sampled at a high frequency (100 Hz), but the system managed to learn
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Figure 7-1: A network illustration of receptive field-weighted regression. Adapted from
Figure 3 in Schaal and Atkeson (1998).

the map. This approach was extended to design a feedback linearizing controllers based on

the learned inverse dynamics of the arm and successfully trace a figure eight (Nakanishi et al.

2005).
The biological feasibility of the model by Schaal and Atkeson (1998) as well as its idea

of feedback linearization of the plant are speculative, and the robustness of the resultant

controllers against parameter variations as well as disturbance has never been tested. How-

ever, an appealing feature of this algorithm is its structural similarity to cerebellar circuitry,

in particular the RICSS formulation. Thus, in order to extend the RIPID/RICSS formula-

tion to be adaptable, it would be natural to develop an algorithm that uses local sensory

information to update corresponding local controllers.

7.2.3 Classification of submovements

In Chapter 4 two affine relations in intermittency were shown: The first was between the

durations and amplitudes of the submovements and the second was between the slopes of
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the first relation and the target speeds in the tracking phase. The BG-RIPID model prelim-

inarily showed its ability to explain those two affine relations. However, the model did not

quite show the invariant duration distributions across the speeds. In addition, the model

showed multiple modes in the duration distributions as the target speed increases. Such an

imperfect feature may be due to many simplifications made. First of all, there was only one

noise source in the BG-RIPID model. It is very likely that there are multiple noise sources

present at different sites and the types of noises need not be multiplicative. Second, the sim-

ulation results of the BG-RIPID were limited to one dimensional case. In one dimensional

case, it was relatively easy to set a threshold value, but in higher dimensional case even when

all error signals were completely independently processed in the BG and thalamus, setting a

set of threshold values to reproduce realistic movements along with the empirically observed

statistical features may not be an easy task, or may not even be realistic. Furthermore,

the BG-RIPID along with the RIPID models only consider proprioceptive loops, but not a

visual loop which possesses a more significant delay time. Thus, it is highly likely that the

CNS has multiple loops that share a similar structure to that of the BG-RIPID, but each

loop may contain a different delay time and threshold values. Related to this aspect, any

high level cognitive error correction mechanism which intentionally modifies the intended

path/trajecotry may produce apparent segmentations. Thus, it may be useful to further

study the data statistically, in particular, it would be interesting to perform hierarchical

structure analysis, such as hierarchical mixture of Gaussians to investigate statistical depen-

dency on the durations of Gaussians. If such a hierarchical structure exists, then it would

guide us to suggest corresponding anatomical structures.

7.2.4 Application to neuroprostheses

A recent and rapid development of the brain machine interface (BMI) to hope assisting

disabled patients by translating neural activity from the brain into control signals for pros-

thetic devices has been impressive (Donoghue 2002; Shenoy et al. 2003; Santhanam et al.

2006; Hochberg et al. 2006). Multiple neurons are recorded simultaneously using a multiple
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electrode array usually from one brain region. However, in order to harvest enough detail

of the motor plan to accurately reconstruct/estimate the desired movement in real time,

it would be necessary to record neurons with tens to hundreds of electrodes implanted in

several key cortical areas.

Therefore numerous channels for neural signals need to be amplified, filtered, and digi-

tized for subsequent processing, and much of this circuitry may eventually be integrated with

or near the recording electrodes which imposes computational power available for real-time

processing of neural signals.

In order for the RIPID/RICSS formulation to be considered as a part of the algorithm

for BMI, more feasibility check needs to be performed on the RIPID/RICSS model. It is

known that the bulk of cerebrocerebellar control involves both forward command and sen-

sory feedback information inextricably combined, it predicts that forward commands may

be fairly simple or crude and still be highly effective because refinement will occur due to

feedback. This would imply in turn that cerebral cortical command generation circuitry may

be simpler than might otherwise be surmised. The view also predicts that fundamentally

most motor cortical and cerebellar signals recorded in intact animals will not be entirely rep-

resentative of the signals recorded in deafferented animals. If true, this fact could be relevant

to optimizing the design of decoding algorithms for neuroprostheses when afferent pathways

have been compromised. Conceivably, if the role of sensory input is correctly understood,

appropriate adjustments can be made to signals recorded in their absence. Furthermore, the

current BMI and corresponding estimation technology have not even attempted to account

for dynamic interactions of the limb movements for which cerebellum is known to compen-

sate. Thus, the inclusion of the cerebellar modules in the BMI algorithm would be crucial

to produce a smoother and more natural movements in the future.
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Appendix A

Tables

A.1 The two-link arm plant dynamics and muscle model

parameters used in Chapter 3

The arm dynamics and the muscle models are presented in Eqs. (1)(2). The two tables

below summarize the arm parameters used for this study.

Table A.1: Arm plant parameters used in Chapter 3 - mi is mass, 1i is limb segment length,
14 is distance to segment center of mass from joint, and hi is moment of inertia for i-th link

i = 1,2 mi (kg) 14 (cm) 1i (cm) hi (kg m2 )

Link 1 0.36 14.1 6.20 0.0024
Link 2 0.36 14.1 6.20 0.0024

Table A.2: Moment arms - See the notation inKatayama and Kawato (1993)
al,a2 3 , a4 a5 ,a6  7, a8

Moment arm (cm) 1.6 1.0 1.1 1.4

The moment arm matrix is given by

-a 2 0 0 a 5 -a 6

0 a3 -a 4 a7 -a 8 J
211

A =



All the diagonal elements of Km are 400 N/m and of Bm are 40 Ns/m, respectively. All the

off-diagonal elements for both Km and Bm are zero.

The two link arm dynamics is given by Eq. (3.1):

i =H(0) + C(0, 6)6,

where

H(O)

h11 (0e)

h21 (e)

h22 (e)

C(0, )

= hl (Oe)
Sh21(0e)

h12 (e)

h22

(A.1)

(A.2)

= h1 + h2 + m 2(1 + 21112 Cos(Ge)),

=12 = h2 + m 21112 cos(OGe),

= h 2,

= m2ll12 sin(Ge) A(oe+O) ]
0

(A.3)

B. Parameter values used in the RIPID simulation

[,0 1 12 400 0 13 350 0Iz = , I2 - 3=

0 0 0 400 0  350

1.3 0 F [0.4 0 F 0.6 0
Ia F2, F23

0 1.3 0 0.4 0 0.6
1.2 0 0.7 0 1 0

Gb , Gk =
0 1.2 0 0.7 0 1

For simplicity, the following two delays are set to be the same value: teff = taf = 25 ms.
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A.2 The two-link arm plant dynamics parameters used

in Chapter 5

Table A.3: Arm plant parameters used in Chapter 5- mi is mass, 14 is limb segment length,
Ii is distance to segment center of mass from joint, and hi is moment of inertia for i-th link

i = 1,2 mi (kg) 14 (cm) 14 (cm) hi (kg m2 )

Link 1 0.90 34.0 12.0 0.065
Link 2 1.1 35.0 17.0 0.10

The location of the center of the workspace relative the location of the shoulder is

(xc, yc) = (-0.05, 0.35) in m.
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