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Abstract

This dissertation develops new econometric procedures for the analysis of high-
dimensional datasets commonly encountered in finance, macroeconomics or in-
dustrial organization. First, I show that traditional approaches to the estimation
of latent factors in financial data underestimate the number of risk factors. They
are also biased towards a single market factor, the importance of which is over-
estimated in samples. In Chapter 3, I derive a new consistent procedure for the
estimation of the number of latent factors by examining the effect of the idio-
syncratic noise in a factor model. Furthermore, I show that the estimation of
factor loadings by Principal Components Analysis is inconsistent for weak factors
and suggest alternative Instrumental Variables procedures. Chapter 4 uses the
theoretical results of the earlier chapters to estimate the stochastic dimension of
the US economy and shows that global risk factors may obfuscate the relation-
ship between inflation and unemployment. Chapter 5 (co-authored with Jerry
Hausman) suggests a new procedure for the estimation of discrete choice models
with random coefficients and shows that ignoring individual taste heterogeneity
can lead to misleading policy counterfactuals.
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CHAPTER 1

Introduction

Modern economics has at its disposal large quantities of data, from high-frequency
financial observations to detailed consumer level scanner data. Very often however
the econometric methods employed to analyze such data are based on assump-
tions of bygone times when data was sparse and computers slow. This dissertation
addresses a number of important economic questions by developing econometric
procedures aimed to take advantage of the high-dimensional data available to
us today. It is written in the hope that we can break the chains of convention
and convenience and develop complex large scale statistical models of economic
processes. Keynes ones remarked that “the difficulty lies not so much in develop-
ing new ideas as in escaping from old ones.”

The first part of this dissertation addresses the problem of employing fac-
tor analysis in financial and macroeconomic applications using large firm level
datasets. Data abundance presents both opportunities and challenges. Random
Matrix Theory proves to be a powerful tool for understanding the limitations of
traditional approaches to factor analysis and for developing new estimators more
finely tuned to high-dimensional financial data.

In Chapter 2 I explain the finite sample behavior of factor models estimated
by principal components. I show that in samples of dimensions commonly found
in empirical applications it is not possible to distinguish all the factors from the
idiosyncratic noise and that this leads to a bias towards the identification of
a single factor, as documented by numerous studies. Moreover, I find that the
quantities estimated are severely biased compared to their population values, even
when correctly identified, and provide an approximation to their finite sample bias
and their sampling distribution. Overall, these results challenge the use of PCA,
as commonly employed, as a suitable tool for the identification of the underlying
factor structure of asset returns in high-dimensional datasets where the number

13



14 CHAPTER 1. INTRODUCTION

of time periods is not large relative to the number of assets.
Chapters 3 and 4 develop econometric theory for the estimation of large N,

T factor models in structural macro-finance. I employ non-commutative proba-
bility theory to derive a new estimator for the number of latent factors based on
the moments of the eigenvalue distribution of the empirical covariance matrix.
The proposed test combines a minimum distance procedure for the estimation of
structural model parameters with a specification test on the empirical eigenval-
ues to solve the problem of separating the factors from the noise. I also relate
the second order unbiased estimation of factor loadings to instrumental variable
methods where the number of instruments is large relative to the sample size,
and derive a number of alternatives to principal components with excellent finite
sample properties. Using a large dataset of international stock returns, I then
estimate global supply and demand shocks in a structural New Keynesian macro-
finance model of the US economy. I uncover 23 global factors over the period
1973-2006, many of which impact the supply side of the US economy. Chapter
4 also shows that omitting these factors masks the role of unemployment in the
Phillips curve and of the real interest rate in aggregate demand.

The second part of this dissertation addresses the estimation of discrete choice
models in the presence of individual level heterogeneity. Chapter 5 is co-authored
with Jerry Hausman.

Current methods of estimating the random coefficients logit model employ
simulations of the distribution of the taste parameters through pseudo-random
sequences. These methods suffer from difficulties in estimating correlations be-
tween parameters and computational limitations such as the curse of dimensional-
ity. Chapter 5 provides a solution to these problems by approximating the integral
expression of the expected choice probability using a multivariate extension of the
Laplace approximation. Simulation results reveal that this method performs very
well, both in terms of accuracy and computational time.



CHAPTER 2

The Single Factor Bias of Arbitrage
Pricing Models in Finite Samples

The Arbitrage Pricing Theory (APT) of Ross (1976) assumes the lack of arbitrage
opportunities in capital markets and postulates a linear relationship between ac-
tual returns and a set of K common factors, with the implication that the expected
returns will be linear functions of the common factor weights. This suggests the
use of Factor Analysis (FA) developed by Spearman and Hotelling at the begin-
ning of the last century as a potential tool for the extraction of the K common
factors from a sample of returns.

Since factor analysis only identifies the factor loadings up to a non-trivial
rotation, the task of extracting the K common factors and determining if they
are priced by the market can be difficult. Determining the right rotation is a
potentially very complicated task since the number of relevant options can be
very large. In practice it is often preferred to fix the rotation on a priori grounds
and this task is implicitly performed by the use of Principal Components Analysis
(PCA) as a substitute for the more laborious Factor Analysis.

Asymptotic conditions for PCA to produce results which are close to FA are
provided by Chamberlain and Rothschild (1983). They require for the first K
eigenvalues of the covariance matrix of factor returns to grow without bound as
the number of securities N in the portfolio increases, while the remaining N −K
eigenvalues to remain bounded. This ensures that the returns are linearly related
to the underlying K factors and even allows for weak forms of correlation between
idiosyncratic shocks.

In practice one would consider the first K largest eigenvalues of the empiri-
cal covariance (or correlation) matrix of a panel of returns for a portfolio of N
securities over T time periods, where both N and T are large. Since the num-
ber of underlying factors is unknown it is necessary to estimate a cut-off point

15



16 CHAPTER 2. THE SINGLE FACTOR BIAS OF ARBITRAGE PRICING MODELS IN FINITE SAMPLES

which separates the K eigenvalues corresponding to the underlying factors from
the remaining N −K eigenvalues due to the idiosyncratic noise component.

Over the years numerous studies (Trzcinka, 1986; Connor and Korajczyk,
1993; Geweke and Zhou, 1996; Jones, 2001; Merville and Xu, 2001) have docu-
mented the dominance of one factor, labeled as the market factor, which explains
most of the sample variation. More limited and inconclusive results have been
obtained for identifying other factors such as industry specific factors. This has
usually been attributed to the lack of formal criteria for choosing the number of
factors from an empirical distribution of eigenvalues of the sample covariance ma-
trix. In practice it is common to choose the number K by visual inspection of the
scree plot or by the use of ad-hoc cut-off points of the distribution of eigenvalues.

More recently random matrix theory was employed to describe the distribution
of the idiosyncratic noise component, which has a bounded support. Therefore,
it is possible to choose the number of factors as the number of eigenvalues outside
the finite support of the eigenvalues due to noise, as formalized by Onatski (2005).
This approach is also found in the growing econophysics literature where numerous
empirical investigations of different asset markets have been performed using this
method (Plerou et. al., 2002; Bouchard and Potters, 2003). These studies also
document the dominance of the market factor and remain inconclusive on the
identification of further factors.

Brown (1989) provides Monte-Carlo evidence of an economy with K factors,
each of which is priced and contributes equally to the returns. Moreover, the
economy is by construction admissible under the framework of Chamberlain and
Rothschild (1983) and calibrated to actual data from the NYSE. Nevertheless, he
finds evidence that PCA is biased towards a single factor model. Thus, we cannot
conclude that the empirical evidence presented in the numerous studies, some of
which were mentioned above, is not also consistent with a setup where more than
one factor is present in the economy, but where PCA fails to identify the entire
set of relevant factors.

In this paper we use recent results from stochastic eigen-analysis to quantify
the intuition of Brown (1989) and explain the single factor bias of arbitrage pric-
ing models through the finite sample behavior of the factors estimated by PCA.
We show that in finite samples of dimensions commonly found in these empir-
ical investigations it is not possible to distinguish some of the factors from the
idiosyncratic noise element either by heuristic methods or by a random matrix
approach. This leads to the bias towards the identification of a single factor which
is routinely reported in empirical investigations. Moreover, we find that the quan-
tities estimated are severely biased, even when correctly identified, and provide an
approximation to the finite sample bias and their sampling distribution. Overall,
these results challenge the use of PCA, as it is commonly used in the empirical
finance literature, as a suitable tool for the identification of the underlying factor
structure of asset returns in situations where the number of assets is large relative
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to the number of time periods.

¥ 2.1 Limiting Behavior of Sample Eigenvalues

Let us now consider a version of the model introduced by Brown (1989). Assume
that the relevant portfolio consists of N assets which are observed for T time
periods. The asset returns are generated by an exact linear factor technology
with K factors. Thus, the demeaned asset returns are given by:

RN = ΛF ′ + ε, (2.1)

where RN is a matrix of dimensions N×T of asset returns, F is an T×K matrix
of factor scores, Λ is a N ×K matrix of factor loadings and ε is a N ×T matrix of
idiosyncratic noise components. The covariance matrix of returns is given by the
N ×N matrix ΣN = (1/T )RNR′

N . We also assume that E(ε) = 0,E(εε′) = σ2
ε IN

and E(|εii|4) < ∞. Notice that we do not assume normality for most of the results
in this paper except for Proposition 2.

Furthermore, we assume that N → ∞, T → ∞, and N/T → c ∈ (0,∞),
where c is a constant. The asymptotic framework is similar to that used in
other panel data studies (e.g. Hahn and Kuersteiner, 2002) and will facilitate the
derivation of finite sample results. It corresponds to a setup where the number
of cross-sectional units is large relative to the number of available time periods.
We will first characterize the distribution of population eigenvalues and then
employ recent results from random matrix theory to characterize their limiting
distribution under the large N , large T asymptotic framework. This will allow us
to explore the conditions under which the factors are identified and also derive
the distribution of the correctly identified factors.

It is important to note the large N , large T asymptotic framework is the
appropriate framework to model the samples encountered in practical finance.
Traditionally PCA results were derived under the assumption that N is fixed
while T goes to infinity. In practice however portfolio managers tend to have only
a limited number of time periods available while looking to measure risk factors
from a large number of securities.

Furthermore, assume that E[(1/T )F ′F ] = σ2
F IK and E[(1/T )εF ] = 0. The

then population covariance of factor returns is given by

ΣN = σ2
F ΛΛ′ + σ2

ε IN. (2.2)

We now impose additional assumptions of the N×K matrix of factor loadings,
Λ. Let Λ = [Λ1 : Λ2 : ... : ΛK ], where each of the columns Λi of Λ is given by

Λi = βι +
√

σ2
βei. Let β be a constant, ι be the N × 1 vector (1, 1, 1, ..., 1)′ and ei

be an i.i.d. vector random variable with mean 0 and variance 1 and finite fourth



18 CHAPTER 2. THE SINGLE FACTOR BIAS OF ARBITRAGE PRICING MODELS IN FINITE SAMPLES

moments.
First let us consider the eigenvalue behavior of this model under the assump-

tion that T → ∞ much faster than N . The resulting eigenvalues are labeled as
population eigenvalues, since they correspond to a setup where the number of
time-periods for which the model is observed is very large.

Let us now compute the population eigenvalues of ΣN from the decomposition
UNΣNU−1

N = diag{λ1, λ2, ..., λN}, where λ1 ≥ λ2 ≥ ... ≥ λN . Since ΛΛ′ is rank
deficient it will have K non-zero eigenvalues and N − K zero eigenvalues. But
since the non-zero eigenvalues of the N × N matrix ΛΛ′ are the same as the
eigenvalues of the K × K matrix Λ′Λ, it is sufficient to consider only the latter
one. Furthermore, notice that in the large T limit, Λ′iΛj = N(β2+σ2

b ) if i = j
and Λ′iΛj = Nβ2 is i 6= j. Hence, Λ′Λ = Nσ2

b IK + Nβ2JK , where JK is the
K × K matrix of ones. It follows by the Sherman-Morrison theorem (Graybill,
1983) that the eigenvalues liof Λ′Λ are given by l1 = N(σ2

b + Kβ2) and lj = Nσ2
b ,

for j = 2...K. Furthermore, from this we obtain the population eigenvalues of ΣN

as:

λ1 = Nσ2
F

(
σ2

β + Kβ2
)

+ σ2
ε (2.3)

λi = Nσ2
F σ2

β + σ2
ε , for i = 2...K (2.4)

λj = σ2
ε , for j = K + 1...N. (2.5)

Let us now consider the sample covariance matrix derived from a panel of
returns of a portfolio of size N observed over T time periods where both N and
T are large and N/T − c = o(N−1/2). Recent advances in random matrix theory
have made it possible to relate the distribution of sample eigenvalues to that of
the population eigenvalues described above. Below we will use a set of results for
“spiked covariance matrices” as derived by Baik and Silverstein (2005), Onatski
(2005) and Paul (2005). Identical results were derived independently by these
authors based on very similar assumptions. The results of Baik and Silverstein
(2005) were derived under slightly more general conditions.

For the purposes of this note we will assume that at least the first factor can
be identified. This is guaranteed if the mean factor loading is high enough in
relation to the idiosyncratic component. Our main focus is on the identification
of the remaining K − 1 factors.

Applying the random matrix theory results quoted above we can obtain the
expected value of the sample eigenvalues for large N , large T , which are summa-
rized in the following proposition.

Proposition 2.1. Let SN be a sample covariance matrix for a set of observations
with the population covariance ΣN described above. Furthermore, let VNSNV −1

N =

diag{λ̂1, λ̂2, ..., λ̂N}, be its eigenvalue decomposition with λ̂1 ≥ λ̂2 ≥ ... ≥ λ̂N .
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Then if N/T − c = o(N−1/2) we have the following almost sure limits:

a) λ̂1
a.s.→ {

Nσ2
F

(
σ2

β + Kβ2
)

+ σ2
ε

}
{

1 +
1

T

σ2
ε

σ2
F

(
σ2

β + Kβ2
)
}

, (2.6)

b) λ̂i
a.s.→ {

Nσ2
F σ2

β + σ2
ε

}
{

1 +
1

T

σ2
ε

σ2
F σ2

β

}
, for i = 2...K and N ≥ 1

T

(
σ2

ε

σ2
F σ2

β

)2

,

(2.7)

c) λ̂i
a.s.→ σ2

ε (1 +
√

N/T )
2
, for i = 2...K and N <

1

T

(
σ2

ε

σ2
F σ2

β

)2

, (2.8)

d) λ̂j
a.s.→ σ2

ε (1 +
√

N/T )
2
, for j = K + 1...N. (2.9)

Notice that the sample eigenvalues are biased estimates of the correspond-
ing population eigenvalues. Moreover, the bias is always positive and does not
disappear as we add more securities to the portfolio. The bias only disappears
as T → ∞, that is as we add more time periods to the sample. The quantity
σ2

ε (1 +
√

N/T ) corresponds to the upper support bound of the Marcenko-Pastur
distribution, which characterizes the sample eigenvalues of the sample covariance
matrix with mean zero and variance σ2

ε IN . We shall label this as the Marcenko-
Pastur bound.

To exemplify the results of Proposition 2.1 let us consider the calibration of
Brown (1989) based on the NYSE. Thus, let β = 1,σ2

β=0.01, σ2
F =0.000158 and

σ2
ε =0.0045. Furthermore, we let T = 80 and simulate the factor economy for

portfolio sizes between N = 50 and N = 200. For each value of N we simulate
the portfolio 300 times and compute the corresponding sample covariance matrix.
This procedure is then used to extract the sample eigenvalues. The results for
the first 10 eigenvalues are plotted in Figure 2.1, where we report the mean
eigenvalue over the simulations for each portfolio size. Furthermore, for the largest
eigenvalue we compute the interquartile range of the distribution which is reported
in the figure as the shaded area around the mean value of the first eigenvalue for
each N . We also report the Marcenko-Pastur bound introduced above which
characterizes the largest eigenvalue compatible with a pure idiosyncratic noise
model. Additionally, we plot the population eigenvalues for the calibration at
each N and the corresponding almost sure limit derived in Proposition 2.1.

Notice that the sample eigenvalues are biased away from the population eigen-
values at each portfolio size and that the extent of the bias is correctly estimated
by the limits derived in Proposition 1. The bias is substantial and the population
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Figure 2-1. Limiting behavior of 10 largest eigenvalues as a function of portfolio size.
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eigenvalues correspond the lower 25th percentile of the distribution of sample
eigenvalues. Additionally, notice that all the remaining N − 1 eigenvalues are
bounded from above by the Marcenko-Pastur bound. This implies that in this
setting it is not possible to identify any of the K − 1 factors even though they
contribute equally to the asset returns. No test based on the sample eigenvalues
will be able to distinguish the second through K−th eigenvalues from the remain-
ing N − K eigenvalues due to the idiosyncratic noise component over the given
range of portfolio sizes. Factor estimation based on PCA will only uncover a mar-
ket factor corresponding to the first eigenvalue which will have high explanatory
power, yet it will be a biased estimate of the true first factor.

Although the parameter values used in this simulation are similar to those
used in many empirical application we can enquire further as to the minimum
portfolio size Nmin required to correctly identify all factors of the economy for the

given value of T . We obtain Tmin ≥ 1
N

( σ2
ε

σ2
F σ2

β
)
2 ∼= 40, 000. This is an extremely

large value (over 120 years of daily data) and shows the difficulties involved in
identifying the non-diversifiable sources of risk in actual portfolio analysis using
PCA. In particular notice that we face the a trade-off between the need for large
samples in order to identify all latent factors and model stability over extended
periods of time.

Using the results in Onatski (2005) and Paul (2005) we can also give the dis-
tribution of the first eigenvalue under the large N , large T asymptotic framework.

Proposition 2.2. If ε∼dN(0, σ2
ε IN) and if N/T−c = o(N−1/2) we have λ̂1∼dN(m, q),

where

m =
{
Nσ2

F

(
σ2

β + Kβ2
)

+ σ2
ε

}
{

1 +
1

T

σ2
ε

σ2
F

(
σ2

β + Kβ2
)
}

, (2.10)

q = 2
{
Nσ2

F

(
σ2

β + Kβ2
)

+ σ2
ε

}2

{
1− 1

NT

σ2
ε[

σ2
F

(
σ2

β + Kβ2
)]2

}
. (2.11)

¥ 2.2 Conclusion

In this chapter we have explained the reasons for the bias of APT models esti-
mated by PCA towards a single factor model. We have shown that unless the
period of time over which the portfolio is observed is extremely large, it is not
possible to identify all the factors of the economy. This is due to the finite sam-
ple bias of the estimated eigenvalues of the sample covariance matrix when the
number of periods over which the portfolio is observed is of similar orders of mag-
nitude to that of the number of securities in the portfolio. Using recent results in
random matrix theory we have characterized the limiting behavior of the sample
eigenvalues and the distribution of the largest eigenvalue.

This chapter challenges the use of PCA in its standard form as a tool for
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factor analysis in finite samples. The correct estimation of factors requires the
use of bias corrections in finite samples. Moreover, it seems that the need arises
to explore the finite sample properties of other factor estimation procedures other
than PCA if we are to identify the full set of factors which determine the asset
returns in a portfolio observed only for a finite period of time.
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CHAPTER 3

Structural Estimation of
High-Dimensional Factor Models

This chapter develops new techniques for the estimation of factor models in large
datasets where the number of observations grows with the time dimension. Factor
models relate observed data to a small set of unobserved variables which are then
estimated. These models underlie many important tools of modern economics
and finance, but no definitive econometric theory exists for the case of large panel
datasets commonly encountered today.

We relate the identification and estimation of factor models to the asymp-
totic behavior of estimated eigenvalues of large random matrices, providing a
connection between economics and the new mathematical field of Random Ma-
trix Theory. In this chapter we take a structural approach and show how the
estimation of factor models can be improved by incorporating the economic as-
sumptions of the model into the estimation procedure. In particular, we allow for
arbitrary parametric forms of heteroskedasticity and autocorrelation.

We show that the key to identifying the number of latent factors lies in cor-
rectly understanding the structure of the noise (idiosyncratic effects) in the data.
Once we can separate the estimated eigenvalues of a large factor model into those
due to the latent structure and those due to the noise, we can construct a pro-
cedure that will consistently estimate the number of factors. Furthermore, we
show that Principal Components Analysis (PCA) becomes unreliable for weak
factors and relate the second order unbiased estimation of the factor loadings to
recent advances in the estimation of models with instrumental variables when the
number of instruments is large.

In the next chapter we apply these econometric procedures to a structural
New Keynesian macro-finance model, we uncover a substantial number of global
factors which act as supply shocks to the US economy. We characterize the

23
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nature of these factors and show that they can be used to explain the inflationary
experience of the US over the past few decades. Moreover, we show that ignoring
the effect of global factors on the US economy masks the role of unemployment
in the Phillips curve and of the real interest rate in aggregate demand.

While factor models have been used for almost a century, standard econometric
methods were developed under the assumption that the time dimension grows
large while the cross-section dimension is small and bounded. In applications
where both the number of individuals and the number of time periods is large,
standard econometric theory fails and becomes an unreliable statistical guide to
data analysis. New econometric procedures for the estimation of high-dimensional
factor models are the subject of active research (Bai and Ng, 2002; Stock and
Watson, 2005; Onatski, 2006).

The application of econometric methods which take into account the special
nature of large panel datasets leads us to reconsider stylized facts which we have
taken for granted, such as the number of factors explaining most of the variation in
financial returns. Chapter 2 shows that in a large panel data setup, the estimated
eigenvalues corresponding to strong factors are severely upward biased in finite
samples. Since the ratio of the largest eigenvalue to the sum of all eigenvalues
has been traditionally used to measure the effect of the factors, there is a bias
towards accepting only a few (3-5) factors as explaining most of the data. In
fact, many other factors may exist in the data and contain potentially valuable
economic information.

The identification of the number of factors is central to the estimation of factor
models and in Section 3.1 we show that it is possible to separate the identification
of the number of factors from the estimation of the factor loadings and factor
scores, and estimate the number of factors consistently in large factor models.
In Section 3.2 we explain why PCA estimation is inconsistent for weak factors
and develop a number of instrumental variable approaches to the estimation of
factor loadings with excellent finite sample properties. The next chapter develops
a structural macroeconomic model and estimates global factors and their effect
on the US economy.

¥ 3.1 Determining the Number of Factors

We are interested in the following large (N, T ) panel data model with latent
factors:

Rt = ΛFt + Ut, (3.1)

for t = 1 . . . T . Rt is an N × 1 vector of observations, Ft is a p × 1 vector of
latent factors, Λ is an N × p matrix of coefficients (factor loadings) and Ut is an
N × 1 vector of idiosyncratic errors. In this model only Rt is observed while Λ, Ft

and Ut are unobserved for all t.
The aim of this model is to explain the variation in Rt with reference to a
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small dimensional set of latent factors Ft by decomposing the observed variation
into a common component ΛFt and an idiosyncratic component Ut. In order
to simplify the discussion we shall refer to the cross-sectional dimension N as
“individuals”, while we let the time-series dimension T denote “periods”. Note
that the coefficients Λ correspond to loadings or weights of the common factors
Ft for each individual.

This particular statistical model originates in the work of Spearman and
Hotelling and has been incorporated in many economic models of interest. The
traditional econometric approach to solving this model was derived under the
assumption that N is a fixed small number while T is large (Goldberger, 1972;
Robinson, 1974; Zellner, 1970). With the availability of large dimensional panel
data where both N and T are large, this model has received renewed attention
and is currently an active area of research (Amengual and Watson, 2006; Bai and
Ng, 2002; Onatski, 2006).

In finance the factor model of equation 3.1 corresponds to the Arbitrage Pric-
ing Theory (APT) of Ross (1976), which explains the returns Ri,t on i = 1 . . . N
assets observed over t = 1 . . . T time periods by reference to a small set of risk
factors Ft and asset specific shocks Ui,t. These multi-factor asset pricing mod-
els represent a major improvement over simpler single-factor CAPM models in
evaluating the risk-return trade-off. While observable proxies have been used for
the unobserved factors Ft in many applications, practitioners tend to agree that
statistical factors derived from the econometric estimation of the model tend to
outperform models evaluated by factor proxies (Miller, 2006).

More recently, the standard factor model above has been incorporated in more
complex hybrid models involving both observed and latent factors:

BYt + ΓZt + ΛFt + Ut = 0, (3.2)

where Yt corresponds to a set of N × 1 dimensional endogenous variable and
Zt is a set of N × 1 dimensional observed exogenous variables with coefficients B
and Gamma respectively.

In microeconomics, such a model was first used by Gorman (1980) to analyze
the characteristics of demand. In particular it is convenient to interpret the
term ΛFt + Ut as a multifactor error structure or interactive fixed effects (Bai,
2005; Pesaran, 2006). This model has recently received considerable attention in
labor economics in the study of the relationship between education and earnings
(Heckman and Navarro, 2006).

Factor models are also very popular in macroeconomics, where a forecasting
model that uses factors constructed from numerous macroeconomic time series
can substantially improve forecasting (Stock and Watson, 2006). The recent field
of macro-finance has also relied on the estimation of factors from bond yields in
order to improve the performance of small-scale structural macroeconomic models
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(Ang and Piazzesi, 2003). In the next chapter we introduce a new approach to
the structural estimation of New Keynesian models by employing a multifactor
error structure to identify global supply and demand shocks to the US economy
through the extraction of factors from international stock markets.

The primary focus of our chapter, however, is determining the number of fac-
tors and the estimation of the factor loadings in equation 3.1 for high-dimensional
models where both N and T are large. This is captured by the following assump-
tion:

Assumption 3.1 (Asymptotics): The number of individuals increases with
the sample size. Thus, N →∞ and T →∞ and N/T → c ∈ (0,∞).

This assumption is familiar to the literature on large N and T panel data
(Hahn and Kuersteiner, 2002). The constant c, representing the limiting ratio of
rows to columns in our panel, will play a very important role in the subsequent
discussion.

The traditional statistical approach of Anderson and Rubin (1956) for solving
factor models involves the assumption that the errors Ui,t are uncorrelated both
across individuals and across time. In many economics and finance applications,
this assumptions has proved to be too restrictive. In particular, Chamberlain
and Rothschild (1983) show that if we allow for weak heteroskedaticity and time
dependence of the error terms in the APT model, the mean returns are approxi-
mately linear in the factor loadings. Thus, the model remains correct under weak
departures from the strict factor structure in the large N and T limit.

A major contribution of this chapter is the development of an approach that
allows us to deal with the approximate factor model where both heteroskedasticity
and autocorrelations are possible. In order to do so, we need to describe the precise
nature of the weak heteroskedasticity and autocorrelations compatible with the
approximate factor model.

Let U = [U1, U2, ..., UT ] be the N × T matrix of errors in equation 3.1, with
elements Ui,j for i = 1 . . . N and t = 1 . . . T , and where each column t corresponds
to a realization of the errors at time t for the N individuals in the sample. Let
vec(U) be the NT×1 vector obtained by stacking the columns of U , i.e. vec(U) =
(U1U2...UT )′.

Assumption 3.2 (Cross-sectional and Time Dependence) There is an
N×N matrix ANand a T×T matrix BT such that E(vec(U)) = 0, Cov(vec(U)) =
AN ⊗BT and E((Ui,j)

4) < ∞ for all N, T and AN is unrelated to BT .
This assumption states that the errors U are mean zero and have finite fourth

order moments. The most important assumption lies in the (N, T ) separability
of the covariance matrix into an N ×N component AN and a T × T component
BT . The matrix AN captures the cross-sectional dependence between individuals,
while BT captures the form of time dependence. Note that this allows for very
general forms of cross-sectional and time dependence, such as full correlation
matrices. It does, however, limit the number of unknown parameters by assuming
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that the cross-sectional dependence and the time dependence are unrelated to each
other.

In particular, note that one familiar distribution satisfying Assumption 3.2 is
the matrix variate normal distribution (Arnold, 1981), where vec(U) Normal(N,T )(0, AN⊗
BT ), where the distribution function is given by:

f(U) = (2π)−
NT
2 det(AN)−T/2det(BT )−N/2 exp

{
tr[−1

2
U ′AN

−1UBT
−1]

}
. (3.3)

The framework of approximate factor structure derives identification by requir-
ing that the covariance matrix of the observations Rt has p unbounded eigenvalues
corresponding to the latent factors and N −p bounded eigenvalues corresponding
to the idiosyncratic noise component. In order to account for these additional
constraints, we first require some additional definitions. Consider the spectral
decomposition of an arbitrary symmetric n × n matrix Cn. Since the matrix Cn

is symmetric, we can find a matrix V with columns that are orthogonal to each
other such that An = V ′DV . The matrix D = diag{λ1, λ2, ..., λn} contains the
set of eigenvalues of the matrix Cn, while the columns of V are the eigenvectors
of Cn. We can now define the following proper cummulative distribution function
FCn(λ) on the spectrum λi ∈ {λ1, λ2, ..., λn} of Cn:

FCn(λ) =
1

n
{Number of Eigenvalues of Cn ≤ λ} =

1

n

∑

λi≤λ

1. (3.4)

Note that the spectrum does count multiplicities of eigenvalues.
Assumption 3.3 (Bounded Spectrum): Denote by FAN and FBT the eigen-

value distribution of the matrix AN and BT respectively. Then as N → ∞ and
T → ∞, FAN → FAand FBT → FB, the eigenvalue distributions converge
to nonrandom limiting distributions FA and FB. Moreover, let || Sp(AN)|| and
|| Sp(BT )|| denote the spectral norms of AN and BT . Assume that both spectral
norms are bounded in Nand T respectively.

This assumption is required in order to guarantee that the (scaled) eigenvalue
distribution of N−1UU ′ converges to a non-random distribution as N →∞, and
moreover that the spectrum of N−1UU ′ is also bounded (Silverstein and Bai, 1995;
Bai and Silverstein, 1998). If AN = IN and BT = IT then the limiting distribution
of N−1UU ′ converges to the limiting distribution of Marcenko and Pastur (1967)

with support bounded on [(1−√c)
2
, (1 +

√
c)

2
] as discussed in Chapter 2.

Assumption 3.2 and 3.3 rule out certain types of explosive behavior of the
error terms and require that the variances converge for each time series to a finite
value. Additionally, this assumption ensures that the moments of the empirical
eigenvalue distribution of N−1UU ′ converge almost surely since the limiting dis-
tribution has bounded support. These moments will play an essential role in our
procedure to estimate the number of factors.
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Notice that the assumptions on the idiosyncratic error terms imposed above al-
low for a large range of empirically relevant models. Many forms of heteroskedas-
ticity and autocorrelation are consistent with the assumptions on weak depen-
dence. While some stochastic processes in the time-series literature are naturally
excluded, such a unit roots, others such as structural breaks are allowed. In par-
ticular, notice that the assumptions above are consistent with structural breaks
in the variance occurring at some unknown change points. It seems that these
models have not been discussed so far in the literature on factor models, but they
are undoubtedly important in the context of factor models based on large N, T
panel data where we have the temptation to include data going back for many
years and thus potentially covering more than one variance regime. To illustrate
this point let us assume that we are interested in constructing a model using data
before and after a financial crisis such as the Asian crisis of the late 1990s, but we
are unsure as to the exact change point in the time series of the variances. If we
assume τ periods to have been in the variance regime σ1 and T − τ periods in the
variance regime σ2, a simple model constructed along the lines of Assumptions 2
and 3 would be AN = I and BT = [σ1⊗ Iτ ]⊕ [σ2⊗ IT−τ ], where ⊕ stands for the
direct sum of the two matrix spaces. Hence the spectrum of AN consists of λi = 1
for i = 1 . . . N , while the spectrum of BT consists of λi = σ1 for i = 1 . . . τ and
λi = σ2 for i = τ + 1 . . . T . These two spectra satisfy the boundedness condition
of Assumption 3.2 and are thus admissible. Moreover, τ does not have to be
determined a priori and can be a model parameter that is estimated at the same
time as the number of factors. This illustrates the flexibility of our approach in
the estimation of factor models by using the empirical eigenvalue distribution.

Assumption 3.4 (Pervasive factors): Assume that the factors Ft are inde-

pendent of Ut. Denote by µ0 = min{Sp( 1
T

T∑
t=1

ΛFtFt
′Λ′)}, the smallest eigenvalue

of the covariance of the factors weighted by the factor loadings. Then for all
N →∞, there is some M > 0 and M →∞ such that µ0 ≥ M .

Notice that this is consistent with both random and fixed factor loadings Λ.
This assumption requires that the latent factors impact at least a fraction of the
individuals, where the fraction increases with the sample size. Thus even factors
which are relatively weak will be revealed in large samples due to their effect on a
large number of individuals. The pervasive factors reflect the structural part of an
economic model. We can think of them as the systemic component of our model
to be distinguished from the idiosyncratic noise perturbations. In the context of
the application in the next chapter, we think of pervasive factors as global supply
and demand shocks which impact a large number of firms simultaneously. Note,
however, that pervasive factors are not the only kind of factors one might be
interested in. While not the subject of this chapter, we could adjust the current
methodology to estimate small scale factors that are related to a small number of
firms but where the number of firms affected by them does not increase with the
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sample size. For example, several firms might rely on the same supply network
and thus have correlated fluctuations. In certain circumstances, we might be able
to distinguish these factors from the background idiosyncratic noise. These small
scale factors are, however, excluded by Assumption 3.4 since for them µ0 → 0 as
N →∞.

Small scale factors might be particularly interesting if we wish to detect un-
usual correlations in large samples and correspond to multicollinearities in the
data, a topic that has received some attention in the statistics literature. As-
sumption 3.4, however, corresponds to the current economic practice and mirrors
the assumptions in Chamberlain and Rothschild (1983).

¥ 3.1.1 Factor Identification Strategy

The classical statistics literature on factor models recognizes that we can write
the covariance matrix of the observations as:

ΣN =
1

T

T∑
t=1

RtRt
′ =

1

T

T∑
t=1

ΛFtFt
′Λ′ +

1

T

T∑
t=1

UtUt
′ = ΞN + ΩN , (3.5)

where rank(ΞN) = p and N → ∞. Thus, the covariance matrix of the obser-
vations can be thought of as a finite (p) rank perturbation ΞN of the idiosyncratic
noice covariance ΩN . If we were to observe the population equivalents of our ma-
trices ΞN and ΩN , which we denote by Ξ0 and Ω0, under the assumptions of our
factor model, we would observe an infinite number of small bounded eigenvalues
for Ω0 and a small number of infinite eigenvalues for Ξ0. In finite samples, how-
ever, it has been noted that even for the simplest case of the strict factor model
with AN = IN and BT = IT both the eigenvalues of ΞN and the eigenvalues of
ΩN increase with N (Brown, 1989). Until very recently this has prompted econo-
mists and statisticians to believe that factor identification based on the empirical
distribution of eigenvalues is impossible (Bai and Ng, 2002). In this chaper we
show how factor identification based on the empirical eigenvalue distribution is
in fact possible and provides a very powerful new approach to factor analysis in
a large class of models.

In order to identify the number of factors we rely on recent advances in the
field of random matrix theory which provides mathematical tools that enable us
to characterize the empirical eigenvalue distribution for many symmetric matrices
(Edelman and Rao, 2005). Our approach is structural in that it relies on explicit
assumptions about the form of cross-sectional and time dependence. In particular,
Assumption 3.2 states that the covariance of the idiosyncratic terms is separable
between a cross-sectional correlation matrix AN and a time dependence matrix
BT . For many cases of interest it is sufficient to impose a specific structural form
on these two matrices and parameterize these matrices as AN(θA) and BT (θB),
where θ = (θA, θB) is a low dimensional vector of unknown structural covariance



30 CHAPTER 3. STRUCTURAL ESTIMATION OF HIGH-DIMENSIONAL FACTOR MODELS

parameters. For example, the model with two variance regimes discussed above
depends on θ = (σ1, σ2, τ), where σ1 and σ2 are the two variances and τ/T is the
probability of being in the first regime. Our procedure estimates the unknown pa-
rameter vector θ at the same time as the number of factors p. The main question
in identifying the finite rank p perturbation due to the pervasive factors is how
does the empirical eigenvalue distribution of ΩN depend on (AN , BT )? While in
general we cannot analytically characterize the empirical distribution of ΩN , in
Section 3.1.2 we show that we can compute the moments of the empirical eigen-
value distribution of ΩN in terms of AN and BT , which gives rise to a minimum
distance estimation procedure and a downward testing procedure of the moment
conditions that correctly identifies the number of factors.

In order to simplify mathematical notation we restrict our attention to the case
where BT = IT and discuss the remaining cases in Section 3.1.4. Furthermore,
notice that without loss of generality, we let 0 < c ≤ 1, since the non-zero
eigenvalues of CC ′, for some N × T dimensional matrix C are the same as the
eigenvalues of C ′C. The remaining T −N eigenvalues of C ′C are all zero.

Define the Cauchy Transform of an eigenvalue distribution function FC for
some matrix C as:

GC(w) =
1

N
limN→∞E

{
tr[

1

wIN − C
]

}
=

∫
1

w − λ
FC(λ) (3.6)

for w ∈ C+ with Im(w) > 0. This analytic function plays an important role in
many random matrix theory results where it serves as an analogue to the Fourier
transform in traditional probability theory. In particular, it allows us to recover
the eigenvalue probability density function from the Stieltjes-Perron Inversion:

dFC(λ)

dλ
= − 1

π
limξ→0Im[GC(w + iξ)]. (3.7)

First consider the limit distribution of the eigenvalues of the noise covariance
matrix ΩN .

Proposition 3.1: As N →∞, T →∞, N/T → c, AN → A and FAN → FA,
the empirical eigenvalue distribution FΩN (λ) converges to a non-random asymp-
totic distribution function FΩ(λ; FA, c) with bounded support.

Proof: See Silverstein (1995), Rao and Edelman (2006).
Notice that the asymptotic distribution depends on c and also on the asymp-

totic eigenvalue distributions of the matrices A (and B in the more general case)
corresponding to the population values of the cross-sectional and time-series cor-
relations. The resulting asymptotic distribution function can be derived implicitly
for certain types of matrices A in terms of its Cauchy transformation, but requires
numerical methods to evaluate (Rao and Edelman, 2006). Therefore, we focus
our attention on a set of linear spectral statistics corresponding to the moments
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of the eigenvalue distribution, which have more convenient properties. For an
arbitrary covariance matrix C we define

mC(λ) =

∫
g(λ)dFC(λ) =

1

N

N∑
j=1

f(λj), (3.8)

where λj ∈ Sp(C). We are especially interested in the monomials, g(λ) ∈
{λ, λ2, ..., λs} and denote the corresponding moments by {m1

C , m2
C , ..., m3

C}. No-
tice that these monomials define the raw moments of the eigenvalue distribution
FC .

If C is some empirical covariance matrix CN , then

ms
CN

(λ) = N−1 tr[(CN)s]. (3.9)

Moreover, standard results on bounded moment convergence and continuous
mapping (e.g. Billingsley, 1995) imply that if CN → C and FCN → FC , a proper
probability distribution with bounded support, then:

limN→∞ms
CN

(λ) = ms
C(λ) =

∫
λsdFC(λ) < ∞. (3.10)

In particular note that for the covariance model introduced in Assumption 3.2,
the moments of the eigenvalue distribution of the error term in our factor model
exist and are finite as a consequence of Proposition 3.1. The challenge consists
of being able to compute the limiting moments of the eigenvalue distribution.
Below we introduce a procedure based on free probability theory that relates the
moments of the limiting eigenvalue distribution to the moments of the eigenvalue
distribution of the cross-sectional and time-series correlation matrices.

Moreover, it can be shown that the moments of the eigenvalue distribution
of a random covariance matrix CN satisfy a Central Limit Theorem (Bai and
Silverstein, 2004):

Proposition 3.2 (CLT): Let g(w) = −(1− c)/w + cGC(w). Then

N−1




m1
CN

− m1
C(λ)

...
ms

CN
− ms

C(λ)


 ∼ N(∆, V ), (3.11)

where for j = 1 . . . s and k = 1 . . . s

∆j = − 1

2πi

∫
wj c

∫
g(w)3v2(1 + vg(w))

−3
dFA

(
1− c

∫
g(w)2v2(1 + vg(w))−2FA

)2dw (3.12)
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Vjk = − 1

2π2

∫ ∫
wj

1w
k
2

(g(w1)− g(w2))
2

dg(w1)

dw1

dg(w2)

dw2

dw1dw2, (3.13)

where the contours are assumed to be non-overlapping, closed, taken in the
positive direction in the complex plane, each enclosing the support of FC .

In general however it is not possible to compute these integrals over the com-
plex plane analytically. For A = IN the answer is known and was derived by
Jonsson (1982) using a combinatoric proof. In this case the expressions above
reduce to:

∆j =
1

4

((
1−√c

)2j
+

(
1 +

√
c
)2j

)
− 1

2

j∑
r=0

(
j

r

)2

cr (3.14)

(V )j,k = 2cj+k

j−1∑
r1=0

k∑
r2=0

(
j

r1

)(
k

r2

)(
1− c

c

)j+k j−k∑

l=1

l

(
2j − 1− (r1 + l)

j − 1

)(
2k − 1− (r2 + l)

k − 1

)

(3.15)
Recall that our strategy for identifying the number of latent factors involves

performing an eigenvalue decomposition of the covariance matrix between the ob-
served time series, ΣN . Moreover, we have assumed that the covariance matrix
between the unobserved error terms is ΩN , where the error terms where drawn
from a matrix variate distribution with separable cross-sectional and time se-
ries correlation (Assumption 3.2). Note that by Proposition 3.1, the empirical
eigenvalue distribution of ΩN converges to some non-random proper distribution
function FΩ(λ; θ, c) as N → ∞, T → ∞ and N/T → c where θ is the unknown
vector of covariance parameters.

Let us assume for the moment that our data does not contain unobserved
latent factors, that is ΞN = 0. In this case, Proposition 3.2 suggests a minimum
distance procedure for estimating the vector of unknown covariance parameters θ
using the moments of the empirical eigenvalue distribution. Let

ˆΠ(ΩN) =
[
N−1 tr(Ω1

N), N−1 tr(Ω2
N), ..., N−1 tr(Ωs

N)
]′
, (3.16)

be the vector of the first s moments of the empirical eigenvalue distribution
of ΩN and denote by

Π(θ) =
[
m1

Ω(θ, c),m2
Ω(θ, c), ..., ms

Ω(θ, c)
]′
, (3.17)

the corresponding vector of limiting moments as N →∞, T →∞ and N/T →
c. In Section 3.1.2 we show how to derive expressions for these limiting moments
analytically. In order to estimate the vector of unknown parameters, we could
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apply the following minimum distance procedure:

θ̂ = argminθ

(
Π(θ)− ˆΠ(ΩN)

)′
V̂ −1(Π(θ)− ˆΠ(ΩN)), (3.18)

where (V̂ )j,k is a consistent estimate of equation 3.13.
Our focus however, is on estimating the rank of the matrix ΞN when rank(ΞN >

0) subject to the constraint that we only observe ΣN = ΞN + ΩN . This implies
that we have to use the spectral decomposition of the covariance matrix ΣN to
estimate both the rank of ΞN and any additional covariance parameters θ that
ΩN depends on.

By the assumptions of our factor model, rank(ΞN) = p ¿ N . Moreover, we
know that the p eigenvalues capturing the effect of the latent factors Ft diverge
to infinity as N → ∞ while the N eigenvalues corresponding to the noise term
Ut remain bounded. In large enough samples, this produces a separation of the
spectrum of ΣN into two parts, a first part with mass (N − p)/N located to the
left but bounded by zero from below and a second part with mass p/N to the right
which diverges as N →∞ (Bai and Silverstein, 1998, 2004; Baik and Silverstein,
2006; Dozier and Silverstein, 2004). In particular note that the p eigenvalues do
not “pull” the remaining N−p eigenvalues to the right. Identifying the number of
latent factors thus requires us to estimate the number of eigenvalues to the right
of this spectral gap which separates the eigenvalues due to the noise term Ut from
those due to the latent factors. In finite samples however this gap is not evident
due to the presence of weak factors for which the corresponding eigenvalues are
close to the upper bound of the distribution of eigenvalues due to the idiosyncratic
terms. Thus, we require statistical techniques in order to separate the eigenvalues
due to the factors from those due to the noise.

If we were to compare the asymptotic moment expressions of equation 3.17
for Π(θ), with the empirical moments of the empirical eigenvalue distribution of
the observed covariance matrix ΣN ,

Π(ΣN) =
[
N−1 tr(Σ1

N), N−1 tr(Σ2
N), ..., N−1 tr(Σs

N)
]′
, (3.19)

we would find a poor match. The asymptotic moment expressions are correct
for the unobserved covariance matrix ΩN but not for the observed covariance ma-
trix ΣN = ΞN + ΩN . We can exploit this inconsistency in the moment conditions
of the eigenvalue distribution which occurs in the presence of latent factors to
specify a downward testing moment selection procedure (Andrews, 1999).

Let Sp(ΣN) denote the spectrum of the covariance matrix of the observations,
ΣN , where we have ordered the eigenvalues in decreasing order. That is, Sp(ΣN) =
{λ1, λ2, ..., λN}, with λ1 being the largest eigenvalue and including multiplicities.
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Note that expression 3.19 can be re-written as:

Π(ΣN) =


N−1

∑

λj∈Sp(ΣN )

λ1
j , N

−1
∑

λj∈Sp(ΣN )

λ2
j , ..., N

−1
∑

λj∈Sp(ΣN )

λs
j



′

. (3.20)

Now let Spp(ΣN) be the truncated spectrum where we have removed the first p
largest eigenvalues, Spp(ΣN) = Sp(ΣN)\{λ1, λ2, ..., λp}. Let Πp(ΣN) be the vector
of the first s empirical moment conditions evaluated using the truncated spectrum
Spp(ΣN),

Πp(ΣN) =


N−1

∑

λj∈Spp(ΣN )

λ1
j , N

−1
∑

λj∈Spp(ΣN )

λ2
j , ..., N

−1
∑

λj∈Spp(ΣN )

λs
j



′

. (3.21)

Notice that if p is the true number of latent factors then the moment conditions
Πp(ΣN) will match with the asymptotic moments for the covariance of error terms
Π(θ) from expression 3.20 above. By evaluating the moment conditions on the
truncated spectrum, we have removed the effect of the latent factors and we expect
the distance between (Πp(ΣN)−Π(θ)) to be small if the correct number of factors
p has been identified and large otherwise. This suggests a testing procedure based
on the minimized objective function, commonly referred to as the J-test (Hansen,
1982). The number of unobserved factors, p̂ is estimated by:

p̂ = argminp=0,1,2,...Ĵ(θ̂; Spp(ΣN)), (3.22)

where the vector of unknown covariance parameters is estimated using the
moment conditions computed from the truncated spectrum Spp(ΣN). The proce-
dure is applied recursively by truncating the spectrum of the observed covariance
matrix ΣN from the right and re-estimating the vector of parameters θ until the
corresponding J-test is minimized. In Section 3.1.3 we show that the J-test is
minimized after the spectrum of the observed covariance matrix ΣN has been
truncated by the true number of factors, thereby estimating p̂ consistently.

Notice that the the true number of factors is only revealed asymptotically as
N →∞. Identifying the true number of pervasive factors requires the sample to
be large enough such that the spectrum separates between a set of N−p eigenval-
ues corresponding to the error terms Ut and a set of p eigenvalues corresponding
to the factors Ft. Unfortunately, in small samples the eigenvalues corresponding
to the p factors may not always separate and exhibit a phase transition phenom-
enon where eigenvalues corresponding to weak factors do not detach from the
spectrum of the error terms and converge in probability to the upper bound of
the spectrum of ΩN rather than to their true asymptotic limits which diverge with
N . Chapter 2 shows how this leads to a single factor bias in estimated arbitrage
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pricing models commonly used in finance. Note that this is not a feature of the
estimation procedure but rather of the data; in small samples, some weak fac-
tors are obfuscated by the error terms and cannot be identified. Our procedure,
however, does guarantee that if a factor is strong enough to overcome the phase
transition phenomenon and emerge from the shadow of the error terms, it will
be picked up by our algorithm and will be correctly identified as a latent factor.
This allows us to estimate all the weak factors which can be identified from the
data in addition to the strong factors which have traditionally been estimated.

The identification procedure described above can be applied to a broader set of
latent structures than linear factor models. Harding (2006) extends this procedure
to identify latent structures in large networks by exploiting a similar eigenvalue
separation process that occurs for the spectrum of the adjacency matrix of a large
random graph with random and structural components.

¥ 3.1.2 Free Probability Derivation of Moments

In order to implement the identification strategy outlined above, we need to com-
pute the limiting moments of the eigenvalue distribution of the covariance of the
error terms Ut as a function of the covariance model parameters θ,

ms
Ω = limN→∞ (1/N) E {tr(Ωs

N)} . (3.23)

Ignoring time series correlations for the moment, one of the implications of
Assumption 3.2 is that we can write ΩN = (1/T )UU ′ = (1/T )A

1/2
N εε′A1/2

N , where

U = A
1/2
N ε and (ε)i,j is iid mean zero with finite fourth order moments. Moreover,

we assume that AN and ε are independent. Denote the covariance of the iid terms
(ε)i,j by ΨN = (1/T )εε′ and notice that:

ms
Ω = limN→∞ (1/N) E

{
tr(

[
(1/T ) A

1/2
N εε′A1/2

N

]s

)
}

= limN→∞ (1/N) E {tr((1/T ) [ANΨN ]s)} .
(3.24)

The focus of this section is to introduce a procedure to analytically derive the
large N limiting eigenvalue distribution moments ms

Ω based on our knowledge
of the limiting eigenvalue distribution of AN and ΨN . Note, however, that even
though by assumption AN and ΨN have limiting eigenvalue distributions with
bounded support and AN is independent of ΨN this is not sufficient to guarantee
that the eigenvalue distribution of (ANΨN)s will depend only on the underlying
limiting distributions. The free probability approach developed below will provide
additional conditions under which it is possible to relate the moments of the
limiting eigenvalue distribution of mixed moments of products of random matrices
to the limiting moments of the eigenvalues of their constituent matrices.

The computation of expressions such as those of the moments ms
Ω can be
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prohibitive analytically if we start from the individual elements of the random
matrix due to the combinatoric complexity of the resulting traces of powers of
mixed products between matrices. Instead we prefer to think of the whole random
matrix as a random variable on a non-commutative probability space defined
below.

Consider a probability space Θ and the Hilbert space L∞(Θ) of bounded
measurable functions h defined on Θ, corresponding to the random variables on
Θ. The functions h are allowed to be complex valued but for the purpose of
estimating a factor model we can restrict our attention to real random variables
on Θ. Furthermore, there exists a probability law P on h which measures the
probability that the value of h lies in a certain sub-interval in the (real or complex)
image of h. The space of bounded linear functionals φ on the Hilbert space L∞(Θ)
given by φ(h) =

∫
Θ

hdP defines a von Neumann algebra, A, on Θ.
Definition 3.1: A non-commutative probability space is a pair (A, φ), where

A is an algebra endowed with a unit (1) and φ a linear functional on A such that
φ(1) = 1.

Note that classical probability spaces also satisfy the above definition but
that we are interested in relaxing the commutativeness assumption imposed by
classical probability on scalar random variables. Furthermore, it is convenient to
also assume that A is a von Neumann algebra as discussed above.

For the non-commutative probability space (A, φ) and a random variable X ∈
A, we can define the s-th moment of X as ms

X = φ(Xs). Computing expectations
over random variables in classical probability is often simplified when we can
assume independence between the random variables. We now extend the notion
of independence in classical probability by employing the concept of freeness from
operator algebras (Voiculescu, 1985; Speicher, 2005).

Definition 3.2 (Freeness): Let (A, φ) be the non-commutative probability
space of Definition 3.1 and {A1,A2, ...,AJ} ⊂ A subalgebras of A with the a unit
(1). Then the algebras A1,A2, ...,AJ are free with respect to φ if

φ(a1a2...aK) = 0 (3.25)

if a1 ∈ Aj(1), a2 ∈ Aj(2), ... , aK ∈ Aj(K), where j(k) is an index function on
the set {1, 2, ..., J} and j(k) 6= j(k + 1) for all k = 1..(K − 1), and φ(ak) = 0 for
all k = 1 . . . K.

By extension, the random variables X1, X2, ..., XK ∈ A are freely independent
if the subalgebras generated by them are free with respect to φ. Thus, the oper-
ator concept of freeness is a particular generalization of the classical probability
concept of independence, where freeness with respect to φ corresponds to inde-
pendence of σ-algebras, and free independence of random variables corresponds
to the classical notion of independence of random variables. Note, however, that
this particular extension of independence to non-commutative probability spaces
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is but one of the possible non-commutative extensions with convenient properties
for the analysis of covariance matrices.

Freeness is a convenient property of random variables since it amounts to an
iterative procedure for computing mixed moments of products of random variables
from the moments of the constituent random variables. Notice that we can re-
write equation 3.25 for the case when φ(ak) 6= 0 by subtracting the individual
means:

φ((a1 − φ(a1)1) (a2 − φ(a2)1) ... (ak − φ(ak)1)) = 0. (3.26)

Our primary focus is on the computation of mixed moments ms
ab = φ((ab)s).

If a and b are free then,

φ((a− φ(a)1) (b− φ(b)1)) = 0, (3.27)

and expanding,

φ(ab− φ(a)b− aφ(b) + φ(a)φ(b)) = 0, (3.28)

φ(ab)− φ(a)φ(b)− φ(a)φ(b) + φ(a)φ(b)) = 0, (3.29)

m1
ab = φ(ab) = φ(a)φ(b). (3.30)

Notice that this expression is the same as the one we would obtain if a and b
were independent random variables in a classical probability space. Now consider,
m2

ab = φ((ab)2). Since a and b are non-commutative, ms
ab = φ(abab), we start by

expanding the expression:

φ((a− φ(a)1) (b− φ(b)1) (a− φ(a)1) (b− φ(b)1)) = 0. (3.31)

In the Appendix we show that this leads to the following expression for the
mixed second moment in a and b:

φ(abab) = φ2(a)φ(bb) + φ2(b)φ(aa)− φ2(a)φ2(b). (3.32)

This expression however does not reduce to the same expression one would
obtain if a and b were independent commutative random variables in a classical
probability space, since

φ(abab) 6= φ(a2b2) = φ(a2)φ(b2). (3.33)

The definition of free independence can thus be applied recursively to obtain
the mixed higher order moments of ab and other similar products.

Consider the space of N×N real matrices MN(R) and X a random matrix on
this space whose elements (X)i,j are random variables on a classical probability
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space (Θ, P). Define the algebra of functions

AN =
⋂

1≤s<∞
Ls(X,MN) (3.34)

for the s-integrable random matrices of dimension N×N for 1 ≤ s < ∞. Note
that this implies that all elements (X)i,j have finite moments since (X)i,j ∈ AN .
Furthermore, let φN : A → R be an operator defined as:

φN(Y ) =
1

N
EX tr(Y ) =

1

N

N∑
j=1

E(Yj,j) =
1

N

∫

X

tr(Y )dP. (3.35)

Corollary 3.1: (AN , φN)is a non-commutative probability space.
This result follows immediately as a particular instance of Definition 3.1. It

implies that we can think of random matrices both in terms of the usual commu-
tative probability spaces on which each element of the matrix is defined but also
in terms of the whole matrix as a random variable defined on a non-commutative
probability space. In particular given the connection between the trace and the
eigenvalues of the matrix, it turns out to be more convenient to think of the co-
variance matrices in our factor model in terms of the non-commutative probability
space.

Recall that our interest in using non-commutative probability is mainly due
to the necessity of computing moments of the type φN [(ANΨN)s]. In order to
employ the moment expansion procedure above, we would first need to show that
(AN , ΨN) are freely independent. In general, however, two arbitrary matrices are
not freely independent since their eigenspaces may satisfy a particular relationship
to each other, even if the elements of the matrices are independent.

One of the main insights of random matrix theory is that certain matrices
become freely independent asymptotically as N → ∞ (Voiculescu, 1998). Note
that asymptotic freeness for large random matrices Y requires both the conver-
gence of the probability law P as N → ∞ and Definition 3.2 to be satisfied for
φN(Y ) = limN→∞ 1

N
EX tr(Y ). The convergence of the probability law implies the

convergence of all moments of the eigenvalue distribution in the large N limit.
Consider the set of matrices S distributed uniformly on the Stiefel manifold

(Anderson, 2003, Definition 4.5.1).
Definition 3.3: Let SN be an N × N matrix satisfying S ′NSN = IN and

SNHN
d
= SN for all orthogonal matrices HN . Then SN is uniformly distributed on

the group of square orthogonal matrices O(N).
Let µ be the probability measure on the random matrices SN in Definition 3.3.

Then µ is the unique probability measure on O(N) such that for some D ⊂ O(N),
µ(ΓD) = µ(DΓ) = µ(D) for al Γ ∈ O(N). The distribution µ is referred to as
the Haar (invariant) distribution on O(N).
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Proposition 3.3: Let SN be an N ×N matrix with the Haar distribution and
XNand YN two sequences of random N×Nsymmetric matrices such that their em-
pirical eigenvalue distributions converge to proper non-random distributions with
bounded support. If SN is independent of XNand YN then XN and SNYNS ′N are
asymptotically free as N →∞.

Proof: See Speicher (2005).
Note that by the spectral decomposition of the the matrix YN , the effect of

the Haar distributed random matrix SN is to introduce a random rotation in
the eigenvectors of YN . Asymptotic freeness requires us to identify matrices that
are rotationally invariant and thus preserve the information on the eigenvalue
distribution independently of the eigenvectors which are now randomly rotated.
Hence we are particularly interested in matrices YN which are unitarily invariant,
that is the spectrum of YN and that of SNYNS ′N is the same for SN on the
orthogonal group. More formally, we can use the following lemma (Anderson,
2003, Lemma 13.3.2) for normalized matrices.

Lemma 3.1: Let CNbe an arbitrary matrix of order Nand define the following
normalization:

J(CN) = diag
{

(CN)1,1

/
|(CN)1,1|, (CN)2,2

/
|(CN)2,2|, ..., (CN)N,N

/
|(CN)N,N |

}
.

(3.36)
If the orthogonal matrix SNof order Nhas a distribution such that (SN)i,1 ≥

0 and if S∗N = J(SNHN)SNHN has the same distribution for every orthogonal
matrix HN , then SN has the conditional Haar invariant distribution.

Proof: See Anderson (2003, pp. 542).
The conditional Haar invariant distribution is the conditional distribution of

a normalized orthogonal matrix SN with the Haar distribution, where we let the
(SN)i,1 ≥ 0. It is equal to 2N times the Haar distribution.

If YN is a covariance matrix, unitary invariance requires that the normal-
ized eigenvectors WN from the spectral decomposition of YN = WNDNW ′

N be
distributed conditionally Haar and independent of DN , the diagonal matrix of
eigenvalues. This ensures that further rotations by Haar distributed orthogo-
nal matrices SN do not change the eigenvalue distribution. Covariance matrices
satisfying this requirement include those derived from matrices with iid Normal
elements, YN = (1/T )εε′, where (ε)i,j are distributed iid N(0,1). This is captured
by the following result:

Proposition 3.4: Let WN = (w1, w2, ..., wN)′ be the matrix of normalized
eigenvectors of a covariance matrix YN , where (w)1,i ≥ 0 and where YN is dis-
tributed according to a Wishart distribution with mean IN , then WN has the con-
ditional Haar invariant distribution and WN is distributed independently of the
eigenvalues of YN .

Proof: See Anderson (2003, Theorem 13.3.3).
Returning to the moment expressions 2.23 and 2.24, we see that ANand ΨN
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are asymptotically free if ΨN is unitarily invariant. An important special case is
given by Proposition 3.4 where ΨN is drawn from a standard Wishart distribution,
that is ΨN = (1/T )εε′, where (ε)i,j are distributed iid N(0,1) . This implies that
we can apply Definition 3.2 and compute mixed moments of (ANΨN)s using the
recursive procedure outlined above. Since the sequence of matrices AN is given
by our parametric model (or estimated by some alternative procedure), it has
known moments ms

AN
for all N as N → ∞. The moments of ΨN are known to

converge to the moments of the Marcenko-Pastur distribution under a general set
of assumptions.

Proposition 3.5: Let ε be an N ×T random matrix with elements which are
iid with mean 0, variance 1 and finite fourth order moments. Then as N → ∞,
T →∞and N/T → c, the empirical eigenvalue distribution of ΨN = (1/T )εε′ con-
verges almost surely to the non-random Marcenko-Pastur distribution whose mo-
ments are given by:

ms
Ψ = limN→∞

1

N
Etr

{
[(1/T ) εε′]s

]
=

s∑
r=1

1

s

(
s

r

)(
s

r − 1

)
cs−1. (3.37)

Proof: Jonsson (1982). Note that the moments of ΨN = (1/T )εε′ are given by
the Narayana polynomials in c = N/T . The first few moments are:

m1
Ψ = 1 (3.38)

m2
Ψ = 1 + c (3.39)

m3
Ψ = 1 + 3c + c2 (3.40)

m4
Ψ = 1 + 6c + 6c2 + c3 (3.41)

m5
Ψ = 1 + 10c + 20c2 + 10c3 + c4 (3.42)

m6
Ψ = 1 + 15c + 50c2 + 50c3 + 15c4 + c5. (3.43)

We can now use the moments given by equation 3.37 and the expressions in
equation 3.30 and 3.32 to compute the mixed moments of ANΨN in the large N
limit using the property of free independence between AN and ΨN . From equation
2.30 we know that m1(AΨ) = m1

Am1
Ψ. But since m1

Ψ = 1, we have

m1(AΨ) = m1
A. (3.44)
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Similarly by equation 3.32 we know that

m2(AΨ) =
(
m1

A

)2
m2

Ψ +
(
m1

Ψ

)2
m2

A −
(
m1

A

)2(
m1

Ψ

)2
. (3.45)

Substituting m2
Ψ = 1 + c and m1

Ψ = 1 in the expression above we obtain:

m2(AΨ) =
(
m1

A

)2
(1 + c) + m2

A −
(
m1

A

)2
(3.46)

m2(AΨ) = m2
A + c(m1

A)
2
. (3.47)

We can continue this process to obtain:

m3(AΨ) = m3
A + 3cm1

Am2
A + c2(m1

A)
3

(3.48)

m4(AΨ) = m4
A + 2c

((
m2

A

)2
+ 2m1

Am3
A

)
+ 6c2(m1

A)
2
m2

A + c3(
(
m1

A

)4
). (3.49)

Thus, we have shown how to compute the moments of the eigenvalue distribu-
tion of the covariance of the error terms Ut, ΩN = (1/T )UU ′ = (1/T )A

1/2
N εε′A1/2

N

in terms of the moments of the eigenvalue distribution of AN in the large N
limit. Since these moments will be functions of the unknown parameters θ, the
expressions derived above will also be functions of θ once we substitute a precise
covariance model for AN . To illustrate, consider the model with AN = σIN . We
have only one unknown parameter, the variance scale coefficient σ, θ = {σ}. Sub-
stituting the moments of A in equations 3.44, 3.47, 3.48 and 3.49, we obtain the
first four spectral moments of the white noise covariance matrix to be:

m1
Ω = σ (3.50)

m2
Ω = (1 + c) σ2 (3.51)

m3
Ω =

(
c2 + 3c + 1

)
σ3 (3.52)

m4
Ω = (1 + c)

(
c2 + 5c + 1

)
σ4. (3.53)

The free probability framework introduced above allows us to compute the
moments of the empirical eigenvalue distribution of the noise covariance matrix
in terms of the population covariance matrix assumed by our factor model by a
number of algebraic operations on free moments. While these computations are
relatively straightforward and only involve basic algebra, higher order moments
may involve a substantial number of terms and thus it may be more convenient
to use a mathematical software package such as Maple or Mathematica to derive
the moment expressions (Rao and Edelman, 2006).

It is also possible to derive the moment expressions using the Cauchy transform
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defined in equation 3.6. In the Appendix we show that the moment expressions
derived above are also more generally given by the following implicit relationship:

Proposition 3.6: Let ms
Ω be the limiting moments of the empirical noise

covariance Ω and ms
A be the limiting moments of the correlation matrix A. Then

for w ∈ C+with Im(w) > 0 we have that

∞∑
s=1

ms
Ω

ws
=

∞∑
s=1

ms
A

ws

(
1 + c

∞∑
r=1

mr
Ω

wr

)s

. (3.54)

The relationship between the first four moments is given by:

m1
Ω = m1

A (3.55)

m2
Ω = m2

A + c(m1
A)

2
(3.56)

m3
Ω = m3

A + 3cm1
Am2

A + c2(m1
A)

3
(3.57)

m4
Ω = m4

A + 2c
((

m2
A

)2
+ 2m1

Am3
A

)
+ 6c2(m1

A)
2
m2

A + c3(
(
m1

A

)4
). (3.58)

Proof: See Appendix. In order to derive the expressions for the moments in
equations 3.44, 3.47, 3.48 and 3.49 we can expand this expression in 1/w and
match the coefficients on 1/(ws).

In the next section we revisit our estimator for the number of factors based on
the identification strategy outlined in Section 3.1.1 and the procedure for deriving
the limiting moments of the eigenvalue distribution as described in this section
and analyze its statistical properties.

¥ 3.1.3 Implementation and Finite Sample Performance

Recall the basic model setup of our factor model, Rt = ΛFt + Ut, for t = 1 . . . T
where Rt is an N × 1 vector of observations, Ft is a p × 1 vector of latent fac-
tors, Λ is an N × p matrix of coefficients (factor loadings) and Ut is an N × 1
vector of idiosyncratic errors. The identification strategy outlined above implies
a computational procedure that leads to the consistent estimation of the number
of factors p in the factor model with N → ∞, T → ∞ and N/T → c. The ad-
vantage of this procedure consists is that it does not require the estimation of the
unknown factor loadings Λ and factor scores Ft first and is therefore unaffected
by complications resulting from the estimation of weak factor scores, which will
be discussed in Section 3.2.

We can now summarize the steps required for the implementation of our es-
timator for the number of factors. For simplicity we continue to assume that
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BT = IT . This assumption will be relaxed in the next section.
First, we choose a parametric model for the idiosyncratic error terms Ut in

terms of the population covariance matrix AN(θ), where the correlations are de-
scribed in terms of the low dimensional parameter vector θ. Second, we compute
the moments of the eigenvalue distribution of AN(θ) for large N , {m1

A,m2
A,m3

A, ...}.
Third, we apply the free probability result of Proposition 3.6 to compute the mo-
ments of the asymptotic eigenvalue distribution of the covariance matrix Ω of
Ut for a large (N, T ) sample drawn from a distribution with covariance matrix
AN . We label these moments as Π(θ) = [m1

Ω,m2
Ω,m3

Ω, ...]
′
. Fourth, we use a

minimum distance approach to estimate the unknown covariance parameters θ
by minimizing a weighted distance between Π(θ) and its sample equivalent
Π(ΣN) = [N−1 tr(Σ1

N), N−1 tr(Σ2
N), ...] applied to the covariance matrix of obser-

vations Rt denoted by ΣN . Fifth, we remove the largest eigenvalue of the spectrum
of ΣN and re-estimate the parameters θ using the minimum distance procedure.
We repeat step 5 by progressively removing large eigenvalues until an (arbitrary)
upper bound on the number of factors has been reached. Sixth, we compare the
minimized objective functions, Ĵ(θ̂) obtained by removing large eigenvalues and
choose the one which is smallest within the set of minimized objective functions.
The number of eigenvalues which had been removed for the computation of that
objective function is our consistent estimate of the number of factors.

Proposition 3.7: Let ΣN be the covariance matrix of observations Rtin a
large N, T factor model with N → ∞, T → ∞ and N/T → c. Let Spp(ΣN) be
the spectrum of the matrix ΣN where we removed the largest p eigenvalues and
Ĵ(θ̂; Spp(ΣN)) the (scaled) minimized objective function of the minimum distance
procedure for the estimation of θ outlined above. Then, for

p̂ = argminp=0,1,2,...Ĵ(θ̂; Spp(ΣN)), (3.59)

is a consistent estimate of the number of factors p0 of the factor model Rt =
ΛFt + Ut.

Proof: See Appendix.
In order to implement the estimation procedure described above we compute

the minimum distance estimates of θ using the Nelder-Mead algorithm available in
most common software packages such as Matlab or Gauss. The optimal weighting
matrix for the moment conditions Π is difficult to compute analytically for the
approximate factor model with arbitrary AN . By Proposition 3.2, however, we
can use the bootstrap or the jackknife to estimate the weighting matrix, since the
moments are asymptotically Normal .

For the strict factor model with iid errors, the optimal weighting matrix is
easy to implement and we can use an efficient two-step procedure which uses
the estimated θ̂ from a first step estimation that employs equal weighting of the
moment conditions. We label the one-step minimum distance procedure MD and
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the two-step weighted estimator MDW.
In simulations we have also found that the performance of our estimator can be

improved by adding a panel information criterion which penalizes the objective
function in equation 3.84 if the selected number of factors is too large. The
intuition is that in some cases the difference between the estimated Ĵ at p0 and
at p0 + 1 may be very small. In such cases it is beneficial to augment equation
3.84 with a penalty function of the form pσ̂2g(N, T ), where p is the number of
excluded eigenvalues, σ̂2 is the estimated (average) variance at step p and g(N, T )
a function such that g(N, T ) → 0 in large samples. In simulations we have found
the following choice due to Bai and Ng (2002) to perform very well:

g(N, T ) =

(
N + T

NT

)
log

(
NT

N + T

)
. (3.60)

We can augment the estimators MD and MDW defined above with the addi-
tional penalty function pσ̂2g(N, T ) to obtain two alternative estimators which we
label MD-IC and MDW-IC.

In Figure 3.1 we plot the objective function given by equation 2.59 for a
particular simulation of the exact factor model with 5 factors using the design
given in the Appendix. The objective function is minimized for all four choices of
estimators of the number of factors (MD, MDW, MD-IC, MDW-IC) at the correct
number of factors. In Table 3.1 and 3.2 we explore the finite sample properties of
our estimators for different choices of N and T such that c ∈ {0.3, 0.5, 0.7, 0.9}.
We use two simulation designs, one with strong factors and the other one with
weak factors and a strict factor model. We report the mean number of chosen
factors over 5000 simulations. While both the use of optimal weighting and of
the panel information criterion improve the performance of the estimator our
estimators appear to work well in all cases. Furthermore, we can estimate the
unknown variance parameter θ = σ2 accurately and with low MSE without having
to estimate the unobserved factors first. A particular advantage of our approach
is that it works very well irrespective of whether the factors are weak or strong.
This makes it especially useful when trying to estimate the weak factors in a
model and not just the few strong ones.

We are currently expanding this approach to the estimation of the number of
factors in order to construct confidence intervals around the estimated value of (̂p).
Proposition 3.2 implies that the minimized objective function J is distributed as
a non-central chi-square random variable. This fact can be employed to construct
confidence intervals and will be explored in future research.

¥ 3.1.4 Time Series Correlations

In some applications we may wish to allow for weak time series correlations of
the idiosyncratic errors. If the true model is such that the idiosyncratic errors
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are correlated over time but we wrongly assume that they are independent over
time, the number of factors that is estimated using a misspecified model will be
biased. We investigate this further in Table 3.3 using the simulation design given
in the Appendix with five strong factors and autocorrelated idiosyncratic errors.
We use the moments of the eigenvalue distribution for the misspecified model to
construct the moment conditions and employ the minimum distance procedure
described above.

We notice that the number of estimated factors is upward-biased. This is
due to the fact that if the true model has autocorrelated idiosyncratic errors
the resulting eigenvalue distribution will have a larger spectral radius than the
distribution for uncorrelated idiosyncratic errors. This leads to eigenvalues in the
right tail of the distribution of eigenvalues due to the noise in the factor model
to be falsely categorized as factors. The results in Table 3.3 are for a relatively
weak degree of autocorrelation (0.1). We have found that, for the case where
the true model has autocorrelations in excess of 0.3 and where the misspecified
model is estimated, our estimator will fail to converge. Table 3.3 also shows that
if the degree of misspecification is small our estimators will have fairly small bias.
This suggests that our approach is robust to minor deviations from the assumed
parametric model but will fail if the degree of misspecification is large. If the true
model is one where the idiosyncratic errors are autocorrelated, we can construct
the correct estimator if we impose the correct assumptions on the parametric form
of the autocorrelations.

Recall that by Assumption 3.2 the case of time-correlated idiosyncratic errors
implies a model where BT 6= IT such that the spectral density of BT converges to a
non-random distribution with bounded spectrum. Consider, for example, a model
where the idiosyncratic errors follow an AR(1) process Uj,t = ρ Uj,t−1+εj,t, for εj,t

white noise such that E(εj,t) = 0 and E(ε2
j,t) = σ2. Recall that E(U2

j,t) = σ2/(1−
ρ2) and E(Uj,tUj,t−k) = (σ2ρk)/(1−ρ2). This implies a separable covariance model
with AN = (σ2/(1 − ρ2))IN and (BT )m,n = ρ|m−n|. Thus the model for the time
series correlations BT corresponds to a Toeplitz matrix where the first (main)
diagonal is 1, the second (upper and lower) diagonals are ρ, the third (upper and
lower) diagonals are ρ2 etc. Note that in asset return factor models such as APT
the degree of autocorrelation would typically be small.

In order to guarantee that the spectrum of BT is bounded we need to assume
absolute summability, i.e.

∞∑

k=0

|ρ|k =
1

1− |ρ| < ∞, (3.61)

which implies |ρ| < 1. In order to compute the eigenvalue distribution of the
matrix BT as T →∞ we define the Fourier series f(ζ) such that
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f(ζ) = limT→∞
+∞∑

k=−∞
ρ|k| exp(ikζ) =

1− ρ2

1− 2ρ cos(ζ) + ρ2
. (3.62)

Let λk, k = 1 . . . T be the eigenvalues of the matrix BT for T →∞. Then, by
a classic theorem of Grenander and Szego (1958), we have that for any positive
integer s

ms
B = limT→∞

1

T

T∑

k=1

λs
k =

1

2π

∫ 2π

0

[f(ζ)]sdζ. (3.63)

This expression gives the moments of the eigenvalue distribution of the popu-
lation time-covariance matrix BT for large T . The univariate integral above can
easily be evaluated using numerical integration techniques. The above approach
can be employed to compute the moments of the population spectrum FB for
other choices of BT in the large T limit.

In order to apply the procedure outlined in the section above we have to
compute the moments of the asymptotic eigenvalue distribution of the covariance
matrix of observations for N →∞ and T →∞ and N/T → c:

ms
Ω = limN→∞ (1/N) E {tr(Ωs

N)} . (3.64)

If we assume that cross-sectional correlations are given by a scale factor times
IN then we can write ΩN = (1/T )UU ′ = (1/T )εBT ε′, where U = εB

1/2
T and (ε)i,j

is iid mean zero with finite fourth order moments. Then,

ms
Ω = limN→∞ (1/N) E

{
tr([(1/T ) εBT ε′]s)

}
. (3.65)

Notice, however, that the non-zero eigenvalues of (1/T )εBT ε′ and (1/T )ε′εBT

are the same. Hence we can apply the free probability procedure presented in Sec-
tion 3.1.2 to compute the mixed moments of (1/T )ε′ε and BT . For the case where
BT is a Toeplitz matrix corresponding to an AR(1) process, the moments of the
eigenvalue distribution of BT were given above. The relationship between the mo-
ments of the eigenvalue distribution of the covariance matrix of the observations
and the moments of the eigenvalue distribution of BT can be summarized by the
following result:

Proposition 3.8: Let ms
Ω be the limiting moments of the empirical noise

covariance Ω and ms
Bbe the limiting moments of the correlation matrix B. Then

for w ∈ C+with Im(w) > 0 we have that

∞∑
s=1

ms
Ω

ws
=

1

c

{ ∞∑
s=1

ms
B

ws

[
c

(
1 +

∞∑
r=1

mr
Ω

wr

)]s}
. (3.66)
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The relationship between the first four moments is given by:

m1
Ω = m1

B (3.67)

m2
Ω = cm2

B +
(
m1

B

)2
(3.68)

m3
Ω = c2m3

B + 3cm2
Bm1

B +
(
m1

B

)3
(3.69)

m4
Ω = c3m4

B + 4c2(m3
Bm1

B +
1

2

(
m2

B

)2
) + 6cm2

B(m1
B)

2
+

(
m1

B

)4
. (3.70)

Proof: See Appendix.
In Table 3.4 we illustrate the performance of our estimator by Monte-Carlo

simulations for a model with 5 factors constructed according to the design given
in the Appendix and with the additional requirement that the idiosyncratic errors
are autocorrelated with coefficient ρ = 0.3. We apply two procedures to estimate
the unknown parameters (p, σ2, ρ), corresponding to the number of factors, the
variance scale and the degree of autocorrelation respectively. The first proce-
dure is the unweighted minimum distance method, while the second procedure
augments the minimum distance objective function with the panel information
criterion in order to estimate p. Both methods were described in the previous sec-
tion. We notice that the estimator of p based on the minimum distance procedure
augmented with the panel information criterion performs extremely well in choos-
ing the correct number of factors. Similarly the unknown covariance parameters
σ2 and ρ are also estimated precisely with low MSE.

The expressions given in Propositions 6 and 8 above cover the cases where
either BT or AN are known be the identity matrix up to a scaling factor. It is
possible however to estimate models where both BT 6= IT and AN 6= IT . In such
cases the covariance matrix of the residuals is given by:

ΩN =
1

T
A

1/2
N εBT ε′A1/2

N . (3.71)

The corresponding moment conditions can be applied by first computing the
moments of the eigenvalue distribution of ΨN = 1

T
εBT ε′ using Proposition 3.8

and then computing the moments of the eigenvalue distribution of the product
ANΨN by employing Proposition 3.6.

In some cases we may not be able to specify an exact parametric model for
AN or BT . It may, however, be possible to derive estimates of AN and BT us-
ing a consistent method for estimating the residuals Ui,t without estimating the
number of factors or the factor loadings and factor scores. Such a procedure was
recently suggested by Pesaran (2006) and involves augmenting the factor model
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with observed factor proxies constructed from the cross-sectional averages of the
model. In this situation it may be able to estimate the number of factors by a
two-step procedure which first derives consistent estimates of AN or BT and then
uses the estimated moments to extract the correct number of factors. Such an
extension will be a subject of future research. Note that however it will not be
possible to estimate both AN and BT from a single sample in general.

¥ 3.2 Second Order Unbiased Estimation of the Factor Model

¥ 3.2.1 Inconsistency of Principal Components for Weak Factors

Consider the classical factor model of equation 3.1 Rt = ΛFt + Ut, for t = 1 . . . T .
Recall that Rt is an N × 1 vector of observations, Ft is a p × 1 vector of latent
factors, Λ is an N × p matrix of coefficients (factor loadings) and Ut is an N × 1
vector of idiosyncratic errors. In this model only Rt is observed while Λ, Ft and
Ut are unobserved for all t. Estimation of the classical factor model requires
estimation of the N × p matrix of factor loadings and predicting the p× T values
of the latent factors Ft (factor scores). In this section we will restrict our attention
to the exact factor model and assume that Ui,t is iid Normal with mean 0 and
variance σ2.

Traditionally, for small values of N , factor models are estimated by maximum
likelihood methods. High dimensional factor models however require the estima-
tion of Np parameters which proves to be computationally infeasible if N is larger
than 25. Thus, practitioners often employ Principal Components Analysis (PCA)
applied to the covariance matrix of observations:

ΣN =
1

T

T∑
t=1

RtRt
′ = Λ

(
1

T

T∑
t=1

FtFt
′
)

Λ′ +
1

T

T∑
t=1

UtUt
′ = ΞN + ΩN , (3.72)

in order to estimate the factor loadings (Jolliffe, 2002). The equation above
does not allow for the separate identification of both factor loadings and factor
scores and we have to impose additional identifying restrictions. In particular
it is common to assume that the factors Ft are orthogonal to each other and
have unit variance. Moreover, since ΞN is invariant to orthogonal rotations S of
the factor loadings, ΞN = ΛΛ′ = (ΛS ′)(ΛS ′)′ for S ′S = I, we require additional
normalizations. Principal Components normalizes the Euclidean distance of the
estimated factor loadings, ||Λ̃j||2 = 1 for j = 1 . . . p. The statistics literature
often refers to this as “fixing the rotation” of the factors, a process that consists
of reporting the normalized factor loadings Λ̃j = Λ̂j/||Λ̂j||2 for j = 1 . . . p and
estimated factors that are orthogonal to each other.

The PCA estimator Λ̃ is the N×p matrix of the first p (normalized) eigenvec-
tors from the spectral decomposition ΣN = V DV ′, associated with the p largest
diagonal elements of D, where the columns of V are orthonormal by construction.



3.2. SECOND ORDER UNBIASED ESTIMATION OF THE FACTOR MODEL 49

The factor loadings are defined only up to a change in sign. Given estimates of
the factor loadings, we can estimate factor scores by Generalized Least Squares
regressions on the cross-section. Alternatively, the factor scores can be approxi-
mated by the first p normalized eigenvectors of the T×T matrix (1/N)R′R, where
R is the N×T matrix with columns R1, R2, ..., RT (Connor and Korajczyk, 1986).

Define

µ̃ =
min (Sp(limN→∞ (ΛΛ′)))
max(Sp(limN→∞ (ΩN)))

(3.73)

which corresponds to the ratio of the minimum eigenvalue of the spectrum
due to the factors over the maximum eigenvalue due to the noise term. It can
be thought of as a measure of the spectral gap discussed in Section 3.1.1. Thus,
it also measures the “strength” of the factors. A strong factor corresponds to a
factor for which µ̃ À 0, while a weak factor leads to a corresponding eigenvalue
for which µ̃ is close to zero. By Assumptions 3 and 4 we have µ̃ > 0 as N →∞,
if the factors are identified. In finite samples, however, we expect to have both
weak and strong factors.

Under the asymptotic framework of Assumption 3.1,N → ∞ and T → ∞
andN/T → c ∈ (0,∞) it has recently been noticed that the estimated sample
eigenvectors are inconsistent estimators of the corresponding population eigen-
vectors (Hoyle and Rattray, 2004; Paul, 2005; Onatsky, 2006). Let us assume
that for each factor j = 1 . . . p the corresponding vector of true factor loadings Λj

and its estimate Λ̂j have been normalized such that ||Λj||2 = ||Λ̂j||2 = 1. Denote
by ∅(x, y) the cosine of the angle between two arbitrary vectors x and y, where
∅(x, y) = x′y/(||x||2.||y||2). The proposition below states conditions under which
consistency continues to hold for the classical factor model estimated by PCA
even though the sample eigenvectors are inconsistent.

Proposition 3.9 (Consistency of PCA): The degree of inconsistency in
the estimates of the factor loadings Λas N →∞, T →∞ and N/T → c ∈ (0,∞)
is given by √

1− c
µ̃2

1 + c
µ̃

≤ ∅(Λ̂j, Λj) ≤ 1. (3.74)

If µ̃ → ∞ as N → ∞ then the PCA estimate of Λjis consistent, i.e.

∅(Λ̂j, Λj) → 1.
For random factor loadings Λ we can think of ∅ as a measure of the correlation

between the two vectors. It is perhaps surprising that the PCA estimator of
a factor model is consistent, but it is important to stress that it follows as a
result of the more specialized assumptions imposed by an economic factor model
and it does not hold true for an arbitrary application of PCA. Notice that in a
factor model the inconsistency of the estimated factor loadings (and factor scores)
depends on the ratio between c and µ̃ only and, under the asymptotic framework
of Assumption 3.1, c converges to a constant, while under Assumption 3.4 on



50 CHAPTER 3. STRUCTURAL ESTIMATION OF HIGH-DIMENSIONAL FACTOR MODELS

pervasiveness of economic factors, µ̃ diverges as N → ∞. Since the ratio tends
to zero the inconsistency disappears.

In finite samples, however, it might be the case that the measure of the spectral
gap, µ̃, is close to zero for the weak factors. In such cases the estimation of
the factor loadings may suffer substantial biases, presenting challenges for the
estimation of weak economic factors. In order to investigate this effect, we use
Monte Carlo to simulate a factor model with 5 weak factors using the simulation
design described in the Appendix. We calibrate the simulations such that µ̃ < 2.
In Table 3.5 we present the results for the estimated coefficients on the factor
loadings using PCA. We notice that PCA performs very poorly in this case. It
is interesting to note that, by construction, the model has both weak and strong
factors. The PCA estimates, however, are poor for all factor loadings, not just the
ones on the weak factors. In the section below we discuss alternative estimation
procedures employing instrumental variables. Table 3.5 shows that, by contrast,
an instrumental variables approach continues to provide satisfactory estimates
even though PCA fails. This is due to the very different approach to estimation
of the two methods and will be discussed in more detail below. Note that the
results of Table 3.5 also seem to indicate that the PC estimator is likely not to have
moments for the case of weak factors. This is similar to the problems encountered
in the estimation of equations with weak instruments (Hahn, Kuersteiner and
Hausman, 2004).

PCA does not only offer a poor approach to estimation in the presence of weak
factors, it also suffers two more serious short-comings which are easily corrected
by alternative instrumental variables based procedures. First, PCA estimation
of the factor loadings does not allow us to impose economic restrictions on the
estimated coefficients. Such restrictions are common in the macroeconomics lit-
erature and are particularly important in Factor Augmented VAR models (Stock
and Watson, 2005). Even small departures from the standard framework, such as
imposing exclusion restrictions on the factors in some equations, present major
challenges. Restrictions severely limit the use of standard eigenvector techniques
in the estimations.

Second, performing inference on the estimated factor loadings is very diffi-
cult due to the complicated distributions of eigenvectors (Bai, 2003; Paul, 2005;
Onatski, 2006). In particular, the asymptotic distributions depend on the large
eigenvalues but the eigenvalues themselves are only observed with bias in the
sample (Paul, 2005; Onatski, 2006; Harding, Chapter 2).

¥ 3.2.2 Estimation by Instrumental Variables

Factor analysis can also be thought of as a generalization of multivariate linear
regression analysis with measurement error (Madansky, 1964). Although this
fact has been recognized for a very long time, the application of instrumental
variables (IV) procedures to the estimation of factor models is generally regarded
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as inferior to estimation by PCA. In this section we show that high-dimensional
factor models estimated by IV suffer from a finite sample bias problem similar to
that encountered in the recent econometrics literature on estimation with many
instruments (Hansen, Hausman and Newey, 2006). While this explains the prac-
titioners’ reluctance to apply IV methods in large datasets, it also provides a
solution to the second order unbiased estimation by using IV estimators with
improved finite sample performance.

Above we have seen how PCA imposes a normalization on the factor loadings
Λ̃j = Λ̂j/||Λ̂j||2. Other normalizations are also possible without loss of generality.
In particular partition the matrix of factor coefficients as follows:

Λ =

(
Λ̂1

Λ̂2

)
, (3.75)

where Λ̂1 is a p× p submatrix of Λ̂. We can now define the normalized factor
loadings to be:

Λ̃ =

(
Λ̂1

Λ̂2

)
Λ̂−1

1 =

(
Ip

Λ̂2Λ̂
−1
1

)
=

(
Ip

Λ̃2

)
. (3.76)

Under this normalization we have, Rj,t = Fj,t+uj,t, for j = 1 . . . p. This means
that, without loss of generality, we can choose the first p observations to act as
proxies measured with error of the underlying latent factors. Now choose any
observation Rp+k,t, for k ≥ 1. Substituting the first p vectors of observations for
the p factors in the equation for observation p + k we obtain:

Rp+k,t =

p∑
j=1

Λ̃k
j,2Rj,t + up+k,t −

p∑
j=1

Λ̃k
j,2uj,t, (3.77)

where Λ̃k
j,2 corresponds to the row k and column j entry of the normalized

loadings matrix Λ̃2.
If we assume an exact factor structure with ui,t iid then we have

E

[
Rp+m,t

(
Rp+k,t −

p∑
j=1

Λ̃p+k
2 Rj,t

)]
= 0, (3.78)

for m ≥ 1 and m 6= k. Therefore we can use all observations other than the
first p observations and observation p + k as instruments for the p factor proxies
used in the equation for Rp+k.

Notice that for the exact factor model with AN = IN and BT = IT we have
N − p − 1 moment conditions and the observations on the remaining N − p − 1
variables (Rp+1, ..., Rp+k−1, Rp+k+1, ..., RN) are valid instruments which can be
used in order to estimate the coefficients Λ̃j

2 for j = 1..p.
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For other choices of AN and BT not all moment conditions will be avail-
able. The identification of equation 3.6 under such conditions will follow the
usual procedures for the identification of equations with endogenous right hand
side variables. This framework, however, is sufficiently flexible and allows us to
complement the set of equations with additional linear restrictions or moment
conditions in order to guarantee identification.

Notice that for the exact factor model, each N − p equation Rp+k,t can be
written as in equation 3.6. Each equation is identified with a degree of over-
identification equal to N − 2p − 1. Therefore we can estimate all the factor
loadings Λ̃2 using instrumental variables by repeatedly estimating each set of
factor loadings using all other observations except for the first p observations as
instruments.

For simplicity let us focus on a model with only one factor:

R1,t = ft + u1,t

R2,t = λ2ft + u2,t

...
RN,t = λNft + uN,t,

(3.79)

where λ2, λ3, ..., λN are the factor loadings that we are interested in estimat-
ing and f is the unobserved latent factor. Let us assume that ui,t are distributed
jointly Normal with E(ui,t) = 0 and E(ui,tuj,t) = 0 and E(u2

i,t) = σ2
i . These as-

sumptions allow us to investigate the case where the maximum number of possible
instruments, N − 2, is allowed. More general correlations restrict the number of
instruments that can be employed but will not affect the intuition behind the next
result. Identification in such settings follows the usual rules for the identification
of systems of equations.

Consider the estimation of λk for k = 2 . . . N . Using R1,t as a proxy for the
latent factor we obtain:

Rk,t = λkR1,t + εk,t (3.80)

where εk,t = uk,t − λ2u1,t. Furthermore, notice that for each equation
j > 1, j 6= k we have ft = (1/λj)(Rj,t − uj,t). Hence we can write the reduced
form equation for R1,t as

R1,t = ztπ + vt, (3.81)

where

zt = (R2,t, ..., Rk−1,t, Rk+1,t, ...RN,t) (3.82)

vt = u1,t − Utπ (3.83)

Ut = (u2,t, ..., uk−1,t, uk+1,t, ..., uN,t) . (3.84)
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Notice that the dimension of zt is N − 2 which is potentially large relative to
the sample size T . Let us first assume that the number of potential instruments is
large relative to the sample size but less than the sample size, i.e. c = N/T < 1.
Let E(v2

t ) = σ2
v and let χ2 = π′z′zπ/σ2

v be the concentration parameter.
We wish to investigate the bias in the estimation of λk using the most common

IV estimation procedure, Two-Stage Least Squares (2SLS):

λ̂2SLS
k =

R1PzRk

R1PzR1

, (3.85)

where Pz = z(z′z)−1z′, and Rj = (R1,1, ..., Rj,T )′.
The next proposition gives the second-order bias of the 2SLS estimate.
Proposition 3.10 (Second Order Bias of 2SLS in Factor Models): We

expect the bias in estimating the factor loadings by 2SLS to be approximately:

E(λ̂2SLS
k )− λk

∼= E(εv)

σ2
v

K − 2

χ2
= −λk

σ2
1

σ2
v

(N − 4)
(1−R2)

(T −N − 2) R2
, (3.86)

where R2is the theoretical R2of the first stage regression.
This expression reveals that the 2SLS estimate of the factor loadings is biased

downward. Moreover, the amount of bias is proportional to the degree of over-
identification and monotonically increasing in N . This explains why estimation
by 2SLS suffers relative to estimation by PCA even for strong factors as the 2SLS
bias increases with N .

Note that the expression given above is similar to the expressions found by
Hahn and Hausman (2002 a,b) in their investigation of estimation bias in simul-
taneous equations. The relationship is due to the asymptotic framework used in
our analysis of high-dimensional factor models. We allow the number of cross-
sectional observations to grow with the sample size at the same rate. Estimation
of the factor loadings by 2SLS uses some of these observations as instruments,
thereby generating a model with many instruments very similar to that of Bekker
(1994). Note however, that there are also differences due to the very specific form
which the correlation between the structural equation and the reduced form takes
in the factor model. In particular, the bias expression depends on the variances
in each equation.

In Table 3.6 we explore the estimation by IV methods of a factor model with
one weak factor constructed using the design outlined in the Appendix for different
choices of N and T such that c ∈ {0.3, 0.5, 0.7, 0.9}. We report the mean bias, the
median bias and the means squared error (MSE) of the factor loadings estimates.
In the first column we report the results for the standard 2SLS procedure. As
predicted by the bias expression in equation 3.15 above we observe a negative
bias which is increasing in c = N/T .

In order to correct for the bias due to the large number of instruments em-
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ployed in the estimation of the factor loadings, we evaluate the performance of
additional estimators familiar from the literature on many instruments as possible
solutions to the many instruments problem. We consider the Fuller (1977) esti-
mator, which is a modification of the Limited Information Maximum Likelihood
(LIML) estimator with parameter a = 1. Additionally, we compute a Bias Cor-
rected 2SLS derived by solving for λk in equation 3.15 of Proposition 3.10. The
exact expression for these estimators are given in the Appendix. Furthermore, we
also estimate the Continuously Updating Estimator (CUE) (Newey and Wind-
meijer, 2005), a particular choice of a generalized empirical likelihood estimator.
In order to overcome the computational issues associated with the CUE estimator
we employ a bounded Nelder-Mead algorithm.

Table 3.6 shows that all the estimators considered above perform well and can
be used to obtain second order unbiased estimates of the factor loadings. Fuller
seems to have comparable MSE to CUE, but the mean bias and MSE performance
of CUE suffers for c = 0.9. This may indicate that CUE has a moment problem
when the number of instruments is close to the sample size. Additionally, the
estimators considered appear to be median unbiased. CUE appears to dominate
the performance of the other estimators in terms of MSE except for the case with
c = 0.9, while Fuller dominates in terms of mean bias.

So far we have only considered cases where c < 1, i.e. where the number of
possible instruments is less than the sample size. In many applications, however,
the number of individuals may be larger than the number of time periods over
which the sample is observed. In this case the standard IV estimation methods
fail since they employ the Pz = z(z′z)−1z′ projection and z′z becomes singular
when N > T . At first glance this appears to be a limitation of IV procedures
since they restrict the number of instruments to be less than the sample size.

In Table 3.6 and Table 3.7 we investigate a proposal of Theil (1973) which
advocates the use of an incomplete projection which avoids the singularity of z′z
by using PD,z = z(D)−1z′ for some positive definite matrix D. The resulting 2SLS

estimator which we call T-2SLS is given by λ̂2SLS
k = (R1PD,zRk)/(R1PDzR1). A

similar modification can be applied to the CUE estimator by choosing a moment
weighting matrix which depends on D rather than on z′z. The exact expression
is given in the Appendix and we label the resulting estimator T-CUE. We use
Monte-Carlo to investigate the behavior of the estimate of the factor loadings for
a simple choice of D = I for both c < 1 and c > 1.

For c < 1 the bias of T-2SLS is only slightly higher than that of BC2SLS
while delivering a lower MSE than Fuller, BC2SLS and CUE. For c > 1 the
bias of T-2SLS becomes substantial. By contrast T-CUE performs extremely
well for both c < 1 and c > 1 in terms of both bias and MSE. For c < 1
T-CUE seems to avoid the moment problem of CUE for c = 0.9 and seems to
outperform Fuller and BC2SLS. We plan to explore the performance of estimators
employing Theiler’s modification in future work to establish their distributional
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Table 3.1. Estimating the Number of Factors: Design with 5 Strong Factors

# Strong Factors = 5

N T c MD MDW MD-IC MDW-IC MD MDW MD-IC MDW-IC

30 100 0.3 5.198 5.074 5.020 5.028 0.586 0.082 0.020 0.028

50 100 0.5 5.344 5.246 5.136 5.042 0.660 0.394 0.156 0.046

70 100 0.7 5.488 5.532 5.312 5.036 0.716 0.940 0.416 0.044

90 100 0.9 5.712 6.054 5.484 5.040 1.288 2.666 0.704 0.048

90 300 0.3 5.118 5.100 5.006 5.002 0.122 0.104 0.006 0.002

150 300 0.5 5.248 5.190 5.096 5.012 0.308 0.234 0.112 0.012

210 300 0.7 5.428 5.434 5.244 5.004 0.612 0.578 0.300 0.004

270 300 0.9 5.586 5.662 5.446 5.006 0.890 1.050 0.626 0.006

150 500 0.3 5.102 5.072 5.002 5.002 0.106 0.076 0.002 0.002

250 500 0.5 5.256 5.212 5.090 5.002 0.308 0.248 0.102 0.002

350 500 0.7 5.446 5.412 5.252 5.000 0.586 0.496 0.284 0.000

450 500 0.9 5.566 5.624 5.418 5.006 0.846 0.948 0.570 0.006

N T c MD MDW MD-IC MDW-IC MD MDW MD-IC MDW-IC

30 100 0.3 -0.081 -0.060 -0.072 -0.058 0.008 0.004 0.006 0.004

50 100 0.5 -0.078 -0.066 -0.069 -0.058 0.007 0.005 0.005 0.004

70 100 0.7 -0.074 -0.071 -0.067 -0.056 0.006 0.006 0.005 0.003

90 100 0.9 -0.077 -0.085 -0.069 -0.056 0.007 0.009 0.005 0.003

90 300 0.3 -0.025 -0.020 -0.022 -0.018 0.001 0.000 0.001 0.000

150 300 0.5 -0.024 -0.020 -0.022 -0.018 0.001 0.000 0.001 0.000

210 300 0.7 -0.024 -0.023 -0.022 -0.018 0.001 0.001 0.001 0.000

270 300 0.9 -0.024 -0.024 -0.022 -0.018 0.001 0.001 0.001 0.000

150 500 0.3 -0.015 -0.011 -0.014 -0.011 0.000 0.000 0.000 0.000

250 500 0.5 -0.015 -0.012 -0.013 -0.011 0.000 0.000 0.000 0.000

350 500 0.7 -0.015 -0.014 -0.013 -0.011 0.000 0.000 0.000 0.000

450 500 0.9 -0.014 -0.015 -0.013 -0.011 0.000 0.000 0.000 0.000

Estimators used

a) MD Minimum Distance Parameter Estimation and J-test Objective Function

b) MDW Two-Step Minimum Distance Parameter Estimation with Optimal Covariance Matrix and J-test

c) MD-IC Augmentation of J-test in Estimator a) with Panel Information Criterion

d) MDW-IC Augmentation of J-test in Estimator b) with Panel Information Criterion

Number of Factors

Idiosyncratic Variance

Mean Bias MSE

Mean MSE
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Table 3.2. Estimating the Number of Factors: Design with 5 Weak Factors

# Weak Factors = 5

N T c MD MDW MD-IC MDW-IC MD MDW MD-IC MDW-IC

30 100 0.3 5.176 5.064 5.028 5.016 0.444 0.076 0.040 0.024

50 100 0.5 5.256 5.178 5.088 4.992 0.528 0.306 0.180 0.072

70 100 0.7 5.304 5.314 5.110 4.812 0.696 0.754 0.354 0.260

90 100 0.9 5.444 5.738 5.294 4.774 0.816 2.010 0.586 0.274

90 300 0.3 5.082 5.084 5.008 5.008 0.086 0.088 0.008 0.008

150 300 0.5 5.196 5.146 5.062 4.998 0.264 0.162 0.110 0.014

210 300 0.7 5.302 5.296 5.152 4.890 0.494 0.424 0.272 0.114

270 300 0.9 5.378 5.452 5.238 4.676 0.706 0.768 0.514 0.328

150 500 0.3 5.090 5.078 5.008 5.008 0.102 0.086 0.008 0.008

250 500 0.5 5.190 5.126 5.034 4.992 0.234 0.146 0.058 0.008

350 500 0.7 5.274 5.232 5.120 4.890 0.426 0.316 0.272 0.114

450 500 0.9 5.308 5.414 5.182 4.644 0.572 0.646 0.410 0.356

N T c MD MDW MD-IC MDW-IC MD MDW MD-IC MDW-IC

30 100 0.3 -0.088 -0.067 -0.080 -0.065 0.009 0.005 0.008 0.005

50 100 0.5 -0.081 -0.070 -0.073 -0.063 0.008 0.006 0.006 0.005

70 100 0.7 -0.076 -0.073 -0.068 -0.057 0.007 0.006 0.005 0.004

90 100 0.9 -0.077 -0.083 -0.071 -0.056 0.007 0.008 0.006 0.004

90 300 0.3 -0.028 -0.022 -0.026 -0.021 0.001 0.001 0.001 0.001

150 300 0.5 -0.026 -0.022 -0.024 -0.020 0.001 0.001 0.001 0.000

210 300 0.7 -0.026 -0.025 -0.024 -0.020 0.001 0.001 0.001 0.000

270 300 0.9 -0.025 -0.026 -0.023 -0.018 0.001 0.001 0.001 0.000

150 500 0.3 -0.017 -0.013 -0.016 -0.013 0.000 0.000 0.000 0.000

250 500 0.5 -0.016 -0.013 -0.014 -0.012 0.000 0.000 0.000 0.000

350 500 0.7 -0.015 -0.014 -0.014 -0.012 0.000 0.000 0.000 0.000

450 500 0.9 -0.015 -0.016 -0.014 -0.011 0.000 0.000 0.000 0.000

Estimators used

a) MD Minimum Distance Parameter Estimation and J-test Objective Function

b) MDW Two-Step Minimum Distance Parameter Estimation with Optimal Covariance Matrix and J-test

c) MD-IC Augmentation of J-test in Estimator a) with Panel Information Criterion

d) MDW-ICAugmentation of J-test in Estimator b) with Panel Information Criterion

Mean Bias MSE

Number of Factors

Mean MSE

Idiosyncratic Variance
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Table 3.3. Estimating the Number of Factors: Misspecified Model

# Strong Factors = 5

N T c MD MDW MD-IC MDW-IC MD MDW MD-IC MDW-IC

30 100 0.3 5.226 5.120 5.062 5.034 0.394 0.144 0.066 0.034

50 100 0.5 5.460 5.384 5.212 5.044 0.664 0.572 0.244 0.048

70 100 0.7 5.792 5.878 5.480 5.092 1.500 1.846 0.696 0.108

90 100 0.9 6.272 6.792 5.914 5.152 2.964 5.328 1.762 0.172

90 300 0.3 5.344 5.292 5.040 5.028 0.448 0.368 0.044 0.028

150 300 0.5 5.886 5.804 5.476 5.052 1.358 1.228 0.592 0.056

210 300 0.7 6.538 6.670 6.146 5.066 3.262 3.802 2.034 0.070

270 300 0.9 7.338 7.884 6.978 5.146 6.606 9.864 4.902 0.150

150 500 0.3 5.596 5.536 5.088 5.028 0.796 0.680 0.092 0.028

250 500 0.5 6.500 6.450 5.916 5.112 2.956 2.866 1.344 0.116

350 500 0.7 7.574 7.784 7.064 5.268 7.598 8.944 5.044 0.320

450 500 0.9 8.486 9.028 8.126 5.366 13.118 17.192 10.758 0.426

N T c MD MDW MD-IC MDW-IC MD MDW MD-IC MDW-IC

30 100 0.3 -0.084 -0.065 -0.075 -0.061 0.009 0.005 0.007 0.005

50 100 0.5 -0.079 -0.070 -0.067 -0.058 0.007 0.006 0.005 0.004

70 100 0.7 -0.087 -0.087 -0.074 -0.062 0.009 0.009 0.006 0.004

90 100 0.9 -0.093 -0.109 -0.081 -0.063 0.010 0.014 0.008 0.004

90 300 0.3 -0.028 -0.024 -0.021 -0.020 0.001 0.001 0.001 0.001

150 300 0.5 -0.031 -0.029 -0.023 -0.020 0.001 0.001 0.001 0.000

210 300 0.7 -0.035 -0.037 -0.029 -0.020 0.001 0.002 0.001 0.000

270 300 0.9 -0.040 -0.047 -0.035 -0.021 0.002 0.002 0.001 0.000

150 500 0.3 -0.017 -0.016 -0.010 -0.011 0.000 0.000 0.000 0.000

250 500 0.5 -0.022 -0.022 -0.016 -0.012 0.001 0.001 0.000 0.000

350 500 0.7 -0.027 -0.030 -0.023 -0.013 0.001 0.001 0.001 0.000

450 500 0.9 -0.030 -0.036 -0.027 -0.014 0.001 0.001 0.001 0.000

Misspecified with AR1(0.1) Idiosyncratic Errors.

Estimators used

a) MD Minimum Distance Parameter Estimation and J-test Objective Function

b) MDW Two-Step Minimum Distance Parameter Estimation with Optimal Covariance Matrix and J-test

c) MD-IC Augmentation of J-test in Estimator a) with Panel Information Criterion

d) MDW-ICAugmentation of J-test in Estimator b) with Panel Information Criterion

Mean Bias MSE

Number of Factors

Mean MSE

Idiosyncratic Variance
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properties and the optimal choice of the matrix D. The simulations presented
in this section, however, indicate that Fuller, BC2SLS, CUE and T-CUE can be
used as alternatives for the accurate estimation of the factor loadings. Moreover,
T-CUE can be used even when N > T , and the number of instruments exceeds the
sample size. Given the difficulties inherent in estimating weak factors using PCA
or imposing structural restrictions on the factor loadings, the methods explored
in this section provide much needed accuracy and flexibility for the estimation of
factor models.

¥ 3.3 Conclusion

In this chapter we introduce new econometric theory for the estimation of large
panel data models with unobserved latent variables. We show that it is possible
to estimate the number of factors consistently for both the exact and approximate
factor model without having to estimate first the factor loadings or factor scores.
Our procedure allows for arbitrary models of heteroskedasticity and autocorrela-
tion.

The new approach to the estimation of high-dimensional factor models intro-
duced in this chapter allows for new extensions such as confidence intervals for
the number of factors. Ongoing research to complement this chapter focuses on
developing confidence intervals for the number of factors using the distribution of
the minimized objective function. Another immediate extension of this approach,
currently pursued, is to extend it to the estimation of dynamic factor structures
by conducting the analysis in the frequency domain.

Additionally, we have shown that in factor models with weak factors, the
estimation of factor loadings by PCA is inconsistent. To solve this problem we
develop alternative IV based procedures with excellent finite sample properties.
We relate the IV estimation of the factor model to current research on many and
weak instruments.

¥ 3.4 Appendix

Simulation design
We simulate a models Rt = ΛFt + Ut, where U = A

1/2
N εB

1/2
T for εj,t iidN(0, 1)

and Fj,t iidN(0, 1). AN and BT are as discussed in the text. Factor loadings are
generated as follows: let Λj,k =

√
m1/

√
m2 for j = 1 . . . p0 and k = 1 . . . p0,

where p0 is the number of factors. For j = p0 + 1 . . . N and k = 1 . . . p0 we
have Λj,k = a

√
m1/(N − k) where a = −1 if j = rk and a = +1 if j 6= rk for

r = 1, 2, 3... . We can generate weak factors by setting m1 = 3 and m2 = N and
strong factors by setting m1 = 10 and m2 = 1.

Proof of Equation 3.37: If a and b are freely independent then so is the
product abab. We can apply Definition 3.2 since all adjacent terms of the product
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Table 3.4. Estimating the Number of Factors: Design with Autocorrelated Idiosyncratic Errors
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Table 3.5. Inconsistency of PCA for Weak Factors

N
T

c
P

C
1

P
C

2
P

C
3

P
C

4
P

C
5

IV
1

IV
2

IV
3

IV
4

IV
5

7
0

1
0
0

0
.7

0
.2

0
2

0
.0

6
7

-0
.1

8
6

-0
.0

1
6

-0
.1

4
0

-0
.0

9
4

0
.0

7
3

-0
.0

9
0

-0
.0

8
4

0
.0

9
4

9
0

1
0
0

0
.9

-1
.1

8
9

0
.4

0
9

-1
.6

7
8

-0
.4

2
5

3
.7

2
6

-0
.1

2
8

0
.0

9
6

0
.1

2
2

-0
.0

7
2

0
.1

2
6

2
1
0

3
0
0

0
.7

3
9
.9

5
7

3
2
.0

9
4

6
.4

3
1

-5
2
.4

9
7

-8
.9

3
9

-0
.0

1
4

0
.0

2
3

0
.0

0
6

-0
.0

5
4

0
.0

0
3

3
5
0

5
0
0

0
.7

0
.0

9
1

0
.0

5
9

-0
.0

2
2

-0
.0

6
9

-0
.0

5
8

-0
.0

0
1

-0
.0

1
1

0
.0

0
9

-0
.0

0
9

0
.0

1
8

4
5
0

5
0
0

0
.9

0
.0

0
6

0
.0

0
2

0
.0

0
5

-0
.0

1
4

-0
.0

0
1

-0
.0

0
2

0
.0

4
5

0
.0

1
9

-0
.0

2
4

0
.0

4
4

N
T

c
P

C
1

P
C

2
P

C
3

P
C

4
P

C
5

IV
1

IV
2

IV
3

IV
4

IV
5

7
0

1
0
0

0
.7

1
9
.1

0
2

4
.8

0
2

1
2
.5

9
6

5
.5

4
1

1
3
.3

0
8

0
.3

7
3

0
.3

2
9

0
.2

9
7

0
.3

0
1

0
.3

5
1

9
0

1
0
0

0
.9

9
4
9
.0

5
0

1
7
3
.1

1
0

2
4
1
4
.2

0
0

6
0
6
.9

6
0

1
2
7
3
5
.0

0
0

0
.4

9
0

0
.4

7
2

0
.3

9
3

0
.4

6
2

0
.4

5
5

2
1
0

3
0
0

0
.7

1
3
3
7
4
0
0
.0

0
0

8
9
5
1
9
0
.0

0
0

5
0
0
1
2
.0

0
0

2
4
5
1
5
0
0
.0

0
0

7
5
0
9
1
.0

0
0

0
.4

2
3

0
.2

9
3

0
.2

6
8

0
.3

4
8

0
.2

9
7

3
5
0

5
0
0

0
.7

4
.7

7
1

2
.6

3
3

0
.4

2
1

3
.8

3
6

2
.6

8
9

0
.3

5
2

0
.2

8
9

0
.1

9
2

0
.3

4
6

0
.2

3
9

4
5
0

5
0
0

0
.9

0
.6

2
7

0
.1

6
8

0
.0

7
6

0
.4

8
0

0
.1

6
5

0
.8

4
8

0
.6

8
9

0
.5

4
8

0
.7

3
8

0
.7

6
4

E
s
ti
m

a
to

rs
 u

s
e
d

a
) 

P
C

P
ri
n
c
ip

a
l 
C

o
m

p
o
n
e
n
ts

 

b
) 

IV
F

u
lle

r 
IV

 E
s
ti
m

a
to

r

M
e
a
n

 B
ia

s

M
S

E



62 CHAPTER 3. STRUCTURAL ESTIMATION OF HIGH-DIMENSIONAL FACTOR MODELS

Table 3.6. Estimation of Factor Loadings (c < 1)

N T c 2SLS Fuller BC2SLS CUE T-2SLS T-CUE

30 100 0.3 -0.230 -0.003 0.028 0.010 -0.014 0.017

50 100 0.5 -0.338 0.009 0.047 0.024 -0.040 0.010

70 100 0.7 -0.413 0.022 0.105 0.036 -0.054 0.014

90 100 0.9 -0.470 0.020 0.157 -0.004 -0.072 0.010

90 300 0.3 -0.237 0.000 0.012 0.004 -0.026 0.003

150 300 0.5 -0.341 -0.001 0.021 0.005 -0.041 0.005

210 300 0.7 -0.416 0.005 0.022 0.013 -0.055 0.008

270 300 0.9 -0.474 0.038 0.036 0.111 -0.074 0.005

150 500 0.3 -0.240 -0.001 0.005 0.002 -0.028 0.001

250 500 0.5 -0.342 -0.001 0.011 0.004 -0.047 -0.002

350 500 0.7 -0.417 0.000 0.016 0.006 -0.059 0.004

450 500 0.9 -0.473 0.016 0.022 0.102 -0.076 0.001

N T c 2SLS Fuller BC2SLS CUE T-2SLS T-CUE

30 100 0.3 -0.236 -0.018 -0.011 -0.005 -0.021 0.012

50 100 0.5 -0.339 -0.006 -0.021 0.006 -0.048 0.004

70 100 0.7 -0.414 -0.019 -0.006 -0.005 -0.063 -0.001

90 100 0.9 -0.469 -0.023 -0.030 -0.052 -0.079 -0.006

90 300 0.3 -0.237 -0.005 -0.002 -0.001 -0.031 -0.003

150 300 0.5 -0.342 -0.008 0.000 -0.001 -0.041 0.004

210 300 0.7 -0.419 -0.002 -0.012 0.008 -0.059 0.004

270 300 0.9 -0.474 0.002 -0.004 0.025 -0.075 0.000

150 500 0.3 -0.240 -0.005 -0.001 -0.003 -0.030 -0.002

250 500 0.5 -0.344 -0.005 -0.002 0.000 -0.049 -0.004

350 500 0.7 -0.415 -0.004 0.003 0.001 -0.061 0.002

450 500 0.9 -0.473 -0.007 -0.001 0.011 -0.076 -0.002

N T c 2SLS Fuller BC2SLS CUE T-2SLS T-CUE

30 100 0.3 0.066 0.028 0.065 0.030 0.022 0.025

50 100 0.5 0.125 0.039 0.127 0.045 0.022 0.025

70 100 0.7 0.180 0.078 0.334 0.094 0.021 0.024

90 100 0.9 0.229 0.394 0.459 0.289 0.022 0.023

90 300 0.3 0.061 0.009 0.019 0.009 0.008 0.008

150 300 0.5 0.120 0.013 0.033 0.013 0.008 0.007

210 300 0.7 0.176 0.018 0.047 0.019 0.009 0.007

270 300 0.9 0.228 0.117 0.065 0.205 0.012 0.009

150 500 0.3 0.060 0.005 0.010 0.005 0.005 0.004

250 500 0.5 0.119 0.007 0.017 0.007 0.006 0.005

350 500 0.7 0.175 0.011 0.025 0.012 0.007 0.005

450 500 0.9 0.225 0.036 0.033 0.143 0.009 0.005

Mean Bias

Median Bias

MSE
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Table 3.7. Estimation of Factor Loadings (c > 1)
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are free and hence:

φ((a− φ(a)1) (b− φ(b)1) (a− φ(a)1) (b− φ(b)1)) = 0. (3.87)

We can expand this expression to obtain:

φ(abab)− φ(a)φ(bab)− φ(b)φ(aab) + φ(a)φ(b)φ(ab)− φ(a)φ(abb)+

φ2(a)φ(bb) + φ(a)φ(b)φ(ab)− φ2(a)φ2(b)− φ(b)φ(aba)+

φ(a)φ(b)φ(ba) + φ2(b)φ(aa)− φ2(a)φ2(b) + φ(a)φ(b)φ(ab)−
φ2(a)φ(b)φ(b)− φ(a)φ2(b)φ(a) + φ2(a)φ2(b) = 0 (3.88)

Using the fact that φ(ab) = φ(a)φ(b) and that φ(aba) = φ(aa)φ(b) we can
simplify this expression as:

φ(abab)− φ2(a)φ(bb)− φ2(b)φ(aa) + φ2(a)φ2(b)− φ2(a)φ(bb)+

φ2(a)φ(bb) + φ2(a)φ2(b)− φ2(a)φ2(b)−
φ2(b)φ(aa) + φ2(a)φ2(b) + φ2(b)φ(aa)− φ2(a)φ2(b)+

φ2(a)φ2(b)− φ2(a)φ2(b)− φ2(a)φ2(b) + φ2(a)φ2(b) = 0 (3.89)

Since most of the terms in this expression cancel, we obtain

φ(abab) = φ2(a)φ(bb) + φ2(b)φ(aa)− φ2(a)φ2(b). (3.90)

Proof of Proposition 3.6: Define the series %F (w) = 1/
∞∑

s=1

ms
F ws where ms

F are

the moments of some probability distribution F . Let SF (w) = %F (w)(1 + w)/w.
Let X and Y be two free random variables with associated probability measures
F and G. Then, SF (w)SG(w) = SFG(w) (Voiculescu, 1998).

Now consider the Cauchy Transform GΩ of ΩN as N → ∞ and let ms
Ω be

the moments of the asymptotic eigenvalue distribution of Ω. Then GΩ(w) =
∞∑

s=0

ms
Ω/ws+1. Following Burda et. al. (2006) we can let GΩ(w) = MΩ(w)/w +

1such that MΩ(w) =
∞∑

s=1

ms
Ω/ws. Note also that MΩ(%Ω(w)) = w. If we now apply

equation 2.6 to the heteroskedasticity matrix A we have N−1
N∑

p=1

1
1−λp/w

= 1 + w.

Furthermore, N−1
N∑

p=1

1
1−λp/%A(w)

= 1+w. If we now multiply both the numerator

and denominator by 1/%Ψ(w) we have N−1
N∑

p=1

1/%Ψ(w)
1/%Ψ(w)−λp/[%A(w)%Ψ(w)]

= 1 + w.
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Since SA(w)SΨ(w) = SAΨ(w) we have, N−1
N∑

p=1

1/%Ψ(w)
1/%Ψ(w)−zλp/((1+z)%AΨ(w))

= 1 +

w. Furthermore, we have N−1
N∑

p=1

1
1−(λp%Ψ(w))/(( 1+z

z
)%AΨ(w))

= 1 + w. If we now

substitute MΩ(w) for w we have N−1
N∑

p=1

1

1−λp%Ψ(M(w))

1+MΩ(w)
MΩ(w)

w

= 1 + MΩ(w). Re-writing

this expression we obtain MΩ(w) = MA( w(1+MΩ(w))
MΩ(w)%Ψ(M(w))

). Moreover, it ca be shown

that %Ψ(w) = (1+w)(c+w)/w. Substituting in the previous expression (and after
some further cancelations) we obtain MΩ(w) = MA( w

1+cMΩ(w)
). Re-writing this

expression as a series we obtain equation 2.54:
∞∑

s=1

ms
Ω

ws =
∞∑

s=1

ms
A

ws (1 + c
∞∑

r=1

mr
Ω

wr )
s

.

Proof of Proposition 3.7: We need to show that limN,T→∞ Pr(Ĵ(θ̂, Spp(ΣN)) >

Ĵ(θ̂, Spp0
(ΣN)) for all p 6= p0 and p ≤ pmax. Let Π̃ = [Nm1

Ω, Nm2
Ω, ..., Nms

Ω] and

Π̃p = [
∑

λj∈Spp(ΣN )

λ1
j ,

∑

λj∈Spp(ΣN )

λ2
j , ...,

∑

λj∈Spp(ΣN )

λs
j ].

For simplicity we consider the case of the minimum distance estimator with equal
weighting. First consider the case where p < p0. Then,

Ĵ(θ̂, Spp(ΣN)) =
s∑

r=1


Nmr

Ω −
∑

λj∈Spp(ΣN )

λr
j




2

=
s∑

r=1


Nmr

Ω −
∑

λj∈Spp0
(ΣN )

λr
j




2

+ J (λp0+1, ..., λp),

(3.91)

Ĵ(θ̂, Spp(ΣN)) = Ĵ(θ̂, Spp0
(ΣN)) + J (λp0+1, ..., λp). (3.92)

The term J (λp0+1, ..., λp) consists of polynomial terms which depend on eigen-
values resulting from the latent factors. Hence by the pervasiveness of the factors
(Assumption 3.4) J (λp0+1, ..., λp) → ∞ as N → ∞ and T → ∞. A fortiori,

Ĵ(θ̂, Spp(ΣN)) > Ĵ(θ̂, Spp0
(ΣN)) with probability 1.

Now consider the case with p > p0. Repeating the steps above we have
Ĵ(θ̂, Spp(ΣN)) > Ĵ(θ̂, Spp0

(ΣN)) with probability 1. In this case however, it is
no longer true that J (λp0+1, ..., λp) → ∞. Rather, we have J (λp0+1, ..., λp) > 0.
This is a consequence of the fact that for p 6= p0 the moment conditions on the
eigenvalue distribution are going to be misspecified. The objective function is
however asymmetric since it diverges for p < p0 but is increasing for p > p0.
Adding an information criterion does not change affect the case where p < p0.
For the case where p > p0 however adding an information criterion penalized the
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objective function proportionally to (p− p0) which is advantageous for values of
p close to p0 such that J (λp0+1, ..., λp) is small.

Proof of Proposition 3.8: The proof of Equation 2.66 is very similar to
that of given in Proposition 3.6 with (Ψ, B) substituted for (A, Ψ) and using the
fact that MΨB(w) = cM 1

T
εBε′(w). In order to derive equations 2.67, 2.68, 2.69

and 2.70 we can expand equation 2.66 as follows:

c(MΩ − 1) = c
m1

B

w
M+ c2m2

B

w2
M2 + c3m3

B

w3
M3 + c4m4

B

w4
M4 + O(w−5), (3.93)

where

M = 1 +
m1

Ω

w
+

m2
Ω

w2
+

m3
Ω

w3
+

m4
Ω

w4
+ O(w−5). (3.94)

Expanding the RHS of equation 5.7 in terms of 1/w we obtain:

c(M− 1) =
1

w
cm1

B +
1

w2

(
cm1

Bm1
Ω + c2m2

B

)
+

1

w3

(
cm1

Bm2
Ω + c3m3

B + 2c2m2
Bm1

Ω

)
+

(3.95)

+
1

w4

(
3c3m3

Bm1
Ω + cm1

Bm3
Ω + c2m2

B(2m2
Ω +

(
m1

Ω

)2
) + c3m4

B

)
+ O(w−5).

Dividing both sides by c, equating terms in powers of 1/w and substituting re-
cursively for earlier terms we obtain:

m1
Ω = m1

B (3.96)

m2
Ω = cm2

B + m1
Bm1

Ω = cm2
B +

(
m1

B

)2
(3.97)

m3
Ω = c2m3

B+2cm2
Bm1

Ω+m2
Ωm1

B = c2m3
B+2cm2

Bm1
B+

(
cm2

B +
(
m1

B

)2
)

m1
B (3.98)

which can be further simplified as

m3
Ω = c2m3

B + 2cm2
Bm1

Ω + m2
Ωm1

B = c2m3
B + 2cm2

Bm1
B +

(
cm2

B +
(
m1

B

)2
)

m1
B

(3.99)

m3
Ω = c2m3

B + 3cm2
Bm1

B +
(
m1

B

)3
(3.100)

Additionally, we have:

m4
Ω = m1

Bm3
Ω + cm2

B(2m2
Ω +

(
m1

Ω

)2
) + 3c2m3

Bm1
Ω + c3m4

B (3.101)

which after substituting the values of m3
Ω, m2

Ω and m1
Ω derived above and
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simplifying leads to:

m4
Ω = c3m4

B + 4c2(m3
Bm1

B +
1

2

(
m2

B

)2
) + 6cm2

B(m1
B)

2
+

(
m1

B

)4
. (3.102)

Proof of Proposition 3.9: A detailed discussion of the inconsistency of
PCA in large N , T models can be found in Paul (2006) and Onatski (2006). Here
we show that the maximum degree of inconsistency depends on our measure µ̃
of the spectral gap. Let dj = limN→∞Λ̂′Λ̂. Since the non-zero eigenvalues of

Λ̂′Λ̂ are the same as the eigenvalues of Λ̂Λ̂′ we have that Sp(limN→∞(Λ̂Λ̂′)) =
{d1, d2, ..., dp0}, where p0 is the number of factors in our factor model. Let d̃ =

min Sp(limN→∞Λ̂Λ̂′). If we restrict our attention to the exact factor model we
have σ2 = max(Sp(limN→∞(ΩN))). By Theorem 1 of Onatski (2006) we have that
the degree of inconsistency for the j − th Principal Component is given by

∅(Λ̂j, Λj) =

√
d2

j − σ4c

dj(dj + σ2c)
(3.103)

Note however that ∅(Λ̂j, Λj) is monotonically increasing in the eigenvalues dj

due to the factors:

0 <
∂∅(Λ̂j, Λj)

∂dj

=
cσ2(d2

j + 2σ2dj + σ4c)

2

√
d2

j−σ4c

dj(dj+σ2)
(dj + cσ2)2d2

j

, (3.104)

since dj > 0. Hence,

√
d̃2 − σ4c

d̃2 + σ2d̃c
< ∅(Λ̂j, Λj). (3.105)

We can re-write the expression on the left as:

√√√√√1−
(

σ2

d̃

)2

c

1 + σ2

d̃
c

< ∅(Λ̂j, Λj). (3.106)

If we define µ̃ = d̃/σ2 we obtain the expression for the inconsistency of PCA
as given in Equation 3.3.

Proof of Proposition 3.10: Consider the estimation of the factor loadings
in a strict factor model with 1 latent factor given by 3.8. We can sequentially
estimate the factor loadings by estimating λk for k = 2..N using Rk,t = λkR1,t +
εk,t for k = 2..N and εk,t = uk,t − λku1,t. Focusing on the estimation of equation
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k we can re-write the estimating equation as a system of equations with two
endogenous variables y1 and y2 in a form familiar to the IV literature:

y1 = βy2 + ε = βzπ + w (3.107)

y2 = zπ + v (3.108)

where y1 = Rk, y2 = R1, z = (R2, R3,...,Rk−1, Rk+1, ..., RN) and v = u1,t−Utπ.
Let K = dim(π). For the strict factor model K = N −#factors− 1. In our case
K = N − 2.

Furthermore, assume that the reduced form errors (w, v) are i.i.d Normal
distributed as (

w

v

)
∼ N(0, Ω) = N

(
0,

(
σ2

w σwv

σwv σ2
v

))
, (3.109)

and let the covariance between the structural equation (1) and the reduced
form equation (2) for the endogenous variable y2, be σεv. Note that for the
exact factor model with 1 factor σεv = −λkσ

2
1 where σ2

1 = Var(u1). Let the
concentration parameter be given by χ2 = π′z′zπ/σ2

v . We are interested in the
bias of the 2SLS estimator as a function of the concentration parameter. The
finite sample bias of the 2SLS estimator β̂2SLS was derived by Richardson (1968)
and is given by the following expression:

E(β̂2SLS)− β =
σεv

σvv

exp(−χ2/2) 1F1(K/2− 1; K/2; χ2/2), (3.110)

where 1F1(a; b; c) denotes the confluent hypergeometric function 1F1(a; b; c)
given by the following expansion

1F1(a; b; c) =
∞∑

j=1

(a)j

(b)j

cj

j!
, (3.111)

Note that the confluent hypergeometric function is defined in terms of Pocham-
mer’s symbol (a)j which corresponds to the ascending factorial:

(a)j =

j−1∏

k=0

(a + k) = a (a + 1) (a + 2) ... (a + j − 1) for(a)0 = 1. (3.112)

Let A = exp(−χ2/2) 1F1(K/2 − 1; K/2; χ2/2) and consider an expansion of
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A for large values of χ2:

A = exp(−χ2/2)
Γ(K/2)

Γ(K/2− 1)
exp(χ2/2)

(
χ2

2

)(K/2−1−K/2)

+ O[

(
χ2

2

)−2

]

(3.113)

A = 2
Γ(K/2)

Γ(K/2− 1)

(
1

χ2

)
+ O[

(
χ2

2

)−2

] (3.114)

But since Γ(K/2) = (K/2− 1)Γ(K/2− 1) we have

A =
K − 2

χ2
+ O[

(
χ2

2

)−2

] (3.115)

If we now substitute the first term of A in our bias expression we obtain

E(β̂2SLS)− β ∼= σεv

σ2
v

K − 2

χ2
=

σεv

σ2
v

(K − 2)
(1−R2)

(N −K) R2
, (3.116)

where R2 corresponds to the R2 of the first stage regression. This expression
corresponds to the approximate bias expression given in Hahn and Hausman (2002
a, b). Recall that K = N − 2 and σεv = −λkσ

2
1. Hence we obtain the expression

in Proposition 3.10:

E(λ̂2SLS
k )− λk

∼= −λk
σ2

1

σ2
v

(N − 4)
(1−R2)

(T −N − 2) R2
. (3.117)

IV Estimators used in Section 3.2:
The estimation of the loadings in a factor model using IV methods requires

applying IV estimators recursively to determine the set of loadings λk for each
cross-sectional unit. The complete set of loadings is obtained by adding the
normalizations on the first p loadings. For simplicity we give the IV estimators
under the setup of equations 5.21 and 5.22. At each step however a different set
of observations are substituted for y1 and z. Let Pz = z(z′z)−1z′ and Qz = I−Pz.

2SLS: β̂ = (y2
′Pzy1)/(y2

′Pzy2)
Fuller: β̂ = (y2

′Pzy1−κy2
′Qzy1)/(y2

′Pzy2−κy2
′Qzy1) for κ = φ−1/(T−N−2),

where φ = min Sp{W ′PzW (W ′QzW )−1} and W = (y1, y2).
BC2SLS: Uses the idea in Hahn and Hausman (2002b) to solve for the popu-

lation coefficient from the second-order bias expression.

β̂BC = β̂2SLS/

(
1− σ2

1

σ2
v

(N − 4)
(1−R2)

(T −N − 2) R2

)
(3.118)

where β̂2SLS is the 2SLS estimator. We can make this estimator feasible by
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substituting R2 with the estimated first stage R2, σ2
v with the estimated first stage

variance and estimate σ2
1 = Var(y1)−1, if we normalize the variance of the factors

to 1.
CUE: β̂ = argminβ∈B ĝ(β)′Ω̂(β)ĝ(β)/2 for ĝ(β) = z′(y1 − βy2) and Ω̂(β) =

E(σ̂2
t z
′
tzt), where σ̂2

t = E(ε2
t ). In order to optimize this objective function we

applied a bounded version of the Nelder-Mead algorithm which allows us to impose
restrictions on the parameter space B in order to avoid the multiple minima
occasionally found in the simulations.

T-2SLS: The idea behind Theil’s modification is to replace the term (z′z)−1 by
a matrix D. Here we take D = I and therefore we have β̂ = (y2

′zz′y1)/(y2
′zz′y2).

Note that this estimator is consistent since β̂ = β0 + (y2
′zz′ε)/(y2

′zz′y2) and plim
T−1z′ε = 0.

T-CUE: The estimator is the same as CUE but uses a different weighting
matrix Ω̂(β) = E(σ̂2

t ).
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CHAPTER 4

Uncovering the Effect of Global Factors
on the US Economy

A quintessential issue of modern macroeconomics is the elusive relationship be-
tween inflation and unemployment. Over the past few decades this relationship
seems to have been subject to many changes of perspective both in our models
and in the empirical reality underlying it. Globalization is undoubtedly one of the
most remarkable processes in recent history and we cannot overlook the potential
impact of global factors in shaping the economic experience of the US. Thus, the
importance of understanding the role of global factors as drivers of US inflation
is at the core of recent macroeconomic research (Bernanke, 2006; Rogoff, 2006).

In this chapter we apply our econometric methodology to identify, estimate
and characterize global factors and to understand how the inflation-unemployment
relationship is affected by the presence of these factors. In doing so we develop
an approach, which is less centered on US markets, as recently advocated by
Bernanke (2006), and which allows us to understand the effect of global factors by
combining structural macroeconomic modeling with information extracted from
financial markets.

The forward looking nature of financial markets may contain information with
important implications for output and inflation in the medium term. Extracting
relevant economic information from financial markets presents a powerful oppor-
tunity for the improved identification of shocks to the economy. It may also allow
us to improve our understanding of the relationship between financial system risk
and the macroeconomy. However, relating financial markets to the economy also
presents limitations due to the extremely noisy nature of these markets (Stock
and Watson, 2003).

In this chapter we show how the econometric methods derived in this pa-
per can be employed to overcome this limitation and augment a structural New
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Keynesian model of the economy with global factors identified from international
stock markets. The econometric approach developed in this paper proves crucial
in separating the noise in international financial markets from pervasive global
factors and in estimating their structural effect.

¥ 4.1 A Structural New Keynesian Macro-Finance Model

The concept of fusing a small structural macroeconomic model with financial
information has been successfully employed by a number of recent authors in
macro-finance (Ang and Piazzesi, 2003; Bekaert, Cho and Moreno, 2006; Rude-
busch and Wu, 2004). In spite of this similarity, our model presents a number
of important innovations which we will briefly mention here and the technical
aspects of which will be discussed in detail below, as we develop the model and
the econometric estimation strategy.

The focus of our investigation is on the information revealed by international
stock markets. We believe that the increasing global and financial integration of
the last few decades has important implications for the description of shocks to
the US economy. This adds increased importance to our attempt to understand
economic forces potentially outside the control of US monetary policy and in
plotting the future course inflation and employment. The current macro-finance
literature seems to have focused exclusively on extracting information from yield
curves. We believe that by focusing our attention on the stock market we can
understand the nature of pervasive global factors, since much of modern asset
pricing theory emphasizes that a few pervasive factors are the dominant source of
correlations between asset returns. In future work we hope to explore joint stock
and bond markets.

While stock prices incorporate a substantial amount of rational information
about the future of the global economy, they also contain a non-negligible amount
of noise which could potentially make them unreliable. Thus our ability to cor-
rectly identify the number of global factors and estimate them accurately is of
paramount importance. The international dimension of our model is also crucial
in that it employs the correlation between different international stock markets
in order to identify the global factors.

Another important characteristic of our approach consists in the attempt to
improve our understanding of the nature of shocks affecting the macro-economy.
By specifying a multi-factor error structure we can estimate the structural effect
of pervasive latent factors on the demand and supply equations for the economy.
This allows us to investigate the possibility of correlated movements in output
and inflation. Understanding the nature of global shocks and having the ability
to distinguish between supply and demand shocks is crucial for the conduct of
optimal monetary policy (Clarida, Gali and Gertler, 1999).

Following the standard macro-finance approach we shall balance the need for a
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structural specification with an empirically successful set of estimating equations.
Our approach will focus on a structural model of the US economy and a reduced
form set of equations describing asset pricing in international financial markets
using a set of observed and latent factors. The structural model for the US
economy follows in the tradition of recent small scale New Keynesian models
(Bekaert, Cho and Moreno, 2006; Carlin and Soskice, 2006). The model for the
international financial markets corresponds to an International Arbitrage Pricing
Theory approach (Ikeda, 1991; Solnik, 1981).

The supply side of our economy is characterized by the following Phillips curve:

(PC) πt = αEtπt+1 + (1− α) πt−1 + βyt + εt, (4.1)

where πt corresponds to the current period inflation and yt is the current
period unemployment or output gap. The parameter α measures the trade-off
between lagged inflation πt−1 and the agents’ rational expectation Etπt+1 of the
next period inflation with respect to the current period information set. The
term εt corresponds to an aggregate supply shock which will be discussed further
below. Notice that current inflation depends on the weighted average between
past inflation and rational expectations of future inflation with weights α and
1−α. This reflects the trade-off between a theoretically justified New Keynesian
specification based on rational expectations (Clarida, Gali and Gertler, 1999)
and an empirically successful adaptive specification. While the exact origins of
inflation persistence are still a matter of debate, existing models seek to explain
inertia through overlapping contracts (Fuhrer and Moore, 1995) or informational
limitations (Mankiw and Reis, 2002).

The demand side of the economy is characterized by the following aggregate
demand curve:

(AD) yt = γEtyt+1 + (1− γ) yt−1 + δ(it − Etπt+1) + ωt, (4.2)

where the current period unemployment or output gap depends on a weighted
average between the previous period unemployment and the agents’ rational ex-
pectations of future unemployment Etyt+1 with weights 1− γ and γ respectively.
This captures the trade-off between the standard Keynesian multiplier effect of
external shocks and the dampening effect of rational consumption smoothing on
output which results from the rational expectations term Etyt+1. The amplifying
effect of inertial adjustment may be due to credit constraints or habit persistence
(Fuhrer, 2000). The last term in the equation corresponds to the real interest rate
it − Etπt+1, which balances the demand for consumption with that for savings.

The monetary policy curve captures the objective of the Fed to stabilize in-
terest rates while taking into account inflation and unemployment (Taylor, 1993).
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Hence the short-term interest rate is given by:

(MP) it = ρit−1 + (1− ρ) [θπt + φyt] + vt, (4.3)

where the parameter ρ controls the extent to which the Fed engages in interest
rate smoothing. Additionally, the Fed adjusts interest rates with a factor 1 − ρ
towards the desired level of interest rates given by θπt + φyt. This target level
for the short rate may be derived as the optimal level of nominal interest rates
in a model where a Central Bank minimizes a quadratic loss function over unem-
ployment and inflation with relative weights given by φ and θ respectively. The
version of the monetary policy curve used here corresponds to the “benchmark
Taylor rule” of Ang, Dong and Piazzesi (2005).

So far we have not imposed any assumptions on the error terms in the three
equations (εt, ωt, vt). We will pay particular attention to the errors given by εt and
ωt and wish to interpret them as structural aggregate supply and demand shocks
respectively, subject to the caveat that ωt may confound true demand shocks
with shocks to the natural rate (Woodford, 2001). We improve, however, on
the current macro-finance literature which models these shocks as autoregressive
processes by imposing a more economically insightful multifactor error structure
(Pesaran, 2006). In addition to avoiding the need to impose long lag structures
from the more familiar VAR approach, these additional set of assumptions allow
us to incorporate the effect of globally determined factors in the specification of
the shocks to the US economy. Thus we assume that the supply and demand
shocks are given in terms of a set of unobserved common global factors FG

t and
an idiosyncratic component (et, wt):

εt = A′FG
t + et (4.4)

ωt = B′FG
t + wt. (4.5)

For the purposes of this application we assume that (et, wt, vt) are distributed
independently of the the global factors FG

t and the other right hand side variables
in the structural model. This assumption underlies the applicability of a factor
analysis based estimation procedure for the number of factors. As we previously
remarked however, we do not need to assume a strict factor structure and in prin-
ciple our procedure is robust to more complex patterns of time dependence, struc-
tural breaks with unknown change points or volatility regime switching processes
which are currently investigated in the macro-finance literature (Bibkov, 2005).

The multifactor error specification allows the possibility of correlated common
effects due to the global factors to shock both the demand and supply equations.
The extent to which they affect supply and demand is determined by the magni-
tude of the respective factor loadings coefficients A and B.

Our approach of extracting useful economic information from the global fac-
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tors is enhanced by the ability to treat these factors as exogenous shocks to the
macroeconomic system (Bibkov and Chernov, 2004). This justifies our assumption
of independence of the global factors with respect to the idiosyncratic shocks. We
may wish however to consider correlations between the unobserved latent factors
and past values of the macroeconomic variables for inflation, output and interest
rates. Given the central position of the US economy in global markets this allows
for potentially long term effects of the US economy on the global market.

It is not possible to identify the unknown factors from the three structural
equations above. Thus, we will need to augment the structural New Keynesian
model above with a model of international financial markets. The existence of
global economic factors manifested in international financial markets has been
suggested in a number of previous studies, yet little is known about their precise
macroeconomic effect. We aim to use the econometric methods developed in this
paper in order to address these questions. In particular we wish to identify the
number and intensity of such factors. The corresponding factor loadings allow
us to measure the strength of correlated shocks to the US economy as well as
distinguish between cost-push shocks and demand shocks.

Recently, Diebold, Li and Yue (2006) argue for economically important global
factors describing country yield curve dynamics, while Bekaert, Hodrick and
Zhang (2005) find that co-movements between international stock returns are
best explained using parsimonious risk-based factor models. The existence of
global economic forces driving asset prices across countries is often thought to
be a consequence of the increasing capital market integration of recent decades
(Brooks and Catao, 2000; Grinold, Rudd and Stafek, 1989).

In order to fully account for the effects of exchange rates in the estimation of
global factors from an international portfolio of stock returns, we shall employ
a model of international arbitrage pricing (Clyman, 1997; Ikeda, 1991; Solnik,
1982). We assume that the global market is divided between K countries, each
with its own currency. In each country there is a large number of risky assets
denominated in the currency of the country where they are issued. In particular,
we assume that each country has a riskless national bond and a large number of
traded stocks issued by companies operating in different industries. Let one of
the currencies, j = 1, be the nominal numeraire. In total the global economy
consists of N assets labelled j = 1 . . . N .

Consider an arbitrary asset j issued in country k. We assume that the process
generating this return, when expressed in local currency, is given by the following
linear relationship:

Rk
j = rk

j + bj0f0 + bj1f1 + ... + bjSfS + uj, (4.6)

where Rk
j is the stochastic return to asset j in country k with expected value

rk
j and fs for s = 0 . . . S are a set of common mean-zero factors. The coefficients
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bi0, bi1, ..., biS,correspond to factor loadings on the common risk factors fs, s =
0 . . . S. The idiosyncratic risk component uj is assumed to be mean zero and
uncorrelated with the common factors fs.

We cannot, however, assume that all the factors fs in this specification are
in fact global factors shared across countries. We note that the CAPM is nested
within the APT structure of the model for asset returns (Burmeister and McElroy,
1988) and in the presence of transportation costs, tariffs or other restrictions
to free trade, we expect to find differences between representative consumption
configurations across countries (Levine, 1989). Hence we let f0 be equal to Mk,
the return to the market portfolio for country k where asset j is located.

The above model of returns applies to assets in local currency. If we are to
consider the same model from the perspective of an investor in the numeraire
country we have to add considerations of exchange rates. Let Υt be the (log)
exchange rate at time t for country j. Consider the Uncovered Interest Parity
(UIP) condition:

E(Υj,t+1)−Υj,t = r1,t − rj,t. (4.7)

We assume that the linear return process above also applies to unhedged
returns, that is the return to a stock j in country k > 1 in terms of the numeraire
is given by (

Rk
j,t+1

)
1

= Rk
j,t+1 + E(Υj,t+1)−Υj,t (4.8)

A common explanation behind the empirical failure of UIP suggests the exis-
tence of additional risk premia RPj,t, such that

E(Υj,t+1)−Υj,t = r1,t − rj,t + RPj,t. (4.9)

As is common in the literature on international economics, we assume that
the additional risk premia RPj,t are also subject to common factors (Driessen,
Melenberg, Nijman, 2003). Some of the underlying factors are likely to be the
global factors, while some may be pure exchange rate factors. Noticing that both
the unhedged returns in terms of the numeraire and the returns in local currency
share a common factor structure with the addition of exchange rate factors and
after taking into account for the different local risk-free rates:

(
Rk

j,t

)
1
− r1,t = Rk

j,t − rk,t + RPj,t. (4.10)

This implies an estimating equation for stock return j in country k which is
given by:

Rk
j,t = rk,t + cjMk,t + Λk

j F
G
t + uj,t, (4.11)

where rk,t is the local risk free rate, Mkt is the market index for country k
and FG

t are global factors. We let the estimation procedure detect if some of the
factors labeled as global may in fact be pure exchange rate factors. The coefficients
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cj and Λk
j correspond to asset specific factor loadings on the observable country

factor Mk and the global factors FG. Furthermore, we assume that

E(uj,t|FG
t ,Mkt) = E(FG

t ) = E(Mkt) = E(ujt) = 0. (4.12)

Similar to the Chamberlain and Rothschild (1983) model it is possible to
consider both a strict factor model where uj,t are both serially uncorrelated and
homoscedastic or alternatively allow for weak correlations in uj,t in order to
accommodate an approximate factor structure.

¥ 4.2 Rational Expectations Solution

Let us now re-state the main estimating equations of our structural macro-finance
model for ease of reference:

(PC) πt = αEtπt+1 + (1− α) πt−1 + βyt + εt, (4.13)

(AD) yt = γEtyt+1 + (1− γ) yt−1 + δ(it − Etπt+1) + ωt, (4.14)

(MP) it = ρit−1 + (1− ρ) [θπt + φyt] + vt, (4.15)

εt = A′FG
t + et, (4.16)

ωt = B′FG
t + wt, (4.17)

Rk
j,t = rk,t + cjMk,t + Λk

j F
G
t + uj,t, (4.18)

(UIP) E(Υk,t+1)−Υk,t = ψ(r1,t − rk,t) + Λe
kF

G
t + ξk,t. (4.19)

Since our model combines observed factors such as the lagged values of macro-
economic variables like inflation with latent factors corresponding to the global
and exchange rate factors, we need to develop a strategy for estimating both the
number of these factors and their corresponding time series. We shall first derive
the rational expectations solution to the set of structural macro-equations above.
This will play the role of a reduced form specification which can be combined
with the equations for stock returns. In the next section we will then describe the
econometric methods employed in order to “partial out” the effect of observed
factors and apply the factor analytic methods developed in this paper.

First let us write the system corresponding to the first three structural equa-
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tions for the US in matrix form:



1 −β 0
0 1 δ

(ρ− 1) θ (ρ− 1) φ 1







πt

yt

it


 =




α 0 0
δ γ 0
0 0 0


 Et




πt+1

yt+1

it+1


+




1− α 0 0
0 1− γ δ
0 0 ρ







πt−1

yt−1

it−1


+




εt

ωt

vt


 . (4.20)

This is equivalent to the following equation in matrix notation:

Γ1Xt = Γ2EtXt+1 + Γ3Xt−1 + ξt, (4.21)

where the coefficient matrices Γ1, Γ2, Γ3 encode the structural coefficients.
We need to show that the solution of this system is of the form:

Xt = ΩX t−1 + Σξt. (4.22)

Substituting equation 4.22 in 4.21 above we obtain under the assumption of
rational expectations:

Γ1Xt = Γ2Et {ΩX t + Σξt+1}+ Γ3Xt−1 + ξt, (4.23)

(Γ1 − Γ2Ω) Xt = Γ3Xt−1 + ξt, (4.24)

Xt = (Γ1 − Γ2Ω)−1Γ3Xt−1 + (Γ1 − Γ2Ω)−1ξt. (4.25)

Matching coefficients between 4.22 and 4.25 we derive a solution to the system
given by the following matrix equations:

Ω = (Γ1 − Γ2Ω)−1Γ3, (4.26)

Σ = (Γ1 − Γ2Ω)−1. (4.27)

Note that the first equation can be re-written as a quadratic matrix equation
in Ω:

Γ2Ω
2 − Γ1Ω + Γ3 = 0. (4.28)

We will now investigate the effect of writing the rational expectations solution
to the structural model as a VAR(1) process on the multi-factor error structure
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of the error terms. Consider the error term in equation 108 above:

Σξt =




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33







εt

ωt

vt


 =




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33







A′FG
t + et

B′FG
t + wt

vt




(4.29)

Σξt =




(σ11A + σ12B)′ FG
t + σ11et + σ12wt + σ13vt

(σ21A + σ22B)′ FG
t + σ21et + σ22wt + σ23vt

(σ31A + σ32B)′ FG
t + σ31et + σ32wt + σ33vt


 . (4.30)

Let us now make the following notational definitions:

Λπ = σ11A + σ12B, (4.31)

Λy = σ21A + σ22B, (4.32)

Λi = σ31A + σ32B, (4.33)

uπ
t = σ11et + σ12wt + σ13vt, (4.34)

uy
t = σ21et + σ22wt + σ23vt, (4.35)

ui
t = σ31et + σ32wt + σ33vt. (4.36)

Then we can write the error term as:

Σξt =




Λ′πFG
t + uπ

t

Λ′yFG
t + uy

t

Λ′iFG
t + ui

t


 . (4.37)

This shows that the multi-factor error structure of the macro-equations for the
US also implies a linear factor structure in the unobserved global factors for the
reduced form VAR equations. Note, however, that the error terms in the VAR
form, (uπ

t , uy
t , u

i
t) will be correlated with each other.

In order to identify and estimate the unobserved latent factors we need to
augment the reduced form VAR specification derived above using rational expec-
tations with the set of linear APT equations for stock returns from our model of
international financial markets and the corresponding UIP conditions:

Xt = ΩXt−1 + Λ′XFG
t + ut, (4.38)
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Sk
j,t = cjMk,t + Λk

j F
G
t + uj,t, (4.39)

E(Υk,t+1)−Υk,t = ψ(r1,t − rk,t) + Λe
kF

G
t + ξk,t, (4.40)

for ΛX = [Λπ Λy Λi] and Sjt =Rk
j,t − rk,t.

¥ 4.3 Econometric Estimation Strategy

Since the complete model can be characterized as a hybrid factor model with
both observed and unobserved factors, the first stage of our procedure involves
the consistent estimation of the parameters on the observed factors. Using the
corresponding residuals after partialling out the observed factors, we can then
estimate a factor model employing the methods introduced in this paper. This
will identify the number of factors and provide an estimate of their time series
process. These first two steps of our procedure only involve the reduced form
specification. We can then use the estimated global factors and compute the
structural parameters for the US macroeconomic model.

However we cannot simply assume that the unobserved latent factors are un-
correlated with the other observed factors in our model, and hence we cannot
employ a direct least squares procedure for the estimation of the coefficients
(Ω, c1, ..., cK , ψ) in equations 4.38-4.40 above. In order to account for these possi-
ble correlations we will employ the recently developed common correlated effects
(CCE) estimator of Pesaran (2006). The idea of this estimator is to augment each
estimating equation with cross-sectional averages that proxy for the unobserved
factors in order to obtain consistent residuals on which further factor analytic
procedures may be applied.

Consider the stock returns equations for a set of firms j ∈ Jk = {j1, j2, ..., jk}
based in some country k in our model. The returns minus risk-free rate specifi-
cation is given by:

Sk
j,t = cjMk,t + Λk

j F
G
t + uj,t. (4.41)

Now consider the cross-section averages of this equation:

Sw,t = cwMk,t + Λw
j
FG

t + uw,t, (4.42)

where,

Sw,t =
∑
j∈Jk

wjS
k
j,t, cw =

∑
j∈Jk

wjcj, Λw =
∑
j∈Jk

wjΛj, uw,t =
∑
j∈Jk

wjuj,t, (4.43)

for some set of weights wj. Pesaran (2006) shows that as ||Jk|| → ∞, that is
as the number of stocks for each country k included in our model increases, we
can obtain consistent estimates of the residuals from regressing the LHS variables
of the model on the observed factors if we additionally condition on the cross-
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sectional averages defined above. The cross-sectional averages provide an effective
way of proxying for the unobserved factors in the reduced form equations. Using
this method we can compute the following residuals of interest:

ûj,t = Sj,t − ĉjMk,t, (4.44)

where the estimated coefficients (ĉ0, ĉ1, ..., ĉK) are obtained by least squares
regressions that include the cross-sectionally averaged terms above. Similarly, we
can augment the macro-equations for the US with the appropriate cross-sectional
averages based on US stocks and the UIP conditions with stock market cross-
sections in order to estimate the relevant coefficients on the observed variables.

The second step in our procedure involves estimating the number of unob-
served factors and the time series of the factors. We will apply the econometric
procedure described in the theoretical part of this paper to the set of residuals
estimated using the CCE estimator for US macroeconomic equations, interna-
tional stock returns and UIP conditions. Using the eigenvalue minimum distance
procedure introduced in this paper and the IV procedures for the estimation of
the factor loadings we can identify and estimate the global factors.

Once we have identified the global factors we can estimate the structural para-
meters of the aggregate supply and demand equations in our US macroeconomic
model. Under rational expectations future forecasts of macro-variables are un-
correlated with lagged information. Following Clarida and Gertler (1999), we can
define the following moment conditions:

Et

{[(
πt − απt+1 − (1− α) πt−1 − βyt − A′F̂G

t

yt − γyt+1 − (1− γ) yt−1 − δ(it − πt+1)−B′F̂G
t

)]
Zt−2,Zt−3,...

}
= 0,

(4.45)
for an appropriately chosen set of instruments Zt−2, Zt−3... dated t − 2 and

earlier.

¥ 4.4 Data

We construct a dataset consisting of macroeconomic variables for the US and
financial variables for 8 countries: Australia, Canada, France, Germany, Hong
Kong, Japan, UK and US at monthly frequency over the period 02/1973 to
09/2006. The financial variables consist of monthly closing stock prices in lo-
cal currencies for a sample of firms in each country downloaded from Datastream.
We restrict our attention to firms for which complete time series are available
in order to avoid the biases resulting from missing observations in factor models,
which tend to be very severe. In total we use data on 1680 firms divided as follows:
Australia (52), Canada (29), France (35), Germany (82), Hong Kong (37), Japan
(626), UK (209), US (610). We also use the exchange rates for the local currency
with respect to the US dollar as provided by the Federal Reserve. The data on
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the risk free rates is constructed as the return on short-term (1 or 3 months)
government bills in the respective country and are provided by Global Financial.
Additionally we use stock market indexes provided by Global Financial for each
country in our sample.

For the US economy we use data on CPI-U, all items, US city average for
urban consumers provided by the BLS, monthly unemployment as measured by
the BLS and the end of month federal funds rate (overnight rate in the market
for commercial reserves) as reported by the Federal Reserve Board. The first two
variables are also seasonally adjusted.

¥ 4.5 Empirical Results

We employ the methods outlined above to estimate the number of factors from a
set of residuals obtained after partialling out the observed variables for each of the
3 sets of equations: US macroeconomic, international stocks, UIP/exchange rates.
We estimated the number of factors using different assumptions on idiosyncratic
error term such as independence (strict factor models) and weak autocorrelations
(approximate factor model). The number of identified factors varied between 23
and 27. For the rest of this section we take the estimated number of factors to be
23.

This number of factors is much larger than the number of factors previously
estimated in similar models. We perceive this to be a strength of our improved
econometric methodology for the identification and estimation of factors in large
panel data. The global economy is a complex phenomenon and the number of
factors is thus appropriately large.

Recall that the estimated factors are properly speaking innovations. Thus, in
Figure 4.1 we plot the cumulative (integrated) factors over the period 1973-2006.
Notice how the cumulative effect of some factors is stronger than that of other
factors. The factors with the strongest cumulative effect also tend to be the first
few commonly identified factors, which we label as “strong” factors. Ultimately
this is only a nominal issue however and we need to investigate the relationship
of all the factors to the US economy.

An often misunderstood issue in using factor analysis concerns our ability to
label the estimated factors. In Figure 4.2 we display the individual time series
for the cumulative effect of the first 6 factors. In general it is not possible for
us to relate each factor to a specific time series since the estimated factors will
be functions of many different variables. Indeed, the estimation method itself is
dependent on the identifying assumptions which fix the rotation of the factors.
Therefore, a slightly different identification scheme would produce alternative
time series profiles. Nevertheless, we hope to address this issue in future research
by developing methods of relating the estimated factors to sets of international
macroeconomic variables, thereby providing a more in-depth description of the
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factors.
Nevertheless, we can learn more about the nature of the estimated global

factors by analyzing their respective loadings. In Figure 4.3 we display the nor-
malized loadings for each company included in the financial part of our model.
The loadings are represented by vertical bars. The companies are ordered by
country and each country is marked by a vertical line. We notice that the first
panel indicates the presence of a global market factor which affects all companies
thereby inducing an approximately uniform loading pattern. It is interesting to
compare the factor loading pattern for factors 2 and 4. Factor 2 loads positively
on all companies in countries other than Japan and negatively on Japanese com-
panies. Factor 4 on the other hand loads positively on the US, negatively on
the UK and has a mixed pattern for Japan. These charts illustrate that it is
possible for global factors to impact companies in different countries in opposite
directions. Additionally, they may have a very heterogeneous impact on compa-
nies in the same country. This indicates the complex nature of the international
economy.

In Figure 4.4 we construct the 3-year rolling standard deviations for the es-
timated factors. This allows us to investigate whether some of the factors have
increased or decreased in importance over the sample. Interestingly we find that
most factors seem to exhibit a cyclical pattern rather than a time trend that
would indicate their increased or decreased importance today compared to a few
decades ago. Some exceptions such as factor 2 in the upper panel of Figure 4.4
are to be noted. Factor 2 for example peaked in importance during the first half
of the 1980 and declined afterwards. This particular pattern may indicate that it
is related to inflation.

In Figure 4.3b we have seen how the pattern of loadings varies across firms
in different countries. This suggests that global shocks do not impact countries
uniformly. Thus, they may increase the risk for companies in some countries while
reducing it for companies in other countries. Moreover, the timing of the effect
of the global factors may differ. This heterogeneity merits further investigation
and in Figure 4.5 we address the issue of the synchronization of the effects of the
global factors on US and international stocks.

In order to evaluate the extent to which the global shocks are synchronized
we employ a statistical technique for the visualization of high-dimensional data
known as an Andrews (1972) plot. We compute the mean loadings per factors for
each of the 23 factors for all the stocks in the US and all the stocks in the rest of
the world:

λUS =
(
λUS

1 , ..., λUS
23

)
=

{
(1/JUS)

JUS∑
j=1

λ1,j, (1/JUS)

JUS∑
j=1

λ2,j, ..., (1/JUS)

JUS∑
j=1

λ23,j

}

(4.46)
and similarly for the stock returns of companies in countries other than the
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US.
We can use these values as coefficients in the following function of parameter

τ :

fUS(τ) =
λUS

1√
2

+ λUS
1 sin(2πτ) + λUS

2 cos(2πτ) + ... (4.47)

The resulting functions fUS(τ) and fWorld(τ) are then plotted for τ = [0, 1]
in Figure 4.5. Andrews (1972) shows that this representation preserves a certain
distance metric (proportional to the Euclidean distance) between the loadings
matrices for the US and for the rest of the world. Thus, it can be used to easily
compare the high-dimensional loadings matrices for the two sets of equations (US
vs. World). We find a definite correlation between the two functions indicating
a substantial degree of synchronization. Nevertheless, the synchronization is far
from perfect indicating the some global shocks may affect the US differently from
the rest of the world.

The recent literature on factor models often assumes that the latent factors
are autocorrelated, implying a dynamic factor model. The factor model estimated
above, however, does not make these assumptions. As Stock and Watson (2005)
remark, the standard factor model is the static form of a dynamic model. That
is, if a factor is dynamic we may expect to find both Ft and ρF t−1 identified as
separate factors. This is however, subject, to the phase transition phenomenon
discussed in Chapter 2 which limits the number of weak factors that can actually
be identified in a given sample. Thus, even if a factor is dynamic, in a given
sample we may only observe Ft and not ρF t−1 when the degree of autocorrelation
ρ is small relative to the unobserved noise variance.

An informal visual test for the presence of dynamic factors can be constructed
as follows. Consider the matrix of all correlations between factors at L lags and
leads given by:

C =




F 1
t F 1

t+L ...
...

F 1
t F 1

t+1

F 1
t F 1

t F 1
t F 2

t ... F 1
t F p

t F 2
t F 1

t ... F 2
t F p

t ... F p
t F p

t

F 1
t F 1

t−1

...
F 1

t F 1
t−L ...




, (4.48)

where entry (L + 1, 2) corresponds to the correlation between factors 1 and 2
at the same period, while the entry (1,1) corresponds to the correlation between
factor 1 and factor 1 considered at L leads. In Figure 4.6 we plot this matrix
of correlations for L = 12 lags and leads, thus providing a comprehensive visual
image of correlations between factors and their potential dynamic effects. The
resulting matrix C has dimension 25 × 232. We notice the central spikes corre-
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sponding to the unit correlations between (F k
t , F k

t ). While this is not a formal
statistical test it nevertheless seems that some of the stronger factors also appear
to be weakly autocorrelated. It was not possible for us to identify weak factors
which can be thought of as lagged representations of the stronger factors. Thus,
it seems that the weak factors are below the identification bound discussed in
Chapter 2 and that all the 23 factors are in fact unrelated factors.

We complete the statistical characterization of the global factors by asking
which sets of equations are the factors most strongly correlated to? Recall that the
global factors are estimated from nearly 1700 equations. We divide the equations
into 4 groups corresponding to exchange rates (UIP) equations, equations for
international stock returns, equations for US stock returns and equations for the
structural model of the US economy. Intuitively, this allows us to enquire as to
the best use of these estimated factors, that is should we use these factors to
explain exchange rates or to explain inflation? In Figure 4.7 we plot the mean
factor loadings for each set of equations normalized on a [0,1] scale for each of
the 4 sets. We find that the global factors carry little explanatory power for the
exchange rates but may be substantially related to the US macroeconomic model.
The extent to which this is the case differs by factor. Factor 3 seems to be very
strongly related to the US economy, indicating that it may in fact correspond
to the effect of the US economy on the world economy. All factors also seem to
correspond to risk factors which are being priced by both the US market and the
international financial markets.

Let us now return to the structural model of the US economy and estimate
the structural coefficients in the aggregate supply and demand equations of the
hybrid New Keynesian model with both forward and backward looking compo-
nents. We employ two basic IV estimation procedures, GMM and Fuller and use
as instruments either 4 or 6 lags of the macroeconomic variables. The recent
macroeconomic literature has raised numerous questions about the estimation of
the hybrid New Keynesian model, which are discussed in detail by Gali, Gertler
and Lopez-Salido (2005). Most of the objections seem to concern the use of po-
tentially weak instruments in the GMM estimation. In order to address these
concerns we also report the estimates derived from the Fuller estimator.

The first two columns of Table 1 report the benchmark estimates of the struc-
tural model. Although we use unemployment instead of marginal cost or the
output gap, the estimates are similar. In particular we find a dominant forward-
looking behavior in both equations combined with an insignificant effect of unem-
ployment in the Phillips curve and the real interest rate in the demand equations.

We next augment the existing specification with a factor proxy based on the
Pesaran (2006) procedure and finally with all the estimated factors derived above.
We notice that as we add the factors to the Phillips curve the results change
substantially from the estimates without the global factors. Backward looking
behavior becomes dominant and the coefficient on unemployment increases by
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a factor of 16 to 18. We notice that the global factors carry very substantial
explanatory power for inflation over the sampling period. The residual sum of
squares (RSS) for the Phillips curve decreases by a factor of more than 4 as we
add the global factors to the equation. The global factors also have a similar effect
when added to the aggregate demand equation. In the benchmark estimates of
the aggregate demand, the behavior is weakly forward looking while the effect
of the real interest rate is small and insignificant. As we add the global factors
the behavior switches to being weakly backward looking while the effect of the
real interest rate increases by a factor of 10. The RSS also decreases by a small
amount suggesting that global factors are much more important for characterizing
US inflation than aggregate demand.

In Figure 4.8 we plot the estimated coefficients on the significant global factors
as estimated in our structural model. The plot reveals that most of the global
factors can be thought of as aggregate supply shocks, while only a minority cor-
responds to significant aggregate demand shocks. Moreover, their effect is not
necessarily in opposite directions, thus indicating that at least some of the shocks
can operate the same direction of both the supply and demand side in the US
economy.

The results of Table 1 are surprising and reveal the strong effect of global
factors in masking the true behavior of expectations and lags of inflation and
unemployment as well the structural effect of unemployment in the Phillips curve
and the real interest rate in aggregate demand. Our results show that this is
not simply due to the presence of weak instruments as a number of previous
authors have argued. The estimates for GMM and Fuller are very similar to
each other. In fact, it seems that using lags of macroeconomic variables in the
presence of global factors is inappropriate due to the global shocks leading to
inconsistent estimates in the benchmark specification without global factors. In
Figure 4.9 we plot the cross-correlation matrix described in equation 4.48 for
both macroeconomic variables and estimated global factors. We find that both
lags and leads of the macroeconomic variables are at least weakly correlated with
the estimated global factors. Thus global factors appear to be driven at least
in part by the previous macroeconomic performance of the US economy while
at the same time affecting expectations of future performance. The benchmark
specification leads to inconsistent estimates since the global factors are present
in the error term but not explicitly modeled and therefore correlated with the
instruments. Our specification of the Phillips curve and the aggregate demand
augmented with the global factors, however, leads to consistent estimates since
the global factors are explicitly taken into account in the equations.
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Table 4.1. Estimation of the Structural Model with Global Factors

P
h

il
li
p

s
 C

u
rv

e

F
u

ll
e
r

G
M

M
F

u
ll

e
r

G
M

M
F

u
ll

e
r

G
M

M
F

u
ll
e
r

G
M

M

In
fl
a

ti
o

n
 (

t+
1

)
0
.5

3
0

0
.5

3
9

0
.5

1
9

0
.5

2
8

0
.1

3
9

0
.1

3
1

0
.1

8
2

0
.1

4
3

(0
.0

5
3
)*

(0
.0

4
8
)*

(0
.0

5
4
)*

(0
.0

4
7
)*

(0
.0

9
1
)

(0
.0

6
2
)*

(0
.0

8
0
)*

(0
.0

5
6
)*

In
fl
a

ti
o

n
 (

t-
1

)
0
.4

7
2

0
.4

6
2

0
.4

8
2

0
.4

7
3

0
.8

6
0
.8

6
7

0
.8

1
7

0
.8

5
4

(0
.0

5
3
)*

(0
.0

4
8
)*

(0
.0

5
3
)*

(0
.0

4
7
)*

(0
.0

9
0
)*

(0
.0

6
2
)*

(0
.0

7
9
)*

(0
.0

5
6
)*

U
n

e
m

p
lo

y
m

e
n

t 
(t

)
-0

.0
0
1

-0
.0

0
1

-0
.0

0
5

-0
.0

0
4

-0
.0

1
8

-0
.0

1
8

-0
.0

1
6

-0
.0

1
7

(0
.0

0
3
)

(0
.0

0
3
)

(0
.0

0
4
)

(0
.0

0
4
)

(0
.0

0
3
)*

(0
.0

0
2
)*

(0
.0

0
3
)*

(0
.0

0
2
)*

R
S

S
1
6
.3

3
7

1
6
.4

3
4

1
6
.1

7
9

1
6
.2

4
8

3
.7

5
1

3
.7

5
8

3
.8

1
2

3
.7

3
1

A
g

g
re

g
a

te
 D

e
m

a
n

d

F
u

ll
e
r

G
M

M
F

u
ll

e
r

G
M

M
F

u
ll

e
r

G
M

M
F

u
ll
e
r

G
M

M

U
n

e
m

p
lo

y
m

e
n

t 
(t

+
1

)
0
.5

1
8

0
.5

1
2

0
.5

2
8

0
.5

2
4

0
.4

3
7

0
.4

2
7

0
.4

4
8

0
.4

2
0

(0
.0

4
1
)*

(0
.0

4
3
)*

(0
.0

4
5
)*

(0
.0

4
8
)*

(0
.0

4
2
)*

(0
.0

4
3
)*

(0
.0

4
3
)*

(0
.0

4
3
)*

U
n

e
m

p
lo

y
m

e
n

t 
(t

-1
)

0
.4

8
2

0
.4

8
9

0
.4

7
3

0
.4

7
8

0
.5

6
1

0
.5

7
2

0
.5

5
0

0
.5

7
8

(0
.0

4
1
)*

(0
.0

4
3
)*

(0
.0

4
5
)*

(0
.0

4
7
)*

(0
.0

4
2
)*

(0
.0

4
3
)*

(0
.0

4
3
)*

(0
.0

4
3
)*

R
e

a
l 
In

te
re

s
t 

R
a

te
 (

t)
-0

.0
5
0

-0
.0

7
0

0
.0

4
6

0
.0

4
0

-0
.4

6
1

-0
.5

8
2

-0
.5

0
2

-0
.5

2
5

(0
.2

5
8
)

(0
.2

6
1
)

(0
.2

9
7
)

(0
.3

0
0
)

(0
.2

7
6
)

(0
.2

8
2
)*

(0
.2

7
6
)

(0
.2

6
4
)*

R
S

S
5
.6

3
7

5
.6

3
4

5
.6

5
0

5
.6

4
9

4
.5

8
5

4
.6

1
7

4
.5

2
5

4
.5

8
5

N
o

 F
a

c
to

rs
W

it
h

 P
ro

x
ie

s
W

it
h

 F
a

c
to

rs

IV
 4

 l
a

g
s

IV
 6

 l
a

g
s

N
o

 F
a

c
to

rs
W

it
h

 P
ro

x
ie

s
W

it
h

 F
a

c
to

rs

IV
 4

 l
a

g
s

IV
 6

 l
a

g
s



4.6. CONCLUSION 101

¥ 4.6 Conclusion

Factor models have traditionally played a central role in empirical macroeco-
nomics and finance, and recently the question of how global factors influence US
economic performance has been at the forefront of policymakers’ attention. The
proposed new econometric procedures are used to estimate a structural macro-
economic model which provides many insights into the nature of global supply
shocks and their effect on the US economy. In particular we show that ignoring
the role of global factors can mask the effect of unemployment in the Phillips
curve and of the real interest rate in the aggregate demand relationship.
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CHAPTER 5

Estimating the Random Coefficients
Logit Model

Understanding discrete economic choices is an important aspect of modern eco-
nomics. McFadden (1974) introduced the multinomial logit model as a model of
choice behavior derived from a random utility framework. An individual i faces
the choice between K different goods i = 1..K. The utility to individual i from
consuming good j is given by Uij = x

′
ijβ + εij, where x

′
ij corresponds to a set of

choice relevant characteristics specific to the consumer-good pair (i, j). The er-
ror component εij is assumed to be independently identically distributed with an
extreme value distribution f(εij) = exp(−εij) exp(− exp(−εij)).

If individual i is constrained to choose a single good within the available set,
utility maximization implies that some good j will be chosen over all other goods
l 6= j such that Uij > Uil, for all l 6= j. We are interested in deriving the probability
that consumer i chooses good j, which is

Pij = Pr[x
′
ijβ + εij > x

′
ilβ + εil, for all l 6= j]. (5.1)

McFadden (1974) shows that the resulting integral can be solved in closed
form implying the familiar expression:

Pij =
exp(x

′
ijβ)

K∑
k=1

exp(x
′
ikβ)

(= sij) . (5.2)

In some analyses it is also useful to think of the market shares of different firms.
Without loss of generality we can also consider the choice probability described
above to be the share of the total market demand which goes to good j in market i

103
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and we will denote this by sij. All the results derived in this chapter will be valid
for either interpretation. For convenience we shall focus on the market shares
interpretation of the above equation.

The vector of coefficients β can be thought of as a representation of the indi-
vidual tastes and determines the choice, conditional on the observable consumer-
good characteristics. Although an extremely useful model, the multinomial model
suffers from an important limitation: it is built around the the assumption of in-
dependence of irrelevant alternatives (IIA), which implies equal cross price elas-
ticities across all choices, as demonstrated by Hausman (1975). Additionally, it
does not allow for correlations between the random components of utility, thus
limiting the complexity of individual choice which can be modeled (Hausman and
Wise, 1978).

While a number of more flexible specifications have been proposed, few proved
to be computationally tractable. The addition of a random coefficients framework
to the logit model provides an attractive alternative (Cardell and Dunbar, 1980).
In many applications however it is important to think of tastes as varying in
the population of consumers according to a distribution F (β). It is particularly
important not to assume the taste parameters to be independent. The estimation
of correlations between the components of the vector β is of major interest. The
resulting correlations describe patterns of substitution between different product
characteristics.

In practice, we often assume that the distribution F (β) is Normal with mean
b and covariance Σ. The purpose of random coefficients models is to estimate the
unknown parameters b and Σ from the available sample. From a computational
point of view, the aim is to obtain the expected share of good j in market i from
the evaluation of the following expectation:

Eβ(sij) =

+∞∫

−∞

exp(x
′
ijβ)

K∑
k=1

exp(x
′
ikβ)

dF (β) (5.3)

We denote this model to be the random coefficients logit model. The above
expression corresponds to a multivariate integral over the dimension of the space
of the taste parameters. Since the integral does not have a known analytic so-
lution, the use of simulation methods currently plays an important part in the
implementation of these models (Lerman and Manski, 1981) with recent appli-
cations employing pseudo-random Halton sequences (Small, Winston and Yan,
2005; Train, 2003).

The random coefficients logit model is an extremely versatile tool for the analy-
sis of discrete choices since it can be thought of as an arbitrarily close approximate
representation of any random utility model consistent with choice probabilities
(McFadden and Train, 2000). This has prompted researchers to think of this
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model as “one of the most promising state of the art discrete choice models”
(Hensher and Green, 2003). Applications of the random coefficients logit model
abound, not only within economics, but also in related disciplines such as market-
ing or transportation research (Hess and Polak, 2005). The random coefficients
model is also an important building block for more complex models. Thus, Berry,
Levinsohn and Pakes (1995) employ the random coefficients logit model to analyse
demand based on market-level price and quantity data. Bajari, Hong and Ryan
(2005) incorporate it into an econometric model of discrete games with perfect
information, where it selects the probability of different equilibria.

The implementation of the random coefficients model remains a challenging
application of the method of simulated moments. In particular the estimation of
a full covariance matrix of the taste parameters, which fully incorporates all the
possible correlations between parameters, seems to elude most researchers and
appears to be a serious limitation of the simulation approach. In Section 5.1 of
this chapter we will derive an analytic approximation of the integral expression in
Equation 5.3 which can be incorporated into an extremely convenient non-linear
least squares framework for the estimation of all mean and variance-covariance
parameters of the taste distribution. Section 5.2 shows the superior performance
of the new method based on the Laplace method compared to the simulation
alternative in cases where the model is specified with non-zero correlations.

¥ 5.1 A Laplace Approximation of the Expected Share

Consider the expected share of product j in market i under the random coefficients
logit model introduced above.

Eβ(sij) = Eβ





exp(x
′
ijβ)

K∑
k=1

exp(x
′
ikβ)





= Eβ





(
K∑

k=1

exp(x
′
ijkβ)

)−1


 , (5.4)

wherexijk = xik− xij for all k. Assume that the taste parameters β are drawn
from a normal multivariate distribution with mean b and covariance matrix Σ,

f(β) = (2π)−p/2
∣∣∣ Σ

∣∣∣
−1/2

exp

{
−1

2
(β − b)′ Σ−1(β − b)

}
. (5.5)

For simplicity we focus in our derivations on the case where all coefficients are
random. More generally, we may wish to allow for mixture of fixed and random
coefficients. The results in this chapter will continue to hold in this case too and
we restate the main result of this chapter in terms of both random and fixed
coefficients in Appendix B.
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Then the expected share is given by the following multivariate integral:

Eβ(sij) = (2π)−p/2
∣∣∣ Σ

∣∣∣
−1/2

+∞∫

−∞

exp[−g(β)]dβ, where (5.6)

g(β) =
1

2
(β − b)′ Σ−1(β − b) + log

(
K∑

k=1

exp(x
′
ijkβ)

)
(5.7)

In this section we provide an approximation to the integral expression above
using the asymptotic method of Laplace. While univariate applications of this
method are common to mathematics and physics, where they are routinely ap-
plied to the complex functions in order to derive “saddle-point approximations”,
few applications to econometrics or statistics have been attempted. The exten-
sion of the method to multivariate settings was developed by Hsu (1948) and
Glynn (1980). A statement of the main theorem is given in Appendix A together
with the technical conditions required for the approximation to exist. Statisti-
cal applications of the Laplace approximation were developed by Daniels (1954)
and Barndorff-Nielsen and Cox (1979) who employ the Laplace approximation to
derive the indirect Edgeworth expansion, a generalization of the Edgeworth expan-
sion method for distributions to exponential families. The Laplace method was
also applied in Bayesian statistics to derive approximations to posterior moments
and distributions (Tierney and Kadane, 1986; Efstathiou, Guthierrez-Pena and
Smith, 1998). More recently, Butler (2002) noticed that the Laplace approxima-
tion often produces accurate results in sub-asymptotic situations which are not
covered by the traditional setting. It is this insight which we will use below.

Now perform a Taylor expansion of the function g(β) around the point β̃ij,
such that g(β̃ij) < g(β) for all β 6=β̃. This expansion is given by:

g(β) ∼= g(β̃ij) +
(
β − β̃ij

)′
[
∂g

∂β
|β=β̃ij

]+

+
1

2

(
β − β̃ij

)′
[

(
∂2g(β)

∂β∂β′

)

β=β̃ij

]
(
β − β̃ij

)
+ O(

(
β − β̃ij

)3

). (5.8)

Substituting in the integral expression above we obtain:

Eβ(sij) ∼= |Σ|−1/2 exp(−g(β̃ij))×
+∞∫

−∞

(2π)−p/2 exp

{
−1

2

(
β − β̃ij

)′
[

(
∂2g(β)

∂β∂β′

)

β=β̃ij

]
(
β − β̃ij

)
+ O(

(
β − β̃ij

)3

)

}
dβ

The intuition for this approach is given by the fact that if g(β) has a minimum
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at the point β̃ij, then the contribution of the function g(β) to the exponential
integral will be dominated by a small region around the point β̃ij. Furthermore by
using a second order Taylor expansion around β̃ij, we make the further assumption
that the higher order terms of the expansion may be safely ignored. Let Σ̃ij be

the inverse of the Hessian of g(β) evaluated at β̃ij, i.e. Σ̃−1
ij =(∂2g(β)

∂β∂β′ )β=β̃ij
. Note

that both β̃ij and Σ̃ij are indexed by i and j to remind us that these values depend
on the covariates of product j in market i explicitly and in general will not be
constant across products or markets.

Then, we can re-write the integral above as:

Eβ(sij) ∼=|Σ|−1/2 exp(−g(β̃ij))
∣∣∣ Σ̃ij

∣∣∣
1/2

(2π)−p/2

∣∣∣∣ Σ̃ij

∣∣∣∣
−1/2

+∞∫

−∞

exp

{
−1

2

(
β − β̃ij

)′
Σ̃ij

−1
(β − β̃ij)

}
dβ. (5.9)

We recognize the right hand side of this expression to be the Gaussian integral,
that is the integral over the probability density of a Normal variable β with mean
β̃ij and covariance Σ̃ij. Since this area integrates to 1 we have,

(2π)−p/2
∣∣∣ Σ̃ij

∣∣∣
−1/2




+∞∫

−∞

exp

{
−1

2

(
β − β̃ij

)′
Σ̃−1

ij (β − β̃ij)

}
dβ


 = 1 (5.10)

and we can write the expected share of product i in market j as

Eβ(sij) ∼=

√√√√
∣∣∣Σ̃ij

∣∣∣
|Σ | exp(−g(β̃ij)) (5.11)

The expansion point β̃ij has to be chosen optimally for each share, that is β̃ij

solves the equation g′(β)|β=β̃ij
= 0, i.e.

(
β̃ij − b

)′
Σ−1 +

K∑

k=1





x
′
ijk

exp(x
′
ijkβ̃ij)

K∑
k=1

exp(x
′
ijkβ̃ij)





= 0 (5.12)

In Appendix B we show that -g(β) is the sum of two strictly concave functions
and thus it is also concave. Hence, the function g(β) attains a unique minimum
at the point β̃ij. We can also think of the optimal expansion point β̃ij as solving
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a fixed-point equation, β̃ij = B(β̃ij), where

B(β̃ij) = b′ −




K∑

k=1





x
′
ijk

exp(x
′
ijkβ̃ij)

K∑
k=1

exp(x
′
ijkβ̃ij)






 Σ. (5.13)

Additionally, the Hessian of g(β) is given by

∂2g(β)

∂β∂β′
= Σ−1+

K∑
k=1

xijkx
′
ijk exp(x

′
ijkβ̃ij)

K∑
k=1

exp(x
′
ijkβ̃ij)

−

[
K∑

k=1

xijk exp(x
′
ijkβ̃ij)

]
[

K∑
k=1

x′ijk exp(x
′
ijkβ̃ij)

]

[
K∑

k=1

exp(x
′
ijkβ̃ij)

]2

(5.14)
The following proposition summarizes the main result of this chapter by ap-

proximating the Gaussian integral corresponding to the expected share of product
i in market j using a Laplace approximation.

Proposition 5.1: If β has a Normal distribution with mean b and covariance

Σ, we can approximate Eβ(sij) =Eβ{(
K∑

k=1

exp(x
′
ijkβ))

−1

} by

Eβ(sij) ∼=

√√√√
∣∣∣Σ̃ij

∣∣∣
|Σ | exp

{
−1

2

(
β̃ij − b

)′
Σ̃−1

ij (β̃ij − b)

}(
K∑

k=1

exp(x
′
ijkβ̃ij)

)−1

, (5.15)

where

Σ̃ij =





Σ−1 +

K∑
k=1

xijkx
′
ijk exp(x

′
ijkβ̃ij)

K∑
k=1

exp(x
′
ijkβ̃ij)

−

[
K∑

k=1

xijk exp(x
′
ijkβ̃ij)

]
[

K∑
k=1

x′ijk exp(x
′
ijkβ̃ij)

]

[
K∑

k=1

exp(x
′
ijkβ̃ij)

]2





−1

,

(5.16)
and β̃ij solves the fixed-point equation β̃ij = B(β̃ij) for

B(β̃ij) = b′ −




K∑

k=1





x
′
ijk

exp(x
′
ijkβ̃ij)

K∑
k=1

exp(x
′
ijkβ̃ij)






 Σ. (5.17)

In the next section we present detailed simulation results which show the
performance of the approximation in estimating the unknown parameters b and
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Figure 5-1. Comparison of expected share obtained by numerical integration and the corre-
sponding Laplace approximation for a model with 2 covariates at fixed values of b and Σ.

Σ of the model. The figure below shows the remarkably good fit between of the
Laplace approximation of the true market share at fixed values of b and Σ for two
covariates.

The exact expected share obtained by numerical integration coincides with
the expected share obtained by the Laplace approximation almost everywhere.
The only noticeable deviation occurs for values of the expected share close to
1. Fortunately, this case is relatively infrequent in economic applications, where
in multi-brand competition models we may expect to have many small shares in
any given market but it is unlikely to have more than a few very large shares
in the entire sample. The Laplace approximation introduced in this section has
the peculiar property of being an asymmetrical approximation to a symmetrical
function. This feature however proves to be extremely useful for economic appli-
cations since it provides an very close approximation to small shares which are
much more likely to occur in economic data than shares close to 1, where the
approximation tends to underestimate the true expected share.

The optimal expansion point β̃ij used in Proposition 5.1 can be computed
by standard iterative methods which solve the fixed-point equation β̃ij = B(β̃ij).
While such methods are widely available in commercial software packages and
tend to be extremely fast, the optimal expansion point β̃ij needs to be computed
for each firm in each market separately, which may potentially slow down numer-
ical optimization routines if large data sets are used. To improve computational
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efficiency we can further derive an approximate solution to the fixed point equa-
tion, which as we will show in the next section, performs very well.

Let h(β) = log

(
K∑

k=1

exp(x
′
ijkβ)

)
and perform a quadratic Taylor approxima-

tion of g(β) around the constant parameter vector b. Then,

h(β) ∼= hij(b) + (β − b)
′
Jij(b) +

1

2
(β − b)

′
Hij(b) (β − b) + O((β − b)3), (5.18)

where the Jacobian and Hessian terms are given by

Jij(b) =
K∑

k=1





x′ijk
exp(x

′
ijkb)

K∑
k=1

exp(x
′
ijkb)





and (5.19)

Hij(b) =

K∑
k=1

xijkx
′
ijk exp(x

′
ijkb)

K∑
k=1

exp(x
′
ijkb)

−

[
K∑

k=1

xijk exp(x
′
ijkb)

]
[

K∑
k=1

x′ijk exp(x
′
ijkb)

]

[
K∑

k=1

exp(x
′
ijkb)

]2 . (5.20)

Thus, we can re-write the expression for g(β) as

g(β) =
1

2
(β − b)′ Σ−1(β − b) + hij(b) + (β − b)

′
Jij(b) +

1

2
(β − b)

′
Hij(b) (β − b)

(5.21)
The optimal expansion point β̃ij solves the equation ∂g(β)/∂β = 0. Hence,

∂g(β)

∂β
= (β − b)′ Σ−1 + Jij(b) + (β − b)′ Hij(b) = 0. (5.22)

Since this expression is now linear we can easily solve for the optimal expansion
point β̃ij,

β̃ij = b +
[
Σ−1 + Hij(b)

]−1
J
′
ij(b). (5.23)

We can now re-write Proposition 5.1 to obtain an easily implementable version
of the Laplace approximation of the expected share.

Proposition 5.2: If β has a Normal distribution with mean β and covariance

Σ, we can approximate Eβ(sij) =Eβ{(
K∑

k=1

exp(x′ijkβ))
−1

} by

Eβ(sij) ∼=

√√√√
∣∣∣Σ̃ij

∣∣∣
|Σ | exp

{
−1

2

(
β̃ij − b

)′
Σ̃−1

ij (β̃ij − b)

}(
K∑

k=1

exp(x′ijkβ̃ij)

)−1

, (5.24)
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where

β̃ij = b +
[
Σ−1 + Hij(b

∗)b∗=b

]−1
J
′
ij(b) (5.25)

Σ̃−1
ij = Σ−1 + Hij(b

∗)b∗=b̃ij
, (5.26)

and

Jij(b) =
K∑

k=1





x′ijk
exp(x′ijkb)

K∑
k=1

exp(x
′
ijkb)





(5.27)

Hij(b
∗) =

K∑
k=1

xijkx
′
ijk exp(x

′
ijkb

∗)

K∑
k=1

exp(x′ijkb∗)
−

[
K∑

k=1

xijk exp(x′ijkb∗)
]

[
K∑

k=1

x′ijk exp(x′ijkb∗)
]

[
K∑

k=1

exp(x′ijkb∗)
]2 .

(5.28)
Notice that the Hessian expression Hij(b

∗) is evaluated at different points b∗ in
the computation of the values of β̃ij and Σ̃ij. Proposition 5.2 is also insightful in
that it explains why a simple Taylor expansion of the Gaussian integral around the
mean bwill fail. Consider the expression for β̃ij, which is the optimal expansion
point in the Laplace approximation. Notice that β̃ij=b only if Jij(b) = 0. But
this expression can only be zero if the vectors of covariates xijk are zero for all
k. Hence a Taylor approximation of the same problem will fail since it expands
each expected share around a constant value when in fact it ought to perform the
expansion around an optimal value which will differ from share to share depending
on the covariates. The Laplace approximation developed above performs this
optimal expansion.

¥ 5.2 Monte-Carlo Simulations

In this section we discuss the estimation of the random coefficients model by
non-linear least squares after applying the Laplace approximation derived in the
previous section to each expected market share. We will also compare its per-
formance in Monte-Carlo simulations to that of alternative methods used for the
estimation of these models in the econometric literature.

Since the model was introduced over thirty years ago, several estimation meth-
ods have been proposed which try to circumvent the problem that the integral
expression for the expected shares does not have a closed form solution for most
distributions of the taste parameters. While numerical integration by quadrature
is implemented in numerous software packages it is also extremely time consum-
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ing. In practice it is not possible to use numerical integration to solve such
problems if the number of regressors is greater than two or three. We have found
that even for the case of a single regressor this method is extremely slow and not
always reliable.

The main attempt to estimate random coefficients models is based on the
method of simulated moments (McFadden, 1989; Pakes and Pollard, 1989), where
the expectation is replaced by a an average over repeated draws from the distri-
bution of taste parameters:

Eβ(sij) =

∫
exp(x

′
ijβ)

K∑
k=1

exp(x
′
ikβ)

dF (β) ∼= 1

R

R∑
r=1

exp(x
′
ijβr)

K∑
k=1

exp(x
′
ikβr)

, (5.29)

where βr is drawn from the distribution F (β). Random sampling from a
distribution may nevertheless provide poor coverage of the domain of integration.
There is no guarantee that in a particular set of draws the obtained sequence
will uniformly cover the domain of integration and may in fact exhibit random
clusters which will distort the approximation. To achieve a good approximation
the number of draws R will have to be very large.

More recently the use of variance reduction techniques has been advocated in
an attempt to improve the properties of simulated estimation (Train, 2003). Neg-
atively correlated pseudo-random sequences may lead to a lower variance of the
resulting estimator than traditional independent sampling methods. The method
currently employed in econometrics uses Halton sequences (Small, Winston and
Yan, 2005).

Halton sequences can be constructed as follows. For each dimension r of the
vector β and some prime number k construct the sequence

st+1 =

{
st, st +

1

k
, ..., st +

(k − 1)

kt

}
, for s0 = 0. (5.30)

This sequence is then randomized by drawing µ uniform (0,1) and for each
element s, letting s∗ = mod(s + µ).

This method provides coverage of the unit hypercube by associating each
dimension with a different prime number k. In order to transform these points
into draws from the relevant distribution, an inversion in then applied, e.g. if the
desired distribution is Normal one would turn these points on the unit hypercube
into values of β, by letting βr = Φ−1(s∗r), which corresponds to the inverse of the
normal distribution.

The use of Halton sequences improves performance over the use of independent
draws and yet nevertheless it suffers from the curse of dimensionality. Many
thousand draws are required for each observation and the application of this
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method is extremely problematic for the estimation of even a small number of
parameters since it is so time consuming.

The mathematical properties of Halton sequences are not sufficiently well un-
derstood and may represent a liability in some applications. Train (2003) reports
that in estimating a random coefficients logit model for households’ choice of
electricity supplier repeatedly, most runs provided similar estimates of the coeffi-
cients, yet some runs provided significantly different coefficients even though the
algorithm was unchanged and applied to the same data set. Similarly, Chiou and
Walker (2005) report that simulation based methods may falsely identify mod-
els if the number of draws is not sufficiently large. The algorithm may produce
spurious results which “look” reasonable yet are not supported by the underlying
data.

Additionally, to our knowledge, it was not possible so far to reliably estimate
the full covariance matrix using simulation based methods. Researchers focus
exclusively on the estimation of the mean and variance parameters thereby as-
suming a diagonal structure to the covariance matrix Σ of the taste parameters.
We will show how this problem can be easily overcome by the use of the Laplace
approximation method we propose in this chapter. Later on in this section we will
also show how ignoring the covariances may lead to biased results and unreliable
policy analysis if the taste parameters in the true data generating process are
correlated.

We propose estimating the model parameters (b, Σ) by non-linear least squares.
Let sij be the observed market share of firm j in market i. We can construct
the approximation of the expected share using the Laplace approximation as
described in Section 5.1, ŝij(b, Σ) = Eβ(sij). This will be a non-linear function in
the model parameters b and Σ and can be implemented using either Proposition
5.1 or Proposition 5.2. The implementation of Proposition 5.2 is immediate and
only involves the use of matrix functions. We can then proceed to estimate the
model parameters by least squares or weighted least squares which can improve
efficiency:

(
β̂, Σ̂

)
= argminβ,Σ

N∑
i=1

K∑
j=1

(sij − ŝij(b, Σ))2. (5.31)

The optimization can be achieved using a Newton type constrained optimiza-
tion routine. Some parameters may require linear constraints (e.g. if the op-
timization is performed over variance parameters, then (σ2)p > 0 for all taste
parameters βp). The optimization needs to ensure that the estimated covariance
matrix is positive definite at each step, for example by employing an appropriate
re-parameterization or the Cholesky decomposition

This can be achieved by an appropriate penalization at the edges of the allow-
able domain. The model can also be estimated by minimum chi-square techniques
or by maximum likelihood given our evaluation of the expected shares. Simula-
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Table 5.1. Estimation of the one variable random coefficients model. N = 1000,K = 6.
Mean Bias Quadrature Fixed Point Laplace Laplace Halton
b 0.00778 0.00492 0.00555 0.00269
σ2 0.04957 0.02348 0.00634 -0.02011

MSE Quadrature Fixed Point Laplace Laplace Halton
b 0.01003 0.00297 0.00281 0.00301
σ2 0.09833 0.06641 0.08357 0.07381

tion results suggest no significant performance differences between these different
methods of implementation.

In Table 5.1 we estimate a random coefficients model with a single taste para-
meter using the methods discussed above. The covariate is drawn from a mixture
distribution of a normal and a uniform random variable. This particular con-
struction is performed in order to correct for unreliable estimates that have been
reported when only normal covariates are being used. Since the model only re-
quires univariate integration we can also perform numerical integration. We use a
second order Newton-Coates algorithm to perform the integration by quadrature
for each expected share. Additionally we compute estimates using the two ver-
sions of the Laplace approximation of the expected share as described in Section
5.1 in Propositions 5.1 and 5.2 respectively. The results labelled as “Fixed Point
Laplace” compute the optimal expansion points β̃ij using iterative fixed point
techniques. The results labelled “Laplace” approximate this fixed point calcula-
tion using the analytic expression of Proposition 5.2. We also compute estimates
using Halton sequences as implemented by Whinston, Small and Yan (2005). We
perform 500 draws for each observation.

The results in Table 5.1 show that all four methods produce comparable re-
sults. Interestingly though, numerical integration tends to be outperformed by
either of the approximation methods presented here. In particular the Laplace
approximation we proposed performs very similarly to the simulated estimation
based on Halton sequences both in terms of mean bias and mean squared error.
This result was confirmed in additional simulations were the number of taste pa-
rameters was increased. The Laplace approximation introduced in this chapter
outperforms the method of simulated moments in terms of computational time.
Even in this simple one dimensional example the Laplace method runs about
three times faster than the corresponding estimation using Halton sequences.

We have found no significantly different performance results between the
Laplace approximation using the fixed point calculation and that using the ap-
proximation to the optimal expansion point. The Laplace approximation of
Proposition 5.2 nevertheless outperformed all other methods in terms of com-
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Table 5.2. Estimation of the three variable random coefficients model with covariances. N =
2000,K = 6.

Laplace Mean Bias MSE
b1 0.01167 0.00233
b2 0.00679 0.00201
b3 -0.00371 0.00298
σ2

1 -0.06889 0.09499
σ2

2 -0.08245 0.07016
σ2

3 0.03880 0.03180
ρ12 0.04918 0.00774
ρ13 0.04317 0.00350
ρ23 -0.00702 0.00551

putational time, being 3 to 5 times faster than the simulation approach.
Once we allow for multiple taste parameters we can ask the question whether

these taste parameters are correlated with each other. Consider a model with 3
taste parameters, drawn from a distribution with mean (b1, b2, b3)

′ and variances
(σ2

1, σ
2
2, σ

2
3). In many cases of interest there is no a priori reason to constrain the

covariance matrix of this distribution to be diagonal. We can allow for correlations
between taste parameters by setting the off-diagonal elements of the covariance
matrix equal to σij = ρijσiσj for −1 < ρij < 1. The parameter ρij measures
the strength of the correlation between the different taste parameters. The full
covariance matrix which needs to be estimated in this case is:

Σ =




σ2
1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3


 (5.32)

We use the Laplace approximation method to estimate all 9 parameters and
report results for mean bias and MSE in Table 5.2. We were not able to esti-
mate the same parameters using the method of simulated moments with Halton
sequences. The algorithm failed to converge for Halton sequences under different
model parameters and different starting values.

Computational issues involving the use of simulated moments seem to have
prevented empirical work involving the estimation of the full covariance matrix.
We now wish to explore to what extent this may bias the results. To this purpose
we estimate the same model as in the above example but ignore the covariances.
Thus the true model has ρij 6= 0 but we only estimate the restricted model where
we assume ρij = 0 for all i, j, i 6= j.

The results are presented in Table 5.3. We were able to obtain estimates of
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Table 5.3. Estimation of the three variable random coefficients model without covariances.
The true model contains covariances but these are not estimated. N = 2000,K = 6.

Mean Bias Mean Bias MSE MSE
Laplace Halton Laplace Halton

b1 0.02037 0.01003 0.00321 0.00256
b2 0.01582 0.00778 0.00201 0.00258
b3 0.00651 0.00212 0.00122 0.00197
σ2

1 -0.01032 -0.21102 0.10192 0.18226
σ2

2 -0.50883 -0.43340 0.32381 0.27094
σ2

3 -0.12991 -0.14967 0.03900 0.09577

the restricted model using both the new Laplace approximation we propose and
by using the simulation approach involving Halton sequences. Once again both
methods produce comparable results. While the estimates of the mean parameters
(b1, b2, b3)

′ seem to be sufficiently robust to the misspecification of the covariance
matrix, the estimates of the variance parameters (σ2

1, σ
2
2, σ

2
3) seem to be strongly

affected by the non-inclusion of the covariance terms in the optimization. The
size of the bias is model dependent and we have found an absolute value of the
bias between 30-60% in most simulations. Additionally, it seems that negative
correlations which are falsely excluded bias the results much more than positive
ones.

The failure to include the correlations between taste parameters may also lead
to incorrect policy recommendations. Thus, consider the three variable described
above where the true data generating process has non-zero correlation terms and
a full covariance matrix. We can interpret the model as follows.

We label the first variable as “price” and consider the policy experiment
whereby the government has to decide whether to impose a 10% tax on a specific
good. The tax is fully passed on to the consumers in the form of a 10% price
increase. There are K = 6 competing firms in each market producing differen-
tiated brands of the good on which the tax was imposed. We wish to simulate
the ex post effect of the tax on the market shares of each firm. In order to do so
we collect a sample of observations consisting of the market shares of each firm
in different markets and the product characteristics of the differentiated good
produced by brand and market. We estimate the random coefficients model with
a full covariance matrix which allows for correlations between taste parameters.
We also estimate the same model but limit ourselves to estimating a diagonal
covariance thus restricting the correlations to be zero and also derive the logit
estimates of the means corresponding to the case where the taste parameters are
assumed to be constant in the population. We can use these estimates to simulate
the distribution of market shares of each firm across the markets and compare



5.3. CONCLUSION 117

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.04

0.08

Distribution of Market Shares for Firm 1

After Tax (Logit)

After Tax (with covariances)

Before Tax

After Tax (no covariances)

Figure 5-2. Market shares of Firm 1 before and after tax

them to the initial distribution of market shares before the tax was implemented.
We present the resulting distributions in Figure 5.2.

If we estimate any of the misspecified models by using either the logit estimates
of Equation 5.2 or the random coefficients logit estimates of Equation 5.3 under
the assumption of no correlation we would reach very different conclusions from
the case when we take into account the full covariance matrix between taste
parameters. Thus we can see how ignoring the correlations may lead to incorrect
policy recommendations when the random coefficients model is used to estimate
the distribution of taste parameters.

¥ 5.3 Conclusion

In this chapter we have introduced a new analytic approximation to the choice
probability in a random coefficients logit model. The approximation was derived
using a multivariate extension of the Laplace approximation for sub-asymptotic
domains. The expression results in a non-linear function of the data and parame-
ters which can be conveniently estimated using non-linear least squares.
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This new method of estimating random coefficients logit models allows for
the estimation of correlations between taste parameters. The estimation of a
full covariance matrix seems to have eluded many previous implementations of
the random coefficients logit model employing simulations of the underlying taste
distributions.

Simulation results show that our new method performs extremely well, both in
terms of numerical accuracy and computational time. We also provide an example
of the importance of estimating correlations between taste parameters through a
tax simulation where very different policy implications would be reached if the
estimated model is misspecified by restricting the correlations to be zero.

¥ 5.4 Appendix A: Laplace Approximation Theorem

This appendix states the multivariate Laplace approximation theorem. For ad-
ditional discussions of the theorem and applications to statistics see Muirhead
(2005) and Jensen (1995). A proof is given in Hsu (1948).

Laplace Approximation Theorem. Let D be a subset of Rp and let f and
g be real-valued functions on D and T a real parameter. Consider the integral

I =

∫

β∈D

f(β) exp(−Tg(β))dβ (5.33)

a) g has an absolute minimum at an interior point β̃ of D;

b) there exists T ≥ 0 such that f(β) exp(−Tg(β)) is absolutely integrable over
the domain D;

c) all first and second order partial derivatives of g(x), ∂g
∂βi

, ∂2g
∂βi∂βj

, for i = 1 . . . p

and j = 1 . . . p exist and are continuous in the neighborhood N(β̃) of β̃.

d) there is a constant γ < 1 such that | exp(−g(β))

exp(−g(β̃))
| < γ for all x ∈ D\N(β̃)

e) f is continuous in a neighborhood N(β̃) of β̃.

Then for large T , we have:

Ĩ =

(
2π

T

)p/2

[det(H(β̃))]

−1/2

f(β̃) exp(−Tg(β̃)), whereH(β̃) =
∂2g(β̃)

∂β̃∂β̃′
(5.34)

and
I = Ĩ(1 + O(T−1)) asT →∞. (5.35)
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In Section 5.1 we let f(β) = 1 and g(β) = 1
2
(β−b)′Σ−1(β−b)+log

(
K∑

k=1

exp(x
′
ijkβ)

)
.

This is sometimes referred to as an exponential form Laplace approximation.
Moreover we use the observation of Butler (2002) that in many cases of interest

this approximation performs very well even in sub-asymptotic cases where T
remains small. In our case T = 1.

¥ 5.5 Appendix B: Extensions and Proofs

In some applications we may wish to allow for a mixture of fixed and random
coefficients. We can partition the p × 1 dimensional vector of taste parameters
into two subvectors b0 and β1 of lengths p0 and p1 respectively, where p0 + p1 =
p. The vector b0 contains the fixed (unknown) parameters corresponding to the
non-random coefficients of the model, while the vector β1 captures the random
coefficients. Furthermore, we can assume that β1 is Normally distributed with
mean b1 and variance Σ. The results derived in this chapter extend to the case
of a model specification with both random and fixed coefficients by performing
the integration over the random coefficients while treating the fixed coefficients
as constant for the purpose of deriving the Laplace approximation.

We now re-state Proposition 5.2 for the case with both fixed and random
coefficients, β = (b0, β1). The unknown parameters to be estimated are (b0, b1, Σ),
where b1 is the vector of mean parameters of the random coefficients β1 and Σ is
the corresponding covariance matrix of β1.

Proposition 5.2.1: We can approximate Eβ(sij) =Eβ{(
K∑

k=1

exp(x′ijkβ))
−1

} by

Eβ(sij) ∼=

√√√√
∣∣∣Σ̃ij

∣∣∣
|Σ | exp

{
−1

2

(
β̃1

ij − b1
)′

Σ̃−1
ij (β̃1

ij − b1)

}(
K∑

k=1

exp(x′ijkβ̃ij)

)−1

,

(5.36)
where β̃ij = (b0, β̃1

ij) and β̌ = (b0, b1) and

β̃1
ij = b1 +

[
Σ−1 + Hij(b

∗)b∗=b̌

]−1
J
′
ij(b̌) (5.37)

Σ̃−1
ij = Σ−1 + Hij(b

∗)b∗=b̃ij
, (5.38)

and

Jij(b
∗) =

K∑

k=1





x′ijk
exp(x′ijkb∗)

K∑
k=1

exp(x
′
ijkb

∗)





(5.39)
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Hij(b
∗) =

K∑
k=1

xijkx
′
ijk exp(x

′
ijkb

∗)

K∑
k=1

exp(x′ijkb∗)
−

[
K∑

k=1

xijk exp(x′ijkb∗)
]

[
K∑

k=1

x′ijk exp(x′ijkb∗)
]

[
K∑

k=1

exp(x′ijkb∗)
]2 .

(5.40)
In Section 5.1 we assert one of the conditions required for the existence of

a Laplace approximation with a unique expansion point, the concavity of the
function −g(β). The Lemma below proves this result.

Lemma: The function g(β) is convex, where

g(β) =
1

2
(β − b)′ Σ−1(β − b) + log

(
K∑

k=1

exp(x
′
ijkβ)

)
(5.41)

Proof: g(β) is the sum of two convex functions, a quadratic form in β and the

function g1(β) = log

(
K∑

k=1

exp(x
′
ijkβ)

)
. The Hessian of this function is given by

Hij(β) defined in equation 5.20 above. In order to see that Hij(β) ≥ 0 notice that,

[
K∑

k=1

exp(x′ijkb)

]2

Hij(b) =
K∑

k=1

exp(x′ijkb)
K∑

k=1

xijkx
′
ijk exp(x

′
ijkb)− (5.42)

−
[

K∑

k=1

xijk exp(x′ijkb)

]
[

K∑

k=1

x′ijk exp(x′ijkb)

]
. (5.43)

If we expand the right hand side of equation 5.43 and cancel the terms in

xijkx
′
ijk(exp(x

′
ijkb))

2
we can re-arrange this expression as:

[
K∑

k=1

exp(x′ijkb)

]2

Hij(b) =
K−1∑
r=1

K∑
s=r+1

(xijr − xijs) (xijr − xijs)
′ exp(x′ijrb) exp(x′ijsb) ≥ 0.

(5.44)
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