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Abstract. We put forward the notion of a verifiably secure device, in
essence a stronger notion of secure computation, and achieve it in the
ballot-box model. Verifiably secure devices

1. Provide a perfect solution to the problem of achieving correlated
equilibrium, an important and extensively investigated problem at
the intersection of game theory, cryptography and efficient algo-
rithms; and

2. Enable the secure evaluation of multiple interdependent functions.

1 Introduction

From GMW to ILM1 Security. As put forward by Goldreich, Micali and
Wigderson [10] (improving on two-party results of Yao [16]), secure computation
consists of capturing crucial aspects of an abstract computation aided by a
trusted party, by means of a concrete implementation that does not trust
anyone. However, what is deemed crucial to capture and what constitutes an
implementation have been changing over time. In order to achieve fundamental
desiderata in a game theoretic setting, where incentives are added to the mixture
and players are assumed to behave rationally, in [12] we put forward a stronger
notion of secure computation, and achieved it in the ballot-box model. In essence,
this is a physical model using ballots and a ballot randomizer, that is, the same
“hardware” utilized from time immemorial for running a lottery and tallying
secret votes. We refer to our 2005 notion as ILM1 security. Our main reason for
introducing ILM1 security was implementing normal-form mechanisms in the
stand-alone setting.

ILM2 Security. In this paper, we put forward a yet stronger notion of secure
computation, herein referred to as ILM2 security, and achieve it in a variant of
the ballot-box model. ILM2 security enables us to attain even more sophisticated
applications. In particular, it enables us to (1) perfectly achieve correlated equi-
librium, a crucial desideratum at the intersection of cryptography, game theory,
and efficient algorithms; and (2) securely implement interdependent functions
and mechanisms.

Setting Up A Comparison. In an fairer world, we could have come up with
our present security notion in 2005. But the world is not fair, and we could not
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even conceive ILM2’s security requirements back then. To ease their comparison,
we sketch both approaches in the next two subsections, initially focussing on the
secure evaluation of a single, probabilistic, finite function f from n inputs to
n+ 1 outputs. Without loss of generality, f : ({0, 1}a)n → ({0, 1}b)n+1.

We break each approach into the following components: (1) The Ideal Evalu-
ation, describing the “target computation”, that is, an evaluation of f with the
help of a trusted party; (2) The Concrete Model, highlighting the “mechanics”
of an evaluation of f without a trusted party; and (3) The Security Notion,
describing the extent to which the concrete model captures the ideal evaluation.

Traditionally, in summarizing secure computation, the second and third com-
ponents are merged. In the original GMW definition, there was certainly no
compelling need to treat the concrete model as a “variable.” Subsequently, their
concrete model (i.e., a communication protocol among all players) persisted in all
variants of secure computation, thus possibly generating a sense of “inevitabil-
ity.” We instead highlight the concrete model as an independent component
because one of our contributions is indeed a change of scenery of this aspect of
secure computation.

1.1 The ILM1 Approach

The Ideal Evaluation. In the ILM1 approach, an ideal evaluation of f pro-
ceeds in three stages.

1. In the input stage, each player i either (1.1) publicly aborts, in which case
the entire evaluation ends, or (1.2) privately and independently chooses an
a-bit string xi and privately sends it to T .

2. In the computation stage, T publicizes a random string σ, and then pri-
vately evaluates f on all xi’s so as to obtain the b-bit values y, y1, . . . , yn.

3. In the output stage, T publicizes y and privately hands back yi to each
player i.

(Note that the players do not communicate in an ILM1 ideal evaluation. By
contrast, in the GMW approach, the ideal evaluation of f cannot be precisely
matched by a GMW-secure protocol unless it offers the players the option of
communicating to each other prior to aborting or sending T their inputs.)

The Concrete Model. In the ILM1 approach, the concrete model for mimick-
ing an ideal evaluation of f continues to be that of the original GMW approach:
namely, a multi-round communication protocol Pf executed by all players, where
each player secretly holds and updates a share of the global state of the evalu-
ation. The only difference is in the communication model. That is, rather than
relying on broadcasting and/or private channels (as traditional GMW-secure
protocols do), ILM1 protocols rely on ballots and a ballot randomizer.

The Security Notion. At the highest level, for Pf to be an ILM1-secure
protocol for a function f , there must be an “output-preserving” bijection between
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the players’non-aborting strategies in Pf and the players’non-aborting strategies
in an ideal evaluation of f .4

Furthermore, to match the privacy of f ’s ideal evaluation, it is required that
1. During the input-commitment stage the only information collectively avail-

able to any set of the players about the inputs of the other players consists
of a fixed string —which is no information at all, and strictly less than
observing a random string;5

2. During the computation stage the only information collectively available
to any set of the players about the inputs of the other players consists of a
common random string; and

3. During the output stage, the only information collectively available to any
set of the players about the inputs of the other players consists of the
desired outcome —in a pre-specified, deterministic encoding.

(Note that our use of the term “collectively available information” in relation to
a set of the players does not refer to information known to at least a member of
the set. Rather, it refers to the information that one would obtain were he able
to join together the information available to each member of the set. Barring
the existence of external and undetected means of communication, an individual
member of the set can only get such “collective” information by querying the
other members after the protocol Pf terminates. As deducible by the above
sketchy description, an ILM1-secure protocol does not enable any inter-player
communication, as demanded in the ideal evaluation.)

Main Properties of ILM1 Security
• Perfect implementation of Normal-Form Mechanisms in the Stand-Alone

Setting. Our original reason for introducing the ILM1 notion of security
was to be able to perfectly implement normal form mechanisms in the
stand-alone setting, something that was not implied by GMW-secure com-
putation. We refer the reader to [12] for the definition of such a perfect
implementation (and actually to MIT-CSAIL-TR-2007-040 for a more pre-
cise explanation). Here we are happy to quickly recall what a normal-form
mechanism and the stand-alone setting are.

4 By contrast, a player has “much more to do” in a GMW-secure protocol Pf than
in an ideal evaluation of f . In the latter setting, in fact, there are exactly 2a + 1
“strategies” for a player i, one for each possible i-input to f plus aborting. Accordinly,
if f operates on 10-bit inputs, the total number of strategies is roughly one thousand.
By contrast, letting for concreteness Pf be the original protocol of [10], player i
not only has to decide between 2a inputs or aborting, but can also decide which
encryptions to broadcast, which query bits to use in a zero-knowledge proof and so
on. Thus, while each player has roughly 1000 strategies in an ideal evaluation of h, he
may easily have more than 21000 strategies in Pf . Such richness of strategies severely
limits the relevance of GMW-secure protocols to game-theoretic applications.

5 Quite differently, in a GMW-secure protocol for f , the players —by broadcasting
and/or privately exchanging all kinds of strings— can make available plenty of ad-
ditional information.
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Very informally, a (finite) normal-form mechanism is a function f :
({0, 1}a)n → ({0, 1}a)n+1. The mechanism play coincides with an ideal
evaluation of f as in the ILM1 approach. However, such play is analyzed
as a game in a context specifying players’ preferences and thus the players
get different utilities (think of “dollars prizes”) for different outputs of f .

Very informally too, by a normal-form mechanism in the stand-alone
setting we mean that “nothing else happens after a single play of the mech-
anism.”

• Fairness and Perfect Security without Honest Majority. Informally fairness
means that either all (honest) players receive their right outputs, or nobody
does. It is a notable property of ILM1 security that it simultaneously guar-
antees fairness and perfect information-theoretic security without relying
on the majority of the players to be honest. Here by a “honest” player we
mean one sticking to his protocol instructions no matter what.
(GMW-secure protocols —relying on broadcasting and/or private channels—
do not guarantee fairness unless the majority of the players are honest. In-
deed, Cleve [?] shows that not even the the probabilistic function that, on
no input, outputs a random bit can be fairly and efficiently computed when
half of the players can abort the protocol —let alone maliciously deviate
from their instructions. Remarkably, in 2004, Lepinski, Micali, Peikert and
Shelat [14] put forward a protocol guaranteeing fairness without any hon-
est majority in a mixed model involving broadcasting and regular ballots.6

The security of their protocol, however, was only computational.)
• Perfect Security and Universal Composibility Without Honest Majority.

ILM1-secure protocols satisfy “composibility” as defined in 2000 by Dodis
and Micali [8]. It is by now recognized that their notion actually coincides,
in the perfect information-theoretic setting, with universal composibility as
defined in 2001 by Canetti [6]. Indeed, Halevi and Rabin show that per-
fect simulatability via straight-line simulators (as demanded in [8]) implies
universal composibility.

The universal composibility of ILM1-secure protocols is remarkable be-
cause it is achieved together with perfect information-theoretic security and
without relying on any honest majority, something that was not known to
be possible in the past.

1.2 The ILM2 Approach

In the ILM2 approach, an ideal evaluation of f continues to proceed in three
stages. There are two possibilities for the first stage: one with aborts and one
without. We refer to the first one as weak ideal evaluation, and the second one
as strong ideal evaluation. With start by presenting the latter, simpler and more
provocative notion.

6 I.e., their ballots needed not to be identical, nor was a ballot randomizer needed for
their construction.
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Strong Ideal Evaluation.

1. In the input stage, each player i —independently from all others— secretly
chooses an input xi and gives it to T in an envelope,

2. In the computation stage, T privately opens all received envelopes and then
privately computes y, y1, . . . , yn = f(x1, . . . , xn).

3. In the output stage, T publicizes y and publicly hands back to each player
i an envelope containing yi.

The Concrete Model. In the ILM2 approach, the concrete model continues
to rely on the same hardware of the ILM1 approach (i.e., identical ballots and
a ballot randomizer), but no longer coincides with a communication protocol
among the players. Instead, the encoding of the global state is now fully contained
in a sequence of envelopes publicly manipulated by a verifiable entity T ′. Let us
explain.

In the ILM2 ideal evaluation of a function f , T is trusted. Indeed, he could
change the outputs and/or reveal undue information about the players’ inputs
(e.g., via the envelopes he hands back to the players or after the evaluation)
without any fear of being “caught.” By contrast, to securely evaluate f , T ′ is
called to perform a unique sequence of ballot operations such that the players can
verify that the right operations have been performed. For instance, if privacy did
not matter, upon receiving the envelopes containing the players’ inputs, T ′ could
be required to open all of them. In which case it would be trivial to check whether
he has done what was required of him. (To be sure, such a verifiable T ′ would
still be trusted not to —say— publicly open half of the envelopes and destroy the
other half. But such trust is much milder: because any deviation from opening
all envelopes would become of public record, T ′ can be kept accountable.)

Because the actions required from T ′ are uniquely determined and verifiable,
human or not, we think of T ′ as a verifiable device.

The Security Notion. The ILM2 security notion is the most stringent we
can (currently) conceive. Before sketching it, it should be realized that, in what-
ever model used (encrypt-and-broadcast, private-channel, ballot-box, etc.) each
“action” essentially has a public and a private informational component.7 For
instance, in the ballot-box model, the action of “publicly opening envelope j”
generates only a public component: namely, “(publiclyopen,j,c)” where c is
the now exposed content of (former) envelope j. As for another example, “party
i privately opens envelope j” generates a public component “(privatelyopen,
i,j)” together with the private component c for party i, where c is the content
of the (former) envelope j. The correctness requirements of an ILM2 concrete
evaluation of f are not surprising (and are formally presented later on). The
privacy requirements are instead surprising. Namely, in a verified computation,

7 In the encrypt-and-broadcast model, when player i sends a message m to player j
encrypted with j’s key, the public component is “ciphertext C from i to j” while the
private component to j is “m”.
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1. In a correct execution of the verifiable device, the public history generated
(i.e., the concatenation of all public informational components) is a fixed
string R (depending only on f) and vice versa whenever the public history
of an execution of the verifiable device is R, then f has been evaluated
correctly and privately on the actual inputs, no matter what they may be;

2. The private history of each player i consists only of his own input xi; and

3. The private history of the verifiable device consists only of a random string.

Remarks.
• Perfect Security and Universal Composibility without Honest Majority. As

for the ILM1 case, this is due to the fact that ILM2 security satisfies the
Dodis-Micali conditions.

• Perfect Determinism, and Perfect Independence. ILM2 security is the only
notion of secure computation that is totally deterministic to the players.
They do not observe any common randomness and do not even generate
any local randomness. The situation is not too different for the verifiable
device. Namely, he does not generate any local randomness, but individually
observes a random string ρ. Such string however cannot be communicated
by the device to the players by means of the operations available to him
(which are verifiable anyway). And should the device reveal ρ to some
players afterwards, it would be “too late.” During the executions the players
have been absolutely isolated from one another.

• Hidden Aborts. Let us now explain in what sense it is meaningful to consider
ideal executions in which players cannot abort. In a typical secure protocol,
it makes no sense to worry about player i learning j’s input by pointing a
gun at j’s head. The analysis of any protocol should be relative only to the
actions available within the protocol’s model. Nonetheless, aborting is quite
possible within the confines of a protocol’s actions. For instance, a player
who is required to broadcast the decryption of a given cipher-text might
be able to cause an abort by broadcasting a different string. That is, one
ability of aborting arises when the set of available actions is richer than that
“handleable” by the protocol. This source of aborts, however, may not be
always present, and is not be present in the ILM2 case. Nonetheless, there
is one more source of aborts: namely, taking “no action.” That is, aborts
may also occur in models for which “doing nothing” is distinguishable from
“the prescribed actions”. In the broadcast model, if a player is envisaged
to broadcast a bit, broadcasting nothing is quite a different thing. Doing
nothing is also distinguishable from all possible actions in the version of the
ballot-box model envisaged in ILM1-secure protocols, and easily enables a
player to halt the joint computation. Indeed, in the ILM1 approach, the
global state of the concrete computation is shared in n pieces, each known to
a different player, and each necessary for the progress of the computation.
Thus, if a player suicides carrying his own piece to the other world, the
computation cannot be continued in any meaningful way.
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By contrast, in an ILM2-secure protocol, after the verifiable device
starts taking public actions on the envelopes encoding the players’ inputs,
all envelopes are in the hands of the device, and the global state of the
computation is contained fully in those envelopes. Thus, from that point
on, in a properly verified execution the computation goes on (correctly and
privately) independently of what the players may or may not do. Device
abort is not an issue either. Because our devices are called to do a single
verifiable action at every point of their executions, only device no-action
is meaningful to analyze, and it is a notable property of our construction
that, if needed, the verifiable device can be substituted at any moment with
another verifiable device without any loss.

In an ILM2-secure protocol, therefore, the only stage in which the is-
sue of abort might possibly arise is the input stage; because there the
players’ participation is crucial to ensure that envelopes properly encoding
their inputs are handed to the device. There, however, we have engineered
players’ input commitment so as to “hide aborts.” Conceptually, a player
contributes an input bit to the evaluation of f as follows. First, he pub-
licly receives from the device two envelopes, both publicly generated with
different prescribed contents. Then the player is asked to secretly permute
them: leaving them in the same order corresponds to secretly inputting 0,
flipping their order corresponds to secretly inputting 1. Formally speaking,
therefore, aborting is indistinguishable from secretly inputting 0.

• Public Aborts. Practically speaking, however, enforcing “abort indistin-
guishability” requires building and analyzing some ad hoc simple gadget
with an associated protocol. (If you fail in designing them, just ask us!)
Such a gadget, of course, would be a physical assumption not only addi-
tional to ballots and ballot-boxes, but also quite new, while ballots and
ballot-randomizers have been around for time immemorial and are thus
easy to accept as “physical axioms.”8 Altogether, most readers would pre-
fer to stick with the more intuitive operation of “player i secretly permutes
two envelopes, or publicly aborts.” In this case, we can only achieve the
following type of ideal evaluation.

Weak Ideal Evaluation.

1′. In the input stage, each player i —independently from all others—
either secretly chooses an input xi and gives it to T in an envelope, or
publicly gives T the input xi = 0a —i.e., the concatenation of a 0s.

2. In the computation stage, T privately opens all received envelopes
and then privately computes y, y1, . . . , yn = f(x1, . . . , xn).

3. In the output stage, T publicizes y and publicly hands back to each
player i an envelope containing yi.

8 Put it this way: if you think that it is not possible to randomize identical ballots, you
should also explain (1) why people have been shuffling decks of cards for ever and
for real money; and (2) why electoral precincts do not simplify voting procedures by
always adopting roll-call voting.



8 Izmalkov, Lepinski, and Micali

Definitionally, it is clear that that the strong and weak versions of ILM2 security
are both stronger than ILM1 security. Let us now present two specific concrete
settings requiring ILM2 security. The first one actually involves the implemen-
tation of function with no inputs. Therefore it is does not matter whether the
players can or cannot abort! Thus, weak or strong, ILM2 security wins anyway.

1.3 Perfect Achievement of Correlated Equilibrium

Consider the following trivial probabilistic function f that, on no inputs, outputs
a pair of strings:

f() = (C,G), (C,G), or (D,G) —each with probability 1/3.
Obviously, using proper binary encodings, an ILM1-secure protocol Pf for f
exists. Ideally, such a Pf should successfully replace an ideal evaluation for f in
any setting. However, this is not true for the following setting.

E F G H
A 100, 0 −∞,−∞ −∞,−∞ −∞,−∞
B −∞,−∞ 0, 100 −∞,−∞ −∞,−∞
C −∞,−∞ −∞,−∞ 4, 4 1, 5
D −∞,−∞ −∞,−∞ 5, 1 0, 0

Let Row and Column be the two players of the normal-form game G described
by the above pay-off matrix. Accordingly, Row and Column are confined to two
separate rooms: the first facing a keyboard with 4 buttons A,B,C and D; and the
second with a keyboard whose buttons are E,F,G, and H. Without any external
help, only the following (reasonable) Nash equilibria exist in G: (A,E), which
is very good for Row, (B,F), which is very good for Column, (C,H), (D,G),
and the mixed equilibrium ( 1

2C + 1
2D,

1
2G + 1

2H), which yields payoff 2.5 to
each player. Mankind’s interest, however, is that the outcome of G is either
(C,G), (C,H), or (D,G), each with probability 1

3 . Accordingly, an angel in all
his splendor descends from the sky, privately evaluates the above function f()
to obtain a pair (X,Y ), tells Row and Column that he has done so, and then
provides Row with an envelope containing X, and Column with an envelope
containing Y . Technically, this angelic intervention puts Row and Column in a
correlated equilibrium A, for “angelic”. (Correlated equilibria were proposed by
Aumann [1].) In essence, each player is better off playing the recommendation
received from the angel if he believes the other will do so. It is evident that the
expected utility of each player in A is 10/3. Clearly, however, Row and Column
would prefer to play a different correlated equilibrium: namely E, the correlated
equilibrium corresponding to selecting (A,E) or (B,F), each with probability
1/2. Unfortunately, they cannot reach such equilibrium without external help.
Nor can they use the X and Y they respectively received by the angel (which is
external help indeed!) in order to “translate” their angelic recommendations into
their preferable ones. The point is that if X=C, then Row has no idea whether
Y=G or Y=H. Each is equally probable to him. (Symmetrically, if Y=G, then
Column has no idea whether X=C or X=D, both are equally probable to him.)
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If X=D, then Row knows that Y=G, but he also know that Column has no idea
whether X=C or X=D. Accordingly, the expected payoff provided to the players
by any “translation strategy” is −∞. This must be very frustrating, since (1)
Row and Column receive an expected utility of 50 each in E, and (2) Row and
Column only need a single random bit to coordinate their actions to achieve E!

Consider now replacing the angel for f with the ILM1-secure protocol Pf .
(This is indeed possible because ILM1 security does not require any honest ma-
jority.) Then, after correctly and privately computing their Pf -recommendations,
Row and Column can simply ignore them and use instead the first common ran-
dom bit generated by Pf to coordinate and play equilibrium E instead. (Indeed,
at some point of any execution of Pf , 5 envelopes previously randomized by the
ballot-box are publicly opened, thus publicly revealing a random permutation of
5 elements, which can be trivially translated into a single random bit.)

How is this possible in view of the claim that ILM1 successfully evaluates
any finite function in the stand-alone setting? The answer is that the above
setting is not stand alone. Indeed, Row and Column are not just asked to play
Pf and get immediately rewarded. They are asked to play first Pf and then G,
and they ultimately get G’s rewards. Thus, even a minimal deviation from the
stand-alone model, together with the minimal presence of common random bit,
sets apart what can happen with the help of an angel and what can happen with
traditional secure computation. In other words, so far in secure computation we
have been conditioned to think (and the last author agrees to take some blame)
that “randomness and efficient computation are for free.” Unfortunately, this is
not true in game-theoretic settings. In general,

Common randomness as a side product of secure computation is akin to
pollution as a side product of energy transformation.

A Perfect Solution to a Beautiful Problem. As introduced by Aumann [1],
a correlated equilibrium for a normal-form game G is a probability distribution
f over the actions available to the players such that if —somehow!— a profile of
“recommended actions” (a1, . . . , an) is chosen according to f , and each player i
learns ai without gaining any other information about a−i, then no single player
can deviate from his recommendation in a play of G and improve his expected
utility. Given the description of any equilibrium E, the obvious problem con-
sists of finding a concrete way that precisely simulates a trusted party correctly
sampling and privately handing out to the players E’s recommendations.

Despite much work [2, 5, 9, 7, 15, 14, 11], all prior solutions to this problem
were imperfect. Specific deficiencies included limited rationality, strategic-option
alteration, limitations on the numbers of players, infeasible computation and
resources, and imposing a pre-specified beliefs to yet-to-be-determined players.

By contrast ILM2 security provides a perfect solution to the achieving corre-
lated equilibrium. (Details will be given in the final paper.) Note that the main
concerns here is orthogonal to composibility, that does not care about preserving
strategic opportunities. Indeed, generating a common random bit is OK vis à
vis composibility, but alters the achievement of correlated equilibrium.
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1.4 Interdependent Secure Computations and Mechanisms

More generally, we now consider evaluating multiple interdependent functions,
each not only receiving fresh inputs from the players and producing public and
private outputs, but also receiving an additional secret input consisting of state
information from the evaluation of another function, and passing some state
information of its own evaluation as an additional secret input to another func-
tion. For simplicity sake, below we formalize just the case of a pre-defined linear
sequence of such functions. (In particular, we could handle trusted parties can
operate more than once, each time passing their state to different trusted parties,
operate simultaneously, recursively, et cetera. Of course, the more complex the
setting, the richer are the strategic opportunities of the players. We are not inter-
ested in analyzing them, but rather to match them exactly, whatever they may
be —without envisaging concurrently executing extraneous secure protocols.)

(Weak) Ideal Evaluation of Interdependent Functions. Let F be a
sequence of functions, F = f1, . . . , fk, where fi : ({0, 1}a)n+1 → ({0, 1}a)n+2.
Letting s0 and sk+1 be empty strings, an ideal evaluation of F proceeds in k
phases, with the help of k separate trusted parties: T1, . . . , Tk. The jth phase
consists of 3 stages.

1. In the input stage, Tj secretly receives state information sj−1 and publicly
receives the identities of all aborting players. Further, each non-aborting
player i independently and secretly chooses an input xji and gives it to T
in an envelope, or publicly aborts. Each aborting player i publicly gives Tj
the input xji = 0a —i.e., the concatenation of a 0s.

2. In the computation stage, Tj privately opens all received envelopes and
then privately computes

sj , y
j , yj1, . . . , y

j
n = fj(sj−1, x

j
1, . . . , x

j
n).

3. In the output stage, Tj publicizes yj , privately hands to each player i an
envelope containing yji , and privately hands sj to Tj+1.

Note that this weak evaluation can be changed in several ways if desired or nec-
essary to model the situation at hand. For instance, rather than forcing aborting
players to always contribute the input 0a in the future, one may envisage a player
aborting in the input stage of phase j as contributing the input 0a in just that
phase, but give him an opportunity to fully participate in future phases. This
may be a natural choice, but of course it enlarges the players’ signalling abilities.
As for another possible change, one may demand that no envelope containing
the private output of an aborting player be ever given to him. A third alterna-
tive may consist of banning the aborting players from future participation, thus
changing the functions of future phases so as to have fewer inputs (although this
technically is already beyond the simpler setting envisaged above). And so on.
It all depends on the setting we wish to model.

The “strong” version of the above definition can be obtained by removing
the possibility of aborting altogether.

To go from sequences of functions to the analysis of sequences of normal-form
mechanisms one needs only to specify the players’ preferences over the outcomes.
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The Inachievability of Secure Interdependency with Prior Notions.
ILM1 security does not suffice for meaningfully implementing a sequence of inter-
dependent functions/mechanisms. (GMW security would be even less meaning-
ful, particularly if relying on private channels.) The main problem is as follows.
Assume that player i aborts in the jth phase. In the ideal setting, i necessarily
aborts in the input stage. Accordingly, Tj uses 0a as i’s input for the function
fj , completes the computation of fj , returns all public and private outputs to
the right players, and finally provides Tj+1 with the correct state information
sj . This is the case because in the ideal setting Tj has already received from
Tj−1 the state information sj−1. By contrast, when i aborts the execution of an
ILM1-secure protocol Pfj

for fj , he makes his own share of the global compu-
tation disappear with him, causing the entire sequence of evaluations to grind
to a halt. (In fact, any way of continuing would proceed with an incorrect state:
the other players do have their own shares of the current global state, but their
shares alone are consistent with any feasible global state at that point.) If the
whole evaluation were just a mental game, endowing a player with the ability of
halting the entire sequence of future evaluations by his aborting in specific phase
might not matter. But causing the entire sequence of evaluations to abort may be
disastrous in other settings, where “real incentives” are associated to the whole
enterprize. For instance, assume that the government of a major country is pri-
vatizing its national resources (it has happened before!) by means of a complex
sequence of inter-dependent normal-form mechanisms, so as to achieve complex
social objectives. Gas has been allocated first, oil second, and so on, with the
players paying real money for these resources (and possibly selling off assets they
previously owned in order to raise the necessary cash). And then, suddenly, one
of players commits suicide. What should the government do? Sending every one
home, as if nothing ever happened, and demanding that the allocated resources
be returned is not an option: who is going to return the assets some players
had to sell (possibly in different countries) in order to win some of the present
resources? Nor is it an option to recognize all allocations already made and stop
the future ones. In fact, due to the interdependency of the mechanisms in the
sequence, a player may have chosen to acquire a given resource in one of the early
phases (by strategically choosing his secret inputs to the first functions in the
sequence) only in order to improve his chance to win resources more attractive to
him in the future phases. Nor is it an option to allocate the remaining resources
by means of a different sequence of mechanisms. The players’ past strategies
depended on that very evaluation to continue with the right state.9

9 Notice that although exogenous incentives, such as fines, may discourage abortions,
they are incapable of perfectly solving the problem. On one hand, fining players will
not resurrect the right computation state. On the other, finding the right fine to
impose is not an easy theoretical problem. Assume that a player i aborts because,
based on his received private information, he realizes that the rest of the mechanisms
—if continued— would cause him immense financial harm. Then, to induce him not
to do so, a mechanism designer must impose a fine greater than i’s expected loss.
But, in general, the designer may be unaware of the players’ preferences.
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In essence, not every thing in life is a mental game without incentives, and
to properly deal with these incentives one needs to preserve the originally en-
visaged strategic opportunities. It should be clear that weak ILM2 security is
instead capable of matching the above ideal scenario. Indeed, in ILM2-secure
computation, the global state continues to remain available to each verifiable
device Dj (corresponding to trusted party Tj) whether the players abort or not.
Moreover, the players do not have the ability to signal in any additional way
from one mechanism to the next. Not even random strings will enable to al-
ter the strategic opportunities available to the players in a weak-ILM2-secure
protocol.

Finally, note that one may also consider strong ideal evaluations of interde-
pendent functions, and that strong-ILM2-secure protocols will be able to match
these more stringent requirements.

2 Notation

Basics. We denote by R+ the set of non-negative reals; by Σ the alphabet con-
sisting of English letters, arabic numerals, and punctuation marks; by Σ∗ the
set of all finite strings over Σ; by ⊥ a symbol not in Σ; by SYMk the group of
permutations of k elements; by x := y the operation that assigns value y to
variable x; by ∅ the empty set, and by φ the empty string/sequence/vector.

If x is a sequence, by either xi or xi we denote x’s ith element,10 and
by {x} the set {z : xi = z for some i}. If x is a sequence of k integers, and
m is an integer, by x + m we denote the sequence x1 + m, . . . , xk + m. If
x and y are sequences, respectively of length j and k, by x ◦ y we denote
their concatenation (i.e., the sequence of j+ k elements whose ith element is
xi if i ≤ j, and yi−j otherwise). If x and y are strings (i.e., sequences with
elements in Σ), we denote their concatenation by xy.

Players and profiles. We always denote by N the (finite) set of players, and by n
its cardinality. If i is a player, −i denotes the set of the other n− 1 players,
that is, −i = N \ {i}. Similarly, if C ⊂ N , then −C denotes N \C. A profile
is a vector indexed by N . If x is a profile, then, for all i ∈ N and C ⊂ N ,
xi is i’s component of x and xC is the sub-profile of x indexed by C; thus:
x = (xi, x−i) = (xC , x−C).

Probability distributions. All distributions considered in this paper are over finite
sets. If X : S → R+ is a distribution over a set S, we denote its support by
[X], that is, [X] = {s ∈ S : X(s) > 0}. We denote by rand(S) the uniform
distribution over S.

If A is a probabilistic algorithm, the distribution over A’s outputs on
input x is denoted by A(x). A probabilistic function f : X → Y is finite if X
and Y are both finite sets and, for every x ∈ X and y ∈ Y , the probability
that f(x) = y has a finite binary representation.

10 For any given sequence, we shall solely use superscripts, or solely subscripts, to
denote all of its elements.
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3 The Ballot-Box Model

The ballot-box model ultimately is an abstract model of communication, but
possesses a quite natural physical interpretation. The physical setting is that
of a group of players, 1 through n, and a distinguished “player” 0, the device,
seated around a table together and acting on a set of ballots with the help
of a randomizing device, the ballot-box. Within this physical setting, one has
considerable latitude in choosing reasonable actions. Indeed, in this paper, we
envisage more actions than in [12].

3.1 Intuition

Ballots. There are two kinds of ballots: envelopes and super-envelopes. Exter-
nally, all ballots of the same kind are identical, but super-envelopes are slightly
larger than envelopes. An envelope may contain a symbol from a finite alphabet,
and a super-envelope may contain a sequence of envelopes. (Our constructions
actually needs only envelopes containing an integer between 1 and 5, and super-
envelopes capable of containing at most 5 envelopes.) An envelope perfectly
hides and guarantees the integrity of the symbol it contains until it is opened. A
super-envelope tightly packs the envelopes it contains, and thus keeps them in
the same order in which they were inserted. Initially, all ballots are empty and
in sufficient supply.

Ballot-Box Actions. There are 10 classes of ballot-box actions. Each action
in the first 7 classes is referred to as a public action, because it is performed in
plain view, so that all players know exactly which action has been performed,
and its consequences are the same no matter who performs it. These 7 classes
are: (1) publicly write a symbol on a piece of paper and seal it into a new, empty
envelope; (2) publicly open an envelope to reveal its content to all players; (3)
publicly seal a sequence of envelopes into a new super-envelope; (4) publicly open
a super-envelope to expose its inner envelopes; (5) publicly reorder a sequence
of envelopes; (6) publicly destroy a ballot; and (7) do nothing. The last three
classes just simplify the description of our construction.

An action in the eighth class is referred to as an action of Nature. Such an
action consists of “ballot boxing” a publicly chosen sequence of ballots, that is,
reordering the chosen ballots according to a permutation randomly chosen by
—and solely known to— Nature.

Each action of 9th and 10th classes is referred to as a private action, because
some details about either its inputs or outputs are known solely to the player (or
device) performing it. These two classes are: (9) privately open, read the content,
and reseal an envelope; and (10) secretly reorder a sequence of envelopes. We
imagine that the players observe what ballots these actions are performed upon,
but the actions themselves are performed outside of public view. For instance,
to perform an action of class 10, a player can shuffle the envelopes behind his
back or within a box, so that only he knows in what order the envelopes are
returned on the table.
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Public Information. Conceptually, the players observe which actions have
been performed on which ballots. Formally, (1) we associate to each ballot a
unique identifier, a positive integer that is common information to all players
(these identifiers correspond to the order in which the ballots are placed on
the table for the first time or returned to the table —e.g., after being ballot-
boxed); and (2) we have each action generate, when executed, a public string of
the form “A, i, j, k, l, ...”; where A is a string identifying the action, i is the
number corresponding to the player performing the action, and j, k, l, ... are the
identifiers of the ballots involved. If the action is public, for convenience, the
identity of the player performing it is not recorded, since the effect of the action
is the same no matter by whom the action is performed. The public history is the
concatenation of the public strings generated by all actions executed thus far.
Similarly, the private history of each player is the concatenation of the private
strings generated by the private actions performed by, respectively, the player.
The private string is the content of the opened envelope for a “private read”
action and the actual permutation for a “secret permute” action.

3.2 Formalization

An envelope is a triple (j, c, 0), where j is a positive integer, and c a symbol of
Σ. A super-envelope is a triple (j, c, L), where both j and L are positive integers,
and c ∈ ΣL. A ballot is either an envelope or a super-envelope. If (j, c, L) is a
ballot, we refer to j as its identifier, to c as its content, and to L as its level. (As
we shall see, L represents the number of inner envelopes contained in a ballot.)

A set of ballots B is well-defined if distinct ballots have distinct identifiers.
If B is a well-defined set of ballots, then IB denotes the set of identifiers of B’s
ballots. For j ∈ IB , Bj (or the expression ballot j) denotes the unique ballot
of B whose identifier is j. For J ⊂ IB , BJ denotes the set of ballots of B
whose identifiers belong to J . To emphasize that ballot j actually is an envelope
(super-envelope) we may use the expression envelope j (super-envelope j).

Relative to a well-defined set of ballots B: if j is an envelope in B, then
contB(j) denotes the content of j; if x = j1, . . . , jk is a sequence of envelope
identifiers in IB , then contB(x) denotes the concatenation of the contents of
these envelopes, that is, the string contB(j1) · · · contB(jk).

A global memory for a set of players N consists of a triple (B,R,H), where
• B is a well defined set of ballots;
• R is a sequence of strings in Σ∗, R = R1, R2, . . .; and
• H a tuple of sequences of strings in Σ∗, H = H0, H1, . . . ,Hn.

We refer to B as the ballot set; to R as the public history; to each element of R as
a record; to H as the private history; to H0 as the private history of the device;
and to each Hi as the private history of player i. The empty global memory is the
global memory for which the ballot set, the public history, and all the private
histories are all empty. We denote the set of all possible global memories by GM .

Ballot-box actions are functions from GM to GM . The subset of ballot-box
actions available at a given global memory gm is denoted by Agm. The actions in
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Agm are described below, grouped in 10 classes. For each a ∈ Agm we provide a
formal identifier; an informal reference (to facilitate the high-level description of
our constructions); and a functional specification. If gm = (B,R,H), we actually
specify a(gm) as a program acting on variables B, R, and H. For convenience,
we include in R the auxiliary variable ub, the identifier upper-bound: a value
equal to 0 for an empty global memory, and always greater than or equal to any
identifier in IB .

1. (NewEn, c) —where c ∈ Σ.
“Make a new envelope with public content c.”
ub := ub + 1; B := B ∪ {(ub, c, 0)}; and R := R ◦ (NewEn, c, ub).

2. (OpenEn, j) —where j is an envelope identifier in IB .
“Publicly open envelope j to reveal content contB(j).”
B := B \ {Bj} and R := R ◦ (OpenEn, j, contB(j), ub).

3. (NewSup, j1, . . . , jL) —where L ≤ 5, and j1, . . . , jL ∈ IB are distinct
envelope identifiers.
“Make a new super-envelope containing the envelopes j1, . . . , jL.”
ub := ub + 1; B := B ∪ {(ub, (contB(j1), . . . , (contB(jL)), L)};
B := B \ {Bj1 , . . . , BjL}; and R := R ◦ (NewSup, j1, . . . , jL, ub).

4. (OpenSup, j) —where j ∈ IB is the identifier of a level-L super-envelope.11

“Open super-envelope j.”
letting contB(j) = (c1, . . . , cL), B := B∪{(ub+1, c1, 0), . . . , (ub+L, cL, 0)};
B := B \ {Bj}; ub := ub + L; and R := R ◦ (OpenSup, j, ub).

5. (PublicPermute, j1, . . . , jk, p) —where k ≤ 5, j1, . . . jk ∈ IB are distinct
identifiers of ballots of the same level L, and p ∈ SYMk.
“Publicly permute j1, . . . , jk according to p.”
B := B∪{(ub+1, contB(jp(1)), L), . . . , (ub+k, contB(jp(K)), L)}; ub := ub+
k; B := B\{Bj1 , . . . , Bjk}; and R := R◦(PublicPermute, j1, . . . , jk, p, ub).

6. (Destroy, j) —where j is a ballot identifier in IB .
“Destroy ballot j”
B := B \ {Bj} and R := R ◦ (Destroy, j, ub).

7. (DoNothing).
“Do nothing”
B := B and R := R ◦ (DoNothing, ub).

8. (BallotBox, j1, . . . , jk) — where k ≤ 5 and j1, . . . jk ∈ IB are distinct
identifiers of ballots of the same level L.
“Ballotbox j1, . . . , jk”
p← rand(SYMk);B := B∪{(ub+p(1), contB(j1), L), . . . , (ub+p(k), contB(jk), L)};
B := B\{Bj1 , . . . , Bjk}; ub := ub+k; andR := R◦(BallotBox, j1, . . . , jk, ub).

9. (PrivRead, i, j) —where i ∈ [0, n] and j is an envelope identifier in IB .
“i privately reads and reseals envelope j.”
R := R ◦ (PrivRead, i, j, ub) and Hi := Hi ◦ contB(j).

11 All the ballot-box actions involving multiple super-envelopes require as inputs and
produce as outputs the ballots of the same level (see below). Thus, the level of any
ballot can be deduced from the public history.
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10. (SecretPermute, i, j1, . . . , jk, p) —where i ∈ [0, n], k ≤ 5, p ∈ SYMk,
and j1, . . . jk ∈ IB are distinct identifiers of ballots with the same level L.
“i secretly permutes j1, . . . , jk (according to p).”
B := B ∪ {(ub + 1, contB(jp(1)), L), . . . , (ub + k, contB(jp(K)), L)}; B :=
B\{Bj1 , . . . , Bjk}; ub := ub+k; R := R◦(SecretPermute, i, j1 . . . , jk, ub),
and Hi := Hi ◦ p.

Remarks.

• All ballot-box actions are deterministic functions, except for the actions of
Nature.

• The variable ub never decreases and coincides with the maximum of all
identifiers “ever in existence.” Notice that we never re-use the identifier of
a ballot that has left, temporarily or for ever, the table. This ensures that
different ballots get different identifiers.

• Even though we could define the operations NewSup, PublicPermute,
BallotBox, and SecretPermute to handle an arbitrary number of bal-
lots, it is a strength of our construction that we never need to operate on
more than 5 ballots at a time. We thus find it convenient to define such
bounded operations to highlight the practical implementability of our con-
struction.

Definition 1. A global memory gm is feasible if there exists a sequence of global
memories gm0, gm1, . . . , gmk, such that gm0 is the empty global memory; gmk =
gm; and, for all i ∈ [1, k], gmi = ai(gmi−1) for some ai ∈ Agmi−1 .

If (B,R,H) is a feasible memory, we refer to R as a feasible public history.

Remark. If gm = (B,R,H) is feasible, then Agm is easily computable from R
alone (and so is ub). Indeed, what ballots are in play, which ballots are envelopes
and which are super-envelopes, et cetera, are all deducible from R. Therefore,
different feasible global memories that have the same public history also have
the same set of available actions. This motivates the following definition.

Definition 2. If R is a feasible public history, by AR we denote the set of
available actions for any feasible global memory with public history R.

4 The Notion of a (Not Necessarily Verifiable) Device

Definition 3. Let D be a sequence of K functions. We say that D is a ballot-
box device (of length K) if, for all k ∈ [1,K], public histories R and private
histories H0, Dk(R,H0) specifies a single action. If a private action is specified,
then it has i = 0.

An execution of D on an initial feasible global memory (B0, R0, H0) is a se-
quence of global memories (B0, R0, H0), . . . , (BK , RK , HK) such that (Bk, Rk, Hk) =
ak(Bk−1, Rk−1, Hk−1) for all k ∈ [1,K], where ak = Dk(Rk−1, Hk−1

0 ).
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If e is an execution of D, by Bk(e), Rk(e), and Hk(e) we denote, respectively,
the ballot set, the public history, and the private history of e at round k.

By RkD(e) and Hk
0,D(e) we denote, respectively, the last k records of Rk(e)

and Hk
0 (e) \H0

0 (i.e., “the records appended to R0 and H0
0 by executing D”).

The executions of D on initial memory gm0 constitute a distribution,12 which
we denote by EXD(gm0).

Remarks.

• Note that if D = D1, . . . ,DK and T = T 1, . . . , T L are ballot-box devices,
then their concatenation, that is, D1, . . . ,DK , T 1, . . . , T L is a ballot-box
device too.

5 The Notion of a Verifiably Secure Computer

Definition 4. An address is a finite sequence x of distinct positive integers. An
address vector x is a vector of mutually disjoint addresses, that is, {xi}∩{xj} =
φ whenever i 6= j. The identifier set of an address vector x = (x1, . . . , xk) is
denoted by Ix and defined to be the set

⋃k
i=1{xi}. If B is a set of ballots, then

we define contB(x) to be the vector (contB(x1), . . . , contB(xk)). If i is a positive
integer, then x+ i is the address vector whose jth component is xj + i (i.e., each
element of sequence xj is increased by i).

As usual, an address profile is an address vector indexed by the set of players.
A computer D for a function f is a special ballot-box device. Executed on

an initial global memory in which specific envelopes (the “input envelopes”)
contain an input x for f , D replaces such envelopes with new ones (the “out-
put envelopes”) that will contain the corresponding output f(x). Of course, no
property is required from D if the initial memory is not of the proper form.

Definition 5. Let f : Xa → Y b be a finite function, where X,Y ⊂ Σ∗; and
let x = x1, . . . , xa be an address vector. We say that a feasible global memory
gm = (B,R,H) is proper for f and x if Ix ⊂ IB and contB(x) ∈ Xa.

With modularity in mind, we actually envision that an execution of a com-
puter D may be preceded and/or followed by the execution of other computers.
We thus insist that D does not “touch” any ballots of the initial memory be-
sides its input envelopes. This way, partial results already computed, if any, will
remain intact.

Definition 6. Let f : Xa → Y b be a finite function, where X,Y ⊂ Σ∗; let x and
y be two address vectors. We say that a ballot-box device D is a verifiably secure
computer for f , with input address vector x and output address vector y, if there
exist a constant sequence U and a straight-line no-input simulator SIM such

12 Indeed, although each function Dk is deterministic, Dk(R) may return an action of
nature.
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that, for any execution e of D on an initial memory gm0 = (B0, R0, H0), proper
for f and x and with identifier upper-bound ub0, the following three properties
hold:

1. Correctness: contBK(e)(y + ub) = f(contB0(x)).

2. Privacy: RKD (e) = U and HK
0,D(e) = SIM().

3. Clean Operation: BK(e) = B{y+ub} ∪B0 \B{x}.
We refer to SIM as D’s simulator; to B{x} as the input envelopes; and to
B{y+ub} as the output envelopes. For short, when no confusion may arise, we
refer to D as a computer.

Remarks.

• Correctness. Semantically, Correctness states that the output envelopes will
contain f evaluated on the contents of the input envelopes. Syntactically,
Correctness implies that each integer of each address yj+ub is the identifier
of an envelope in BK(e).

• Privacy. By running a computer D for f , the only additional information
about f ’s inputs or outputs gained by the players consists of RKD , the por-
tion of the public history generated by D’s execution. Privacy guarantees
that this additional information is constant, thus the players neither learn
anything about each other inputs or outputs nor receive any residual in-
formation. At the same time, in any execution the internal information of
the device is the random string that can be generated with the same odds
by a straight-line no-input simulator. Thus, the device also does not learn
anything about the players’ inputs or outputs.

• Clean Operation. Clean Operation guarantees that D
1. Never touches an initial ballot that is not an input envelope (in fact,

if a ballot is acted upon, then it is either removed from the ballot set,
or receives a new identifier), and

2. Eventually replaces all input envelopes with the output envelopes (i.e.,
other ballots generated by D are temporary, and will not exist in the
final ballot set).

• Simplicity. Note that, since the public history generated by computer D is
fixed, D’s functions do not depend on public history R. Also, as we shall
see, the private actions of the devices we construct depend only on at most
5 last records of H0. Thus, one can interpret D as a simple automaton,
that keeps in its internal memory last 5 private records, and reads the
fixed string U record-by-record to find actions it has to perform.

• Straight-line Simulators. Our simulators are straight-line in the strictest
possible sense. In essence, SIM is run independently many times, and
each time outputs a random permutation in SYM5 and its inverse. (The
simulator is in fact called only after the device “privately opens a sequence
of 5 envelopes” whose content is guaranteed —by construction— to be a
random permutation of the integers 1 through 5.)
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6 Three Elementary Ballot-Box Computers

In this section we first provide verifiably secure computers for three elementary
functions. (These computers will later on be used as building blocks for con-
structing computers for arbitrary finite functions.) Our three elementary func-
tions are:

1. Permutation Inverse, mapping a permutation p ∈ SYM5 to p−1.
2. Permutation Product, mapping a pair of permutations (p, q) ∈ (SYM5)2 to
pq —i.e., the permutation of SYM5 so defined: pq(i) = p(q(i)).

3. Permutation Clone, mapping a permutation p ∈ SYM5 to the pair of per-
mutations (p, p).

Encodings. Note that the notion of a verifiably secure computer D for f applies
to functions f from strings to strings. (Indeed, f ’s inputs and outputs must be
represented as the concatenation of, respectively, the symbols contained in D’s
input and output envelopes.) Thus we need to encode the inputs and outputs of
Permutation Inverse, Product and Clone as strings of symbols. This is naturally
done as follows.

Definition 7. We identify a permutation s in SYM5 with the 5-long string
s1s2s3s4s5, such that sj = s(j). Relative to a well-defined set of ballots B,
we say that a sequence σ of 5 envelope identifiers is an envelope encoding of
a permutation if contB(σ) ∈ SYM5.

If σ is an envelope encoding of a permutation in SYM5, we refer to this per-
mutation by σ̂. We consistently use lower-case Greek letters to denote envelope
encodings.

Device Conventions. To simplify our description of a device D we adopt the
following conventions.
• Rather than describing D as a sequence of K functions that, on input

a public history R and a private history H0, output a ballot-box action
feasible for any global memory with public history R, we present D as a
list of K actions a1, . . . , aK (to be performed no matter what the public
history may be). Should any such ak be infeasible for a particular global
memory, we interpret it as the “do nothing” action, which is always feasible.

• We describe each action ak via its informal reference (as per Definition 3.2),
using an explicit and convenient reference to the identifiers it generates. For
instance, when we say “Make a new envelope x with public content c”, we
mean (1) “Make a new envelope with public content c” and (2) “refer to
the identifier of the newly created envelope as x” —rather than ub + 1.

• We (often) collapse the actions of several rounds into a single conceptual
round, providing convenient names for the ballot identifiers generated in
the process. For instance, if p is a permutation in SYM5, the conceptual
round “Create an envelope encoding σ of p” stands for the following 5
actions:
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Make a new envelope σ1 with public content p1.
Make a new envelope σ2 with public content p2.
Make a new envelope σ3 with public content p3.
Make a new envelope σ4 with public content p4.
Make a new envelope σ5 with public content p5.

6.1 A Verifiably Secure Computer for Permutation Inverse

Device INVσ

Input address: σ —an envelope encoding of a permutation in SYM5.
(1) Create an envelope encoding α of the identity permutation I = 12345.
(2) For ` = 1 to 5: make a new super-envelope A` containing the pair of en-

velopes (σ`, α`).
(3) Ballotbox A1, . . . , A5 to obtain A′1, . . . , A

′
5.

(4) For ` = 1 to 5: open super-envelope A′` to expose envelope pair (ν`, µ`).
(5) For ` = 1 to 5: privately read and reseal ν`, and denote its content by ν̂`.

Set ν̂ = ν̂1 ◦ · · · ◦ ν̂5.
(6) For ` = 1 to 5: make a new super-envelope B` containing the pair of en-

velopes (ν`, µ`).
(7) Secretly permute B1, . . . , B5 according to ν̂−1 to obtain B′1, . . . , B

′
5.

(8) For ` = 1 to 5: open super-envelope B′` to expose envelope pair (β`, ρ`). Set
ρ = ρ1, . . . , ρ5.

(9) For ` = 1 to 5: open envelope β′` and denote its content by β̂`.
Output address: 37, 39, 41, 43, 45.

Lemma 1. For any 5-long address σ, INVσ is a verifiably secure computer for
permutation inverse, with input address σ and output address 37, 39, 41, 43, 45.

Proof. As per Definition 6, let us establish Correctness, Privacy and Clean Op-
eration for INVσ. Consider an execution of INVσ on any initial memory gm0

proper for permutation inverse and σ, and let ub0 be the identifier upper-bound
of gm0.

Correctness. Step 1 generates 5 new identifiers (increasing ub0 by 5). Step
2 binds together, in the same super-envelope A`, the `th envelope of σ and α.
It generates 5 new identifiers, and all of its actions are feasible since σ ∈ IB .
Step 3 applies the same, random and secret, permutation to both σ̂ and α̂,
generating 5 new identifiers. Letting x be this secret permutation, Step 4 “puts
on the table” the envelope encodings ν = ν1, . . . , ν5 and µ = µ1, . . . , µ5, where
ν̂ = xσ̂ and µ̂ = xI = x, and generates 10 new identifiers. At the end of Step
4, both ν̂ and µ̂ are totally secret. In Step 5, however, the device learns ν̂ and
reseals envelope encoding ν. Step 6 puts ν and µ back into super-envelopes
B1, . . . , B5, generating 5 new identifiers. In Step 7, the device secretly applies
permutation ν̂−1 to both ν̂ and µ̂, generating 5 new identifiers. The action of
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Step 7 is feasible because σ̂ ∈ SYM5, thus ν̂ ∈ SYM5. Step 8 “puts on the table”
the envelope encodings β and ρ, where β̂ = ν̂−1ν̂ = Id and ρ̂ = ν̂−1x, and
generates 10 new identifiers. Step 9 reveals contents of β, which are β̂ = 12345.
Thus, ρ = ub0 + 37, ub0 + 39 . . . , ub0 + 45; and ρ̂ = σ̂−1x−1x = σ̂−1 as desired.

Privacy. It is clear that the public history generated by D is a fixed constant.
And the very fact that the contents of β revealed in Step 9 are 1, 2, . . . , 5 in the
fixed order serves as a proof that the device had used the correct permutation to
invert the contents of ν̂ and µ̂. Constructing the required simulator is also trivial,
as the contents of H0,D are a random permutation ν̂ and its inverse. Thus, SIM
consists of: (1) generating a random permutation r = r1 . . . r5 ∈ SYM5; (2) for
` = 1 to 5: writing a string r`; and (3) writing a string r−1.

Clean Operation. Trivially follows by construction.

6.2 A Verifiably Secure Computer for Permutation Product

Device MULT σ,τ

Input addresses: σ and τ —each an envelope encoding of a permutation in SYM5.
(1) Execute computer INVσ to obtain the envelope encoding α.
(2) For ` = 1 to 5: make a new super-envelope A` containing the pair of en-

velopes (α`, τ`).
(3) Ballotbox A1, . . . , A5 to obtain A′1, . . . , A

′
5.

(4) For ` = 1 to 5: open super-envelope A′` to expose envelope pair (ν`, µ`).
(5) For ` = 1 to 5: privately read and reseal ν`, and denote its content by ν̂`.

Set ν̂ = ν̂1 ◦ · · · ◦ ν̂5.
(6) For ` = 1 to 5: make a new super-envelope B` containing the pair of en-

velopes (ν`, µ`).
(7) Secretly permute B1, . . . , B5 according to ν̂−1 to obtain B′1, . . . , B

′
5.

(8) For ` = 1 to 5: open super-envelope B′` to expose envelope pair (β`, ρ`). Set
ρ = ρ1, . . . , ρ5.

(9) For ` = 1 to 5: open envelope β′` and denote its content by β̂`.
Output address: 77, 79, 81, 83, 85.

Lemma 2. For any two, disjoint, 5-long addresses σ and τ , MULT σ,τ is a
verifiably secure computer for permutation product, with input addresses σ and
τ and output address 77, 79, 81, 83, 85.

Proof. To establish Correctness, note that envelopes α generated in Step 1 con-
tain α̂ = σ̂−1; contents of ν and µ in Step 4 are ν̂ = xσ̂−1 and µ̂ = xτ̂ for
a random x ∈ SYM5; and contents of β and ρ in Step 8 are ν̂−1ν̂ = I and
ρ̂ = (xσ̂−1)−1xτ̂ = σ̂τ̂ . Privacy and Clean Operation trivially follow. By con-
struction, the public history generated byMULT σ,τ is fixed, and the SIM has
to generate a random permutation and its inverse twice (for INV in Step 1 and
for Steps 5 and 7.)
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6.3 A Verifiably Secure Computer for Permutation Clone

Device CLONEσ

Input address: σ —an envelope encoding of a permutation in SYM5.

(1) Execute computer INVσ to obtain the envelope encoding α.
(2) Create two envelope encodings, β and γ, of the identity permutation I.
(3) For ` = 1 to 5: make a new super-envelope A` containing the triple of

envelopes (α`, β`, γ`).
(4) Ballotbox A1, . . . , A5 to obtain A′1, . . . , A

′
5.

(5) For ` = 1 to 5: open super-envelope A′` to expose envelope triple (ν`, µ`, η`).
(6) For ` = 1 to 5: privately read and reseal ν`, and denote its content by ν̂`.

Set ν̂ = ν̂1 ◦ · · · ◦ ν̂5.
(7) For ` = 1 to 5: make a new super-envelope B` containing the pair of en-

velopes (ν`, µ`, η`).
(8) Secretly permute B1, . . . , B5 according to ν̂−1 to obtain B′1, . . . , B

′
5.

(9) For ` = 1 to 5: open super-envelope B′` to expose envelope triple (δ`, ψ`, ρ`).
(10) For ` = 1 to 5: open envelope δ`.13

Output addresses: 92, 95, 98, 101, 104 and 93, 96, 99, 102, 105.

Lemma 3. For any 5-long address σ, CLONEσ is a verifiably secure computer
for permutation clone, with input address σ and output addresses 92, 95, 98, 101, 104
and 93, 96, 99, 102, 105.

7 General Verifiably Secure Computers

Recall that any finite function f : {0, 1}a → {0, 1}b can be easily (and quite
efficiently) represented as a combinatorial circuit, and thus as a fixed sequence
of the following basic functions:

• COIN , the probabilistic function that, on no input, returns a random bit;
• DUPLICATE, the function that, on input a bit b, returns a pair of bits

(b, b);
• AND, the function that, on input a pair of bits (b1, b2), returns 1 if and

only if b1 = b2 = 1; and
• NOT , the function that, on input a bit b, returns the bit 1− b.

We thus intend to prove that each of these basic functions has a ballot-box
computer, and then obtain a ballot-box computer for any desired f : {0, 1}a →
{0, 1}b by utilizing these 4 basic computers. To this end, we must first decide
how to encode binary strings and binary functions.

13 Note that Steps 2–10, in essence, correspond to a protocol for permutation inverse
that on input α produces two identical envelope encodings, each encoding α̂−1.
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Definition 8. We define the SYM5 encoding of a k-bit binary string x = b1, . . . , bk,
denoted by x̄, to be b̄1 · · · b̄k, where

0̄ = 12345; 1̄ = 12453.

The SYM5 encoding is immediately extended to binary functions as follows:
f̄(x̄) = f(x) for all x.

One of our basic computer has already been constructed: namely,

Lemma 4. For any envelope encoding σ, CLONE is a ballot-box computer for
DUPLICATE with input address σ.

Proof. Because CLONE duplicates any permutation in SYM5, in particular it
duplicates 12345 and 12453.

We thus proceed to build the other 3 basic computers

7.1 A Verifiably Secure Computer for COIN

Device COIN

(1) Create an envelope encoding α of I and an envelope encoding β of a.

(2) Make new super-envelopes A and B containing envelopes α1, . . . , α5 and
β1, . . . , β5, respectively.

(3) Ballotbox A and B to obtain super-envelopes C and D.

(4) Open C to expose an envelope encoding γ. Destroy D.

Output address: 15, 16, 17, 18, 19.

Lemma 5. COIN is a verifiably secure computer for COIN , with no input
address and output address 15, . . . , 19.

Proof. The only non-trivial part to prove Correctness is to demonstrate that
contents of γ are random and belong to {I, a}. Indeed, at the end of Step 2, A
contains a sequence of 5 envelopes encoding I, and B contains a sequence of 5
envelopes encoding permutation a. At the end of Step 3, the contents of C are
either those of A or of B with equal probabilities. Thus, at the end of Step 4,
the content of address γ is random and is either I or a.

Clean Operation is trivial, and Privacy straightforwardly follows by noting
that the public history is fixed and there is no private history of the device
generated by COIN .
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7.2 Verifiably Secure Computers for NOT and AND

In proving the existence of ballot-box computers for NOT and AND we rely on
the result of [3] that the Boolean functions NOT and AND can be realized as
sequences of group operations in SYM5.14 Here is our rendition of it.

Let I = 12345, a = 12453, b = 25341, c1 = 34125, c2 = 12354, and c3 =
42153; and let x̃, x′ and x∗ be the operators defined to act on a permutation
x ∈ SYM5 as follows:

x̃ = c−1
1 xc1, x′ = c−1

2 xc2, and x∗ = c−1
3 xc3.

Then, recalling that 0̄ = I and 1̄ = a, the following lemma can be verified
by direct inspection.

Barrington’s Lemma. If x1 = b1 and x2 = b2, where b1 and b2 are bits, then

¬b1 = (x1a
−1)∗, and b1 ∧ b2 = (x1x̃2x

−1
1 x̃−1

2 )′.

Lemma 6. There exist ballot-box computers NOT and AND for, respectively,
NOT and AND.

Proof. The lemma follows by combining Barrington’s lemma and our Lemmas
1,2 and 3. That is, each of NOT and AND is obtained in four steps. First, by
expanding the operators of the formulas of Lemma 6 so as to show all relevant
constants a, c1, c2 and c3. Second, by generating envelope encodings for each
occurrence of each constant. Third, in the case of AND, by using our elemen-
tary computer CLONE so as to duplicate x1 and x2. Forth, by replacing each
occurrence of permutation inverse and permutation product in the formulas of
Lemma 6 with, respectively, our elementary computers INV and MULT . Ac-
cordingly, the simulators for NOT and AND can be obtained by running the
simulators of their individual elementary computers in the proper order.

14 Note that neither DUPLICATE nor COIN can be realized in SYM5, and thus one
cannot compute arbitrary functions in SYM5. Indeed, the result of [3] was solely
concerned with implementing a restricted class of finite functions called NC1. At
high level, we bypass this limitation by (1) representing permutations in SYM5 as
sequences of 5 envelopes and (2) using these physical representations and our ballot-
box operations for implementing DUPLICATE and COIN (in addition to NOT
and AND). That is, rather than viewing a permutation in SYM5 as a single, 5-
symbol string, we view it a sequence of 5 distinct symbols, and put each one of them
into its own envelope, which can then be manipulated separately by our ballot-box
operations. Such “segregation” of permutations of SYM5 into separate envelopes is
crucial to our ability of performing general computation, and in a private way too.
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7.3 Verifiably Secure Computers for Arbitrary Finite Functions

Theorem 1. Every finite function has a verifiably secure computer.

Proof. Let f : {0, 1}a → {0, 1}b be a finite function. Then (by properly ordering
the “gates” of a combinatorial circuit for f) there exists a fixed sequence Cf =
F1, F2, . . . , FK such that:

• Each Fi is either COIN , DUPLICATE, NOT or AND;

• Each input bit of Fi is either one of the original input bits or one of the
output bits of Fj for j < i; and

• For each a-bit input x, the b-bit output f(x) can be computed by evaluating
(in order) all functions Fi on their proper inputs, and then concatenating
(in order) all their output bits not used as inputs by some Fj . (Such bits
are guaranteed to be exactly b in total.)

Define now Di as follows:

Di = COIN if Fi = COIN ;

Di = CLONE if Fi = DUPLICATE;

Di = NOT if Fi = NOT ;

Di = AND if Fi = AND.

Let D be the concatenation of D1, . . . ,DK , with appropriately chosen input
addresses, so that the lth input address of Di matches the mth output address
of Dj whenever the lth input bit of Fi is the mth output bit of Fj . Then, D is a
ballot-box computer for f . In fact, D’s correctness follows from the correctness
of each computer Di. Furthermore, D’s privacy follows from the fact that each
Di has a simulator SIMi, and thus a simulator SIM for D can be obtained by
executing (in order) SIM1, SIM2, . . . , SIMK . Finally, the clean operation of D
follows from the clean operation of each Di.

Remarks.

• Note that our ballot-box computer Df is “as efficient as” f itself. Indeed,
the description of Df is linear in the description of Cf . This is so because,
letting Cf = F1, F2, · · · , Df replaces each Fi with a ballot-box computer for
Fi that has constant number of actions and generates a constant number of
identifiers. Moreover, assuming each function Fi is executable in constant
time (since it operates on at most two bits) and assuming that each ballot-
box action is executable in constant time (since it operates on at most 5
ballots), the time needed to run Df is also linear in the time needed to run
Cf .

• If D is executed on an initial global memory whose ballot set coincides with
just the input envelopes, then the ballot set of D’s final global memory of
coincides with just the output envelopes.
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8 The Input Stage (and the Output Stage)

Having described the concrete computation stage of ILM2 security, we just need
to describe its input and output stages. The output stage is trivial implemented.
In essence, the device publicly opens the sequence of envelopes containing the
public output y, and hands over to each player i the sequence of envelopes
containing yi. For the latter, one must formally enrich the ballot-box model
with the basic public action “Hand over envelope j to player i.” We omit to do
so formally in this extended abstract.15

In this section we thus limit ourselves to defining and implementing the input
stage.

8.1 Verifiably Secure Input Committers.

Intuitively, a verifiably secure input committer IC is a protocol that enables each
player i to give to the verifiably secure device D a separate sequence of envelopes
Si whose contents encode i’s chosen input mi so that: (1) in any execution of
IC the contents of the envelopes in Si properly encode mi; and (2) only player
i knows mi, while the other players and the device learn only a fixed public
history.

Since in the input stage the players must interact with the device, we start
with formalizing the notion of a protocol (restricted to our needs) and then the
notion of a committer. Afterwards, we proceed to construct a committer.

Definition 9. A (tight) protocol P is a triple (K,PS,AF ), where
• K, the length of the protocol, is a positive integer;
• PS, the player sequence, is a sequence of K integers each from 0 to n; and
• AF , the action function, is a mapping from K × R —where R is the set

of all feasible public histories— to sets of ballot-box actions such that, for
all k ∈ [1,K] and R ∈ R, AF (k,R) specifies for player i = PSk either a
single action or a pair of actions as follows:

* a single action ak if i = 0;
* a pair of SecretPermute actions {ak0 , ak1}, where ak0 and ak1 permute

the same ballots j0, j1 ∈ IB with, respectively, permutations 12 and
21.16

15 If we want to capture additional security desiderata, such as deniability, then we
should ensure that the players privately read and destroy the envelopes they finally
receive. To this effect, it may be advantageous to enrich the ballot-box model with
the operation “flash the content to envelope j to just player i.” (In essence this is the
operation corresponding to raising a card facing down just in the direction of player
i.) The device will then destroy the envelope flushed to i. Again, the destroy action
is not essential, and can be simulated by a verifiable device by means of a fixed
sequence of the other ballot-box actions. Additional desiderata can also demand the
“simultaneous execution” of some of the actions.

16 Note that the set of the current ballot identifiers IB can be fully obtained from R.
For more general protocols, the actions of player i are allowed to depend on Hi too.
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If a = akb , we refer to b as a’s hidden bit and refer to a as the 0-action (of the
pair) if b = 0, and as the 1-action otherwise.

For a given P, let `i be the number of times player i is asked to act by P,
that is `i = #{k ∈ [1,K] : PSk = i}. Let zP be a profile of strings, such that
zi is an `i-bit string.

An execution of P with associated profile zP on an initial feasible global mem-
ory (B0, R0, H0) is a sequence of global memories (B0, R0, H0), . . . , (BK , RK , HK)
such that (Bk, Rk, Hk) = ak(Bk−1, Rk−1, Hk−1) for all k ∈ [1,K], where:
• ak = AF (k, PS, gmk−1), if PSk = 0; and
• ak = akb ∈ AF (k, PS, gmk−1), where b is the mth bit of zi, where m =

#{j ∈ [1, k] : PSk = i}, if PSk = i.
Since the execution of P in all respects is similar to the execution of a device,

we will retain all the notation defined for executions of devices.

Definition 10. Let IC be a ballot-box protocol, (0̄, 1̄) a bit-by-bit encoding, and
x an address profile, x = x1, . . . , xn. We say that IC is a L-bit verifiably secure
input committer for (0̄, 1̄) with output address profile x if there exists a unique
sequence U such that, for every execution e of IC with associated profile z, whose
initial global memory is empty, the following three properties hold:

1. Correctness: ∀i ∈ [1, n], HK
i (e) = zi ∈ {0, 1}L and contBK(e)(xi) = zi.

2. Privacy: RK(e) = U and HK
0 (e) = ∅.

3. Clean Termination: IBK(e) = Ix.

Remarks.

• Correctness. Correctness requires that, once IC is executed, the private his-
tory string of each player is of length L, and that the ballots corresponding
to the output address profile x1, . . . , xn contain the bit-by-bit encoding of
the players’ intended inputs. This requirement has both syntactic and se-
mantic implications. Syntactically, Correctness implies that each xi is of
length 5L and each element of xi is the identifier of an envelope in BK(e).
Further, it requires that the number of times each player acts in IC is equal
to 5L and that the length of his private history is also 5L. Semantically,
Correctness implies that the envelopes of address xi encode a message zi
freely chosen by player i alone. (I.e., the other players have no control over
the value of zi.) This is so because the envelopes in xi are guaranteed to
contain the bit-by-bit encoding of the final private record of player i. Re-
call that i’s private history, Hi, grows, by a bit at a time, in only one case:
when i himself secretely chooses one of two complementary actions (in our
physical interpretation, when i temporarily holds two envelopes behind his
back, and then returns them in the order he chooses). This is an “atomic”
(in the sense of “indivisible”) choice of i, and therefore the other players
have no control over it.

• Privacy. Privacy requires that, at each round k of IC, the public infor-
mation available to the acting player always consists of the fixed sequence
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Uk−1, no matter what are the intended inputs. Thus, while Correctness
implies that any control over the choice of a player’s message solely rests
with that player, Privacy implies that all messages are independently cho-
sen, as demanded in the ideal normal-form mechanism, and totally secret
at the end of the committer’s execution.

Privacy thus rules out any possibility of signaling among players during
the execution of a committer.

Note that the information available to a player i consists of both his
private history Hi and the public history R. In principle, therefore, the pri-
vacy condition should guarantee that no information about other players’
strategies is deducible from Hi and R jointly. As argued above, however,
HK
i depends on i’s strategy alone. Thus, formulating Privacy in terms of

the public history alone is sufficient.

• Clean Termination. Clean termination ensures that only the envelopes con-
taining the desired encoding of the players’ private messages remain on the
table.

8.2 Our Verifiably Secure Committer

Protocol CommitL

For player i = 1 to n DO: For t = 1 to L and bit bit Do:
(1) Create an envelope encoding α(i,t) of permutation I = 12345.

(2) Create an envelope encoding β(i,t) of permutation a = 12453.

(3) Make a new super-envelope A(i,t) containing envelopes α(i,t)
1 , . . . , α

(i,t)
5 .

(4) Make a new super envelope B(i,t) containing envelopes β(i,t)
1 , . . . , β

(i,t)
5 .

(5) Player i secretly permutes A(i,t) and B(i,t) according to 12, if bit = 0, and
to 21, otherwise, to obtain the super-envelopes C(i,t) and D(i,t).

(6) Open C(i,t) to expose envelopes γ(i,t)
1 , . . . , γ

(i,t)
5 . Set γ(i,t) = γ

(i,t)
1 , . . . , γ

(i,t)
5 .

(7) Destroy D(i,t).
Output Addresses: For each i ∈ N , the sequence xi = γ(i,1), . . . , γ(i,L).

Lemma 7. Protocol CommitL is an L-bit verifiably secure committer for the
SYM5 encoding.

Proof. At the end of Step 3, A(i,t) contains a sequence of 5 envelopes encoding
the identity permutation I, and, at the end of Step 4, B(i,t) contains a sequence of
5 envelopes encoding permutation a. Thus, recalling that in the SYM5 encoding
I = 0̄ and a = 1̄, at the end of Step 5, C(i,t) contains an envelope encoding of b̄
if player i “chooses the bit b”. Thus, at the end of Step 6, the content of address
xi is zi, where Hi is a binary string of length L, as demanded by Definition 10.
All other properties are trivially established.
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