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Abstract

This thesis presents the design, fabrication, and characterization of a microbioreactor
integrated with automated sensors and actuators as a step towards high-throughput bioprocess
development. In particular, this thesis demonstrates the feasibility of culturing microbial cells in
microliter-volume reactors in batch, continuous, fed-batch operations.

The microbioreactor is fabricated out of poly(methylmethacrylate) and
poly( dimethylsiloxane). Active mixing is made possible by a miniature magnetic stir bar. On-
line optical measurements for optical density, pH, and dissolved oxygen are integrated.
Oxygenation in the microbioreactor is characterized and reproducible batch fermentation of
Escherichia coli and Saccharomyces cerevisiae are demonstrated and benchmarked with bench-
scale bioreactors. Global gene expression analysis of S. cerevisiae exhibits physiological and
molecular characteristics which parallel those of large-scales.

A microchemostat, continuous culture of microbial cells, is realized in the microbioreactor.
E. coli cells are fed by pressure-driven single phase flow of fresh medium through a
microchannel. Chemotaxis, the back growth of bacterial cells into the medium feed channel, is
prevented by local heating. Using poly(ethylene glycol) -grafted poly(acrylic acid) copolymer
films, PMMA and PDMS surfaces are modified to generate bio-inert surfaces resistant to non-
specific protein adsorption and cell adhesion. These advances enable cell growth kinetics and
stoichoimetry to be obtained in the microchemostat consistent with reported phenomena from
conventional stirred-tank bioreactors, as indicated by the time profiles of OD6oonm,pH, and DO
measurements at steady states.

Water evaporation from the microbioreactor allows feeding of base and glucose solutions
into the small reactor to realize fed-batch operations. Commercial microvalves are integrated to
obtain closed-loop pH control. pH value in the microbioreactor is successfully maintained within
a physiological scale during the time course of E. coli cell cultivation in rich media.

One key issue for high-throughput bioprocessing is the parallel operation of multiple
microbial fermentations while keeping each single microbioreactor disposable. Plug-in-and-flow
microfluidic connectors and fabricated polymer micro-optical lenses/connectors are integrated in
the microbioreactor "cassettes" for fast set-up and easy operation. A protocol multiplexed
system for the parallel operation of four microbioreactors is demonstrated. The demonstrated
functionality of the microbioreactor with integrated measurements and flexible operations could
potentially have a large impact in bioprocess developments.
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Chapter 1. Introduction

1.1. Bottlenecks in Bioprocess Development

Bioprocess engineers are faced with a bottleneck in the transition from screening discovery

to bioprocess developments. In standard screening processes using simple assays such as shake

flasks, test tubes, and microtiter plates, a large number of experiments are performed with little

process information obtained during each individual fermentation experiment. Bioprocess

developments are normally performed in expensive stir tank bioreactors instrumented with

online measurements. Optimization of operating conditions is complicated by the limited

number of experiments possible.

In various conventional bioreactors, instrumented stirred-tank bioreactors effectively control

temperature, pH, and dissolved oxygen (DO) levels by controlling mixing and gas sparging rate,

thus yielding valuable physiological and metabolic information at different stages of the

fermentation. However, fermentation experiments using conventional stirred-tank bioreactors

are typically expensive and labor-intensive for screening purposes. Improvements have been

made in lab-scale stirred-tank bioreactors including reducing the reactor volume and increasing

the number of reactors operating in parallel (Weuster-Botz et aI., 2002), but many of these

solutions require efforts, such as sterilization, assembly, cleaning, and calibration of sensors in

reactors, which scale with the number of bioreactors. Thus, the need remains for developing

bioreactor systems that will enable parallel experimentation with only minimum increase in

handling and operational efforts.

Test tubes, shake flasks, and microtiter plates are widely used as simple bioreactors for

fermentation and cell culture experiments. Fast developments in lab automation technologies
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allow these bioreactors, especially microtiter plates, to be easily operated in parallel and with

small volumes. There is little control over bioprocess conditions in these reactors, and the data

obtained are often limited to endpoint measurements. Thus applications of these simple

bioreactors are typically limited to screening. Efforts have been made to implement on-line pH

or DO measurements units in microtiter plates (Weiss et al., 2002; John et aI., 2003a and b) or

shake flasks (Weuster-Botz et al., 2001; Tolosa et aI., 2002; Wittmann et al., 2003; Gupta and

Rao, 2003) to obtain continuous process information during fermentation.

1.2. Microbioreactors

Microbioreactors with integrated sensors combine the small volumes of microtiter plates with

the monitoring and control features found in bench-scale systems to form promising tools for

rapid, high-throughput, and cost-effective screening. Kumar et al. (2004) have reviewed recent

progress in the area of minibioreactors as well as small-scale conventional bioreactors.

One fundamental requirement for mL- or ilL-scale bioreactors is the ability to obtain optical

density (aD), pH, and DO data in real time and thereby avoid the need for sample removal.

Recent developments in electrochemical and optical sensor technologies have made such

measurements possible in microbioreactors. Walther et al. (1994) first realized a microreactor

for yeast cell culture. Kim and Lee (1998) proposed a microfermentor chip that uses

microelectrodes to measure biomass, pH, DO, and glucose concentration. Van der Weide and

Blattner (2002) correlated capacitance and resistance to the biomass in microbial growth assay

wells with a liquid content of up to 30 JlL. The microbioreactor developed by Maharbiz et al.

(2003) is a hybrid of plastic microplate reactors combined with silicon technology; in the reactor

oxygen is generated and delivered by hydrolysis of water. Most recently, Maharbiz et al. (2004)

have integrated 250 ilL microbioreactor arrays with OD measurement and pH ISFET sensors on
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a commercial printed circuit board.

Rao and co-authors (Kostov et al. 2001; Rao, 2002; Harms et a/., 2002, Kermis et al., 2003)

pioneered optical measurements of OD, pH, and DO, which are non-invasive, easily integrated,

and reliable - advantageous features for high-throughput bioprocess development. In the

minibioreactor by Kostov et al. (2001), fermentation parameters were measured on-line

continuously; cell growth was compared with a bench-scale 1 L fermentor. Optical sensors were

also used in the 6 mL miniature bioreactor reported by Lamping et a/. (2003), as well as in the

microbioreactor described by Zanzotto et a/. (2004), in which stable signals were obtained in a 5

ilL microbioreactor. Commercialized applications of the optical sensors include the Cellstation@

bioreactors developed by Fluorometrix Corp. (Stow, MA, USA), in which 12 miniature stirred-

tank bioreactors are operated in parallel. Most recently, Puskeiler et a/. (2005) reported parallel

operation of 48 magnetically-mixed milliliter scale bioreactors arrays. In these bioreactors, OD

and pH were monitored on-line; automation of fed-batch operation and pH control were

implemented by using commercially available liquid-handling systems. These efforts in

miniaturization and parallelization of microbioreactors, as well as automation of measurements

and controls, demonstrate the potential for obtaining valuable growth kinetics data from

microbioreactors and indicate the promise of high-throughput technologies for bioprocessing.

Most of the reported microbioreactors to date operate in batch and fed-batch modes. In batch

and fed-batch cultures, the properties of microorganisms, such as size, composition, and

functional characteristics vary considerably during the growth of the culture. Steady state cell

growth, in the state of which cell biomass, substrates and products concentrations remain

constant, can only be realized in continuous culture experiments. Kinetic parameters and yield

coefficients can be determined more accurately using continuous culture. Continuous culture
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also permits a degree of control and flexibility that are not available for batch processes:

chemical environmental conditions can be defined and maintained independently of growth rate

(chemostat). The cause/effect relationships are more easily determined (Akgiin et al., 2004).

These features make a chemostat a unique and powerful tool for biological and physiological

research. However, continuous culture experiments in conventional stirred-tank bioreactors are

often time- and labor- intensive. The rational for research in miniaturized chemostat bioreactors

is to increase the throughput and make microchemostat a widely applicable routine for screening

and bioprocess optimization. Efforts have been made in miniaturization as well as in parallel

operation. Gu et al. (1999) used a miniature stirred-tank bioreactor with working volume of 58

mL in a two-stage continuous culture experiment and further applied it in a multi-channel system

(2001). Akgiin et al. (2004) realized continuous culture in shaken Erlenmeyer flasks and

demonstrated the potential for parallel operations. Walther et al. (1994, 1999, and 2000)

developed a 3 mL continuous bioreactor with integrated biomass, pH, and temperature

microelectronic sensors to investigate physiological and morphological properties of yeast cells

in microgravity environments (in space lab). This microbioreactor was a self-sustained and

controlled system: medium flow rate measured by a microsensor was controlled by a piezo-

electric silicon membrane pump; pH was measured by a miniaturized ion-selective field effect

transistor (ISFET) sensor (Walther, 1996) and controlled by coulometric generation of hydroxyl

ions at a titanium electrode. Aeration was through gas-permeable cylindrical silicone tubes in

the bioreactor, and mixing was realized by a magnetic stir bar (Walther, 1999). A novel

microchemostat system was recently reported by Balagadde et al. (2005) by integration of

poly( dimethylsiloxane) (PDMS) peristaltic pumps and valves using soft lithography technology;

small population of E. coli cells (.-..-104) were cultured in liquid segments (with volume of 15 nL)

15



that flow in a microfluidic loop for periodical flushing and medium feeding. Most recently, a

perfusion-type microfluidic device was used by Groisman et at. (2005) by physically trapping

cells in nL-volume chambers. Although cells were cultivated in a batch process in absence of

active mixing, "chemostat" operation was claimed by Balaban (2005) with the reasoning of

constant growth conditions observed with the expression of a fluorescent protein.

Oxygenation is an important aspect in bioreactor design and performance. In most stirred-

tank bioreactors, air or oxygen gas bubbles are sparged into the culture medium to provide

microbial cells with the oxygen necessary for growth or maintenance of cellular functions. For

example, the miniature bioreactor by Lamping et at. (2003) machined in Plexiglass and outfitted

with air spargers and stirring baffles, can be seen as a scaled-down version of conventional

bench-scale stirred-tank bioreactors. Sparging of air/oxygen, such as the oxygen bubbles created

electrochemically in the microbioreactor by Maharbiz et at. (2004), also contributes to mixing.

Shaking is another way to improve gas-liquid oxygen transportation in bioreactors (Duetz et at.,

2000; Wittmann et at., 2003). Zanzotto et al. (2004) provided oxygenation to cells growing in

the microbioreactor by diffusion through a thin, gas-permeable PDMS membrane. In this

reactor, PDMS membrane separates gas and liquid phases thereby eliminating the risk of

contamination from air and cross-talk between adjacent microbioreactors. Oxygen diffusion in

PDMS is sufficiently fast so that mass transfer is not limited by the PDMS membrane, but by

diffusion into the broth so that an oxygen concentration gradient develops through the depth of

the reactor (Zanzotto et aI., 2004). As a result, such reactors must have shallow depth (e.g., a

few hundred microns) and the volume can only be increased by enlarging the diaIneter, which

creates potential difficulties for the membrane design.
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1.3. Thesis Objective

There is great interest in the development of new microbial cell cultivation technologies for

high-throughput screening as well as for bioprocess development with less mechanical

manipulations and cost than standard fermentation technology. The aim of this thesis is to

develop miniaturized, automated microbioreactors with integrated bioanalytical devices,

including non-invasive monitoring and/or control of temperature, pH, dissolved oxygen (DO),

and biomass. Microfluidics technologies are integrated in the microbioreactors to allow effective

control over environmental conditions thus physiological conditions for microbial cells. Such a

microbioreactor system will address packaging and multiplexing issues to allow a high-

throughput process. The microbioreactor will potentially address the continuing demand in

bioprocess science and engineering for obtaining fast and accurate analytical information to

rapidly evaluate the interactions between biological systems and bioprocess operations.

Potentially, the microbioreactors will provide the platforms for efficiently incorporating modern

tools of biology (genetics, enzymology, bioinformatics) to improve bioprocesses.

1.4. Thesis Outline

The work in this thesis covers four major topics: (1) design and fabrication of a well-mixed

and integrated microbioreactor for batch cell cultivation, (2) construction of a microchemostat

system - continuous culture in the microbioreactor, (3) implementation of an evaporation-driven

fed-batch microbioreactor, and (4) integration of a reactor cassette and design of a multiplexed

system.

Chapter Two addresses the fundamental issues in constructing a well-mixed, polymer-based,

and instrumented batch microbioreactor as an extension of the membrane-aerated
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microbioreactor by Zanzotto et al. (2004). Active mixing is achieved by using a mini magnetic

stir bar driven by an external rotating magnetic field. A volume of 150 ilL in the

microbioreactor makes sampling possible for bioanalysis, such as HPLC or global gene

expression analysis (Boccazzi et al., 2006). Construction of the microbioreactor in layers of

poly(methylmethacrylate) (PMMA) and PDMS makes the reactor transparent for optical

measurements and rigid for handling while preserving the aeration and septic properties of the

PDMS membrane. Optical sensors for on-line monitoring OD600nm,pH, and DO measurements

are integrated into the microbioreactor. Water evaporation during operation, a critical issue

particular for small reactors and for fermentation with slow-growing microorganisms (Kumar et

aI., 2004), is compensated by connecting the microbioreactor to a pressurized water reservoir

maintaining the reactor volume constant during experiments. Escherichia coli and

Saccharomyces cerevisiae are used as model systems. The oxygenation and performance of the

microbioreactor is characterized and benchmarked against conventional bench-scale cell culture

systems (e.g. test tubes, shaking flasks, and 500-mL stirred-tank bioreactors). Comparative

global gene expression analysis of Saccharomyces cerevisiae cultivated in two different media is

used to demonstrate the potential applications of the microbioreactor.

Based on the work on the microreactor for batch culture, Chapter Three addresses issues for

continuous culture of microorganism in microbioreactors by integration of more functionality. A

microchemostat requires a dynamic balance of medium feeding and cell growth to avoid "wash-

out" or overpopulation of cells in the microbioreactor. Additional challenges for chemostat in

microdevices include avoiding cell growth on the reactor walls and avoiding chemotaxis of

bacteria into microfluidic channels. The long culturing time in chemostats means that cell

adhesion and wall growth on the surfaces of bioreactor can become significant issues unless
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reactor surfaces are modified to provide resistance to non-specific cell adhesion. Cells growing

on surfaces have different physiological properties to those growing in suspension (Pilyugin and

Waltman, 1999) and thus cell wall growth kinetics deviates from the chemostat model (Topiwala

and G. Hamer, 1971). This problem is further accentuated by the high surface-to-volume ratio of

micro-scale devices. Surface modification with poly( ethylene glycol) (PEG) -grafted poly

(acrylic acid) (PAA) copolymer coatings on PDMS and PMMA are used to effectively reduce

Escherichia coli cell adhesion and cell wall-growth. Chemotaxis, the bias random walk of

motile bacterial cells towards nutrients, presents a major challenge for implementing

microchemostat. A single cell migrating back through the feed line to the medium reservoir

would rapidly contaminate the medium and ruin the chemostat experiment. The microbioreactor

is implemented with local heating to prevent cell chemotaxis.

Chapter Four addresses issues in fed-batch operation and pH control in the microbioreactor.

Different to the microchemostat, in which cells and liquid continuously flow out of the system,

in a fed-batch system one major challenge for the microbioreactor, is to find an exit for the

additional liquid feed and keep the reactor at a constant volume. The implemented solution is to

apply water evaporation from the microbioreactor through the PDMS membrane as the driving

force for liquid flow. Buffer titration experiments are designed to characterize evaporation rates

at different air moisture and air convection conditions. Experimental results from passive

feeding and active delivery systems are compared and discussed, and closed-loop pH control

using commercial microvalves are implemented. During the time course of E. coli cell

cultivation the pH value in the microbioreactor is effectively controlled within a physiological

scale, which extend cell growth and improve the biomass yield during experiments.

Furthermore, a glucose fed-batch system is designed and controlled based on DO level during
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cell cultivation. The feed-back control system in the microbioreactor demonstrates the potential

for high density cell culture at small scale.

Having demonstrated the batch, continuous, and fed-batch operations In the

microbioreactor, Chapter Five discusses the integrated microreactor as a "cassette" for ease of

setup and operation. "Plug-in-and-play" silastomer fluidic connectors are designed and

integrated as the aseptic fluidic interface between reactor cassette and external facilities.

Thermal bonding of multilayer PMMA device is used to embed PDMS membrane and fluidic

connectors to make the device as a single body. Micromachined PDMS microlenses are

designed and implemented as the optical interface for the reactor cassette. These microlenses

increase the signal-to-noise ratio for optical measurements. Their self-alignment function also

facilitates the setup process. Finally, this chapter also describes the construction of a multiplexed

system for parallel operation of microbioreactors as proof of concept for high-throughput

process. The system includes miniature n10tors for n1agnetic mixing in the n1icrobioreactors and

a motor-controlled optics system with cost not scaled with number of reactors. Reproducibility

of the system is demonstrated by results from four independent batch bioreactors.

Chapter Six summarizes the work presented in this thesis and gives recommendations for

future work.
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Chapter 2. Instrumented, Well-Mixed, and Membrane-Aerated

Microbioreactor for Batch Culture

2.1. Abstract

This chapter addresses the fundamental issues in constructing a microbioreactor for batch

culture experiments. A newly designed 150 JlL microbioreactor fabricated with

poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) is used for batch

cultures of microorganisms. Mixing is achieved by a small magnetic stir bar. Fluorescent

sensors are integrated for on-line measurement of pH and dissolved oxygen, as well as optical

transmission measurement of cell density. The body of the reactor is made out of PMMA with a

thin layer of PDMS for aeration purposes; oxygen diffuses through this gas-permeable

membrane into the microbioreactor to support metabolism of bacterial cells. The KLa of the

microbioreactor ranges from 20 h{1 to 75 h{1 under different mixing conditions. Escherichia

coli cell growth in the microbioreactor is demonstrated and the growth behavior is benchmarked

with conventional lab-scale bioreactors. Batch culture experiments with Saccharomyces

cerevisiae further demonstrate the reproducibility and flexibility in the microbioreactor system,

and the potential biological applications using the microbioreactor, as exemplified by the global

gene analysis of cells cultivated in different media.

2.2. Materials and Methods

2.2.1. Microbioreactor design

The microbioreactor body consists of two PMMA layers with two PDMS layers sandwiched
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in between them (see Figure 2-1). The bottom PMMA layer, made by using a computer-

numerical-controlled (CNC) milling machine, includes the microbioreactor chamber (diameter

10 mm, depth 1 mm) and three connecting channels (depth 500 J.lm, width 500 jlm), used for

inoculation and replenishment of water. A thin layer (100 11m) of spin-coated PDMS (Sylgard

184, Dow Coming Corp., Midland, MI, USA; mixing ratio of silicone to curing agent 10:1;

baked at 70 DCfor 2 hours) covers the chamber and serves as the aeration membrane. The thin

PDMS layer is held by a 5 mm-thick PDMS gasket layer to facilitate device assembly,

hermetical sealing, and connection of microfluidic channels.

PMMA cover layer,/ 9 ~......
PDMS gasket ~--_~~
Spin-coated PDM~<_I'---~_~,~
Reactor chamber / ~ /J,',' ~JI > ,\15

I -_..- V ' ("'I"") ,\-'------- , ~,\

(a) Magnetic stir bar Optic~1 sensors

(b)

Figure 2-1. (a) Schematic view of the longitudinal section of the microbioreactor;
(b) Photograph of the empty PMMA chamber of the reactor with the magnetic stir
bar in the center and DO and pH fluorescent sensors at the bottom of the chamber.

Two recesses (diameter 2 mm, depth 250 11m, 2.7 mm radial distance from the center) at the

bottom of the bioreactor chamber accommodated pH and DO fluorescence lifetime sensors (DO

sensor foil PSt3, and pH sensor solution HP2A, PreSens - Precision Sensing GmbH, Regensburg,

Germany). For mixing, a ring-shape magnetic stir bar with an arm length of 6 mm and a

thickness of 0.5 mm (custom-made by Engineered Concepts, Vestavia Hills, AL, USA) rotated
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in the center of the reactor chamber. The rotation axis was defined by a vertical post (height of

800 f.lm,diameter of 1.35 mm) machined out of PMMA in the center of the reactor chamber. A

piece of PMMA of 250 /lm thick and 3 mm in diameter is attached on top of the PMMA post by

using acrylic solvent (Weld-On 4, IPS Corp., Gardena, CA, USA) to keep the magnetic stir bar

in position (Figure 2-1). By residing the stir bar on a shallow shoulder (height of 200 f.lm,

diameter of 2.2 mm) machined out of bulk PMMA at the bottom of the reactor, the friction

between the stir bar and PMMA surface was minimized. The placement of the stir bar relative to

the bottom of the reactor chamber had important effects on the quality of mixing, which will be

explained through simulation.

Polyethylene tubes (1132" outer diameter, Becton Dickinson and Company, Franklin Lakes,

NJ, USA) were inserted into small holes punctuated through the 5 mm PDMS layer by using

fluidic needle adapters (20 gauge, Becton Dickinson and Company) to connect to the channels

(two inlets, one outlet) in the bottom of PMMA device. In fermentation experiments, syringes

were used to inoculate the microbioreactor through one of the inlet channels. The other inlet

channel was connected to an elevated external water reservoir. Water pressure of 300mm keeps

the thin PDMS membrane bulged slightly upward, yielding a total volume of approximately 150

~L. Water was passively replenished into the microbioreactor at the same rate as water

evaporated through the highly permeable PDMS thin membrane, thus keeping the volume of the

microbioreactor constant during fermentation. By measuring the weight increase of anhydrous

calcium sulfate pellets (W.A. Hammond Drierite, Xenia, OH, USA) placed in a closed chamber

with the microbioreactor, the water evaporation rate from the microbioreactor was determined to

be 4.3 :f: 0.4 ~L/hr at 37°C. Thus, there would be a significant loss in fluids in the bioreactor if

water had not been replenished. The use of passive feeding of water makes it possible to run the

23



150 ilL bioreactor for long period of time without an observable volume change.

The device shown in Figure 2-1 was used for E. coli fermentations. For S. cerevisiae cell

culture experiments, in which oxygen requirement is less demanding due to longer generation

time, we used a bioreactor covered with an additional layer of stainless steel grid (B-PMX-062,

Small Parts Inc., Miami, FL, USA) to provide a rigid top perforated membrane structure.

2.2.2. Optical measurement setup

The experimental set-up is shown in Figure 2-2. Dissolved oxygen (DO), pH, and optical

density (OD6oonm)were measured by the optical sensing methods described in detail in Zanzotto

et al. (2004), so only a brief summary is included here. Fermentations were carried out by

placing the microbioreactor in an aluminum chamber maintained at 37°C by flowing heated

water through the chamber base. An external magnetic stirrer (Thermolyne, SP72725, Barnstead

International, Dubuque, USA; placed directly below the aluminum chamber) controlled the stir

bar in the microbioreactor. Bifurcated optical fibers (custom-made by RoMack Fiber Optics,

Williamsburg, VA, USA) led into the chamber from both the top and the bottom and connected

to LEDs and photodetectors (PDA-55, Thorlabs, Newton, NJ, USA) to perform the optical

measurements. Biomass was followed by OD6oonmdata obtained from a transmission

measurement using an orange LED (Epitex L600-10V, 600 nm, Kyoto, Japan). The bifurcated

branch provided a reference signal to compensate for any intensity fluctuations of the orange

LED. Both dissolved oxygen and pH were measured using phase modulation lifetime

fluorimetry. The DO and pH sensors were excited with a blue-green LED (505 nm, NSPE590S,

Nichia America Corporation, Mountville, PA, USA) and a blue LED (465 nm, NSPB500S,

Nichia), respectively. Excitation bandpass filters (Omega Optical XFI016 and XFIOI4) and

emission long pass filters (Omega Optical XF 3016 and XF 3018) separated the respective
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excitation and emission signals to minimize cross-excitation. Data switches (8037, Electro

Standard Laboratories, Cranston, RI, USA) multiplexed the output signal and the input signal of

the function generator (33220A, Agilent Technologies, Palo Alto, CA, USA) and the lock-in

amplifier (SR 830, Stanford Research Systems, Sunnyvale, CA, USA). All instruments were

computer controlled under Lab VIEW@ (National Instruments Corp., Austin, TX, USA), which

enabled automated and real-time measurement of the parameters.
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Figure 2-2. Experimental setup for the microbioreactor (h = 30 cm). The
microbioreactor is kept at 37°C in an aluminum chamber; three optical fibers
carry different wavelengths of light to the bottom of the microbioreactor for OD,
DO, and pH measurements, respectively. A computer collects and analyzes the
transmitted or emitted light through photo detectors and a lock-in amplifier.
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2.2.3. Microbioreactor experilnental setup

Experiments were carried out in an airtight, aluminum chamber (Figure 2-2). The chamber

provided a means for controlling the humidity and the composition of the gas above the

microbioreactor membrane. It also provided a large thermal mass for holding the temperature at

the desired set point. The interior of the chamber had an area of 11.5 cm by 6.5 cm, and a height

of 2.5 cm. This volume was large compared to the volume of the microbioreactor to ensure that

gaseous oxygen was in large excess compared to the oxygen consumed by the cells during

fermentation. As a result, the chamber could be sealed for the duration of a run once it had been

flushed with the desired gas. Temperature was controlled with a water bath that flowed water at

the desired setpoint through the chamber base. Temperature was monitored using a

thermocouple.

In addition to controlling environmental parameters, the chamber provided optical isolation

and optical access for the desired measurements. Optical access was from the top and bottom of

the chamber, directly above and below the microbioreactor, respectively, as shown in Figure 2-2.

2.2.4. Biological methodology

2.2.4.1. Organism and medium

E. coli FB21591 (thiC: :Tn5 -pKD46, KanR
) obtained from University of Wisconsin was used

as a model organism. E. coli cells were cultured in Luria-Bertani (LB) medium with 8 g/L

glucose (Mallinckrodt, Hazelwood, MO, USA), 100 /Jg/L kanamycin (Sigma-Aldrich, Co., St.

Louis, MO, USA), and 0.1 mol/L 2-(N-morpholino) ethanesulfonic acid) (MES) (Sigma-

Aldrich). Exposure to ')I-radiation was proven by experiments to be effective for sterilization for

the building materials of our microbioreactor without noticeable changes in properties.
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However, to simplify the bench-marking experiments, kanamycin in the culture medium was

used to prevent contamination from other bacteria species.

Saccharomyces cerevisiae ATCC 4126 was obtained from the American Type Culture

Collection (ATCC, Manassas, VA). Cells were grown at 30°C in YPD or YPGal media. The

composition of YPD is: 10g/L yeast extract (Difco, BD Diagnostic Systems, Franklin Lakes,

NJ), 5 g/l peptone (Difco), 10 g/L glucose (Sigma-Aldrich, St. Louis, MO), and 50 mg/L

streptomycin (Sigma-Aldrich). YPGal is identical to YPD except that 10 g/L galactose (Sigma-

Aldrich) was substituted for glucose.

2.2.4.2. Precultures

To ensure reproducible inocula for different fermentation experiments, the inoculum were

prepared according to a standardized protocol: single colonies of E. coli FB21591 were

transferred from LB plates (containing 2 % (wt/vol) agar and 100 J-lg/Lof kanamycin) to 5 mL of

sterile LB medium (containing 8 g/L glucose, 100 J-lg/Lkanamycin, and 0.1 mol/L MES) in test

tubes. These cultures were then incubated on a roller drum at 60 rpm and 37°C. When the

culture reached an OD6oonmof about 1, 1.5 mL of culture medium was transferred from test tubes

to 30 mL of the same medium in a 250 mL baffled shake flask. The shake flask was incubated on

a horizontal rotary shaker (150-220 rpm, Lab-line 4690, Barnstead International, Dubuque,

Iowa, USA) at 37°C until an OD600nmof about 1 was again reached. The culture medium in the

shake flask was then diluted in fresh medium to match an OD6oonmof 0.05 and used to inoculate

the different bioreactors. Except for the microbioreactor, optical density measurements were

performed off-line at 600nm with a Spectronic@ 20 GenesysTMspectrophotometer (Spectronic

Instruments Inc., Rochster, NY). We used conventional cultivation techniques, including test

tubes, baffled shake flasks, and 500-mL stirred-tank (Sixfors@, Infors AG) to benchmark E. coli
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batch culture in the microbioreactor.

The standard inoculation procedure used in S. cerevisiae experiments was similar to the E.

coli experimental protocol: 5 ml of each medium were inoculated with a single colony from an

overnight YPD agar plate (containing streptomycin at 50 J-lg/liter) and incubated at 30°C on a

roller drum at 60 rpm. At an OD600nmof about 1.0, 1.6 ml of culture medium was used to

inoculate 30 ml of fresh medium in 500 ml baffled shake flasks and incubated at 30°C on the

shaker until the optical density reached about 1.0. At this point the culture was diluted in fresh

medium to reach an OD600nmof about 0.05 and used to inoculate microbioreactors. In

microbioreactors, optical on-line measurements were made every 20 minutes. Growth data of S.

cerevisiae cell culture were analyzed and adjusted in term of lag phases.

2.2.4.3. Bench-marking experiments

For bench-marking experiments with test tubes, a total of 13 tubes were filled with 5 mL of

the same inoculum derived from a single colony. The tubes were incubated on a roller drum at

60 rpm and 37°C. Single test tubes were sacrificed at 13 different time points over an 18 hour

time period to measure pH and OD600nm. The experiment was replicated four times with

independent inoculations. For bench-marking experiments in shake flasks (1 L), pH and OD600nm

readings were obtained by taking 1 mL samples at different time points from shake flasks filled

with 150 mL of inoculum. Shake flasks were incubated at 37°C with a shaking speed of 200

rpm. Experiments were repeated four times with independent inocula. For benchmarking

experiments with Sixfors@ (Infors) reactors, real-time DO and pH readings were obtained in 350

mL working volume using the built-in dissolved oxygen (405 DPAS-SC-K8S/200, Mettler

Toledo, Toledo, OH) and pH probes (InPro 6100/220/S/N, Mettler Toledo), respectively.

Samples for OD600nmoff-line measurement were obtained by syringes through a sampling port at
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defined time intervals. The stirring speed was 500 rpm and the air flow rate was set to 1 volume

of gas per volume of medium per minute (VVM). In Sixfors stirring was obtained by three rows

of six-blade Rushton flat propellers. Three replicate experiments were performed.

For microbioreactor experiments, inoculation was by flowing inoculum liquid through the

reactor chamber until all original liquid was flushed out. DO, pH, and OD600nmdata were

obtained on-line every 10 minutes. Following each fermentation experiment, the volume of the

culture (150 J.!L)was harvested and the final OD600nmand pH values were measured. Calibration

curves for OD600nmreadings were obtained by filling the microbioreactor with culture fluids with

different biomass concentration. The OD600nmreading of the inoculation medium and the final

OD600nmreading were then used to calibrate real-time OD600nmmeasurements. Since the optical

absorbance of PDMS changes after being dipped in water (Chang et al., 2003), the

microbioreactor was filled with sterile water for more than 6 hours before each experiment to

eliminate any potential changes in optical properties. Experiments in the microbioreactor were

replicated three times using independent inocula.

2.2.4.4. KLa measurement

The gassing-out method (Stanbury et al., 1995) was used to evaluate KLa values in LB

medium (without microbial cells) in the microbioreactor as well as in 500-mL Sixfors@

bioreactors. In the Sixfors@ system, nitrogen gas was continuously sparged into the medium

until the oxygen concentration dropped to zero. Air was then sparged and the DO profile as a

function of time was measured by the oxygen electrode. For the microbioreactor, nitrogen was

flushed into the headspace over the aeration membrane until the residual DO in the medium was

depleted. Then, air was pumped into the headspace and the DO recovery was recorded by the

optical sensor. The KLa values were obtain from the following expression:
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K a = _!In[ C * -C L ] = _ In(1- DO)
L t C* t

(2-1)

where t is time, CL is the dissolved oxygen concentration in the liquid phase, C* is the saturated

dissolved oxygen concentration, and DO (%) is the ratio of CL / C*X 100.

The DO sensor response time Tp needs to be excluded from above KLa calculation. Tp was

determined as the time needed to record 63% of a stepwise oxygen concentration change after

the sensor was transferred from oxygen-free medium to a well-agitated, oxygen-saturated

medium. By assuming a first-order response model, the adjusted KLa was obtained by fitting DO

data as a function of time using the following equation,

1 _ DO = T.. exp( - Ii..)-Tp exp(- fip)
T -T

111 p

(2-2)

where Tm is the measured time constant of oxygen mass transfer, (Zanzotto et at., 2004) and Tm =

2.2.4.5. Comparative global gene expression analysis of S. Cerevisiae

Rapid screening for microorganisms exhibiting specific patterns of gene expreSSIon and

protein production is critical for progress in biological research, biotechnology and the

pharmaceutical industry. The analysis of microbial environmental and physiological

parameters, linked to global expression technologies (gene, proteins, metabolites), would

provide whole-organism information invaluable for characterizing and designing biological

systems.

Global genomic expression assays using DNA microarrays permit the exploration of the cells

transcriptional state under a wide range of physiological parameters. Microarray analysis has
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been widely applied in basic biological research as well as in specialized fields, such as drug

screening, environmental testing, and clinical diagnosis (Debouck et al., 1999; Bodrossy et al.,

2004). Significant advantages could arise from combining parallel instrumented microbioreactor

fermentations with microarray technologies to yield high-throughput gene expression analysis.

In collaboration with Dr. Paolo Boccazzi (a postdoctoral associate in Sinskey's laboratory,

Department of Biology, MIT), we use the analysis of global gene expression profiles in

Saccharomyces cerevisiae grown in glucose and galactose media in batch microbioreactors, to

demonstrate the potential biological applications of a high-throughput experimental platform.

The galactose utilization pathway is one of the best studied in the budding yeast (Figure 2-3).

The wealth of information on this pathway, combined with its relative simplicity, has made it a

useful system to evaluate the reproducibility and sensitivity of novel techniques (Ideker et al.,

2001; Hood, 2003).

Galactose : Galactose
(out) GAL2 (in)

GALlO
~

UDP-Glucose UDP-Galactose
'--/... ~ Galactose-l-P ... ~ Glucose-l-P .. ~ Glucose-l-P

GALl GAL 7 GALS

Figure 2-3. Pathway of galactose utilization. Saccharomyces cerevisiae
metabolizes galactose in a series of steps that start with the transport of galactose
into the cell via a permease (GAL2), followed by the transformation of galactose
to glucose-6-P via a galactokinase (GAL 1), a uridyl transferase (GAL 7), an
epimerase (GAL 10) and a phosphoglucomutase (GAL5).

It is well established that S. cerevisiae grown in galactose medium up-regulates the GAL

operon (Ideker et al., 2001; Hittinger et al., 2004), which comprises the genes responsible for the

catabolism of galactose to glucose-6-P (Figure 2-3). The core genes that allow S. cerevisiae to

utilize galactose as the carbon source include GAL2, which encodes a permease for galactose
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transport into the cell, and GAL 1, GAL 7, GAL 10 and GALS, the structural genes for

galactokinase, uridylyltransferase, epimerase and phosphoglucomutase, respectively. The

transcriptional regulation of the GAL operon is not fully understood, but three of the main

regulators are encoded by GAL3, GAL80 and GAL4 (Johnston, 1987; Lohr et al., 1995; Ideker

et al., 2001). Comparative gene expression analysis studies of S. cerevisiae in large scales have

been published (Ideker et al., 2001; Hittinger et al., 2004) and are used here as benchmarks.

Total RNA was isolated from two independent fermentations in YPD and in YPGal. Cells

were harvested during exponential growth at an OD6oonmof about 1.0 and immediately frozen in

liquid nitrogen. Total RNA was isolated using an RNeasy kit (Qiagen). For gene expression

analysis we applied Affymetrix Yeast Genome S98 Arrays (Affymetrix, Santa Clara, CA) that

contain approximately 6,400 Opening Reading Frames (ORPs) of the yeast Saccharomyces

cerevisiae. Details of the RNA isolation and microarray analysis are given in Boccazzi et al.

(2006).

2.2.5. CFD silnulation of liquid flow in microbioreactors

Flow patterns in the microbioreactor were simulated using CFD-ACE@ software (ESI US

R&D, Inc., Huntsville, AL, USA). Water was used as the model fluid and the microbioreactor

geometry was simplified as a cylindrical chamber of 10 mm diameter and 2 mm depth. The

reactor chamber was divided into 0.7 x 106 structured finite elements. The three-dimensional

flow in the reactor chamber was simulated by following the angular rotation of the magnetic stir

bar until a steady solution was obtained. In each step of the rotation (lOin movement,

corresponding to 0.001 second in time step) the solution of the continuity equation and Navier-

Stokes equations was obtained within 2000 iterations; steady flow was typically established after

1080 rotations.
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2.3. Results and Discussion

2.3.1. Liquid mixing in nzicrobioreactor

The microbioreactor described here is implemented with a magnetic stirring unit for active

mixing, in contrast to an existing microbioreactor (Zanzotto et aI., 2004) that relied on diffusion.

The flow in the microbioreactor is characterized by the Reynolds number:

(2-3)

where D is the length of the stir bar (from arm to arm), N is the rotation rate for the stir bar. p IS

the density of liquids, and J1 is the liquid viscosity coefficient. Using water as the model

medium, the Reynolds number for the microbioreactor ranges from 30 (at 180 rpm) to 130 (850

rpm), corresponding to laminar to transitional flow regime in stirred reactors (Bin, 1984; Blanch

and Clark, 1996). LB medium was measured to have a 16 % higher viscosity (Ubbelohde

viscometer, Technical Glass Products., Inc., Dover, NJ, USA) than pure water and therefore has

a lower Reynolds numbers when stirred at same speeds. However, the difference in viscosity did

not perturb the stirring speed with the efficient coupling between the stir bar and the magnetic

drive. As an indication of the efficiency of mixing, Figure 2-4 illustrates the distribution of

phenol red dye in the microbioreactor as a function of mixing time. The indicator color is

uniformly distributed throughout the reactor indicating complete mixing within 30 seconds of

mixing at stirring speed of 180 rpm.
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Figure 2-4. Photographs for mixing of phenol red dye in the microbioreactor
operating with stirring speed of 180 rpm. Note that the shadow of stir bar is
projected and visible at the bottom of the chamber.

Computational fluid dynamic simulations and measurements of the oxygen mass transfer rate

provide further characterization of the mixing properties. The steady state liquid flow at 180

rpm, as simulated by CFD-ACE@ (Figure 2-5), reveals a secondary vertical flow caused by the

horizontal stir bar rotation. This vertical flow contributes to the oxygen mass transportation from

the top PDMS membrane to the DO sensor located at the bottom of the reactor. Vuppu et al.

(2004) also simulated the rotation of a Jlm-scale rotor, but their rotational flow is in the regime of

very low Reynolds number (maximal Reo of ~ 0.05) and viscous forces dominate over inertial

forces with poor mixing as the consequence. Flow in the present microbioreactor has a

significantly higher Reynolds number (Reo of 30-130) and the convective inertial force

dominates in this laminar and transitional flow regime. As a readily adjusted parameter, stirring

speed has significant effects on mixing in this flow regime, thus allowing for manipulation of
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oxygenation in the microbioreactor.
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Figure 2-5. CFD-ACE@ simulation of medium flow in the microbioreactor
operating at stirring speeds of 180 rpm and 700 rpm. (a) Simplified sketch of the
reactor chamber and the stir bar. Note the PMMA structures holding the stir bar
is not outlined in figure (a). Red solid line in the figure shows the direction of
stirrer movement and the dashed line shows the vertical circulation of flow at the
given cross-section. (b) Bird's eye of the vertical flow velocity distribution at a
horizontal plane in the center and a vertical plane 0.6 mm above the bottom of the
microbioreactor that is stirred at 700 rpm .. (c) And (d) Comparison of the
magnitude of flow velocity at a vertical plane 0.6 mm above the bottom of the
microbioreactor at stirring speed of (c) 180 rpm and (d) 700 rpm. (e) and (f)
Comparison of the vertical flow circulation at a horizontal plane in the
microbioreactor at stirring speed of (e) 180 rpm and (f) 700 rpm. Note the
difference in the scales of legends.
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Simulation results were used to optimize the geometry of the reactor chamber. Variables

include the vertical position and arm length of the stir bar. Placing the stir bar in the vertical

center of the reactor chamber will develop two separate vertical circulation flows above and

beneath the stir bar thus reduce the total mixing effect. Having longer arms for the stir bar also

confines the vertical circulation flow, given the circulation is in the shoulder regions of the mini

stir bar.

It is worth to mention that these conclusions about oxygenation drawn from fluidic

simulations are qualitative. Theoretically the CFD simulations can be coupled with mass transfer

model to calculate mixing time and correlated with mixing experiments; however, the

simplifications in the transitional flow model limit its quantitative applications.

2.3.2. Mass transfer coefficient

Oxygen mass transfer rate in bioreactors is a critical parameter of microbial fermentation.

The volumetric mass-transfer coefficient, KLa, is often used as a measure of the aeration capacity

of a bioreactor. Figures 2-6a and 2-6b show the recovery curves of dissolved oxygen as well as

the DO sensor response curve as measured by the gassing out method. The first order response

model for the gassing method, Equation 2-2, is proven by the linearity (in logarithm scale) of

curves shown in Figure 2-6. The DO electrode used in the Sixfors@ has a response time Tp of

12.7 s at a stirring speed of 500 rpm and a sparging rate of 1 VVM. The KLa in Sixfors@

bioreactor is calculated as 48.2 hf'. The response time of the DO optical sensor in the

microbioreactor is 33.6 s (Figure 2-6b). At a 180 rpm stirring speed, the KLa value in the

microbioreactor is 22.2 hfl, which is lower than the KLa value of 48.2 hf' in the Sixfors@ reactor

(500 rpm, 1 VVM). Higher oxygen transfer rates can be obtained in the microbioreactor with

higher stirring speeds (Figure 2-7); for example, at a stirring speed of 700 rpm, the KLa is
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measured as 61.9 h(l, exceeding the value obtained in bench top reactors.
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Figure 2-6. Recovery of dissolved oxygen curves as well as the DO sensor
response curves (logarithm scale) in (a) Sixfors@ reactor (stirring speed of 500
rpm and sparging rate of 1 VVM); and (b) microbioreactor (stirring speed of 180
rpm and 700 rpm).

In the microbioreactor, oxygen is supplied to the medium by oxygen diffusion through the

PDMS membrane to the liquid phase. There is no gas sparging through the liquid medium and

no moving gas-liquid interface, as a consequence, the specific mass-transfer area a stays

constant. Similar to surface-aerated bioreactors (without bubble entrainment), the improvement

in KIa values in the microbioreactor at higher stirring speeds results from better mixing and

distribution of dissolved oxygen in the liquid phase.
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Figure 2-7. Oxygen volumetric mass transfer coefficients as a function of stirring
speed in the microbioreactor.

The overall oxygen mass-transfer resistance 1/KL,overal/ in the microbioreactor is the sum of

three resistances in series:

1 8 1---=--+---+-
K L,overall K L D PDMSH KG (2-4)

where 1/KL is the mass-transfer resistance in liquid phase, D/(DpDMsH) is the diffusion resistance

through PDMS, and l/Kc represents the diffusion resistance in air. The mass transfer

coefficients and the simple film model are typically used in cases of turbulent flow, such as in

traditional large scale fermentors. Nevertheless, with appropriate definition of the mass transfer

coefficients (Bird et aI., 2002), the concept also applies for the flow conditions in the

microbioreactor and it has been applied to similar issues in microtiter plates (Hermann et al.,
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2002). In particular, it provides a useful means for evaluating the relative importance of the

different resistances to oxygen transport into the microbioreactor (Equation 2-4). The diffusivity

of oxygen in air is significantly higher than in PDMS and water, thus l/Kc can be neglected

compared with the other terms in Equation 2-4. The PDMS membrane has a thickness (j of 100

~m, and the diffusivity of oxygen in PDMS DpDMS is 3Axl0-5 cm2/s (Merkel et at., 2000). The

solubilities of oxygen in PDMS and water are 1.69 mmollL (Merkel et at., 2000) and 0.228

mmol/L (Perry and Green, 1984), respectively. The Henry's constant H, the solubility ratio of

oxygen in PDMS and water, equals to 7A. With a fixed surface aeration area of 90 mn12
, the

overall mass transfer coefficient KL.overa/l ranges from 0.037 mlhr (180 rpm) to 0.13 mlhr

(850rpm). The net mass transfer coefficient in water KL ranges from 0.039 mlhr (180 rpm) to

0.15 mlhr (850 rpm). These values are consistent with or slightly lower than reported literature

values for surface-aerated stirred-tank bioreactors (Kawase and Moo-Young, 1990; Kamen et at.,

1995). The variation in KL value with changing stirring speed (Figure 2-7) is similar to the

change observed with varying shaking frequency in microtiter plates (Hermann et at., 2002),

which have wells of similar volume (200 ~L) as the present microbioreactor.

2.3.3. Batch culture results in microbioreactor

We investigated E. coli cell growth kinetics in the microbioreactor to demonstrate the

feasibility of microbial cultivation in the microbioreactor. Triplicate fermentation experiments

were carried out in the microbioreactor at both 180 rpm and 700 rpm stirring speed. The

observed OD600nm,pH, and DO values within the microbioreactor (Figure 2-8) demonstrate the

reproducibility of cell growth in the microbioreactor under different growth conditions.
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Figure 2-8. Replicate fermentations (n = 3) of E. coli FB21591 in LB medium
with stirringspeed of (a) 180 rpm and (b) 700 rpm.

As a result of the standard inoculation protocol, E. coli cells start to grow immediately

without any observable lag phase. Consistent with the high growth rate of cells during

exponential growth phase, the high demand for oxygen is reflected by the rapid decrease in DO

level in the culture medium. Although avoiding oxygen depletion is the best interest for many

specific bioprocesses, we intentionally chose oxygen-limited growth conditions for the
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cultivation of microbial cells to obtain more information about the microbioreactor itself and to

better benchmark the microbioreactor. High-capability oxygenation was not the major pursue

for our microbioreactor; the reproducibility and the correlation of the microbioreactor to

conventional bench-scale bioreactors are more important for a potentially applicable high-

throughput platform with ilL volume and on-line measurements.

With a stirring speed of 180 rpm, the DO in the microbioreactor completely depletes at

around 1.5 hours of the fermentation and does not start to recover until after 9 hours (Figure 2-

8a), when cells enter the late-stationary phase and become limited in nutrients. During this

period, as a consequence of anaerobic fermentation the pH level in the medium decreases

significantly until cells reach stationary phase at around 6 hours.

Consistent with the KLa measurements, improved oxygenation is observed at higher stirring

speeds (Figure 2-8b). With a stirring speed of 700 rpm, the DO level in the microbioreactor

depletes after about 2.5 hours of the fermentation and starts to recover at around 5.5 hours, much

earlier than the recovery time in fermentations with stirring speed of 180 rpm. With better

oxygenation cells grow faster and reach higher biomass concentrations. The final OD6oonmwith

700 rpm stirring is 6.2 :I: 0.17 in contrast to the final OD6oonmvalue of 5.3 :I: 0.2 with stirring at

180 rpm.

The reproducibility and flexibility of the microbioreactor is also demonstrated by triplicate S.

cerevisiae batch culture experiments (Figure 2-9). S. cerevisiae ATCC 4126 cells are cultured in

YPGal and YPD media. In these experiments the stirring speed is 700 rpm and similar standard

inoculation procedure is applied. In YPGal medium, DO depletes at around 10 hours into the

fermentation, and starts to recovers around 15hours, when cells have used the nutrients and enter

the stationary phase. In YPGal medium cells reached a maximum OD6oonmof 6.87 (:I: 0.07), and
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at this population density the pH and the DO concentration were 6.82 (:I:: 0.09) and 11.2 (:I:: 1.3)

0/0, respectively. In YPD medium, cells reached a maximum OD600nmof 5.2 (:I:: 0.2) with a pH

and DO concentration of 6.6 (:I:: 0.1) and 42.1 (:I:: 8.7) %, respectively. In the microbioreactors,

the average generation times for S. cerevisiae were of 93 (:I:: 3.7) min and 99 (:I:: 10.8) min in

YPGal and YPD media, respectively.
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Figure 2-9. Growth data (n = 3) of S. cerevisiae in galactose medium (left
panels) and glucose medium (right panels).
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In YPD we observed a change in the growth rate of the strain after about 7.5 hours of

fermentation. This switch was likely due to a diauxic growth (Stahl et al. 2004, Otterstedt et al.

2004; Larsson et al. 1991, Blomberg et al. 1988). During the first part of fermentation the strain

grew in a respiro- fermentative mode consuming glucose and producing ethanol and acetate,

hence the decrease in pH, and during the second part the strain switched to anaerobic growth

with ethanol as carbon source.

2.3.4. Benchmarkingfermentations

We compared E. coli fermentation growth kinetics obtained in the microbioreactor with

growth data from conventional bioreactors, including Sixfors@, test tubes, and shake flasks

(Figure 2-10) for benchmarking purpose. Both the time profiles and the standard deviations of

the OD curves obtained in the microbioreactor are comparable with other conventional

bioreactors (Figure 2-10a). The highest biomass was obtained with the microbioreactors stirred

at 700 rpm, followed by the Sixfors@ bioreactors (500 rpm, 1 VVM) and the shake flasks (200

rpm in shaking speed), and then by the microbioreactor stirring at 180 rpm. These results are

consistent with the oxygenation characteristics in the reactors, including both the KLa data and

the DO profiles during batch fermentation (Figure 2-1Oc). As a dynamic process, the recovery of

DO in bioreactors happens when glucose becomes limiting, and this recovery is significantly

slower in less oxygenated reactors (microbioreactor operating at 180 rpm), and cells grow

anaerobically for longer period of time.

The pH curves for the microbioreactor and those from all other bioreactors (Figure 2-1Ob), as

well as the DO profiles (Figure 2-1Oc) from the microbioreactor and the Sixfors@ are all similar.

In our experiments, test tubes and shake flasks were not equipped with DO sensors; but the
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oxygenation can be estimated by the growth rate and final OD level (Figure 2-11). Cell growth in

Figure 2-10. Comparison of E. coli FB21591 growth kinetics in LB medium in
the microbioreactor (n = 3, stirring speed at 180 rpm and 700rpm, respectively)
with conventional bioreactors including test tubes (n = 4), shake flasks (n = 4),
and Sixfors (n = 3). Each growth curve represents the average value with
standard deviation from replicate experiments carried out in separate bioreactors.
(a) OD6oonm. (b) pH. (c) DO.
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test tubes has the lowest final OD600nm (4.23 :f: 0.01), which can be attributed to the low

oxygenation level. Gupta and Rao (2003) reported a KLa value in baffled shake flasks with 100

mL filling volume and shaking speed of 250 rpm as ~ 59.2 h(l. Because a lower shaking speed

and a larger filling volume are used here, the KLa value in our shake flasks would be expected to

be less than the reported value. This assumption is consistent with our experimental data: the

cell growth rate, the final biomass concentration, and the final pH level in shake flasks (1.39 :f:

0.06 h(l, 5.35 :f:0.18 and 5.59 :f:0.02, respectively) are close to the values obtained in Sixfors@

(1.55 :f:0.03 h(l, 5.37:f: 0.06, and 5.61 :f:0.47, respectively). The ability to change mixing in the

microbioreactor by different stirring speed enables the control of oxygenation and also allows

varying growth kinetics ranging from shake flasks conditions to those characterized conventional

bench-scale stirred-tank bioreactors, such as Sixfors@. Variations in data, especially for OD600nm

data obtained in our microbioreactor (5.29 :f: 0.2 at 180rpm and 6.20 :f: 0.17 at 700rpm), are

comparable with those from flasks and Sixfors bioreactors.
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Figure 2-11. Comparison of final OD600nm, pH, and maximal growth rate in E.
coli FB21591 batch cultures in different bioreactors.
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2.3.5. Application: global gene expression analysis of yeast cells

Reproducible growth kinetics of S. cerevisiae grown in the microbioreactors are

demonstrated in Figure 2-9; the reproducibility is especially good considering that individual

fermentations were run on different days from independent colonies. Real-time measurements of

growth kinetics in the microbioreactors allowed harvesting the cells at an OD600nmof about 1 for

RNA isolation for the investigation of global gene expression analysis. Figure 2-12 shows the

physiological status of the cells at harvesting time. At an OD600nmof 1.0, the average pH of both

media was 5.9 - 6.2, and the DO concentrations were on average 11.2 % in YPGal medium and

76.7 % in YPD medium.
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Figure 2-12. Reproducibility of complete fermentations (open symbols) growth
kinetics of S. cerevisiae grown in galactose and glucose media when
fermentations were sacrificed at OD600nm=1 (closed symbols). Real-time
measurements of OD600nm(circles), pH (squares), and DO (triangles) were taken
every ten minutes.

To assess differential gene expreSSIon profiles under the t\vo growth conditions, up-

regulated genes were identified based on significance and fold change. The array-to-array

reproducibility was excellent and the R square of normalized intensities of duplicate samples of

cells grown in the same medium and plotted against each other was above 0.97. More details of
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up-regulated genes in S. cerevisiae grown in YPGal and YPD media are given in Boccazzi et al.

(2006).

In S. cerevisiae grown in YPGal, four genes of the galactose pathway GAL 1, GAL2, GAL 7

and GALlO were up-regulated more than 125-fold (Figure 2-13). GAL5 was expressed but not

found to be up-regulated. The two transcriptional regulators GAL3 and GAL80 (Figure 2-3)

were up-regulated 8- and 7.5-fold, respectively. GAL4, a third regulator, was not found to be

up-regulated. These results are in close agreement with previous reports (Johnston 1987; Lohr et

al. 1995).
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Figure 2-13. Volcano plot of differential gene expression in S. cerevisiae grown
in galactose and glucose media.
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Among the most up-regulated genes in S. cerevisiae grown YPD medium were two genes

coding for high affinity glucose transporters, HXT4 and HXT2, whose expression increased

34.3- and 21.6-fold, respectively, and two NAD-dependent formate dehydrogenase genes, FDH2

and FDHl, whose expression increased 29.8- and 16-fold, respectively (Figure 2-13).

2.4. Conclusion

A 150 ilL membrane-aerated and actively mixed microbioreactor in PMMA and PDMS was

designed and fabricated. PMMA and PDMS were chosen as materials for the bioreactor, for

their good optical transparency to visible light, biocompatibility and mechanical rigidity, low

cost, as well as their potential for large-scale manufacturing; the latter characters should allow

the microbioreactor to be disposable. Optical sensors for OD600nm,pH, and DO real time

measurements were integrated into the microbioreactor.

Active mixing facilitates oxygenation in membrane-aerated bioreactors and enables larger

culture volume for bio-analysis, while still maintaining reasonable levels of oxygenation for cell

growth. The volumetric mass-transfer coefficient, KLa, was characterized to range in 20 ,.....,75h(t,

which is comparable to those from conventional bench-scale bioreactors. Growth kinetics, in

terms of time profiles and final values of OD600nm,pH, and DO measurements, were reproducible

for the batch microbioreactors and corresponded closely to those observed with conventional

experimental culture methods, including test tubes, shake flasks, and bench-scale stirred tank

bioreactors (Sixfors@). With this ability to mirror observations obtained in conventional systems

coupled with reproducible growth, the small reactor volumes, and the on-line measurements of

DO, pH, and OD in microbioreactors show promise as for high throughput bioprocessing.

Global gene expression analysis of S. cerevisiae, an extensively studied eukaryotic model
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system and the galactose pathway, was used as an example to evaluate the potential applications

for the novel technology. S. cerevisiae fermentation experiments were on-line monitored up to

the point where samples were taken. Sufficient mRNA was separated out of cells grow in either

medium to perform microarray hybridizations. Spot intensities between duplicate arrays of each

growth condition correlated favorably. During microbioreactor cultivation in galactose medium,

the core genes of the galactose pathway, GAL2, GAL I, GAL 7 and GAL I0 were up-regulated

more than IOO-fold. Furthermore, two major positive regulators of this pathway, GAL3 and

GAL80, were up-regulated at least 7.5-fold. Among the most up-regulated genes in cultures

grown in glucose medium were HTX4 and HTX2 which encode high affinity glucose

transporters. Yeast cells grown in the microbioreactors described here exhibit physiological and

molecular characteristics which parallel those of large-scale cultures, demonstrating that

microbioreactors are a step toward high-throughput analysis of yeast and bacterial strains.
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Chapter 3. Microchemostat- continuous culture in

microbioreactor

3.1. Introduction

In a chemostat, microbial cells reach a steady state condition at which cell biomass

production, substrates and the product concentrations remain constant. These features make the

bioreactor operated with a continuous culture mode a unique and powerful tool for biological and

physiological research. Continuous culture offers the possibility of screening and selecting

microorganisms in a constant environment on the basis of different growth rates at different

substrate concentrations by setting volumetric flow rate of feed and effluent streams at a steady

state (Harder and Kuenen, 1977). An example is the selection of ethanol-tolerant strain by using

a two-stage continuous culture (Kim, 1978). In addition for screening of microorganisms, the

continuous process is useful for finding the optimal culture conditions for a chosen strain.

However, continuous culture is often expensive and time-consuming. Normally the culture

begins as a batch process and is transferred to a continuous process by starting feeding the

reactor with nutrients and draining medium solution from the reaction system. Long starting and

transient time is needed before the system reaches a steady state and valuable data are obtained

(Kubitschek, 1970). The tradeoff for a set of higher quality data by continuous culture is a lower

quantity. Typical applications of continuous culture are in physiological and ecological research

for microorganisms. Screening typically employs batch vessels, such as shake-flasks or test

tubes (Parekh, 2000). Miniaturization of existing continuous bioreactors can potentially reduce

the effort of continuous experiments thus to make continuous culture a widely applicable routine

for bioprocess development.
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We present a polymer-based microbioreactor system integrated with OD, pH, and DO real-

time measurements for continuous cultivation of microbial cells. E. coli cells are continuously

cultured in a 150 ilL, membrane-aerated, well-mixed microbioreactor fed by pressure-driven

flow of fresh medium through a microchannel. Chemotaxis, i.e. back growth of bacterial cells

into the medium feed channel, is prevented by local heating the microchannel. By using

poly( ethylene glycol) (PEG)-grafted poly(acrylic acid) (PAA) copolymer films, the inner

surfaces of PMMA and PDMS of the microbioreactor are modified to generate bio-inert surfaces

resistant to non-specific protein adsorption and cell adhesion. The modified surfaces of

microbioreactor effectively reduce wall growth of E. coli for a prolonged period of cultivation.

Steady state conditions at different dilution rates are demonstrated and characterized by steady

OD, pH, and DO levels.

3.2. Materials and Methods

3.2.1. Microbioreactor design

The microbioreactor was fabricated from four PMMA layers and two PDMS layers (see

Figure 3-1). The microbioreactor chamber (diameter 10 mm, depth 2 mm, total volume of 150

JLL) and three connecting channels (depth 250 JLm, width 250 JLm) were fabricated in three

bottom PMMA layers (1 mm, 1.5 mm, and 0.5 mm in thickness, Goodfellow Corp., Devon, PA,

USA) by using a computer-numerical-controlled (CNC) milling machine. The three layers were

thermally bonded using a mechanical press (140 kPa, 145°C for 90 mins). A thin layer (100 JLm)

of spin-coated PDMS covered the reactor chamber and served as the aeration membrane. PDMS

was spin-coated at a speed of 1200 rpm for 25 seconds and then baked at 70°C for 2 hours for

curing. To facilitate device assembly and hermetical sealing, this PDMS layer was bonded with
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a 5 mm-thick PDMS gasket layer. The PDMS layer was covered with an additional layer of

stainless steel grid (B-PMX-062, Small Parts Inc., Miami, FL, USA) fixed by a homemade

PDMS a-ring to provide a perforated membrane structure with 40% opening area. The stainless

steel grid significantly reduces bulging of PDMS membrane and makes the reactor volume

constant despite of potential fluctuations in fluidic pressure. However, the grid also reduces

oxygenation in the microbioreactor. Optimal aeration is not the primary objective for our

chemostat application and it can be partially compensated by faster stirring speed in the reactor

chamber. A top PMMA layer was used to provide a rigid support in the mechanical assembly.

Figure 3-1. (a) Schematic view of the longitudinal section of the microbioreactor
utilized for continuous culture studies; (b) Photograph of the empty PMMA
chamber of the reactor (middle layer for reactor chamber) with the magnetic stir
bar in the center.
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3.2.2. Cell-resistant surface lnodification

A coating technology was developed by a collaborator, Dr. Hyun-Goo Choi (a postdoctoral

associate in Jensen's laboratory), using poly(ethylene-r-propylene) copolymer- grafted

poly(acrylic acid) (PAA) copolymer films (PAA-g-(PEG-r-PPG)) to generate bio-inert surfaces

capable of effectively reducing non-specific cell adhesion on both PDMS (Choi et al. 2003) and

PMMA surfaces (Zhang et ai, 2004) in the microbioreactor. PAA-g-(PEG-r-PPG) copolymer

was synthesized using an amidation reaction to graft H2N-(PEG-r-PPG)-OCH3 (Jeffamine XTJ-

234, Huntsman Co., Houston, TX, USA) chains to the carboxylic acid groups on the PAA

(Sigma-Aldrich, Co., St. Louis, MO, USA) backbone (Moeser et al., 2002) with a grafting ratio

of 50%. In a typical synthesis, a total of 23 g of the two polymers in the desired stoichiometric

ratio was added to a reaction vessel. The mixture was heated to 180 DC for 2 hours under a

bubbling flow of N2 that provided mixing, prevented oxidation, and expelled water produced by

the condensation reaction. The product was cooled to room temperature and dissolved in

deionized water to produce a 33 wt% stock solution. Completion of the reaction was verified by

the disappearance of free amine in a Ninhydrin test (Moeser et al., 2002; Curotto and Aros,

1993).

The surface modification protocols, as shown in Figure 3-2, started with O2 plasma treatment

for 30 seconds at 0.15 Torr in a Harrick plasma cleaner (PDC-32G, Harrick Scientific) for

PDMS and reduction with 0.4 mol/L of LiAIH4 in ether solution for 30 min for PMMA to

generate hydroxyl groups on the surfaces. PDMS and PMMA layers were then immersed in a

solution of 1 wt% ethanol solution of N-(6-aminohexyl) aminopropyl trimethoxysilane (AHPTS,

Gelest, Inc. Morrisville, PA, USA) for 18 hours. After being removed from solution, rinsed with

ethanol, and dried under the stream of N2, AHPTS-coated PDMS and PMMA layers were
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assembled into a microbioreactor. In the final step, the PAA-g-(PEG-r-PPG) copolymer films

were assembled on the AHPTS-coated PDMS and PMMA surfaces by flowing an aqueous

solution of the polymer (6 wt%, pH 7.4) through the microbioreactor, followed by rinsing with

distilled water and drying under N2.
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OH OH OH OH OH OH
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1Oxygen
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Figure 3-2. Schematic illustration of surface modification of PMMA and PDMS
using PAA-g-(PEG-r-PPG) copolymer films.

3.2.3. Local temperature control in microbioreactor

Small connecting ports (660 Jlm in diameter) were drilled into the PMMA chip at two inlets
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(for inoculation and medium feeding, respectively) and two outlets (for exit to waste and

sampling, respectively) of the microbioreactor. Stainless steel tubes (23 gauge, Small Parts, Inc.,

Miami Lakes, FL, USA) were fixed into these ports by epoxy and connected to polyethylene

tubings (1/32" outer diameter, Becton Dickinson, Franklin Lakes, NJ, USA). Fresh medium in a

10 mL glass syringe (Gastight, Becton Dickinson and Company) was pumped and fed to the

microbioreactor by a syringe pump (PHD2000, Harvard Apparatus Inc., Holliston, MA, USA).

The other side of the reactor was connected to a pressurized water reservoir (at 300 mm H20)

that served as the effluent collector and also kept the reactor at a constant, positive pressure.

In the microchemostat, medium continuously flows through the microbioreactor, implying

that motile bacteria, e. g. E. coli, can potentially migrate upstream into the nutrient reservoir.

Two steps were taken to eliminate this chemotaxis behavior. First, the cross-section of the inlet

microchannels were made small (250 Jlm x 250jlm). For typical flow rates (0.5 IlL/min to 2

IlL/min) the average linear flow rates (130 ,....,500 Jlm!s) were significantly higher than the

average migration speed of E. coli cells (20,....,80jlm!s; Maeda et al., 1976). Second, we used a

local heater (HP-127-1.0-0.8P, TE Technology, Inc., Traverse City, MI, USA) to raise the

temperature of the feed line to ,....,70DC,which reversed the driving force for chemotaxis, since the

cells moved away from the region of high temperature (Maeda et al., 1976; Adler, 1976). The

high temperature zone provides an additional advantage of pasteurizing effect on cells. At the

exit side of the chemostat, a peltier thermoelectrical cooler (HP-127-1.0-0.8P, TE Technology)

reduced the local temperature of a 40 JlL effluent reservoir (1.5 mm deep and 6 mm in diameter)

to 4 °c to keep cells at low temperature and significantly reduce metabolic activity to facilitate

off-line sampling for further analysis. Thin pieces of copper (1 mm in thickness) were placed

underneath each section (heater, bioreactor, and cooler) within each region (Figure 3-3) to ensure
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constant temperature. The chamber temperature was measured by a thermal couple (TP-2444,

TE Technology) and maintained at 37°C by a temperature controller (TC-24-10, TE

Technology).

In order to evaluate the thermal design, the temperature distribution in the microbioreactor

(Figure 3-3) was simulated by the finite element method using Femlab@ software (version 3.1,

Comsol, Inc., Burlington, MA, USA). Free convection boundary condition was applied to

simulate the heat loss into air; and the thermal energy transferred by the liquid flow in the

microchannels was decided to be insignificant thus excluded in the simulation.

70 degree heater "-
Minimize chemostatxis \. 37 d" egree

\, Chemostat ../
...... / ..•....4 degree cooler

\. Sample well1- Copper plates

Figure 3-3. Femlab simulation of temperature control and distribution in the
microbioreactor. Microbioreactor chamber and microchannels are located at the
bottom side of the device, thus temperature disturbances by native convection of
air are not significant.

3.2.4. Biological methodology

Two culture media were used for different experiments: LB rich medium containing 8 g/L
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glucose, 100 mg/L kanamycin (Sigma-Aldrich), and 0.1 mol/L MES (Sigma-Aldrich), and

MOPS minimal medium (Teknova, Inc., Hollister, CA, USA) containing 1 g/L glucose, 100

Ilmol/L thiamine (Sigma-Aldrich), and 100 mg/L kanamycin.

In order to test for any potential contamination of the medium, the medium in the feeding

tubing was collected after each experiment and added to test tubes containing 5 mL of sterile LB

medium. Turbidity measurements of the test tubes after incubation at 37°C were used to detect

growth in feed medium. After completion of the culture, E. coli cells adhering on the PMMA

and PDMS surfaces in the microbioreactor chamber were captured by optical microscope (Nikon

TE300). Safranin (Sigma-Aldrich) was used to stain E. coli cells on the PMMA surface.

3.3. Results and Discussion

3.3.1. Steady state cell culture in nlicrochemostat

A critical requirement for chemostat experiments is the ability to achieve and sustain steady

state conditions. Figure 3-4 shows an example of continuous culture experiments with E. coli,

starting with an inoculum of concentrated and metabolically active cells in MOPS medium.

After inoculation, cells utilized the carbon source, glucose, in the medium and consumed all

available oxygen, thus DO level rapidly dropped to zero within a few hours. Correspondingly,

the pH level of the culture broth decreased as a result of acetic acid byproduct formation due to

fermentation (Han, et aI., 1993). OD6oonmin the microbioreactor increased at the beginning

indicating rapid cell growth, and decreased slowly due to limited glucose in the feeding stream

and slow feeding rate of 0.5 ilL/min. The recovery of pH was significantly faster because little

acid was produced after oxygen starts to recover. After about 80 hours, DO, pH, and OD6oonm

reached stable levels and steady state conditions in the microchemostat were established.
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Figure 3-4. Steady states in E. coli microchemostats at medium feeding rates of
0.5 IlL/min, 1 IlL/min, and 1.5 IlL/min, respectively.

The net increase rate of bacterial biomass in suspension X is given by the simple mass

balance (Herbert et al., 1956):

dX = fIX -DX
dt

(3-1)

where I-lis the specific growth rate and D is the dilution rate. At steady states the growth rate

equals the dilution rate:

F
J.1=D=-

V
(3-2)

With a medium feeding rate F of 1 I-lL/min and a reactor volume V of 150 ilL, the specific

cell growth rate f.1, which equals the dilution rate D, was 0.4 h(l. This relatively low growth rate

was characterized by a DO level as high as '" 81%, and the steady state was maintained for'" 8

turnover times. Correspondingly, the OD6oonm level was'" 1.05 and the pH level was 6.5.

In order to demonstrate that different steady states can be established by varying the dilution
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rate, the medium feed rate was increased sequentially from 0.5 IlL/min to 1 IlL/min and to 1.5

ilL/min. Steady state conditions were maintained for at least 8 turnovers at each dilution rate.

The observed steady DO levels were 94%, 77%, and 560/0,respectively (Figures 3-4 and 3-5).

Lower DO levels at higher dilution rates are direct indications of faster growth and metabolism

rates. Aerobic metabolism in the microchemostat resulted in relatively stable pH level in the

culture medium at different dilution rates due to sufficient oxidative catabolism and the pH

buffering from phosphates in the MOPS medium. The measurement for biomass concentration,

OD600nmlevel also remained at a stable level of", 1 (biomass concentration of", 0.46 g cell dry

weight/L), despite the changes of different dilution rates; this is consistent to bioprocess

stoichiometry observed in conventional bioreactors when glucose was used as the sole carbon

and energy source for E. coli aerobic cultivation (Harvey, 1970; Shuler and Kargi, 2001).
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Figure 3-5. Steady state conditions of E. coli culture in MOPS medium with the
microchemostat operating at different dilution rates.
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In a different experiment LB rich medium containing 8g/L glucose was fed into

microbioreactor at a flow rate of 2 ~L/min. This rich supply of carbon sources was dominant

over oxygen mass transfer in the microbioreactor. At the beginning of the reaction cells utilized

all available oxygen to build up biomass, as a result, DO level dropped to zero in 2 hours. The

pH level of the culture broth decreased at the beginning as a result of the biomass production,

and then increased when fed with fresh medium. The steady conditions balance medium feed

rate and cell growth rate. OD6oonm level increased significantly at the beginning of the

experiment and slowly stabilized. At about 20 hours DO, pH, and OD6oonm reach stable levels

and chemostat conditions are established (Figure 3-6a). In a carbon-rich continuous culture,

OD600nm is more sensitive to flow fluctuation due to direct dilution, as indicated by slight

fluctuations in OD6oonmduring the steady state.
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Figure 3-6. Steady state condition of E. coli culture obtained in LB medium with
the 8 g/L of glucose, 0.1 mol/L MES, and 100 mg/L kanamycin. Medium feeding
was set as 1.5 ilL/min.

Disturbances in flow rate, temperature, or medium concentration will impact this dynamic

balance. Figure 3-6b exemplifies the case when at around 65 hours the medium feeding was
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intentionally stopped. At beginning the operation was batch, in which OD600nmincreased and

then stabilized. In the mean time DO level recovered to --60%. These trends were reversed

when medium feeding was resumed.

Generally only continuous culture with limited nutrient supply is defined as chemostat, thus

carbon rich culture is not the major focus for the study here.

3.3.2. Inhibition of back-growth and wall-growth of E. coli

With the implementation of local heating of the medium feeding channel, chemotaxis and

back growth of E. coli cells were effectively eliminated. Liquid medium upstream to the heated

zone was incubated in fresh LB medium, and no cell growth was observed. In contrast, cells

were present upstream of the unheated feeding channel.

The extent of cell wall growth in the microbioreactor was also investigated. Figure 3-7

shows the comparison of un-modified and PAA-g-(PEG-r-PPG)-modified PDMS and PMMA

surfaces of the microbioreactor after E. coli chemostat cultures. After a prolonged period (7

days) of cell culture, typical surface densities of E. coli on the unmodified PMMA and PDMS

surfaces were estimated as 4.6x 106 cells/cm2 and 2.8x 106 cells/cm2, respectively. On the other

hand, the PAA-g-(PEG-r-PPG)-modified PMMA and PDMS surfaces exhibited large reduction

in E. coli adhesion by 92% (3.9x 105 cells/cm2) and 93% (2x 105 cells/cm2), respectively, relative

to the unmodified PMMA and PDMS surfaces. By implementing the PAA-g-(PEG-r-PPG)-

modified PDMS and PMMA surfaces into the microbioreactor, adhesion and wall growth of E.

coli in the microbioreactor were effectively reduced. As an estimate, the number ratio of wall

attached cells over suspension cells is --11% for unmodified microbioreactor and --0.8% for

PAA-g-(PEG-r-PPG) copolymer films-coated microbioreactor.
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Figure 3-7. Comparison of E. coli adhesion and wall growth of E. coli cells on
PDMS and PMMA surfaces after continuous culture for 7 days in the
microbioreactor. Cell adhesion on PAA-g-(PEG-r-PPG)-modified PDMS and
PMMA surfaces were significantly reduced by 93 % and 92 %, respectively,
relative to the unmodified surfaces.

The effects of cell wall growth on bioprocess kinetics in the microbioreactor were further

investigated by wash-out experiments, as summarized in Figure 3-8. In glucose-limited

microchemostat experiments, as a result of a sudden increment in medium feeding rate, most

suspension cells were washed out of the microbioreactor and OD60Onm in the microbioreactor

decreased dramatically in a short period of time (less than 20 minutes, Figure 3-8). However,

few attached bacterial cells were washed out by the high medium flow rate; instead these cells

were surrounded by large amount of fresh medium and started to reproduce at the maximum

growth rate. The resulting rapid recovery in growth was characterized by the steady increases in

absorption and decreases in DO (Figure 3-8). This behavior is consistent with reported
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phenomena (Larsen and Dimmick, 1964) and kinetic models (Moser, 1988) that incorporate wall

growth into the conventional well-mixed continuous stirred tank reactor (CSTR) model.
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Figure 3-8. Cell wash-out experiments in microchemostat. Wash-out
experiments started with an increment of the medium feeding rate to 25 IlL/min
(turnover time of 12 mins), which was significantly faster than the maximum
reproduction rate of E. coli cells (doubling time of23 ,....,27 mins). (a) Comparison
of OD6oonmafter wash-out. Steady OD6oonmlevels before wash-out in unmodified
and modified reactors are 1.00 and 1.01, respectively. (b) Comparison of DO
after wash-out. Steady DO levels before wash-out in unmodified and modified
reactors are 180/0and 82%, respectively.

The minimum OD6oonmvalue observed in the wash-out experiment can be used to

characterize the extent of cell wall growth. A comparison of Figure 3-8a and 3-8b revealed that
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the significantly less wall growth of E. coli is observed in the microbioreactor modified with

PAA-g-(PEG-r-PPG) copolymer films than in the unmodified microbioreactor, well consistent

with the cell count data (Figure 3-7). In the microchemostat with modified reactor surfaces, the

deviation from the expected behavior was much less significant, indicating that the employed

method for surface modification is sufficiently effective to avoid effects of wall growth.

3.4. Conclusions

A 150 J-lL membrane-aerated and actively mixed microbioreactor was designed and

fabricated for continuous culture of microbial cells. With the combination of single-phase,

pressure-driven medium feed at slow flow rates, local temperature control in the microbioreactor

device, as well as the formation of a PEG-grafted PAA copolymer films on both PMMA and

PDMS surfaces, steady state of E. coli culture was obtained and sustained in the microchemostat

with glucose as the only limiting substrate for growth. Bacterial chemotaxis and back growth

were effectively inhibited by local heating in the medium feeding channel. Wall growth of

bacterial cells in the microbioreactor was significantly reduced by the cell-resistant surfaces

coated with PEG-grafted PAA copolymer films, even after a prolong period of time cell

cultivation. As a result, cell growth in microchemostat was dominated by the suspended cells in

the microbioreactor chamber.

Time profiles of OD6oonm,pH, and DO measurements demonstrated the dynamic balance

between cell growth rates and medium feed rates at steady state conditions. Kinetics and cell

growth stoichiometry in the microchemostat were consistent with phenomena reported in

conventional stirred-tank bioreactors, but with 103 times smaller volumes than that of typical

bench systems. The ability to control the growth rate of E. coli by varying the medium feed rate
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implies that the microchemostat could be an effective tool in investigations of cell physiology

and metabolic rates. Integration of the microbioreactors into a multiplexed format will enable

parallel operations, as for micro batch reactors (Section 5-3; Szita et aI., 2005), which should

offer a platform towards high throughput systems to be used in analysis of biochemical

processes.

65



Chapter 4. Evaporation Driven Fed-Batch and pH-Controlled

Microbioreactor

4.1. Introduction

In the previously chapters microbioreactors were demonstrated for reproducible batch and

continuous cultures of microbial cells. This chapter deals with the control of the environmental

variables, specifically the control of pH and fed-batch operation.

In batch and fed-batch reactions, the excretion of organic acids bypro ducts by E. coli is a

result of fermentative metabolism that occurs in response to insufficient oxygen (Phillips and

Johnson, 1961) or the presence of excess carbon substrate due to the Crabtree effect (Doelle et

al., 1982; Johnston et aI, 2002). By-products of E. coli anaerobic fermentation, e.g. acetate,

succinate, formate, lactate and ethanol (Aristidou et at., 1999) influence culture environments

and lead to an undesired decrease of pH, which negatively affects both biomass concentration

and cell morphology. Accurate pH control at specific set points does not directly address the

issue of fermentative metabolism, but is necessary for exploring optimum culture conditions with

higher yield for biomass or products. In glucose-feeding fed-batch processes the formation of

growth-inhibiting acidic by-products can be significantly reduced by preventing incomplete

substrate oxidation and excess carbon sources in the culture medium (Korz et al., 1995).

Feedback control strategies for glucose feeding to maintain the DO value in the bioreactor in a

certain range have been applied for high density cell cultures, as reported by Akesson et al.

(2001) and Whiffin et al. (2004).

While conventional stirred tank bioreactors add base, acid, and glucose solutions drop-wise,

the microbioreactor system feeds solutions by continuous flows. This brings unique challenges
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for the design of microbioreactors, such as the chemotaxis of motile cells, as discussed in

Chapter Three. Diffusion of chemical solutions in the continuous tlow system is also an

important issue that must be addressed. Most important of all, feeding of base and/or glucose

can greatly increase the liquid volume in a microliter bioreactor.

As a novel solution for these non-conventional challenges, a fed-batch microbioreactor

system is developed by using water evaporation as an outlet for liquid feed to maintain a constant

volume in the microbioreactor. Designs and experimental results for passive or active feedings

controls are compared. A closed-loop pH active control system is built up by applying pressure-

driven microtlow and commercial microvalves for base and acid feeds. Together with passive

replenishment of pure water, the control system successfully maintains the pH value within a

physiological range preserving cell metabolism and obtains a higher yield for biomass. In

addition, closed-loop glucose feeding system based on DO measurement is also designed and

demonstrated for fed-batch applications. This demonstrates the feasibility and potential of DO

control and fed-batch processes with high biomass/products yields in the microbioreactor.

4.2. Evaporation Driven Passive Feeding System

As a first step, the batch reactor described in Chapter Two was tested to prove the feasibility

of passive feeding driven by water evaporation. The same experimental setup and biological

methods were used, except that a concentrated NaOH or glucose solution was connected to the

microbioreactor and served to replenish water evaporation. A balance between the contracting

pressure of the bulging of PDMS membrane and the static pressure by the elevated liquid

reservoir kept the reactor volume constant, as the intlow liquid passively replenished water loss

by evaporation through the PDMS membrane. Pellets of desiccant (anhydrous calcium sulfate,

W.A. Hammond Drierite, Xenia, Ohio) was placed in the heated aluminum chamber (Figure 2-2)
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to remove moisture from the head space above PDMS membrane and increase water

evaporation. The evaporation rate for natural convection was determined to be 4 IlL/hr by

weighting pellets.

4.2.1. Feeding of glucose

Figure 4-1 compares DO curves in the microbioreactor for typical E. coli fermentations with

8 g/L glucose and 0.1 mol/L MES medium in LB rich media. For both batch fermentation and

experiments with glucose passive feeding, the DO level dropped rapidly to zero during

exponential growth phase, when the actively growing cells had a strong demand for oxygen. As

the cells entered the stationary phase, the oxygen demand dropped and the diffusion across the

PDMS membrane returned the DO level to saturation. Addition of nutrient (glucose) appeared to

increase the duration of the growth phase, and delay the recovery of DO to its saturation level.

However no significant difference in the final OD values was observed due to the absence of pH

control.
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Figure 4-1. DO curves from batch experiments and experiments with passively
feeding of glucose (2g/L glucose concentration, 4 IlL/hr feeding rate).
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4.2.2. Feeding ofNaOH solution

The pH curves in Figure 4-2 show a decrease to pH 5.6 in batch fermentation. This pH drop

was reduced by feeding a diluted base solution (0.01 mol/L NaOH). When a strong base solution

(0.1 mol/L NaOH) was used, pH decreased even less during cell growth phase and strongly

increased thereafter. In the particular example, the strong base solution was administered

80 minutes after the fermentation run had started with cell growth in early phase.

Figure 4-2. Time courses of pH curves from batch experiments and experiments
with passively feeding of NaOH solutions (concentration of 0.01 mol/L and 0.1
mol/L, respectively). Feeding of 0.1 mol/L NaOH solution started at 80 min in
the experiment.

4.2.3. Limitations of passive feeding

The above results demonstrate that the environmental conditions in microbioreactors can be

monitored and manipulated as a fed-batch process. However, passive feeding driven by water

evaporation is not a practical solution. Evaporation can control glucose or base feeding but not

both. In the case of pH control, the demand for base feeding in bioreactors is complicated by the
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feeding load exponentially increasing during fermentation (in pace with biomass accumulation)

until nutrients are depleted or hazardous bypro ducts accumulate to a certain level. Although the

water evaporation rate from the microbioreactor can be manipulated by changing air moisture

and mixing in the headspace, the dynamic range is not sufficient to meet the demand.

Furthermore, the slow-response time of water evaporation makes control difficult. Finally,

different experiments could have different feeding rates, and changing the rate for water

evaporation is not a solution compatible with parallel operation of multiple bioreactors.

4.3. Active Feeding System

Active delivery of compounds (acid, base, and glucose) and closed-loop control were

rendered feasible by applying both passive feeding of water and active feeding of compounds

using commercial microvalves. To utilize the water evaporation from the microbioreactor as the

water outlet for feed streams, the rate was kept at a constant level, and preferably at the

maximum rate. On the inflow side, the sum of the actively fed volumes plus the passively fed

volumes equaled to the water evaporation rate. Acid (Hel) and base (NaOH or NH40H) can be

actively added to the system for pH control, and glucose or other carbon sources can be actively

addedd to control dissolve oxygen and cell density in fed-batch cell cultures.

4.3.1. Microbioreactor design

The microbioreactor was fabricated by thermal bonding of two PMMA chips (thickness of

1.6 mm for the top piece and 1 mm for the bottom piece, respectively), as illustrated in Figure 4-

3. Thin layer of PDMS membrane and thick PDMS gasket were mechanically assembled by a

rigid PMMA cover. The depth of the reactor chamber was 2 mm and the diameter was 10 mm.

Together with the bulging of PDMS membrane at 2500 Pa static pressure (pressurized by a water
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reservoir elevated at a height of 25 cm), the microbioreactor had a total volume of 230 JlL. Five

fluidic ports for inoculation, exit for inoculation, water replenishment, and base and acid/glucose

feeds connected the reactor with the external setup. Connecting microchannels with cross-

section of 250 Jlm by 250 Jlm were designed to minimize diffusion of chemicals.

A

B

D

E

c

Figure 4-3. Illustration of microbioreactor used for pH control and fed-batch
experiments. Port A - inoculation; B - water replenish; C - exit during
inoculation and closed after that; D - base feeding; E - acid/glucose feeding. F
indicates the reactor chamber. Details in the reactor chamber

The microbioreactor was placed in an aluminum chamber equipped with a 4 mm-diameter

fan (l2V DC, Radioshack) and maintained at 35°C by water circulation. A cylinder containing

compr~ssed dry air (Airgas Inc., MA) connected to the reactor chamber via a flow meter

provided a steady air flow at 5 cern.

4.3.2. Calibration of evaporation rate

The evaporation rate was measured by the change in pH of a buffer solution during passive

feeding of base. The Henderson-Hasselbach equation (Skoog, et al., 1992) was rearranged used

to back calculate the amount of base added to the system:

(

lOpH-pKa

baseadded(mol)==C.V. H- KlOP P a + 1 (4-1)

This equation is valid for buffer solutions with single pKa. C is the buffer concentration; V is
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the total volume of microbioreactor; pHo is the initial pH value in the buffer.

In the calibration experiments the microbioreactor was loaded with a buffer solution of

known concentration C and pressurized by an elevated base solution reservoir (with known

concentration) at 0.25 m height. Evaporation rates at different conditions were calculated by

measuring the changes in pH value during experiments. Equation 4-1 was also applied to

calculate the base feed rates in the active feeding scheme (described in the next section) when the

microvalves were opened at different time durations.

4.3.3. Activefeeding

A nitrogen gas cylinder was used to pressurize two liquid reservoirs (made in polycarbonate)

to 10 psi and to drive the liquid feeds (Figure 4-4). Liquid was injected into the reservoirs by

syringes through 0.45 JlID syringe filters (Acrodisc@, Pall Corporation) before experiments.

Liquids flowing out of the reservoirs were controlled by micro dispensing valves

(INKX0514300A, The Lee Company, Westbrook, CT). PEEK tubing (poly( oxy-1 ,4-

phenyleneoxy-1 ,4-phenylene-carbonyl-1 ,4-phenylene), 50 Jlm inner diameter, 1/ 16" outer

diameter, and 58 cm in total length (Upchurch Scientific, Oak Harbor, WA) were connected to

the reservoirs with valves via tubing connectors (TUTC3216930L, The Lee; P702, Upchurch

Scientific). These small-diameter tubes were used to increase the flow resistance and limit liquid

injection volume to the order of JlL per valve opening. Before experiments, plugs of strong acid

and base solutions (0.2 mol/L and I mol/L, respectively) were injected in tubes on the

downstream side of microvalves via four-way manual valves (V-1OOL, Upchurch Scientific).

During experiments working liquids from the liquid reservoirs flowed through the PEEK tubes

and microvalves to push acid or base solutions into the microbioreactor. This effectively

prevented direct contact of microvalves with corrosive solutions. The same procedure was
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applied to glucose feed for the ease of sterilization.

The microvalve was controlled by a spike-and-hold driver circuit (IECX050 1350A, The Lee

Company) connected with 24 V and 3 V DC power supplies. The valve was opened upon

receiving of a 5 V control signal from the computer via the driver circuit. The driver circuit

reduced the signal amplitude to 3 V to maintain the microvalve at the open status for certain

duration of time, until termination of the control signal triggered closure of the microvalve.
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Figure 4-4. A schematic illustration of microbioreactor system and control loops
by combining water evaporation with active feed of water from an elevated
reservoir and active feed of chemical compounds using microvalves. Dash line
indicates the aluminum chamber containing microbioreactor. Thick solid lines
indicate fluidic tubes and microchannels, while thin solid lines indicate electronic
cables for power and signal transfer. The GPIB interface card and optical
measurement setup are not shown in the figure.
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A water reservoir was elevated to a height of 0.25 m to passive replenish water into the

microbioreactor. This passive feed provided a constant water flow unless the active feed

microvalves were opened, in which case the active feeds dominated due to the higher driving

pressure. The active feed lines were connected as side branches (Port D and E in Figure 4-3) to

the water feed channel (Port B in Figure 4-3), and the time averaged active feeding rates were

always less than the evaporation rate of water. In the experiments, the evaporation rate was

maximized by applying a fan to improve air mixing inside the aluminum chamber and by

flowing dry air at 5 ccm through the chamber.

4.3.4. Closed-loop pH control

The pH measurements in the microbioreactor, represented as a phase shift signal from the

fluorescent sensor, were obtained every 5 minutes by a Labview program through a GPIB

interface card (PCI-GPIB, National Instruments), as described in Chapter Two. The phase shift

value was compared by the Labview program with two setpoints, defining the upper and lower

limits. A 5-volt valve opening signal was sent from the GPIB interface card to the spike and

hold circuits that operated the microvalves. The base or acid microvalve was opened for specific

duration of time if the phase shift reading was out of range as defined by setpoints. The duration

of valve opening, which controlled the volume of liquid fed into the microbioreactor, was

decided based on the error in phase shift (proportional controller) and the difference from the last

phase shift reading (derivative controller). The PD control scheme was used to accurately

control pH value between setpoints and to shorten the response time in fluidic microchannels. If

the phase shift reading was more than 0.1 pH unit (10 in phase shift) away from the setpoints, the

base/acid valves would be opened at a maximal time (15 seconds), which was decided by the

total volume of water evaporation (-3.6 p,L) from the microbioreactor in 5 minutes. The valve
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opening signals and actuation time data used by the spike and hold circuits were saved in a log

file together with other information including the pH and DO phase shifts and OD amplitude

data during cell cultivation experiments. Integral controller was not applied in these experiments

due to the slow response time in the continuous flow control system.

4.3.5. Glucosefeeding and closed-loop DO control

For fed-batch experiments, in addition to the closed-loop pH control, glucose solution (with

certain concentration) was fed into the microbioreactor as a response to certain DO level in the

microbioreactor measured as a phase shift signal from the fluorescent sensor to realize a closed-

loop control. The DO phase shift reading from the microbioreactor was compared by the

Labview@ program with a certain setpoint defining the lower limit for DO value. Once the

measured DO value was higher than the setpoint value, a 5-volt valve opening signal was sent to

the spike and hold circuit to open the microvalve for glucose feeding.

4.4. Results and Discussion

4.4.1. Evaporation in microbioreactors

Figure 4.5 shows the total evaporated volumes as functions of time. In these experiments

evaporation rates were measured by passive feeding and titration of 0.5 mol/L K2HP04 solution

by 0.01 mol/L NaOH.
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Figure 4-5. Water evaporation rate in the headspace above the microbioreactor
for three controlled conditions - mixing with a fan and dry air, mixing with a fan
and humid air, or no mixing and no air flow. The fan was located in the reactor
chamber. Dry air from a compressed air cylinder was flowing at a rate of 5 ::l: 1
ccm; humid air (",20% humidity) came from an air pump at a rate of 5 ::l: 1 ccm.
The linear fits are shown corresponding to the points obtained at different air-
mixing conditions with R2 values of 1.00 (fan and dry air flow), 0.98 (fan and air
flow), and 0.89 (no fan and no air flow), respectively.

Clear linear correlations with R-square values close to 1 demonstrate stable water

evaporation rates at these conditions. As a lower bound when there was no mixing or air flow in

the headspace, the evaporation rate was measured as 3.2 p.Llhr, which is very close to the value

measured by the weight increase of desiccant pellets, as discussed in Chapter Two. The

maximum rate of 43 p.Llhr was obtained when a fan was used to mix the headspace through

which 5 ccrn dry air was flowing.
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4.4.2. pH control infermentation experiments

Figure 4-6 shows the experimental results of closed-loop pH control for E. coli cell

cultivation in rich LB medium containing 8 g/L glucose, 0.1 mol/L MES, and 100 /lg/L KAN. In

the first 6 hours of the experiment, fermentative metabolism of glucose dominated since glucose

is the preferred carbon source for E. coli. As a result of acetate production during fermentation,

the pH value in the microbioreactor dropped below the first pH setpoint of 6.65, and base feed

was actuated. For a few minutes the pH value was 0.1 pH unit (loin phase shift signal) lower

than the setpoint, and the base feed was actuated with the maximal opening time of 15 s.
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Figure 4-6. pH control in cell cultivation of E. coli FB21591 in rich LB medium
containing 8g/L glucose, 0.1 mol/L MES, and 100 /lg/L KAN. 1 mol/L NaOH
and 0.2 mol/L Hel were used, with maximal actuation time durations for base and
acid valves set as 15 sand lOs, respectively. Actual valve actuation durations are
shown in the figure, with positive numbers indicating base valve opening times
and negative numbers indicating acid valve opening times. Time constants for
proportional and derivative controllers were 0.25 and 0.5, respectively.
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Once glucose in media had been consumed after 6 hours in fermentation, cells grew by

utilizing other carbon sources in LB rich media. In this process cells started to accumulate basic

byproducts, as proved by results from control experiments, in which LB was used as the only

carbon source for cell culture and final pH of the culture was as high as 8.3. In the pH control

experiment, after 6 hours in the culture the acid feed was actuated when pH value was higher

than the second setpoint of 6.71. Maximum actuation duration of 10 s for the acid valve was in

effect when pH value was higher than 6.83. Overshoots in the base were observed (Figure 4-6)

suggesting that the concentration of acid solution used (0.2 mol/L) was insufficient to fully

compensate the production of basic byproducts during fermentation. Concentrated acid solution

needs be used in further investigation and optimization of pH control. The first and highest

overshoot at 11 hours in the experiment was caused by the transition of carbon source from

glucose to LB. Further optimization of the control system would reduce these issues.

Despite the difficulties mentioned above, the active feeding and closed-loop control system

successfully maintained the pH value in the microbioreactor within a physiological range of 6.68

:i: 0.15 for most of the cultivation time. As a result of a healthier culture, higher biomass yield

was obtained (OD6oonm-- 8.3) (Figure 4-7).

In the batch microbioreactor without control, the pH decreased significantly oWIng to

fermentation after 2 hours in the experiment. The DO level only recovered after -- 8 hours in the

experiments. As a result the final OD6oonmlevel in the batch culture was as low as -- 4.1. This

value is significantly lower than the results reported in Chapter Two as a larger culture volume

was used here with the same PDMS aeration area. With pH control, bacterial cells were

metabolically active for a longer period of cultivation time and the DO level recovered after 16

hours of experiment. A higher biomass yield was obtained with a final OD6oonmof -- 8.3.
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Figure 4-7. Comparison of pH, DO, and OD6oonrncurves for E. coli FB21591 cell
cultures with (dash lines) and without (real lines) pH-control. The rich LB
medium contained 8 glLglucose, 0.1 mol/L MES, and KAN.

Similar phenomena were observed in batch cultures with 20 glL glucose (Figure 4-8).

Without pH control, the growth kinetics in culture media with 20 gIL glucose were very similar

to those with 8 glL glucose, except the DO level started to recover after 12 hours in the

experiment. In this set of experiments E. coli, a fast growing bacteria, was cultivated in the rich

medium with very rich supply of glucose but limited supply of oxygen. These fermentative cell

cultivation conditions were intentionally selected to make the needs for active feeding very

demanding. As shown in the figure, pH control by using 1 mol/L N aOH did not fully

compensate acetate production during the fermentation stage and a higher concentration of base

and an optimized control algorithm would be required. Still, the pH value during the time course

of fermentation was controlled within the physiological range to maintain active cell metabolism.

As a result the DO level did not recover during 30 hours of cultivation time and the final OD600nrn
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in the microbioreactor reached 8.64, which was significantly higher than that of un-controlled

experiments (~ 4.1).
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Figure 4-8. Comparison of pH, DO, and OD6oonmcurves for E. coli FB21591 cell
cultures with (dash lines) and without (real lines) pH-control. The rich LB
medium contained 20 glL glucose, 0.1 mol/L MES, and KAN.

4.4.3. Feedback glucose feeding

A fed-batch experiment, started with standard inoculum of E. coli FB21591 in LB medium

containing 2 glL glucose and 0.1 mol/L MES, is shown in Figure 4-9. Delivery of 40 g/L

glucose and 1 mol/L NaOH solutions were feed-back controlled based on DO and pH readings,

respectively. The same PI control strategy discussed earlier was applied for pH control. For

glucose addition, when the DO value in the microbioreactor, represented by a phase shift

reading, became higher than the 40% saturation setpoint, a constant volume of 1.34 pL glucose
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solution was fed into the microbioreactor.
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Figure 4-9. Comparison of pH, DO, and OD6oOnm curves for E. coli FB21591 cell
cultures with (dash lines) and without (real lines) pH-control. The rich LB
medium contained 20 g/L glucose, 0.1 mol/L MES, and KAN.

In the first two hours of experiment, DO decreased and reached zero level due to a strong

oxygen demand by fast cell reproduction, as indicated by the rapid increase in OD. This

fermentation process lasted about 10 hours before DO recovered. In the mean time pH value

decreased at fist due to the fermentation using glucose as the carbon source, and then increased

to the basic direction as a result of cell growth utilizing LB medium, as discussed in Section 4-4-

2. The DO reading recovered when carbon sources in the culture medium was depleted after 10

hours, and quickly dropped to zero after the glucose-feeding valve was actuated.

This periodically recurring phenomenon indicated that too much glucose was fed into the

microbioreactor in every cycle (~ 2 hours) in order to avoid fermentative metabolism; acid

feeding will be necessary to maintain pH within physiological limits. Nonetheless, this
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experiment demonstrated the potential to control DO level within certain range to obtain a

healthy and well-controlled cell physiology, high bioproduct yields, and high density cell culture.

4.5. Conclusion

Design and fabrication of a fed-batch system was proposed for pH control and glucose

feeding in the JlL-volume microbioreactor. Water evaporation through the PDMS cover

membrane was designed to serve as the water outlet for the microbioreactor and maintained the

culture volume constant. Titration of pH buffer solution in the microbioreactor by base solution

was used to characterize the rate and stability of water evaporation. Fresh solutions such as base

and carbon sources were allowed to enter the microbioreactor while microbial cells and solutes

were kept in the culture to realize an effective fed-batch process.

Applications of passive and active feeding were discussed, and a combination scheme was

designed in the microbioreactor system. Active addition of base, acid, and glucose solutions was

driven by pressure and controlled by commercially-available microvalves. A Labview program

in the computer measured the pH values during fermentation and manipulated the opening time

for microvalves as a proportional-derivative controller. DO value was used for the feedback

control of glucose feeding using a microvalve.

Closed-loop pH control was demonstrated for E. coli cell cultivation in rich media. This was

a challenging system due to the large demand for base feed during anaerobic fermentation, and

the demand for acid feed due to the secondary metabolism when LB was used as an alternative

carbon source for growth. The control system successfully maintained the pH value in the

microbioreactor within a certain physiological region, in spite of these challenges. Significant

extensions of cell growth, as indicated by longer recovery time in dissolved oxygen levels and

significant improvements in biomass yield (reflected by higher final OD6oonmvalues), were
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observed in pH-controlled batch culture experiments with the same initial glucose concentrations

of 8 g/L and 20 g/L. Furthermore, feed-back control of glucose feeding based on DO level in

cell culture demonstrated the feasibility and potential of using fed-batch process to realize high

density cell culture.

These results demonstrate the concept of using water evaporation and active feeding for

control of fed-batch microbioreactors. Cell cultivation conditions during the time course of

experiments are not only monitored as in batch operations but also effectively manipulated as in

continuous culture and fed-batch operations. These features could make the microbioreactor

technology a promising approach for high-throughput bioprocess developments.

83



Chapter 5.

System

Integrated Microbioreactor Cassette and Multiplexed

5.1. Introduction

In the previous chapters, single disposable nlicrobioreactors with integrated sensors were

demonstrated for batch, fed-batch, continuous culture operations, and they greatly simplified the

effort per fermentation experiments. Based on these investigations, parallel operation of nlultiple

microbioreactors need be developed to make the technology viable for high-throughput data

acquisition. This requires a platform on which disposable lTIicrobioreactors can be set-up rapidly

and with which real tinle information in fermentation processes can be obtained. In addition, the

microbial cultivation data in multiple reactors nlust be reproducible.

As a collaboration effort with Gerardo Perozziello, I the work presented in Section 5-2

focuses on the integration of bioreactors into a reactor cassette with fluidic and optical coupling

interfaces to external instruments. The cassette design, made possible by a specifically designed

multilayer plastic thermal-bonding procedure, enables scaling out to a multiplexed, high-

throughput batch/fed-batch/continuous cell culture platform. This unit automatically aligns with

external fluidic and optical components and addresses the need for rapid set-up and ease of

operation ofbioreactors for high-throughput bioprocessing.

For the external optical nleasuretTIent setup, a prototype tTIultiplex systelTI is developed and

presented in Section 5-3 in collaboration with Dr. Nicolas Szita, a postdoctoral associate. In this

I Gerardo Perozziello was a visiting PhD student from Department of Micro and Nanotechnology, Technical
University of Denmark, DTU Building 345 East, DK-2800 Kgs.Lyngby, Denmark. His thesis supervisor was Prof.
Oliver Geschke*
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prototype we used a single macroscopIC interface for measurements in multiple parallel

microbioreactors. Reproducibility was denl0nstrated by experimental results from the operation

of four batch nlicrobioreactors. Section 5-4 presents design of a prototype of multiplexed system

with higher degree of integration.

5.2. Integrated Microbioreactor Cassette

5.2.1. Design and fabrication of microbioreactor cassette

Microbioreactors for batch, fed-batch, and continuous culture operations were discussed in

previous chapters. Efforts were focused on features and functionalities specific for different

applications, especially those of microfluidics controls. The task was to unify the systems to

allow operation flexibility. Furthermore, the microbioreactor cassettes should be disposable

and separated from external housing instruments (fluidics, optics, electronics, and computer) thus

greatly reducing the mechanical complexity in setting up and running multiple microbioreactors.

Devices described in previous chapters were assembled manually by mechanical compression

using bolts and nuts. Besides being a slow step in the setup procedures, alignments of optical

sensors also affected reproducibility in measurements. The setup procedure for fluidic

connections was also slow. All these issues needed to be addressed in the new design.

Here we describe our efforts in the packaging of a microbioreactor system by integration of

microfluidic connectors and optical plugs. The microbioreactor consisted of five thermally-

bonded PMMA layers (Figure 5-1). Precise thermal bonding of PMMA with different glass

transition (TG) temperatures was performed in two steps: three bottom layers (layers C, D, and

E, material purchased from Goodfellow Corp.) were bonded at a temperature of 140°C and then

bonded with top two layers (purchased from MSC Industrial Supply, Co.) at a lower temperature
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of 120°C. Thermal bonding was performed using a home-made mechanical press, described in

detail in Appendix A.
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Figure 5-1. Cross-section of an integrated microbioreactor cassette. A-E,
thermally bonded PMMA layers; F- PMMA cork; G- PDMS gasket and aeration
membrane; H- Silastic O-ring; 1- optical fiber fixed by F; J- grid for holding the
PDMS membrane; K- magnetic mixer; L- PDMS optical plugs; M- optical fibers
and micro-lens; N- fluidic interconnections; 0- pH and DO fluorescent sensors.

Pictures of individual parts and the assembled device are shown in Figure 5-2 and 5-3,

respectively. In the center of the device, a round reactor chamber was fabricated with a built-in

magnetic spin bar mixer (K) for mixing of fermentation medium. The geometry of the reactor

chamber was the same as described in Chapter Three. A thin layer of spin-coated PDMS (G)

covered the reactor chamber and served as the aeration membrane. This thin PDMS layer was

held by a thicker PDMS layer (shape of an O-ring with an inner diameter of 20 mm, an outer

diameter of 25 mm, and a thickness of 3 mm; the O-ring was fabricated by a negative mold in

polycarbonate) to facilitate the assembly of the device, and covered by a stainless steel grid

structure (1) to prevent bulging. A PMMA cork (F) with an outer diameter slightly larger (13 Jlm

larger in diameter) than the inner diameter of PMMA housing frame (machined in A and B) was

pressed down on the PDMS (G) and an Silastic O-ring (part H, inner diameter of 10mm, outer

diameter of 20 mm, and height of 3 mm) for sealing. The O-ring was molded out of Sylastic@
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RTV silicone elastomer (Oow Coming) by a polycarbonate negative mold. A small hole in the

cork also aligns an optical fiber (I) for the 00 transmission measurement. Two recesses (0) at

the bottom of the bioreactor chamber accommodated pH and DO fluorescence lifetime sensors.

Recesses beneath these sensors in the bottom PMMA layer accommodate and passively align

optical connectors (M) connecting the microbioreactor system to external instruments.

Figure 5-2. Overview of individual parts -letters refer to Figure 5-1.

Fluidic connections (inoculation,
feeding, sampling, and waste)

,,

Microfluidic channel

Optical fiber

,
Alignment holes: thermal
bonding and optical plugs

Friction cork for
assembly

Silicone a-ring

,,
POMS membrane and gasket

Figure 5-3. Top view photograph of assembled and bonded microbioreactor
"cassette" .
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The above design allowed the reactor cassette to be cleaned and reused by replacing POMS

membranes after experiments. An alternative prototype was proposed to make the whole

cassette disposable and would be applied when cassettes become large-scale manufactured. As

shown in Figure 5-4, the PDMS membrane was permanently fixed in PMMA layers after thermal

bonding and the grid structure was molded in PMMA layer B.

A

B

C
D
E

Figure 5-4. Cross-section of disposable cassette - letters refer to Figure 5-1.

5.2.2. UPlug-in-n-play" fluidic interface

The fluidic interface between a microbioreactor and external fluidic units was composed of

custom-made elastomer O-rings integrated in the PMMA device (Figure 5-1). They allowed

aseptic self-sealing, "plug-in-n-play" functionality between the external tubes with internal

microfluidic channels that lead to the reactor chamber, and served for inoculation, reagent-

feeding, sampling (from a sample reservoir), and waste outlet.

The custom-made cylindrical O-rings (Figure 5-5) were fabricated from Sylastic@ RTV

silicone elastomer (Oow Coming). The elastomer rings were cast from stainless steel molds

reproducing the negative shape of the rings, having an outer diameter of 4.2 mm and an inner

diameter of 0.2 mm and a depth of 4.6 mm. The stainless steel molds were CNC-machined at

high rotation speed of 8000 rpm by a 2 mm-diameter ball-head endmill (MSC Industrial Supply)
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at high rotation speed and electropolished to obtain a smooth surface.

Figure 5-5. Sylastic@ O-ring serving as fluidic connector.

Elastomer O-rings were cured at room temperature for more than 12 hours to obtain a Young

modulus (E) of 4.5 MPa (Perozziello et aI., 2006). They were then embedded into housings

machined in a thick PMMA layer and were fixed by a cover PMMA layer when the two layers

were thermally bonded (cf. Figure 5-1; Appendix A). The housings for the O-rings have slightly

smaller diameter of 4.1 mm and smaller depth of 4.45 mm, so that after O-rings were embedded

in the housings they were compressed by pressure, and the center holes in the O-rings were

sealed. 1.5 mm-diameter through-holes were drilled in the covering PMMA layer corresponding

to the positions of center holes in O-rings to allow access. When stainless tubes (1.2 cm long, 23

gauges, Small Parts, Inc.) connecting with external fluidic tubing were plugged into the center

hole of the O-rings, the elastomer expanded and accommodated the tubes to make a fluidic

connection. This process is reversible and the sealing can withhold pressure up to 90 psi without

leakage (Perozziello, et al., 2004).

5.2.3. Microlens as optical interface

A similar "plug-in-n-play" strategy was also applied to the optical interface between external

measurement setup and disposable florescence sensors inside of the microbioreactor cassette.

Integrated microlens and optical connectors (Figure 5-6) were molded out of PDMS (Sylgard

184, Dow Coming) in an aluminum mold fabricated by conventional milling using a 2 mm-
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diameter ball-head endmill (MSC Industrial Supply, Co.) and mechanically polished using a

shaft grider kit (Dremel, MSC) and polishing paste (Novus Plastic Polish, MSC).

Figure 5-6. Side view and top view of microlens and alignment ring around the
microlens.

The aluminum mold ensured the replication of the negative shape of the micro lens and four

pillars to fix the optical plug for packaging. The negative of the lenses had a diameter of 2 mm

and the plug had an overall height of 10 mm. The upper part was composed of 5 mm long

aluminum columns that were aligned concentrically to the lenses as guide channels for optical

fibers. Figure 5-7 shows an optical plug integrated with three PDMS microlens for on-line

measurements ofOD (center fiber), pH and DO (double fibers fibers at the two side locations).

PDMS posts for aligning and fixing the optical plug
into bottom side of the microbioreactor cassettes

Optical plug
connector

PDMS

Epoxy

Alignment rings for
microlenses

Microlenses

Optical fibers for measurements of
00 00 pH

Figure 5-7. Cross-section view three microlenses assembled with optical fibers.
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With optical fibers fixed in the middle of the optical plugs and a smooth, hemispherical outer

surface shape on the other end facing towards the optical sensors in the bioreactor, the optical

plugs effectively increased the intensity of light transmission from optical fibers to optical

sensors thus increasing signal-to-noise ratio of optical measurements. A two dimensional model

was developed using ray optics theory. Images of the light distribution showed good agreement

with the model (Perozziello et at., 2006; Figure 5-8). The measurements show a maximum light

intensity from the plugs, which was 50% higher than from the cleaved optical fibers and

significantly more focused with respect to lateral distribution of light. Even in presence of slight

misalignments away from the center, the focusing effect by the micro lenses made coupling of

light more efficient comparing to butt-end coupling techniques,. Further details on the

fabrication and characterization of the microlenses can be found in Perozziello et at. (2006).

Optical
fiber

(a)

1

0.75

Q)~ 0.5
.~
uro
.;:

0.25

Figure 5-8. (a) Illustration of focusing effect by PDMS microlens (b) Intensity of
the light versus lateral distribution of a cleaved fiber (green line) and optical
microlens (blue line). Calculation values are obtained by the two-dimensional
model, with details described by Perozziello et at. (2006).

In practice the focusing effect depended on the axial and radial positions of optical fibers
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fixed in the back side of microlenses. As shown in Figure 5-7, for pH or DO measurements two

optical fibers (plastics fibers were I mm and 0.6 mm in diameter, BFL 37-1000 from Thorlabs,

Inc., and FVA500550590 from Polymicro Technology LLC, Phoenix, AZ, respectively.) were

aligned parallel in each microlens as analogs to the bifurcated optical fibers presented in Chapter

Two. One fiber (1 mm in diameter, Thorlabs) was fixed in the center of plug for the OD reading.

Calibration and optimization of positions for pH and DO reading aimed to maximize the

intensity of light from the fluorescent sensor to improve the signal-to-noise ratio of

measurements. For the 00 measurement the objective was to obtain parallel transmission light

and improved reception on the other side of the device. Different focal points were designed in

the optical plug (Figure 5-9) for the different measurements. The refractive indexes for PDMS,

air, PMMA, and water were 1.43 (Horvath et al., 2003), 1.49 (Defaude et al., 2005), and 1.33

(Wikipedia Coordination), respectively. A layer of epoxy was used to permanently fix the fibers

in perpendicular position and align with external mechanical housing.

3 3

2 2

1
Fiber

---,.--

-1 3 -1 9

E -1 mm
~ PDMS

E -2
PDMS sensor

E PMMA -2 PMMA

-3 (A) -3 (B)

Figure 5-9. Calculated focusing effects by PDMS microlens on pH/DO
measurements (a) and 00 reading (b).
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In addition, the alignment ring around the microlens (cf. Figure 5-6) was fabricated with a

size comparable to the size of the cavity beneath the microbioreactor (1.6 mm from the center, 1

mm high and 0.4 mm wide). The mold was fabricated using a 0.4 mm-diameter ball-head

endmill, TR-2-0130-BN, Performance Micro Tool, Janesville, WI.). The alignment ring helped

positioning of optical fibers to optical sensors and made setup procedures significantly easier and

faster (Figures 5-8 and 5-10).

,
Optical fiber Optical plug

Figure 5-10. Bottom view photograph of optical microlenses assembled with
optical fiber housing. Fibers for demonstration here were 0.25 mm in diameter.
Epoxy and external mechanical support are not shown.

5.3. Step Motor-Controlled Multiplexed System

A prototype multiplexed microbioreactor system for parallel operation of four microbial

fermentations is described in this section to demonstrate the concept and potential of high-

throughput bioprocessing. The microbioreactor devices described in Chapter Two were held on

an aluminum platform, which rested on support rails mounted to the sidewalls of an aluminum

enclosure (Figure 5-11). Pins in the support rail maintained proper alignment for optical

measurements. An optical fiber extension (part I shown in Figure 5-1) served as waveguide for

OD measurements for the microbioreactor.
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Figure 5-11. Photograph of the multiplexed microbioreactor system embedded in
a schematic of the instrumentation. The multiplexed system is loaded with four
stirred batch bioreactor. The optics bracket (detailed photographic view) contains
the optical fibers for monitoring of OD6oo, DO, and pH, as described in Chapter
Two. The enclosure of the multiplexed system was sealed with a top lid (not
shown).

The aluminum stage was attached to the rear wall of the enclosure and the slider motion was

controlled with a stepper motor (Type 23T1, Velmex) which permitted an axial step resolution of

5 Jlm for the optical bracket. Outboard limit switches (PIN 3-8515, Velmex) prevented over-

travel of the bracket. The optics bracket scanned over the microbioreactors in stop-and-go

sequences executed by computer control algorithms. The process parameters were measured and

recorded for each reactor using lifetime fluorescence and absorbance methods. In a typical

monitoring sequence, the optical bracket would sequentially read all four microbioreactors and

then return to its initial home position, waiting for the start of the next cycle.
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Figure 5-11. Photograph of the multiplexed microbioreactor system embedded in
a schematic of the instrumentation. The multiplexed system is loaded with four
stirred batch bioreactor. The optics bracket (detailed photographic view) contains
the optical fibers for monitoring of OD6oo, DO, and pH, as described in Chapter
Two. The enclosure of the multiplexed system was sealed with a top lid (not
shown).

The aluminum stage was attached to the rear wall of the enclosure and the slider motion was

controlled with a stepper motor (Type 23T1, Velmex) which permitted an axial step resolution of

5 Jlm for the optical bracket. Outboard limit switches (PIN 3-8515, Velmex) prevented over-

travel of the bracket. The optics bracket scanned over the microbioreactors in stop-and-go

sequences executed by computer control algorithms. The process parameters were measured and

recorded for each reactor using lifetime fluorescence and absorbance methods. In a typical

monitoring sequence, the optical bracket would sequentially read all four microbioreactors and

then return to its initial home position, waiting for the start of the next cycle.
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The platform included openings at the bottom for optical access. An optics bracket mounted

to a slider on a single-axis stage (Unislide, PIN MA2512K2-S2.5, Velmex, NY, USA) held

optical fibers (custom-made, RoMack Fiberoptics) above and below the microbioreactors. The

bracket was attached to a slider on a stage and sequentially read the microbioreactors from

reactor RI to R4, starting from the home position. Stage controllers operated the motors for

stage motions. The optical and electrical leadthroughs were placed in the rear wall of the

enclosure below the motorized stage. Swagelok tube fittings (SS-6-UT-I-4BT, Swagelok, OH,

USA) were mounted to the rear wall, and used to clamp the optical fibers at the fiber break-out

(i.e. at the location where the fibers bifurcated) to the rear wall. The break-out consisted of an

aluminum cylinder with an outer diameter of 9.5 mm, which matched the inner diameter of the

tube fitting bore. For the electrical wires of the magnetic motors and the limit switches,

provisions in the rear wall were made for circular plastic connectors (Tyco Electronics PIN

1445759-1, Newark InOne, MA, USA). System-wide temperature control was achieved by

flowing water from an external heated bath (Thermostat CI0-B3, Haake, MA, USA) through the

base of the housing.

A total of three bifurcated optical fibers were attached to the bottom of the bracket to monitor

DO and pH sensors at the bottom of the microbioreactors, and to introduce light for the OD6oo

measurements. An optical fiber collected the transmitted light above the reactors. To maximize

signal intensity, the z-position of the fibers both above and below the microbioreactors was

adjustable. This was performed with cylinders that held the fibers, and were able to slide inside

vertical bores machined within the bracket. The positions of the fibers with respect to the

cylinders, and the position of the cylinders with respect to the bracket, were fixed with set

screws.
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Four magnetic stirrers were attached underneath the reactor platform. The stirrers were

comprised of a DC torque mini motor (Faulhaber1212 E 006, Instech Laboratories, Plymouth

Meeting, PA) with a gear (Spur gear head 12/3, transmission ratio 9.17: 1, Instech) and a

permanent magnet (long neodymium iron boron, diameter 6.3 mm, length 6.3 mm, Instech)

attached to the rotating shaft. The gear was chosen to permit stirring speeds between 200 and

1500 rpm. Individual motor controllers (MC50, Instech) allowed independent stirring of each

reactor. The total height of motor, gear and shaft was approximately 47 mm with a diameter of

10 mm. The motors were held on a separate plate, which could be exchanged to quickly

reconfigure the number of stirrers and their distance from each other. The magnetic flux

obtained with these permanent magnets was strong enough to perform reliable magnetic stirring

from a distance of approximately one inch.

Parallel microbial fermentations with E. coli were carried out in four stirred

microbioreactors. Details for microbial strain, culture medium, inoculation preparation are

described in Chapter Two. After inoculation, the LabVIEW@ routine for the multiplexed system

was initiated. The control algorithm executed the stop-and-go sequences for the optics bracket.

Starting from the home position (Figure 5-11), the bracket stopped at each reactor, such that the

optical fibers from the optics bracket would align with the OD6oo waveguide from the reactor top

layer and the DO and pH sensors in the reactor bottom, and the respective fermentation

parameters were measured. The travel speeds in between the measurements and the travel

speeds from and to the home position were 1 mm/s. One scanning sequence took approximately

7 min to complete. A sampling rate of 10 min was chosen, which is sufficient to determine

growth kinetics of even fast growing bacterial species, such as E. coli. Stirring speed was set at

700 rpm.
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Figure 5-12. Parallel fermentations of E. coli performed in four microbioreactors
and real-time measurements of: (a) OD600, (b) DO, and (c) pH. Rl to R4
indicate individual reactors.

In the fermentation experiments, E. coli cells reached the stationary phase after 6 hours and

achieved an average maximum OD of5.6 with a CV better than 60/0(Figure 5-12a). The oxygen

concentrations after reaching 0% remained low for a short period of time and recovered to 1000~

after 12 hours (Figure 5-12b). The starting pH values were between pH 6.6 and 6.9, and changed

little in the first hour of the microbial fermentations, most likely as a result of the buffering
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capacity of the MES added to the medium, then dropped significantly for approximately 4 hours

to below pH 6 due to strong acid production, and finally reached a minimum of 5.6 after

approximately 12 hours (Figure 5-12c). The four microbioreactors showed reproducible

performance in terms of the measured process parameters. During exponential growth phase, the

calculated standard deviations were less than or equal to 0.38 for OD6oo, 14% for DO, and 0.16

for pH. Fermentation data indicate expected and healthy cell growth behavior with good

reproducibility in growth profiles.

5.4. Design of Multiplexed System without Moving Parts

In the previous section a prototype multiplexed system was demonstrated to have good

reproducibility. In this multiplexed system, a set of motor-controlled optics were used monitor

multiple reactors without scaling the cost for optics. The setup for optical measurements,

especially the function generators, data switches, and lock-in amplifier were too expensive to

replicate for each reactor.

One major problem of the motor-controlled system was that the scanning/reading speed for

individual reactor limited the number of parallel reactions. It took about 2 minutes to obtain

readings of OD, pH, and DO from each microbioreactor. Given the measurement intervals of 10

(or 20) minutes, this limits the scale of parallelization to 5 (or 9) microbioreactors. The

application of customer-built or commercial optical parts also makes the prototype expensive for

large scale multiplexing.

A new design of multiplex system without moving parts is illustrated in Figure 5-13. Each

reactor cassette in the multiplexed system, as described in Section 5-2-3, is equipped with a set

of optics for OD, pH, and DO measurements.
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Figure 5-13. (A) Illustration of single reactor setup, as well the multiplexed
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system discussed in Section 5-3. Channels A and Dare OD measurements, B for
pH measurement, and C for DO measurement. Commercial bundles of
photodetectors are used in all measurements. Channel B is shown as the current
reading channel. (B) Illustration of the new design for a multiplexed system
without moving parts. Different from the previous design, a high-frequency ND
D/A card (2 MHz, National Instruments) is required for sending discrete sinoidal
signals to LED's and receiving signals from photodetector. Phase-shift and
intensity information are analyzed by Labview@ software rather than by a lock-in
amplifier.

Inexpensive parts including the optical lenses (5 em in diameter, Thorlabs), optical fibers

(Thorlabs and Polymicro), the photodectors (Thorlabs) are applied in the system, and home-built

electronical amplifiers are used to reduce the cost of individual measurement setup. Expensive

parts, including optical filters and the high frequency AID D/A card for data acquisition and

control purposes, are shared by all parallel setups. Figure 5-14 shows a prototype of four LEDs

integrated by sharing one optical filter.

Aluminum shell

Fiber housing Spacers

Housings for LED

Connector
for LED

Figure 5-14. Photograph ofa home-made housing for four LEDs (only one LED
shown here) aligned with optical fibers (only one fiber shown) via mechanical
connectors (Thorlas~ Radio Shack) and through a shared optical filter (not shown).
The distances from LEDs to the filter and from the filter to lenses were optimized
and fixed by spacers to allow maximal light intensity received by optical fibers.
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5.5. Highlights and Future Opportunities

Different from previous chapters that focused on functionalities and controls of individual

microbioreactors and exploration of different applications in bioprocess developments, this

chapter aims to address issues of packaging and parallelization for high throughput data

acquisition, bringing the microbioreactor technology a step further to being widely applied in

bioprocess discovery and development.

The proposed approach is to separate the system into two parts: the bioreactor cassette, and

the external measurement and control system. The reactor cassette is a reactor system integrated

with all the technologies discussed in previous chapters, which make it applicable to batch, fed-

batch, and continuous culture operations. The building materials for the cassette are inexpensive,

and the fabrication process is compatible with large-scale manufacture. Most importantly, the

cassette interfaces with the external system seamlessly for both physical connection and data

acquisition. This advance was made possible by the invention and integration of optical and

fluidic connectors, as described in Section 5-2. Finally a pre-packed, clean cassette would

significantly reduce the mechanical complexity before and during biological experiments.

The key issue in developing multiplexed systems as prototypes for high-throughput

bioprocessing is to increase the extent of parallelization without scaling the number of

measurement instruments. In the first prototype a step motor was applied to use one set of optics

for four parallel batch microbioreactors. Fermentation data indicated healthy and expected cell

growth behavior with good reproducibility of the OD6oo, DO, and pH profiles. A second

prototype of multiplexed system was designed and fabricated to eliminate moving parts to allow

higher extent of integration and scaling. Parallel measurements and data analysis would be

directly controlled by the computer interfaced with a high-frequency data acquisition card.
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Figure 5-15 enVISIons a future parallel-operated microbioreactor system. The system is

composed of four parts. In the center of the system is the device chamber, which contains the

housing platform for microbioreactor cassettes. Fluidic connectors, or fluidic motherboards

(Perozziello et aI., 2006) connected with external reservoirs via microvalves and tubings, allow

fast setup of microbioreactors in the platform. For illustration purpose a platform with only four

reactors is shown in the figure. Optical fibers and connectors are fixed in the housing platform

allowing accesses to the reactor cassettes from bottom and top sides. These fibers are physically

connected with optical light sources (LEDs and filters, in the left hand side of the box, shown in

Figure 5-15) and detection units (optical filters, photodetectors, and amplifier circuits, in the

right hand side of the box, shown in Figure 5-15). Data are collected and sent to the computer.

The last part is the control box sitting at the bottom of the system. This box is integrated with

control functions, such as power supply, temperature, stir speeds, air pressure, air flow rate and

moisture, microfluidic feeding (via microvalves), and amplifying circuits. All these functions

are monitored and controlled by the front panel on the external face of the system.

In this bioreactor system, only the housing platform in the middle of the chamber is accessed

by end users. Analogous to photo spectrometers used in biological laboratories, the ideal

microbioreactor system should be fully-integrated and user-friendly.
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Figure 5-15. Envision of a multiplexed bioreactor system for high-throughput
bioprocess developments. Microbioreactor cassettes are shown to be placed in the
housing platform in the middle of system chamber. Thin dashed lines separate
different regions in the system. Dotted lines are used to illustrate fluidic
connections. Thick dashed lines indicate electronical cable connecting the
computer, data requisition card, photodetectors, and LED units. The thick solid
line at the right-hand side comer illustrates power supply for the system, and
shadow solid lines in the chamber indicate the optical fibers used for
measurements.
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Chapter 6. Conclusions and Recommendations for Future Work

6.1. Conclusions

This thesis has demonstrated the feasibility of cultivation of microbial cells in microliter-

volume bioreactors and of allowing flexible operations and effective controls for bioprocessing.

In Chapter Two, membrane-aerated and actively-mixed microbioreactors were designed and

fabricated out of PMMA and PDMS. Optical sensors were integrated to monitor the important

growth parameters optical density (OD), pH, and dissolved oxygen (DO) under conditions of

different medium and mixing/oxygenation. Reproduciblity was ensured and the batch

fermentations in the microbioreactor were benchmarked against conventional lab-scale

bioreactors to demonstrate the similarity in growth kinetics of bacteria at the two scales. Upon

the establishment of the reproducibility the microbioreactor was used for biological applications

such as global gene expression analysis of S. cerevisiae in culture media with different carbon

sources. Yeast cells grown in the microbioreactors exhibited physiological and molecular

characteristics which parallel those of large-scale cultures. With this ability to mirror

observations obtained in conventional systems coupled with reproducible growth, the small

reactor volumes, and the on-line measurements of DO, pH, and OD in microbioreactors fulfill

the fundamental requirements as a practical bioreactor.

Active mixing facilitates oxygenation in membrane-aerated bioreactors and more

importantly, together with external fluidics units it allows the microbioreactor to be operated in

continuous and fed-bath modes, which are very important operations for bioprocessing. In

Chapter Three, microchemostat, the continuous culture of microbial cells was made possible by

the integration of new approaches, including single-phase, pressure-driven medium feed at slow
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flow rates, local temperature control in the microbioreactor device, as well as the formation of a

PEG-grafted PAA copolymer films on both PMMA and PDMS surfaces. Steady state of E. coli

culture was obtained and sustained in the microchemostat with glucose as the only limiting

substrate for growth. Wall growth of bacterial cells in the microbioreactor, a common challenge

for microscale device, was significantly reduced by application of cell-resistant surface coatings,

even after a prolong period of time cell cultivation. Another important issue for continuous

flowing biodevices, bacterial chemotaxis and back growth were effectively inhibited by local

heating in the medium feeding channel. These advances enabled cell growth kinetics and

stoichiometry to be obtained in microchemostat consistent with phenomena reported for

conventional stirred-tank bioreactors, as indicated by the time profiles of OD, pH, and DO

measurements during steady states.

Chapter Four presented a microbioreactor system for the fed-batch cell culture. The

microbioreactor utilized water evaporation as a water exit for the microbioreactor and a

combination of active feeding of base and acid, and passive feeding of water. Feeds were

pressure-driven and closed-loop controlled by microvalves. The proportional-derivative

controller successfully maintained the pH value in the microbioreactor within a physiological

scale during the time course of E. coli cell cultivation in rich media. Extensions of cell growth

and significant improvements in biomass yield were observed in pH-controlled batch culture

experiments. Feedback control of glucose feeding using DO reading in the microbioreactor was

also demonstrated. These results demonstrated the concept of a fed-batch microbioreactor with

well-controlled environmental condition for cell cultivation.

As a practical, user-friendly platform that would meet the needs for high-throughput

bioprocess developments, the system was designed as two separate parts: disposable
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nlicrobioreactors preferably in the form of plastic cassettes, and a fixed housing including

expensive optical components and instruments. In Chapter Five microfluidic connectors and

PDMS microlens were presented and integrated in a microbioreactor cassette serving as "plug-

in-and-play" interfaces with external fluidic and optical instruments. These connectors not only

greatly simplified the setup procedure for the cassette but also helped to increase the accuracy

and reproducibility in measurements. Multiple layers of PMMA chips were thermally bonded

and a PDMS aeration membrane was embedded to make the cassette a disposable monolithic

device. For the second part of the platform, a step-motor controlled multiplexed system was

designed and demonstrated for parallel operations of four batch microbioreactor. Reproducible

growth kinetics comparable to bench top systems was obtained in this setup. Finally an

integrated bench scale microbioreactor platform for bioprocess development was proposed.

6.2. Outlook and Recommendations for Future Work

In the initial stages of this work, one of the major tasks was to decide how the

microbioreactor would meet the engineering standards for bioprocess developments. For

operations of batch, fed-batch, and continuous cell cultivations, the control over environmental

conditions is critical for allow flexibility. We believed that the flexibility in operations and

ability to monitor process variables would give the microbioreactor technology advantages over

simple assay bioreactors, such as 96-well microplate, and provide comparable performance to

conventional stir-tank bioreactors in bioprocessing.

With the completion of this thesis, we can begin to answer these questions. The results we

have presented demonstrate that in its current incarnation, the microbioreactor is a promising tool

for many applications bioprocess developments, such as on-line measurements of growth

kinetics, genome-wide expression analysis, pH control, and even continuous culture of bacterial

106



cells. We were assured by the reproducibility and comparable phenomena observed in the

microbioreactor behavior, as reflected by the measured growth parameters (OD, pH, and OD)

and benchmarked by conventional bioreactors.

On the other hand, the applicability of the microbioreactor in bioprocessing still need to be

further explored. To some extends this thesis focuses on proofs of concepts and the solutions we

proposed may not be the optimal answer to the question. Engineering optimizations are needed

to make the microbioreactor applicable for a wide range of operation conditions and different

types of microbial strains. For example, the geometry of the magnetic stir bar in the

microbioreactor can be optimized and machined in shaft-shape to improve mixing and

oxygenation.

The micro scale bioreactors were made to mimic the results from bench-scale reactors. The

design and fabrication of the microbioreactor benefited from the polymer microfabrication and

precision machining technologies. However, we were also limited by the availability of

fabrication technologies and utilities. Improvements can be made by applying the recent

advances of polymer technologies. Laser-ablation will make the microscale features as small as

5 J-lmin polymers; high speed air turbine milling machine with rotating speed of up to 50,000

rpm will yield better surface finishes in devices; hot-embossing technology will replicate

microdevices will better accuracy and reproducibility while give very smooth surfaces on

polymers. These technologies will allow more functionality to be added in the microbioreactor.

Another area we believe as the most important area in which future work can focus is the

further integration of multiplexed system for parallel operation of multiple microbioreactors. We

have developed and presented a prototype system with limited extends of integration using four

parallel microbioreactors to prove the concepts. Further integration of the system will allow
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autonomous operation of multiple (> 4) microbioreactors with seamless interfaces. This is

necessary to obtain economies of scale for the obtaining cost advantages of microbioreactors and

will greatly increase the throughput for biological applications. We designed a first version of

such a future bench-scale microbioreactor platform. Concerted multidisciplinary efforts will be

needed to make instnlmented, multiplexed microreactors common tools in bioprocess

engIneenng.
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APPENDIX A. Fabrication of Microbioreactor Devices

The fabrication procedures for the microbioreactor devices are presented in this appendix.

A.I. Fabrication ofPMMA Device using CNC Milling Machine

Building material, PMMA sheets were purchased from MSC Industrial Supply, Co. and

Goodfellow Corp. Sheets were cut using a table saw into chips (4"x 1.4"), and Bridgeport CNC

milling machines in Edgerton Machine Shop (MIT) were used for the fabrication of PMMA

devices.

As the first step, a large piece of polycarbonate was clamped and fixed on the CNC machine

as a milling base. A fly cutter with cutting diameter of 2 inches was used to cut a shadow groove

into the polycarbonate base and to define the flat bottom and sharp side edge (Y-dimension) for

PMMA chips. Double-side tape (3M, MN, USA) was used to fix PMMA chips in the shadow

groove. By carefully selecting chips with uniform thickness, this setup procedure kept the

PMMA chip horizontal. Edges (in X- and V-dimensions) ofPMMA chips were defined by an

edge-finder and a comor of the chip is set as (0, 0) in coordinates. The Z coordinate was defined

by step-feeding rotating endmill in vertical direction until it touches the top surface of the chip.

Alternatively, PMMA chips could be fixed directly onto machine bench by threaded bolts, if

more permanent setup were allowed.

During milling, the machine bench moved in three-axis (X, Y, and Z), together with rotating

endmill, allowing material to be removed and formation of a 3-dimensional structure. Endmill

rotational speed of 3000 rpm, which was the fastest limit for this CNC machine, was applied

when small endmills (less than 3mm in diameter) were used. Water-based coolant was applied

during milling to prvent PMMA devices from melting. Cutting with higher speed is preferred for
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(0, 0) .......----------- ......

fast fabrication and smooth finish surface. However, a high-speed CNC motor and air-cooling

system was not available.

The device shown in Figure 3.1 (the middle layer) is used here to demonstrate the fabrication

process. The whole process takes 7 steps, as illustrated in Figure A-I.

Step 1 1'::'\ .
... ~ 1====[DJ _

2

3
o

o

[JIJ

o

4 o

5 o D_rool_lD
6

7

~ ...................•
•..................
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~ .
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D_f"1XIl_lD
D_rDOJ_lD

Figure A-I. Fabrication steps for PMMA device, top VIew and crosssection.
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Note the dimensions in the crossscection figures are not to scale.

Step 1 and 2 in Figure A-I shows the fabrication of reactor chamber. A four-flute, 5/32"-

diameter endmill was used to cut a 1 mm-deep circular pocket in the chip. A PMMA post was

formed by a second circular cut in Step 2. Program prarmeters for in Step 1 and 2 are listed as

following (all length units are in inches):

Step 1 Step 2

Cutting mode 1 0

Diameter of endmill 0.1562 0.1562

X Center 2 2

Y Center 0.7 0.7

Z Clearance 0.01 0.01

Z Cut (second round) 0.05 0.046

Z Cut (first round) 0.046 0.04

Cutting radius 0.207 0.0263

Clearance 0.005 0.005

Feed spead (first round, in/min) 5 5

Feed spead (second round, in/min) 0.2

In Step 3 a four-flute, 1/16"-diameter endmill was used to cut 0.4 mm-deep pockets in the

chip. Bench movements in this step were controlled manually by using a "Jog" function.

Recesses to accommodate pH and DO sensors were machined in Step 4 with the following

program prarmeters:

Cutting mode

Step 4(1) Step 4(2)

1
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Diameter of endmill 0.0625 0.1562

X Center 1.947 1.947

Y Center 0.792 0.608

Z Clearance 0.01 0.01

Z Cut (second round) 0.062 0.062

Z Cut (first round) 0.058 0.058

Cutting radius 0.04 0.04

Clearance 0.04 0.04

Feed spead (first round, in/min) 1 1

Feed spead (second round, in/min) 0.05 0.05

In Step 5, through holes with diameters of 0.024" and 0.0135" were machined by small drills

(#73 and #80, respectively) using a manual operated microchuck. 0.024" holes were used to

accommondate stainless steel fluidic connectors, as explained in Chapter Three. 0.0135" holes

were used to connect microchannels on the other side of the chip.

In Step 6, a small endmill with 0.01" in diameter was used to fabricate microchannels with

dimensions of 250Jlmx250Jlm. Program prarmeters are listed as following. Notice the chip

needs to be detached from the base and the setup procedure needs to be repeated before

machining the other side of the chip.

Step 6(1) (2) (3) (4) (5) (6)

Diameter of endmill 0.01 0.01 0.01 0.01 0.01 0.01

X Center 1.5 1.6 2.5 2.4 0.5 3.5

Y Center 0.78 0.62 0.62 0.78 0.62 0.78

Z Clearance 0.01 0.01 0.01 0.01 0.01 0.01
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Z Cut (second round) 0.02 0.02 0.02 0.02 0.02 0.02

Z Cut (first round) 0.016 0.016 0.016 0.016 0.016 0.016

Cutting distance 0.335 0.235 0.335 0.235 1.13 1.13

Clearance 0.005 0.005 0.005 0.005 0.005 0.005

Cutting angle 0 0 180 180 0 180

Feed spead (in/min) 1.5 1.5 1.5 1.5 1.5 1.5

In Step 7, through holes with 1/8" diameter are drilled using manual "Jog" functions.

PMMA chips are detached and cleaned using hexane.

A.2. Thermal Bonding of PMMA Device

Thermal bonding of PMMA devices was performed in a home-made mechanical press, as

shown in Figure A-2. In this press, PMMA chips were placed between two pieces of glass (1" in

thickness, 5" in diameter) in an aluminum chamber to obtain a clean and transparent surface after

bonding and to distribute pressure evenly across chips. The press used one pair (or more pairs)

of Belleville disc springs (diameter: 119.0 mm; thickness: 1.25 mm; height: 2.80 mm. MSC

Industry Supplier) to control pressue. Belleville spring with this specific height/thickness ratio

has a remarable feature of allowing large extend of deflection with a load of 50 lb force (Shigley

and Mischke, 2001). This feature is especially useful for thermal bonding applications, in which

thermal expansion, retraction, and volume deformation occurs during heating, cooling, and

bonding processes under constant pressure (100 lb force or proportionally higher), respectively.

After the press chamber was sealed by six bolts on the edge, force was exerted by screwing in a

large bolt in the center. The large bolt was locked at the bottom by a nut and an inside-threaded

housing, and it transforms the screw force into compression force, which was uniformly

distributed by a thrust-balI-grooved bearing (MSC).
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Figure A-2. (a) Cross-section and (b) picture of home-made mechanical press for
thermal bonding of polymer devices.
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Fabricated PMMA chips for bonding were first rinsed with ethanol and dried by nitrogen gas.

Chips of different layers were carefully aligned by 3/32" -diameter pins and compressed together

by the mechanical press until slight deformation could be seen in the Belleville springs. The

press was then placed in the oven and heated for 1 hour. PMMA sheets purchased from different

surplies and had different Tg, thus requiring different bonding temperatures of 120°C (purchased

from MSC) and 140°C (purchased from Goodfellow), respectively.

A.3. Spin-Coating PDMS Membrane

PDMS (Sylgard 184, Dow) membrane with 100 Jlm thickness was spin-coated (WS-400B,

Laurell Technologies Corporation, North Whales, PA) on silicon wafers with spin speed of 1250

rpm and spin time of 25 seconds. Before coating native silicon wafers were silanized by

tridecafluoro-l, 1,2,2-tetrahydrooctyl-l-triethoxysilane (CAS# 51851-37-7, United Chemical

Technologies, Inc., Bristol, PA) to prevent the permanent bonding of silicon oxide surface to

PDMS. PDMS were mixed with 10:1 ratio and de-gased in vaccum for 30 minutes before

coating. Bulk PDMS were cut and placed onto the partially cured PDMS thin films to form a

native bonding. Post-coating bake took 2 hours at 70°C.
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APPENDIX B. Dimensions of Microbioreactor Device

The details of the microbioreactor device discussed in Appendix A are presented in this

appendix. Note the numbers are inches.

(1)0.024

c1)O.125

I • 0.5 _ i ...
I_ 0.9

1.5 -I

1.5 0.5
I. 4 -,I,-0.414

-II

P I~Rc
053

Figure B-1. Dimensions of the microbioreactor device discussed in Appendix A.
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