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THE ORBIT OF THE MOON

by
Martin A. Slade, III

Submitted to the Department of Earth and Planetary
Sciences in September 1971, in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

ABSTRACT

The position of the moon is calculated very precisely
by numerically integrating the equations of motion. The
initial conditions for the integration, along with various
other parameters, are estimated from observations of the
moon which include

a) meridian transits
b) Surveyor spacecraft tracking data
c) radar observations

The expression for the force on the moon in the equations of
motion includes parameters characterizing the following
small perturbations:

a) a general relativistic effect - the '"geodesic
precession"

b) tidal friction in the earth-moon system

c) a possible time variation of the gravitational
coupling constant G

Estimation of these parameters from the lunar observations in
combination with radar and optical observations of the inner
planets leads to the following conclusions. The tidal
interaction effect on the moon's mean motion n, is not
determined uniquely from this data set due to gorrelations
with the variations in the earth's rotation rate and the pos-
sible variation in the gravitational constant. Upper limits
can be placed on these variations, however, as follows:



dnq
dt

< 33 seconds of arc/century2

dG

IEl < 6x10” 11 G/year

The geodesic precession is found to be (1.5 + 0.6) seconds of
arc/century, compared with the theoretical value from General
Relativity of 1.92 seconds of arc/century.

Thesis Supervisor: Irwin I. Shapiro
Professor of ° '
Geophysics and
Physics



CHAPTER I.

Introduction

Predictions of the position of the moon as a function
of time have been attempted by man since the earliest known
cultures. With the rise of modern science, observations of
the lunar motion provided impetus for the development of
Newton's theory of gravitation, as well as for several con-
vincing tests of it. The theory of the motion of the moon
was the rationale behind much mathematical work in the 18th
and 19th centuries, notably by Euler, Laplace, and Poisson.
The analytical theory for the iuﬁar éphemeris incorporated
in today's national almanacs (developed for navigational
purposes) is due to G.W. Hill (1884). This theory was fully
developed by E.W. Brown (1910), with recent revisions by
W.J. Eckert (1966).

The space program has provided a new challenge to im-
prove the accuracy of the lunar ephemeris for the traditional
purpose of celestiél navigation (in a more literal sense).
The gravitational theories of Einstein and others have sup-
plied sound scientific reasons for desiring more accurate
tests of predictions for the positions of solar system
bodies. At the same time very sensitive data types such as
planetary radar ranging, spacecraft tracking data, and laser

ranging have become available. The development of the



modern electronic computer has been essential to the improve-
ment of the calculations, both in quality and quantity, ne-
cessary for these purposes.

This thesis describes an effort to develop the theory
of the lunar ephemeris to the point that the predicted effects
of the following very small perturbations might be reliably

distinguished in the complicated motion of the moon:

a) the general relativistic correction to the
Newtonian gravitational interaction (''geodesic
precession'),

b) the earth-moon interaction due to frictionally
delayed tides,

c) a possible time variation in the gravitational

coupling constant G.

A very accurate lunar ephemeris is also desired to satisfy

the stringent prediction requirements necessary for suc-
cessful laser ranging to the corner reflectors left by the
Apollo missions. For all these purposes we generate the lunar
ephemeris by numerical integration of the equations of motion
in rectangular coordinates. We then rigorously calculate the
values for the observables from the theory. The free param-
eters in the‘theory, such as initial conditions and the

parameters characterizing the perturbations of scientific



interest, are then estimated from the observations simul-
taneously.

Chapter II describes the model for the various forces
that are included in the equations of motion. The lunar
position and velocity as functions of time derived from
the equations of motion can then be used to compute theoreti-
cal values for the observable quantities. The details of
the calculation for the different types of observables are
given in Chapter III. Chapter IV outlines the numerical
techniques used, including the method of numerical integra-
tion applied to the equations of motion. Chapter V describes
the "maximum likelihood" algorithm used to extract the param-
eter estimate from the (redundant) data set. Chapters VI
and VII are devoted to a description and discussion of the
various solutions obtained. Possible directions for future
work are briefly indicated.

The extensive calculations necessary for this thesis were
performed within the structure of a computer program called
the Planetary Ephemeris Program (PEP), which has been devel-
oped over the past seven years at M.I.T.'s Lincoln Laboratory
primarily by Michael E. Ash, Irwin I. Shapiro, and William B.
Smith. PEP is a very general program able to treat many types

of astronomical observations. In the following chapters only



those features of the program relevant to the processing of
lunar data will be discussed in detail.

One result of this work is a best-fitting ephemeris
plus the (integrated) partial derivatives with respect to
initial conditions and other parameters (See Section II.E) as
functions of time. The latter quantities enable the
ephemeris to be improved as more data types are added and/or
more data collected. The usefulness of this ephemeris does
not depend upon the validity of the purely scientific con-
clusions reached herein. In fact intermediate ephemerides
produced during this work have been used successfully at Hay-
stack Observatory for lunar radar mapping purposes, and have
also been used for laser ranging prediction by groups at the
Air Force Cambridge Research Laboratory, the Smithsonian

Astrophysical Observatory, and the French Laser Group.



CHAPTER II

Theoretical Model for the Lunar Motion

A. Coordinate System

The basic theoretical framework underlying the calcu-
lation of the ephemeris used in the parameter estimation
process to be described below (Chapter V) has been outlined
previously by Ash, Shapiro, and Smith (1967). The right-
handed coordinate system chosen has its origin at the New-
tonian center of mass (barycenter) of the solar system with
the axis directions defined by the mean equinox (x-axis) and
equator (plane normal to the z-axis) of 1950.0. This system
is assumed to be inertial; the axis directions are approxi-
mately those of the FK4 stellar system (Fricke and Kopff,
1963). The difference in orientation with respect to the
FK4 catalogue at 1950.0 (as represented by the U.S. Naval Ob-
servatory lunar meridian circle observations reduced to the
FK4) is explicitly estimated (see Section III.B below). Al-

though the ephemeris is calculated in inertial space, the vari-
ous kinds of observations are obtained in coordinate systemnms
that, in general, are rotating with respect to inertial space

(and not necessarily as rigid bodies). This problem is dealt

with in Section II.C.

The physical units are chosen to agree as much as possible

with conventional astronomical practice. The mass of the



sun Mg is set equal to unity. The unit of time chosen is

the atomic time (A.1) second. The A.1 second is defined

25 state

1/2
of cesium-133 between the hyperfine levels (F=4, mp=0)<«>

by setting the transition frequency Va3 of the

(F=3,mF=0) at zero magnetic field to the precise value

. (Markowitz et al., 1958):

Vg3 = 9,192,631,770 cycles/A.1 second.

The unit of length is the astronomical unit (A.U.), speci-

fied by defining

3
0.01720209895 (A.U.)2(A.1 sec) !

VNG

86,400

where G is the gravitational constant. An epoch t, is

associated with G because we may wish to solve for a time-

variation which some cosmological theories have suggested as
occurring in G. The appropriate epoch is the epoch of the de-

termination of the initial conditions for the planets.

B.1 Time and Earth Rotation

The equations of motion for the solar system bodies are
functions of an independent variable which we call coordi-

nate time (C.T.). Atomic time, A.1l, is related to C.T. in



a theory-dependent manner. We choose to identify A.1 as a

time with a uniform (but not identical) rate with respect to
proper time for a terrestrial observer in the context of
general relativity. The rate and origin of coordinate time are

chosen to be

C.T. = A.1 + 32315 + D(t) + Y(t) + M(t) +...

The terms D(t), etc. are small periodic terms from the theory
which average to zero; they are not observable for any of

the work reported here. Unlike Ephemeris time* (E.T.),

the coordinate time here does not depend upon the equinox

to which the lunar ephemeris is referred.

The unit of time in the numerical integrations is the
C.T. day. The C.T. second is %szﬁﬁ of a C.T. day. The
C.T. second can be considered equal to the A.1 second with
negligible error for our applications.

Atomic time, and thus coordinate time, is related to
universal time (U.T.1l.) by measurements of the U.S. Naval
Observatory. U.T.1 is the universal time appropriate for
determining the orientation of the earth in inertial space;

using Newcomb's relation between U.T.1l and sidereal time

* See the Explanatory Supplement, Section III.D



[see the Explanatory Supplement to the Ephemeris, Section
II1.B.3]. The differences between atomic time and U.T.1 are
very irregular; a more uniform universal time, U.T.2, can be
derived by removing the so-called ''seasonal variations"

(see below). Atomic time and U.T.2 differ by unpredictable
variations in the rotation rate of the earth. The generic
term commonly applied to these differences is AT, although
this term strictly applies to the difference between
Ephemeris Time (E.T,) and U.T.1l. The variations were ten-
tatively identified during the early twentieth century by

a number of investigators, and demonstrated to be variations
in the earth's rotation by Spencer Jones (1939). The currently

accepted values for E.T. - U.T. come from the classic work

6f Bfouwer (1952) fof the years 1621 to 1948.5, and from the
U.S. Naval Obsérvatory for later times. |
The geophysical explanation for AT is uncertain, but
the variations seem to be related to the fluctuations in
flow at the core-mantle boundary, as first suggested by
Bullard et al. (1950). According to their model, changes
in the length of day should cause opposite and proportional
changes in the geomagnetic westward drift. A very high
correlation (v0.93) between such changes has apparently been
found by Ball et al. (1968) for a lag time between the change
in rotation period and the change in drift of seven years.

This time lag is consistent with the expected lag for

10



propagation of the magnetic disturbance through a mantle

thickness of conductivity n 5x10°°

e.m.u., a plausible average
value (Vestine and Kahle, 1968). The explanation ébove for
the physical origin of AT, however, still lacks general ac-
ceptance.

Published records of the differences between atomic
time and universal time exist only from 1955 onward. Pre-
vious to 1955, the differences between coordinate time and
U.T.2 must be derived from the data along with the other un-
known quantities. The model for this variation was chosen
after examination of accurate recent data for A.1. - U.T.2
[Markowitz, 1970], as well as of Brouwer's results. The
adopted model assumes that AT changes at a uniform rate for
several years at a time. The intervals over which the slope
of AT vs. time remains constant can be chosen to be irregular
in length, but we have chosen almost all to have nominal
lengths of 4 years. This spacing appears more than suffi-
ciently small since, for eXample, in the period 1925-1968,
significant changes in slope of E.T. - U.T.1 occurred at
intervals of 14, 12, 12, and 5 years (Klock and Scott,

1970). |

The parameters in our model are the values of AT' = C.T.
~ U.T.2 at the beginnings of successive 4-year intervals.
(Since atomic time is only an intermediate quantity in the

relation to C,T., it is unnecessary here.) As a boundary

11



condition we have the defined difference A.1. + 32.15 - U.T.2
in 1955. The model is described graphically in Figure 1.
The value of C.T. - U.T.2 at the time t; at the beginning
of the interval (t;,t;, ;) is y;. We see that the value of

AT' as a function of time t 1is given by

(y:-vy:_4)
Y + 1i-1 (t-t. ;) for t. < t < t.
i-1 T?;ngfIT i-1 i-1 — " = "i

AT' (t) =

y. + (yi+1_yi) (t-t.) for t. <t < t
i (ti+1-tii i i— " = i+l

The partial derivatives necessary to estimate the parameters

y; are given by

0 t< t1-1
t-t,
1-1 t, . <t <t
iti—ti_li i-1 - - = 71
DAT' _
oy .
’ S
T Tt ) f 2t 2t
0 t> 44

12



Thus the adopted model for C.T. - U.T.2 is composed of con-
tinuous piecewise linear expressions in time over pre-specified
time intervals. The a priori values of y; were taken from the
smoothed values of Brouwer, and are given in Table 1. We ac-
cept the values from the U.S. Naval Observatory for A.1.+32.15
-U.T.2 from 1955 to the present, and then work backward in
time to derive AT'. This approach takes advantage of the
higher accuracy of recent observations -- a philosophy fol-

lowed everywhere possible in our approach.

The seasonal variations AS.V. between U.T.1 and U.T.2
are necessary to complete the relation C.T. - U.T.1. These
periodic variations have been accurately determined from
the variations in latitude as measured by the Bureau Inter-
national de 1'Heure (B.I.H.), and are thought to have their
origin in motions of oceanic and atmospheric masses (Munk and
MacDonald, 1960). In our model, we have allowed for a
possible linear change with time in the amplitudes of the
variations, which change might be caused by long-term climatic
changes with consequent changes in global weather patterns.

The model has the analytic expression
AS.V. = (a1+b1T)cos S + (a2+b2T)sin S

+(c1+d1T)cos 2S + (c2+d2T)sin 2S

13



n AT' Julian Day Interval
(seconds) Number
Days Years
0. 31.3669 2435490 1295 3.546
1. 30.2900 2434195 1461 4.000
2. 28.1500 2432734 1461 4.000
3. 26.0800 2431273 1461 4.000
4, 24,3000 2429812 1461 4,000
5. 23.5800 2428351 1461 4,000
6. 23.5000 2426890 1461 4,000
7. 22.9200 2425429 1461 4.000
8. 22.2900 2423968 1461 4.000
9. 20.4800 2422507 1461 4.000
10. 17.3700 2421046 1461 4.000
11. 12.9500 2419585 1461 4.000
12. 7.5100 2418124 1461 4,000
13. 1.8000 2416663 1461 4,000
14, -3.7900 2415202 1461 4.000
15. -7.1900 2413741 1461 4.000
16 -8.0400 2412280 1461 4.000
17. -7.5800 2410819 1461 4,000
18. -8.0700 2409358 1461 4.000
19. -8.1400 2407897 1461 4.000
20. -7.6700 2406436 1461 4,000
21. -4.4800 2404975 1461 4.000
22. 0.2000 2403514 1461 4,000
23. 2.2600 2402053 1461 4.000
24 . 3.3200 2400592 1461 4,000
25. 3.4600 2399131 1461 4.000
26 2.9000 2397670 1461 4.000
27. 2.1200 2396209 1461 4,000
28. 1.1300 2394748 1461 4.000
29. -0.0600 2393287 1461 4,000
30. -0.0400 2391826 1461 4.000
31. 1.4900 2390365 1461 4,000
32, 2.3700 2388904 1461 4,000
33. 3.4900 2387443 1461 4.000
34, 5.3200 2385982 1461 4.000
35. 5.0400 2384521 1461 4.000
36. 4.7600 2383060 1461 4.000
37. 5.0000 2381599 1461 4.000
38. 5.4000 2380138 1461 4,000
Table 1. AT' = (C.T. - U.T.2) Values at Given Dates

(Brouwer, 1952)

14




n AT Julian Day Interval
(seconds) Number

Days Years
39. 5.8000 2378677 1461 4.000
40. 6.4250 2377216 1461 4.000
41. 7.0500 2375755 1461 4,000
42, 7.6750 2374294 1461 4.000
43, 8.3000 2372833 1461 4.000
44, 7.3300 2371372 1461 4,000
45. 6.3600 2369911 1461 4.000
46. 5.3900 2368450 1461 4,000
47. 4.4200 2366989 1461 4.000
48, 3.4500 2365528 1461 4,000
49. 2.4800 2364067 1461 4,000
50. 1.5100 2362606 1461 4,000
51. -0.0874 2360200 2406 6.587

Table 1. (Continued) AT' = (C.T. - U.T.2) Values at Given

Dates (Brouwer, 1952).

15




where S = 27T, and T is time in years of 365.2421988 days
from Jan 1, 1962, 0 hrs U.T.2. The nominal values for the

parameters (Guinot and Feissel, 1969) are

a; = +0.022 sec.
a2 = -0.012 sec.
c1 = -0.006 sec.

C, = +0.007 sec.

In computing theoretical values for observations of the
moon, we must derive the positions of the earth-based obser-
ving sites in our inertial reference frame. A site position
is composed of the vector sum of the position of the center
of mass of the earth relative to the solar system barycenter
and vector position of the site relative to the center of mass
of the earth. In computing the latter position in our pro-

~gram, we assume that the motion of the earth about its center

16



of mass is known except for the modifications discussed in
Section II.C.2 below. The formulation of the rotation of

the earth is taken from the expressions in the Explanatory

Supplement to the American Ephemeris and Nautical Almanac;

the implementation in the program is outlined in this section.
Applying this information about the rotation of the earth
to the vector position of the site as seen in a frame fixed
to the earth's crust, together with the time relations of
Section B, yields the position of the site at any time rela-
tive to the inertial frame.

The nominal values for the coordinates of the optical

observatories in body-fixed coordinates have been taken

from standard sources such as the American Ephemeris

and Nautical Almanac. The positions of the Deep Space

Network stations of the Jet Propulsion Laboratory (referred

to the mean north pole and Greenwich meridian of 1900-05)

were taken from Melbourne et al., 1968. These nominal values
are listed in Table 2; since meridian observations are reported
as if they were made from the center of mass of the earth,

only the site longitude is necessary to calculate theoreti-

cal values for this observable. The effect of errors in

the reduction to geocentric values will be examined in Chap-

ter III, Section A. For the Surveyor doppler observations,

17



Table 2

Nominal Positions

Site name

HAYSTACK
MILLSTON
ARECIBO
85JPLVNS
11DSPION*
12DSECHO*
14DSMARS*
41DSWOOM*
. 42DSCANB*
. 51DSJOHA*®
. 61DSMADR*
62DSCEBR*
. AFLASER¥*
6USNAVAL
S8USNAVAL
9USNAVAL
. MUSNAVAL
CAPETOWN
. GRENWICH
. CAMBRIDG
. RADCLIFF
. OTTAWA

. PARIS

. TOULOUSE
. NICE

. BESANCON
. UCCLE
GTOKYO

. STRASBRG
. BERLIN

. EDINBRG

WOONIAAUT AN

Radius (km)

6368.551653028
6368.563831130
6376.560245971
6372.177000000
5206.350322378
5212.050800000
5203.997400000
5450.197800000
5205.361028200
5742.938000000
4862.604400000
4860.811400000
5391.827000000

for Observing Sites

Geocentric

Longitude (deg) Latitude (deg)

71.
71.
66.
116.
116.
-243.
-243.
-136.
-148.
-27.
-355.

4886666667
4913888889
7530277778
7940075000
8497745987
1946300000
1105900000
8875900000
9809579880
6854600000
7510900000
6322900000
7244167000

.0660375000
.0655416667
.0654625000
.0655416667
.4765833333
.0

.0947916652
.2516666667
.7164583200
.3371249980
.4624999600
.3004166650

9892499600

.3582083333
.5407500000
.7683333333
.1066666667
.1833333333

3673.
3665.
3677.
-3302.
-3674.
-2768.
4114.
4116.
3400.6790000000

42.
42.
18.
35.

4315183830
4256609690
2287613852
0665981000
7851760000
6468000000
0630000000
3262000000
6129890000
7193000000
8518000000
9660000000

*Cylindrical Coordinates [equatorial radius (km), longitude

(deg), z(km)]

18



the relevant body-fixed cooordinates were in the set of
solved-for parameters. These results will be described
in Chapter VII.

The transformation from earth body-fixed coordinates T

to inertial coordinates Tc) 0(t) is given by

Tsp.o(t) = U g

where

W, F, N, and P are matrices described below, and the super-
script T denotes transpose. The time t is asso;iated with
Isy.o because a constant vector in the (left-handed) body-
fixed frame (pole and Greenwich meridian of 1900-05 conven-
tionally is a function of time in the inertial coordinates. P
is the precession matrix, transforming from coordinates refer-
red to the earth's mean equator and equinox of 1950.0 to co-
ordinates referred to the mean equator and equinox of date.
This matrix will be discussed in more detail below. N is the
nutation matrix, transforming from coordinates referred to

mean equinox and equator of date to coordinates referred to the

19



true equinox and true equator of date:

1 -AY cos € -Ay sin €]
N = Ay cos € 1 ~Ag
| Ay sin € Ae 1 i

where Ay is the nutation in longitude, Ae is the nutation
in obliquity, and e is the obliquity of the ecliptic.

Ay and Ae were taken from series in the Explanatory Sup-

plement. The matrix F rotates the coordinates referred to
the true equinox and equator of date into the body-fixed

frame of date:

" cos 6 sin © 0 ]
F = | -sin 6 cos © 0
o 0 1]

where 6 is the apparent sidereal time. The wobble matrix
W transforms from the right-handed body-fixed frame of date

to the left-handed frame of 1900-05 by accounting for polar

*Explanatory Supplement, 3B.2

2N



motion:

1 0
0 -1
| -2 u

H

where A and p are the components of the angular position of

the instantaneous pole at the time t in the 1900-05 frame,

with A measured along the meridian toward Greenwich and p

along the meridian 90° to the west of Greenwich.

The precession matrix mentioned above is

P = cos Eocos W sin 2z

=

in which

-
cos Eocos W CcOoS 2z

-sin Eosin z

e e e e e e e e e e e e e e

+sin Eocos z

e wn e e e e e e e em e e

cos Eosin w

the angles are

-sin Eocos W COS z

R R e e e T T e

-sin Eocos w sin z

e wm e e S o e e e o e

21
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+Ccos EOCOS Z

given by

-sin w cos z T

- - = v e -

L e I ey

Cos wW




_ : 2 . 3
£, = 23047948T + 0U302TC, + OU0179T],
z = 2304"948T,. + 1"093T.2 + 070192T>

' 50 ' 50 ' 50
- 1 _ " 2 _ 1 3
w = 20041255T., - 0U426T¢, - 010416T;,

where T50 is the time t measured in tropical centuries of
36524.21988 days measured from 1950.0 (J.E.D. 2433282.423).
These angles have the following significance. Suppose we
wish to relate coordinates at some initial epoch ty to co-
ordinates at a later epoch t. The angle 90°-§0 is the right
ascension of the ascending node of the equator at t on the
initial equator at ty> measured from the equinox at ty- The
angle 90° + z is the right ascension of the node from the
equinox at t. The angle w is the inclination of the equator
at t with respect to the initial equator at ty. To make the
transformation from the initial system to the final system,
we must perform rotations of: &g about the original polar
axis; +w about the new y axis; and -~z about the new polar

axis. These expressions are due to Simon Newcomb (1895).

B.2 Possible Errors in Observational Coordinate-System Motion

The accuracy of Newcomb's prescription for relating

22



astronomical coordinate systems at different epochs must be
very good since no corrections larger than relative motions
of approximately one second of arc per century have been
found in a variety of investigations [e.g., Fricke, 1967b
(FK4 stars); Clemence, 1966 (inner planets)]. We will dis-
cuss the numerical values found by Fricke (1967a, 1967b) in
Appendix 1. We assume that the observations can be regarded
as reduced to a reference frame rotating uniformly with angu-
lar velocity ® with respect to the inertial frame. The mag-
nitude of w is expected to be small (|w| < 1" century'l) so
that the apparent acceleration due to this rotation is a

small perturbation. For a planet at a position ?p with velo-

-
city Vp, the apparent acceleration is
> > > > > >
Aa = Z(wxvp) - wX(wxrp)

The system of differential equations for the partial deriv-
atives with respect to the components of @ is needed to

solve for these quantities and is quite simple:

->
Vv
d oF, _ %%
dt (553) - awj

23



.

A%
d - _h > i > > > A
ge G = OV 0@y 8 <)

h coordinate axis direc-

where Gj is a unit vector in the jt
tion.

The Coriolis term -23X§p will dominate for all bodies
in the solar system since ﬁp >> (QX?p). We could include
this force in the integration of the equations of motion.

A slightly different approach has been used with the
computer program, since we wished to avoid integrating the
variational equations above. We have approximated the effect

of the rotation by multiplying the precession matrix P by

another matrix A, where A is given by

- P

1 wzTsy ~w,Tgy
&= |~esT5g 1 w1750
w,Teg ~wyTgy 1

so that A is orthogonal if we can neglect terms of order
(wiwj). To this order, the matrix procedure is equivalent
to integrating the equations of motion with the additional

acceleration as described above (see Appendix 2).
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Some confusion exists in recent literature (Eckert,
1965; Baierlein, 1967) on a point related to the discussion
above. The observability of the effect of geodesic precession
on the motion of the moon has been questioned, since geodesic
precession also affects the rotation of the earth. The algo-
rithm for estimating ® described above answers, in practice,
any questions about the effects of observing the moon from a
rotating (non-inertial) platform -- the earth. In principle,
the geodesic precessional effects on earth rotation and on the
motion of the moon can both be measured with respect to iner-
tial spacé. (As a simple example, consider a synchronous sa-
tellite in orbit about the earth. The orbit of the satellite
can be accurately determined by comparison with the star
background, even through the motion of the satellite relative
to the earth observer is very small.) A solution for geodesic
precession and A together with the associated formal errors
will settle the question of observability. With sufficiently

accurate data, the effectswill both be determinable.

C. Rotation of the Moon

The rotation of the moon about its center of mass is also

regarded as perfectly known for the processing of the data
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types treated in this thesis. The selenocentric coordinate
system which we use has its origin at the center of mass of
the moon, the z-axis along the axis of rotation of the moon,
the x-axis in the mean direction of the earth, and the y-axis
completing the right-hand system. We assume that these co-
ordinate axes are also principal axes of inertia. Now let R
be the coordinates of the center of mass of the moon rela-
tive to the center of mass of the earth in the inertial
coordinates in which we integrate the equations of motion.
Let r be the coordinates of the center of mass of the earth
relative to the center of mass of the moon in the seleno-
centric system described above. Then the desired relation-

ship for describing the rotation of the moon is given by

where B is the orthogonal matrix formed from

in which P is the precession matrik, with V given by
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<
m
o

0s € i
cos 0 sin ¢,

0 -sin EO cos EO

ad ol

where €, is the obliquity at 1950.0, and with L having

elements
Iyp = cos Y cos ¢ - sin ¢ sin ¢ cos O
i = sin Y cos ¢ + cos P sin ¢ cos B

%13 = -sin ¢ sin 6

L1 T "cOs Y sin ¢ - sin y cos ¢ cos B

Lgg = -sin ¢ sin ¢ + cos P cos ¢ cos O

~COS ¢ sin B

™
I

37 cos ¢ sin 8

27



233 = cos ©

(See M.E. Ash [1965a], Appendix B). This particular combina-
tion of matrices is only chosen for convenience. The preces-
sion matrix, for example, appears only because the angles in
I are referred to the coordinates of date.

The angles used to express the elements of £ can be
defined as follows. Let ( be the mean longitude of the
Moon; measured in the ecliptic from the mean equinox of date
to the mean ascending node of the lunar orbit and then along
the orbit. Let & be the longitude of the mean ascending node
of the lunar orbit on the ecliptic measured from the mean
equinox of date. Finally, let I be the inclination of the
mean lunar equator to the ecliptic. Then the angles ¥, 6,

¢ are (Koziel, 1962)

Y= Q + 0
O =1+ p
¢ = 180° + ((-Q)+(71-0)

where 0, p and T are the physical librations in node, inclina-
tion, and longitude, respectively.
We now determine the quantities on the right hand side of
First, the inclination of the mean lunar equator on

the ecliptic is (Koziel, 1962)
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1°32'20" = 1953889

—
L}

0.0268587 radian

Next, according to the Explanatory Supplement, p. 107, we

have

£ = 2592183275 - 0°052953922d

+ 19557 x 101232 + 500 x 1072043

112250889 + 13°922935044904

a
:
D
n

~2°407 x 1071232 - 101 x 1072043

where d is the number of days that have elapsed from J.E.D.
2415020.0. Finally, the physical libration of the Moon is
given by Koziel as
T = -12V9 sin & - 0V3 sin 28 + 652 sin &'
+9V7 sin (2F-28) + 1V4 sin (2F-2D) + 2V5 sin (D-1)
-0v6 sin (2D-22+4') - 7V3 sin (2D-21%)

-3V0 sin (2D-%) - 0Y4 sin 2D + 7V6 sin Q;
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p = ~106" cos & + 35"cos(2F-2)-11""cos 2F

-3"cos (2F-2D) - 2'"cos(2D-2%) ;

I(t-0) = 108"sin & - 35"sin(2F-%) + 11"sin 2F

+3"sin (2F-2D) + 2"sin (2D-%)

where I is measured in radians, and where the arguments

2, &', F and D are given in the Explanatory Supplement
s g P

as functions of time. The relations between the arguments

%, &', F and D, and the arguments g, g', w and w' of Koziel

are given by

L =g g =2

&= g g' =&
D=g'-g'+w - w' w=F- &
F=g+uw w' =F -D - &'

The subsequent revision by Koziel (1967) of his results,
and further work on the physical libration by D. Eckhardt (1970)

have been examined in the context of our types of observations.
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These newer results are found to have negligible effect on
7, p, and o for the data in this thesis. The lunar laser
ranging data, of course, necessitate the incorporation of an

improved libration model.

D. Equations of Motion

D.1 Newtonian terms

D.1l.a. Definitions and Notation

The basic equations for the motion of the moon about
the earth in inertial coordinates are dominated by the New-
tonian centers of mass interactions with the earth and sun.
Smaller perturbing forces are due to the Newtonian centers
of mass interactions with the other 8 planets. Still other
perturbing forces are designated as EE and EM acting on the
earth and moon, respectively. _

Let the subscript E denote the earth, M the moon, and
j(i=1,2,...8) the,jth perturbing planet. The vector

positions of the earth relative to the sun are given by

>
XE' The coordinates of the moon relative to the sun are

h

->
Xy» and the coordinates of the jt planet relative to the

>
sun are Xj' Further we define

X =X - X Xou = X, - X
Xvg = Xy - Xg iM = A5 T
- > >
X:o = X - X

JE j E
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_ ->
g = Xl
_ ->
v = Xyl
>
rip = IXjEI , etc.

The mass of the earth is M the moon's mass is MM’ and

E,
Mj the mass of the jth perturbing planet. Newton's laws of

motion and gravity then give

a%x X X 8 X
E _ _ E ME jE, ., 1 2

w7 ~GMy 3 + GMy 3 +G.§1(Mj 3 ) + M Fp
E ME JE

a%x X X 8 X

—Moem, Moo, ME gy o, My 1 E

102 6 3 B3 UL V3 My M
M ME iM

->
The equations of motion for Xyp are obtained by subtraction:

ThE L g MM e p Ly, Az 1 3
2 (C] M 3 M M M, 'E
dt O] TME M E
where
X. X
. E M
D GMG(:S— ;3)
E M
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-> >

> 9 M. X. X.
= _J M _ TjE
P=0Mg| I g (=3 7 )
j=1 "0 Tiym T R

J#3 J J

Table 3 1lists the masses used in this expression for
the numerical integrations. The positions of the planets
were obtained from ephemerides supplied on magnetic tape

by M\E. Ash (private communication).

The additional effects represeﬁfed by inclusion of the

->
term (l— Fy - l—? ) are:
MM M M"E

+ . . -
Q - the acceleration due to the harmonics higher
than the central force term in the expansion

of the earth's gravitational potential

>

H - the acceleration due to higher harmonics in
the moon's gravitational potential

’). - - - -

R - the acceleration due to general relativistic
effects

+ . -

T - acceleration due to tidal friction in the earth-

moon system

->
V - acceleration due to a time variation in the gravita-

tional constant G.
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Table 3

Reciprocal Planetary Masses as Used in
Moon Numerical Integrations

(Not all digits are significant)

Mo
PLANET (M;E;;g;——)
Mercury 6,031,916.0
Venus 408,522.0
Earth + Moon 328,900.1
Mars 3,098,700.0
Jupiter 1,047.4
Saturn 3,499.0
Uranus 22,900.0
Neptune 19,400.0
Pluto 4,000,000.0
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The well known accelerations Q and N will be discussed

first.

D.1.b Harmonics of the Earth's Gravitational Potential

The gravitational potential U of the earth can be ex-
panded in spherical harmonics as
GM o

E ag. :
U(r,$,2) = -~ —— [1 - ZZJn(—r—) P (sin ¢)
n: .

n _ .
P, (sin ¢){c£mcos mA+s , sin mA}]

I
+ ()
2=2 m=1 T
where r is the distance from the center of mass of the earth;
$,X are the geocentric latitude and longitude, ap is the

equatorial radius of the earth, and the Legendre functions

are those given by, e.g., Hildebrand (1948) as

n
Pn(z) = lﬁ— é—ﬁ (22-1)n ; n=20,1,2,...
2'n! dz
£
d"P_(z)
2.%/2
Pnz(z) = (1-z7) / —E;%—-—-; 2= 0,1,2,...n

The earth rotates on its axis in ~24 hours. Compared

35



with the 27 % day period of the moon, the temporal varia-
tion of the earth's field is very rapid (as viewed from
inertial space). Therefore let us average the potential over

the longitude A, as follows

.1 2
ﬁﬁ U(r,q),)t)d}\

We see immediately that the double summation term vanishes,

U(r, 9

and we are left with

' GM.. © ap n
Oer,9) = ~ ==+ — zancyﬁa P, (sin ¢)
n=

The first term is the center of mass potential, which we must
exclude to find the perturbation.

We can relate the geocentric coordinates r,¢ to the
inertial coordinates using the matrices from Section II.C.1l.
Let us first construct rectangular geocentric coordinates.
The z'-axis by definition is normal to the true equator of
date; since we have averaged over A, we are free to choose

the x'-axis along the true equinox of date:

x' T cos ¢ cos A!

y' =1 cos ¢ sin A’

N
I

T sin ¢
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where 5' is "longitude" from the equinox of date. Let G
be a position vector in a geocentric coordinate system with
axis directions parallel to the axis directions of the in-
ertial coordinate system. Then E = (x',y',z') and G describe

the same point if they are related by

E=NPG=AG

where the nutation matrix N and the precession matrix P

were described above.

Suppose the moon were located at G = §ME in inertial

coordinates (r = ryp = |G|). Then
3
2! . 1
L= sin ¢y = =— ) Az, Xyg)
T Mo Typ o571 3% ~ME“ o

We are now in a position to calculate 6. The force on the

moon due to the earth's potential is

The force exerted on the earth by the moon is the negative of
‘the force exerted by the earth on the moon. We can compute

(from these forces) the perturbing acceleration
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by ke
My E

The explicit expression for 6 is given below after a brief
discussion of an approXimation made as follows.

In the programming of 6, the summation in the po-
tential has been terminated at n = 3. To estimate the
effects of neglecting J4, the secular rates of change of
the osculating orbital elements can be calculated from
Lagrange's planetary equations. Using Groves' (1960)
results for the effects of zonal gravitational harmonics,

and a value for J4 = -1,6 x 10'6

, we find that the only
secular changes are in the ascending node Q, the perigee

w, and the mean anomaly %, at the epbch to

4

Q: 5 x 10 " "/century

wi-4.6 x 107 "/century
. ' -7 "

Lot -2 x 10 /century

The rate of change of the semi-major axis truly vanishes.
The variation in eccentricity ig proportional to sin 2w, with
amplitude of 27; $maller than (%) by sinzi. The inclina-
tion variation is also proportional to sin 2w, and is smaller

by ezsin i. These changes appear to be completely
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-
unobservable. The expression for Q that is programmed is

therefore
>
Mg (Mg+My)  a Xy
> ® E - E
Q = rZV M, {(?ﬁﬁ) J [ 7— sin ¢M ) 3R 51n¢M]
ME

_).

+-—)J[———(
( Ty T 7— sin ¢M 7— 51nQM)

53(%5 sin2¢M - %)]}
where
63 = [(ﬂ)gl’ QA)SZ’ Cé)33]

The values used for J2 and J3 were obtained from earth

satellite observations. They are (Kozai, 1969)

o
1

, = 1.082639 x 1073

-6

o
i

-2.565 x 10

with

[}

aE 6378.166 meters

and

GM; = 3.986011765 x 10° km>/sec. .
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D.l1.c Interaction of the Moon's Nonspherical Gravitational

Potential with the Earth

>
Let L be the force on the center of mass of the earth

due to the moon's gravitational potential. The center of
mass of the earth, in selenocentric coordinates, is located

at

X = -B XME
where zME is the position of the center of mass of the moon
relative to the center of mass of the earth in our inertial
coordinate system used in the numerical integration, and B
is the orthogonal matrix defined, along with our seleno-
centric coordinates, in Chapter II, Section C. Let U be the
gravitational potential of the moon, found by integration

of the potential due to the mass elements du(%') located

. s >
at selenocentric positions x'. Then we have
\

Ux,y,z) - = J/)fjf dp (x")

vol.of [(x-x") %+ (y-y ") 2r (z-21) 21172
moon

The force on the center of mass of the earth is

-+ >
L = ~MEVU
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where Mp 1s the mass of the earth.
The potential U can be expanded in spherical harmonics

as follows

GM o

U(r,6,L) Me T T s (cose)E (1))
r,0, = - — [1- — cos

TME n=2 m=0 ‘Mg D™ nm
where

fnm(L) = Com €OS (mL) + Sm sin (mL)

where MM is the mass of the moon, Rm is the mean radius of
the moon, TME is the radial separation between the centers
of mass, and (6,L) describe the angular location of the

center of mass of the earth in selenocentric coordinates:

3 (Xyg)
sin 8 cos L = - z B12 L
2=1""" T™ME
3 (Xyg)
sin o sin = .73, —*%
2=1 ME
g (XME)Q
cos 6 = - B.
g=17%  Tyg
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In our numerical integrations, we have included only terms
through n=2 in the potential. The effects of the third order
terms are approximately one-third of the direct effect due to
the fourth harmonic in the earth's gravitational field, which
was shown to be ignorable in the preceeding section. The re-
sulting potential can be simplified further by using the as-
sumption that the axes of our selenocentric system coincide

with the principal axes of inertia, that is

]
=i
N
il
o

(I, *I.)
c. = . X 1., - XX YV
20 M RZ yAA 2
M™m
€22 ° _’l—_f [1,,- xx]
amRr_“ Y
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to express our results in terms of the moments of inertia.
The force on the moon is minus the force on the earth, so
dividing by the masses and subtracting the accelerations

gives the acceleration of the moon relative to the earth:

>
d = oM (Mg+My) (Eg )Z{CIyy_Ixx) [XME
0 22 M ™E M RZ T™E

ME O mm

3
(7> D2-3)-30,8,)

(I, Ixx) iME 15 2 3 >
ME 13 p . 3y-a,E.])

T a2 7
M_R ME
where
3
Dy = L By (Nyp)
B; = {Bjy> Bjps Bjsl

(See M.E. Ash (1965a) for a more complete derivation.)

An important restriction on the parameters GMy and Rm
should be recognized in connection with the values of 50
and Cype The value of Rm is conventional; that is, a value
is assumed and must always be used in formulae such as above

in connection with the related values of S50 and Coo- The



value of GMy was solved for from the Lunar Orbiter data; the

value appropriate to the values for 20 and Cy2 below 1is
4902.87 kn>/sec (with the value for c fixed at 299792.5
km/sec). The appropriate value of R is 1738 km. One must
not treat GMM + RM as variables for any partial deriva-
tives that might be taken. GMM, of course, can still be
estimated from the center of mass effects.

The values for 50 and 57 used in the numerical inte-
gration were average values from analyses of Lunar Orbiter
data (Michael et al., 1969; Lorell, 1970; Laing and Liu,
1971). They were

4

50 -2.022 x 10~

5

sz = 2.286 X 10

The uncertainties in these numbérs and their effect on our
results will be discussed below. The values for the other
second-degree coefficients give information about the re-
lationship between the principal axes of inertia and the body
axes of the moon. Forming and diagonalizing the inertia matrix
constructed from the second-degree coefficients and using

an assumed value of (IZZ-IXX)/'IZz = 6.29 x 10'4, Michael

et al. (1969) find that the principal axes are displaced
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by less than two degrees from the body axes. This result
gives credibility to the assumption that the two sets of

axes coincide.

nd

How do uncertainties in these values of the 2 harmonics

affect the secular motions of the node (dQ«) and perigee
(dﬂ“)? From the equations given by Eckert (1965), we can

calculate the following sensitivities to A(dq,) and A(dﬂq)

about our nominal values:

—(f . 4
-A(dﬂq =(6.,95x10 Acyp

5 sec of arc
~1.39%10% Acy,) century

with

dQe = -17V3 (:entury"1

for the values of 0 and czz‘given above, and

4

A(dmg) = £0.39%10" Ac,,

sec of arc

5
+0.41 x10 Asz) century
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with

dwq = 17 century -1

From the formal errors of the various solutions, reasonable
uncertainties appear to be

6

Ac, . = Ac 3 x 10

20 22

These values yield (worst case) uncertainties of 0V5 cen'cury-1
in 4%y and 0V1 cen’cury“1 in dﬂq, compared with the relativ-
istic effect of 2"/century. In retrospect, the partial
derivatives for these quantites probably should have been
integrated. These partials could be produced, and the
differential adjustments due to refinements of values for

G0 and cyo could then be made to the position and velocities.
Another possibility would be to reintegrate with improved values
for 50 and C,,, then to recompute the theoretical values and
solve for a new consistent set of initial conditions from the
new normal equations. Of course, a better, but currently
impractical, method would be to process Lunar Orbiter data

simultaneously with our data set in order to
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solve for the moon's gravitational potential. The effect

of the uncertainty in these harmonic coefficients on our
results could be at the level of 10 - 20% of the geodesic
precession. We will return to the uncertainties in 0 and

c,p at an appropriate place in discussing the final conclusions.

D.2 General Relativistic Corrections

The additional perturbing force on the moon E due to
effects of general relativity is computed via the post-
Newtonian approximation. All formulae in this discussion
follow the development and notation of Weinberg (1972),
Chapter 9. In harmonic coordinates the appropriate line

element is

2 2

ds = 8po - Zgio

axtat —4gijdiidxj

where the components of the metric tensor are

~1-2(¢*) ~202-29

800 ~©
Bij = 83572004
gio g1
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In the above equations, ¢, ¥, and_% are potentials derived

v
from the energy-momentum tensor THY:

¢ (X,t)

0
offfads DGR
%%

3, 200 o 2:s .
e = of ffEx %G, oG,

For a collection of mass points mo, with coordinate position

ﬁ.
fn and velocities Vn(t), the elements of the energy momentum

tensor are

0
00 _ 3,> >
"7 = ] m 87 (x-x)
n
200 _ -> + 1 >2 “3(+-§ )
T " = g m [¢(x)) + 5 v 187 (x-x
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i0 _ i3, 2>
TV =} mnvn6 (x-xn)
n
2..
™! = I m v 63(x X )
n
n

where the notation T is explained in Appendix ‘3.
The equation of motion for a particle in this gravita-

tional field is

_).

= Vor2elen) - 22

M
+
=
Ie—

VX(VXE)+4V (V V)q>-v V(b

Coordinate time t and proper time T are related by
d 1 >2,2 2 22 >2
T=1+0-330 - 3@edH% 4 9F 4y BT+ @

We will express the equation of motion in terms of the quan-

tities defined in Section II.D and the definitions

> -
s Xy > . dXg s dxME
M~ dE E - 3T ME ~ Tdt

> -»> -> > -> \-;
X, takes on values Xy and Xg; v equals Vy or Vg.

By excluding the term -V¢ since we are interested only in

the relativistic perturbation, we compute the accelerations
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d2§M/dt2 and dziE/dtZ

Subtracting, we find

22> > > 5(»
R = g - GM [XM £, - o £, - ME ¢
a2 olxf - < £ - = £
T T T
M E ME
rel
> >
M 1 E 1
Y2 £ - & z £5
M E
where 7 +7
. 1M+ Gy 4G 7 Gy GV
1 r C7 T C2 Tr CZ Cz
M ME B
AGM +GM.  4GM.+ L GM.  GM V2
e o JMgrGMyp - AGMyr g GMp Gy Vg
Z T Cz T C2 T CZ ZZ
E ME M
1
o z(zgﬁ ) Mw)(ZGMw+GhE . AGHH Gy, 4G G
3 W 2 r C? 2
TMEC M E€
M. M. V2 M. M. V2 M
ey Do e D ek
o ® c 0] 0O ¢ 0] 0]
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> 2
L3 Oete) | s (Vy *Xg)
z W) 22 Iy Ll
ME ME
> > )—(> >
L1y G Xe) |1 P e )
7 Mg — 37 )
T C T (&)
E M
> > > >
_ MYy o2, e My Vv R
£ 5 ) Gyt S e g )
Ty ME o Mo ME
> >
Mo, M ™ o2 VE, | AuE
S G EHEDGE)
o Mo Tmp ME
> > > >
X v

->

M M, T X \'
- Gt 4D RS, B
(0] 0 ME ME

Note that all factors of G and C are explicitly present

above, and that the fi are dimensionless. [See Tausner (1966)

51



for a derivation of the equations of motion from a La-
grangian point of view.]

This acceleration has been implemented in the program
with an adjustable constant ) multiplying it. Thus, X = 0
corresponds to pure Newtonian interaction and ) = 1 implies
general relativity is correct.® The partial BE/BX is simply
the equation for ﬁ above.

The addition of this force to the central force will

produce an evolution in time of the osculating orbital

*Determining the parameter ) is equivalent [Weinberg, 1972]

to determining the combination Ziz%lﬁ where y and B are

parameters in the Eddington-Robertson harmonic coordinate

metric
2 MG M2 G2 2
ds [1 =~ T o + (Y -1 + 28) _RZ_ + ] dt

-[ (o - Y)%g + ...](§'d§)2/R2

where o = 1 by definition of mass.
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elements. In order to verify the proper coding of these
equations in PEP, the following procedure was adopted. An
integration of the moon's orbit was carried out with no
forces acting between the earth and moon except for the
central force and general relativity. For comparison, an
integration with only the central forces was done. The
positions and velocities were converted to osculating ellip-
tic elements. The differences from the values of the ele-
ments at epoch were then found by subtraction. These dif-
ferences for the central force only are plotted in Figure 2.
The oscillations and secular trends in this figure are due
solely to the build-up of error terms in the numerical inte-
~gration which was done with a step size of 1/4 day (as op-
posed to the actual ephemeris calculations which were with a
step size of 1/8 day).

The behavior of the differences of the orbital elements
from those at epoch for general relativity is shown in

Figure 3. For our data set, the observable effect caused
by this force is a rotation of the moon's orbit with respect
to inertial space. The orbital angular momentum is shown

in Appendix 3 to precess with angular velocity

3->—>

1 2>
= -7 VXE - 7 VxVé

Iy
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The major possible contributions are from

L.
0] Ty

26 3
£y = 53 ()
™

where

. . 1.
3> i jo
J =~/& X'e... X T
( K)G,@ ijkte,e 0,0

[See Appendix 3].

The precession angular velocity is there-
fore given with sufficient accuracy by

¥

(# v ) (x ; ) x (+ Jo)
Xy g X Xy e X Xyrp (Xp g ®

_ MM ME™ "ME ME‘“ME “ &
= 3GM@ 2r3 +3GME-—7£?§———— + 3G

>
G
r3 T
M ME ME ME
> > >
, Gy Jg) eI
*36xy—s -3
Ty ™M
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For the moon's orbit, only the first term is greater than a
few hundredths of a second of arc per century. This term,
the geodesic precession, is approximately Z seconds of arc
per century.* The geodesic term was first discussed by
De Sitter (1916).

Let us compute more exactly the magnitude of this term.
The moon moves about the sun in the orbit of the earth-moon
barycenter if we average over times of about a month. The
earth-moon barycenter orbit is approximately elliptical and

can be described by the standard formula

L :
1+e cos (0-60)

I‘B—

where L is the semi-latus-rectum and e the eccentricity.

-.i
)
—

The value of fo§M is of magnitude VIMyG . The result for

is found to satisfy

g

= 36My /MGG /& V1-e” [1-e cos (6-8,)]°

4]
Q

Zas(l—ez)3

1794 [1-3e cos (6- 90)]
per century

where = signifies an average over a time scale shorter than

about a month,

*The analogue of the advance of a planet's perihelion (v43"/
century for Mercury) -- one of the classical tests of general

relativity -- is quite negligible for the moon moving about
the earth: 0Y06 per century.
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Examining the graph in Figure 3 for the evolution of the
right ascension of the ascending node of the lunar orbit on
the ecliptic we see small monthly oscillations; an annual
oscillation of amplitude n Ovl/century; and a secular trend
of 1"94/century as expected. Reliably verifying this secular
contribution in the observations of the moon would consti-
tute a verification of the predictions of equation 5 in

Appendix 3, and is one of the goals of this thesis.

We now come to the formulation of the more controver-
sial forces in the earth-moon system: tidal friction and

the effect of a time-varying gravitational constant.

D.3.a. Effects of Tidal Friction on the Moon

A quadratic term in time in the mean longitude of
the moon -- unaccounted for in any purely gravitational theory--
was found first by Halley soon after Newton developed his
lunar theory. The value for the amplitude of this term
that is incorporated into the national ephemerides was
derived by Spencer Jones (1932). Although the formal error
found by Spencer Jones is small, recent treatment by Van
Flandern (1970) of stellar occultations by the moon have

increased the suspicion of many workers that a large correction
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may be necessary to the amplitude of this effect.

The qualitative explanation for the origin of the
quadratic term in the mean longitude is tidal friction. A
simple heuristic model for the torques in the earth-moon
system due to the (frictionally delayed) lunar tides on the
earth was developed by MacDonald (1964), as follows. He
assumes that the lunar disturbing potential produces a sec-
ond harmonic distortion of the earth, with a magnitude
proportional to the Love number K,. This tide, however,
does not exhibit maximum values directly under the moon.
The tide is carried to an angle § ahead of the moon by the
re lative angular velocity of the earth and moon because of
frictional delay.

The potential external to the earth at a time t is then

5
M, R
U=-— MM? 57 KoPa (B
Ty (V) Tyg (t-3)

where & is the zenith angle of the moon, TME is the distance
of the moon from the earth, n is the mean lunar motion, R@
is the mean earth radius, and G the gravitational constant.
This potential produces an acceleration on the moon
acting in the direction of motion of the tidal bulge of

magnitude
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sin (26)

5

‘ 1 aUI _ 3GMyRg «
T T, . o7 3 3

=46 ZrME(t)rME(t* ﬁ)

2
The extra lunar potential due to the tidal deformation
of the moon by the earth is
255

) GM R qu

My (6)
where we have assumed that the tidal lag angle for the moon

is zero. This treatment of the lunar potential is correct

over the short time (200 yrs).of our observations since the
only perceptible effect is the main effect, i.e., tidal fric-
tion in the earth. The radial component of the acceleration

on the moon is then

P
R =-
BI‘ME (U + Uq)

5
GMMRG

3 S
rME(t)rME(t_ﬁ)

2K M
2 (e ) (-R-) }

3 :
R=-5 K, {3 cos?s-1 +

i 3A 57— {3 cos

TMeTME (t-5)

2

1

§-1+D}

To express the other accelerations explicitly, let us
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set up the following coordinate system: take the z" axis
along the moon's orbital angular velocity vector #, and the
x'" axis along the line of intersection of the earth's equa-
torial plane and the orbital plane of the moon, the line of
nodes. (See Figure 4.) The earth's aiis of rotation is then
in the y"-z" plane. The angular velocity of the earth, 5,

and a unit vector to the moon, i, have components

oY
I

(0, @ sin €, Q cos €)

(cosé', sin¢'; 0 )

o>
n

in this coordinate system (where the angles are defined in
Figure 4). Note also that n = [ﬁ]. As seen in inertial
space, this coordinate system will undergo small oscilla-
tions of 18.6 year period about the mean position of the
coordinate axes. This effect is due to the regression of
the line of nodes on the ecliptic. In addition, the
coordinate system also partakes of the general precession.
Both of these effects are small enough so that the for-
ces calculated in this frame differ from those calculated
in an inertial frame by a negligible amount for the
purpose of calculating tidal-friction effects.

A unit vector along the direction of motion of the

earth's tidal bulge in the coordinate system of Figure 4 is
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> > A
5 = (2- n)xu
> > A

| (@-n)xu]|

The unit vector b has components

(2 cos e-n)

5 = [- (Q cos €-n)

90 sin ¢', QO cos ¢' ,
_f s;n €  cos 6]
0
where Q, = I(ﬁ?ﬁ)xal. The average acceleration normal to the
orbit plane is
W =-(.‘_[l‘_ —g—% )g.lg
ME £=8

and the average acceleration in the orbit plane is given by

1 alJ n . A
S = —(FI\-EE € Jbe(-1 sin ¢' + j cos ¢')

£=6

Since these accelerations are only approximate, we will

ignore the very small difference between rME(t) and rME(t-g). We

define a new constant A'=(A/a)7 where a is the semi-major
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axis of the moon's orbit, and also define C(rME) = (a/rME)7.

Then

2

R = -A'C(rME){S cos“§-1+D}
S = A'C(rME)sin (28){(9 cos e-n)/ﬂo}
W = -A'C(ryp)sin (26) SR £ cos ¢

0

- and € is defined by

ol g
N3

COS € =

D
o]

Assuming qu = K, for the earth in the absence of any other
information, MacDonald finds that D = 1.33,

If these results are to be considered reasonable, it
should be possible to account for the astronomically observed

acceleration of the moon with a small value for the param-

eter 26. The torque on the moon is given by
-> . -> ->
Te = *ue™¥

where

; = Mm{(R cos ¢'-S sinv¢')§+(R sin ¢'+S cos ¢')3+W ﬁ}
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or
-> ~

T«= Mm(rMEW sin ¢'1 -rMEW cos'¢'j-+rMES k)

The torque averaged over a lunar orbit is then

- ~ N
Ta-av = Mm (—rMEW cos ¢' j + rMES k)

The astronomical determinations of earth-moon tidal fric-
tion from solar eclipses have recently been reviewed by Newton
(1969). He finds that the rate of change of the mean motion
of the moon as given by studies of past solar eclipses is

best represented by

n=-022.0 + 1.1+ (3.3 + 1.2)'T+(0.114_+_0.059)T2
(arc-seconds)/(century)2

where T is time in centuries from 1900.0. The present

value is -20.0"/(century)2, not very different from the esti-
mate of Spencer Jones(1939) of 22?44/(century)2.\\We can re-
late the torque to the rate of change of the mean motion as

follows:
->

2

=14

v —= . d 2 _ da .
TQ-aV 5 MmrMES.- HE(Mma n) = ZMﬂFn T +Mma n
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But from Kepler's law,

2 .3
n” a” ~ G(ME+Mm)

or

1
()

$ 0% -
Therefore,

or

2.
n

=y
ST
|

1
= -3 Mpa

(-av

Using equation (60) of MacDonald (1964);

gcos § e

ZMmAq'F(q)sin 268

4
9/2 }

3.3 2
Mr,.,S = {1+(3+5cos §)e”+
mIME a0 (1-02) 2%2

" where
412
-q

2 n 2 2
sin“e/[(cos € - g) +sin“g]

el
I

and F(q) is the complete elliptic integral of the first kind,
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Newton's result can be expressed in terms of a value for the
lag angle:

sin 26 = 0.0687 - 0.01T - 0.0004T2

where T is centuries from 1900.0. The parameters sj chosen

to be adjusted are sin 26 = Sl+SZT+53T The numerical value

17

of A' is about 1.88 x 10 km/seczm or,

A' = 9.37 x 10710

A.U./(day)2

Assuming that the result for sin 26 is physically
meaningful, we may interpret it in terms of a quality
factor Q for the earth by the relationship given by Kaula

(1969, p. 673):

tan 26

|
A=

The value for Q from above is then n13.. The detailed mecha-
nisms for the dissipation of the energy in the tides are un-
known. Seismological studies of the mantle (Anderson and
Kovach, 1964; Press, 1966) and laboratory studies of granite
(Knopoff and MacDonald, 1958) suggest a lower bound on Q

of a few hundred. At the diurnal frequency of n107° Hz, the

values of Q for the mantle range from Q = 100 for the upper
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400 km, to Q = 2000 for the lower mantle. The value of Q

for the oceans, on the other hand, has been estimated (Munk

5 Hz. Another

and MacDonald, 1960) as approiimately 3 at 10
source of information on the Q of the earth is the variation
6f lafitﬁde or ”Chandlér WObble”. If we accept the inter-
pretation of the broadening of the spectral peak centered at
the Chandler frequency as due to damping, then the relaxa-

tion time TR of the wobble is related (Munk and MacDonald,

1960) to Q by

Rudnick (1956) found TR = 11 years which corresponds to a

Q of 30; Jeffreys (1968) believes that the evidence favors
T > 30 years, or Q > 80. The period Tc of the motion
(TC¢434 days) may make this Q irrelevant for the question
of tidal friction however. Thus determination of a credible
value of sin 26 would be an important constraint on the

theories of energy dissipation in the earth.

D.3.b. Other Effects of Tidal Friction

The torque due to tidal friction on the earth's spin
angular momentum should cause the spin of the earth to be

decreasing. However, the study by Newton (1969) has indicated
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that no clear evidence of such an effect can be found. If
true, an acceleration of the earth's spin, due to non-tidal
forces, must then be contributing

Q ~ +23 x 107° Q/century

at present. The model for the relationship between uni-
versal time and coordinate time described in Section II.B
should reflect a constant © by a secular trend in the solu-
tion for AT'.

Another variety of tidal interaction is the one between
the earth's orbital motion and the solar tides. The solar
tides raised on the earth can be shown to cause a negligible
effect on the orbital motion of the earth, as follows. From

Kepler's law, we showed above that

\

Pt
= 2
My2q
and the similar expression for the change in the mean orbital

motion of the earth is

A o - 0]
® — M a2
E"0
Therefore
o 2
® _ ;g 3 T
U 2 T,
n(I E a0 ‘G
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Since the periods of the solar and lunar tides are not very

-different, we can assume that the value for sin 285 will be

roughly that of the moon. Then we have

2 2

T M

q ®
7= (0=%)/(—¢)=>5.1

T@ aq ag

We obtain then

The solar tides raised on the earth will have no secular
effect on the orbital motion of the moon, since their period
'is not commensurate with the lunar tides on the earth, caus-
ing the net torque to average to zero.

Goldreich (1964) investigated the long-term effects in
the earth-moon system, using two models for the tidal ef-
fects. The first model was just that of part 3.a above; the
second was a more elaborate mocdel from Kaula (1964) taking
solar tides and lunar-solar precession into account. The
results of these two calculations were almost identical. The
formulae presented in Section D.2 above appear to represent
the only effect in the earth-moon system due to tidal fric-

tion that we need model in our equations.
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These formulae were inserted into the program, and a
numerical integration was carried out with only the earth-
moon central force and the force due to tidal friction af-
fecting the motion. The résulting evolution in time of the
osculating orbital elements is shown in Figure 5 as the
differences in the elements from their initial values. The
rates of time variation of the elements are compared in
Table 4 with the corresponding values as calculated by
MacDonald (1967) and Kaula (1964). The good agreement
lends confidence to the belief that the model is programmed
correctly. Further details on programming of the tidal
friction model, together with the partial derivatives with re-
spect to sin 28, are given in Appendix 4.

D.4. Time Varying Gravitational Constant

Many theories of gravitational interaction other than
that of Einstein have been proposed on various philosophical
grounds [e.g.; Dirac, 1937; Brans and Dicke, 1961; Isham,
Salam, and Strathdee, 1971]. A common feature of many theories
is a predicted time variation in the coupling constant G. What
is the prediéted magnitude of this variation? In Dirac's |

cosmology, a specific prediction is made (see Weinberg,

1972
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Table 4

Time Variation of Orbital Elements under

the Influence of Tidal Friction

Element MacDonald Kaula This work
semi-
major +3.2 cm/yr +3.4 cm/yr +3.3 cm/yr
axis
eccen- +0.72x10" 1 41, 2x107 11 +1.09x10 11
tricity yr-l Yr—l yr_l
inclina- ~6.2x10 10 -5.2x10" 10 -8.21x10 10
tion °/yr °/yr °/yr
node 0 0 +5.84x107°
(0.002'"/century)
perigee +2.8x1077 not cal- +3.2x1077
°/yr culated °/yr
(v0.1"/century)
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s

t ] -

- = -3H,
present

where H, is the Hubble constant, currently thought to have
10

a value 10~ years. The Brans-Dicke theory gives a rate
of decrease of between 4><10—13yr‘1 (qy = 0.01,0 = 6) and
2x10-11yr'1(q0 =1, w = 6) for "reasonable" values of the

deceleration parameter qq and the scalar coupling constant
(Weinberg, 1972).

The best ekperimental upper limit on the current value
of G comes from an analysis of radar observations of the

inner planets (Shapiro et al., 1971):

sl < 4 x 1071071

present

The existence of the atomic time scale during these measure-
ments makes the determination of Shapiro et al. independent
of the variations in the earth's rotation rate.

The model for the perturbing force due to G in our
program consists of an ad hoc parameterization: the quantity

GM® in the equations of motion is replaced by
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(6g) g * 1S (@) 1oy (£-t)

where the coordinate time ty is an arbitrary epoch at which
the quantities are evaluated. The interpretation of d(GM

d(GMO)/dt as a variation in G is quite unambiguous to the

level of m10'14G, since one can easily estimate that dMg/dt

N -10'14M0 yr'l(e,g., Brandt, 1970, p. 188; also see Dessler,

—

1967).

The implementation of this effect in the program was
checked in a manner similar to that used for relativity and
tidal friction. The central force plus a time variation in
GMg was allowed (the mass ratios Mj/M0 are assumed to be
absolute constants in time ). The evolution in time of the
osculating orbital elements was computed; the differences
from the values at spoch are plotted in Figure 6. The theo-

retical values corresponding to the case plotted can be

estimated as follows:

Let:
(ME+MM) _ _ . .
(GM@) ——ME)"— =W E uy tw (t*tl)

where t is measured from the epoch of integration, Mo is the

value at the epoch t = 0. ty is the epoch for I also mea-

sured from the integration epoch. tl is not equal to zero
due to a programming oversight in this calculation. In the

case plotted, ty = 520 days. The disturbing function is

radial and is equal to
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where TME is the earth-moon distance. The equations for the
behavior of the osculating elliptic elements as functions of

time (Danby, 1962) are for this special case:

&
i

[¢)]
™
(%]
Js
=]
H
~’
~

IT - (%)1/2(sin f)R

1/2
It -5 (%) (cos f)R

[aN
€
—

do _ 3n _ da , 1/2 (1«e2‘)1/2
"z tat” (%) e (1-e cos f)

[cos f-e(1+sin2f)]R
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with the definition

= a(l-ez)

ja]
n

2_ y
S §
a

The variations from the initial values of the elements will
be small, so the initial values; designated by subscript
0, can be used on the right hand side of these equations.
Let us also approximate the equations by ignoring e2
and higher powers of eccentricity.

. Consider the equation for da/dt first

da u

It ° “ZnOaO ﬂb eo(sin f)(t—tl)

y X A 2
~ -ZnOaO %0 eO(t—tl)[31n M + Ze sin M cos M+0(e®)]

.
(e

' . 2
~ -2n0a0 (t—tl)e051n M+ 0(e”)

'.Cfl‘!: 3

~ —2n0aO (t-tl)eo sin (nt-.o)

where

g = 1 tperigee

Integrating from 0 to t, we have
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eb{[cos gg- (sin go)(not-notl)]sin n,t

2a .

0 u
a:a—.—._._..._
0 ng ¥y

+[cos go(notl-not)—sin go]cos not}

At the epoch, the term not1 is very large, so that inserting
1, ey=0.05, a, = 2.6x10 A.U.,

= SX10—11years'

the values ﬁ/ﬁo

we find
i
~ ZeO 0

la-a, |
0%o0 —

‘ -14
aotlcos g5 1.3 x 10 A.U.

0

0 should be 'i,4><10'11

=

Now we note that de/dt=((1ne2)/2ae)da/dt, so that the ampli-
tude of the e oscillation at t . Also
we have

de
dt

dw 1
dt| = e
The w oscillation will therefore be 90° out of phase with

the variation in . a, and will have amplitude

~ 4X10_8Vdegree.
t=0

Iw'wol
These predictions are confirmed by inspection of Figure
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E. Variational Equations

In order to estimate the parameters in our theory from
the data, we must have theoretical expressions for the par-
tial derivatives of the observable quantities with respect
to the parameters. Many partial derivatives of the ob-
servables are constructed, via the chain rule for partial
derivatives, from the partial derivatives of position and/or
velocity with respect to the parameters (together, of course,
with the explicit dependences of the observables on position,
velocity, and time). A system of differential equations
for the partials of position and velocity, called the varia-
tional equations, can be constructed.

The set of equations for the earth-moon relative posi-

> -> :
tion XME and velocity VME’ from section D, are

->
Ky _ 3
=t - 'ME
Y - M +} . X > > > > > > >
TE = () = -GM EMiM %+ DHP+QrHR+T#V
tot (C] rME
with initial conditions
-> > -> ->
Xyg (tg) = X Vug (tg) = Vo
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For a parameter B, we have the set of equations

> >
a Py | M
dt ‘9B 9B
> >
2V

a e . _ o Futot
T g ) " o)

The explicit functional form for the variational equa-
tions have been set down in detail in M.E. Ash (1965), Chap-
ter 5, Section B. The partial derivatives not given there
have been given along with the perturbing accelerations
described above.

These equations, along with the equations of motion,
must be integrated over the relevant period of time, as
described in Chapter 4. The partial derivatives that were
integrated for this thesis were with respect to the following
parameters: six initial conditions, the relativity parameter,

(G/G)present’
the ratio of the mass of the moon to the earth+moon mass.

sin 28, inverse mass of the earth*moon, and
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CHAPTER III

Theoretical Values of Observations

A. Optical Observations

Observations of the moon have been made regularly by
many observatories for several centuries. The basic ob-
serving program consists of recording the times of transit
of the moon and the zenith distance at those times, together
with similar observations for standard stars. (An object
transits or culminates when it is on the observer's celes-
tial meridian.) For an extended object like the moon; the
transit refers to one or more of the limbs (north, south;
east, west) or a point like the crater Mdsting A.

The operational procedures in the observation program
are complicated, but as a crude conceptual picture, the dif-
ferences in sidereal time between the lunar and stellar tran-
sits give differences in geocentric right ascension. The
east or the west limb is usually observed -- preferably both
to facilitate the reduction to the center of figure of the
moon. The catalogue right ascensions of the standard stars
(referred to the true equinox and equator of date by applying
precession,. nutation, and proper motion) are used to convert
the differences in right ascension to an absolute geocentric

right ascension in the system of the catalogue used.
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Usually during the course of a transit observation,
the zenith distance at culmination is measured. For the moon
the measurement refers to the north and/or south 1limb
(or M6sting A). The differences in zenith distance between
the moon and the standard stars can be used to calculate the
difference in geocentric declination through a relation which

depends on the parallax of the observing site relative to the

center of mass of the earth (see below). Atmospheric refrac-
tion also must be taken into account due to the differing
zenith distances of the various objects.

Corrections are often applied to both types of observables
to produce the coordinates at transit of the center of figure
of the moon. Usually these corrections are made through
adopted values for vertical and horizontal semi-diameters of
the moon. These values are sometimes derived from the obser-
vations in the course of the reductions by the observatory.

A further sophistication is the use of Watt's (1963) correc-
tions for the irregularities of the 1limb. Several series of
observations used in our analysis consisted of limb observa-
tions referred to the transit time of either the center or

the 1imb itself. The theoretical calculations were modified
at the appropriate point in those instances in a manner des-

cribed below.
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A.1 Theoretical Calculations of Observables

The program calculates the geocentric right ascension

and declination at transit for the center of mass of an ob-

ject through an iterative process which starts with a first
guess at the U.T.1 time of meridian crossing (which must be
within twelve hours of the true time). From AT' and the
seasonal variations, we can calculate the coordinate time
corresponding to the value of U.T.1. A provisional first
position for fhe center of mass of the moon at this coordi-
nate time in the inertial reference frame, r(l)

~ME °

be found from the ephemeris. The position referred to the

can then

true equator and equinox of the date of observation is ob-

tained by applying the precession and nutation matrices:

(1) gate = N B nyp)

The right ascension a and declination ¢ have their first

values found from

- Yy
o) = tapl (Xdate)
date
Z
|Idate'
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with proper account taken for quadrant in a. At meridian
crossing, the right ascension equals the local sidereal time.
The true sidereal time 0 is calculated via Newcomb's formula
which relates et to U.T.1, together with the nutation in

longitude Ay cos e. The correction At to the first guess for

U.T.1 is given by

where ) is the west longitude of the observatory. Using this
corrected time, we calculate E&E), and then a(z) and 6(2).
The iteration continues until At is less than some input
accuracy constant.

Since the program calculates the position in the co-
ordinate system in which we perform the integration, we must
allow for the differences between that system and the sys-
tem of the stellar catalogue to which the observations refer.
For this purpose, we use a simple three-parameter model for
each observation series that permits small corrections to the
reference equator, equinox, and declination system. The
corrected theoretical right ascension and declination are

given by

Q
I

oo + AE - Al cos o tan §

(o]
(¢}
]

§ + Ap + AI cos o
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where AE is the angular separation between the corrected and
reference equinoxes; Al is the inclination of the corrected
equator to the reference equator; and A¢ is the bias in the
declination system. A¢ is considered to be, in part, a
correction due to errors in the geocentric latitude. The
series of observations are restricted in the time covered
so that the time variation of AE, AI, and A¢ can be neglected.
A procedure preferable to this three-parameter model would
involve the computafion of differential corrections between the
different star catalogues used for our data and the FK4 system.
The labor involved was beyond our resources, however,
and possibly would yield no better results since other
systematic errors (telescope flexure, etc.) may be equally
important.
The observations of an extended body like the moon are
found to be strongly biased by the different lighting ef-
fects at different phases. In order to empirically determine

these corrections for each series of observations, we param-

etize the vector AE, the projection perpendicular to the line
of sight of the vector from the center of mass to the center

of illumination, as follows:

(TufXT ) X (T~ Toy)
AG =D J a_cos np MTE E M
n

> >
(IerrE | I;E-;Ml)
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where the a  are the parameters to be estimated. The angle

8 is given by

Tyt (Tof-Te)
cos™1 g g E ; 0 <6<
IerlrM"rEI

6

and ?E’ ;M, and D are, respectively the vector from the sun

to the earth, the vector from the sun to the moon, and the

diameter of the mooﬁ. The algorithms for the phase cor-
rections and the equator-equinox-declination corrections were
developed by I.I. Shapiro. For further details, see a more
complete description in M.E. Ash (1972).

The observations in each series ﬁay not be referred to
the center of mass of the moon because, for example, the
center of mass does not project onto the center of the Watts'
datum. However a solution for further corrections, which
would be highly correlated with those above, seemed to be

unlikely to be worth the great effort that would be entailed.

- A.2 Limb Observations

For those observations which were not corrected to the
center of the moon at all, further corrections to the calcu-
lations needed to be formulated. These observations.in*
cluded all of those at Greenwich prior to 1830. These
corrections are developed below. The geocentric right ascen-
sion of the center of the moon at the universal time t, of

L
transit of the east (first) or west (second) 1limb, ac(tL),
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is the "observed" quantity for several series. The quantity
that is computed directly in PEP is the geocentric right as-
cension of the center at the instant of the transit of

the center, ac(tc). When the 1limb is on . he meridian, the
local hour angle of the moon's center is +S/(15 cos §8), where
S is the apparent geocentric semidiameter in degrees, § is
the declination of the center at center passage, and + or -
denotes first or second limb, respectively. The sidereal

time TC corresponding to t. is known; the sidereal time of

the 1limb transit, TL’ is given by

T S

T, =T 2 5 0ces 5

where A is the rate of change of right ascension with respect

to sidereal time in seconds of r.a. per second of sidereal

time. Therefore

ac(tL) = sid. time at ty - local hour angle of
center at t;
- S — S
o‘c(tL) Tc s 15(1-A)cos ¢ * 15 cos &

AS
0‘c:(tc) s I5(1-X)cos ¢

Similarly, the declination of the center at the passage of
the center Gc(tc) is clearly related to the center's dec-

lination at meridian passage of a 1limb (east or west),
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§.(ty), by

= S
S (tp) = 8 (t) = A7 15(1-X)cos §

where A' is the rate of change of declination in seconds of
arc per second of sidereal time.

The quantity X is calculated from the rectangular co-
ordinates of the center of the moon, referred to the mean
equator and equinox‘of date -- Xy Xp, Xg=- and their deri-
vatives (with respect to coordinate time, T) -- il’ iz. i3 --

as follows:

_ -1 X2
aC(T) = tan (f_)
1
33“ = 7 [x%) - x,%;]
Xt x,

Let t be universal time, and s be mean sidereal time

t + AT'

o
1]

s = s0 +rt
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Then we have

do _ dac dr dt

c
ds— =~ dr dt ds

For purposes of limb corrections, dAT'/dt can be ignored,

as can the difference between true and mean sidereal time.

Then
A= dac = .1.. da
: ds r dt
The value of A' can be calculated using the relation-
ship

§. = sin” ‘ )
Ve o
1 2
dsé [xzi + xzi - X1XzXq - XXX ]
_ XXz T XpXg m XgXgX) - XpXgXy
dt

das ds
At = S =1 ¢
ds T dT

The derivatives with respect to T above ignore the
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derivatives of the precession-nutation matrix. The princi-
pal terms, however, should be on the order of 50“/365><8.64><104
seconds and 9"/18.6><365><8.64><104 seconds. For making limb
corrections, these are clearly negligible.

Some series (e.g., old Radcliffe observations) give
o the right ascension of the 1limb at its transit over the

meridian as the "observed" quantity. Then o and a; are re-

lated, from above, by

= Qo <+ S
c L — 15(1-A)cos §

Observations also exist of the declination of a point on
the 1imb at the time that the 1limb (north or south) is on
the meridian. In this case, the formula for correcting the
declination is more complex. The correct relation is derived in

Chauvenet (1891), p. 306:
. . ) . . 2 H
sin (6-61) = sin P + sin S - 2 cos § sin 6151n (7)
where

sin P =Zp sin 7 sin (¢'—61)

and
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61 = observed declination of 1limb (corrected for

refraction)

§ = the geocentric declination of the center of
the moon

S = as before

¢' = the geocentric latitude of the observation

p = the radius to the place of -observation

A = as above

7T := the moon's equatorial horizontal parallax

In the expression above, H is the true hour angle of the center
at meridian passage of the limb, The upper or lower sign is
used according to whether the north or south 1limb was ob-
served. H is an "observed" quantity, since it can be cal-

culated from the sidereal time of observation S and the

1’
sidereal time of the center's transit SZ’ from

H = (1-1)(5,-8,)

This number is frequently on the observation records (but
was not transferred to the punched cards). The value of § above
is referred to the time of the limb on the meridian. The

reduction to 60, the value for the center on the meridian,

is given by
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6p = & + (SZ-SI)X'

The terms inﬁolving SZ-S1 are on the order of a second of

arc and often less. According to an example in Chauvenet, Vol.
II, p. 308, these terms are usually included in the reduction
of the micrometer correction, and I have assumed, unless the
explanations explicitly said otherwise, that the correc-

tions involving H have been made by the observer.

From the formulae above; it is clear that the reduction of
limb observations depends critically on the values for sev-
eral astronomical constants adopted by the observers:

a) If the value of the semidiameter in right ascension Sa is

in error by ASa, the derived r.a. is in error by

+(1°%) as_
_(znd) I5(cos § )

b) the declination depends on errors in the semi-diameter
in declination SG and other quantities in the reduction from

topocentric to geocentric values as follows:

-(N)
A§ = ASstp sin(¢'-61)Aﬂ"+ﬂ"sin(¢'-61)Ap
+(S)

+pm" cos (¢'—61)A¢"
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where ASG is the error in semi-diameter in degrees
(# AS, in general)
AT is the error in parallax in seconds of arc
Ap is the error in radius vector in units of
earth radii

A¢' is the error in geocentric latitude in radians.

A latitude correction which can be solved for is programmed
in PEP. Unless a good "modern'" value for the geocentric
latitude of the old observatory location can be found, and
unless the modern value is very different, the last term

will be ignored and the correction will be solved for. The
observers' explanations were examined for.assumed values for
the radius to the site and the constant of parallax, and cor-
rections to the best modern values were made for some ob-

servations, as will be further documented in Chapter VII.

B. Radar Observations

The radar observables are the two-way time delay T and
the Doppler shift of the reflected signal fq, both evaluated
at the universal time of reception t,. The calculation of time
delay begins with the evaluation from the ephemeris (and
our theoretical superstructure) of the vector position of the
receiving site gr(tr). The .vector position of the reflection

->
point R(tb) at the bounce time tb can be found from the
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implicit equation:

where ¢ is the speed of 1light. This equation can be solved
by iteration. The vector position of the transmitter site
+ - -

ST(tt) at the time of transmission t, 18 derived from the

implicit relation

The Doppler shift is given by (see Shapiro et al.; 1966) :
£.(t) = £, 9T (¢)
d*r 0 Hfr T
4
_where fO is the transmitted frequency. The observations
usually are of the subradar point, which is defined as the

point where the line-of-sight from the radar to the center of

mass of the moon intersects the surface of the moon.
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The explicit formulation for these radar observables
in terms of the quantities in the theory can be found in a

report by M.E. Ash (1972).

C. Surveyor Doppler Observations

The Surveyor landed spacecraft carried transponders
which received a "monochromatic" radio signal from an earth-
based station, and retransmitted the signal to the ground
after frequency multiplication by a constant factor cye
The observations used in this thesis were all of 'coherent
counted" Doppler, that is, the transmitter reference oscil-
lator frequency was available at the receiver. The receiver
takes the reference frequency, multiplies it by c,, and
beats this frequency fM against the incoming signal. The num-
ber M0 of positive zero crossings of the differenced signal are
counted for the duration of an observation, called the coun-
ting interval D.. The observable is given“as MO/Dc'
The epoch of the observation is given at the midpoint
of the counting interval. The details of the observational
procedure, together with values for the various constants,
are given by Holzman (1965).
The theoretical calculation of this observable is done
by computing the difference between the phase delay at the end
and that at the beginning of the counting interval. If the

epoch of the observation is to, then the endpoints occurred at
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teipc/z. The phase delay can be calculated, using the algorithm
described for radar time delay above, at each end of the coun-
ting interval. The difference of these delays, divided by DC and
multiplied by f,,, is the theoretical value of the observable,
except for corrections for atmospheric effects. The fact that
the observations are of phase delay affects only the calcula-
tion of dispersive effects such as the ionospheric corrections.
Further correction of the "vacuum'" theoretical value is
necessary to account for the variation in phase delay due to
the changing path length through the troposphere (lower neutral
portion of the atmosphere) during the course of an observation.
The correction ApT(tEiDC/Z) to the range at either end of the

)

(zz/51n Esend) where Zz is the extra contribution to the

counting interval, to first order, is (zz/sin E eceive
zenith range from the troposphere and E is the elevation
angle. At low elevation angles, significant deviations
occur due to the curvature of the earth's surface and ray
bending effects. A semi-empirical correction has been
found (C.C. Chao, 1970) by fitting to range corrections
Ap generated by a ray tracing program for a spherical earth.

The formula found by Chao, as used in our Surveyor re-
duction, is, in meters,

L

K. .
App(E) = =12
sin E +

A cos E
sin E + B cos E
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where Kij is a multiplicative factor to be adjusted for each

observing site (i) and spacecraft (j). The quantities L,

A, and B are constants with values:

2 meters (light time equivalence)

>
It

0.00143
0.0445

1l

- The ionosphere causes an effect very similar to the
neutral atmosphere, except that the equivalent additional
path lenéth is a function of the local electron density.

Due to the fact that the troposphere and ionospheric cor-
rections are highly correlated, a solution for both is not
contemplated. The neutral atmosphere model is adjusted; a
fixed model for' the ionosphere using measured electron content
is programmed. The model used is based on that of Melbourne

et al. (1968), and has the form

N_(t;) 109
(d0)g = € (HE=) g (B)

where AO(E) is a function tabulated by Melbourne et al.;
f0 is the transmitter frequency in Hertz; Ne(tI) is the inte-
grated electron content along the path to the spacecraft in

electrons/meter2 at the time of the observations t

8.069x107 2

N. =

1° No

xelectrons/meter”, and
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“'2|¢M|
ﬂ~2|¢M(Stanford)|

CL

where ¢, is the geomagnetic latitude.

This empirical expression was developed by JPL to produce

a good fit to a numerical calculation for the nominal values

£, = 2.3x10°

parameter values comes from a theoretical basis. The factor

Hz and Ne = NO' The extrapolation for other

CL attempts to account for the latitudinal variation of the
electron content. The integrafed electron contents at half-
hour intervals were supplied by M.J. Davies of the Stanford
Electronic Laboratories (personal communication, 1971).

D. Stellar Occultations

Observations of occultations of stars by the moon con-
sist of recording the time of disappearance and/or the time
of reappearance of the star. The observation is thus in-
dependent of the star catalogue currently being used by the
observatory (except for the small effect that the regulation
of the observatory clock, i.e. the universal time, depends
on the star catalogue). If the star were correctly identi-
fied as to catalogue number, name, etc., then the observation

can be reduced at any later time using the best modern star

positions. Thus this data type is clearly quite sensitive

to the value of AT' at the time of observation.
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The theoretical evaluation of the occultation observa-
tions has been implemented in the program. The partial
derivatives of the observable with respect to the various
parameters have not yet been checked out. The corrections
for the topography of the 1imb from the chérts of Watts
(1963) have not yet been completely coded in the program.
For these reasons, the observations of occultations
have not been included in the data set for this thesis.

The theoretical expressions for this observable will be

given in a seperate report.
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CHAPTER IV

Numerical Methods

A. Numerical Integration

The method of numerical integration is a second-order
form of a classical predictor-corrector scheme. '"Classical"
in this connection means that the resulting values of the
function being integrated are obtained at equally spaced

intervals. Suppose we desire the solution of the three-

nd

dimensional system of 2 order ordinary differential equa-

tions of the form
Yty = Fee, Yooy, Y )
with initial conditions

Y(a) = vy 5 YP @) = v{

in which Y is the vector [x,y,z], and the superscript (n)

indicates the order of the derivative with respect to time.
The classical predictor-corrector scheme generates a

sequence of vectors Yp, approximating Y(tp), from the

equation:
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S

(1) 2 (2) -
ig—l[ati_;hblYp_i + h cti_l] + E=0

at s+2 equally spaced points t i=-1,...s. Here h is

p-i’

N C.
1’ 71

the spacing (ti—ti_l), E is an error term, and a;, b
are coefficients which depend on s (and i). The equation
is used to extrapolate Yp forward in t when b_; = c_; = 0.
Iterative application of the equation when some of the bal’

c are non-zero, make up the corrector, or interpolation,

-1
mode of this method. [See Hildebrand (1956), and W.B.

Smith (1968) for more complete treatments.] In particular,
we assume that we can form a polynomial approXimation of de-

gree p to F(t,Y,Y(l)). Then
2 2 iL(2)

where
i
W. = d.) d.

and the dj are defined recursively from:

d0 = ]
d, 1
A=-3
m d
- } 2-1
dp = 221( m-i+2)
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The V' are the standard backward differencing operators:

ve =1
1, .
Vil = Ly - Iy g
| 1 1
vz, =V (viv ce e (V7Z)))

W\/

n applications

In order to predict, we operate on both sides with the ad-

vancing operator (1/(1—V1))

.1 2 2 1 2
—_— V7Y V'Y = h
(l-Vl) k k+1 l-Vi

!

iy(2)
2 W, VY

0

[1evlev2evde. . qn? 3§ W, vy ()
i=0

2 i, (2)
h 120 eiV Yk

where
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Now writing out VzYk, and transposing terms we have

1. for prediction

-Y

+2Y, + h? % e, viy(%)

k+1 = k-1

which requires the current Yk’ the Yk just past, and

the accelerations

(2

x s k=0,... -(p+1)

2. for correcting the current value:

2 iy (2)

The velocities are obtained by numerical differentiation

from the corrected values:

29



where

k i
(-1 )f.
iz‘kc YDy

rk =

0 i=0
f. =
1

@ 140

Note that this method is not self-contained, since the
iterative procedure must have some initial values to fit
with the polynomial. The starting procedure is the numeri-
cal integration method due to A. Nordsieck (1962). This
method will not be described here; the important features

are

1. The method is self-stafting
2. the accuracy and stability of the "software"

package are thought to be completely veri-

fied.

The fractional accuracy to be achieved per unit time interval
is specified for the starting procedure, and the step size
in the integration is automatically chosen to match this
requirement. The accuracy specified for starting the

-16

moon integration was 1 x 10 (as high as double precision
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arithmetic allows).

Once the starting procedure has generated a sufficient
number of values for the order of the polynomial fitting to
be done, the predictor-corrector scheme may begin.

In the moon integrations, the predictor-corrector step
size chosen was % day. A 12-term expression in the accelera-
tions (i.e., p = 11) was used. The output points were at
tabular intervals of one half-day. The choice of these
numbers is not unique and can be defended only on eXperi-
mental grounds: e.g., % day steps were tried and found to
be unstable aftet A10 years. Whether p = 11 and h - %
are '"sufficiently" accurate in any particular application
must be settled by investigation. For our purposes, com-
parison with other integration methods and "closed-loop"
integrations have led to the conclusion that the error
of the integration at the end point (1750) is at most

5x10—10

A.U. ( = 75 meters). if observations of one second
of arc (X 2 Km) standard error and strictly zero bias were
made in 1750, then approximately 50 thousand observations of
this quality would be necessary to require more accuracy from
the ephemeris.

The integration packages used were developed and tested
by William B. Smith of Lincoln Laboratory. Interfacing thé
moon acceleratign software [the so-called right-hand side

routine; since ¥ = F(¥, ¥, t)] to the integration
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routines was done with his assistance. The speed of this
predictor-corrector method of integration was an important
factor in insuring that computer time necessary for this

task® was not exorbitant.

B. Everett Interpolation

The observations of the moon are generally made at
times other than the times for which tabulated values of
position and velocity are available. Therefore in processing
observations in PEP, an interpolation method is applied
to the tabulated values. The method chosen is Everett
eighth-difference interpolation. The output tabular inter-
val of the numerical integration (not to be confused with the
step size h) must be short enough so that the error in inter-
polation is no larger than the error in the integration.
This criterion governed the choice of half-day output for
the moon.

Appendix 5 details the algorithm developed by Michael

Ash for the Everett scheme.

* For example, twelve sets of equations were integrated with
about 1 year's output requiring one minute of IBM 360/91 CPU
time. For the Nordsieck method, nearly 10 times as much com-

puter time would have been required.
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C; Numerical Checks of Partial Derivative Coding

The formulae for partial derivatives of an observable
quantity O with respect to a parameter q were checked for cor-
rect coding and self-consistency by computing the value of the
function 90/3q for two values of the parameter, say 9 and -
The values of O for those parameter values with the other
parameters fixed also were available. Forming a Taylor

series for O(ql), we have

2
00 1 50 ' 2
O(ql) ~ O(qo) * 39 (ql“q'o) oy —7 (ql_qO)
. dg | %9719

if ap is close encugh to g - Now if we compute

a0 _ 90a7) - 0(qq)

]

Aq ql-qo
then
A0 201 L1 220 (9--94)
2q = 39 7 7| “917%
q 9q q
0
We also have that
§9 = §9 + 320 - )
3q 57| 7| @179
q q °q” |9
1 0 0
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If we average the values of 30/3q at q, and q,, we have

2 o
1,30 30 _a0| , 1 3% N
7Gq| *aq| P 3q‘q "7 2| (a;-ap)
i 4o 0 ag

Therefore the quantities to compare are the averaged partials
and A0/Aq. Care must be taken not to choose the increment

a; - 9 too large, since this would invalidate the Taylgr»”.”
series approximation.nw Hdwever, the increment cannot be

too small or the check will reveal nothing for lack of
precision. Tables 5 and 6 1list the results of these compari-
sons for the variational equations and the partials of the ob-
servables; respectively, for the parameters listed in the .
left-hand columns. In the tables presented, the increments in
checking the variational equations were sometimes not well
chosen. This situation explains the somewhat variable level of
agreement for the same parameter in different types of obser-
vables. These results confirm that the coding for the forces
and the partials are self consistent, since coding errors (of
which several were found) show up in' the first -- rarely in
the second--decimal place. The general fractional agreemeht

is m10'4.
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Table §

Typical Fractional Disagreement in

Variational Equations Check

(maximum of three components)

Position Velocity
Moon initial 8 x 10°° 2 x 10_4
conditions
Mass (3)%° 1 x 10°° 5 x 1074
® % -5 -5
Mass (10) 2 x 10 5 x 10
Xk %k -5 -4
Relfct 7 x 10 4 x 10
Tidal 5 x 10°° g8 x 107°
friction
G 9 x 10°° 2 x 104
® inverse of earth+moon mass

k% ratio of moon to earth+moon mass

**% relativity multiplicative factor
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Typical Fractional Disagreement in Check

Table 6

of Observation Partiali

Surveyor Radar Radar R.A. Dec.
Doppler Delay Doppler
Moon i.c. | 4x10°° 1x10°%  5x307° 3x10"%  2x10”
Mass(3)* | 1x10"%  2x1077  8x107°  6x107°  4x10°
Mass (10)%* 5x107°  2x10°°  7x10"°  3x10°%  2x10”
Relfct *#%| 2x107° 3x10°° 9x10°° 6x10 > 4x10°
Tidal 2x10°° 7x10° 0% 4x107° 3x10° 2x10°
Friction
& 3x10°° 1x10°° 5x10°°  4x10°° 7x10"
* inverée of earth+moon mass
*% ratio of moon to earth+moon mass

k&% rélativity multiplicative factor
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Table 6 Cont.

54 Surveyor Doppler
o —
% 5 | Radius 2x10
0o
o v
A

=% _ _c
9P | Longitude 3x10
e ,
+ O
g >
0o
o & ; -6
S 5 | Latitude 9x10
ow
—
0
v o
o Equatorial 3x10°°
2 radius
rS)
©
o8 - -6
S & [ longitude | 8x10
0w
- S
w E ) -5
£ ¢ | Distance 4x10
v.0 | along spin
SC° |axis (2)
O "
O o
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CHAPTER V

Maximum Likelihood Parameter Estimation

The parameters of our physical model are determined
from a linearized, iterative, weighted least-squares solu-
tion. The mathematical formulation of this process will be
given without proof below. (See Shapiro 1957 for a rigorous
discussion.) Let an observable quantity O depend on a set

of I parameters, a; and time, t:

Q = F(ql’ qZ""qI’t)‘

where F is the theoretical expression for the observable O.
We wish to estimate the parameters a; from the observations
starting from a nominal set of values q0- We suppose that
actual observations O0', of total number J, are made at times

tj. Let us form the following column vectors

{X}j = {Oj' -0(ql,qz,---qI,tj)};j=1,---J

{x}

i = {Qi_qio} > i=1,2"'I

‘We also assume that there exists a (column) noise vector

€ of dimension J which represents the noise in each measure-

s

ment. Assume that the noise can be characterized as random

108



samples from a multivariate gaussian probability density dis-
tribution with zero means. We can expand y in a power series

about the qio's as follows:

Y = Yo - A X+ terms of order (qi-qio)z

where

Yo = ¥ (x=0)

and the matrix A has elements

3F(q,,9,,,,qp,ts)
{A}.. = 12727 0 F )
—"1] qu

q457a30, =11

The equation that should hold true to sufficient accuracy

to insure convergence on the '"correct'" minimum among the ex-
trema of the weighted sums of the squares of the residuals is

Yo = AXx + e

~

The linearization error is presumed to be smaller than €.

The maximum likelihood linearized approximation solution
% can be shown to be the solution to the so-called '"mormal equa-
tions" obtained by weighting both sides by the matrix A;l

(defined below) and then multiplying by é?:

109



or

1>
|
r—
1=
=

where Ag is the noise covariance matrix (g ET) and the

overbar denotes ensemble average or expectation. Terms of the
order of (§)T§, §TZO’ and ZOT§ times second derivatives
BZF/aqi qu have been neglected. This solution is in fact

also the linearized minimum variance solution (see

Solloway, 1965). The covariance matrix for this solution is
_ T,-1,.-1
TN NN

The matrix inversion in PEP uses the Gauss-Jordan direct
method with a routine supplied by N. Brenner. The documentation
for this inversion is found in a report by M.E. Ash (1972)
and references cited therein.

The linear estimate of the noise after the 'best" set

of parameters q; are used in the theoretical expressions can

be obtained fron
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where I is the identity matrix ( {1}ij = Gij).

In processing real observations, we generally
make the restrictive assumption of independent (uncorrelated)
measurement errors (i.e., Ae is diagonal). To express

Ax’ let us form the column vector

an(t5) = | 5o (t5)

9qr ]

where Om is the mth type of observable. We assume that the

errors in Oﬁ are gaussianly distributed with standard devia-

tions iy Then we have
T -1 1 9T
(é Ag _A._)m = -7 Z [gm (tj)gm(tj)]
o j=1
m
whence
M -1
-1 T
LN DR G W
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where M is the total number of observable types.
The formal standard deviations of the parameter estimates

are then

o = YA . i=1,2,....1

and the normalized correlations between the estimates of param-
eters 1 and j are

ClJ =—"—6-;6_———; 1,j =1,2,...I

The linearization above demands that we must iterate un-
til, by some criterion, convergence of the solution to the
maximum likelihood estimate has been achieved. The cri-
terion chosen is that the parameter adjustments are small
fractions of their standard deviations.

PEP has several convenient related features for aiding
in a judgment concerning the validity of a solution.

For example the post-fit residuals can be linearly predicted,
printed out, and/or plotted. The normal equations can be

saved on magnetic tape so that additional solutions with

parameter and/or data subsets can be explored.
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CHAPTER VI.

Preliminary Solution for Observations from
1925-1969

The generation of a preliminary ephemeris was begun by
obtaining initial conditions -- position and velocity in
1950.0 rectangular coordinates at the desired epoch (J.E.D.
2440000.5)*-- from values tabulated in the "Improved Lunar
Ephemeris' (Eckert et al., 1954) as supplied on magnetic tape
by the Jet Propulsion Laboratory (designated as LE4).

A numerical integration of the motion and the derivatives

with respéct to initial conditions was carried out using these
initial conditions. This integration covered a period of
twelve years, 1956 to 1968, backward in time.

This ephemeris was then used to calculate theoretical
values for observations made over this period of time in order
to obtain improved initial conditions. The observational
material used consisted of

1) meridian-circle observations from the U.S. Naval

Observatory from 1956 to 1968.
2) time delay and Doppler observations of the sub-
radar point of the moon made in 1966-1967.

These data are subsets of larger data sets which will be

*May 24, 1968
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described in detail below. After two iterations, a converged
solution was obtained. The converged solution did not differ
significantly from the solution for the first iteration. With
the initial conditions for this solution, an integration

from 1968 backward in time to 1925 was carried out.

The date of 1925 for the intermediate ephemeris was
chosen because a very homogeneous set of meridian-circle ob-
servations extending from 1968 back to 1925 became available
when this step was being planned. This homogeneous data set
is a careful reduction of meridian-circle observations made
with the USNO 6 inch transit instrument. All positions
are referenced to the system of FK4 (Adams et al., 1969).

The extensive corrections made to these data are described in

Adams et al. In brief, the data have been corrected for

(1) limb irreqularities using the limb corrections of Watts
(1963), (2) refinements of the corrections for refraction,
instrumental errors, diurnal aberration, and (3) parallax and
orbital motion including the new IAU dimensions of the earth.
Other data used in this solution were as follows: Greenwich
observations from 1925 to 1954 were taken from the reference in
Appendix 6, § 6 g-h. Observations at Capetown, South Africa,
covering the period 1936-1959 were made available prior

to publication by the observatory (personal communication,

1967). The radar data are taken from Radar Studies of the

Moon, Final Report, Vol. 2; and unpublished
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observations made in 1968. The data are summarized in Table 7,

which gives the number in each series of observations, the
corresponding series ''name'" (as documentation for outside
users of the lunar data compiled here) and some statistics
for each series.

Sample plots of the residuals versus time for the con-
verged solution for this data set are given in Figures 7 through
10. For the entire data set back to 1925, the most serious
systematic trend in the residuals occurs in the Capetown
observations. The observations for the period 1959-1949
in particular show annual oscillations, especially in the
declination residuals, which are not found in other observa-
tion series. The amplitude of this oscillation is approxi-
mately two to three seconds of arc, and is the cause of the
large root-mean-square (r.m.s) of the residuals for that
series in Table 7. The results have been communicated to
the South Africa observers for their comments.

In order to test the fundamental hypothesis that the
observational errors are Gaussianly distributed with zero mean,
we have fitted Gaussian distributions to the residuals in
right ascension and declination. The pafameters in the fit
were the amplitude of the Gaussian distribution, the standard
deviation, and the mean. The results for all right ascension '

observations combined are shown in Figure 11, and for declina-
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tion in Figure 12. The overpopulation of the tails of the
distributions relative to the fit is partly caused by the
equal a priori standard error assigned for every series being
one second of arc. The fit should have been made to the resi-
duals divided by the r.m.s. error for the particular series.
The solution for the parameter estimates should have been
repeated with each series weighted appropriately. In fact,
in the final solution that included observations from 1970
back to 1950 [per Chapter VII], this procedure has been
followed.. For the set of intermediate parameter estimates
in the solution to 1925, this additional step was not taken.
For this solution, the mean of the right ascension residual
was 07039 arc, with a standard deviation of 1'0l1l. The cor-
responding declination values were 07009 and 1.16 respec-
tively.

The solution from data back to 1925 includes estimation
of the values for AT' for 1956 to 1925. These results are
presented in Figure 13 and illustrate a difficulty with solu-
tions for AT' from lunar data alone: a secular trend in AT'
is highly correlated through the mean motion with the esti-
mate of the semimajor axis of the lunar orbit. A secular
trend in AT' is also correlated with the estimated values for
the multiplicative relativity parameter A (see Chapter III)
and the time variation for the gravitational constant, As

we shall see in the next chapter, solutions with the moon
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and inner planets combined can be used to make a meaningful
determination of AT' (provided we are willing to accept G or
tidal friction from“a priori information).

The initial conditions from this converged solution over
the 43-year time interval (1925-1968) were used to integrate
backward in time from 1968 to 1750. The latter date was
chosen as the "break-even point" in the trade-off between
decreasing observational accuracy and the increasing sensi-

tivity to long-term trends in the motion.
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CHAPTER VII

Solution for Observations from 1750 to 1970: Conclusions

The next step in improving the ephemeris of the moon
was the fitting of a much larger data set than that discussed
in the previous chapter. The general description of that
data set, which includes obéervations extending back in time
to 1750, is given by Tables 8 and 9. Table 8 describes the
Surveyor Doppler observations which made up a part of this
enlarged data set. The dates on which observations were
obtained are within periods in which the Surveyor was in sun-
light since the transmitter depended on solar power. Table 9
contains descriptive material on those optical observations
which were not described in Chapter VI. The time ordering
of the observation series in Table 9 reflect an order dictated
by efficiency in computer processing of the observation cards.
The bibliographic information for these observations can be
found in Appendix 6.

Normal equations for these data were formed using the
ephemeris described in Chapter VI. These normal equations
were stored on magnetic tape. This system of'equations was
then augmented by various inner planet normal equation sets,

for reasons to be described below, and the total system could
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Table 8

~ SUMMARY OF SURVEYOR COUNTED DOPPLER OBSERVATIONS

Spacecraft | Observing Dates Data Total Number of
Site Obtained Observations
Surveyor DS11 6/3/66
I 6/5/66-6/16/66
7/7/66-7/8/66
7/13/66 646
DS42 6/3/66-6/15/66
7/6/66-7/9/66
7/12/66-7/13/66 928
Surveyor DS11 4/23/67
ITI 5/2/67-5/3/67 9
DS12 4/25/67 63
DS42 4/20/67
4/22/67-4/27/67
5/1/67-5/3/67 471
DS51 4/26/67-4/27/67
4/29/67-4/30/67 122
DS61 4/20/67
4/22/67-4/28/67
5/1/67-5/3/67 408
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Table 8 (Cont.)

Spacecraft Observing Dates Data Total Number of
' Site Obtained Observations
Surveyor DS1l 9/11/67-9/13/67
\' 9/16/67-9/24/67 748%
DS42 9/11/67
9/13/67
9/16/67-9/24/67 1528%*
DS6l 9/11/67-9/14/67
9/16/67-9/24/67 3170%
Surveyor DS11l 11/10/67-11/25/67 350
VI
DS42 11/10/67-11/12/67
11/14/67-11/16/67
11/18/67
11/20/67-11/23/67
11/25/67 457
DS61 11/10/67-11/17/67
11/22/67-11/24/67 489
Surveyor DS11 1/9/68-1/22/68 1604%
VII
DS42 1/10/68-1/15/68
1/17/68-1/23/68 1759%
DS61 1/10/68-1/23/68 4651 %

*Counting interval is 60 seconds.

1204

All others are 300 seconds.



Table 9

Summary of Series for Optical Observations

r.m.s error postfit
residuals (sec of arc)

Observatory Dates of Series
Observations Name r.a. Decl.
6"U.S.Naval 1900~1903 M300 1.2 1.3
Greenwich 1900~1930 MO0OO 1.8 1.4
Besangon 1908-1922 M790 2.2 4.1
Tokyo 1961-1962 M261 2.5 2.8
1949-1960 M049%* 2.8 2.3
Uccle 1928-1944 M428 2.2 2.3
9"U.S.Naval 1913-1925 M513 1.0 0.9
1900-1901 M300 1.7 1.3
Greenwich 1931-1954 M531 1.1 1.1
1905-1930 M300 1.2 0.9
Paris 1903-1904 B491 2.5 l.6
1902-1902 P250 2.8 1.8
1900-1906 A691%* 2.0 1.6
1900-1906 c688%* 2.6 1.7
1924-1935 3619 3.2 1.5
1919-1923 L619* 1.6 4.1

* observations not of the center of the moon at transit of
center

121



Summary of Series for Optical Observations

Observatory

9*U.S.Naval
8"U.S.Naval
U.S.Naval
Edinburgh

Greenwich

Strassburg

Greenwich

Besanson

Cambridge

Radcliffe

Paris

* observations not of the

center

Table 9 (Cont.)

Dates of

Observations

1894-1899

1866-1891

1861-1865

1838-1847

1875-1899

1852-1874

1888-1893

1882-1888

1836-1851

1831-1835

1890-1895

1838-1852

1833-1837

1832-1833

1841-1890

1891-1893

1850-1887

X observable type missing

S
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Name

M994

M166

M561%

M538

M975

M450

M388

M882%*

M131

M131%*

M590

M238

M728

M728

M040

C491%*

P250%

r.m.s error postfit

residuals (sec of arc)

r.a.

1.8

2.0

3.0

2.3

1.8

2.0

1.7

1.9

2.3

3.3

3.6

3.6

3.0

2.1

2.7

Decl.

1.9

2.1

2.4

l.e

1.8

1.9

1.9

2.1

1.0

2.8

center of the moon at transit of



Table 9 (Cont.)

Summary of Series for Optical Observations

r.m.s error postfit
residuals (sec of arc)

Dates of Series

Observatory Observations Name r.a. Decl.

Paris 1891-1899 A691* 2.7 2.3
1887-1890 L087* 2.1 X
1879-1885 J579% 2.7 2.0
1888-1899 C688%* 3.0 1.5
1867-1887 - G767* 3.0 3.9
1863-1863 R363%* 2.0 X
1863-1863 S363%* 2.0 2.3
1837-1849 4930%* 2.5 3.5

Greenwich 1812-1813 1312%* 5.5 6.3
1825-1830 3025%* 3.6 2.7
1824-1825 2524 % 2.7 3.3
1813-1824 2413%* 3.2 4.0
1800-1812 1000* 3.3 4.4
1765-1799 0065%* 3.4 4.2
1753-1765 6553% 3.8 4.8
1750-1753 5350% 4.3 4.9
1810-1812 1210%* X 3.8
1831-1831 M131* 3.0 2.0

* observations not of the center of the moon at transit of
center

X observable type missing
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then be solved using Gauss-Jordan direct elimination. Many
solutions were then made for various choices of parameters.
One rationale for these different solutions is that the
variations in the solutions for the remaining parameters, as
we add or subtract other subsets of parameters, give some
indications of the systematic errors which are surely present
that the formal standard error cannot evaluate. Our para-
meter solutions were also limited by computer storage to the
inversion of a matrix of maximum dimension 375. For similar
reasons, the data series which were included were also varied

in order to explore the sensitivity of the results in other

ways. For example, all observations during the nineteenth
century at Paris could be eliminated to see how various para-
meter- solutions depend on the time spanned and the observing
program at a particular observatory.

For the purposes of a thesis, this vast collection of
information is not well suited for presentation. The process
of digesting all the information contained in these solutions
is a continuing task which will occupy several years. The
principal results, however, can be indicated by studying one
particular well-chosen parameter solution which we shall call

the nominal solution. The results of the other parameter
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solution sets will be mentioned at such points as I believe,
with my current limited grasp of their full information, that
a particular parameter solution or its formal error needs
qualification.

This nominal solution is based upon the lunar data
described in Tables 7, 8, and 9, plus meridian circle and
radar observations of Mercury and Venus, and meridian circle
observations of the Sun. These planetary data have been
described by Ash et al. (1971) The nominal solution includes
the estimation of the parameters for the geodesic precession,
the first term in sin 26, and the time variation of the gravita-
tional constant. In addition six iniéial éonditions for the
moon, for the earth-moon barycenter, for Mercury, and for Venus
were estimated. The inclusion of the Surveyor observations
made necessary the addition of parameters for the apparent
Doppler shift introduced by the neutral atmosphere,*for/the
locations K of the observing stations, and for the selenocentric
coordinates of the Surveyor spacecraft . The parameters for
AT' (£ C.T.-U.T.2) and the optical catalogue orientation para-
meters were also included in this solution. The phase cor-
rections were separately solved for due to the restrictions

on matrix dimension. Other solutions show that the phase

* No model for the ionospheric effects included in nominal
solution.
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corrections are negligibly correlated with the other para-
meters of interest.

'

The values found for these parameters will Be discussed
below in the somewhat arbitrary order of, firstly, the
parameters associated with the Surveyor observations, then the
parameters associated with the optical observations, and
finally the parameters of general scientific interest. On
the basis of this nominal solution, the residuals that would
result can be linearly predicted. These resulting residuals
have been plotted as a function of time. The graphs of the
predicted residuals will be discussed along with the relevant
parameter solutions because these residuals are an important
measure of the credibility of the solutions. The absence of
systematic trends and a Gaussian distribution of the residuals
about a zero mean are the required characteristics. As a
partial summary of the information in these graphs, thev
second moments of the residuals on a series-by-series basis
are included in Table 9 for the optical observations, and
separately in Table 10 for the Surveyor observations.

Let us begin a closer look at the parameter solutions)
starting with the Surveyor observations as indicated above.

The behavior of the Surveyor residuals is illustrated in

Figures 14'through 18. At the frequency of these observations
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Table 10

Statistical Analysis of

Predicted Residuals for Surveyor Observations

Mean (millihertz) r.m.s. (millihertz)
— DSS 11 - 0.22 2.4
§ DSS 42 - 0.18 2.5
DSS 12 0.013 0.9
DSS 42 0.093 6.3
™
g DSS 61 0.03 9.0
wn
DSS 51 0.0038 1.5
DSS 11 2.2 5.0
DSS 11 - 1.8 5.5
n
g DSS 42 - 0.6 3.5
0
DSS 61 - 0.1 42.
DSS 11 - 3.1 7.8
©
& | pss 61 0.96 3.3
(D)
DSS 42 0.88 2.5
DSS 11 - 2.5 4.5
~
o DSS 42 - 1.5 3.0
()
(5
DSS 61 - 2.2 23.
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(2.3 x 109Hz), 1 millimeter per second is equivalent to 15.4
milliHertz. The diurnal signatures remaining in some of the
residuals could be due in part to ionospheric effects (maxi-
mum of ~8 x 10—3Hz) which were not included in this solution.
If daytime observations were made (especially near local sun-
rise) for a particular tracking station, the ionospheric
contributions might amount to the signatures present(but a
detailed study has not been carried oué. A more serious
difficulty is the presence of non-zero daily means for several
tracking stations, particularly on the later Surveyors.
Typically the daily mean was 10 - 20 milliHertz. The contri-
bution of these days is seen, for example, in the r.m.s. for
Surveyors 5 and 7 (at DSS 61) in Table 10. The analysis of
the Surveryor observations at the Jet Propulsion Laboratory
(F. B. Winn, 1968) designates these daily passes of data
collectively as "biased data" The origin of the bias is unknown,
but is suspected to be instrumental.

Table 11 compares the solution obtained for the lunar
locations of the Surveyor transponders with the solutions

contained in The Surveyor Project Final Report, Vol. IIT

(F. B. Winn, 1968). The most serious discrepancy is between
the selenocentric radii found for Surveyor III - a difference

of ~3km. The solution by Winn was constrained to the radius
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Table 11
Surveyor Location Solutions Expressed as

Adjustments from JPL Solutions*

Nominal Solution JPL
(+ Formal Standard Error) Standard Error
Ar, Km - 0. 47 (+ 0.07) + 1.4
g AN, deg 0.038 (+ 0.002) + 0.09
® Ag, deg 0.046 (+ 0.001) + 0.06
AR, Km - 3.1 (+ 0.3) + 0.3
[32)
g A\, deg - 0.021 (+ 0.005) + 0.005
” A, deg - 0.003 (% 0.001) + 0.011
Ar, Km 0.45 (+ 0.37) + 0.3
; A\, deg 0.021 (+ 0.005) + 0.006
“ Ag, deg : 0.056 (+ 0.003) + 0.025
Ar, Km 0.16 (+ 0.10) + 0.84
©
g A\, deg - 0.012 (+ 0.001) + 0.006
i Ag, deg - 0.023 (+ 0.001) + 0.018
Ar, Km - 0.28 (+ 0.15) + 0.31
; A\, deg 0.006 (+ 0.02) + 0.01
“ Ag, deg - 0.0008 (+ 0.004) + 0.008
r = distance from moon center of mass, Ar = rMIT_erL
A = selenocentric longitude, A\ = XMIT_XJPL
@ = selenocentric latitude, AF = ﬁMIT—gJPL

Surveyor Project Final Report, Part II
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from the Lunar Aeronautical Charts (LAC) as compiled by the
Aeronautical Chart and Information Center (ACIC). We might
expect discrepancies of this order because systeﬁatic dif-
ferences of this size exist between radar measurements of

lunar topography (Shapiro et al., 1972) and the LAC charts.

Also a comparison of the other JPL Surveyor solutions with the
ACIC control points led to the conclusion that the ACIC datum
center is 2.8+ 0.7 km farther from the Earth than the center
of mass (Haines, 1969). The differences between formal standard
errors found here and those of Winn partly reflect different
weighting given to observation sets. These differences are
being currently examined in conjunction with JPL for possible
problem areas.

Table 12 compares the solution for the location of the
DSN tracking stations with recent JPL solutions (Mottinger,
1970). The agreement in radius and differential longitude is
very good; the absolute longitudes show a large systematic
discrepancy of magnitude 4.65 x 10_4 degrees. (~ 46 meters on
the earth's surface). The JPL longitudes place the locations
to the east of the M.I.T. determined locations. Recent
comparisons between JPL and Smithsonian Astrophysical Observa-
tory (SAO) solutions for the tracking station locations
(Gaposchkin and Lambeck, 1970) yielded a systematic longitude

. “~4
difference of 2.3 x 10 degrees, with JPL location to the
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Table 12
Comparison of DSN Station Location Solutions

Nominal Solution JPL 1S24%* JPL LS25%
(+ formal standard | (no Ionospheric (With Ionosphere)
error) Corrections)
5 5206.3388 5206.3381 5206.3419
x” (1.5x10"%)
4
i O S - 0.04395981 - 0.043930 - 0.043931
| ©
8ol 2 6
Bal = (5.1x10 )
£ + +
& 3673.853 3673.759 3673.763
N (1.6x10 %)
E 5212.0511 5212.0497 5212.0535
~ o (9.0x10~4)
— O
e
w0 o
0 K ]
fa] T _ — —-
<
<
5 5205.3496 5205.3497 5205.3504
@' | (1.2x107%)
o
g g 8‘ - 94,213245 - 94.21326 -~ 94.,213258
? § = 2.6%10 )
8 = <z (2.6x
+ +
5 - 3674.485 - 3674.628 - 3674.646
N -3
N (5.3x10 )
o 5 5742.9452- 5742.9412 5742.9417
31 3 -4 '
- (7.3x10 )
9
% g 8‘ -215.509158 -215.50915 - 215.509127
[a] E Lo}
S| = (4.2x107°)
§ 4862 .6056 4862.6044 4862.6078
N -4
ol & (1.9x10 )
% -
013 g 112.556477 112.55646 112.556448
w ol ©
Am| - -6
2. (2.8x10 )

¥

* Mottinger, 1970. Assigned formal standard errors are two
meters in Ry and five meters in .

+ geodetic values, not in solution
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east of the SAO locations. One possible explanation would be
different origins of the right ascension system (the vernal
equinox) in the various reductions of the data. The systematic
longitude difference cannot be ascribed to the different U.T. 1
time systems used, as the comparison given in Table 13 shows.
(A ten milli-second difference leads to ~4.6 x 10-'5 degree
change in longitude.)

Solutions for the Z components of station location (dis-
tance along spin axis) were made only for DSS 11 and 42 since
all Surveyors had observations at these stations. Systematic
differences compared with geodetic values exist in the solu-
tions for position along the spin axis. These differences may
be due to further rotational orientation differences between
the star catalogues used, to different implicit definitions
for the location of the center of mass of the earth, or to
data biases, etc. Differences of similar magnitude exist
between the North American Datum and the 1969 Smithsonian
Standard Earth (Lambeck, 1971). Lambeck solves for the
relationship between the NAD and the SSE by seven parameters:
three translations, three rotations, and a scale change. The

translational differences are the largest:
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AX = - 31.8 meters
AY = 178.0 meters
AZ = 177.6 meters

The solutions for the Z-component of the station locations made
in this thesis from the Surveyor data are not sufficiently
numerous for any conclusions to be drawn as yet. The star
catalogues' orientation parameters (see below) could easily
account for the longitude bias; the Z-component differences

are too large by a factor of three to be attributed to uncer-
tanties in these parameters. ‘The problem of these systematic
biases needs further investigation.

The atmospheric corrections for the principal solution
described here consisted only of tropospheric parameters for
the zenith range. The values for the zenith range in meters
from the solution are given in Table 14. These results have
been compared with the average ranges computed from radiosonde
balloon data (Ondrasik and Thuleen, 1970). The results from
the Surveyor reductions were within twenty per cent for about
half of the determinations. These results are given graphically
in Figure 19. The anomalous results for Surveyor III at DSS 61
may be partly a compensation for a large ionospheric contri-
bution (since the ionospheric effect on phase delay has the

opposite sign from the tropospheric correction). The generally
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Table 14
Zenith Tropospheric Thickness

lz from Surveyor Solutions

Tracking lz (meters)
Spacecraft Station (formal standard error)
Surveyor DSS 11 2.00 (.008)
I DSS 42 2.31 (.03)
Surveyor DSS 11 2.09 (.03)
IIT DSS 42 2.70 (.03)
DSS 51 2.10 (.2)
DSS 12 2.09 (.07)
DSS 61 1.39 (.02)
Surveyor DpSs 11 1.99 (.08)
\'4 DSS 42 2.26 (.1)
DSS 61 1.93 (.05)
Surveyor DSS 11 1.99 (1.2)
VI DSS 42 1.88 (.02)
DSS 61 2.39 (.04)
Surveyor DSS 11 1.94 (1.2)
VII DSS 42 1.95 (.009)
] 4 DSS 61 2.09 (.02)
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smaller than measured ranges may be a manifestation of the
same effect.

Now let us turn to an examination of the meridian circle
observations and of the other related parameters. The pre-
dicted residuals for the optical observations are given in
Figures 20 to 24. Note that, in Figure 24, the scale is
approximately fifty percent larger than on the other figures
for optical observations. The statistics for the optical
observations were detailed in Table 9. The revised observa-
tory positions used to obtain the corrections for parallax
and time of meridian passage 6f the center (made via the
formulae given in Chapter III) are shown in Table 15. The
orientation parameters of the star.catalogues for the observa-
tion series for which the adjustments were large multiples
of their formal errors (hence statistically significant) are
presented in Table 16. Note that the values for AE, AI, and
Ag' for the U.S. Naval series from 1925 to 1969 gives the
differential orientation of the FK4 axes with respect to our
inertial system which is defined by the totality of the
observations. (This identification is true in so far as the
reduction of the U.S.N.O. observations to the FK4 was complete
and accurate.) Interpreted as distance on the surface of the

earth, these adjustments amount to 25 meters in the equinox,
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Observatory Coordinates Used for

Non-Standard Observatioh Series

Table 15

p 8 0.
Radcliffe 6365.095 1.2516667 deg 51572505
Tokyo 6370.997 - 139.54075 35549038
U.S. Naval 6369.874 77.06554167 38973332
Observatory
Series Name
M561
Greenwich | 6365.371 0.0 50%682965
p = geocentric radius in kilometers (ae = 6378.166 Km)
© = longitude in degrees
$ '= geocentric latitude in degrees
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Table 16

Sample Solutions for Star Calalogue

Orientations for Moon Series

The numbers in parentheses are the magnitude of the adjust-

ment in units of their formal standard errors.

AE (sec of time) AI (sec of arc) AZ (sec of arc)
6 USN | 5.8x1072 (34) | 2.4x10™%  (13) | -3.2x10"1 (26)
M925
-2 -1 -1
Gren 6.2x10 (24) -3.9x10 (10) -6.1x10 (23)
M431
-2 -2 -1
Gren 3.8x%x10 (11) -1.7x10 (0.7) -2.32x10 (14)
0065
6 USN | 4.34x10 > (11) | a.ex10°}  (7) | -1. (22)
M300
-2 -1
Gren 4.99x%10 (22) 2.1x10 ( 8) -0.9 (50.2)
MOOO
-3 -1
9 USN 9.2x10 (3) 4.5x%x10 (11) -0.8 (28)
| M513
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~ 7 meters in the equatorial adjustment and ~10 meters in

the latitude bias.
Observations of the inner planets were inclﬁded in the

nominal solution because a meaningful solution for a

possibly changing gravitational constant and AT' cannot be
determined from the moon alone, as we shall see below. The
credibility of the solution is tested by the magnitudes of the
adjustments to the inner planet parameters since the inner
planet nominal values are based upon quite well converged
solutions for these parameters from the solution involving
the planet data alone (ASh.EE.EE"197l)- Table 17 gives the
adjustments found for the initial conditions for the planets.
Comparison with other solutions made by adjusting different
parameters and/or omitting various data sets leads to the
conclusion that the adjustments to the inner planet orbital
elements are controlled almost completely by the radar data
when included. The optical data alone for the inner planets,
with or without the moon data included, do not produce adjust-
ments to inner planet orbital elements similar to the radar
values no matter what parameters are adjusted for all cases
tried.* These results warn of the presence of systematic errors

in the optical data. Table 18 gives the osculating orbital

* The differences in these adjustments are large compared to
the formal errors of the solution.
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Table 18

Moon Initial Conditions from Nominal Solution at

Epoch J.E.D. 2440000.5

-12
a 0.0025715142099 A.U. (+ 5.x10 ~)*
-8
e 0.055615887 (+ 4.x10 °)*
. -7
i 28.3968891 © deg. (+ 8.x10 )%
-6
Q 3.3128778 deg. (+ 9.x10 ")*
m 226.270822 deg. (+ 1.x107°)*
-5
Mo 154.885985 deg. (+ 1.x10 ")*

* formal standard error
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elements at epoch for the moon which are associated with the
nominal solution. The next lunar ephemeris used in continuing
this work should be generated with these starting conditions.

Now let us turn to the estimation of the parameters of
particular interest in this work: those for geodesic preces~
sion, a time varying gravitational constant, and tidal fric-
tion. The estimation of AT' will also be crucial here. To
understand all these results, a digression on previous methods
of estimating these quantities will be necessary.

For any body b in the solar system, comparison of the
mean longitude of the body from the ephemeris (as a function
of coordinate time) to the observed mean longitude (as a
function of universal time) gives a difference which is

found empirically to grow quadratically with time:

2
AL, = A + BT + C7

where T is coordinate time. This (non-zero)value found for

ALb has the following possible theoretical interpretation:

9]
2c, = ny - nb(Q)
where ﬁb is an (assumed constant) rate of change of the mean

Motion ny,, and () is an (assumed constant) variation in the
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earth's rotation rate (). We may compare two different bodies

as follows:

n it n .
. 1 .e . Q 1 0
(81)y n, WMy =M mmyg-n, g
P
= nl n2 n2 = A12

By comparing the moon to the inner planets and the sun, the
quantities, A(p were found to be quite independent of the
planet p involved. Since the ratios nq/np are very large, the
values 6f ﬁp must be negligible (it was argued). On this
assumption, the A«p give ﬁ(. This rate of change of the mean
motion can be expressed in terms of the tidal friction para-

meter sin 2§. The measured quantities

1 % 9
ALp_n -5‘
Tp p

should give O/0 since ﬁp is assumed to be zero. Then AT is

T=t T .
AT (t) = [ d’rf Q(t')dat!
T = t0 0

If the concept of a changing gravitational constant is

found from

introduced, the picture becomes more complex. For any

planet, a rate of change of the mean motion caused by the
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variation in G is given by:

ey
i
N
Ql a-

as follows from Kepler's law and conservation of orbital

angular momentum. For the moon (ignoring other torques),

-1 -
- 3 x 10 ! vr 1 causes a change of

a rate of change G/G

L3

ng = - 10" century-l

or about half of the currently believed value due to tidal
friction. Thus we see that the fact that A(p is independent

of p does not give a unique value for n The problem of

«.
determining é/G, ﬁ/ﬂ, and ﬁ('becomes one of determining three

unknowns from the two equations of A(p and &i (Mercury and

o
Venus do not separately provide independent equations because
the data are not numerous enough for the accuracy required.)
With these remarks as background, let us discuss the
results for the parameters given in Table 19. The results in
this table for 6/0 are derived from the result for AT' as
follows. The'table of AT given by Brouwer depends on the
expression for Ephemeris Time which has a value for n

incorporated. 1In order to relate AT' to AT, allowance must

be made for the difference in ﬁq in the two results via
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Ty = 20.44 (SER 28 _ jyq2
8 (AT) (0'0755 )

where T is in centuries. This correction is due to the T2
term assumed by Brouwer in the moon's mean motion. After
allowing for this‘difference, any residual T2 coefficient is
assumed due to (/0. As expected from our discussion above,
no unique determination of sin 2§, G/G, and AT'is possible.
Different solutions are obtained for the parameters depending
upon the parameter set adjusted. The result for the geodesic
precession, however, is quite independent of the solution for
these quantities. A qualitative understanding of this uncoupl-
ing can be reached by considering the observable quantities
from which these parameters are determined. The mean longi-
tude of the moon, as explained above, contains the primary
information concerning G, tidal friction, and AT'. The
geodesic precession, on the other hand, is principally deter-
mined through the motion of the node and perigee of the lunar
orbit. Therefore we can expect the solution for the geodesic
precession to be meaningful in spite of possible problems with
quantities associated with the mean longitude.

The nominal solution for AT' is plotted in Figure 25.

Except for the expected difference which grows quadratically
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with time, the general oscillations of AT' and the AT of
Brouwer agree remarkably well.*

The errors quoted in Table 19 are the formal standard
errors from the solution. The uncertainty in the result for
the geodesic precession should also reflect the uncertainty
in the gravitational harmonics of the moon. The contribution
from this source can only be estimated, but a reasonable value
is 6v25 century_l. Combining the formal error with this
and doubling the result yields a conservative estimate of the
actual error of 0"6 century_l.

Comparison of the solutions for various parameter sets
allows us to place the following limits on the parameters

involved:

0.03 < sin 2% < 0.11

| §'|< 6 x 10711 yrt

s -10 -
(%J > - 2x 10 yr 1

The geodesic precession is found to be

195 + 0%6 century—

The solutions in Table 19 assume that general relativity
is correct for the inner planets. Relaxing this constraint,
we estimated the multiplicative factor for general relativity
'*The seasonal variations AS.V. were not well determined from

our data. The nominal solution holds these parameters at the
values described in Ch. IT.
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xr for both the moon and the inner planets combined. The
solutions for Ay ranged from (0.995 + 0.006) to (1.003 +
0.006), where 1.000 would indicate that general relativity is
correct. (J2 for the sun was fixed at zero in these solutions
so this result can shed no light on Dicke vs. Einstein, except
in a model-dependent way.)

Any conclusions based on the solutions discussed in this
thesis must be regarded as tentative, due to the following
modeling and procedural problem areas. Firstly and probably
most importantly, the solutions are not fully converged on the
true maximum likelihood estimate since no iterations have been
performed. Therefore the first step in any future work with
these lunar data must be reintegrating the motion of the moon,
recomputing the residuals,” and forming new normal equations.
The second problem area concerns the modeling of the moticn
of the observational coordinate system with respect to inertial
space. As discussed in Chapter I, this motion has been para-
meterized as three rotations about orthogonal axes. The
solutions discussed above do not include any attempts to
solve for these parameters. 1Inclusion of these parameters in
the next iteration may cause significant changes in the solu-

tions.
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As has been discussed above, the solutions obtained here
contain indications of systematic errors of various types.
Until the origins of these errors are bettér understood, we
must be very cautious in the interpretation of the results
here. Some of the questions concerning systematic errors can
be approached by comparison of results obtained using dif-
ferent data types. Two data types come to mind immediately:
laser ranging observations and stellar occultations by the
moon.

The stellar occul tation data were originally intended to
form a part of this work and the calculation of the observable
from the theory is checked out. The normal equations cannot
be used, however, because the partial derivatives of the
observable with respect to many parameter types have not yet
been checked numerically for consistency with the observable
itself. Work in this area is continuing.

The laser ranging data could have been processed by PEP
for this thesis. At the time of this work, however, the
availability of the data was restricted to members of the
LURE team. Thesehdata should clearly be incorporated as

quickly as possible into the solutions. The accuracy of the
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laser observations will require the eventual improvement of
the model for the rotation of the moon about its center of
mass. Within the context of PEP the 1ogical‘direction for
this improvement would be the numerical integration of these
equations of motion. The knowledge of rotation of the earth
about its center of mass is another area which will soon be
inadequate for'treatment of the laser data. Estimation of the
Chandler wobble, solid earth tides, continentai drift etc. will
be necessary. All these effects to be modelled will degrade
the sensitivity of the laser data to the parameters of funda-
mental physical interest such as the time variation of G
unless other methods of estimating the same effects can be
brought to bear. Parallel monitoring of these motions by a
technique of comparable aécuracy - Very Long Baéeline Inter-

ferometry - would be highly desirable.
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Index of Symbols

The following general principles have been adhered to in
designating the various physical quantities, Vectors -- a magnitude and
direction independent of coordinate system -- have been denoted by an
arrow above the symbol (e.g. i). A 3x1 matrix of components of a vector
in some particular coordinate system are designated by a tilde under the
symbol (e.g. x). Other matrices have their symbol underlined (e.g. P).
A dot above a letter denoted differentiation with respect to time.
Subseripts O frequently indicate initial values,

The following index is not inteﬁded to be complete. Those symbols
which are important or which may be ambiguous have been included, For
those symbols which have multiple definition, it is hoped that the

context will be sufficiently clear that no confusion will result.

A coefficient of forces in tidal friction model
a semi-major axis of ellipses
a;,C4 time-independent amplitudes of trigonometric '

seasonal variations in earth rotation

bi’di time~dependent amplitudes of seasonal variations in earth
rotation

B moon rotation matrix

c speed of light in vacuum

cij correlation coefficients

czm,szm coefficients in expansion of gravitational field in

spherical harmonics.
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D term in lunar tidal friction model

D(t) term in C.T.-A.l

Dc counting interval

ds? line element in general relativity

e eccentricity of elliptic orbit

F rotation matrix for the Earth about its center
of mass

fo transmitter frequency

G gravitational constant

gij components of metric tensor

ﬁ acceleration on the moon due to the harmonics in
lunar gravitational potential

I inclination of mean lunar equator to the ecliptic

IiJ components of inertia tensor

Jn coefficient of zonal harmonics

K2 Love number

L semi~latus rectum of ellipse

LO mean anomaly at epoch

LZ atmospheric delay in zenith direction (converted
to distance)

M(t) term in C.T.-A.l.

ME mass of earth

Mj mass of jth planet

MM mass.of the moon

MQ mass of the sun

N nutation matrix
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=

0’

= R4

=é

integrated electron content of ionosphere

lunar orbital angqlar velocity vector

mean motion of the moon

observable quantity

force on moon due to planets other than the earth
precession matrix

Legendre functions

acceleration of moon due to earth éravitational
harmonics

quality factor for the earth

acceleration of moon due to general relativistic
effects

radial acceleration of the moon due to tidal friction
acceleration of the moon due to tidal friction in
the plane of the mean lunar orbit

sidereal time

as superscript, matrix transpose

acceleration on moon due to tidal friction in earth-moon

system

energy-momentum tensor

universal time

coordinate time

point in AT' model at which a slope change occurs

some initial epoch
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the matrix PTNTFTET

a

U gravitational potential

% acceleration of moon due to time varying gravitational
constant

W wobble ( polar motion) matrix

W acceleration of the moon due to tidal
friction normal to the mean lunar orbit

W angle in precession matrix

Y vector in numerical integration

Y(t) term in C.T.-A.1l.

¥y value of AT' at ti

z angle in precession mabrix
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Ay

AT'

Ul|-3

Il

right ascension

parameter in Robertson metric
parameter in Robertson metric
parameter in Robertson metric
nutation is obliquity

nutation in longitude

coordinate time minus universal time U,T.2
leg angle in tidal friction model
obliquity of the ecliptic
apparent sidereal time

geocentric longitude

element of wobble matrix

the combination GM

 element of wobble matrix

transition in cesium - 133 defining A-1 second
angular velocity of orbital angular momentum
precession

vector potential derived from TﬁN
angle in precegsion matrix
lunar parallesx

physical libration in inclination of moon
moon rotation matrix

physical libration in the moon's node
coordinate time

proper time in general relations

time delay

scalar potential derived from Tuv

0 +o0
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N longitude of mean ascending node of lunar orbit

measured on the ecliptic from mean equinox of date

3 earth angular velocity
0 magnitude of ES
w relative angular velocity vector between two

coordinate systems

w argument of perigee of lunar orbit

Special Symbols

o) sun

¥ Mercury

? Venus

m | Farth

d Mars

q The mean 10ngitude. of the moon; as a subscript,

denotes a quantity associated with the moon.
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Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure Captions

Schematic Illustration of Model for C.T.-U;T;Z
Osculating Orbital Elements for the Moon as a
Function of Time, with Newtonian Gravitational
Interaétion Only between Centers of Mass (Ekpres-
sed as differences from elements at epoch).
Osculating Orbital Elements as .a Function of
Time with General Relativistic Gravitational
Perturbations of the Sun Affecting the Moon-

No Direct Solar Perturbations.

Coordinate System and Vector Used in Tidal
Friction Calculation

Osculating Lunar Orbital Elements with Tidal
Friction and Newtonian Interactions Affect the
Lunar Motions

Osculating Orbital Elements for the Lunar Motion
Affected by Newtonian Interaction and a Changing
Gravitational Constant.

Right Ascensibn Residuals for the U.S. Naval
Observatory with the Ephemeris of Chapter VI,
Declination Residuals for the U.S. Naval Observa-
tory with the Ephemeris of Chapter VI.

Right Ascension Residuals for the Royal Greenwich

Observatory with the Ephemeris of Chapter VI;
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Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Declination Residuals for the Royal Greenwich
Observatory with the Ephemeris of Chapter VI.
Gaussian Distribution Fitted to Right Ascension
Residuals from Fit for 1925-to 1968.

Gaussian Distribution Fitted to Declination
Solution for AT' from Data for Period 1925-1968.
Predicted Residuals for Surveyor I from Nominal
Solution from 1970 to 1750.

Predicted Residuals for Surveyor III from
Nominal Solution from 1970 to 1750.

Predicted Residuals for Surveyor V from

Nominal Solution from 1970 to 1750.

Predicted Residuals for Surveyor VI from
Nominal Solution from 1970 to 1750, .

Predicted Residuals for Surveyor VII from
Nominal Solution from 1970 to 1750.

Zenith Range through Troposphere for Surveyor
Solutions (Nominal for Period 1970 to 1750).
Predicted Meridian Circle Residuals for the
Period 1970 to 1900, Part A.

For ease of reading Figures, here is table of

Julian Day Numbers
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Figure

Figure

Figure

Figure

21.
22.

23.

24

1750 2360234 1950 2433282
1800 2378496 1955 2435108
1850 2396758 1960 2436934
1900 2415020 1965 2438761
1925 2424151 1970 2440587

Predicted Meridian Circle Residuals for Period
1970-1900; Part B (Nominal Solution)

Predicted Meridian Circle Residuals for Period
1900-1830; Part A (Nominal Solution)

Predicted Meridian Circle Residuals for Period
1900-1830; Part B

Predicted Meridian Circle Residuals for Period

1830-1750.
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APPENDIX I

The Inertial Reference Frame Determined from
the FK4 Stellar Positions and Proper Motions

Fricke (1967a, 1967b) analyzed the measured proper

motions of 512 stars in the FK3, N30, and FK4 catalogues

for information about the motion with respect to a truly

inertial system of the frame of reference that is nominally re-

presented by Newcomb's relations for the precession matrix (Ch.

11.C).

1.

This analysis depends upon three important assumptions:

The stellar motions used are distributed well

enough over the sky so. that, with proper weighting
of different areas, the results obtained closely
represent the results to be_found from a dense
distribution of measured proper motions covering
the whole sky.

The stars have the property that the residual proper
motion over the ensemble would vanish in a truly
inertial frame once the solar motion and galactic
rotation are removed.

The description of the motion of the reference frame
compared to an inertial frame is adequately des-
cribed by 3, a rigid rotation of one frame rela-
tive to the other (i.e. no distortion effects exist
other than the simple'model for shear from differen-

tial galactic rotation and the motion of the sun).

231



To explore the effects of these assumptions on the
results, Fricke has carried out solutions for w in the
various catalogues, in the same catalogue with different
weightings, with different parallax groups, with right ascen-
sion proper motions u , with declination motions ug and with

u, and us combined. To give the reader some feeling for

o
the range of solutions (and hence their credibility) some
sample solutions will be given. The FK4 '"standard solution”
‘designated (C02.2) with declination motions weighted twice

as much as right ascension motions, and with statistical

parallax factors applied to different regions, 1is

wy = -0v22 + 0V04 per century
w, = +0739 + 0704 per century
Wy = -0v34 + 0704 per century

The solution with u  alone and the same parallax factors gave

-0v60 + 0V11l per century

+0V34 + 0V11 per century

wg = -0V26 + 0V05 per century

whereas the corresponding ua solution gave
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w, = -0V11l * 0VO05 per century
= +0V35

| +

w, 0v06 per century

(w3 is not in the declination solution since Ms has no sensi-
tivity to a motion in the plane of the equator.) The N30

solution corresponding to the FK4 standard solution gave:

w; = -0Y18 + 0V04 per century

+0V40 + 0V04 per century
Wy = -0V28

| +

0.04 per century

Note that the FK4 and N30 catalogues are different treatments
of greatly overlapping observational material.

Solutions were also made from two classes of stars:

(1) all stars closer than 250 parsecs (351 stars)
(2) stars further than 250 parsecs, restricted to

galactic latitude + 30° (137 stars)

The average results for N30 and FK4 combined were:

Wy -0v18 + 0V05 per century

Class 1 w, +0742 + 0706 per century

-0V38 + 0V07 per century
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-0V24 + 0V04 per century

+0%V33 + 0V05 per century

N
I

Class 2 w

‘w
|

wg = -0v28 + 006 per century

Fricke takes the solution which he feels is most re-
liable, and interprets the resulting ® in terms of preces-
sion constant errors, equinox motion, and galactic rotation

The result usually stated is that
A(Pcos €) = +1V10 + OV10 per century

where P is Newcomb's constant for luni-solar precession, and
€ is the obliquity of the ecliptic.

Let us instead compute what these results for ® imply for
the angles in the precession matrix P. From the expressions
in the report by Lieske (1967), we find the changes to the an-

gles described in II.C that are implied by Fricke's result are:

Agy v Az = -(0V10 * 0V05)Tg,

AW = +(0144 + 0U04)T o

where the errors reflect Fricke's assigned errors.

To see these results in another form, we can derive
the changes in the precession in right ascension Ac and

the precession in declination A6 as
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Ao = Ago + Az = -(0V20 + 0’.'10)T50

AS

AW = (0144 1 0U04)T,

>
These results are the basis for believing that |w| < 1" per

century.
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APPENDIX 2
Rotation Matrices and the Equations of Motion
in a Rotating Frame

The assertion was made in Chapter Il that the estima-
tion of a certain rotation matrix was equivalent to estima-
tion of the Coriolis term in a rotating coordinate system.
This appendix contains the proof of that assertion.

Consider a small particle moving under Newtonian at-
traction about a massive body at the origin. The differen-

tial equation for the vector position T of the particle is

given by
dz? - U ~
d 2 5z T .
t |7 | (1)

in inertial coordinates. Now assume that we have another co-
ordinate system with the same origin rotating with a con-

stant angular velocity » with respect to the inertial system.

We assume for simplicity that at t = 0, the coordinate systems
coincide. The vector position T' for the particle in this

new coordinate system obeys the differential equation:

2>,

d T ]-l N > d;' > > > >
= - 4 ' - 2(ux )-wx(wxr(r'))
dat? [r(r") | at

(2)
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We make the assumption that |w| is small enough so that

> P
the squares of distances of order |&||r|T and velocities of

+ -
order |G||%%|T (where T may be 2 or 3 centuries) are ignorable.
For example, for T equal to 2 centuries, and ]?I equal to one

. . . . -3
hundred astronomical units, the distance involved is ~10

A.U. Therefore the last (centrifugal) term in the equation
of motion can be ignored.
We wish to show that T' and T are related by the expres-

sion

T o= I+ e)F (3)

where I is the identity matrix and

0 +wzt -wyt
£ = ~w,t 0 o, t (4)
+wyt -th 0

That is, given that T is a solution of Equation (1), we wish
to show that the 7' defined by (3) is a solution of (2). Note
that (3) at least satisfies the condition that, at t = 0,

the systems coincide.

First, let us evaluate |T']
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I
Z_
HY
=l
+
N
g
N
Sy
+
o
Hy
D

We find for the middle term that

Z[wzyxt - wyzxt - W Xyt +ow zyt + wyxzt - wxyzt] =0

So, not surprisingly, if we neglect terms of O ezrz, we have:

T = I7|

Therefore

o= (L + e)r

We can compute the following:

ar' _ df a >
T “ata &0

jwzty - wytz

d? + d ~w_tx + w_tz
dt  dt | "z p'e

wytx - thy
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- + '-wtz'
wzy wyz wzty y

= + X+ wz - w tx + w ti
dt Wy X z X

wyx T,y + wytx - thy

2 2 -> '
d’r' d'r _ d dr, _ =, dr
27 ‘dtz"“af(ia'f) WX TF
2> 2>
B PO g
dt at

by analogy or direct calculation. Therefore the left-hand side

of (2) is given by

2> >
(l + E) %——% - 2 X%—E
t

and the right-hand side is given by
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ar

B} _I.LJ_F_ (_1_+£)§ - 2wx e

~ s dT dar > >
= M - D -
Y (Lre)r - 20%[qg * £ qg - w*T]
~ -> d?
= ¥ -
= I (I+e)r - 20X g¢

If we ignore terms of order Wy Multiplying both by (£+§)'1

’

we see that (2) under substitution (3) gives
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APPENDIX 3

Angular Momentum and General Relativity

In this appendix, we wish to briefly indicate the theore-
tical development from general relativity for the geodesic
precession.

Following the notation of Weinberg (1972), we consider
the spin four vector
.= By
Sa = eusst U (1)
of a system for which an energy-momentum tensor T8 exists.

The factors in this expression are

edBYS - the antisymmetric Levi-Civita tensor
1
U6 = pa/(-psps)f - the four vector velocity
5 dax$
n
= g E) It

where E and d§h/dt are the energy and coordinate velocity
of the nth particle in the system
o

n
E

S ™

p

8% (R-%, (1))

P
%8 (X,t) =
n n

_JBY is the "angular momentum'" tensor defined below. To
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éonstruct JBY consider

MY = xOrBY L xBroY

then
598 = fax el

Note that Sa will reduce to (g,O) in the rest frame of the
system (where S is the ordinary angular momentum about the
center of mass of the system).

The covariant form of this vector in a general coordinate
U

system x"~ is defined by

s, = gsg
where Si are components of Sa is the freely-falling coordinate
system Ea. [Note that if Sa cannot be transformed into a
locally freely-falling frame, then the covariant form of
Sa cannot be defined in this way. The earth, for example,
is large enough not to be considered strictly a test particle.
Extended spinning bodies have been treated by Papepetrou (1955)
and Fock (1939).]

The equation of motion for Sﬁ is the so-called "equation

of parallel transport":

ds

U o_pA gV
I TuvU S,
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where the affine connection is

Ao ax) ple®

HX 9% axMaxV

r

This equation, multiplied by %% , becomes

dSi 0 ]
aT = Tio 55 ~ TioV'5;
i ke _ 20 K.
+Pikv Sj Fikv v Sj

To order (93/5) in the post-Newtonian approximation:

P o1 ( %5 Eii) s, 29

01 4 axt 5x7 1) ot

0i = i

9X

(2)

J o0 99 90
P LN - "6-- - 6- —. *+ 6 —

1k 1) oxk Ik 5 5
(0),
Fijx =0
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Where the number in parenthesis (n) indicates the equivalent

order of V''/T of the component of the affine connection.
Parallel transport preserves the values of Susu, or

32, 2682 - (3°§)2. To order (|§i2|§|2), the quantity that

is preserved is
+ > >
s= (1+¢)38 - % V(v+S)

The equation. of parallel transport is then

>
> >
%% =0 xS
where
> 1 2> > 3 ->
Q= - 7 VXE - 5 VxVo

where E and ¢ are the potentials defined in

Chapter II.

244



APPENDIX 4

Programming of the Model for Tidal Friction

A, Definitions

For purposes of documentation, details of the implementa-
tion of the tidal model in the program are given here. The
accelerations due to the tidal forces are eipressed in a co-
ordinate system referred to the equinox and equator of 1950.0

A

for insertion into PEP. The unit vector u

Xy

5= ME
1%zl

=

in the direction of the moon from earth is easily found
from quantites in PEP. The velocity vector Vq_e of
the moon relative to the earth is also available and can

be used to form n as follows:

axy
3 e
luxvy gl

(See Section II.D.3 for notation.) We have
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2-)'

d rq_@ A A A
—3° = Ra + Wn + St
dt®  Jiida1

A A A
with the unit vector t found from nxu to complete the basis
vectors.

The angle ¢' must be expressed in terms of quan-
tities in PEP. The earth's angular velocity vector Q can be

used for this purpose. A unit vector a in the direction of the

ascending node is given by

a = fxn/|oxh|

and

il
>
c

cos ¢!

dl—cosz¢'

sin ¢
The sign of sin ¢' is the same as that of u-g.

B. Partial Derivatives

First we note that, in PEP, the symbol Z has been used.

for the function designated as S above

? A~ ~ ~
r = Ru + Wn + Zt
and thus
>
or 3R  ~ oW ~ 9z 2
Sowm—s T oeT Ut o= nt —= t
aci Sci Bci Bci
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where

R =-A'Cc(r){(3 c0526-1+D}
Z = A'C(r){f(t)}sin 2§
W= -A'"C(r){g(t)}sin 25

where c_ is a parameter described below. In analogy with

i
R. R. Newton's results, we have allowd for a time variation

in tidal friction by setting
sin 296 = cy - (c2 + cst)t

where t is the elansed time from epoch. Using the relation

ocC .

o (coszﬁ) = %ET [% (1+'da-sin2(25) )]
i i

1 sin 26 9 (sin 28)

aci

=7
Vi-sin®(26)
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we obtain

3 sin 26

1 V1i-sin%(26)

L - prc(r){f(t)}

€1

.g_‘gl = -A'C(r) {g(t)}

3R i

562 = -A'C(1) % (sin 28)t
V1-sin”(26)

Y

5, ° SATC(r){E(E) 3t

W

3, A'C(r)g(t)t
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[
~

|

QI
O

Lo
(@RS

=

3 (sin 26)t2

A'C
() 7 —7
V1-sin”(26)

CATC(r) (£(t) 12

A'C(r)g(t)t?
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APPENDIX 5

Everett Interpolation

In the Planetary Ephemeris Program (PEP); the tabular
interval for each function to be inteppolated is chosen so
that the necessary accuracy can be obtained with Everett
interpolation using eighth differences. Let f(t) be the func-
tion which we wish to evaluate at an arbitrary time t;_given
that we have a table of its values fi = f(ti) at equally
spaced tabular points t; between t, and t- We define the

even order differences for this tabulation by the inductive

relations
0 _
Ai - fl
2n _ ,2n-2 _ 2n-2 2n-2

Let h =ttt be the tabular interval and let q = 1-p.
Then the Everett interpolation polynomial g(t) = g(t0+ph)

[to be defined below] for tg £t <ty, can be made to repre-

sent the actual value f(t) as accurately desired by appropriate

choice of tabular interval h and highest order of differences
used 2n if f possesses derivatives up to order 2n+2. See

Hildebrand, "Introduction to Numerical Analysis'", p. 103.
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To find the value of f(t) for ty St <ty by interpolation,

tion, PEP determines the function g(t) from the formula

g(t) = g(ty+ph) = p(yi+pz(y§+p2(yi+p2(yi+pzyi))))
+q(y%+q2(y§+q2(yg+qé(yg+q2yg))))

where the coefficients are defined by

y} = 1.7873015873015873f; - 0.4950317460317460(fi+1+fi_1)

+0.1206349206349206(f.+2+fi_2)-0.1984126984126984X10_1

1

-2
(£5,5%£;_5)*+0.1587301587301587x10 “ (£, ,+f: ,)

2 = -
y; = 0.9359567901234568fi+0.6057098765432098(fi+1+fi_1)

-0.1632716049382716(fi+2+fi_2)+0.2779982363315696><10"1

2

(f5,3%f5.3) -0.2259700176366843x10" “ (£, ,+f; ,)

.+
i+4
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3 . -
Yi = 0.1582175925925926fi 0.1171296296296296(fi+1+fi_1)

+0.4606481481481481 %101 (£, ,+£. ,)-0.8796296296296296x10 "

-3
(£5,5+f; 5)+0.7523148148148148x107 7 (£, ,+£; 4)

. +
1+3

2

He b

= ?0.9755291005291005x10-zfi+0.7605820105820106x10-

-2
(fiil+fi=1)-0.3505291005291005x10 (fi+2+fi-2)

+0.8597883597883598%10 > (£.

1+3+f

i-3)

4

-0.8267195767195767x10" " (£ £5_4)

. +
i+4

0.1929012345679012XlO-Sfi-O.1543»209876543210*103

\<
et
I

-4
(£;,1*f;_1)*0.7716049382716048x10" " (£, , ,+f

i+2 i-2)

-0.2204585537918871x10 (£, . +£. )

+0.275573192398589 X107 (£, ,+£; ,)

If the value of dr(t)/dt is needed in PEP and there is -

252



no tabulation for this function as there is for f£(t), it is
assumed that df(t)/dt = dg(t)/dt (numerical differentiation),

where
dg(t 1, 2,22, 2:c.3, T,n 4. o 25
h a%l—l-= y1*tp  (3yy+p” (Syy+p (7y1+9p7y7)))
1 2,,.2, 2.3, 2 2.5
=¥~ (3yp*a” (Syy+a (7yg+9q Y)))

If the value of the second derivative is needed in PEP; it

is assumed that dzf(t)/dt = d?g(t)/dt; where

3

2
2 alg(t 2, 2,0 3. 2., & o 25
n* 4208 - pieylap?20y3+p® 42y +7205y3)))

2,2 c00v3aa2 s 2,5
+a(6yg+a’ (20y5+a” (42y¢+72a%y7)))
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APPENDIX 6

Bibliography for Optical Observations

of the Sun, Moon, and Planets 1750-1970

1. Berlin (Germany).

Berlin, Germany. Astronomische Beobachtungen auf der

‘Kaiserlichen Sternwarte zu Berlin.

observations for

Band 2, 1844, p. xxv-xxxi. 1839-1842

2. Besangon (France). Université. Observatoire.

a. Bulletin Astronomique.

observations for

Cinquiéme, 1890, p. C1-C1l0 and C12-Cl4. 1890
Sixiéme, 1891, p. C1-C5 and C7-C8. 1891
Septiéme, 1892, p. C1-C3 and CS. 1892
Huitiéme, 1893, p. C1-C3 and C5-Cl11. 1893
Neuviéme, 1894, p. C1-C2, C4-C6 and C8-C10. 1894
Dixiéme, 1895, p. C1-C6. 1895

b. Bulletin Astronomique, Paris.

observations for

Tome XXVIII, 1911, p. 173-176. 1908
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¢. Journal des Observateurs, Marseilles.

observations for

Vol. IV, No. 8, 1921, p. 67-72. 1909-1914
Vol. VI, No. 7, 1923, p. 49-51. 1921-1922
Vol. XVIII, No. 1, 1935, p. 15-16. 1930-1934
Vol. XXI, No. 7, 1938, p. 104. 1937

3. Cambridge (England). University.

a. Cambridge, Enéland, University.‘Astronomiéal Observa-

tions made at the Observatory of Cambridge, George

Bidell Airy.

observations for

Vol. I 1829, p. 77-83. | 1828
Vol. II, 1830, p. 105-107 and 109-116. 1829
Vol. IV, 1832, p. 122-131 and 133-136. 1831
Vol. V, 1833, p. 110-114 and 116-118. 1832
Vol. VI, 1834, p. 134-143 and 145-149. 1833
Vol. VII, 1835, p. 162-170 and 173-176. 1834
Vol. VIII, 1836, p. 124-132 and 134-136. 1835

b. Cambridge, England. University. Astronomical Obsefva-

tions made at the Observatory of Cambridge, James

Challis.,

observations for

Vol. IX, 1837, p. 114-122 and 124-126. 1836
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b. (continued)

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

X,
XI,
XII,
XIII,
X1V,
XV,
XVI,
XVII,

XVIII,

XIX,

XX,

XXI,

XXII,

1839,
1840,
1841,
1844,
1845,
1848,
1850,
1854,

1857,

1861,

1864,

1879,

1890,

=T B o o B o - e o

observations for

20-29 and 32-35.
26-34 and 36-39.
200-207 and 209-211.
198-207.

242-248.

182-186.

128-134.

76, 228-231, 233-235,
342 and 344.

146, 280-283, 286,
406-408 and 412.
108-111, ilS, 227 -
228, 231, 362-364

and 369.

90-92, 94-95, 198-200,
203, 286-288, 292,
374-376 and 381.
87-88, 189-191, 303-
305 and 421-423,
125-127, 207-209, 279-
281, and 326-328.
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1837

1838

1839

1840-1841

1842

1843

1844-1845

1846-1848

1849-1851

1852-1854

1855-1860

1861-1865

1866-1869



4, Cape of Good Hope (South Africa). Royal Observatory.

a. Cape of Good Hope (South Africa). Royal Observatory.

Annals of the Cape Observatory.

observations for

Vol. II, Pt. 5, 1907, p. 34D-81D. 1884-1892
Vol. VIII, Pt. 4, 1915, p. 48D-78D. 1907-1911
Vol. VIII, Pt. 5, 1921, p. 51E-71E. 1912-1916
Vol. XIV, Pt. 4, 1950, p. 1-103. 1925-1936

b. Private communication, 6 July 1966.

observations for

1936-1959

5. Edinburgh (Scotland). Royal Observatory.

Astronomical Observations made at the Royal Observatory,

Edinburgh.

observations for

Vol. IV, 1841, p. 172-179 and 181-183. 1838
Vol. VI, 1847, p. 141-149 and 151-153. 1840
Vol. VII, 1848, p. 209-215 and 218-219. 1841
Vol. VIII, 1849, p. 257-267 and 269-271. 1842
Vol. IX, 1850, p. 209-216 and 219-221. 1843
Vol. X, 1852, p. 213-221 and 224-226. 1844
Vol. X, 1852, p. 287-292. 1845

p. 369. 1847

Vol. X, 1852,
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6. Greenwich (England). Royal Observatory. Observations ap-

peared under various titles below:

al

Hurstmonceux (Herstmonceux), England. Royal Greenwich

Observatory. Reduction of the Observations of the Planets

made at the Royal Observatory, Greenwich from 1750 to

1830, under the superintendance of George Biddell Airy,

London.

observations for

1845, p. 164-227 and 244-311. 1750-1830

Hurstmonceux (Herstmonceux), England. Royal Greenwich

Observatory. Reduction of the Observations of the Mooen

made at the Royal Observatory, Greenwith, from 1750 to

1830, under the superintendance of George Biddell Airy,

London.
observations fof
Vol. 1, 1848, p. 1-495. 1750-1830

Vol. 2, 1848, p. 1-447, 1750-1830

Hurstmonceux (Herstmonceux), England. Royal Greenwich

Observatory. Astronomical Observations made at the

Royal Observatory Greenwich, in the months of (April,

May, June) 1828, by John Pond, London.

observations for

1828 (April-June). 1828
1828 (July-September). 1828
1828 (October-December). 1828
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d. Hurstmonceux (Herstmonceux), England. Royal Greenwich

Observatory. Reduction of the Observations of the Moon

made at the Royal Observatory, Greenwich, from 1831 to

1851 under the superintendance of George Biddell Airy,

London.

observations for

1859, p. 2-39. | 1831-1851

e. Hurstmonceux (Herstmonceux), England. Royal Greenwich

Observatory. Astronomical Observations made at the

Royal Observatory Greenwich in the year (date of

observations), London.

observations for

82-88. : ' 1829

1834, p.

1833, p. 74-84. B | | 1830
1832, p. 93-101. - 1831
1833, p. 63-70. | 1832
1834, p. 52-59. | 1833
1834, p. 29-36. 1834
1835, p. 27-34. 1835
1837, p. 95-105. 1836
1838, p. 95-107. | | 1837
1840, p. 97-107. 1838
1843, p.

20-31. ' 1841 *
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€.

(continued) observations for

1844, p. 17-28. 1842 *
1845, p. 17-28. | 1843 *
1846, p. 19-29. 1844 *
1847, p. 27-39. 1845 *
1848, p. 25-34, 1846 *
1849, p. 21-32. 1847 *
‘1864, p. 19-25, and 31-34. 1862 **

. Hurstmonceux, (Herstmonceux), England. Royal Green-

wich Observatory. Astronomical and Magnetical and Me-

teorological Observations made at the Royal Observatory

Greenwich in the year (date of observations),

London.
observations for
1840, p. 5-15. 1839
- 1842, p. 18-28. . 1840

(see * above for observations for the years 1841-1847)

1850, p. 18-30. 1848
1850, p. 26-34. 1849
1852, p. 29-35 and 39-42. _ 1850
1853, p. 20-27 and 30-33. 1851
1854, p. 27-33 and 38-40. . 1852
1855, p. 21-25 and 29-32. 1853
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f. (continued) cbservations for

1856, p. 23-30 and 37-40. 1854
1857, p. 22-28 and 33-36. 1855
1858, p. 21-27 and 35-37. 1856
1859, p. 21-27 and 34-37. 1857
1860, p. 22-29 and 41-45. 1858
1861, p. 31-38 and 46-49. 1859
1862, p. 27-33 and 42-44. 1860
1863, p. 23-28 and 36-39. 1861

(see ** above for observations for the year 1862)

1865, p. 25-31 and 39-42. 1863
1866, p. 33-39 and 48-50. | - 1864
1867, p. 41-47 and 57-59. 1865
1868, p. 43-48 and 58-61. 1866
1869, p. 35-40 and 50-53. 1867
1870, p. 28-35 and 44-47, 1868
1871, p. 23-29 and 41-43. 1869
1872, p. 23-29 and 37-39. 1870
1873, p. 27-34 and 39-41. 1871
1874, p. 33-39 and 47-50. - 1872
1875, p. 34-40 and 51-54. 1873
1876, p. 33-39 and 47-50. 1874
1877, p. 28-34 and 42-45. 1875
1878, p. 32-37 and 48-51. 1876
1879, p. 27-33 and 39-41. N 1877
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(continued) observations for
1880, p. 41-46 and 51-54. 1878
1881, p. 33-38 and 44-46. _ 1879
1882, p. 38-43 and 46-49. 1880
1883, p. 34-40 and 45-48. 1881

1884, p. 38-
1885, p. 56-
1886, p. 50-
1887, p. 47-
1888, p. 43-
1889, p. 45-
1890, p. 45-
1891, p. 43-
1892, p. 51-
1893, p. 45-
1894, p. 44-
1896, p. 66-
1897, p. 72-
1897, p. 64-

(For observations in the years 1882-1909
the subtitle which follows is important
because each section is individually
numbered beginning with p. 1: Right

Ascension and North Polar Distances of

the Sun, Moon and Planets.)

43 and 47-50. 1882
62 and 65-68. 1883
56 and 60-63. 1884
53 and 56-59. 1885
50 and 55-58. 1886
52 and 57-60. 1887
51 and 55-58. 1888
49 and 54-56. 1889
59 and 63-66. 1890
52 and 55-57. 1891
53 and 55-58. 1892
76 and 79-82. 1893
81 and 85-87. | 1894
74 and 77-79. 1895
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f. (continued)

1898,
1899,
1900,
1901,
1902,
1903,
- 1904,
1905,
1906,
1907,
1908,
1909,
1910,
1911,
1912,
1913,
1913,
1915,
1918,
1920,
1921,
1922,
1922,
1923,

o= R - B o o A - o - S - - T - T T CT. B - T B B

78-88 and 90-93.

110-119
110-118
118-129
106-115
100-110
212-223.

307-321.

. 314-321

264-277.

130-143.
150-164.
140-154.

. ASZ;A66.
. A38-A47.
. A41-AS52.
. A39-A49.
. A34-A44,
. A37-A47,

and 121-123.
and 120-122.
and 131-134,
and 117-120.
and 112-115.

and 323-325,

. 97-104 and 106-107.

. A99-A110.
. A114-A130.
. A98-A111.
. A100-A111 and A113-A114.
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observations for

1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919



f.

g.

(continued) observations for

1923, p. A49-A59. 1920
1924, p. A48-A58. 1921
1924, p. A43-A57. 1922
1925, p. A40-A54. | 1923
1926, p. A40-A5S. 1924

Hurstmonceux (Herstmonceux), England. Royal Greenwich

Observatory. Observations made at the Royal Observa-

tory, Greenwich in the year (date of observations)

in Astronomy, Magnetism and Meteorology under the

direction of Sir Frank Dyson, London.

observations for

1927, p. A44-ASS. 1925
1928, p. A40-AS5S5, | 1926
1929, p. A54-A83, 1927
1930, p. A56-A72. 1928

p. A56-A73. 1929
1932, p. A52-A68. 1930
1933, p. Al0-A25. 1931
1933, p. A10-A25. 1932
1934, p. A10-A27. 1933
1935, p. Al0-A26. 1934
1937, p. A10-A25. o 1935
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g. (continued) observations for

1939, p. Al0-A25. . 1936
1957, p. A8-Al0. 1947 %%

h. Hurstmonceux (Herstmonceux), England. Royal Greenwich

Observatory. Astronomical results from observations

made at the Royal Observatory, Greenwich, in the year

(date of observations) under the direction of H. Spencer

Jones, London, extracted from the Greenwich Observations.

observations for

1951, p. A8-A22, 1937
1951, p. A8-A22. 1938
1953, p. A8-A22. 1939
1954, p. A8-A19. 1940

(no observations for the year 1941)
1955, p. A8-A22, 1942
1955, p. A6-All. 1943
1955, p. A6-A10. 1944
1953, p. A6-Al0. 1945
1955, p. A8-A19. 1946

(see *** gbove for observations for the year 1947)
1958, p. A9-A22. 1948
1957, p. A8-A25. . 1949

i 265



h. (continued)

1958,
1958,

p. A8-A25.
p. A8-A27.

1958, p. A8-A27.

1959, p. A8-A26-

1961,

p. A8-A16.

observations for

1950
195}
1952
1953
1954

7. Nice (France). Observatoire. Observations for outer

planets only.

a. Annales de 1'Observatoire de Nice,.

Tome
Tome

Tome

Tome

Tome
Tome
Tome

Tome

12, 1910, p.
12, 1910, p.
11, 1908, p.
12, 1908, p.
12, 1910, p.
12, 1910, p.
12, 1910, p.

12, 1910, p.
P

1

observations for

B78.
B115-B117.
B166-B167.
B288-B289.,
A115-A116
A197-A198.
B136.
B154.

Bulletin Astronomique, Paris.

Tome

) Tome

Tome

Tome

Tome

i : e
XXIV, 1907, p..5-6.

.1889
1890
1891
1892
1893
1894
1895
1896

observations for

XXV, 1908, p. 96-100.

i

XXVII, 1910, p. 33-34 and 358-350.

XXVI, 1909, p. 75-77.

XXVIII, 1911, p. 276-277 and 350.
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1905-1906
1907
" 1908

1909-1910

1910-1911

(el



. Ottawa (Canada). Dominion Observatory. Observations for sun

and inner planets only.

Publications of the Dominion Observatory, Ottawa.

observations for

Vol. XV, No. 2, 1952, p. 115-158. 1924-1935

Oxford (England). Radcliffe Observatory. Observations
appeared under various titles listed below:

a. Radcliffe Observatory, Oxford. Observations of the

Reverend Thomas Hornsby, D.D., made with the transit

instrument and quadrant at the Radcliffe Observatory,

Oxford, in the years 1774 to 1798, London, Oxford

University Press.

observations for

1932, p. 106-134. 1774-1798

b. Radcliffe Observatory, Oxford. Astronomical Observa-

tions.

observations for
Vol. 1, 1842, p. 220-224 and 257-259. 1840
Vol. 2, 1843, p. 252-257. 1841
Vol. 3, 1844, p. 286-289,. 1842
Vol. 4, 1845, p. 230-231. 1843
Vol. 5, 1846, p. 310-314. 1844
Vol. 6, 1847, p. 349-353. 1845
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b. (continued) observaticns for

Vol. 7, 1848, p. 280-284, 1846
Vol. 8, 1849, p. 197-199, 1847
Vol. 9, 1850, p. 231-234, 1848
Vol. 10, 1851, p. 273-276. 1849
Vol. 11, 1852, p. 276-278. 1850
Vol. 12, 1853, p. 356-357. 1851
Vol. 13, 1854, p. 313-314. : 1852

c. Radcliffe Observétory, Oxford. Astronomical and Meteoro-

logical Observations.

observations for

Vol. 14, 1855, p. 257-258. 1853
Vol. 15, 1856, p. 243-244. 1854
Vol. 16, 1857, p. 143. 1855
Vol. 17, 1858, p. 248, 1856
Vol. 18, 1859, p. 243. 1857
Vol. 19, 1861, p. 255. 1858
Voi. 20, 1862, p. 81 and 165-166. 1859-1860
Vol. 21, 1863, p. 245-248. 1861
Vol. 22, 1864, p. 99-105. 1862
Vol. 23, 1865, p. 129-138. 1863
Vol. 24, 1866, p. 127-129 and 134-143, 1864
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d. Radcliffe Observatory, Oxford. Results of Astronomical

and Meteorological Observations.

observations for

Vel. 25, 1867, p. 129-135. 1865
Vol. 26, 1868, p. 133-138, 1866
Vol. 27, 1869, p. 186-192. 1867
Vol. 28, 1870, p. 199-206. 1868
Vol. 29, 1871, p. 196-204. 1869
Vol. 30, 1872, p. 203-214. 1870
Vol. 31, 1873, p. 193-201. 1871
VO1; 32, 1874, p. 179-185. 1872
Vol. 33, 1875, p. 194-202. ‘ 1873
Vol. 34, 1876, p. 207-213. 1874
Vol. 35, 1877, p. 166-173. 1875
Vol. 36, 1878, p. 164-172. 1876

(no observations for the years 1877-1879)

Vol. 38, 1883, p. 65-67. 1880
Vol. 39, 1884, p. 72-74. 1881
Vol. 40, 1885, p. 70-73. 1882
Vol. 41, 1886, p. 91-95. 1883
Vol. 42, 1887, p. 106-112. 1884
Vol. 43, 1889, p. 116-122. 1885
Vol. 44, 1890, p. 99-100 and 103-105. 1886
Vol. 45, 1891, p. 101-105. 1887
Vol. 46, 1896, p. 80-83 and 214-219. 1888-1889
Vol. 47, 1899, p. 104-110 and 223-224. 1890-1891
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10.

Paris (France). Observatoire.

a.

Annales de 1'Observatoire Imperial de Paris, Observa-

tions.

Tome I,
fome IT,
Tome III,
Tome 1V,
Tome V,
Tome VI,
Tome VII,
Tome VIII,
Tome IX,
Tome X,
Tome XI,
Tome XII,
Tome XIII,
Tome XIV,
Tome XV,
Tome XVI,
Tome XVII,
Tome XVIII,
Tome XIX,
Tome XX,
Tome XXI,

Tome XXIT,

1858, p. 267-380.
1859, p. 347-359.
1862, p. 323-334,
1862, p. 278-289.
1862, p. 246-262.
1863, p. 146-161.
1863, p. 111-123.
1863, p. 119-134,
1865, p. 102-115.
1866, p. 225-239.
1869, p. 198-228.
1860, p. 303-316.
1861, p. 356-372.
1861, p. 479-497.
1861, p. 312-330.
1862, p. 249-260.
1863, p. 125-137.
1863, p. 130-139.
1864, p. I134-152.
1865, p. G9-G27.

1866, p. F9-F27.

1867, p. F9-FI5.
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observations for

1800-1829
1837-1838
1839-1840
1841-1842
1843-1844
1845-1846
1847
1848-1849
1850-1851
1852-1853
1854-1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866



b. Annales de 1'Observatoire de Paris, Observations.

observations for

Tome XXIII, 1871, p. K8-K28. 1867
Tome XXIV, 1880, p. 13-24 and 43-45. 1868-1869
1881, p. 216-221 and 228-229. 1870
1882, p. D7-D12 and D17-D18. 1871
1882, p. D7-D14 and D21-D24. 1872
1882, p. D8-D15 and D26-D28. ' 1873
1876, p. D7-D15 and D23-D26. 1874
1878, p. D7-D16 and D25-D28. 1875
1879, p. D7-D15 and D25-D29. 1876
1880, p. D7-D13 and D19-D21. 1877
1881, p. E7-E12 and E18-E20. 1878
1882, p. E8-E17 and E23-E28. 1879
1883, p. E8-E19 and E26-E31. 1830
1885, p. E8-E18 and E27-E33. 1881
1887, p. E262-E274 and E283-E289. 1882
1889, p. E138-E160. 1883
1892, p. E93-E117. 1884
1893, p. E82-E101. 1885
1894, p. E83-E104, | 1886
1894, p. E63-E79. | 1887
1896, p. C51-C65. | 1888
1898, p. C48-C61. 1889
1898, p. C51-C64. 1890
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b. (continued)

1907,
1910,
1911,
1899,
1902,
1904,
1904,
1905,
1906,
1907,
1908,
1911,

1912,

c. Journal

ST . I N C T O S - SR SR S SIS SR

observations for

. A187-A193 and A199-A200. 1891
. A167-A175. 1892
. A208-A218. 1893
. A65-A69 and C153-C154. 1897
. A72-A77 and C151-C152. 1898
. A79-A84 and C92-C94. 1899
. A74-A79 and C103-C104. 1900
. A68-A73 and C142-C145, 1901
. A62-A67, C88-C90 and D111. 1902
. A53-A56, B137-B140 and C162-C166. 1903
. A55-A58, B127-B130 and C73-C74. 1904
. A53-A57, B109-B111 and C58-C59. 1905
. A59-A62, B102-B104 and C85-C86. 1906

des Observateurs, Marseilles.

Tome
Tome
Tome
Tome
Tome
Tome
Tome

Tome

VI,

VII,
VIII
X1V,
XVII

No.
No.
No.
No.
No.
, No.
No.
, No.

11, 1920,
5, 1921,
9, 1922,

8, 1924,
9, 1925,
12, 1931,

10, 1934,
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%
b
%
7, 1923, p.
p
P
p
p

102-104.

46-48.
72-75.
54-56.
90-92.

134-136.
145-147.

149-150.

observations for

1919
1920
1921
1922
1923
1924-1925
1929-1930
1933



c. (continued) observations for

Tome XVIII, No. 11, 1935, p. 178. 1935
Tome XXI, No. 4, 1938, p. 45-46. 1936
Tome XXI, No. 5, 1938, p. 62. 1936-1937
Tome XXII, No. 8, 1939, p. 151, 1938

11. Strassburg (Germany).

Annalen der Kaiserlichen Universitatssternwarte in

Strassburg, Karlsruhe.

observations for

Band V, Teil III, 1926, seite C9-CS52. 1883-1893
'NOTE: This title was published, in German, from
1896 through 1926. When Strassburg was recovered
by France after World War I, the title was changed

to Annales de 1'Observatoire de Strasbourg (Paris).

12, Tokyo (Japan). Tokyo Astronomical Observatory.

a. Tokyo Temmondai. Tokyo Astronomical Bulletin, 2nd

Series.

observations for
No. 28, (10 Jun 1950). 1949
No. 38, (25 Jun 1951). | 1950
No. 50, (10 Oct 1952). 1951
No. 59, (20 Aug 1953). 1952
No. 68, ( 5 Aug 1954). | 1953
No. 74, (20 Jul 1955). 1954
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a. (continued) observations for

No. 85, (10 Jul 1956). 1955
No. 100, ( 5 Sep 1957). 1956
No. 108, ( 5 Aug 1958). 1957
No. 117, (25 Jul 1959). | 1958
No. 131, (20 Jul 1960). 1959
No. 162, (10 Feb 1964). 1960
No. 153, (10 Jul 1962). 1961
No. 161, ( 5 Sep 1963). 1962

b. Private communication, 1966. Observations for Mars

and outer planets onlv. observations for

1949-1962

13. Toulouse (France). Universite. Observatoire. Observations
of the moon and planets only.

a. Bulletin Astronomique, Paris.

observations for

Tome XXVII, 1910, p. 171-172 and 442-443. 1908-1910
Tome XXX, 1913, p. 80-81. 1912

b. Journal des Observateurs, Marseilles.

observations for

Tome I, No. 9, 1916, p. 87-89. 1912-1915
Tome II, No. 10, 1918, p. 127-129. 1914-1915
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‘b. (continued) observations for

Tome II, No. 15, 1919, p. 159-160. 1911-1916
Tome III, No. 3, 1920, p. 26-29. 1912—1917
Tome II, No. 19, 1919, p. 195-196. 1916-1917
Tome IV, No. 2, 1921, p. 15-19. 1917-1918
Tome V, No. 5, 1922, p. 31-35. 1919-1920
Tome VI, No. 6, 1923, p. 41-45. 1919-1921
Tome VII, No. 10, 1924, p. 114-117. 1922
Tome IX, No. 12, 1926, p. 183-184, 1923-1924

14. Uccle (Belgium). Brussels. Observatoire Royal de Belgique.

Bulletin Astronomique, Brussels, Observatoire Royal

de Belgique.

observations for

Vol. 1, No. 5, 1932, p. 78-91. 1928-1930
Vol. 1, No. 2,3, 1531, p. 23-28 and
46-48. 1931

Vol. 1, No. 5,7,8, 1932, p. 76-77, 143

and 161. 1932
Vol. 1, No. 9,10,12, 1933, p. 184-185,224-

225 and 268. 1933
Vol. 1, No. 13,14,15, 1934, p. 292-293,306

and 324. 1934
Vol. 2, No. 2,3,4, 1935, p. 40,56 and

80-81. 1935
Vol. 2, No. 5,6,7, 1936, p. 94, 124-125

and 154. 1936
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14. (continued) observations for

Vol. 2, No. 8,10, 1937, p. 176 and 214. 1937
Vol. 2, No. 11,13, 1938, p. 232 and 282. 1938
Vol. 3, No. 1,2,3, 1939, p. 10,36 and 56-57. 1939
Vol. 3, No. 4, 1940, p. 88. 1940
Vol. 3, No. 5, 1941, p. 130. 1941
Vol. 3, No. 7, 1943, p. 198. | | 1942
Vol. 3, No. 8, 1044, p. 242. 1943
Vol. 3, No. 9, 1945, p. 280. 1944

15. Washington, D.C. (United States). U.S. Naval Observatory.

a. U.S. Naval Observatory. Astronomical and Meteoro-

logical Observations made at the United States Naval

Observatory.

observations for

1862, p. 336-340. 1861
1863, p. 569-579. ‘ | 1862
1865, p. 353-362. 1863
1866, p. 365-374. 1864
1867, p. 414-425. 1865

b. U.S. Naval Observatory. Publications of the United

States Naval Observatory, an Series .

observations for

Vol. IV, Pts. I-III, 1906, p. B3-B157. 1866-1891
Vol. I, 1900, p. 351-396. 1894-1899
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b. (continued)

Vol.
Vol.
Vol.
Vol.
Vol.
Vol.
Vol.

Vol.

IV, Pt

IX, Pt.

XI,

XIII,

XVI, Pt.
XV, Pt.
XVI, Pt.

XIX, Pt.

observations for

s. I-1II, 1906, p. A283-A318.  1900-1903
I, 1920, p. A3-A71. 11903-1911

| 1927, p. 153-179. 1911-1918
1933, p. 102-155. 1913-1925

I, 1949, p. 59-199. 1925-1941
v, 1948, p. 189-238. 1935-1945
11T, 1952, p. 397-445. 1941-1949
I, 1964, p. 49-99. 1949-1956

c. United States Naval Observatory, Circular.

No.
No.
No.
No.
No.
No.

’No.

103, 9
105, 27
108, 1
115, 1
118, 5
124, 28
127, 1

observations for

Oct 1964. 1956-1962
Nov 1964, 1963-1964
Jul 1965. , 1964
Feb 1967. 1965-1966
‘Jan 1968, 1966-1967
Feb 1969. 1967-1968
Apr 1970. 1968-1969

d. Private communication, P.K. Seidelmann.

observations for

1970

277



BIOGRAPHICAL NOTE

Martin A. Slade, III, was born on August 31, 1942 in
Dunedin, Florida. He was raised in Lakeland, Florida,
where he graduated from Lakeland Senior High School as vale-
dictorian in 1960. He entered M.I.T. the following
September as a National Merit Scholar. He received the
degree of Bachelor of Science in the Department of Physics
in June 1964.'

Mr. Slade continued his studies at M.I.T. in the
Department of Physics. In September of 1965, Mr. Slade
was awarded a two year NASA Traineeship to pursue his graduate
study. He received the degree of Master of Science in Sep-
tember of 1967. His S.M. thesis was entitled '"Lifetime
Measurement of Nuclear Excited States Using Doppler-Shift
Attenuation Techniques".

In September of 1967, Mr. Slade entered the Department
of Earth and Planetary Sciences. He held a Teaching Assistant-
ship for that year, and a Research Assistantship in sub-
sequent years. For the summers of 1969 and 1970, Mr. Slade
held summer staff appointments at Haystack Research Facility
of Lincoln Lab. (now Haystack Observatory of M.I.T).

Upon receipt of the degree of Doctor of Philosophy,

Mr. Slade will join the staff of the Jet Propulsion Labora-

tory, California Institute of Technology, Pasadena, California.

278



ACKNOWLEDGEMENTS

I wish to express my greatest appreciation to Professor
Irwin I. Shapiro and to Dr. Michael E. Ash. My thesis advisor,
Professor Shapiro, provided unfailing inspiration and advice
at every stage of this work. Working with him has been the
greatest single contribution to my scientific education.

Dr. Ash also advanced my knowledge of astronomy in many
fruitful discussions. He supervised the interfacing of the
additional programming for the moon with the existing struc-
ture of the Planetary Ephemeris Program and was a constant
source of accurate information about this structure.

My sincerest thanks go to Mrs. Antonia Forni whose
careful and diligent labor was indispensable to this work.
Her clever solutions to programming difficulties and
logistic problems have been invaluable. I would also like
to thank William B. Smith who contributed the numerical inte-

~gration procedures and aided in their implementation in
the lunar data processing.

I also must thank Fernando Amuchastegui, Mark Hacker and
Mrs. Katherine Becker for their programming assistance.

I am greatly indebted to Dr. Donald Eckhardt of the
Air Force Cambridge Research Laboratory under whose contract

this work was carried out. I wofild also l1like to thank Dr.

279



Thomas Clark and Mr. Gerald Marandino of Goddard Space
Flight Center for much support and hospitality. For informa-
tion on the Surveyor Doppler data, I thank Dr. Louis

Friedman and F.B.Winn of the Jet Propulsion Laboratory.

M. J. Davis of Stanford Electronics Research Center kindly
supplied ionospheric electron densities. Dr.Stanley H. Zisk
of Haystack Observatory provided much helpful information
about the radar data. I am very grateful to Group 63, Lincoln
Laboratory for a research assistantship during this work.
Prof. C.C. Counselman III is due 5pecia1>thanks for
his careful reading and comments on a draft of this thesis.
I would also like to thank Mrs. Ann Preston for her patient
and careful preparatidn of the final copy of the manuscript.
I must thank my friends for their understanding and
patience during this effort. Lastly the encouragement and
support of my parents throughout my education is deeply

appreciated.

280



