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THE ORBIT OF THE MOON

by

Martin A. Slade, III

Submitted to the Department of Earth and Planetary

Sciences in September 1971, in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

ABSTRACT

The position of the moon is calculated very precisely
by numerically integrating the equations of motion. The
initial conditions for the integration, along with various
other parameters, are estimated from observations of the
moon which include

a) meridian transits

b) Surveyor spacecraft tracking data

c) radar observations

The expression for the force on the moon in the equations of
motion includes parameters characterizing the following
small perturbations:

a) a general relativistic effect - the "geodesic
precession"

b) tidal friction in the earth-moon system

c) a possible time variation of the gravitational
coupling constant G

Estimation of these parameters from the lunar observations in
combination with radar and optical observations of the inner
planets leads to the following conclusions. The tidal
interaction effect on the moon's mean motion n is not
determined uniquely from this data set due to orrelations
with the variations in the earth's rotation rate and the pos-
sible variation in the gravitational constant. Upper limits
can be placed on these variations, however, as follows:



dnq < 33 seconds of arc/century 2

dG -11
S< 6x10 G/year

The geodesic precession is found to be (1.5 + 0.6) seconds of
arc/century, compared with the theoretical value from General
Relativity of 1.92 seconds of arc/century.

Thesis Supervisor: Irwin I. Shapiro
Professor of
Geophysics and
Physics



CHAPTER I.

Introduction

Predictions of the position of the moon as a function

of time have been attempted by man since the earliest known

cultures. With the rise of modern science, observations of

the lunar motion provided impetus for the development of

Newton's theory of gravitation, as well as for several con-

vincing tests of it. The theory of the motion of the moon

was the rationale behind much mathematical work in the 18th

and 19th centuries, notably by Euler, Laplace, and Poisson.

The analytical theory for the lunar ephemeris incorporated

in today's national almanacs (developed for navigational

purposes) is due to G.W. Hill (1884). This theory was fully

developed by E.W. Brown (1910), with recent revisions by

W.J. Eckert (1966).

The space program has provided a new challenge to im-

prove the accuracy of the lunar ephemeris for the traditional

purpose of celestial navigation (in a more literal sense).

The gravitational theories of Einstein and others have sup-

plied sound scientific reasons for desiring more accurate

tests of predictions for the positions of solar system

bodies. At the same time very sensitive data types such as

planetary radar ranging, spacecraft tracking data, and laser

ranging have become available. The development of the



modern electronic computer has been essential to the improve-

ment of the calculations, both in quality and quantity, ne-

cessary for these purposes.

This thesis describes an effort to develop the theory

of the lunar ephemeris to the point that the predicted effects

of the following very small perturbations might be reliably

distinguished in the complicated motion of the moon:

a) the general relativistic correction to the

Newtonian gravitational interaction ("geodesic

precession"),

b) the earth-moon interaction due to frictionally

delayed tides,

c) a possible time variation in the gravitational

coupling constant G.

A very accurate lunar ephemeris is also desired to satisfy

the stringent prediction requirements necessary for suc-

cessful laser ranging to the corner reflectors left by the

Apollo missions. For all these purposes we generate the lunar

ephemeris by numerical integration of the equations of motion

in rectangular coordinates. We then rigorously calculate the

values for the observables from the theory. The free param-

eters in the theory, such as initial conditions and the

parameters characterizing the perturbations of scientific



interest, are then estimated from the observations simul-

taneously.

Chapter II describes the model for the various forces

that are included in the equations of motion. The lunar

position and velocity as functions of time derived from

the equations of motion can then be used to compute theoreti-

cal values for the observable quantities. The details of

the calculation for the different types of observables are

given in Chapter III. Chapter IV outlines the numerical

techniques used, including the method of numerical integra-

tion applied to the equations of motion. Chapter V describes

the "maximum likelihood" algorithm used to extract the param-

eter estimate from the (redundant) data set. Chapters VI

and VII are devoted to a description and discussion of the

various solutions obtained. Possible directions for future

work are briefly indicated.

The extensive calculations necessary for this thesis were

performed within the structure of a computer program called

the Planetary Ephemeris Program (PEP), which has been devel-

oped over the past seven years at M.I.T.'s Lincoln Laboratory

primarily by Michael E. Ash, Irwin I. Shapiro, and William B.

Smith. PEP is a very general program able to treat many types

of astronomical observations. In the following chapters only



those features of the program relevant to the processing of

lunar data will be discussed in detail.

One result of this work is a best-fitting ephemeris

plus the (integrated) partial derivatives with respect to

initial conditions and other parameters (See Section II.E) as

functions of time. The latter quantities enable the

ephemeris to be improved as more data types are added and/or

more data collected. The usefulness of this ephemeris does

not depend upon the validity of the purely scientific con-

clusions reached herein. In fact intermediate ephemerides

produced during this work have been used successfully at Hay-

stack Observatory for lunar radar mapping purposes, and have

also been used for laser ranging prediction by groups at the

Air Force Cambridge Research Laboratory, the Smithsonian

Astrophysical Observatory, and the French Laser Group.



CHAPTER II

Theoretical Model for the Lunar Motion

A. Coordinate System

The basic theoretical framework underlying the calcu-

lation of the ephemeris used in the parameter estimation

process to be described below (Chapter V) has been outlined

previously by Ash, Shapiro, and Smith (1967). The right-

handed coordinate system chosen has its origin at the New-

tonian center of mass (barycenter) of the solar system with

the axis directions defined by the mean equinox (x-axis) and

equator (plane normal to the z-axis) of 1950.0. This system

is assumed to be inertial; the axis directions are approxi-

mately those of the FK4 stellar system (Fricke and Kopff,

1963). The difference in orientation with respect to the

FK4 catalogue at 1950.0 (as represented by the U.S. Naval Ob-

servatory lunar meridian circle observations reduced to the

FK4) is explicitly estimated (see Section III.B below). Al-

though the ephemeris is calculated in inertial space, the vari-

ous kinds of observations are obtained in coordinate systems

that, in general, are rotating with respect to inertial space

(and not necessarily as rigid bodies). This problem is dealt

with in Section II.C.

The physical units are chosen to agree as much as possible

with conventional astronomical practice. The mass of the



sun M@ is set equal to unity. The unit of time chosen is

the atomic time (A.1) second. The A.1 second is defined

by setting the transition frequency V43 of the 2S1/2 state

of cesium-133 between the hyperfine levels (F=4, mF=0)+-

(F= 3 ,mF=0) at zero magnetic field to the precise value

(Markowitz et al., 1958):

V4 3 = 9,192,631,770 cycles/A.1 second.

The unit of length is the astronomical unit (A.U.), speci-

fied by defining

3

E 0.01720209895 (A.U.) (A.1 sec) - 186,400

where G is the gravitational constant. An epoch t0 is

associated with G because we may wish to solve for a time-

variation which some cosmological theories have suggested as

occurring in G. The appropriate epoch is the epoch of the de-

termination of the initial conditions for the planets.

B.1 Time and Earth Rotation

The equations of motion for the solar system bodies are

functions of an independent variable which we call coordi-

nate time (C.T.). Atomic time, A.1, is related to C.T. in



a theory-dependent manner. We choose to identify A.1 as a

time with a uniform (but not identical) rate with respect to

proper time for a terrestrial observer in the context of

general relativity. The rate and origin of coordinate time are

chosen to be

C.T. = A.1 + 32s15 + D(t) + Y(t) + M(t) +...

The terms D(t), etc. are small periodic terms from the theory

which average to zero; they are not observable for any of

the work reported here. Unlike Ephemeris time* (E.T.),

the coordinate time here does not depend upon the equinox

to which the lunar ephemeris is referred.

The unit of time in the numerical integrations is the

C.T. day. The C.T. second is 86,40 of a C.T. day. The

C.T. second can be considered equal to the A.1 second with

negligible error for our applications.

Atomic time, and thus coordinate time, is related to

universal time (U.T.1.) by measurements of the U.S. Naval

Observatory. U.T.1 is the universal time appropriate for

determining the orientation of the earth in inertial space,

using Newcomb's relation between U.T.1 and sidereal time

* See the Explanatory Supplement, Section III.D



[see the Explanatory Supplement to the Ephemeris, Section

III.B.3]. The differences between atomic time and.U.T.1 are

very irregular; a more uniform universal time, U.T.2, can be

derived by removing the so-called "seasonal variations"

(see below). Atomic time and U.T.2 differ by unpredictable

variations in the rotation rate of the earth. The generic

term commonly applied to these differences is AT, although

this term strictly applies to the difference between

Ephemeris Time (E.T,) and U.T.1. The variations were ten-

tatively identified during the early twentieth century by

a number of investigators, and demonstrated to be variations

in the earth's rotation by Spencer Jones (1939). The currently

accepted values for E.T. - U.T. -come from the classic work

of Brouwer (1952) for the years 1621 to 1948.5, and from the

U.S. Naval Observatory for later times.

The geophysical explanation for AT is uncertain, but

the variations seem to be related to the fluctuations in

flow at the core-mantle boundary, as first suggested by

Bullard et al. (1950). According to their model, changes

in the length of day should cause opposite and proportional

changes in the geomagnetic westward drift. A very high

correlation (10.93) between such changes has apparently been

found by Ball et al. (1968) for a lag time between the change

in rotation period and the change in drift of seven years.

This time lag is consistent with the expected lag for

10



propagation of the magnetic disturbance through a mantle
-9

thickness of conductivity L 5x10 e.m.u., a plausible average

value (Vestine and Kahle, 1968). The explanation above for

the physical origin of AT, however, still lacks general ac-

ceptance.

Published records of the differences between atomic

time and universal time exist only from 1955 onward. Pre-

vious to 1955, the differences between coordinate time and

U.T.2 must be derived from the data along with the other un-

known quantities. The model for this variation was chosen

after examination of accurate recent data for A.l. - U.T.2

[Markowitz, 1970], as well as of Brouwer's results. The

adopted model assumes that AT changes at a uniform rate for

several years at a time. The intervals over which the slope

of AT vs. time remains constant can be chosen to be irregular

in length, but we have chosen almost all to have nominal

lengths of 4 years. This spacing appears more than suffi-

ciently small since, for example, in the period 1925-1968,

significant changes in slope of E.T. - U.T.1 occurred at

intervals of 14, 12, 12, and 5 years (Klock and Scott,

1970).

The parameters in our model are the values of AT' E C.T.

- U.T.2 at the beginnings of successive 4-year intervals.

(Since atomic time is only an intermediate quantity in the

relation to C,T., it is unnecessary here.) As a boundary

11



condition we have the defined difference A.1. + 32.15 - U.T.2

in 1955. The model is described graphically in Figure 1.

The value of C.T. - U.T.2 at the time ti at the beginning

of the interval (ti,ti+1 ) is yi. We see that the value of

AT' as a function of time t is given by

AT' (t) =

y +  (t-t )
i-1 (ti-ti_1) i-1)

(Yi+l-Yi)
Yi +  (t-ti)(ti+l-ti) i

for t. < t < t.

for t < t < t
f 1 _ i+ 1

The partial derivatives necessary to estimate the parameters

yi are given by

0

t-ti

(ti-t i- )

(t-t i )
Tt1 - ti)
(ti+l -t

0

t < t. 1-1

t. < t < t.
1-1 - - 1

t. < t < t
1 - - 1+1

t > ti+l

aAT'
ayi



Thus the adopted model for C.T. - U.T.2 is composed of con-

tinuous piecewise linear expressions in time over pre-specified

time intervals. The a priori values of yi were taken from the

smoothed values of Brouwer, and are given in Table 1. We ac-

cept the values from the U.S. Naval Observatory for A.1.+32.15

-U.T.2 from 1955 to the present, and then work backward in

time to derive AT'. This approach takes advantage of the

higher accuracy of recent observations -- a philosophy fol-

lowed everywhere possible in our approach.

The seasonal variations AS.V. between U.T.1 and U.T.2

are necessary to complete the relation C.T. - U.T.I. These

periodic variations have been accurately determined from

the variations in latitude as measured by the Bureau Inter-

national de 1'Heure (B.I.H.), and are thought to have their

origin in motions of oceanic and atmospheric masses (Munk and

MacDonald, 1960). In our model, we have allowed for a

possible linear change with time in the amplitudes of the

variations, which change might be caused by long-term climatic

changes with consequent changes in global weather patterns.

The model has the analytic expression

AS.V. = (al+blT)cos S + (a2+b 2 T)sin S

+(cl+dlT)cos 2S + (c 2 +d 2 T)sin 2S



Table 1. AT' = (C.T. - U.T.2) Values at Given Dates
(Brouwer, 1952)



Table 1. (Continued) AT'
Dates (Brouwer,

= (C.T. - U.T.2)
1952).

Values at Given

15



where S = 27T, and T is time in

from Jan 1, 1962, 0 hrs U.T.2.

parameters (Guinot and Feissel,

al

a
2

c
1

C
2

years of 365.2421988 days

The nominal values for the

1969) are

= +0.022 sec.

= -0.012

= -0.006

sec.

sec.

= +0.007 sec.

bI = b 2 = dl = d 2 = 0.

In computing theoretical values for observations of the

moon, we must derive the positions of the earth-based obser-

ving sites in our inertial reference frame. A site position

is composed of the vector sum of the position of the center

of mass of the earth relative to the solar system barycenter

and vector position of the site relative to the center of mass

of the earth. In computing the latter position in our pro-

gram, we assume that the motion of the earth about its center

16



of mass is known except for the modifications discussed in

Section II.C.2 below. The formulation of the rotation of

the earth is taken from the expressions in the Explanatory

Supplement to the American Ephemeris and Nautical Almanac;

the implementation in the program is outlined in this section.

Applying this information about the rotation of the earth

to the vector position of the site as seen in a frame fixed

to the earth's crust, together with the time relations of

Section B, yields the position of the site at any time rela-

tive to the inertial frame.

The nominal values for the coordinates of the optical

observatories in body-fixed coordinates have been taken

from standard sources such as the American Ephemeris

and Nautical Almanac. The positions of the Deep Space

Network stations of the Jet Propulsion Laboratory (referred

to the mean north pole and Greenwich meridian of 1900-05)

were taken from Melbourne et al., 1968. These nominal values

are listed in Table 2; since meridian observations are reported

as if they were made from the center of mass of the earth,

only the site longitude is necessary to calculate theoreti-

cal values for this observable. The effect of errors in

the reduction to geocentric values will be examined in Chap-

ter III, Section A. For the Surveyor doppler observations,



Table 2

Nominal Positions for Observing Sites

Site name

1. HAYSTACK
2. MILLSTON
3. ARECIBO
4. 85JPLVNS
5. 11DSPION*
6. 12DSECHO*
7. 14DSMARS*
8. 41DSWOOM*
9. 42DSCANB*
10. 51DSJOHA*
11. 61DSMADR*
12. 62DSCEBR*
13. AFLASER*
14. 6USNAVAL
15. 8USNAVAL
16. 9USNAVAL
17. MUSNAVAL
18. CAPETOWN
19. GRENWICH
20. CAMBRIDG
21. RADCLIFF
22. OTTAWA
23. PARIS
24. TOULOUSE
25. NICE
26. BESANCON
27. UCCLE
28. GTOKYO
29. STRASBRG
30. BERLIN
31. EDINBRG

Radius (km)

6368.551653028
6368.563831130
6376.560245971
6372.177000000
5206.350322378
5212.050800000
5203.997400000
5450.197800000
5205.361028200
5742.938000000
4862.604400000
4860.811400000
5391.827000000

Longitude (deg)

71.4886666667
71.4913888889
66.7530277778
116.7940075000
116.8497745987
-243.1946300000
-243.1105900000
-136.8875900000
-148.9809579880
-27.6854600000
-355.7510900000
-355.6322900000
110.7244167000
77.0660375000
77.0655416667
77.0654625000
77.0655416667

-18.4765833333
0.0

-0.0947916652
1.2516666667
75.7164583200
-2.3371249980
-1.4624999600
-7.3004166650
-5.9892499600
-4.3582083333

-139.5407500000
-7.7683333333

-13.1066666667
3.1833333333

Geocentric
Latitude (deg)

42.4315183830
42.4256609690
18.2287613852
35.0665981000

3673.7851760000
3665.6468000000
3677.0630000000
-3302.3262000000
-3674.6129890000
-2768.7193000000
4114.8518000000
4116.9660000000
3400.6790000000

*Cylindrical Coordinates [equatorial radius (km), longitude
(deg), z(km)]



the relevant body-fixed cooordinates were in the set of

solved-for parameters. These results will be described

in Chapter VII.

The transformation from earth body-fixed coordinates r

to inertial coordinates r50 .0 (t) is given by

r 5 0 .0(t) = U B

where

U = (W F N P)T

= pTNTFTWT

W, F, N, and P are matrices described below, and the super-

script T denotes transpose. The time t is associated with

r50.0 because a constant vector in the (left-handed) body-

fixed frame (pole and Greenwich meridian of 1900-05 conven-

tionally is a function of time in the inertial coordinates. P

is the precession matrix, transforming from coordinates refer-

red to the earth's mean equator and equinox of 1950.0 to co-

ordinates referred to the mean equator and equinox of date.

This matrix will be discussed in more detail below. N is the

nutation matrix, transforming from coordinates referred to

mean equinox and equator of date to coordinates referred to the



true equinox and true equator of date:

AI cos E

_ sin e

-A* cos c

1

As

-A* sin 7

1

where Ai is the nutation in longitude, As is the nutation

in obliquity, and E is the obliquity of the ecliptic.

AT and As were taken from series in the Explanatory Sup-

plement. The matrix F rotates the coordinates referred to

the true equinox and equator of date into the body-fixed

frame of date:

cos 6

-sin e

sin 0

cos 0

where 0 is the apparent sidereal time.* The wobble matrix

W transforms from the right-handed body-fixed frame of date

to the left-handed frame of 1900-05 by accounting for polar

*Explanatory Supplement, 3B.2



1 0 X

0 -1

where X and P are the components of the angular position of

the instantaneous pole at the time t in the 1900-05 frame,

with X measured along the meridian toward Greenwich and v

along the meridian 900 to the west of Greenwich.

The precession matrix mentioned above is given by

cos (0cos w cos z -sin E0cos w cos z -sin w cos z

-sin E0 sin z -cos E0sin z

--- -- -- -- -- ---r -- -- -- --- -- -- ------- -- ----

cos E0cos W sin z -sin 0cos w sin z -sin w sin zI I

+sin E0cos z +cos I0Cos z

-----------------------------------------------------

cos ý0sin w -sin E0sin w cos w
0 I

in which the angles are

21

motion:

W =

P =



2 3
0 = 2304'948T 5 0 + 0'302T50 + 0.0179T5 0

z = 2304"948T + 1'093T 2 + 0'.'0192T 3
50 50 50

2 3w = 2004'255T - 0.426T - 0.0416T 050 50 50

where T50 is the time t measured in tropical centuries of

36524.21988 days measured from 1950.0 (J.E.D. 2433282.423).

These angles have the following significance. Suppose we

wish to relate coordinates at some initial epoch t0 to co-

ordinates at a later epoch t. The angle 900-'0 is the right

ascension of the ascending node of the equator at t on the

initial equator at to, measured from the equinox at t0. The

angle 900 + z is the right ascension of the node from the

equinox at t. The angle w is the inclination of the equator

at t with respect to the initial equator at t0. To make the

transformation from the initial system to the final system,

we must perform rotations of: -50 about the original polar

axis; +w about the new y axis; and -z about the new polar

axis. These expressions are due to Simon Newcomb (1895).

B.2 Possible Errors in Observational Coordinate-System Motion

The accuracy of Newcomb's prescription for relating



astronomical coordinate systems at different epochs must be

very good since no corrections larger than relative motions

of approximately one second of arc per century have been

found in a variety of investigations [e.g., Fricke, 1967b

(FK4 stars); Clemence, 1966 (inner planets)]. We will dis-

cuss the numerical values found by Fricke (1967a, 1967b) in

Appendix 1. We assume that the observations can be regarded

as reduced to a reference frame rotating uniformly with angu-

lar velocity w with respect to the inertial frame. The mag-

nitude of W is expected to be small ((l < 1" century-l) so

that the apparent acceleration due to this rotation is a

small perturbation. For a planet at a position r with velo-

city Vp, the apparent acceleration is

Aa = 2(wxV ) - wx(wxrp)
p p

The system of differential equations for the partial deriv-

atives with respect to the components of w is needed to

solve for these quantities and is quite simple:

d ar V
Jt aJ w



( d= -(UjXV )-U.x(xr ) -m x(Uj.x )

^ th
where U. is a unit vector in the jth coordinate axis direc-

tion.

The Coriolis term -2wxV will dominate for all bodies
P

in the solar system since V >> (Xrp ). We could include

this force in the integration of the equations of motion.

A slightly different approach has been used with the

computer program, since we wished to avoid integrating the

variational equations above. We have approximated the effect

of the rotation by multiplying the precession matrix P by

another matrix A, where A is given by

1 w3T50  -W2T50

-W3T50  1 alT50

W2T50 -W1 50 1

so that A is orthogonal if we can neglect terms of order

(wi •). To this order, the matrix procedure is equivalent

to integrating the equations of motion with the additional

acceleration as described above (see Appendix 2).

A =



Some confusion exists in recent literature (Eckert,

1965; Baierlein, 1967) on a point related to the discussion

above. The observability of the effect of geodesic precession

on the motion of the moon has been questioned, since geodesic

precession also affects the rotation of the earth. The algo-

rithm for estimating w described above answers, in practice,

any questions about the effects of observing the moon from a

rotating (non-inertial) platform -- the earth. In principle,

the geodesic precessional effects on earth rotation and on the

motion of the moon can both be measured with respect to iner-

tial space. (As a simple example, consider a synchronous sa-

tellite in orbit about the earth. The orbit of the satellite

can be accurately determined by comparison with the star

background, even through the motion of the satellite relative

to the earth observer is very small.) A solution for geodesic

precession and A together with the associated formal errors

will settle the question of observability. With sufficiently

accurate data, the effectswill both be determinable.

C. Rotation of the Moon

The rotation of the moon about its center of mass is also

regarded as perfectly known for the processing of the data

25



types treated in this thesis. The selenocentric coordinate

system which we use has its origin at the center of mass of

the moon, the z-axis along the axis of rotation of the moon,

the x-axis in the mean direction of the earth, and the y-axis

completing the right-hand system. We assume that these co-

ordinate axes are also principal axes of inertia. Now let R

be the coordinates of the center of mass of the moon rela-

tive to the center of mass of the earth in the inertial

coordinates in which we integrate the equations of motion.

Let r be the coordinates of the center of mass of the earth

relative to the center of mass of the moon in the seleno-

centric system described above. Then the desired relation-

ship for describing the rotation of the moon is given by

r = - B R

where B is the orthogonal matrix formed from

B= EVP

in which P is the precession matrix, with V given by



cos CO

-sin cos 0

where 0

elements

is the obliquity at 1950.0, and with E having

= cos p cos -

= sin i cos 4 +

sin i sin

cos p sin

4 cos 0

cos e

= -sin 4 sin

= -cos 4 sin

= -sin 4 sin

= -cos 4 sin

= -sin 4 sin

- sin 4 cos 4 cos 0

+ cos 4 cos 4 cos 0

= cos 4 sin e

E11

E13

E21

E22

z23

E31

E 32

sin



E33 = cos 0

(See M.E. Ash [1965a], Appendix B). This particular combina-

tion of matrices is only chosen for convenience. The preces-

sion matrix, for example, appears only because the angles in

Z are referred to the coordinates of date.

The angles used to express the elements of Z can be

defined as follows. Let Q be the mean longitude of the

Moon, measured in the ecliptic from the mean equinox of date

to the mean ascending node of the lunar orbit and then along

the orbit. Let Q be the longitude of the mean ascending node

of the lunar orbit on the ecliptic measured from the mean

equinox of date. Finally, let I be the inclination of the

mean lunar equator to the ecliptic. Then the angles e, 0,

4 are (Koziel, 1962)

T = I + p

¢ = 180o + (1-4)+(T-c)

where a, p and T are the physical librations in node, inclina-

tion, and longitude, respectively.

We now determine the quantities on the right hand side of

First, the inclination of the mean lunar equator on

the ecliptic is (Koziel, 1962)
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I = 132'20" = 1?53889

= 0.0268587 radian

Next, according to the Explanatory Supplement, p. 107, we

have

.0 = 259.183275 - O?052953922d

+ 1?557 x 10-12d 2 + 5?0 x 10-20d 3

(-0 = 11.250889 + 13.2293504490d

-2.407 x 10- 1 2 d 2 - 11 x 10-20d 3

where d is the number of days that have elapsed from J.E.D.

2415020.0. Finally, the physical libration of the Moon is

given by Koziel as

T = -12'.'9 sin k - 0'.'3 sin 2£ + 65'.'2 sin V'

+977 sin

-0'.'6 sin

-3'.'0 sin

(2F-2Q) + 1'.'4 sin (2F-2D) + 2'.'5 sin (D-P)

(2D-2P+£') - 7'.'3 sin (2D-2£)

(2D-.) - 0'.'4 sin 2D + 7'.'6 sin l;
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P = -106" cos k + 35"cos(2F-k)-11"cos 2F

-3"cos(2F-2D) - 2"cos(2D-R) ;

I(T-r) = 108"sin k - 35"sin(2F-R) + 1l"sin 2F

+3"sin(2F-2D) + 2"sin (2D-k)

where I is measured in radians, and where the arguments

2, £', F and D are given in the Explanatory Supplement

as functions of time. The relations between the arguments

k, V', F and D, and the arguments g, g', w and w' of Koziel

are given by

S= g g= 2

2' = g' g' = ,'

D = g' - g' +1 - w' w = F - X

F = g + w w' = F - D - 2'

The subsequent revision by Koziel (1967) of his results,

and further work on the physical libration by D. Eckhardt (1970)

have been examined in the context of our types of observations.
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These newer results are found to have negligible effect on

T, p, and a for the data in this thesis. The lunar laser

ranging data, of course, necessitate the incorporation of an

improved libration model.

D. Equations of Motion

D.1 Newtonian terms

D.l.a. Definitions and Notation

The basic equations for the motion of the moon about

the earth in inertial coordinates are dominated by the New-

tonian centers of mass interactions with the earth and sun.

Smaller perturbing forces are due to the Newtonian centers

of mass interactions with the other 8 planets. Still other
+

perturbing forces are designated as FE and FM acting on the

earth and moon, respectively.

Let the subscript E denote the earth, M the moon, and

j(j=1,2,...8) the j t h perturbing planet. The vector

positions of the earth relative to the sun are given by

XE. The coordinates of the moon relative to the sun are

XM, and the coordinates of the jth planet relative to the

sun are X.. Further we define
3

XME XM - XE XjM X - XM

XjE xj - XE
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rE IXEl

TME IX MEI

rjE -IXj jE

The mass of the earth is ME, the moon's mass is MM, and

thM. the mass of the j perturbing planet. Newton's laws of

motion and gravity then give

2+ 4 .3
dXE XE XME 8 XjE 1 ÷
S = -GM -3 + +G (Mj 3 M FEdt rE ME j=l rj EE ME JE

dX X X 8 XMd M  M M• jM
- -GM GM +G Y(M JM)

2 GM 3 E 3 j 3dt rM r n= 1rME jM

+ FM M
M

The equations of motion for XME are obtained by subtraction:

24
d XME

= - GM
dt

(ME+MM)

MO

--

XME 4 4- 1 4 1 4+ D + P + ( F Fr3 MM ME E•)
ME

where

÷ XE  XM*D = GMo  3 3
rE rM

32
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+9 M.
P = GM M_

j=1 M
jf3

X.jM X

3 3
jM 'jE J

Table 3 lists the masses used in this expression for

the numerical integrations. The positions of the planets

were obtained from ephemerides supplied on magnetic tape

by M.E. Ash (private communication).

The additional effects represented by inclusion of the

term (MM FM EFE) are:

FM M-FEh a

Q-
Q- the acceleration due to the harmonics higher

than the central force term in the expansion

of the earth's gravitational potential

H - the acceleration due to higher harmonics in

the moon's gravitational potential

R - the acceleration due to general relativistic

effects

T - acceleration due to tidal friction in the earth-

moon system

V - acceleration due to a time variation in the gravita-

tional constant G.
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Table 3

Reciprocal Planetary Masses as Used in

Moon Numerical Integrations

(Not all digits are significant)

PLANET ()
planet

Mercury 6,031,916.0

Venus 408,522.0

Earth + Moon 328,900.1

Mars 3,098,700.0

Jupiter 1,047.4

Saturn 3,499.0

Uranus 22,900.0

Neptune 19,400.0

Pluto 4,000,000.0

Mass of Earth+Moon
Mass of Moon 82.301



The well known accelerations Q and H will be discussed

first.

D.l.b Harmonics of the Earth's Gravitational Potential

The gravitational potential U of the earth can be ex-

panded in spherical harmonics as

GME
(=- [1 -

0 a n
Jnr) Pn(sin 4)

n= 2

Z a n
+ a E•) P (sin ){Cmc Cos mX+s sin mx}]
k=2 m=l

where r is the distance from the center of mass of the earth;

p,X are the geocentric latitude and longitude, aE is the

equatorial radius of the earth, and the Legendre functions

are those given by, e.g., Hildebrand (1948) as

P (z) = 1 dn 2 n21)n
n 2nn dzn

2 Z/2 d Pn(Z)
Pn, (z) = (1-z2 )

dz

n = 0,1,2,...

; Y= 0,1,2,...n

The earth rotates on its axis in '24 hours. Compared
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1
with the "'v27 day period of the moon, the temporal varia-

tion of the earth's field is very rapid (as viewed from

inertial space). Therefore let us average the potential over

the longitude X, as follows

_ 1 f2•

U(r,cp) lf 2U(r,4, x)dA

We see immediately that the double summation term vanishes,

and we are left with

GM GM ( a n
O(r,) I n Jr-I ) P n(sin ¢)

n-2

The first term is the center of mass potential, which we must

exclude to find the perturbation.

We can relate the geocentric coordinates r,4 to the

inertial coordinates using the matrices from Section II.C.1.

Let us first construct rectangular geocentric coordinates.

The z'-axis by definition is normal to the true equator of

date; since we have averaged over ., we are free to choose

the x'-axis along the true equinox of date:

x' = r cos j cos X'

y' = r cos 9 sin X'

z' = r sin 4
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where X' is "longitude" from the equinox of date. Let G

be a position vector in a geocentric coordinate system with

axis directions parallel to the axis directions of the in-

ertial coordinate system. Then E = (x',y',z') and G describe

the same point if they are related by

E = NPG AG

where the nutation matrix N and the precession matrix P

were described above.

Suppose the moon were located at G = XME in inertial

coordinates (r = rME = IGI). Then

- = sin q -L YA(XME)

We are now in a position to calculate •. The force on the

moon due to the earth's potential is

FM = -MMVGU

The force exerted on the earth by the moon is the negative of

the force exerted by the earth on the moon. We can compute

(from these forces) the perturbing acceleration



+ 1 ÷ 1 *
MM M E

The explicit expression for Q is given below after a brief

discussion of an approximation made as follows.

In the programming of Q, the summation in the po-

tential has been terminated at n = 3. To estimate the

effects of neglecting J4, the secular rates of change of

the osculating orbital elements can be calculated from

Lagrange's planetary equations. Using Groves' (1960)

results for the effects of zonal gravitational harmonics,

and a value for J4 = -1.6 x 10-6, we find that the only

secular changes are in the ascending node 0, the perigee

W, and the mean anomaly k0 at the epoch t0

n: 5 x 10-4 "/century

w:-4.6 x 10-4 "/century

0O: -2 x 10-7 "/century

The rate of change of the semi-major axis truly vanishes.

The variation in eccentricity is proportional to sin 2w, with

amplitude of e/e smaller than (-) by sin2i. The inclina-

tion variation is also proportional to sin 2w, and is smaller

by e 2sin i. These changes appear to be completely



The expression for Q that is programmed is

therefore

(ME+MM) aE 2 XME 15 sin2
M (rf )2 2 sin 2 -)-3A 3sin41]9 ME ME

+

a X
( E 3 ME 35 sin.3 15 sin.

i ) J3[3 - sin - sin)
ME ME

.15 2 3-A3 (- sin -) 1}

where

A3 = [(A_)3 1 , (A) 3 2 , (A_)3 3]

The values used for J2 and J3 were obtained from earth

satellite observations.

with

and

J2 =

J =

3

aE

They are (Kozai, 1969)

1.082639 x 10-3

-6-2.565 x 10

6378.166 meters

GME = 3.986011765 x 105 km3 /sec.
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D.l.c Interaction of the Moon's Nonspherical Gravitational

Potential with the Earth

Let L be the force on the center of mass of the earth

due to the moon's gravitational potential. The center of

mass of the earth, in selenocentric coordinates, is located

at

X = -B XME

where XME is the position of the center of mass of the moon

relative to the center of mass of the earth in our inertial

coordinate system used in the numerical integration, and B

is the orthogonal matrix defined, along with our seleno-

centric coordinates, in Chapter II, Section C. Let U be the

gravitational potential of the moon, found by integration

of the potential due to the mass elements dp(2') located

at selenocentric positions x'. Then we have

U(x,y,z) d-(x')
vol.of [(x-x') +(y-y') +( z - z ' ) 2] / 2

moon

The force on the center of mass of the earth is

L = -MEVUL = -M Evu



where ME is the mass of the earth.

The potential U can be expanded in spherical harmonics

as follows

GMM  00
U(r,O,L) - [1- y

rME n=2

n R n
S{( ) P (cose)f nm(L ) } ]m=0 rME nm

where

fnm(L) = cnm cos (mL) + snm sin (mL)

where MM is the mass of the moon, Rm is the mean radius of

the moon, rME is the radial separation between the centers

of mass, and (0,L) describe the angular location of the

center of mass of the earth in selenocentric coordinates:

3 (ME)
sin 0 cos L = - Y B 1

Z=l 1Z rME

3 (XME)
sin e sin L = - y B2

Y£=21 rME

cos 0 = -
3 (XME)B-3 r
= 1 rME



In our numerical integrations, we have included only terms

through n=2 in the potential. The effects of the third order

terms are approximately one-third of the direct effect due to

the fourth harmonic in the earth's gravitational field, which

was shown to be ignorable in the preceeding section. The re-

sulting potential can be simplified further by using the as-

sumption that the axes of our selenocentric system coincide

with the principal axes of inertia, that is

xz 0

MMR

Is yz 021 2

Mm

s22 7MRMRMm

We make use of the relationships:

I ~ (I +I )
20 2MMR zz 2

1
c22 [ Iyy -Ixx]

4MMRm yy xx



to express our results in terms of the moments of inertia.

The force on the moon is minus the force on the earth, so

dividing by the masses and subtracting the accelerations

gives the acceleration of the moon relative to the earth:

(ME+MM)

+ zz xx)

MR.mm

m )2 yy xx ME 15 2 3 )3D
r _2 r M D2 2 2ME M R2  rME

mm

XME 15 2 3 D
rME 2 3 3B31

3
D ( 1B) (XME

B = {B B B}~i  il' Bi2' i3

(See M.E. Ash (1965a) for a more complete derivation.)

An important restriction on the parameters GMM and Rm

should be recognized in connection with the values of c20

and c2 2 . The value of Rm is conventional; that is, a value

is assumed and must always be used in formulae such as above

in connection with the related values of c20 and c 2 2 . The

where



value of GMM was solved for from the Lunar Orbiter data; the

value appropriate to the values for c20 and c22 below is

4902.87 km3/sec (with the value for c fixed at 299792.5

km/sec). The appropriate value of Rm is 1738 km. One must

not treat GMM + RM as variables for any partial deriva-

tives that might be taken. GMM, of course, can still be

estimated from the center of mass effects.

The values for c20 and c22 used in the numerical inte-

gration were average values from analyses of Lunar Orbiter

data (Michael et al., 1969; Lorell, 1970; Laing and Liu,

1971). They were

c20 = -2.022 x 10-4

-S
c2 2 = 2.286 x 10-

The uncertainties in these numbers and their effect on our

results will be discussed below. The values for the other

second-degree coefficients give information about the re-

lationship between the principal axes of inertia and the body

axes of the moon. Forming and diagonalizing the inertia matrix

constructed from the second-degree coefficients and using

-4an assumed value of (I zz-I xx)/Izz = 6.29 x 10- , Michael

et al. (1969) find that the principal axes are displaced



by less than two degrees from the body axes. This result

gives credibility to the assumption that the two sets of

axes coincide.

How do uncertainties in these values of the 2nd harmonics

affect the secular motions of the node (dnq) and perigee

(dfq)? From the equations given by Eckert (1965), we can

calculate the following sensitivities to A(dQ) and A(dr )

about our nominal values:

A(dnq) =(6.95xl04 Ac20

-1.39x10 5  sec of arc
22) century

with

dqT = -17'.'3 century-1

for the values of c20 and c22 given above, and

A(dTrq) = (-0.39x104 Ac20

+0.41 x10 5 Ac ) sec of arc+0.22 ) century
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with
-1

dTr = 1'.'7 century

From the formal errors of the various solutions, reasonable

uncertainties appear to be

-6Ac c 3 x 106
20  c22  3 x

These values yield (worst case) uncertainties of 0.'5 century-1

in dnQ and 0.'l century - 1 in dTr, compared with the relativ-

istic effect of 2"/century. In retrospect, the partial

derivatives for these quantites probably should have been

integrated. These partials could be produced, and the

differential adjustments due to refinements of values for

c20 and c22 could then be. made to the position and velocities.

Another possibility would be to reintegrate with improved values

for c2 0 and c2 2 , then to recompute the theoretical values and

solve for a new consistent set of initial conditions from the

new normal equations. Of course, a better, but currently

impractical, method would be to process Lunar Orbiter data

simultaneously with our data set in order to



solve for the moon's gravitational potential. The effect

of the uncertainty in these harmonic coefficients on our

results could be at the level of 10 - 20% of the geodesic

precession. We will return to the uncertainties in c2 0 and

c22 at an appropriate place in discussing the final conclusions.

D.2 General Relativistic Corrections

The additional perturbing force on the moon R due to

effects of general relativity is computed via the post-

Newtonian approximation. All formulae in this discussion

follow the development and notation of Weinberg (1972),

Chapter 9. In harmonic coordinates the appropriate line

element is

ds2 go00dt2 - 2gi 0dxidt - gij dxdxd

where the components of the metric tensor are

g00 = -1-2(4+*)-2 2-2_

gij = 6ij-26 ij

gio = -i
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In the above equations, 4, p, and I are potentials derived

from the energy-momentum tensor T~ :

0 0

(X,t) = -G d3, x ,

i(X,t) = -GJ J00 [T (x, ,t)+T (x' ,t)
x-x

2 
v2 t,+ 1 a ( , ,t)

47G t 2

= "4Gfffdx Ti0
x~x

For a collection of mass

x n and velocities Vn(t),

tensor are

000T

points mn, with coordinate position

the elements of the energy momentum

3 + +
= mn (X-x n)

n

200 1 -2 3 ) +
T = mn[4(Xn) + n] (x-xn

n



1 3
MnVn (X n )

n

2Ti i i 3 ( _
T I = mnvnVn6 (x-xnn

n
where the notation T is explained in Appendix 3.

The equation of motion for a particle in this gravita-

tional field is

dv 2 at
Coordinate time t and proper

Coordinate time t and proper

4 3 4 * " * +2*3v e+v x(Vxe)+4v (vV)4 -v V4

time T are related by

d-r 1 -2 1 .2 2 2 + +2
T_ = 1+ -7 v 9 (2- ) + E +-.v + v

We will express the equation of motion in terms of the quan-

tities defined in Section II.D and the definitions

M dXMVM - -
+ dXEVE t

+ dXME
VME M t

xn takes on values XM and XE; vn equals VM or VE.

By excluding the term -Vr since we are interested only in

the relativistic perturbation, we compute the accelerations
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2 2 2* 2d XM/dt and d XE/dt Subtracting, we findM E

2--dXS d XME
R =

dt
rel

4+

XM
GMO [- fl

rM

VM 1
c 2 4

4 +

E ME
- 2 3 3
E rME

V

E 1
c 2

rE

where
4GMo+GMM 4GME + GMM  GME

f2+M+f1 2 2 2
rMc rMEC rEc

f s ]

`2
VM

2
c

7 `24GM +GME 4GMM+ 7 GME GMM VE
2 2 2 2 -7rEc r MEC rMc c

ME MM 2GMM+GME 4GME+GMM 4 GMM+GME

f3 = 2(2 • ( 2) +  2 r20 0 TMEc rMc rEc

4-2
M M  V

- (2 M + M) EF1 0- MC

MM

~0

÷2
M VM

R0 J

- ÷

ME MM VE VM
+4(M M 20 0 c

JK



* - 2 M . 2
3 ME (VE XME) 3 MM (VMXME)

() M 2 2 2 M 2 2
rME Ec r IE

1 (XMEUXE 1 GMM(XME*XM
7 GME 3 +T 2 3  2

r E c rM c
EC M

4 XE V r+M M X
4XM M  M  E MM VM XME

4 rMc rME ( • c ) rME

+ -

ME 4MM rM 2 VE XMES( 3- + - ) (- r M ( )c ( )
M M rME C rME

XE Vf ME MM E 2XME VM
f = 4 ( E + (4- + 3-) (8 )2( ) * M

S * 0  O ME ME

ME MM rE 2 XME VE
(3-- + 4)(( ) ( )

M M0 rME rME c

Note that all factors of G and c are explicitly present

above, and that the fi are dimensionless. [See Tausner (1966)
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for a derivation of the equations of motion from a La-

grangian point of view.]

This acceleration has been implemented in the program

with an adjustable constant X multiplying it. Thus, X = 0

corresponds to pure Newtonian interaction and X = 1 implies

general relativity is correct.* The partial 3R/ýX is simply

the equation for R above.

The addition of this force to the central force will

produce an evolution in time of the osculating orbital

*Determining the parameter X is equivalent [Weinberg, 1972]

to determining the combination 2+2y-' where y and ý are3

parameters in the Eddington-Robertson harmonic coordinate

metric

2 2MG M2G2 2ds = [1• Ra + (y - 1 + 28) 2 + ... ] dtR R

MG 2[I + (3y - a) dx

-[(a - )- + ... ](x dx)2/R2

where a = 1 by definition of mass.



elements. In order to verify the proper coding of these

equations in PEP, the following procedure was adopted. An

integration of the moon's orbit was carried out with no

forces acting between the earth and moon except for the

central force and general relativity. For comparison, an

integration with only the central forces was done. The

positions and velocities were converted to osculating ellip-

tic elements. The differences from the values of the ele-

ments at epoch were then found by subtraction. These dif-

ferences for the central force only are plotted in Figure 2.

The oscillations and secular trends in this figure are due

solely to the build-up of error terms in the numerical inte-

gration which was done with a step size of 1/4 day (as op-

posed to the actual ephemeris calculations which were with a

step size of 1/8 day).

The behavior of the differences of the orbital elements

from those at epoch for general relativity is shown in

Figure 3. For our data set, the observable effect caused

by this force is a rotation of the moon's orbit with respect

to inertial space. The orbital angular momentum is shown

in Appendix 3 to precess with angular velocity

4 1-++ - ÷W= - -VxV3



The major possible contributions are from

GM@

0 rrM

GME

- rME

S2G3 ME xJ)
ME

2G= 3 (X-MxJ @)
rM

where

(JK e Eijkx T@0

[See Appendix 3]. The precession angular velocity is there-

fore given with sufficient accuracy by

_+ .4--)4

3GM (MXVM)3GM (ME XVME) XME(XME J) GJ@3GM@ 2r +3GME 2 + 3G

M ME rE r E

+-3Gx
+ M 5 3

rM rM
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For the moon's orbit, only the first term is greater than a

few hundredths of a second of arc per century. This term,

the geodesic precession, is approximately 2 seconds of arc

per century.* The geodesic term was first discussed by

De Sitter (1916).

Let us compute more exactly the magnitude of this term.

The moon moves about the sun in the orbit of the earth-moon

barycenter if we average over times of about a month. The

earth-moon barycenter orbit is approximately elliptical and

can be described by the standard formula

L
B = le cos (0-60)

where L is the semi-latus-rectum and e the eccentricity.

The value of MxVM is of magnitude /LAMG . The result for +

is found to satisfy

3GM0  Y /a 1-e 2 [l-e cos (e8-8 0) 3

I ~ 3 2 32a (1-e )

1 1"94 [1-3e cos (0- 00) ]per century

where E signifies an average over a time scale shorter than

about a month.

*The analogue of the advance of a planet's p~erihelion (q,43"/
century for Mercury) -- one of the classical tests of general
relativity -- is quite negligible for the moon moving about
the earth: 0'.'06 per century.



Examining the graph in Figure 3 for the evolution of the

right ascension of the ascending node of the lunar orbit on

the ecliptic we see small monthly oscillations, an annual

oscillation of amplitude O.'l/century, and a secular trend

of 1.'94/century as expected. Reliably verifying this secular

contribution in the observations of the moon would consti-

tute a verification of the predictions of equation 5 in

Appendix 3, and is one of the goals of this thesis.

We now come to the formulation of the more controver-

sial forces in the earth-moon system: tidal friction and

the effect of a time-varying gravitational constant.

D.3.a. Effects of Tidal Friction on the Moon

A quadratic term in time in the mean longitude of

the moon-- unaccounted for in any purely gravitational theory--

was found first by Halley soon after Newton developed his

lunar theory. The value for the amplitude of this term

that is incorporated into the national ephemerides was

derived by Spencer Jones (1932). Although the formal error

found by Spencer Jones is small, recent treatment by Van

Flandern (1970) of stellar occultations by the moon have

increased the suspicion of many workers that a large correction
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may be necessary to the amplitude of this effect.

The qualitative explanation for the origin of the

quadratic term in the mean longitude is tidal friction. A

simple heuristic model for the torques in the earth-moon

system due to the (frictionally delayed) lunar tides on the

earth was developed by MacDonald (1964), as follows. He

assumes that the lunar disturbing potential produces a sec-

ond harmonic distortion of the earth, with a magnitude

proportional to the Love number K2 . This tide, however,

does not exhibit maximum values directly under the moon.

The tide is carried to an angle 6 ahead of the moon by the

relative angular velocity of the earth and moon because of

frictional delay.

The potential external to the earth at a time t is then

U - GMMR
U =- 6 K2 2 (E"=6

ME(t)rME (t-n)

where 5 is the zenith angle of the moon, rME is the distance

of the moon from the earth, n is the mean lunar motion, R@

is the mean earth radius, and G the gravitational constant.

This potential produces an acceleration on the moon

acting in the direction of motion of the tidal bulge of

magnitude



rME 9= =

53G.MMR
4 3 6t K2sin (26)

2rME (t) rME(t- n)

The extra lunar potential due to the tidal deformation

of the moon by the earth is

GM2R5 K
ME m (2

MMrME(t)

where we have assumed that the tidal lag angle for the moon

is zero. This treatment of the lunar potential is correct

over the short time (n200 yrs) of our observations since the

only perceptible effect is the main effect, i.e., tidal fric-

tion in the earth. The radial component of the acceleration

on the moon is then

R = rME (U + Uq)

53 GMMR 5 2K MR = 2 4 M3 t K2{3 cos 2 6-1 + K2 2
SrME(t)rME (t-n K2 M

R 5
(m

A 2
A3 6 {3 cos 6-1+D}

rrMEME (t- n)

To express the other accelerations explicitly, let us



set up the following coordinate system: take the z" axis

along the moon's orbital angular velocity vector A,. and the

x" axis along the line of intersection of the earth's equa-

torial plane and the orbital plane of the moon, the line of

nodes. (See Figure 4.) The earth's axis of rotation is then

in the y"-z" plane. The angular velocity of the earth, 0,

and a unit vector to the moon, 0, have components

4+
-1 = (0, Q sin e, 0 cos E)

u = (cos4', siný', O )

in this coordinate system (where the angles are defined in

Figure 4). Note also that n = [fi. As seen in inertial

space, this coordinate system will undergo small oscilla-

tions of 18.6 year period about the mean position of the

coordinate axes. This effect is due to the regression of

the line of nodes on the ecliptic. In addition, the

coordinate system also partakes of the general precession.

Both of these effects are small enough so that the for-

ces calculated in this frame differ from those calculated

in an inertial frame by a negligible amount for the

purpose of calculating tidal-friction effects.

A unit vector along the direction of motion of the

earth's tidal bulge in the coordinate system of Figure 4 is
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b (- n)xu

I(S-n)xui

The unit vector b has components

S= [ ( cos s-n) (0 cos C-n)
'=[- sin c, -cos ? ,

O 0

b sin EScos C ']
0

where 00 - j('ni-)xul. The average acceleration normal to the

orbit plane is

1 aý C=

rME =6

and the average acceleration in the orbit plane is given by

1 1U I ^
S = -(I )b.(-i sin p' + j cos p')rME a E=6

Since these accelerations are only approximate, we will

ignore the very small difference between rME(t) and rME(t-L). Wedefine a new constant A'=(A/a)7 where a is the semi-major
define a new constant A'=(A/a)7 where a is the semi-major
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axis of the moon's orbit, and also define C(rME) = (a/rME) 7

Then

R = -A'C(rME){ 3 cos2 6-1D)

S = A'C(rME)sin (26){(Q cos e-n)/Q 0 }

0 sin E cos #'
W = -A'C(rME)sin (26)

0

and e is defined by

4*n
COS = ' Qn

Assuming K2q = K2 for the earth in the absence of any other

information, MacDonald finds that D = 1.33,

If these results are to be considered reasonable, it

should be possible to account for the astronomically observed

acceleration of the moon with a small value for the param-

eter 26. The torque on the moon is given by

-4.
T = XMEXF

where

F = Mm{(R cos ý'-S sin 4')i+(R sin c'+S cos c')j+W k}



-+ A

T Mm(rMW sin -'i -rMEW cos q'j +rMES k)

The torque averaged over a lunar orbit is then

T av = Mm ( -rMW cos ' j + rME k)

The astronomical determinations of earth-moon tidal fric-

tion from solar eclipses have recently been reviewed by Newton

(1969). He finds that the rate of change of the mean motion

of the moon as given by studies of past solar eclipses is

best represented by

= -(22.0 + 1.1)+ (3.3 + 1.2)T+(0.114+0.059)T 2

(arc-seconds) / (century) 2

where T is time in centuries from 1900.0. The present

value is -20.0"/(century)2, not very different from the esti-

mate of Spencer Jones(1939) of 22.44/(century)2 . We can re-

late the tor~que to the rate of change of the mean motion as

follows:
+ n d 2 da 2ATav = MmrMES = (Ma n) = 2M an -+Mman



But from Kepler's law,

2 3n a _ G(ME+Mm )

dT (n a )

Therefore,

da 2 a 0
- + S -n = 0

or
+av

T-· av
n 3 M m.a n

Using equation (60) of MacDonald (1964),

MmrMES =
2M Aq'F(q)sin 26

6 2 9/27a (1-e )

3 3 23 4{1+(2 2cos 6)e + cos 6 e }

q' = l-q 2

2 = 2 +sin 2q = sin e/[(cos *s - 9) +sin e]

and F (q) is the complete elliptic integral of the first kind,
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Newton's result can be expressed in terms of a value for the

lag angle:

sin 26 = 0.0687 - 0.01T - 0.0004T 2

where T is centuries from 1900.0. The parameters si chosen

to be adjusted are sin 26 s l+s 2 T+s 3 T The numerical value

of A' is about 1.88 x 10-17 km/sec 2m or,

A' = 9.37 x 10 - 16 A.U./(day) 2

Assuming that the result for sin 26 is physically

meaningful, we may interpret it in terms of a quality

factor Q for the earth by the relationship given by Kaula

(1969, p. 673):

tan 26

The value for Q from above is then n13.. The detailed mecha-

nisms for the dissipation of the energy in the tides are un-

known. Seismological studies of the mantle (Anderson and

Kovach, 1964; Press., 1966) and laboratory studies of granite

(Knopoff and MacDonald, 1958) suggest a lower bound on Q

of a few hundred. At the diurnal frequency of 010-5 Hz, the

values of Q for the mantle range from Q = 100 for the upper



400 km, to Q = 2000 for the lower mantle. The value of Q

for the oceans, on the other hand, has been estimated (Munk

and MacDonald, 1960) as approximately 3 at n10-5 Hz. Another

source of information on the Q of the earth is the variation

of latitude or "Chandler wobble". If we accept the inter-

pretation of the broadening of the spectral peak centered at

the Chandler frequency as due to damping, then the relaxa-

tion time TR of the wobble is related (Munk and MacDonald,

1960) to Q by

T R

Rudnick (1956) found UR = 11 years which corresponds to a

Q of 30; Jeffreys (1968) believes that the evidence favors

TR > 30 years, or Q > 80. The period Tc of the motion

(Tc%434 days) may make this Q irrelevant for the question

of tidal friction however. Thus determination of a credible
value of sin 26 would be an important constraint on the

theories of energy dissipation in the earth.

D.3.b. Other Effects of Tidal Friction

The torque due to tidal friction on the earth's spin

angular momentum should cause the spin of the earth to be

decreasing. However, the study by Newton (1969) has indicated
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that no clear evidence of such an effect can be found. If

true, an acceleration of the earth's spin, due to non-tidal

forces, must then be contributing

~ +23 x 10-9 0/century

at present. The model for the relationship between uni-

versal time and coordinate time described in Section II.B

should reflect a constant S by a secular trend in the solu-

tion for AT'.

Another variety of tidal interaction is the one between

the earth's orbital motion and the solar tides. The solar

tides raised on the earth can be shown to cause a negligible

effect on the orbital motion of the earth, as follows. From

Kepler's law, we showed above that

3T
n

and the similar expression for the change in the mean orbital

motion of the earth is

3T8

M Ea

Therefore

n MM a2  T

0E a T
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Since the periods of the solar and lunar tides are not very

.different, we can assume that the value for sin 260 will be

roughly that of the moon. Then we have

S 2 2

T aM a

We obtain then

10@ -8

The solar tides raised on the earth will have no secular

effect on the orbital motion of the moon, since their period

is not commensurate with the lunar tides on the earth, caus-

ing the net torque to average to zero.

Goldreich (1964) investigated the long-term effects in

the earth-moon system, using two models for the tidal ef-

fects. The first model was just that of part 3.a above; the

second was a more elaborate model from Kaula (1964) taking

solar tides and lunar-solar precession into account. The

results of these two calculations were almost identical. The

formulae presented in Section D.2 above appear to represent

the only effect in the earth-moon system due to tidal fric-

tion that we need model in our equations.



These formulae were inserted into the program, and a

numerical integration was carried out with only the earth-

moon central force and the force due to tidal friction af-

fecting the motion. The resulting evolution in time of the

osculating orbital elements is shown in Figure 5 as the

differences in the elements from their initial values. The

rates of time variation of the elements are compared in

Table 4 with the corresponding values as calculated by

MacDonald (1967) and Kaula (1964). The good agreement

lends confidence to the belief that the model is programmed

correctly. Further details on programming of the tidal

friction model, together with the partial derivatives with re-

spect to sin 26, are given in Appendix 4.

D.4. Time Varying Gravitational Constant

Many theories of gravitational interaction other than

that of Einstein have been proposed on various philosophical

grounds [e.g.; Dirac, 1937; Brans and Dicke, 1961; Isham,

Salam, and Strathdee, 1971]. A common feature of many theories

is a predicted time variation in the coupling constant G. What

is the predicted magnitude of this variation? In Dirac's

cosmology, a specific prediction is made (see Weinberg,

1972):



Table 4

Time Variation of Orbital Elements under

the Influence of Tidal Friction



dG

= -3H°
present

where H0 is the Hubble constant, currently thought to have

a value o10 years. The Brans-Dicke theory gives a rate

of decrease of between 4x10- 13yr-1 (q0 0.01,w = 6) and

2x0-11yr-1 (q 0 = 1, w = 6) for "reasonable" values of the

deceleration parameter q0 and the scalar coupling constant w

(Weinberg, 1972).

The best experimental upper limit on the current value

of 6 comes from an analysis of radar observations of the

inner planets (Shapiro et al., 1971):

(I) < 4 x 1010yr
present

The existence of the atomic time scale during these measure-

ments makes the determination of Shapiro et al. independent

of the variations in the earth's rotation rate.

The model for the perturbing force due to 6 in our

program consists of an ad hoc parameterization: the quantity

GMO in the equations of motion is replaced by
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d(GM)tt + (GM)] (t-t1 )0 0

where the coordinate time t0 is an arbitrary epoch at which

the quantities are evaluated. The interpretation of d(GM

d(GMO)/dt as a variation in G is quite unambiguous to the

level of 10 14G, since one can easily estimate that dM,/dt

S-10-14M yr-l(e.g., Brandt, 1970, p. 188; also see Dessler,

1967).

The implementation of this effect in the program was

checked in a manner similar to that used for relativity and

tidal friction. The central force plus a time variation in

GM0 was allowed (the mass ratios Mj/MO are assumed to be

absolute constants in time). The evolution in time of the

osculating orbital elements was computed; the differences

from the values at spoch are plotted in Figure 6. The theo-

retical values corresponding to the case plotted can be

estimated as follows:

Let:
(M +MM) * t(GMO) M 0 + ® (t-tl)

where t is measured from the epoch of integration, pO is the

value at the epoch t = 0. t1 is the epoch for p also mea-

sured from the integration epoch. t1 is not equal to zero

due to a programming oversight in this calculation. In the

case plotted, t1 = 520 days. The disturbing function is

radial and is equal to
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R(t-t 1 )
R =-

2
'ME

where rME is the earth-moon distance. The equations for the

behavior of the osculating elliptic elements as functions of

time (Danby, 1962) are for this special case:

da 2ada 2a2  e (sin f)R
(Pp)

de ()1/2(sin f)R

dw 1 1/2
S (R) (cos f)R

do di
Tt- Tt-'

da 3n da
Ul- fT- UTl +

1/2
(E

(1-e2) 1/2
e (1-e cos f)

[cos f-e(l+sin2f)]R
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definition

p a(l-e )

n 2
a

The variations from the initial values of the elements will

be small, so the initial values, designated by subscript

0, can be used on the right hand side of these equations.

Let us also approximate the equations by ignoring e2

and higher powers of eccentricity.

Consider the equation for da/dt first

da
U Tt 11-2n 0 a0 0

- -2n 0 a0 PO

-2noa 0 0

- -2noa 0
P.

e0 (sin f)(t-tl)

e 0 (t-tl)[sin M + 2e sin M cos M+O(e2)]

(t-tl)e 0 sin M + O(e 2)

(t-tl)e 0 sin (nt- 0)

where

from 0 to t, we have

with the

0 = n tperigee

Integrating



a = a0 2 2a e{[cos g0 -(sin g0 )(n 0 t-n 0 tl)]sin not
0+[cos g(n nn o n

+[cos g0 (n0t1-n0t)-sin g0 ]cos n 0 t}

At the epoch, the term n0t1 is very large, so

the values 1/10 = 3x10- 11years- 1, e0=0 .05, a0

we find

a-a 0  ~ 2e0  - a0 t1 cos
~  =t=0 -- O a0tl CS got=O ~10

that inserting

S2.6x10-3A.U.2.6xi0 A.U.,

-14
1.3 x 10 A.U.

Now we note that de/dt=((l-e2)/2ae)da/dt, so that the ampli-

tude of the e oscillation at t = 0 should be ',4x10 -11  Also

we have

dw 1 deI•I Z•

The w oscillation will therefore be 900 out of phase with

the variation in.a, and will have amplitude

-8
lW-W01 4x10-8 degree.

t=o

These predictions are confirmed by inspection of Figure



E. Variational Equations

In order to estimate the parameters in our theory from

the data, we must have theoretical expressions for the par-

tial derivatives of the observable quantities with respect

to the parameters. Many partial derivatives of the ob-

servables are constructed, via the chain rule for partial

derivatives, from the partial derivatives of position and/or

velocity with respect to the parameters (together, of course,

with the explicit dependences of the observables on position,

velocity, and time). A system of differential equations

for the partials of position and velocity, called the varia-

tional equations, can be constructed.

The set of equations for the earth-moon relative posi-

tion XME and velocity VME, from section D, are

4.

dXME
VME

dVME (ME+MM) XME 4
dt (FM) t -GM0  M 3-- + D+P+Q+H+R+T+V

tot rME

with initial conditions

XME(tO) = X VME(tO) = V0
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For a parameter B, we have the set of equations

d ýXME VME

d 'VME (FM)tot
(-t ) _Y( MM

The explicit functional form for the variational equa-

tions have been set down in detail in M.E. Ash (1965), Chap-

ter 5, Section B. The partial derivatives not given there

have been given along with the perturbing accelerations

described above.

These equations, along with the equations of motion,

must be integrated over the relevant period of time, as

described in Chapter 4. The partial derivatives that were

integrated for this thesis were with respect to the following

parameters: six initial conditions, the relativity parameter,

(G/G) present, sin 26, inverse mass of the earth+moon, and

the ratio of the mass of the moon to the earth+moon mass.
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CHAPTER III

Theoretical Values of Observations

A. Optical Observations

Observations of the moon have been made regularly by

many observatories for several centuries. The basic ob-

serving program consists of recording the times of transit

of the moon and the zenith distance at those times, together

with similar observations for standard stars. (An object

transits or culminates when it is on the observer's celes-

tial meridian.) For an extended object like the moon, the

transit refers to one or more of the limbs (north, south,

east, west) or a point like the crater Mobsting A.

The operational procedures in the observation program

are complicated, but as a crude conceptual picture, the dif-

ferences in sidereal time between the lunar and stellar tran-

sits give differences in geocentric right ascension. The

east or the west limb is usually observed -- preferably both

to facilitate the reduction to the center of figure of the

moon. The catalogue right ascensions of the standard stars

(referred to the true equinox and equator of date by applying

precession,. nutation, and proper motion) are used to convert

the differences in right ascension to an absolute geocentric

right ascension in the system of the catalogue used.



Usually during the course of a transit observation,

the zenith distance at culmination is measured. For the moon

the measurement refers to the north and/or south limb

(or Mi5sting A). The differences in zenith distance between

the moon and the standard stars can be used to calculate the

difference in geocentric declination through a relation which

depends on the parallax of the observing site relative to the

center of mass of the earth (see below). Atmospheric refrac-

tion also must be taken into account due to the differing

zenith distances of the various objects.

Corrections are often applied to both types of observables

to produce the coordinates at transit of the center of figure

of the moon. Usually these corrections are made through

adopted values for vertical and horizontal semi-diameters of

the moon. These values are sometimes derived from the obser-

vations in the course of the reductions by the observatory.

A further sophistication is the use of Watt's (1963) correc-

tions for the irregularities of the limb. Several series of

observations used in our analysis consisted of limb observa-

tions referred to the transit time of either the center or

the limb itself. The theoretical calculations were modified

at the appropriate point in those instances in a manner des-

cribed below.



A.1 Theoretical Calculations of Observables

The program calculates the geocentric right ascension

and declination at transit for the center of mass of an ob-

ject through an iterative process which starts with a first

guess at the U.T.1 time of meridian crossing (which must be

within twelve hours of the true time). From AT' and the

seasonal variations, we can calculate the coordinate time

corresponding to the value of U.T.1. A provisional first

position for the center of mass of the moon at this coordi-

nate time in the inertial reference frame, rME can then

be found from the ephemeris. The position referred to the

true equator and equinox of the date of observation is ob-

tained by applying the precession and nutation matrices:

(r)1) = NP r(l)
()date - ME

The right ascension a and declination 6 have their first

values found from

(1) -1 - date
date

6(1) = sin-l (Zdate

Irdatel



with proper account taken for quadrant in a. At meridian

crossing, the right ascension equals the local sidereal time.

The true sidereal time et is calculated via Newcomb's formula

which relates et to U.T.1, together with the nutation in

longitude AV cos s. The correction At to the first guess for

U.T.1 is given by

At = - X - (l)

where X is the west longitude of the observatory. Using this

corrected time, we calculate rE ,(2)

The iteration continues until At is less than some input

accuracy constant.

Since the program calculates the position in the co-

ordinate system in which we perform the integration, we must

allow for the differences between that system and the sys-

tem of the stellar catalogue to which the observations refer.

For this purpose, we use a simple three-parameter model for

each observation series that permits small corrections to the

reference equator, equinox, and declination system. The

corrected theoretical right ascension and declination are

given by

ac = a + AE - AI cos a tan 6

6c = 6 + Aý + AI cos a
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where AE is the angular separation between the corrected and

reference equinoxes; AI is the inclination of the corrected

equator to the reference equator; and A4 is the bias in the

declination system. Aý is considered to be, in part, a

correction due to errors in the geocentric latitude. The

series of observations are restricted in the time covered

so that the time variation of AE, AI, and Aý can be neglected.

A procedure preferable to this three-parameter model would

involve the computation of differential corrections between the

different star catalogues used for our data and the FK4 system.

The labor involved was beyond our resources, however,

and possibly would yield no better results since other

systematic errors (telescope flexure, etc.) may be equally

important.

The observations of an extended body like the moon are

found to be strongly biased by the different lighting ef-

fects at different phases. In order to empirically determine

these corrections for each series of observations, we param-

etize the vector Ap, the projection perpendicular to the line

of sight of the vector from the center of mass to the center

of illumination, as follows:

(rMxrE)x( E-rM)Ap = D an cos no
ni + + + +

rM E M
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where the an are the parameters to be estimated. The angle

e is given by

-1 - M (rM- E)0 = cos 0 < O <

IrM IrM TE J

and rE , rM, and D are, respectively the vector from the sun

to the earth, the vector from the sun to the moon, and the

diameter of the moon. The algorithms for the phase cor-

rections and the equator-equinox-declination corrections were

developed by I.I. Shapiro. For further details, see a more

complete description in M.E. Ash (1972).

The observations in each series may not be referred to

the center of mass of the moon because, for example, the

center of mass does not project onto the center of the Watts'

datum. However a solution for further corrections, which

would be highly correlated with those above, seemed to be

unlikely to be worth the great effort that would be entailed.

A.2 Limb Observations

For those observations which were not corrected to the

center of the moon at all, further corrections to the calcu-

lations needed to be formulated. These observations in-

cluded all of those at Greenwich prior to 1830. These

corrections are developed below. The geocentric right ascen-

sion of the center of the moon at the universal time tL of

transit of the east (first) or west (second) limb, ac (tL),
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is the "observed" quantity for several series. The quantity

that is computed directly in PEP is the geocentric right as-

cension of the center at the instant of the transit of

the center, c (tc). When the limb is on Lhe meridian, the

local hour angle of the moon's center is +S/(15 cos 6), where

S is the apparent geocentric semidiameter in degrees, 6 is

the declination of the center at center passage, and + or -

denotes first or second limb, respectively. The sidereal

time Tc corresponding to tc is known; the sidereal time of

the limb transit, TL, is given by

T T +
L c- 15(1-X)cos 6

where X is the rate of change of right ascension with respect

to sidereal time in seconds of r.a. per second of sidereal

time. Therefore

c(tL) = sid. time at tL - local hour angle of

center at tL

S S
SC(tL) = T + S S
c(tL) Tc - 15(1-X)cos + 15 cos 6

XS
c= c(t)  5(l-X)cos 6

Similarly, the declination of the center at the passage of

the center c (tc) is clearly related to the center's dec-

lination at meridian passage of a limb (east or west),



6 c(tL), by

6~(tL) = 6c(tc) + X? Sc L c c 15(- )cos 6

where X' is the rate of change of declination in seconds of

arc per second of sidereal time.

The quantity X is calculated from the rectangular co-

ordinates of the center of the moon, referred to the mean

equator and equinox of date -- xl x2, x3-- and their deri-

vatives (with respect to coordinate time, T) -- l1 , x 2 . x 3

as follows:

a (T) = tan- (x•

dac 1
-T 2 2 [X1x2 - X2x ]x1 + x 2

Let t be universal time, and s be mean sidereal time

T = t + AT'

s = s0 +rt



Then we have

dce duc dT dt
ýFs- ý- U -T i -

For purposes of limb corrections, dAT'/dT can be ignored,

as can the difference between true and mean sidereal time.

Then

da c 1 da
X- s - r aE

The value of V' can be calculated using the relation-

ship

6 = sin- (
c + 21 x 2

d6c
c

wT-

[x1x3  x2x x1x 2x

[x I + x 2 ] x I + x 2 - x 3

d6 d6
S c_1 c

s' - r --

The derivatives with respect to T above ignore the
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derivatives of the precession-nutation matrix. The princi-

pal terms, however, should be on the order of 50"/365x8.64x10
4

seconds and 9"/18.6x365x8.64x104 seconds. For making limb

corrections, these are clearly negligible.

Some series (e.g., old Radcliffe observations) give

aL the right ascension of the limb at its transit over the

meridian as the "observed" quantity. Then ac and aL are re-

lated, from above, by

S
c L=  - 15(1-X)cos 6

Observations also exist of the declination of a point on

the limb at the time that the limb (north or south) is on

the meridian. In this case, the formula for correcting the

declination is more complex. The correct relation is derived in

Chauvenet (1891), p. 306:

sin (6-6i) = sin P + sin S - 2 cos 6 sin 61sin 2 H

where

sin P Ep sin 7 sin ($'-61)

and



61 = observed declination of limb (corrected for

refraction)

6 = the geocentric declination of the center of

the moon

S = as before

' = the geocentric latitude of the observation

p = the radius to the place of-observation

A = as above

Sf:= the moon's equatorial horizontal parallax

In the expression above, H is the true hour angle of the center

at meridian passage of the limb. The upper or lower sign is

used according to whether the north or south limb was ob-

served. H is an "observed" quantity, since it can be cal-

culated from the sidereal time of observation Si, and the

sidereal time of the center's transit S2, from

H = (1-X)(S 2 -S 1)

This number is frequently on the observation records (but

was not transferred to the punched cards). The value of 6 above

is referred to the time of- the limb on the meridian. The

reduction to 60, the value for the center on the meridian,

is given by
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60 = 6 + (S2-Sl)X'

The terms involving S2-S 1 are on the order of a second of

arc and often less. According to an example in Chauvenet, Vol.

II, p. 308, these terms are usually included in the reduction

of the micrometer correction, and I have assumed, unless the

explanations explicitly said otherwise, that the correc-

tions involving H have been made by the observer.

From the formulae above, it is clear that the reduction of

limb observations depends critically on the values for sev-

eral astronomical constants adopted by the observers:

a) If the value of the semidiameter in right ascension S a is

in error by AS , the derived r.a. is in error by

+(1 s t ) AS

-( 2nd) 15cos 6 )

b) the declination depends on errors in the semi-diameter

in declination S and other quantities in the reduction from

topocentric to geocentric values as follows:

-(N)
A6 = AS6 +p sin (' - 61)• 1"+"sin (' - 61 )Ap

+(S)

+pir" cos ('-61)Aý"



where AS6 is the error in semi-diameter in degrees

(f ASa in general)

Ar" is the error in parallax in seconds of arc

Ap is the error in radius vector in units of

earth radii

Ac' is the error in geocentric latitude in radians.

A latitude correction which can be solved for is programmed

in PEP. Unless a good "modern" value for the geocentric

latitude of the old observatory location can be found, and

unless the modern value is very different, the last term

will be ignored and the correction will be solved for. The

observers' explanations were examined for assumed values for

the radius to the site and the constant of parallax, and cor-

rections to the best modern values were made for some ob-

servations, as will be further documented in Chapter VII.

B. Radar Observations

The radar observables are the two-way time delay T and

the Doppler shift of the reflected signal fd' both evaluated

at the universal time of reception tr . The calculation of time

delay begins with the evaluation from the ephemeris (and

our theoretical superstructure) of the vector position of the

receiving site Sr (tr) The ,vector position of the reflection

point R(tb) at the bounce time tb can be found from the
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implicit equation:

t = t -b r
IR(tb) - Sr(tr)

where c is the speed of light. This equation can be solved

by iteration. The vector position of the transmitter site

ST(tt) at the time of transmission t t is derived from the

implicit relation

tt = tb
JR(tb) - St(tt)I

The time delay in coordinate time is then given by

T =t
r t

The Doppler shift is given by (see Shapiro et al., 1966):

dT

fd(tr) = df t (trr

where f0 is the transmitted frequency. The observations

usually are of the subradar point, which is defined as the

point where the line-of-sight from the radar to the center of

mass of the moon intersects the surface of the moon.



The explicit formulation for these radar observables

in terms of the quantities in the theory can be found in a

report by M.E. Ash (1972).

C. Surveyor Doppler Observations

The Surveyor landed spacecraft carried transponders

which received a "monochromatic" radio signal from an earth-

based station, and retransmitted the signal to the ground

after frequency multiplication by a constant factor cl.

The observations used in this thesis were all of "coherent

counted" Doppler, that is, the transmitter reference oscil-

lator frequency was available at the receiver. The receiver

takes the reference frequency, multiplies it by c1 , and

beats this frequency fM against the incoming signal. The num-

ber M0 of positive zero crossings of the differenced signal are

counted for the duration of an observation, called the coun-

ting interval D . The observable is given as MO/Dc .

The epoch of the observation is given at the midpoint

of the counting interval. The details of the observational

procedure, together with values for the various constants,

are given by Holzman (1965).

The theoretical calculation of this observable is done

by computing the difference between the phase delay at the end

and that at the beginning of the counting interval. If the

epoch of the observation is te, then the endpoints occurred at
el I
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t e+D c/2. The phase delay can be calculated, using the algorithm

described for radar time delay above, at each end of the coun-

ting interval. The difference of these delays, divided by Dc and

multiplied by fM, is the theoretical value of the observable,

except for corrections for atmospheric effects. The fact that

the observations are of phase delay affects only the calcula-

tion of dispersive effects such as the ionospheric corrections.

Further correction of the "vacuum" theoretical value is

necessary to account for the variation in phase delay due to

the chang.ing path length through the troposphere (lower neutral

portion of the atmosphere) during the course of an observation.

The correction APT(tE +Dc/2) to the range at either end of the

counting interval, to first order, is (2z/sin Ereceive) +

( z/sin Esend) where £z is the extra contribution to the

zenith range from the troposphere and E is the elevation

angle. At low elevation angles, significant deviations

occur due to the curvature of the earth's surface and ray

bending effects. A semi-empirical correction has been

found (C.C. Chao, 1970) by fitting to range corrections

Ap generated by a ray tracing program for a spherical earth.

The formula found by Chao, as used in our Surveyor re-

duction, is, in meters,

Ki..
Ap (E ) = j z

sin E + A cos E
sin E + B cos E

92



where K.. is a multiplicative factor to be adjusted for each

observing site (i) and spacecraft (j). The quantities kz,

A, and B are constants with values:

kz = 2 meters (light time equivalence)

A = 0.00143

B = 0.0445

The ionosphere causes an effect very similar to the

neutral atmosphere, except that the equivalent additional

path length is a function of the local electron density.

Due to the fact that the troposphere and ionospheric cor-

rections are highly correlated, a solution for both is not

contemplated. The neutral atmosphere model is adjusted; a

fixed model for the ionosphere using measured electron content

is programmed. The model used is based on that of Melbourne

et al. (1968), and has the form

Ne (tI) 2. 3x109 2
(Ap)I = CL N 2 A0 (E)

0 0

where A0 (E) is a function tabulated by Melbourne et al.;

f0 is the transmitter frequency in Hertz; Ne (tI) is the inte-

grated electron content along the path to the spacecraft in

electrons/meter 2 at the time of the observations t ; N0
8.069xl0 7xelectrons/meter 2 , and



7--21 M
CL =

7-21M(Stanford) I

where ýM is the geomagnetic latitude.

This empirical expression was developed by JPL to produce

a good fit to a numerical calculation for the nominal values

f = 2.3x10 9 Hz and N = N . The extrapolation for other

parameter values comes from a theoretical basis. The factor

CL attempts to account for the latitudinal variation of the

electron content. The integrated electron contents at half-

hour intervals were supplied by M.J. Davies of the Stanford

Electronic Laboratories (personal communication, 1971).

D. Stellar Occultations

Observations of occultations of stars by the moon con-

sist of recording the time of disappearance and/or the time

of reappearance of the star. The observation is thus in-

dependent of the star catalogue currently being used by the

observatory (except for the small effect that the regulation

of the observatory clock, i.e. the universal time, depends

on the star catalogue). If the star were correctly identi-

fied as to catalogue number, name, etc., then the observation

can be reduced at any later time using the best modern star

positions. Thus this data type is clearly quite sensitive

to the value of AT' at the time of observation.



The theoretical evaluation of the occultation observa-

tions has been implemented in the program. The partial

derivatives of the observable with respect to the various

parameters have not yet been checked out. The corrections

for the topography of the limb from the charts of Watts

(1963) have not yet been completely coded in the program.

For these reasons, the observations of occultations

have not been included in the data set for this thesis.

The theoretical expressions for this observable will be

given in a seperate report.



CHAPTER IV

Numerical Methods

A. Numerical Integration

The method of numerical integration is a second-order

form of a classical predictor-corrector scheme. "Classical"

in this connection means that the resulting values of the

function being integrated are obtained at equally spaced

intervals. Suppose we desire the solution of the three-

dimensional system of 2nd order ordinary differential equa-

tions of the form

y(2)(t) = F(t, Y(t), y(1)(t))

with initial conditions

Y(a) = Y ; y(1)(a) = (l)

in which Y is the vector [x,y,z], and the superscript (n)

indicates the order of the derivative with respect to time.

The classical predictor-corrector scheme generates a

sequence of vectors Yp, approximating Y(t ), from the

equation:



[a.Y +hb Y(- + h c.Y + = 0
i=- pi 1 p- p-

at s+2 equally spaced points tpi, i = -1,...s. Here h is

the spacing (t -ti_l), E is an error term, and ai, bhi, ci

are coefficients which depend on s (and i). The equation

is used to extrapolate Y forward in t when b 1 = Cl = 0.

Iterative application of the equation when some of the b_1'

c-l are non-zero, make up the corrector, or interpolation,

mode of this method. [See Hildebrand (1956), and W.B.

Smith (1968) for more complete treatments.] In particular,

we assume that we can form a polynomial approximation of de-

gree p to F(t,Y,Y(1)). Then

V2Y ~ h 2  w iV (2)k h

where

Wi ( dj) d.
j=0

and the dj are defined recursively from:

do = 1

d 1
. 2

m d
dm = - ( m+2 )

m =1 m-Z+2



The V are the standard backward differencing operators:

V E 1

k k k-1

VnZk V1 (V1 ( 1(V1 Zk )

n applications

In order to predict, we operate on both sides with the ad-

vancing operator (1/(1-V1))

1 2
1( k(1-V )

2  1 h 2  V iy(2)
k+l I k1-V i== 4

= [1+V12 +Z 3+. ..]h2  W i viY 2)
i=O k

= h2 2 eViY (2)
i=O

where

i
e.= W.i j=O J



Now writing out V2 Yk , and transposing terms we have

1. for prediction

Y+l -Y_+2Y + h 2  i (2)
k+1 k-1 k i ki=0

which requires the current Yk' the Yk just past, and

the accelerations

yk2) k=O,... - (p+l)

2. for correcting the current value:

Y -Y + 2Y + hi2 • W viY (2)k k-2 k-1 1 ki=O

The velocities are obtained by numerical differentiation

from the corrected values:

Y(1) = r Y
m k= K m-k

k=0
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where

rk = '(-1)k()fi
i=k

o0 i=0

f. =

if0

Note that this method is not self-contained, since the

iterative. procedure must have some initial values to fit

with the polynomial. The starting procedure is the numeri-

cal integration method due to A. Nordsieck (1962). This

method will not be described here; the important features

are

1. The method is self-starting

2. the accuracy and stability of the "software"

package are thought to be completely veri-

fied.

The fractional accuracy to be achieved per unit time interval

is specified for the starting procedure, and the step size

in the integration is automatically chosen to match this

requirement. The accuracy specified for starting the

moon integration was 1 x 10-1 6 (as high as double precision
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arithmetic allows).

Once the starting procedure has generated a sufficient

number of values for the order of the polynomial fitting to

p be done, the predictor-corrector scheme may begin.

In the moon integrations, the predictor-corrector step

size chosen was 1 day. A 12-term expression in the accelera-

) tions (i.e., p = 11) was used. The output points were at

tabular intervals of one half-day. The choice of these

numbers is not unique and can be defended only on experi-

mental grounds: e.g., 1 day steps were tried and found to
1

be unstable after "10 years. Whether p = 11 and h =

are "sufficiently" accurate in any particular application

must be settled by investigation. For our purposes, com-

parison with other integration.methods and "closed-loop"

integrations have led to the conclusion that the error

of the integration at the end point (1750) is at most

-10
5x10 A.U. ( Z 75 meters). If observations of one second

of arc (2 2 Km) standard error and strictly zero bias were

made in 1750, then approximately 50 thousand observations of

this quality would be necessary to require more accuracy from

the ephemeris.

The integration packages used were developed and tested

by William B. Smith of Lincoln Laboratory. Interfacing the

moon acceleration software [the so-called right-hand side

routine; since r = F(r, r, t)] to the integration
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routines was done with his assistance. The speed of this

predictor-corrector method of integration was an important

factor in insuring that computer time necessary for this

task* was not exorbitant.

B. Everett Interpolation

The observations of the moon are generally made at

times other than the times for which tabulated values of

position and velocity are available. Therefore in processing

observations in PEP, an interpolation method is applied

to the tabulated values. The method chosen is Everett

eighth-difference interpolation. The output tabular inter-

val of the numerical integration (not to be confused with the

step size h) must be short enough so that the error in inter-

polation is no larger than the error in the integration.

This criterion governed the choice of half-day output for

the moon.

Appendix 5 details the algorithm developed by Michael

Ash for the Everett scheme.

* For example, twelve sets of equations were integrated with

about 1 year's output requiring one minute of IBM 360/91 CPU

time. For the Nordsieck method, nearly 10 times as much com-

puter time would have been required.
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C. Numerical Checks of Partial Derivative Coding

The formulae for partial derivatives of an observable

quantity 0 with respect to a parameter q were checked for cor-

rect coding and self-consistency by computing the value of the

function a0/aq for two values of the parameter, say q0 and q1.

The values of 0 for those parameter values with the other

parameters fixed also were available. Forming a Taylor

series for O(ql), we have

0 1 920 2
0(ql) (q) + 0 (qlq 0) + T - q1 0

if q1 is close enough to q0. Now if we compute

AO_ 0(ql) - 0(q0)
A-= qlqo0

then

AO .0 1 920AO + 22 (q -q0)
0 a qq

We also have that

- + (qq 0-)

q1 0
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If we average the values of O/ q at q.1 and q 0, we have

q q0 0 91 '0)Lq /q q1  - , q 0  qO

Therefore the quantities to compare are the averaged partials

and AO/Aq. Care must be taken not to choose the increment

91- q0 too large, since this would 
invalidate the Taylor

series approximation. However, the increment cannot be

too small or the check will reveal nothing for lack of

precision. Tables 5 and 6 list the results of these compari-

sons for the variational equations and the partials of the ob-

servables, respectively, for the parameters listed in the _

left-hand columns. In the tables presented, the increments in

checking the variational equations were sometimes not well

chosen. This situation explains the somewhat variable level of

agreement for the same parameter in different types of obser-

vables. These results confirm that the coding for the forces

and the partials are self consistent, since coding errors (of

which several were found) show up in, the first -- rarely in

the second--decimal place. The general fractional agreement

is •10-4is 'X'1
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Table 5

Typical Fractional Disagreement in

Variational Equations Check

(maximum of three components)

Moon initial
conditions

Mass (3')* '

Mass (10)

Relfct

Tidal
friction

G

Position

8 x 10-5

-·5
1 x 10

-52 x 10

-5
7 x 10

5 x 10-5

9 x 10-5
9 x 10

* inverse of earth+moon mass

** ratio of moon to earth+moon mass

** relativity multiplicative factor

Velocity

-4
2 x 10-

-45 x 10

-5
5 x 10-

-4
4 x 10

8 x 10-5

2 x 10-4
2 x 10
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Table 6

Typical Fractional Disagreement in Check

of Observation Partials

inverse of earth+moon mass

ratio of moon to earth+moon mass

relativity multiplicative factor

106

Surveyor Radar Radar R.A. Dec.
Doppler Delay Doppler

-5 -4 -5 -4 -4Moon i.c. 4x105 xlO 5x10 3x10 2x10

Mass(3)* 1xl0 - 4  2x10 - 7  8x10 - 5  6x10 - 5  4x10 - 5

Mass(10)** 5x10 - 5  2x10 - 5  7x10 - 5  3x10 - 4  2x10 - 4

Relfct * 2x10 - 5  3x10 - 5  9x10 - 5  6x10 - 5  4x10 - 5

Tidal 2x10 - 5  7x10 - 6  4x10 - 5  3x10 - 5  2x10 - 5

Friction

3x10 - 5 lxlO- 5 5x10 - 5 4x10 - 5 7x10 - 6

*kt

**~c



Table 6 Cont.

Surveyor DopplerO L
*r-i C

o uCdUU )

0 Uo
.c0

CO

0Q)

.. 40*r4-)

(1 -00H

Radius

Longitude

Latitude

Equatorial
radius

longitude

Distance
along spin
axis (Z)

2x10 - 7

3x10-5

-69x10

3x10- 5

-6
8x106

4x10-5
4x10
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CHAPTER V

Maximum Likelihood Parameter Estimation

The parameters of our physical model are determined

from a linearized, iterative, weighted least-squares solu-

tion. The mathematical formulation of this process will be

given without proof below. (See Shapiro 1957 for a rigorous

discussion.) Let an observable quantity 0 depend on a set

of I parameters, qi, and time, t:

0 = F(ql' q2, ..qI't)

where F is the theoretical expression for the observable 0.

We wish to estimate the parameters qi from the observations

starting from a nominal set of values qi0. We suppose that

actual observations O', of total number J, are made at times

t.. Let us form the following column vectors

({}r = {0' - 0 (qlq ." "  ,t )};j=l,..J

{x} i  {qi-qi}0 ; i=1,2...I

We also assume that there exists a (column) noise vector

E Of dimension J which represents the noise in each measure-

ment. Assume that the noise can be characterized as random
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samples from a multivariate gaussian probability density dis-

tribution with zero means. We can expand y in a power series

about the qi01 s as follows:

y = - A x + terms of order (qj-qi0) 2

where

o = (x =0)

and the matrix A has elements

{A}ij

qi=qi0
, i=l-I

The equation that should hold true to sufficient accuracy

to insure convergence on the "correct" minimum among the ex-

trema of the weighted sums of the squares of the residuals is

Y0 = A x +

The linearization error is presumed to be smaller than e.

The maximum likelihood linearized approximation solution

x can be shown to be the solution to the so-called "normal equa-
-1-

tions" obtained by weighting both sides by the matrix A-

(defined below) and then multiplying by AT.
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T 1 T 1ATA y= AT Ax
A -E - -

or

^; = T -1 -1 T -1x = (ATA 6A) ATA y

where A is the noise covariance matrix ( sT ) and the

overbar denotes ensemble average or expectation. Terms of the

T T T
order of (x) x, x y0, and y x times second derivatives

2 F/Dqi Dqj have been neglected. This solution is in fact

also the .linearized minimum variance solution (see

Solloway, 1965). The covariance matrix for this solution is

A = (ATA- 1A) -
--X

The matrix inversion in PEP uses the Gauss-Jordan direct

method with a routine supplied by N. Brenner. The documentation

for this inversion is found in a report by M.E. Ash (1972)

and references cited therein.

The linear estimate of the noise after the "best" set

of parameters qi are used in the theoretical expressions can

be obtained from

T -1 -1 T -1
= [I - A(A TAA) ATA I]y

-..-. C -
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where I is the identity matrix ( {I}ij = 6ij).

In processing real observations, we generally

make the restrictive assumption of independent (uncorrelated)

measurement errors (i.e., A is diagonal). To express

AX- let us form the column vector

,m(t ) =

D0m
mql

as
Sm

q92

DOm
3qI

(tj)

(tj)

(tj)
J

thwhere 0 m is the m type of observable. We assume that the

errors in O' are gaussianly distributed with standard devia-m

tions am. Then we have

JT-1 1 T
(ATA -A) = (t )a (tj)]

-a j m .[ m 2m -m
m =1

whence

M -1
A =  (AA A)

m=l
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where M is the total number of observable types.

The formal standard deviations of the parameter estimates

are then

i= {(-x) ii ; i = 1,2,....I

and the normalized correlations between the estimates of param-

eters i and j are

c. - { x}iJ 1i2..I13 oo.

The linearization above demands that we must iterate un-

til, by some criterion, convergence of the solution to the

maximum likelihood estimate has been achieved. The cri-

terion chosen is that the parameter adjustments are small

fractions of their standard deviations.

PEP has several convenient related features for aiding

in a judgment concerning the validity of a solution.

For example the post-fit residuals can be linearly predicted,

printed out, and/or plotted. The normal equations can be

saved on magnetic tape so that additional solutions with

parameter and/or data subsets can be explored.
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CHAPTER VI.

Preliminary Solution for Observations from

1925-1969

The generation of a preliminary ephemeris was begun by

obtaining initial conditions -- position and velocity in

1950.0 rectangular coordinates at the desired epoch (J.E.D.

2440000.5)* - - from values tabulated in the "Improved Lunar

Ephemeris" (Eckert et al., 1954) as supplied on magnetic tape

by the Jet Propulsion Laboratory (designated as LE4).

A numerical integration of the motion and the derivatives

with respect to initial conditions was carried out using these

initial conditions. This integration covered a period of

twelve years, 1956 to 1968, backward in time.

This ephemeris was then used to calculate theoretical

values for observations made over this period of time in order

to obtain improved initial conditions. The observational

material used consisted of

1) meridian-circle observations from the U.S. Naval

Observatory from 1956 to 1968.

2) time delay and Doppler observations of the sub-

radar point of the moon made in 1966-1967.

These data are subsets of larger data sets which will be

*May 24, 1968
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described in detail below. After two iterations, a converged

solution was obtained. The converged solution did not differ

significantly from the solution for the first iteration. With

the initial conditions for this solution, an integration

from 1968 backward in time to 1925 was carried out.

The date of 1925 for the intermediate ephemeris was

chosen because a very homogeneous set of meridian-circle ob-

servations extending from 1968 back to 1925 became available

when this step was being planned. This homogeneous data set

is a careful reduction of meridian-circle observations made

with the USNO 6 inch transit instrument. All positions

are referenced to the system of FK4 (Adams et al., 1969).

The extensive corrections made to these data are described in

Adams et al. In brief, the data have been corrected for

(1) limb irregularities using the limb corrections of Watts

(1963), (2) refinements of the corrections for refraction,

instrumental errors, diurnal aberration, and (3) parallax and

orbital motion including the new IAU dimensions of the earth.

Other data used in this solution were as follows: Greenwich

observations from 1925 to 1954 were taken from the reference in

Appendix 6, § 6 g-h. Observations at Capetown, South Africa,

covering the period 1936-1959 were made available prior

to publication by the observatory (personal communication,

1967). The radar data are taken from Radar Studies of the

Moon, Final Report, Vol. 2; and unpublished
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observations made in 1968. The data are summarized in Table 7,

which gives the number in each series of observations, the

corresponding series "name" (as documentation for outside

users of the lunar data compiled here) and some statistics

for each series.

Sample plots of the residuals versus time for the con-

verged solution for this data set are given in Figures 7 through

10. For the entire data set back to 1925, the most serious

systematic trend in the residuals occurs in the Capetown

observations. The observations for the period 1959-1949

in particular show annual oscillations, especially in the

declination residuals, which are not found in other observa-

tion series. The amplitude of this oscillation is approxi-

mately two to three seconds of arc, and is the cause of the

large root-mean-square (r.m.s) of the residuals for that

series in Table 7. The results have been communicated to

the South Africa observers for their comments.

In order to test the fundamental hypothesis that the

observational errors are Gaussianly distributed with zero mean,

we have fitted Gaussian distributions to the residuals in

right ascension and declination. The parameters in the fit

were the amplitude of the Gaussian distribution, the standard

deviation, and the mean. The results for all right ascension

observations combihed are shown in Figure 11, and for declina-
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tion in Figure 12. The overpopulation of the tails of the

distributions relative to the fit is partly caused by the

equal a priori standard error assigned for every series being

one second of arc. The fit should have been made to the resi-

duals divided by the r.m.s. error for the particular series.

The solution for the parameter estimates should have been

repeated with each series weighted appropriately. In fact,

in the final solution that included observations from 1970

back to 1950 [per Chapter VII] , this procedure has been

followed.. For the set of intermediate parameter estimates

in the solution to 1925, this additional step was not taken.

For this solution, the mean of the right ascension residual

was 0'.'039 arc, with a standard deviation of 1'.'01. The cor-

responding declination values were 0'.'009 and 1'.'16 respec-

tively.

The solution from data back to 1925 includes estimation

of the values for AT' for 1956 to 1925. These results are

presented in Figure 13 and illustrate a difficulty with solu-

tions for AT' from lunar data alone: a secular trend in AT'

is highly correlated through the mean motion with the esti-

mate of the semimajor axis of the lunar orbit. A secular

trend in AT' is also correlated with the estimated values for

the multiplicative relativity parameter X (see Chapter III)

and the time variation for the gravitational constant. As

we shall see in the next chapter, solutions with the moon
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and inner planets combined can be used to make a meaningful

determination of AT' (provided we are willing to accept G or

tidal friction from'a priori information).

The initial conditions from this converged solution over

the 43-year time interval (1925-1968) were used to integrate

backward in time from 1968 to 1750. The latter date was

chosen as the "break-even point" in the trade-off between

decreasing observational accuracy and the increasing sensi-

tivity to long-term trends in the motion.
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CHAPTER VII

Solution for Observations from 1750 to 1970; Conclusions

The next step in improving the ephemeris of the moon

was the fitting of a much larger data set than that discussed

in the previous chapter. The general description of that

data set, which includes observations extending back in time

to 1750, is given by Tables 8 and 9. Table 8 describes the

Surveyor Doppler observations which made up a part of this

enlarged data set. The dates on which observations were

obtained are within periods in which the Surveyor was in sun-

light since the transmitter depended on solar power. Table 9

contains descriptive material on those optical observations

which were not described in Chapter VI. The time ordering

of the observation series in Table 9 reflect an order dictated

by efficiency in computer processing of the observation cards.

The bibliographic information for these observations can be

found in Appendix 6.

Normal equations for these data were formed using the

ephemeris described in Chapter VI. These normal equations

were stored on magnetic tape. This system of equations was

then augmented by various inner planet normal equation sets,

for reasons to be described below, and the total system could
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Table 8

SUMMARY OF SURVEYOR COUNTED DOPPLER OBSERVATIONS

120

Spacecraft Observing Dates Data Total Number of
Site Obtained Observations

Surveyor DS11 6/3/66
I 6/5/66-6/16/66

7/7/66-7/8/66
7/13/66 646

DS42 6/3/66-6/15/66
7/6/66-7/9/66
7/12/66-7/13/66 928

Surveyor DS11 4/23/67
III 5/2/67-5/3/67 9

DS12 4/25/67 63

DS42 4/20/67
4/22/67-4/27/67
5/1/67-5/3/67 471

DS51 4/26/67-4/27/67
4/29/67-4/30/67 122

DS61 4/20/67
4/22/67-4/28/67
5/1/67-5/3/67 408



Table 8 (Cont.)

Spacecraft Observing Dates Data Total Number of
Site Obtained Observations

Surveyor DS11 9/11/67-9/13/67
V 9/16/67-9/24/67 748*

DS42 9/11/67
9/13/67
9/16/67-9/24/67 1528*

DS61 9/11/67-9/14/67
9/16/67-9/24/67 3170*

Surveyor DS11 11/10/67-11/25/67 350
VI

DS42 11/10/67-11/12/67
11/14/67-11/16/67
11/18/67
11/20/67-11/23/67
11/25/67 457

DS61 11/10/67-11/17/67
11/22/67-11/24/67 489

Surveyor DS11 1/9/68-1/22/68 1604*
VII

DS42 1/10/68-1/15/68
1/17/68-1/23/68 1759*

DS61 1/10/68-1/23/68 4651*

*Counting interval is 60 seconds. All others are 300 seconds.
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Table 9

Summary of Series for Optical Observations

r.m.s error postfit
residuals (sec of arc)

Observatory

6"U.S.Naval 1

Greenwich

Besanjon

Tokyo

Uccle

9"U.S.Naval 1

Greenwich

Paris

Dates of
Observations

1900-1903

1900-1930

1908-1922

1961-1962

1949-1960

1928-1944

1913-1925

1900-1901

1931-1954

1905-1930

1903-1904

1902-1902

1900-1906

1900-1906

1924-1935

1919-1923

Series
Name

M300

M000

M790

M261

M049"*

M428

M513

M300

M531

M300

B491

P250

A691*

C688*

3619

L619*

r.a.

1.2

1.8

2.2

2.5

2.8

2.2

1.0

1.7

1.1

1.2

2.5

2.8

2.0

2.6

3.2

1.6

Decl.

1.3

1.4

4.1

2.8

2.3

2.3

0.9

1.3

1.1

0.9

1.6

1.8

1.6

1.7

1.5

4.1

* observations not of the center of the moon at transit of
center
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Table 9 (Cont.)

Summary of Series for Optical Observations

r.m.s error postfit
residuals (sec of arc)

Observatory

9"U.S.Naval

8"U.S.Naval 1

U.S.Naval 1

Edinburgh

Greenwich

Strassburg

Greenwich

Besanyon

Cambridge

Radcliffe

Paris

Dates of
Observations

1894-1899

1866-1891

1861-1865

1838-1847

1875-1899

1852-1874

1888-1893

1882-1888

1836-1851

1831-1835

1890-1895

1838-1852

1833-1837

1832-1833

1841-1890

1891-1893

1850-1887

Series
Name

M994

M166

M561*

M538

M9 75

M450

M388

M882*

M131

M131*

M590

M238

M7 28

M7 28

M040

C491*

P250*

r.a.

1.8

2.0

3.0

2.3

1.8

2.0

1.7

1.9

2.3

3.3

2.0

2.5

3.6

3.6

3.0

2.1

2.7

Decl.

1.9

2.1

3.0

2.4

1.6

1.8

1.9

1.9

2.2

3.0

2.3

2.2

3.2

X

2.1

1.0

2.8

* observations not of the center of the moon at transit of
center

X observable type missing
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Table 9 (Cont.)

Summary of Series for Optical Observations

r.m.s error postfit
residuals (sec of arc)

Dates of
Obs ervat ions

Paris 1891-1899

1887-1890

1879-1885

1888-1899

1867-1887

1863-1863

1863-1863

1837-1849

Greenwich 1812-1813

1825-1830

1824-1825

1813-1824

1800-1812

1765-1799

1753-1765

1750-1753

1810-1812

1831-1831

* observations not of the
center

X observable type missing

Observatory
Series

Name

A691*

L087*

J579*

C688*

G767*

R363*

S363*

4930*

1312*

3025*

2524*

2413*

1000*

0065*

6553*

5350*

1210*

M131*

Decl.r.a.

2.7

2.1

2.7

3.0

3.0

2.0

2.0

2.5

5.5

3.6

2.7

3.2

3.3

3.4

3.8

4.3

X

3.0

center of the moon at transit of

*1 ) 1

2.3

X

2.0

1.5

3.9

X

2.3

3.5

6.3

2.7

3.3

4.0

4.4

4.2

4.8

4.9

3.8

2.0



then be solved using Gauss-Jordan direct elimination. Many

solutions were then made for various choices of parameters.

One rationale for these different solutions is that the

variations in the solutions for the remaining parameters, as

we add or subtract other subsets of parameters, give some

indications of the systematic errors which are surely present

that the formal standard error cannot evaluate. Our para-

meter solutions were also limited by computer storage to the

inversion of a matrix of maximum dimension 375. For similar

reasons, the data series which were included were also varied

in order to explore the sensitivity of the results in other

ways. For example, all observations during the nineteenth

century at Paris could be eliminated to see how various para-

meter solutions depend on the time spanned and the observing

program at a particular observatory.

For the purposes of a thesis, this vast collection of

information is not well suited for presentation. The process

of digesting all the information contained in these solutions

is a continuing task which will occupy several years. The

principal results, however, can be indicated by studying one

particular well-chosen parameter solution which we shall call

the nominal solution. The results of the other parameter
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solution sets will be mentioned at such points as I believe,

with my current limited grasp of their full information, that

a particular parameter solution or its formal error needs

qualification.

This nominal solution is based upon the lunar data

described in Tables 7, 8, and 9, plus meridian circle and

radar observations of Mercury and Venus, and meridian circle

observations of the Sun. These planetary data have been

described by Ash et al. (1971) The nominal solution includes

the estimation of the parameters for the geodesic precession,

the first term in sin 26, and the time variation of the gravita-

tional constant. In addition six initial conditions for the

moon, for the earth-moon barycenter, for Mercury, and for Venus

were estimated. The inclusion of the Surveyor observations

made necessary the addition of parameters for the apparent

Doppler shift introduced by the neutral atmosphere,* for the

locations.of the observing stations, and for the selenocentric

coordinates of the Surveyor spacecraft . The parameters for

AT' (E C.T.-U.T.2) and the optical catalogue orientation para-

meters were also included in this solution. The phase cor-

rections were separately solved for due to the restrictions

on matrix dimension. Other solutions show that the phase

* No model for the ionospheric effects included in nominal
solution.
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corrections are negligibly correlated with the other para-

meters of interest.

The values found for these parameters will be discussed

below in the somewhat arbitrary order of, firstly, the

parameters associated with the Surveyor observations, then the

parameters associated with the optical observations, and

finally the parameters of general scientific interest. On

the basis of this nominal solution, the residuals that would

result can be linearly predicted. These resulting residuals

have been plotted as a function of time. The graphs of the

predicted residuals will be discussed along with the relevant

parameter solutions because these residuals are an important

measure of the credibility of the solutions. The absence of

systematic trends and a Gaussian distribution of the residuals

about a zero mean are the required characteristics. As a

partial summary of the information in these graphs, the

second moments of the residuals on a series-by-series basis

are included in Table 9 for the optical observations, and

separately in Table 10 for the Surveyor observations.

Let us begin a closer look at the parameter solutions)

starting with the Surveyor observations as indicated above.

The behavior of the Surveyor residuals is illustrated in

Figures 14 through 18. At the frequency of these observations
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Table 10

Statistical Analysis of

Predicted Residuals for Surveyor Observations

DSS 11

DSS 42

DSS 12

DSS 42

W1 DSS 61

DSS 51

DSS 11

DSS 11

( DSS 42

DSS 61

DSS 11
110

DSS 61

DSS 42

DSS 11

DSS 42

DSS 61

Mean (millihertz)

- 0.22

- 0.18

0.013

0.093

0.03

0.0038

2.2

- 1.8

- 0.6

- 0.1

- 3.1

0.96

0.88

- 2.5

- 1.5

- 2.2

r.m.s. (millihertz)

2.4

2.5

0.9

6.3

9.0

1.5

5.0

5.5

3.5

42.

7.8

3.3

2.5

4.5

3.0

23.
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(2.3 x 10 Hz), 1 millimeter per second is equivalent to 15.4

milliHertz. The diurnal signatures remaining in some of the

residuals could be due in part to ionospheric effects (maxi-

-3
mum of -8 x 10 Hz) which were not included in this solution.

If daytime observations were made (especially near local sun-

rise) for a particular tracking station, the ionospheric

contributions might amount to the signatures present(but a

detailed study has not been carried oui. A more serious

difficulty is the presence of non-zero daily means for several

tracking stations, particularly on the later Surveyors.

Typically the daily mean was 10 - 20 milliHertz. The contri-

bution of these days is seen, for example, in the r.m.s. for

Surveyors 5 and 7 (at DSS 61) in Table 10. The analysis of

the Surveryor observations at the Jet Propulsion Laboratory

(F. B. Winn, 1968) designates these daily passes of data

collectively as "biased data". The origin of the bias is unknown,

but is suspected to be instrumental.

Table 11 compares the solution obtained for the lunar

locations of the Surveyor transponders with the solutions

contained in The Surveyor Project Final Report, Vol. II

(F. B. Winn, 1968). The most serious discrepancy is between

the selenocentric radii found for Surveyor III - a difference

of ~3km. The solution by Winn was constrained to the radius
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Table 11

Surveyor Location Solutions Expressed as

Adjustments from JPL Solutions*

Ar, Km

SAX, deg

A0, deg

AR, Km

SAX, deg
U)

A0, deg

Ar, Km

AX, deg
U)

A0, deg

Ar, Km

SAX, deg

A0, deg

Ar, Km

AX, deg

A0, deg

Nominal Solution
(+ Formal Standard Error)

- 0. 47 (+ 0.07)

0.038 (+ 0.002)

0.046 (+ 0.001)

- 3.1 (+ 0.3)

- 0.021 (+ 0.005)

- 0.003 (- 0.001)

0.45 (+ 0.37)

0.021 (+ 0.005)

0.056 (+ 0.003)

0.16 (+ 0.10)

- 0.012 (+ 0.001)

- 0.023 (+ 0.001)

- 0.28 (+ 0.15)

0.006 (+ 0.02)

- 0.0008 (+ 0.004)

r = distance from moon center of

*

mass, Ar = rMIT-rJPL

selenocentric longitude, AX = XMITXJPL

selenocentric latitude, Al = oMIT-PJPL

Surveyor Project Final Report, Part II
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JPL
Standard Error

+ 1.4

+ 0.09

+ 0.06

+0.3

+ 0.005

+ 0.011

+ 0.3

+ 0.006

+ 0.025

± 0.84

+ 0.006

+ 0.018

+ 0.31

+ 0.01

+ 0.008



from the Lunar Aeronautical Charts (LAC) as compiled by the

Aeronautical Chart and Information Center (ACIC). We might

expect discrepancies of this order because systematic dif-

ferences of this size exist between radar measurements of

lunar topography (Shapiro et al., 1972) and the LAC charts.

Also a comparison of the other JPL Surveyor solutions with the

ACIC control points led to the conclusion that the ACIC datum

center is 2.8+ 0.7 km farther from the Earth than the center

of mass (Haines, 1969). The differences between formal standard

errors found here and those of Winn partly reflect different

weighting given to observation sets. These differences are

being currently examined in conjunction with JPL for possible

problem areas.

Table 12 compares the solution for the location of the

DSN tracking stations with recent JPL solutions (Mottinger,

1970). The agreement in radius and differential longitude is

very good; the absolute longitudes show a large systematic
-4

discrepancy of magnitude 4.65 x 10-4 degrees. (- 46 meters on

the earth's surface). The JPL longitudes place the locations

to the east of the M.I.T. determined locations. Recent

comparisons between JPL and Smithsonian Astrophysical Observa-

tory (SAO) solutions for the tracking station locations

(Gaposchkin and Lambeck, 1970) yielded a systematic longitude

difference of 2.3 x 10-4
difference of 2.3 x 10 degrees, with JPL location to the
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east of the SAO locations. One possible explanation would be

different origins of the right ascension system (the vernal

equinox) in the various reductions of the data. The systematic

longitude difference cannot be ascribed to the different U.T. 1

time systems used, as the comparison given in Table 13 shows.

(A ten milli-second difference leads to -4.6 x 10- 5 degree

change in longitude.)

Solutions for the Z components of station location (dis-

tance along spin axis) were made only for DSS 11 and 42 since

all Surveyors had observations at these stations. Systematic

differences compared with geodetic values exist in the solu-

tions for position along the spin axis. These differences may

be due to further rotational orientation differences between

the star catalogues used, to different implicit definitions

for the location of the center of mass of the earth, or to

data biases, etc. Differences of similar magnitude exist

between the North American Datum and the 1969 Smithsonian

Standard Earth (Lambeck, 1971). Lambeck solves for the

relationship between the NAD and the SSE by seven parameters:

three translations, three rotations, and a scale change. The

translational differences are the largest:
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AX = - 31.8 meters

AY = 178.0 meters

AZ = 177.6 meters

The solutions for the Z-component of the station locations made

in this thesis from the Surveyor data are not sufficiently

numerous for any conclusions to be drawn as yet. The star

catalogues' orientation parameters (see below) could easily

account for the longitude bias; the Z-component differences

are too large by a factor of three to be attributed to uncer-

tanties in these parameters. The problem of these systematic

biases needs further investigation.

The atmospheric corrections for the principal solution

described here consisted only of tropospheric parameters for

the zenith range. The values for the zenith range in meters

from the solution are given in Table 14. These results have

been compared with the average ranges computed from radiosonde

balloon data (Ondrasik and Thuleen, 1970). The results from

the Surveyor reductions were within twenty per cent for about

half of the determinations. These results are given graphically

in Figure 19. The anomalous results for Surveyor III at DSS 61

may be partly a compensation for a large ionospheric contri-

bution (since the ionospheric effect on phase delay has the

opposite sign from the tropospheric correction). The generally
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Table 14

Zenith Tropospheric Thickness

Z from Surveyor Solutions

Tracking iZ (meters)
Spacecraft Station (formal standard error)

Surveyor DSS 11 2.00 (.008)

I DSS 42 2.31 (.03)

Surveyor DSS 11 2.09 (.03)

III DSS 42 2.70 (.03)

DSS 51 2.10 (.2)

DSS 12 2.09 (.07)

DSS 61 1.39 (.02)

Surveyor DSS 11 1.99 (.08)

V DSS 42 2.26 (.1)

DSS 61 1.93 (.05)

Surveyor DSS 11 1.99 (1.2)

VI DSS 42 1.88 (.02)

DSS 61 2.39 (.04)

Surveyor DSS 11 1.94 (1.2)

VII DSS 42 1.95 (.009)

DSS 61 2.09 (.02)
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smaller than measured ranges may be a manifestation of the

same effect.

Now let us turn to an examination of the meridian circle

observations and of the other related parameters. The pre-

dicted residuals for the optical observations are given in

Figures 20 to 24. Note that, in Figure 24, the scale is

approximately fifty percent larger than on the other figures

for optical observations. The statistics for the optical

observations were detailed in Table 9. The revised observa-

tory positions used to obtain the corrections for parallax

and time of meridian passage of the center (made via the

formulae given in Chapter III) are shown in Table 15. The

orientation parameters of the star catalogues for the observa-

tion series for which the adjustments were large multiples

of their formal errors (hence statistically significant) are

presented in Table 16. Note that the values for AE, AI, and

A0' for the U.S. Naval series from 1925 to 1969 gives the

differential orientation of the FK4 axes with respect to our

inertial system which is defined by the totality of the

observations. (This identification is true in so far as the

reduction of the U.S.N.O. observations to the FK4 was complete

and accurate.) Interpreted as distance on the surface of the

earth, these adjustments amount to 25 meters in the equinox,
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Table 15

Observatory Coordinates Used for

Non-Standard Observation Series

Radcliffe

Tokyo

U.S. Naval
Observatory
Series Name
M561

Greenwich

6365.095

6370.997

6369.874

6365.371

1.2516667 deg

- 139.54075

77.06554167

0.0

61' 1

51% 572505

35%49038

38%73332

50. 682965

p = geocentric radius in kilometers (ae = 6378.166 Km)

8 = longitude in degrees

'= geocentric latitude in degrees
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Table 16

Sample Solutions for Star Calalogue

Orientations for Moon Series

The numbers in parentheses are the magnitude of the adjust-

ment in units of their formal standard errors.
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AE (sec of time) AI (sec of arc) A0 (sec of arc)

6 USN 5.8x10- 2  (34) 2.4x10-1 (13) -3.2x10-I  (26)
M925

Gren 6.2x10-2 (24) -3.9xl0-1 (10) -6.1x10- (23)

M431
-2 -2 -1

Gren 3.8x10 (11) -1.7x10 (0.7) -2.32x10 (14)

0065
-2

6 USN 4.34x10 (11) 4.6x10 - 1  ( 7) -1. (22)

M300

Gren 4.99x10-2 (22) 2.lxlO- ( 8) -0.9 (50.2)
M000

-3 -i
9 USN 9.2x10-3 (3) 4.5x10 (11) -0.8 (28)
M513



, 7 meters in the equatorial adjustment and 10 meters in

the latitude bias.

Observations of the inner planets were included in the

nominal solution because a meaningful solution for a

possibly changing gravitational constant and AT' cannot be

determined from the moon alone, as we shall see below. The

credibility of the solution is tested by the magnitudes of the

adjustments to the inner planet parameters since the inner

planet nominal values are based upon quite well converged

solutions for these parameters from the solution involving

the planet data alone (Ash et al.,1971). Table 17 gives the

adjustments found for the initial conditions for the planets.

Comparison with other solutions made by adjusting different

parameters and/or omitting various data sets leads to the

conclusion that the adjustments to the inner planet orbital

elements are controlled almost completely by the radar data

when included. The optical data alone for the inner planets,

with or without the moon data included, do not produce adjust-

ments to inner planet orbital elements similar to the radar

values no matter what parameters are adjusted for all cases

tried.* These results warn of the presence of systematic errors

in the optical data. Table 18 gives the osculating orbital

* The differences in these adjustments are large compared to
the formal errors of the solution.
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Table 18

Moon Initial Conditions from Nominal Solution at

Epoch J.E.D. 2440000.5

* formal standard error

141

a 0.0025715142099 A.U. (+ 5.x10-1 )*

e 0.055615887 (+ 4.x10-8)*

-7
i 28.3968891 deg. (+ 8.x10-7 )*

-6
0 3.3128778 deg. (+ 9.x10-6)*

-5
w 226.270822 deg. (± 1.x10-5)*

-5
M 154.885985 deg. (+ 1.xl0 )*

0



elements at epoch for the moon which are associated with the

nominal solution. The next lunar ephemeris used in continuing

this work should be generated with these starting conditions.

Now let us turn to the estimation of the parameters of

particular interest in this work: those for geodesic preces-

sion, a time varying gravitational constant, and tidal fric-

tion. The estimation of AT' will also be crucial here. To

understand all these results, a digression on previous methods

of estimating these quantities will be necessary.

For any body b in the solar system, comparison of the

mean longitude of the body from the ephemeris (as a function

of coordinate time) to the observed mean longitude (as a

function of universal time) gives a difference which is

found empirically to grow quadratically with time:

2
ALb = Ab + Bb + Cb

where 7 is coordinate time. This (non-zero)value found for

ALb has the following possible theoretical interpretation:

2Cb= b - nb)

where nb is an (assumed constant) rate of change of the mean

Motion nb, and 0 is an(assumed constant) variation in the
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earth's rotation rate n. We may compare two different bodies

as follows:

nn n n( n2  2 1 0 n2 2 1 0
n1

= n E n 2 12

By comparing the moon to the inner planets and the sun, the

quantities, Ap were found to be quite independent of the

planet p involved. Since the ratios n /np are very large, the

values of n must be negligible (it was argued). On thisp

assumption, the A p give n . This rate of change of the mean

motion can be expressed in terms of the tidal friction para-

meter sin 26. The measured quantities

n *
1 n
-AL p_
n P n P

should give Q/n since n is assumed to be zero. Then AT is

found from
TT = t fTo

AT(t) = dT (t')dt'
T = t 0

If the concept of a changing gravitational constant is

introduced, the picture becomes more complex. For any

planet, a rate of change of the mean motion caused by the
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variation in G is given by:

-E=2--n G- = 2 -
np G

as follows from Kepler's law and conservation of orbital

angular momentum. For the moon (ignoring other torques),

-11 -1
a rate of change G/G = - 3 x 10 yr causes a change of

n = 10" century-1

or about half of the currently believed value due to tidal

friction. Thus we see that the fact that A p is independent

of p does not give a unique value for n ,. The problem of

determining G/G, £/Q, and n~ becomes one of determining three

unknowns from the two equations of Aqp and ALp. (Mercury and

Venus do not separately provide independent equations because

the data are not numerous enough for the accuracy required.)

With these remarks as background, let us discuss the

results for the parameters given in Table 19. The results in

this table for O/Q are derived from the result for AT' as

follows. The table of AT given by Brouwer depends on the

expression for Ephemeris Time which has a value for n

incorporated. In order to relate AT' to AT, allowance must

be made for the difference in n in the two results via
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sin 26 28(AT) = 20.44 ( - )T
0.0755

where T is in centuries. This correction is due to the T2

term assumed by Brouwer in the moon's mean motion. After

allowing for this difference, any residual T2 coefficient is

assumed due to ?/Q. As expected from our discussion above,

no unique determination of sin 28, 6/G, and AT'is possible.

Different solutions are obtained for the parameters depending

upon the parameter set adjusted. The result for the geodesic

precession, however, is quite independent of the solution for

these quantities. A qualitative understanding of this uncoupl-

ing can be reached by considering the observable quantities

from which these parameters are determined. The mean longi-

tude of the moon, as explained above, contains the primary

information concerning G, tidal friction, and AT'. The

geodesic precession, on the other hand, is principally deter-

mined through the motion of the node and perigee of the lunar

orbit. Therefore we can expect the solution for the geodesic

precession to be meaningful in spite of possible problems with

quantities associated with the mean longitude.

The nominal solution for AT' is plotted in Figure 25.

Except for the expected difference which grows quadratically
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with time, the general oscillations of AT' and the AT of

Brouwer agree remarkably well.*

The errors quoted in Table 19 are the formal standard

errors from the solution. The uncertainty in the result for

the geodesic precession should also reflect the uncertainty

in the gravitational harmonics of the moon. The contribution

from this source can only be estimated, but a reasonable value

is 0.25 century- 1 . Combining the formal error with this

and doubling the result yields a conservative estimate of the

-1actual error of 0.'6 century-.

Comparison of the solutions for various parameter sets

allows us to place the following limits on the parameters

involved:

0.03 < sin 26 < 0.11

G - -11 -1IGI< 6 x 10 yr

-10 -1
( ) > - 2 x 10 yr

The geodesic precession is found to be
-i

1'5 + 0126 century-1

The solutions in Table 19 assume that general relativity

is correct for the inner planets. Relaxing this constraint,

we estimated the multiplicative factor for general relativity

The seasonal variations AS.YV were not well determined from
our data. The nominal solution holds these parameters at the
values described in Ch. II.
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X for both the moon and the inner planets combined. The
r

solutions for Xr ranged from (0.995 + 0.006) to (1.003 +

0.006), where 1.000 would indicate that general relativity is

correct. (J2 for the sun was fixed at zero in these solutions

so this result can shed no light on Dicke vs. Einstein, except

in a model-dependent way.)

Any conclusions based on the solutions discussed in this

thesis must be regarded as tentative, due to the following

modeling and procedural problem areas. Firstly and probably

most importantly, the solutions are not fully converged on the

true maximum likelihood estimate since no iterations have been

performed. Therefore the first step in any future work with

these lunar data must be reintegrating the motion of the moon,

recomputing the residuals, and forming new normal equations.

The second problem area concerns the modeling of the motion

of the observational coordinate system with respect to inertial

space. As discussed in Chapter I, this motion has been para-

meterized as three rotations about orthogonal axes. The

solutions discussed above do not include any attempts to

solve for these parameters. Inclusion of these parameters in

the next iteration may cause significant changes in the solu-

tions.
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As has been discussed above, the solutions obtained here

contain indications of systematic errors of various types.

Until the origins of these errors are better understood, we

must be very cautious in the interpretation of the results

here. Some of the questions concerning systematic errors can

be approached by comparison of results obtained using dif-

ferent data types. Two data types come to mind immediately:

laser ranging observations and stellar occultations by the

moon.

The stellar occultation data were originally intended to

form a part of this work and the calculation of the observable

from the theory is checked out. The normal equations cannot

be used, however, because the partial derivatives of the

observable with respect to many parameter types have not yet

been checked numerically for consistency with the observable

itself. Work in this area is continuing.

The laser ranging data could have been processed by PEP

for this thesis. At the time of this work, however, the

availability of the data was restricted to members of the

LURE team. These data should clearly be incorporated as

quickly as possible into the solutions. The accuracy of the
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laser observations will require the eventual improvement of

the model for the rotation of the moon about its center of

mass. Within the context of PEP the logical direction for

this improvement would be the numerical integration of these

equations of motion. The knowledge of rotation of the earth

about its center of mass is another area which will soon be

inadequate for treatment of the laser data. Estimation of the

Chandler wobble, solid earth tides, continental drift etc. will

be necessary. All these effects to be modelled will degrade

the sensitivity of the laser data to the parameters of funda-

mental physical interest such as the time variation of G

unless other methods of estimating the same effects can be

brought to bear. Parallel monitoring of these motions by a

technique of comparable accuracy - Very Long Baseline Inter-

ferometry - would be highly desirable.
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Index of Symbols

The following general principles have been adhered to in

designating the various physical quantities. Vectors -- a magnitude and

direction independent of coordinate system -- have been denoted by an

arrow above the symbol (e.g. X). A 3xl matrix of components of a vector

in some particular coordinate system are designated by a tilde under the

symbol (e.g. x). Other matrices have their symbol underlined (e.g. P).

A dot above a letter denoted differentiation with respect to time.

Subscripts 0 frequently indicate initial values.

The following index is not intended to be complete. Those symbols

which are important or which may be ambiguous have been included. For

those symbols which have multiple definition, it is hoped that the

context will be sufficiently clear that no confusion will result.

A coefficient of forces in tidal friction model

a semi-major axis of ellipses

a ic i  time-independent amplitudes of trigonometric

seasonal variations in earth rotation

bi,di  time-dependent amplitudes of seasonal variations in earth

rotation

B moon rotation matrix

c speed of light in vacuum

cij correlation coefficients

CLm,s-fm coefficients in expansion of gravitational field in

spherical harmonics.
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D term in lunar tidal friction model

D(t) term in C.T.-A.1

D counting interval
c

ds2  line element in general relativity

e eccentricity of elliptic orbit

F rotation matrix for the Earth about its center

of mass

fo transmitter frequency

G gravitational constant

g components of metric tensor

H acceleration on the moon due to the harmonics in

lunar gravitational potential

I inclination of mean lunar equator to the ecliptic

Iij components of inertia tensor

J coefficient of zonal harmonicsn

K2  Love number

L semi-latus rectum of ellipse

.0 mean anomaly at epoch

AZ atmospheric delay in zenith direction (converted

to distance)

M(t) term in C.T.-A.1.

ME mass of earth

Mj mass of jth planet

MM mass of the moon

M mass of the sun

N nutation matrix
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NONe integrated electron content of ionosphere

n lunar orbital angular velocity vector

n mean motion of the moon

0 observable quantity

P force on moon due to planets other than the earth

P precession matrix

Pn ,P Legendre functions

Q acceleration of moon due to earth gravitational

harmonics

Q quality factor for the earth

R acceleration of moon due to general relativistic

effects

R radial acceleration of the moon due to tidal friction

S acceleration of the moon due to tidal friction in

the plane of the mean lunar orbit

s sidereal time

T as superscript, matrix transpose

T acceleration on moon due to tidal friction in earth-moon

system

TIPu  energy-momentum tensor

t universal time

t coordinate time

ti  point in AT' model at which a slope change occurs

t0 some initial epoch

153



U the matrix PPNTFT W

U gravitational potential

4
V acceleration of moon due to time varying gravitational

constant

W wobble (polarmotion) matrix

W acceleration of the moon due to tidal

friction normal to the mean lunar orbit

w angle in precession matrix

Y vector in numerical integration

Y(t) term in C.T.-A.1.

Yi value of AT' at t.

z angle in precession matrix
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a right ascension

0a parameter in Robertson metric

P parameter in Robertson metric

y parameter in Robertson metric

Ac nutation is obliquity

AT nutation in longitude

AT' coordinate time minus universal time U.T.2

8 lag angle in tidal friction model

obliquity of the ecliptic

apparent sidereal time

X geocentric longitude

X element of wobble matrix

the combination GM

element of wobble matrix

U43 transition in cesium - 133 defining A-I second

angular velocity of orbital angular momentum

precession

vector potential derived from T. V

angle in precession matrix

n lunar parallac

p physical libration in inclination of moon

E moon rotation matrix

a physical libration in the moon's node

7 coordinate time

T proper time in general relations

T time delay

scalar potential derived from TIPV

Y 0 + Cr
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longitude of mean ascending node of lunar orbit

measured on the ecliptic from mean equinox of date

earth angular velocity

0 magnitude of ý

W relative angular velocity vector between two

coordinate systems

W argument of perigee of lunar orbit

Special Symbols

0 sun

Mercury

Venus

Earth

dMars

The mean longitude of the moon; as a subscript,

denotes a quantity associated with the moon.
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Schematic Illustration of Model for C.T.-U.T.2

Osculating Orbital Elements for the Moon as a

Function of Time, with Newtonian Gravitational

Interaction Only between Centers of Mass (Expres-

sed as differences from elements at epoch).

Osculating Orbital Elements as .a Function of

Time with General Relativistic Gravitational

Perturbations of the Sun Affecting the Moon-

No Direct Solar Perturbations.

Coordinate System and Vector Used in Tidal

Friction Calculation

Osculating Lunar Orbital Elements with Tidal

Friction and Newtonian Interactions Affect the

Lunar Motions

Osculating Orbital Elements for the Lunar Motion

Affected by Newtonian Interaction and a Changing

Gravitational Constant.

Right Ascension Residuals for the U.S. Naval

Observatory with the Ephemeris of Chapter VI.

Declination Residuals for the U.S. Naval Observa-

tory with the Ephemeris of Chapter VI.

Right Ascension Residuals for the Royal Greenwich

Observatory with the Ephemeris of Chapter VI.
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Figure 10. Declination Residuals for the Royal Greenwich

Observatory with the Ephemeris of Chapter VI.

Figure 11. Gaussian Distribution Fitted to Right Ascension

Residuals from Fit for 1925-to 1968.

Figure 12. Gaussian Distribution Fitted to Declination

Figure 13. Solution for AT' from Data for Period 1925-1968.

Figure 14. Predicted Residuals for Surveyor I from Nominal

Solution from 1970 to 1750.

Figure 15. Predicted Residuals for Surveyor III from

Nominal Solution from 1970 to 1750.

Figure 16. Predicted Residuals for Surveyor V from

Nominal Solution from 1970 to 1750.

Figure 17. Predicted Residuals for Surveyor VI from

Nominal Solution from 1970 to 1750..

Figure 18. Predicted Residuals for Surveyor VII from

Nominal Solution from 1970 to 1750.

Figure 19. Zenith Range through Troposphere for Surveyor

Solutions (Nominal for Period 1970 to 1750).

Figure 20. Predicted Meridian Circle Residuals for the

Period 1970 to 1900, Part A.

For ease of reading Figures, here is table of

Julian Day Numbers
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Figure 21.

Figure 22.

Predicted Meridian Circle Residuals for Period

1970-1900; Part B (Nominal Solution)

Predicted Meridian Circle Residuals for Period

1900-1830; Part A (Nominal Solution)

Figure 23. Predicted Meridian Circle Residuals for Period

1900-1830; Part B

Figure 24 Predicted Meridian Circle Residuals for Period

1830-1750.
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OBSERVED - THEORY FOR DOPPLER SHIFT OBSERVATIONS OF MOON IN CYCLES/SECOND
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APPENDIX I
The Inertial Reference Frame Determined from
the FK4 Stellar Positions and Proper Motions

Fricke (1967a, 1967b) analyzed the measured proper

motions of 512 stars in the FK3, N30, and FK4 catalogues

for information about the motion with respect to a truly

inertial system of the frame of reference that is nominally re-

presented by Newcomb's relations for the precession matrix (Ch.

II.C). This analysis depends upon three important assumptions:

1. The stellar motions used are distributed well

enough over the sky so. that, with proper weighting

of different areas, the results obtained closely

represent the results to be found from a dense

distribution of measured proper motions covering

the whole sky.

2. The stars have the property that the residual proper

motion over the ensemble would vanish in a truly

inertial frame once the solar motion and galactic

rotation are removed.

3. The description of the motion of the reference frame

compared to an inertial frame is adequately des-

cribed by w, a rigid rotation of one frame rela-

tive to the other (i.e. no distortion effects exist

other than the simple model for shear from differen-

tial galactic rotation and the motion of the sun).
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To explore the effects of these assumptions on the

results, Fricke has carried out solutions for W in the

various catalogues, in the same catalogue with different

weightings, with different parallax groups, with right ascen-

sion proper motions va, with declination motions p6 and with

P and p6 combined. To give the reader some feeling for

the range of solutions (and hence their credibility) some

sample solutions will be given. The FK4 "standard solution"

designated (C02.2) with declination motions weighted twice

as much as right ascension motions, and with statistical

parallax factors applied to different regions, is

1 = -0'.'22 + 0.'04 per century

w2 = +0'.39 + 0'.'04 per century

W3 = -0'.'34 + 0.'04 per century

The solution with py alone and the same parallax factors gave

W1 = -0"60 + 0.'11 per century

2 = +0'.'34 + O011 per century

W3 = -0'.'26 + 0'.'05 per century

whereas the corresponding v6 solution gave
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i1 = -0"11 + 0'05 per century

a2 = +0'.'35 + 0'.'06 per century

(W3 is not in the declination solution since V has no sensi-

tivity to a motion in the plane of the equator.) The N30

solution corresponding to the FK4 standard solution gave:

i = -0'18 + 0.'04 per century

a2 = +0.40 + 0'.'04 per century

A3 = -0'.28 + 0.04 per century

Note that the FK4 and N30 catalogues are different treatments

of greatly overlapping observational material.

Solutions were also made from two classes of stars:

(1) all stars closer than 250 parsecs (351 stars)

(2) stars further than 250 parsecs, restricted to

galactic latitude + 300 (137 stars)

The average results for N30 and FK4 combined were:

W1 = -0.18 + 0.05 per century

Class 1 W2 = +0.'42 + 0.'06 per century

I3 = -0'.38 + 0'07 per century
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Wl 
= -0':24 + 0'.'04 per century

Class 2 w2 = +0"33 + 0'.'05 per century

(03 = -0'.'28 + 0'06 per century

Fricke takes the solution which he feels is most re-

liable, and interprets the resulting w in terms of preces-

sion constant errors, equinox motion, and galactic rotation

The result usually stated is that

A(Pcos E) = +1'10 + 0'.'10 per century

where P is Newcomb's constant for luni-solar precession, and

E is the obliquity of the ecliptic.
-4-

Let us instead compute what these results for w imply for

the angles in the precession matrix P. From the expressions

in the report by Lieske (1967), we find the changes to the an-

gles described in II.C that are implied by Fricke's result are:

Ag _ Az = -(0"10 + 0'.05)T 50

AW = +(0'.'44 + 00'.'4)T 5 0

where the errors reflect Fricke's assigned errors.

To see these results in another form, we can derive

the changes in the precession in right ascension As and

the precession in declination A6 as
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Aa = A 0  + Az = -(0'.'20 + O'.'10 )T 0

A6 = AW = (0'.'44 ± 0'.'04)T 5 0

-),

These results are the basis for believing that Iwi < 1" per

century.
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APPENDIX 2

Rotation Matrices and the Equations of Motion
in a Rotating Frame

The assertion was made in Chapter I] that the estima-

tion of a certain rotation matrix was equivalent to estima-

tion of the Coriolis term in a rotating coordinate system.

This appendix contains the proof of that assertion.

Consider a small particle moving under Newtonian at-

traction about a massive body at the origin. The differen-

tial equation for the vector position r of the particle is

given by

2-
dr -

-
r

dt r- 2  
(1)

in inertial coordinates. Now assume that we have another co-

ordinate system with the same origin rotating with a con-

stant angular velocity w with respect to the inertial system.

We assume for simplicity that at t = 0, the coordinate systems

coincide. The vector position r' for the particle in this

new coordinate system obeys the differential equation:

dt ') 2 r' - 2(x d-)-x(xr( '))

dt(2)
(2)
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We make the assumption that IlI is small enough so that

the squares of distances of order IIj I'IT and velocities of

order wIi I|-IT (where T may be 2 or 3 centuries) are ignorable.

For example, for T equal to 2 centuries, and rII equal to one

hundred astronomical units, the distance involved is ~10-3

A.U. Therefore the last (centrifugal) term in the equation

of motion can be ignored.

We wish to show that r' and r are related by the expres-

sion

r = (I + )r (3)

where I is the identity matrix and

0 +~ t -y t

£ = - zt 0 +wxt (4)

+Wyt -wxt 0

That is, given that r is a solution of Equation. (1), we wish

to show that the r' defined by (3) is a solution of (2). Note

that (3) at least satisfies the condition that, at t = 0,
the systems coincide.

First, let us evaluate I'i
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=Vr· + 2(7r). + _

We find for the middle term that

2[w zyxt - y zxt -

So, not surprisingly, if we

z xyt + W zyt + (yxzt - Wxyzt] = 0

neglect terms of 0 e2r2 , we have:

I' I =

Therefore

r' = (I + O)r

We can compute the following:

dr dr d +

dr+ d
+t +

z ty -

-z tx +

o tx -
y

o tz

t tz

t tyx
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wzy

dr + x
t z d

dr dr
+t r U-

- w z + zt i

+ w X z - w tx
x z

- ~xy + wytx

+ +
Uxr

2- +
dr d dr - dr

- + t( ) - dt
dt

2d 2
dr dr _ dr
dt + 2 dx(t)
dt d t

by analogy or direct calculation.

of (2) is given by
2÷

dr

dt

Therefore the left-hand side

drt
xdt

and the right-hand side is given by
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- w tz

+ x t i
x

- x ty

2-dr'

dt

0



dr
- 12 (I+ )r - 2x

If we ignore

11

2
Ir

terms of

+ d+^ dr dr(I+E)r - 2wx[-t + - wxr]

(I+E)r - 2x-

order wj. Multiplying both by (I+) -1)

we see that (2) under substitution (3) gives

2+
d r ^
dt2 I2 r
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APPENDIX 3

Angular Momentum and General Relativity

In this appendix, we wish to briefly indicate the theore-

tical development from general relativity for the geodesic

precession.

Following the notation of Weinberg (1972), we consider

the spin four vector

S E By 0JBYU 6 CL)

of a system for which an energy-momentum tensor TaB exists.

The factors in this expression are

ECS6 - the antisymmetric Levi-Civita tensor

1

= p /(-pp - the four vector velocity

6dn
p = En t•t

n

where En and dxn/dt are the energy and coordinate velocity

of the nth particle in the system

P P
T(,t) = J E 6 (x-xn (t))

n n

J is the "angular momentum" tensor defined below. To
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construct J consider

M OY- X=aTY - xPTay

then

J8 = d 3x M 00

Note that S will reduce to (S,0) in the rest frame of the

system (where 9 is the ordinary angular momentum about the

center of mass of the system).

The covariant form of this vector in a general coordinate

system xI is defined by

S = W, Sf

P ax a

fwhere Sf are components of S is the freely-falling coordinate

system ( . [Note that if Sa cannot be transformed into a

locally freely-falling frame, then the covariant form of

S cannot be defined in this way. The earth, for example,

is large enough not to be considered strictly a test particle.

Extended spinning bodies have been treated by Papepetrou (1955)

and Fock (1939).]

The equation of motion for S is the so-called "equation

of parallel transport":

dS

dT1 =r 1V U S X
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where the affine connection is

i X a dx~ x"c

This equation, multiplied by dT , becomess. t9Vi

dS.
T1

.S - r .O JS
1 0 sj 10 j

+rj v ks - Fr vkv j S .
ik j ik j

-3-
To order (v /r) in the post-Newtonian approximation:

(3) 1 ýj
r 7i ( - ) - .

(2)0 _
r ol

Dx

ik ij k jk a' i  jk J

(0)0r =oik
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where the number in parenthesis (n) indicates the equivalent

order of vn/ of the component of the affine connection.

Parallel transport preserves the values of S S", or
A 1-A

2+ 24 v To order (~ ~IJ 2), the quantity that
is preserved is

S = (1+ - 2 v(vS)

The equation. of parallel transport is then

ds -QT= xS

where

+ 1 ++ 3 ++S= - Vxg - vxV4

where § and

Chapter II.

p are the potentials defined in
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APPENDIX 4

Programming of the Model for Tidal Friction

A. Definitions

For purposes of documentation, details of the implementa-

tion of the tidal model in the program are given here. The

accelerations due to the tidal forces are expressed in a co-

ordinate system referred to the equinox and equator of 1950.0

for insertion into PEP. The unit vector u

S MEU =
IXMEI

in the direction of the moon from earth is easily found

from quantites in PEP. The velocity vector 1 -@ of

the moon relative to the earth is also available and can

be used to form n as follows:

uxv
n =

luxv 6ol

(See Section II.D.3 for notation.) We have
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d r
d 

2-+

dt 2 )tidal
= Ru + Wn + St

with the unit vector t found from nxu to complete the basis

vectors.

The angle V' must be expressed in terms of quan-

tities in PEP. The earth's angular velocity vector 0 can be
A

used for this purpose. A unit vector a in the direction of the

ascending node is given by

a = Ixn/ 2xn)
and

cos c' = a*u

sin 4' = 4 1-cos2'

The sign of sin #' is the same as that of u*-,

B. Partial Derivatives

First we note that, in PEP, the symbol Z has been used

for the function designated as S above

r = Ru + Wn + Zt

and thus

a r _R + 3W + +Z A- c - u + -cin + t
i i 1 i
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R = -A'C(r){3 2cos 6-1+D}

Z = A'C(r){f(t)}sin

W = -A'C(r){g(t)}sin

where c is a parameter described below
1

R. R. Newton's results, we have allowd

In analogy with

for a time variation

in tidal friction by setting

sin 26 = c1 - (c 2 + c 3 t)t

where t is the elapsed time from epoch.

S•c (1+ 1-s
1

c . (cos1c1

Using the relation

in 2 (26) )]

sin 26 D

l1-sin.2 (26)
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26

26

1 (sin 26)

a



we obtain

A'C(r) 3 sin 26

2 1-sin2 (26)

= A'C(r){f(t)}

-A' C(r) {g (t) }

= -A'C(r) 3 (sin 26)t

2 1-sin (26)

= -A' C (r) {f(t) }t

= A'C(r)g(t)t
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3
= -A'C(r) I

(sin 26)t 2

1_-sin (26)

DR
ac

3

Dc
3
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APPENDIX 5

Everett Interpolation

In the Planetary Ephemeris Program (PEP), the tabular

interval for each function to be interpolated is chosen so

that the necessary accuracy can be obtained with Everett

interpolation using eighth differences. Let f(t) be the func-

tion which we wish to evaluate at an arbitrary time t, given

that we have a table of its values fi = f(ti) at equally

spaced tabular points ti between t0 and tl. We define the

even order differences for this tabulation by the inductive

relations

0A = f.
i i

2n 2n-2 2A n - 2 + n-2
A. nl2 - 2  n-2  nl2  (1)1 i+l i i-1

Let h = til-t i be the tabular interval and let q = 1-p.

Then the Everett interpolation polynomial g(t) = g(t 0 +ph)

[to be defined below] for t0 < t < tl, can be made to repre-

sent the actual value f(t) as accurately desired by appropriate

choice of tabular interval h and highest order of differences

used 2n if f possesses derivatives up to order 2n+2. See

Hildebrand, "Introduction to Numerical Analysis", p. 103.
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To find the value of f(t) for tO < t < tl by interpolation,

tion, PEP determines the function g(t) from the formula

g(t) = g(t0+ph) = p(yl 2 2 2 3 2 4 25

+q(y1 2 2 2 3 2 4 2 5

where the coefficients are defined by

y = 1.7873015873015873f i - 0.4960317460317460(fi+l+fil)

+0.1206349206349206(fi+2+fi_ 2 )-0.1984126984126984x10-1

(fi+ 3 +fi _ 3 )+ 0 . 1 5873 0 1 587 3 0 1 587x 0 - 2 (f+4+f4)

2
y2 -0. 9 3 595 6 7 9 01 2 3 4 56 8 fi+0.60570 9 8 765 4 3 2 098(fi+ +f i)

-0.1632716049382716(fi+2+f i-2)+0.2779982363315696x10 - 1

(fi+3+f i3) -0.2259700176366843x10-2 (f i+ 4+f i_4 )
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Yi = 0. 1582175925925926fi-0.117 129 6 29 629 6296 (f il+fi-)

+0.4606481481481481x10-l (fi+f )-0.8796296296296296x10

-3
(fi+3+fi-3 )+0.7523148148148148x1lO- 3 (fi+4+f4)

4 -+
y4 = -0.9755291005291005xl0-2f+0.7605820105820106x10 -2

1 i

-2
(f.i++fi=)-0.3505291005291005x12 (f 2+f. 2)

-3+0. 8597883597883598x10 (fi+3+fi 3)

-0.8267195767195767x0l- (fi+ 4+fi_ 4)

S= 0. 1929012345679012x10- f- 0.1543209876543210x103
-4

(f i++fi i)+0.7716049382716048x1 (fi+2+fi2)

-0.2204585537918871x10-4 (fi+3+f. 3)

+0.275573192398589x10-5 (f+ 4+fi 4)

If the value of dr(t)/dt is needed in PEP and there is
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no tabulation for this

assumed that df(t)/dt

function as there is

= dg(t)/dt (numerical

for f(t), it is

differentiation),

where

dg(t) 1 2 3 7 4 2h (t) 1 +p2(3y +p2(5y3 +p7 (7y4+9p 1)))

1 2 2 2 3 2 4 2 5_0-q2 (3y2+q2 (5y0+q2 (7y0+9q 2y)))

If the value of the second derivative is needed in PEP,

is assumed that d 2 f(t)/dt = d2g(t)/dt,

h2 d2g(t) 2 (2 32 4 2 5
= p(6y2+p2(20y +p2(42y4+72p )))

+q(6y +q 2 (20y q 2 (42y 0 + 72q ) ))
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APPENDIX 6

Bibliography for Optical Observations

of the Sun, Moon, and Planets 1750-1970

1. Berlin (Germany).

Berlin, Germany. Astronomische Beobachtungen auf der

Kaiserlichen Sternwarte zu Berlin.

Band 2, 1844, p. xxv-xxxi.

observations for

1839-1842

2. Besangon (France). Universit6. Observatoire.

a. Bulletin Astronomique.

Cinqui6me,

Sixi6me,

Septi6me,

Huitieme,

Neuvi6me,

Dixieme,

1890,

1891,

1892,

1893,

1894,

1895,

observations for

C1-C10 and C12-C14. 1890

C1-C5 and C7-C8. 1891

C1-C3 and C5. 1892

C1-C3 and C5-Cll. 1893

C1-C2, C4-C6 and C8-C10. 1894

C1-C6. 1895

b. Bulletin Astronomique, Paris.

Tome XXVIII, 1911, p. 173-176.

observations for

1908
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c. Journal des Observateurs, Marseilles.

observations for

Vol. IV,

Vol. VI,

No. 8, 1921, p. 67-72.

No. 7, 1923, p. 49-51.

Vol. XVIII, No. 1, 1935, p. 15-16.

Vol. XXI,

1909-1914

1921-1922

1930-1934

No. 7, 1938, p. 104. 1937

3. Cambridge (England). University.

a. Cambridge, England, University. Astronomical Observa-

tions made at the Observatory of Cambridge, George

Bidell Airy.

observations for

Vol. I 1829, p.

Vol. II, 1830, p.

Vol. IV, 1832, p.

Vol. V, 1833, p.

Vol. VI, 1834, p.

Vol. VII, 1835, p.

Vol. VIII, 1836, p.

77-83.

105-107 and 109-116.

122-131 and 133-136.

110-114 and 116-118.

134-143 and 145-149.

162-170 and 173-176.

124-132 and 134-136.

b. Cambridge, England. University. Astronomical Observa-

tions made at the Observatory of Cambridge, James

Challis.

observations for

Vol. IX, 1837, p. 114-122 and 124-126. 1836
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1828

1829

1831

1832

1833

1834

1835



observations for

Vol. X,

Vol. XI,

Vol. XII,

Vol. XIII,

Vol. XIV,

Vol. XV,

Vol. XVI,

Vol. XVII,

1839, p.

1840, p.

1841, p.

1844, p.

1845, p.

1848, p.

1850, p.

1854, p.

20-29 and 32-35.

26-34 and 36-39.

200-207 and 209-211.

198-207.

242-248.

182-186.

128-134.

1837

1838

1839

1840-1841

1842

1843

1844-1845

76, 228-231, 233-235,

342 and 344. 1846-1848

Vol. XVIII,

Vol. XIX,

1857, p.

1861, p.

146, 280-283, 286,

406-408 and 412.

108-111, 115, 227-

228, 231, 362-364

1849-1851

and 369. 1852-1854

Vol. XX,

Vol. XXI,

1864, p.

1879, p.

90-92, 94-95, 198-200,

203, 286-288, 292,

374-376 and 381.

87-88, 189-191, 303-

1855-1860

305 and 421-423. 1861-1865

Vol. XXII, 1890, p. 125-127, 207-209, 279-

281, and 326-328. 1866-1869
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b. (continued)



4. Cape of Good Hope (South Africa). Royal Observatory.

a. Cape of Good Hope (South Africa.). Royal Observatory.

Annals of the Cape Observatory.

Vol. II, Pt. 5, 1907, p. 34D-81D.

Vol. VIII, Pt. 4, 1915, p. 48D-78D.

Vol. VIII, Pt. 5, 1921, p. 51E-71E.

Vol. XIV, Pt. 4, 1950, p. 1-103.

observations for

1884-1892

1907-1911

1912-1916

1925-1936

b. Private communication, 6 July 1966.

observations for

1936-1959

5. Edinburgh (Scotland). Royal Observatory.

Astronomical Observations made at the Royal Observatory,

Edinburgh.

172-179

141-149

209-215

257-267

209-216

213-221

287-292.

369.

and

and

and

and

and

and

observations for

181-183. 1838

151-153. 1840

218-219. 1841

269-271. 1842

219-221. 1843

224-226. 1844

1845

1847

257

IV,

VI,

VII,

VIII,

IX,

X,

X,

X,

Vol .

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

1841,

1847,

1848,

1849,

1850,

1852,

1852,

1852,

p.

p.

p.

p.

p.

p.

p.

p.



6. Greenwich (England). Royal Observatory. Observations ap-

peared under various titles below:

a. Hurstmonceux (Herstmonceux), England. Royal Greenwich

Observatory. Reduction of the Observations of the Planets

made at the Royal Observatory, Greenwich from 1750 to

1830, under the superintendance of George Biddell Airy,

London.

observations for

1845, p. 164-227 and 244-311. 1750-1830

b. Hurstmonceux (Herstmonceux), England. Royal Greenwich

Observatory. Reduction of the Observations of the Moon

made at the Royal Observatory, Greenwich, from 1750 to

1830, under the superintendance of George Biddell Airy,

London.

observations for

Vol. 1, 1848, p. 1-495. 1750-1830

Vol. 2, 1848, p. 1-447. 1750-1830

c. Hurstmonceux (Herstmonceux), England. Royal Greenwich

Observatory. Astronomical Observations made at the

Royal Observatory Greenwich, in the months of (April,

May, June) 1828, by John Pond, London.

observations for

1828 (April-June). 1828

1828 (July-September). 1828

1828 (October-December). 1828
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d. Hurstmonceux (Herstmonceux), England. Royal Greenwich

Observatory. Reduction of the Observations of the Moon

made at the Royal Observatory, Greenwich, from 1831 to

1851 under the superintendance of George Biddell Airy,

London.

observations for

1859, p. 2-39. 1831-1851

e. Hurstmonceux (Herstmonceux), England. Royal Greenwich

Observatory. Astronomical Observations made at the

Royal Observatory Greenwich in the year (date of

observations), London.

observations for

1834, p. 82-88. 1829

1833, p. 74-84. 1830

1832, p. 93-101. 1831

1833, p. 63-70. 1832

1834, p. 52-59. 1833

1834, p. 29-36. 1834

1835, p. 27-34. 1835

1837, p. 95-105. 1836

1838, p. 95-107. 1837

1840, p. 97-107. 1838

1843, p. 20-31. 1841 *
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e. (continued)

1844, p. .17

1845, p. 17

1846, p. 19

1847, p. 27

1848, p. 25

1849, p. 21

1864, p. 19

-28.

-28.

-29.

-39.

-34.

-32.

-25, and 31-34.

observations for

1842

1843

1844

1845

1846

1847

1862

f. Hurstmonceux, (Herstmonceux), England. Royal Green-

wich Observatory. Astronomical and Magnetical and Me-

teorological Observations made at the Royal Observatory

Greenwich in.the year (date of observations),

London.

1840,

1842,

(see *

1850,

1850,

1852,

1853,

1854,

1855,

observations for

p. 5-15. 1839

p. 18-28. 1840

above for observations for the years 1841-1847)

p. 18-30. 1848

p. 26-34. 1849

p. 29-35 and 39-42. 1850

p. 20-27 and 30-33. 1851

p. 27-33 and 38-40. 1852

p. 21-25 and 29-32. 1853
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f. (continue

1856, p.

1857, p.

1858, p.

1859, p.

1860, p.

1861, p.

.1862, p.

1863, p.

(see

1865,

1866,

1867,

1868,

1869,

1870,

1871,

1872,

1873,

1874,

1875,

1876,

1877,

1878,

1879,

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.p.
P.

d) observation

23-30 and 37-40.

22-28 and 33-36.

21-27 and 35-37.

21-27 and 34-37.

22-29 and 41-45.

31-38 and 46-49.

27-33 and 42-44.

23-28 and 36-39.

** above for observations for the year

25-31 and 39-42.

33-39 and 48-50.

41-47 and 57-59.

43-48 and 58-61.

35-40 and 50-53.

28-35 and 44-47.

23-29 and 41-43.

23-29 and 37-39.

27-34 and 39-41.

33-39 and 47-50.

34-40 and 51-54.

33-39 and 47-50.

28-34 and 42-45.

32-37 and 48-51.

27-33 and 39-41.

s for

1854

1855

1856

1857

1858

1859

1860

1861

1862)

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877
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f. (continued) observations for

1880, p. 41-46 and 51-54. 1878

1881, p. 33-38 and 44-46. 1879

1882, p. 38-43 and 46-49. 1880

1883, p. 34-40 and 45-48. 1881

(For observations in the years 1882-1909

the subtitle which follows is important

because each section is individually

numbered beginning with p. 1: Right

Ascension and North Polar Distances of

the Sun, Moon and Planets.)

1884, p. 38-43 and 47-50. 1882

1885, p. 56-62 and 65-68. 1883

1886, p. 50-56 and 60-63. 1884

1887, p. 47-53 and 56-59. 1885

1888, p. 43-50 and 55-58. 1886

1889, p. 45-52 and 57-60. 1887

1890, p. 45-51 and 55-58. 1888

1891, p. 43-49 and 54-56. 1.889

1892, p. 51-59 and 63-66. 1890

1893, p. 45-52 and 55-57. 1891

1894, p. 44-53 and 55-58. 1892

1896, p. 66-76 and 79-82. 1893

1897, p. 72-81 and 85-87. 1894

1897, p. 64-74 and 77-79. 1895
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f. (continued)

1898, p. 78-88 and 90-93.

1899, p. 110-119 and 121-123.

1900, p. 110-118 and 120-122.

1901, p. 118-129 and 131-134.

1902, p. 106-115 and 117-120.

1903, p. 100-110 and 112-115.

1904, p. 212-223.

1905, p. 307-321.

1906, p. 314-321 and 323-325.

1907, p. 264-277.

1908, p. 97-104 and 106-107.

1909, p. 130-143.

1910, p. 150-164.

1911, p. 140-154.

1912, p. A99-A110.

1913, p. A114-A130.

1913, p. A98-A111.

1915, p. A100-All and A113-A114.

1918, p. A52-A66.

1920, p. A38-A47.

1921, p. A41-A52.

1922, p. A39-A49.

1922, p. A34-A44.

1923, p. A37-A47.

observations for

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919
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f. (continued)

1923, p. A49-A59.

1924, p. A48-A58.

1924, p. A43-A57.

1925, p. A40-A54.

1926, p. A40-A55.

observations for

1920

1921

1922

1923

1924

g. Hurstmonceux (Herstmonceux), England. Royal Greenwich

Observatory. Observations made at the Royal Observa-

tory, Greenwich in the year (date of observations)

in Astronomy, Magnetism and Meteorology under the

direction of Sir Frank Dyson, London.

A44-A58.

A40-A55.

A54-A83.

A56-A72.

A56-A73.

A52-A68.

A10-A25.

A10-A25.

A10-A27.

A10-A26.

A10-A25.

observations for

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935
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1927,

1928,

1929,

1930,

1932,

1933,

1933,

1934,

1935,

1937,



g. (continued) observations for

1939, p. A10-A25. 1936

1957, p. A8-A10. 1947 ***

h. Hurstmonceux (Herstmonceux), England. Royal Greenwich

Observatory. Astronomical results from observations

made at the Royal Observatory, Greenwich, in the year

(date of observations) under the direction of H. Spencer

Jones, London, extracted from the Greenwich Observations.

observations for

1951, p. A8-A22. 1937

1951, p. A8-A22. 1938

1953, p. A8-A22. 1939

1954, p. A8-A19. 1940

(no observations for the year 1941)

1955, p. A8-A22. 1942

1955, p. A6-All. 1943

1955, p. A6-A10. 1944

1953, p. A6-A10. 1945

1955, p. A8-A19. 1946

(see *** above for observations for the year 1947)

1958, p. A9-A22. 1948

1957, p. A8-A25. 1949
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h. (continued)

1958, p. A8-A25.

1958, p. A8-A27.

1958, p. A8-A27.

1959, p. A8-A26.

1961, p. A8-A16.

observations for

1950

1951

1952

1953

1954

7. Nice (France). Observatoire. Observations for outer

planets only.

a. Annales de l'Observatoire de Nice.

B78.

B115-B117.

B166-BI67.

B288-B289.

A115-A116

A197-A198.

B136.

B154.

observations for

.1889

1890

1891

1892

1893

1894

1895

1896

b. Bulletin Astronomique, Paris.

XXIV, 1907,

XXV, 1908,

XXV'I, 1909,

p..

p.

p.

5-6.

96-100.

75-77.

observations for

1905-1906

1907

1908

1910, p.

1911, p.

33-34 and 358-359.

276-2'77 and 350.

1909-1910

1910-1911

266

Tome

Tome

Tome

Tome

Tome

Tome

Tome

Tome

12,

12,

11,

12,

12,

12,

12,

12,

1910,

1910,

1908,

1908,

1910,

1910,

1910,

1910,
p

p.

p.

p.

p.

p.

p.

p.

p.

Tome

Tome

Tome

Tome

Tome

xxvII,

XXVIII,
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8. Ottawa (Canada). Dominion Observatory. Observations for sun

and inner planets only.

Publications of the Dominion Observatory, Ottawa.

observations for

Vol. XV, No. 2, 1952, p. 115-158. 1924-1935

9. Oxford (England). Radcliffe Observatory. Observations

appeared under various titles listed below:

a. Radcliffe Observatory, Oxford. Observations of the

Reverend Thomas Hornsby, D.D., made with the transit

instrument and quadrant at the Radcliffe Observatory,

Oxford, in the years 1774 to 1798, London, Oxford

University Press.

1932, p. 106-134.

observations for

1774-1798

b. Radcliffe Observatory, Oxford. Astronomical Observa-

tions.

220-224 and 257-259

252-257.

286-289.

230-231.

310-314.

349-353.

observations for

1840

1841

1842

1843

1844

1845

267

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

1842,

1843,

1844,

1845,

1846,

1847,



b. (continued)

Vol. 7, 1848, p.

Vol. 8, 1849, p.

Vol. 9, 1850, p.

Vol. 10, 1851, p.

Vol. 11, 1852, p.

Vol. 12, 1853, p.

Vol. 13, 1854, p.

280-284.

197-199,

231-234.

273-276.

276-278.

356-357.

313-314.

observations for

1846

1847

1848

1849

1850

1851

1852

c. Radcliffe Observatory., Oxford. Astronomical and Meteoro-

logical Observations.

1855, p.

1856, p.

1857, p.

1858, p.

1859, p.

1861, p.

1862, p.

1863, p.

1864, p.

1865, p.

1866, p.

257-258.

243-244.

143.

248.

243.

255.

81 and 165-166.

245-248.

99-105.

129-138.

127-129 and 134-1

observations for

1853

1854

1855

1856

1857

1858

1859-1860

1861

1862

1863

43. 1864

268

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

14,

15,

16,

17,

18,

19,

20,

21,

22,

23,

24,



d. Radcliffe Observatory, Oxford. Results of Astronomical

and Meteorologic al Observations.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

25,

26,

27,

28,

29,

30,

31,

32,

33,

34,

35,

36,

38,

39,

40,

41,

42,

43,

44,

45,

46,

47,

269

ol

1867, p. 129-135.

1868, p. 133-138.

1869, p. 186-192.

1870, p. 199-206.

1871, p. 196-204.

1872, p. 203-214.

1873, p. 193-201.

1874, p. 179-185.

1875, p. 194-202.

1876, p. 207-213.

1877, p. 166-173.

1878, p. 164-172.

(no observations for the y

1883, p. 65-67.

1884, p. 72-74.

1885, p. 70-73.

1886, p. 91-95.

1887, p. 106-112.

1889, p. 116-122.

1890, p. 99-100 and 103-105.

1891, p. 101-105.

1896, p. 80-83 and 214-219.

1899, p. 104-110 and 223-224.

)servations for

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

rears 1877-1879)

1880

1881

1882

1883

1884

1885

1886

1887

1888-1889

1890-1891



10. Paris (France). Observatoire.

a. Annales de l'Observatoire Imperial de Paris, Observa-

tions.

Tome

Tome

Tome

Tome

Tome

Tome

Tome

Tome

Tome

Tome

Tome

Tome

Tome

Tome

Tome

Tome

Tome

Tome

Tome

Tome

Tome

I,

II,

III,

IV,

V,

VI,

VII,

VIII,

IX,

X,

XI,

XII,

XIII,

XIV,

XV,

XVI,

XVII,

XVIII,

XIX,

XX,

XXI,

Tome XXII,

1858,

1859,

1862,

1862,

1862,

1863,

1863,

1863,

1865,

1866,

1869,

1860,

1861,

1861,

1861,

1862,

1863,

1863,

1864,

1865,

1866,

1867,

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p..

p.

p.p·

267-380.

347-359.

323-334.

278-289.

246-262.

146-161.

111-123.

119-134.

102-115.

225-239.

198-228.

303-316.

356-372.

479-497.

312-330.

249-260.

125-137.

130-139.

134-152.

G9-G27.

F9-F27.

observations for

1800-1829

1837-1838

1.839-1840

1841-1842

1843-1844

1845-1846

1.847

1848-1849

1850-1851

1852-1853

1854-1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

p. F9-F25. 1866
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b. Annales de l'Observatoire de Paris, Observations.

Tome XXIII, 1871, p. K8-K28.

Tome XXIV, 1880, p. 13-24 and

1881, p. 216-221 and 228-229.

observations for

1867

43-45. 1868-1869

1870

p. D7-D12 and D17-D18.

D7-D14

D8-D15

D7-D15

D7-D16

D7-D15

D7-D13

E7-E12

E8-E17

E8-E19

E8-E18

and

and

and

and

and

and

and

and

and

and

D21-D24.

D26-D28.

D23-D26.

D25-D28.

D25-D29.

D19-D21.

E18-E20.

E23-E28.

E26-E31.

E27-E33.

1882,

1882,

1882,

1876,

1878,

1879,

1880,

1881,

1882,

1883,

1885,

1887,

1889,

1892,

1893,

1894,

1894,

1896,

1898,

1898,

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.

p.
p.
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E262-E274 and E283-E289.

E138-E160.

E93-E117.

E82-E101.

E83-E104.

E63-E79.

C51-C65.

C48-C61.

C51-C64.

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890



b. (continued)

1907, p. A187-A193 and A199-A200.

1910, p. A167-A175.

observations for

1891

1892

A208-A218.

A65-A69 and C153-C154.

A72-A77 and C151-C152.

A79-A84 and C92-C94.

A74-A79 and C103-C104.

A68-A73 and C142-C145.

A62-A67, C88-C90 and Dill.

A53-A56, B137-B140 and C162-C166.

A55-A58, B127-B130 and C73-C74.

A53-A57, B109-BI11 and C58-C59.

A59-A62, B102-B104 and C85-C86.

1893

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

c. Journal des Observateurs, Marseilles.

Tome III,

Tome IV,

Tome V,

Tome VI,

Tome VII,

Tome VIII,

Tome XIV,

Tome XVII,

No.

No.

No.

No.

No.

No.

No.

No.

11,

5,

9,

7,

8,

9,

12,

10,

1920,

1921,

1922,

1923,

1924,

1925,

1931,

1934,

observations for

102-104. 1919

46-48. 1920

72-75. 1921

54-56. 1922

90-92. 1923

134-136. 1924-1925

145-147. 1929-1930

149-150. 1933
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1911,

1899,

1902,

1904,

1904,

1905,

1906,

1907,

1908,

1911,

1912,



c. (continued) observations for

Tome XVIII, No. 11, 1935, p. 178. 1935

Tome XXI, No. 4, 1938, p. 45-46. 1936

Tome XXI, No. 5, 1938, p. 62. 1936-1937

Tome XXII, No. 8, 1939, p. 151. 1938

11. Strassburg (Germany).

Annalen der Kaiserlichen Universitatssternwarte in

Strassburg, Karlsruhe.

observations for

Band V, Teil III, 1926, seite C9-C52. 1883-1893

NOTE: This title was published, in German, from

1896 through 1926. When Strassburg was recovered

by France after World War I, the title was changed

to Annales de l'Observatoire de Strasbourg (Paris).

12. Tokyo (Japan). Tokyo Astronomical Observatory.

a. Tokyo Temmondai. Tokyo Astronomical Bulletin, 2nd

Series.

observations for

No. 28, (10 Jun 1950). 1949

No. 38, (25 Jun 1951). 1950

No. 50, (10 Oct 1952). 1951

No. 59, (20 Aug 1953). 1952

No. 68, ( 5 Aug 1954). 1953

No. 74, (20 Jul 1955). 1954
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a. (continued)

No. 85, (10

No. 100, ( 5

No. 108, ( 5

No. 117, (25

No. 131, (20

No. 162, (10

No. 153, (10

No. 161, ( 5

Jul

Sep

Aug

Jul

Jul

Feb

Jul

Sep

1956).

1957) .

1958).

1959) .

1960).

1964) .

1962).

1963).

observations for

1955

1956

1957

1958

1959

1960

1961

1962

b. Private communication, 1966. Observations for Mars

and outer planets only. observations for

1949-1962

13. Toulouse (France). Universite. Observatoire. Observations

of the moon and planets only.

a. Bulletin Astronomique, Paris.

observations for

Tome XXVII, 1910, p. 171-172 and 442-443. 1908-1910

Tome XXX, 1913, p. 80-81. 1912

b. Journal des Observateurs, Marseilles.

Tome I, No. 9, 1916, p. 87-89.

Tome II, No. 10, 1918, p. 127-129..

observations for

1912-1915

1914-1915
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b. (continued)

Tome II, No.

Tome III, No.

Tome II, No.

Tome IV, No.

Tome V, No.

Tome VI, No.

Tome VII, No.

Tome IX, No.

15,

3,

19,

2,

5,

6,

10,

12,

1919, p.

1920, p.

1919, p.

1921, p.

1922, p.

1923, p.

1924, p.

1926, p.

observations for

159-160. 1911-1916

26-29. 1912-1917

195-196. 1916-1917

15-19. 1917-1918

31-35. 1919-1920

41-45. 1919-1921

114-117. 1922

183-184. 1923-1924

14. Uccle (Belgium). Brussels. Observatoire Royal de Belgique.

Bulletin Astronomique, Brussels, Observatoire Royal

de Belgique.

observations for

Vol. 1, No.

Vol. 1i, No.

Vol. 1, No.

Vol. 1, No.

Vol. 1, No.

Vol. 2, No.

Vol. 2, No.

5,

2,3,

5,7,8,

9,10,12,

13,14,15,

2,3,4,

5,6,7,

1932, p. 78-91. 1928-1930

1931, p. 23-28 and

46-48. 1931

1932, p. 76-77, 143

and 161. 1932

1933, p. 184-185,224-

225 and 268. 1933

1934, p. 292-293,306

and 324. 1934

1935, p. 40,56 and

80-81. 1935

1936, p. 94, 124-125

and 154. 1936
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14. (continued)

Vol. 2, No.

Vol. 2, No.

Vol. 3, No.

Vol. 3, No.

Vol. 3, No.

Vol. 3, No.

Vol. 3, No.

Vol. 3, No.

1937,

1938,

1939,

1940,

1941,

1943,

1944,

1945,

p.

p.

p.

p.

p.

p.

p.

p.

observations for

176 and 214. 1937

232 and 282. 1938

10,36 and 56-57. 1939

88. 1940

130. 1941

198. 1942

242. 1943

280. 1944

15. Washington, D.C. (United States). U.S. Naval Observatory.

a. U.S. Naval Observatory. Astronomical and Meteoro-

logical Observations made at the United States Naval

Observatory.

1862, p. 336-340.

1863, p. 569-579.

1865, p. 353-362.

1866, p. 365-374.

1867, p. 414-425.

observations for

1861

1862

1863

1864

1865

b. U.S. Naval Observatory. Publications of the United

States Naval Observatory, 2nd Series.

observations for

Vol. IV, Pts. I-III, 1906, p. B3-B157. 1866-1891

Vol. I, 1900, p. 351-396. 1894-1899
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8,10,

11,13,

1,2,3,

4,

5,

7,

8,

9,



b. (continued

Vol. IV,

Vol. IX,

Vol. XI,

Vol. XIII,

Vol. XVI,

Vol. XV,

Vol. XVI,

Vol. XIX,.

Pts. I-III,

Pt. I,

Pt.

Pt.

Pt.

Pt.

I,

V,

III,

I,

1906,

1920,

1927,

1933,

1949,

1948,

1952,

1964,

p.

p.

p.

p.

p.

p.

p.

p.

observations for

A283-A318. 1900-1903

A3-A71. 1903-1911

153-179. 1911-1918

102-155. 1913-1925

59-199. 1925-1941

189-238. 1935-1945

397-445. 1941-1949

49-99. 1949-1956

c. United States Naval

No.

No.

No.

No.

No.

No.

No.

103,

105,

108,

115,

118,

124,

127,

9 Oct

27 Nov

1 Jul

1 Feb

5 Jan

28 Feb

1 Apr

1964

1964

1965

1967

1968

1969

1970

d. Private communicatio

Observatory, Circular.

observations for

1956-1962

. 1963-1964

. 1964

. 1965-1966

. 1966-1967

1967-1968

1968-1969

'n, P.K. Seidelmann.

observations for

1970
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