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Abstract

In this thesis, Cerenkov radiation of a moving charged particle inside a Left-Handed
material (LHM) is studied through both theory and numerical simulations.

A LHM is a material whose permittivity and permeability have negative real parts.
In the analysis of this thesis, the general theory of Cerenkov radiation was first studied
for the unbounded regions filled with LHM. The physical meanings of different Green's
functions are discussed, and finally the second kind of Hankel function is determined
to represent the special properties of Cerenkov radiation: forward incoming phase and
backward outgoing power, which satisfies both momentum and energy conservation.
The effects of the dispersion and dissipation of both permittivity and permeability are
also investigated. The results show that both forward and backward radiated waves
can co-exist at different frequencies. When the dissipation is reduced, the directions of
forward and backward radiation are close to 900 with respect to the particle's moving
direction.

When the LHM is bounded, a waveguide can be formed. Depending upon the
configuration and the relative dielectric constants of the surrounding normal material

(we call them RHM in comparison with LHM), a surface wave can be formed. When
a LHM is used as the filling material of a metallic waveguide, the radiation at some
frequencies can be enhanced when a surface wave is excited. This enhancement can
make the total radiated power in the waveguide larger than the radiation when the
LHM is unbounded. Furthermore, using the same surface wave property, the decay
of the radiation by a free space channel can be compensated when the channel is
surrounded by a LHM.

The wave of Cerenkov radiation is a TM wave. In order to have a homogeneous
response, the LHM structure should have at least two dimensional isotropic negative
permittivity and one dimensional negative permeability. A new LHM design was pro-
posed in this thesis. We have demonstrated that this design shows several advantages
in comparison with present published designs through reflection and transmission
simulations, and TM (TE) prism simulations. For the unit cell's dimension of 5mm,
a LHM band is observed between 6GHz and 7GHz for TM wave incidence. We use
an antenna array to model a traveling current source, which can represent a single



frequency component of a particle motion. The simulations show that our design
can bend the radiation inside the structure. In order to observe the signal in the far
field, we propose to use prism shaped LHM structures around the antenna array, by
which, the difference between the angles of the forward radiation and backward radi-
ation can be further amplified. These results can be a basis for a future experimental
verification of backward radiation of the antenna arrays in a LHM.

Besides, two effects of the surface wave for the effective LHM slab are also in-
vestigated. The results show that the surface wave actually determines the focusing
ability of a LHM slab. When the mismatch between the slab and the surrounding
area becomes small, those evanescent waves, whose wave number is less than that
of the surface wave, can be amplified by the slab, and contribute to the focusing at
the image plane. This property can help us easily estimate the resolution of a LHM
slab when it is used as a flat lens. A unique guided wave can also exist when a LHM
slab is surrounded by two RHMs, where the two RHMs can be different or the same.
This guided wave has a linear function for the transverse profile of the field inside the
LHM slab, which can never exist in either a RHM or a plasma dielectric waveguide.
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Thesis Supervisor: Min Chen
Title: Professor of Physics
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Chapter 1

Introduction

In electromagnetic theory, materials are characterized by their constitutive matrices.

Once we know these matrices, the behavior of the electromagnetic waves can be

predicted by solving the Maxwell's equations with proper boundary conditions.

Among all constitutive matrices, permittivity and permeability are the two most

important parameters, since most materials can be described by these two parameters.

Previously, most phenomena were investigated in materials with both permittivity

and permeability being positive for a normal material, or either one of them being

negative, such as a plasma (when only the permittivity is negative), or a ferrite (when

only the permeability is negative), until a paper was published in 1968 by Vesalago [1].

In this paper, Vesalago introduced a medium with a negative permittivity and a

negative permeability simultaneously and summarized several electromagnetic wave

phenomena. Because the wave vector, the electric field vector, and the magnetic field

vector form a left-handed system, this medium was called left-handed medium (LHM).

In contrast, we will call a normal medium with simultaneously positive permittivity

and permeability as a right-handed medium (RHM). Vesalago also pointed out that

there is no natural LHM, hence, there were not a lot of theoretical studies on LHMs

until recently.

An experiment [2] in 2001 demonstrated that LHM can be realized by periodic

structures composed of split-ring resonators and metallic rods, which was proposed

by Pendry in [3] and [4]. From then on, most phenomena in [1] were thoroughly



investigated, whereas Cerenkov radiation in LHM is not yet fully explored.

Luo published a paper in 2003 [5] about the backward Cerenkov radiation in

photonic crystals. But the mechanism is different which is actually due to the negative

refraction in photonic crystals, and the effect is also combined with the transition

radiation. The main difference between the photonic crystal and LHM is that in

most cases, the effective dielectric constants and refractive index cannot be defined

in photonic crystals, whereas for LHM they can. This thesis is devoted to investigate

some basic properties of Cerenkov radiation in LHM due to the negative permittivity

and permeability through both theory and numerical simulations. We are interested

in whether there is any new physics phenomenon, and whether there is a material or

structure can realize those properties and phenomenon. The content of the thesis is

organized accordingly as follows.

First, the basic theory for Cerenkov radiation in unbounded LHM is investigated

in Chapter 2 [6]. This is the most fundamental case through which we can find

the exact solution for the electric and magnetic field inside the LHM when there is

Cerenkov radiation. The proper Green's function is determined to correctly describe

the radiation by a relativistic charged particle. The dispersion and dissipation of the

LHM is then considered. Different Green's functions should be applied to different

frequency bands at which the medium behaves as a LHM and as a RHM. The effect of

the increasing loss of LHM is also discussed, and the radiation angle will be changed

to close to the normal direction as the loss is reduced.

However, we know that there is no material can be really unbounded, especially

LHM. Currently, LHMs are only manmade structures in GHz frequency range, and

they are normally put into a waveguide for various experiments in order to reduce

the noise and to ensure the behavior of LHM. Therefore we investigated Cerenkov

radiation in bounded LHM (a waveguide) in Chapter 3, by which we hope to identify

if there is any new physics phenomenon. Besides the obvious results that the radiated

power will propagate backward in LHM instead of forward in RHM, we found that a

surface plasmon can be excited at the boundary between RHM and LHM, even when

the Cerenkov radiation condition is not satisfied in both media. This surface plasmon



enables LHM to have the one extra mechanism for the charged particles to radiate.

The radiation of a charged particle passing a metallic waveguide filled with LHM is

also studied. In this case, the condition at which a guided wave could be excited is

investigated. Per an interest of potential application, we also discussed the possibility

of using a LHM as an amplifying layer to compensate the decay of the radiation when

an vacuum channel is present.

Two phenomena related to the surface plasmon between the boundary of a RHM

and a LHM are discussed in Chapter 4. When the LHM slab is used as a flat lens, the

surface wave indicated by the singularity of the transmission coefficient determines

the resolution ability of the LHM slab [7]. Besides, a new type of guided wave is

found to be supported by a LHM only, which serves as a transition mode between

the surface plasmon modes and the propagating modes [8].

Finally, for the interests on what materials can be used to realize those phenom-

ena, we introduce a new LH design in Chapter 5. This new design is specially for

Cerenkov radiation. Various numerical simulations were performed to confirm the

LH properties of the design. In order to test the response of the design to different

frequency components of a charged particle motion, an antenna array is designed to

model the traveling wave current. Then, the antenna is put in between the new LH

structures, and the simulations were performed to investigate the radiation in the

new LH structures.





Chapter 2

Cerenkov Radiation in an

Unbounded Homogeneous LHM

2.1 Introduction

In his pioneering 1968 paper, Vesalago [1] mentioned, in addition to many other

unique properties of LH media, the fact that Cerenkov radiation will be reversed,

but no mathematical considerations were given. Normally, Cerenkov radiation occurs

when a charged particle moves in a material with a speed faster than that of light in

that material. Cerenkov radiation in normal media was first experimentally obsevered

by P. A. Cerenkov in 1934 [9], and later theoretically explained by I. M. Frank and

I. G. Tamm [10].

While many researchers have referred to Vesalago's statement about the reversal of

Cerenkov radiation, none have addressed the physical importance of this phenomenon

in detail. It is the purpose of the first part of this chapter to derive the mathematical

solution for Cerenkov radiation in LH media in order to demonstrate the existence of

backward radiation.

The remainder of this chapter is organized as follows. In Section 2, we derive the

solution for Cerenkov radiation in isotropic LH media. Section 3 considers the effects

of dispersion, which are inherent to all LH media. Section 4 discusses the effect of

the existence of loss.



2.2 Mathematical formulation of Cerenkov radia-

tion inside isotropic LH media

2.2.1 Formulation of the problem

As stated above, Cerenkov radiation occurs when a charged particle travels through

a material at a velocity higher than that of light in that material. The principle of

Cerenkov radiation is depicted in Fig. 2-1[12]:

A
B jz

Figure 2-1: Cerenkov radiation in a normal material (RH media).

We consider a charged particle located at point O that is moving along . with a

velocity U. A coherent electromagnetic wave will be radiated when the condition in

Eq. 2.1 is satisfied,

26 > I

26

(2.1)
I--|



where n is the refractive index of the medium, and c e 3 x 10Sm/s is the speed

of light in free space. This is well-known Cerenkov radiation. The line connecting

points A to B forms the phase front of the radiation, which is propagating with the

wave vector k = ~1k, + i, where w = 27rf is the angular frequency of the radiation,

and kP is the transverse component of the wave vector I. The emitted radiation has

an electric field vector polarized parallel to the plane determined by the direction of

the particle speed and the direction of the radiation. Note that in real situations,

many charged particles form a beam, so that the radiation has cylindrical symmetry

and forms the well-known Cerenkov cone. The angle of the cone is given by 0 (see

Fig. 2-1) and is determined by

cos9 = , (2.2)
On

where / = < 1.

These characteristics have been well predicted in RH media by I. M. Frank and

I. G. Tamm [10] by using classical electromagnetic theory. Following the formulation

in [10], we shall rederive the mathematics for Cerenkov radiation in LH media.

2.2.2 Mathematical solution

The flow of charged particles can be described as a current of speed U = iv, written

as

J(T, t) = &qvb(z - vt)6(x)6(y) , (2.3)

where q is the electric charge of the particle, and 6 is the standard Dirac function.

Under the Lorenz gauge condition, the wave equation for vector potential A is given

as

2

V2A + jn2= -_j . (2.4)

In the frequency domain, and upon performing a cylindrical coordinate transfor-



mation, Eq.

form

(2.4) can be reduced to a standard Poisson equation of the following

p ap (p) (2.5)

where k = ' /2n 2 - 1, and g(p) is the two dimensional scalar Green's function.

It can be seen that Eq. (2.5) has two independent solutions,

* case 1: g(p) = H(l)(kpp) which corresponds to an outgoing

* case 2: g(p) = - 0 HO2)(kpp) which corresponds to an ingoing

wave, for which

wave, for which

k = -kpý + kz2,

where kz = ' > 0.

Before choosing any solution, we calculate the electric and magnetic fields for both

cases, from which the total energy radiated out in ý and i directions in far field is

obtained [11]:

* Case 1:

q2

Sz dt =
8w2pv F0
q2  P k2

Spdt_ 8 q2  0 P
87rP J (WE

(2.6a)

(2.6b)

* Case 2:

Wz = fSz
-oooo

WP = 1 SP0W "

dt- 
q2

kdw
f

(2.7a)

(2.7b)q2 k2dwdt =0 dc-
87r29 0 o (

2 6(p)+ k,! g(p) = ,27rp

Wz 0=
W,= f

--- / (X



Even though the integration limits are from 0 to 00, the above results are only valid

for those frequencies that satisfy Eq. (2.1).

For the sake of illustration, we first consider a normal material, with € > 0 and

J.1- > O. From Eqs. (2.6a) to (2.7b), we see that Wz > 0 for both cases, but Wp > 0 for

case 1 and Wp < 0 for case 2. These two cases correspond to forward (same direction

as the velocity of the particle) outgoing energy, and forward ingoing energy, respec-

tively. From Sommerfeld's radiation condition, (no energy can come from infinity,

since radiation must be emitted from a source), we choose that case 1 as the correct

solution for Cerenkov radiation in normal materials with both € and J.1- positive [13].

However, for LH media where € < 0 and J.1- < 0, the results are reversed. From

Eqs. (2.6a) and (2.6b), we isolate the following two cases:

• case 1: Wz < 0, Wp < 0 which corresponds to a backward and ingoing radiated

energy.

• case 2: Wz < 0, Wp > 0 which corresponds to a backward and outgoing

radiated energy.

The different cases are illustrated in Figs. 2-2 and 2-3, where the energy flow in

LH media is shown for both cases.

Figure 2-2: Directions of energy flow and wave vector for a charged particle moving
in a LH medium for case 1 [g(p) = t H61

) (kpp) ].

If we again suppose that there are no sources at infinity, the solution that needs to

be chosen is the one corresponding to case 2. In addition, both the permittivity and
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Figure 2-3: Directions of energy flow and wave vector for a charged particle moving
in a LH medium for case 2 [g(p) = - ~Hd2

) (kpp) ].

the permeability need be negative to assure a real k that can support propagating

waves. Finally, in the far field for isotropic lossless materials (so that the directions

of the Poynting vector S is opposite to that of the wave vector k), the angle between

the direction of the Poynting vector and that of the velocity of the charged particle

is again given by Eq. (2.2), but with the refractive index n being negative. We have

therefore demonstrated that the energy is propagating backward as predicted in [1].

Yet, we still need to consider how the momentum is conserved, which relates to

the definition of momentum in LH media. The standard definition of the momentum

of an electromagnetic wave is D x B = €J.lS [12]. Upon using this definition, we see

that the momentum is

(2.8)

When both € and J.l are negative, D x Band S are in the same direction, which

implies a momentum pointing backward. By momentum conservation, this implies

that the momentum of the charged particle increases, which results in an energy in-

crease. This is in contradiction with the third fundamental law of thermodynamics,

which stipulates that charged particles radiate energy out and therefore lose energy.

The solution to this paradox is to be found in the quantum theory of Cerenkov

radiation [13], in which the momentum of a photon is defined as p = hk, where p is
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the momentum, and h is the Planck constant divided by 27r. For case 2, ký > 0 which

implies a forward propagation, while the component in the ý direction is cancelled.

Therefore, momentum and energy are conserved. Inside a LH media, energy flow of

the wave is in the opposite direction of its momentum. When the wave crosses the

boundary from a LH medium into a RH medium, the component of wave vector kz

(thus also the momentum direction) will change sign (from +2 to -2 direction in

our case), but the Poynting vector E x H, which defines the energy flow, remains

backward (-2 direction). Therefore once inside the RH media, both energy flow and

momentum of the wave will again be in the same (backward) direction.

2.3 Cerenkov radiation in dispersive LH media

It is already known from [1] that LH media must be frequency dispersive in order to

satisfy positive energy constraints.

A common model to represent the permittivity E(w) and permeability p(w) has

been given in [2], which we shall use here. For the sake of simplicity, we shall first

consider a lossless case, for which the model becomes:

2 2

2 -2
w2 _w2 0  (2.9b)

where wmp (wep) is the magnetic (electric) plasma frequency of the model, and wmo

( omega,,eo) is the magnetic (electric) resonant frequency. And p, ( E,) is the relative

permeability (permittivity) of the material with respect to that of the free space.

The following critical points can be identified



for which J-lr (wmc) = -1 (2.10a)

(2.10b)

(2.10c)

A summary of the various frequency bands generated and their properties is shown

in Fig. 2-4. The lower dark region corresponds to n2 > 1, for which Cerenkov radiation

can happen (supposing that /3 = 1).

Figure 2-4: Frequency bands for RH and LH media obtained from the model of Eqs.
(2.9a) and (2.9b).

The solution to Cerenkov radiation depends on frequency, as already shown in

Eqs. (2.6a) to (2.7b). The band in which the region of n2 > 1 overlaps with the RH

media region, W E [0, wmo], corresponds to positive Er and positive J-lr, and n2 = ErJ-lr >

1. From the conclusion of the previous section, the solution in this frequency band is

the one of case 1. Similarly, for the LH media band and with n2 > 1, W E [Weo, wcJ,
the solution is the one of case 2. The nonvanishing field components produced by the

propagating waves (in far field) are:
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q 2
Ez(T, t) = 4x xP o4 ·r

Ep(F, t) = - ;4y xP ip
10m

4_ q 2[ o

(-)k- cos(4+) dw + fw k-

(w 'cos(0+) dw + cos()
e(w) fWeo ()

v-/cos(¢+) dw + j /kcos(O_) du
weo

where wt = wt =F kpp - E , with the upper sign corresponding to case 1, and

the lower sign corresponding to case 2. The Poynting vector S(T, t) = Sz(T, t) +

S,(T~, t) = E(7, t) x H(T, t) is given by

x jO dw jrWrndM0daL J
+ dw duw

fwOj IeO

q2

87r3pv

dw'~ cos(O+) cos(C )E(W)

( cos(q$) cos(O'_)C(W)
d• j dw' cos(q+) cos('_)leo E(W

+ w Jo dw ') cos( )cos( ) ,+)J

cos(O-)

dw]

d.11)

(2.12)

, (2.13)

Sz(T, t) = E,(T, t) H(F, t)

WMo
+ JO

(2.14)



q2
Sp(f, t) = -Ez(-,t)HO(7, t) =

87 P o(+)cos(¢)

x d _dw' W cos(_ ) cos( ' )
eo WE(W)

0 dw. W (W) cos(O +) cos('_)
f• o fwc Wk~(W p

dw dw' " cs(cos() co_)

-WUdeO dw c(w) (2.15)

By using the identity [12]

fOO-0cos(wt + a) cos(w't + a')dt = 7r(w - w') cos(a - a') , (2.16)

we can get the total energy radiated out in the i direction, Wz, and in the ,

direction, Wp:

qo[/0Wmo
Wz = SAdt = Sp d &C +

WP = Sdt= 8 2p dw p_0. 81r 0 WE(W)

f u dw kP]

eo W(W)

Because the speed of the high energy charged particle is very close

take the limit p -- 1. The interference between the components of the

band and the LH medium band vanish due to time averaging.

to c, we can

RH medium

* In the ý direction:

From Eq. (2.17), we see that the first integral is in a RH medium band (E(w) > 0

and M(w) > 0), and the energy flows along the positive ý direction, which is

the same as the direction of the particle motion. However, the second integral

(2.17)

(2.18)



is in a LH medium band (E(w) < 0 and p(w) < 0), the energy flows along

the negative Z direction, which corresponds to backward power flow. The total

energy crossing the x - y plane is determined by two frequency bands, and the

net result will depend on which one is stronger. If we look at a single frequency,

the energy will go in different directions.

In the ý direction:

From Eq. (2.18), the first integral is in a RH medium band, so that the energy

flows out of the ^ direction. The second integral is in a LH medium band, in

which c(w) < 0, but there is a negative sign before the integral, which makes

the whole second term to be positive. Therefore the energy in this LH medium

band also goes out in the 3 direction.

2.4 Cerenkov radiation in lossy LH meda

From the Kramers-Kr6nig's relations, we know that e(w) and p(w) have to be complex

to satisfy causality. Therefore, in order to predict the behavior of Cerenkov radiation

in real LH media, we have to consider the situation when both the permittivity and

the permeability are complex.

The complex permittivity e(w) and permeability p(w) must satisfy

E(-w) = E(w)* with EI(w) > 0 (2.19a)

p(-w) = ,(w)* with Ii(w) > 0 . (2.19b)

For lossy media, the condition for Cerenkov radiation is [14]

1
Rj{n 21 > , (2.20)

02)



where 3{.} is the real part of the operator. The argument of the Hankel functions is

now complex. However, the solutions of Eq. 2.5 are unchanged. In order to ensure

finite electric and magnetic fields at p - +oo, we write

* For RH media: g(p) = H( (kpp),
Wd2  w2

kp = r, r - -= kR + ikl, where k, > 0, kR > 0.

* For LH media: g(p) = - HO2)(kpp),

k := r2E•Pr,, - =Z kR + ikI, where kJ < 0, k R > 0.

For a RH medium band, we obtain a result identical to [14]. However, for a LH

medium band, the nonvanishing fields are

qt' 2 k1/2 I 0

Ep(k t)/ 2 cos(wt + kRp - -z- + - - 0,) ekip dw (2.21a)
S4-rv JLH (w)I v 4 2

q 2f Ik] 3/2  w i 30
Ez(F, t) = qV 13() cos(wt + kRp - - - + - 0E) eki' dw (2.21b)

47r P LH W E(W)M v 4 2

H(, t)= 1/2 COs(wt + kRp -- + )e kP dw (2.21c)
47( r t JLH v 4 2

where 0 is the angle of kg by letting ko = ryeio, and 0, is the angle of e(w) in the

complex plane by letting e(w) = jc(w)leioe. By using Eqs. (2.21a) to (2.21c), we can

calculate the energy radiated out in the 3 and ý directions for LH media and compare

those with the corresponding components in RH media as obtained in [14]

* For RH media:

W=i Sr 2pS, I= e-2kJjp cos(O - 0,) dw (2.22a)

Wz = Sd = I e 2kip cos(08) dw (2.22b)
Wd 812p-- R H I



• For LH medium:

W -100 S dt - q2 1 -lkpl
2

2k/p (() ())...J,.
P - P - -2- I ( ) I e cos - E WJ..I

-00 87r P LH W E W

W -100 S d - q2 1 Ikpl 2k/p (())...J,.
Z - z t - -2- -,( )Ie cos E WJ..I

-00 87r pv LH E W

(2.23a)

(2.23b)

We can see that the direction of power radiation is determined by the angles of

E(W) and kp.

For a real physical model of permittivity and permeability, we should add an

imaginary part to Eqs. (2.9a) and (2.9b), which now become

2 2Wmp - Wmo
,ur=l- 2 2 .

. W - Wmo + I,mW
2 2

Wep - Weo
Er = 1- 2 2 .

W - Weo + I,eW

(2.24a)

(2.24b)
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Figure 2-5: The red (solid) curve is for the real part of the refractive index, the black
(dashed) curve is for the imaginary part, and the blue (dash-dotted) curve is for the
real part of the square of the refractive index.
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The real and imaginary parts of the complex refractive index n as well as the

real part of n2 are plotted in Fig. 2-5 as a function of frequency. Note that for such

a model, we always have Q{E(w)} > 0 and Q{p(w)} > 0, where t{.} indicates the

imaginary part of the operator. These considerations are summarized in table 2.1,

where 0, denotes the angle of E(w) and 0 the angle of kp

Table 2.1: The range of angles for e-0,-and kp-0.

Properties RH medium band LH medium band

-R((W)} > 0 < 0
_ _ [0, ] [1, r]
k, >0 <0
0 [0, ]_ [ , 2_7]

We see that we still have backward power flow in LH media, and the angles 0,

and 0 determine the direction of the power. The lossless limit implies that 0 = 0 for

both LH and RH media, whereas 0, = 0 for RH media but 0, = 7r for LH media. The

expressions for the energy will reduce to Eqs. (2.17) and (2.18).

When losses exist, the directions of power propagation S (denoted by the angle

ij cos(0 - 0,) + ý cos(0,)
2 ~ COS (0 - 0)2 + coS(E) 2

-,7 cos(6 - oo) + 2 cos(0')

/ 2•• COS( - 0E)2 + COS(O6) 2

for RH media

for LH media

are different from that of phase propagation k (denoted by the angle 0c)

k= P cos(0) + 2
V72 cos(0) 2 + 1
= ' cos(0) +k =
J2 COS () 2 + 1

for RH media

for LH media

For the purpose of illustration, we plot the energy distribution as computed from

Eqs.(2.22a) to (2.23b) by taking the model of Eqs. (2.24a) and (2.24b), and taking

(2.25)

(2.26)

(2.27)

(2.28)



the values wmp = wep = 27f x 1.09 X 1012 rad/s, Wmo = Weo = 27f x 1.05 X 1012 rad/s,

and 'Ym = 'Ye = 'Y. All values are calculated at the same distance p for all frequencies.
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Figure 2-6: Energy distribution over frequency at 'Y = 1 X 108Hz. The blue (solid)
line is the radiated energy density in the p direction, and the red (dashed) line is the
radiated energy density in the z direction.

Fig. 2-6 shows the energy distributions Wz and Wp over frequency at 'Y = 1 X

108H z. The high peak is in the RH medium regime for which Wz > 0, correspond-

ing to a forward outgoing power. The small peak at f ~ 1.06 X 1012 rad/s corresponds

to Wp> 0 and Wz < O.

Figs. 2-7 (a) to 2-7 (d) show the radiation patterns of Cerenkov radiation at different

'Y. We can see from Fig. 2-7(a) that, when the losses are high, there is mainly forward

power from the low frequencies far from the resonance. The radiations near the

resonance are negligible since the radiation decays very fast due to high loss. As the

losses decrease, we can find from Figs. 2-7(b) that the backward lobe appears.
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(a) -y = 1 x 1010Hz, normalizing con-

stant 1.8 x 10- 4 .
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(b) 7 = 1 x 108
stant 0.001.
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(c) _y = 1 x 0lHz, normalizing con-
stant 0.0026.

Figure 2-7: Radiation pattern of Cerenkov
Eqs.(2.24a) and (2.24b).

(d) y = 1 x 106Hz, normalizing con-
stant 0.0074.

radiation for a material characterized by



This is because the initial radiation near the resonance is actually much higher

than those in Fig. 2-7(a). When the loss continues decreasing, as shown in Figs. 2-7(c)

and 2-7(d), the backward lobe becomes comparable with the forward lobe, and both

approach to 900 because the large refractive index near resonance. The radiation is

dominated by the frequency in the region near the resonant frequency, where lossess

are so small and the decay term is not strong enough to suppress the amplitude. If

the distance p increases, the decay term will become dominant, therefore the lobe

for backward power will be suppressed, and the pattern will become like the one of

Fig. 2-7(a).

0 0.2 0.4 0.6 0.8

Frequency (THz)

Figure 2-8: The distributions of angle over frequency at y = 1 x 108Hz. The blue

(solid) curve is the power propagation angle, and the red (dashed) curve is the phase
propagation angle.

Another noticeable phenomenon is that the angles of forward and backward power

are both close to 900 as the losses decrease. This is due to the value of the refractive

index which becomes extremely large, see Eq. (2.2).
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In addition we see that the direction of phase propagating is different from that of

power propagating. This difference is due to the losses. We find from Fig. 2-8, that

for a RH medium band, there is almost no difference between these two angles, which

is due to the imaginary part being very small at this frequency band, and therefore

the angles 0 and 0, are very small. For a LH medium band however, the direction of

phase propagation is almost opposite to that of the power.

2.5 Conclusion

In this chapter, we have given the mathematical solution for Cerenkov radiation in

a left-handed material, for both lossless and lossy situations. We have found, con-

sistently with the prediction in [1], that Cerenkov radiation in LH media exhibits a

backward power, yet maintaining a forward k vector.

With a simple model for the permittivity and the permeability, we have observed

that the radiation pattern of the Cerenkov radiation presents lobes at very large

angles, close to 900 with respect to the particle motion, which is in contrast with the

angle obtained in a classical gas environment. With such a large angle, we expect

more photons to be generated, implying the fundamental idea of improved Cerenkov

detectors based on the use of LH media.



Chapter 3

Cerenkov Radiation in a

Cylindrical Wave Guide Filled with

Left-Handed Materials

3.1 Introduction

Since no material except vacuum can be strictly regarded as unbounded, we will dis-

cuss a more realistic case here. In Chapter 2, we have shown [6] that the radiated

energy will go forward and backward at different frequency bands when the disper-

sion exists. It was known that the intensity of the radiation is inversely proportional

to the wavelength, and therefore, normally only the radiation at optical frequen-

cies are detectable. This is probably a major reason for preventing researchers from

experimentally confirming the reversed Cerenkov radiation, since the LHMs at opti-

cal frequencies are still under investigation. Knowing the fact that the studies and

technique are quite mature in the microwave frequency range, we propose a possible

experimental design which could be used to detect reversed Cerenkov radiation in

LHM at frequencies near GHz. The idea is borrowed from the well studied Cerenkov

free electron maser, where high intensity charged particles travel along the axis of a

cylindrical waveguide, in which the dielectric is filled. Due to the effect of the metallic



wall outside the core medium, Cerenkov radiation only happens at frequencies where

the guidance condition for the waveguide is satisfied.

In this chapter, we first summarized the Green's function for different cases, which

can serve as a theory basis for our following analysis.

We then studied a classic case, a two layer problem for which a RHM core is covered

by a LHM layer. We call it "classic" because this was actually a topic proposed by a

committee member when Cerenkov made his defense, and was extensively studied by

the following researchers. Here we just change the out layer to be an LHM instead

of a RHM. Interestingly, besides the obvious results that the power will propagate

backward in LHM, we do find that an LHM has more mechanism than a RHM for

particles to lose energy, as summarized in Table 3.1. In row 2, it shows that there

will be surface plasmon between the boundary of the RHM core, and the LHM outer

layer, whereas there is no radiation when both layers are RHMs.

Table 3.1: Radiation Mechanism for Different Conditions

Outer layer is a RHM Out layer is a LHM
n 0 < 1 Forward propagating wave Backward propagating wave

and in the outer layer in the out layer
n2. 2 > 1 Forward evanescent wave Forward evanescent wave

in the core in the core
n1• 2 < 1 Backward surface plasmon

and no radiation in the outer layer
n ,2 < 1 Forward surface plasmon

in the core
n12 2 > 1 Forward propagating wave Backward propagating wave

and in both layers in the outer layer
n / 2 > 1 Forward Propagating wave

in the core

1n22 > 1 Guided forward propagating Guided forward propagating
and wave in the core wave in the core

n 2 < 1 Forward evanescent wave Backward evanescent wave
in the outer layer in the outer layer

Thirdly, Cerenkov radiation for a metallic wave guide completely and partly filled

with LHM is discussed and demonstrated with numerical results with realistic models



of the permittivity and permeability; finally, we calculated a 3 layer problem, where

the core is a vacuum channel, and the middle layer is a LHM. Here the ability of

compensating the decay of the radiation by the channel is shown as a result of the

excited surface plasmon between the boundaries of a LHM and RHMs.

3.2 Green's function for different cases

3.2.1 Approach

The approach is the same as in chapter 2, from Eq. (2.3) to Eq. (2.5).

The task is reduced to finding the scalar Green's function, with which the fields

can be expressed as follows

E(-, w), - iq w W2 g(P)( (3.la)

Ep(T, w) = q eiwz/lv g(p), (3.1b)
2(rEv -p

H(T, w) = - eiwz/v g(p) . (3.1c)

3.2.2 Green's functions for different conditions.

The Green's function for the unbounded region including the source and infinity were

already discussed in Chapter 2 [6]. Here we only consider two geometric regions.

Table 3.2: The Green's functions are summarized according to different regions, and
whether the Cerenkov radiation condition is satisfied or not, i.e. n2/32 > 1 or n20 2 < 1.
We limited ourselves here with the permittivity and permeability being real.

n2_ 2 > 1 n2W < 1

Wave Vector kp = wpl -_ > O s = S - w/E > 0

o < p < a -¼No(kpp) + aJo(kpp) Ko(sp) + alo(sp)
a < p < b (No(kpp) + (Jo(kpp) (Ko(sp) + (Io(sp)

b < p < 1o qHH')(kpp) + yHO2)(kpp) rqKo(sp)

The coefficient 7 = 0 if the media is a RHM, and r = 0 if it is a LHM to ensure

an out flowing energy.



The coefficients are found by matching the boundary conditions, which are reduced

to match (W2
ILiEi - ~:) tgi(P), and tpgi(p).

3.3 A Two layer problem

Since a LHM is a composite metamaterial, it is more realistic to consider a two

layered configuration, where the core is a RHM with a finite radius. When a charged

relativistic particle passes through the axis, the phenomenon of the radiation in the

outer layer being a LHM are different from that of the RHM. We assume that the

medium in the region 0 ~ P < a has permittivity El and permeability ILl, the medium

in the outer region 2 has E2 and IL2, and we limit ourselves in the case that all media

are lossless. We assume that the medium 1 is always a RHM without loss of generality.

In order to make a comparison, we list the result of region 2 being a RHM [15] also.

n; = EirILir is used throughout the paper.

Dielectric 2

2a

Dielectric 2

z

Figure 3-1: A charged particle with the velocity "if travels along the axis of the cylinders
in z direction. a RHM is located at the core with a radius of a, and the outer layer
is another dielectric material which could be either a RHM or a LHM.
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3.3.1 Case 1: ni2 2 < 1, and n22 2 > 1

The Green's functions should be chosen from Table 3.2 accordingly.

When the medium 2 is a RHM, the radiated wave is evanescent in region 1, but

propagating in region 2. The power is flowing forward. The coefficients are found as

1 P12Ki(sla)Ho1)(k2pa) + Ko(sla)H(l)(k2pa)
ORHM = 2, 01 P(3.2a)

2•1 p1211(sla)H(1)(k2pa) - Io(Sla)Hl) (k 2pa) (
-1 1

7 7RHM =(3.2b)2wak 2p P121 (s1a)Ho(1)(k2 ) - Io(sa)H (k2pa)(32b)

where P12 = c1k 2p/E 2S1-

The energy loss per unit path is

dW 4q2 /o 00
= 2-p S,(T, t) dt = - dw 1 I(w) , (3.3)dz 10 71" /22

v 2

where Sp(T, t) = -Ez(F, t)HO(T, t) is the 3 component of the Poynting vector. The

effect of the core is in the coefficient q), which was shown to be decaying exponentially

as the radius a of the core increases. It can be understood that the radiated wave

inside region 1 is evanescent, and the fields decay roughly as e-SP. The radiation will

decay much faster as the radius a increases.

When region 2 is a LHM with E2 < 0, A2 < 0, the only difference between the

RHM is that for the RHM the Green's function in region 2 should be HO2) (k2pp), as

discussed in [6]. The corresponding coefficients are just the complex conjugate of that

in Case 1, and can be written as

1 pl2Ki(sla)HO2)(k2pa) + Ko(sia)H(2)(k2pa)
OLHM -=

2i p12Ii(sla)H 2) (k 2pa) - io(sla)Hl2)(k 2pa)

= aRHM, (3.4a)

HLHM = -1 1LHM 2rak2p P1211 (sla)HO 2)(k2pa) - Io(Sl a)Hl2 ) (k2pa)

= RHM, (3.4b)



where p12 is the same as defined for the RHM.

Since the energy loss only depends on ly(w)= 2 = lq(w)1 2, the dependence on the

radius for the center cylinder should be same. In the outer layer, the power will flow

backward for a LHM [6].

3.3.2 Case 2: n2 32 < 1, and n22 < 1

For this case, the waves in both regions are evanescent. Limited by the boundary

condition at infinity, where the field has to vanish, the Ko(s 2p) will be the Green's

function for the medium in region 2 being either a RHM or a LHM.

The coefficients a and 77 are now written as

1 P12Ki(sia)Ko(s2a) - Ko(sla)K1 (s2a)
27r p 1211(sla)Ko(s2a) + Io(Sla)K1 (s2a)

1 1q = I (3.5b)27aS2P 121l .Sla)Ko(S2a) o(sla)K (S2a)
where P12 = 61S2/E281-

The energy loss can be calculated as follows [15]

-dW mq2 0S= lim qEz = 2A dwiW/-i 1- l a2 . (3.6)
dz p-O,z--vt 27 o p 2

When region 2 is a RHM, the integral is purely imaginary, the particle will not

lose energy in this case. However, the situation is different when region 2 is a LHM,

because a pole can exist in a when the denominator is zero,

p 12 11(sla)KO(S 2a) + Io(sla)Ki(S2a) = 0 , (3.7)

where the modified Bessel functions are always positive, and P12 < 0 for a LHM, and

p12 > 0 for a RHM. When Eq. (3.7) is satisfied, the residue should be calculated as

27ia_1, and the energy loss is proportional to a summation of the residues at discrete

frequencies. These frequencies correspond to the excited surface plasmons. Therefore,

the particle will lose energy, and excite the surface plasmons on the interface between



the RHM core and the LHM outer layer.

3.3.3 Case 3: n12 2 > 1, and n222 > 1

In this case, the radiations are propagating waves in both regions. There will be a

positive refraction when the medium in region 2 is a RHM, and a negative refraction

when the medium in region 2 is a LHM.

The coefficients for a RHM are solved as

i p12N1 (kka)H(1)(k2pa) - No(kjpa)H' ) (k2pa)
ORHM 4 0, (3.8a)

P4 12J 1 (kipa)H 1)(k2pa) - Jo(klpa)Hl)(k2pa)
-1 1

71RHM = (3.8b)27rak 2~ pl2J(kipa)Ho~ )(k2pa) - Jo(kipa)Hi' (k2pa)

where P12 = E1k2p~E 2kip.

Similarly, the coefficients for a LHM are solved as

1 p12N1l(kipa)HO2 ) (k2pa) - N0 (ka)H (k2pa)
QLHM = , (3.9a)

4 p 12 J(klpa)H2)(k2 a) _ Jo(kpa)H2) (k2pa) (3.9a)
-1 1

1LHM = (3.9b)2LM rak2p p12J1(klpa)H 2)(k 2pa)_ Jo(kipa)H 2) (k2pa)

3.3.4 Case 4: n2, 2 > 1, and n 22 2 < 1

In this case, the wave is propagating inside region 1, and is total reflected at the

boundary, and an evanescent decaying wave is formed in region 2.

The coefficients are solved as

1 p12N1 (kipa)Ko(S2a) + No(klpa)K1 (s2a)
4 pi2J i(klpa)Ko(S2a) + Jo(klpa)K1 (S2a)

1 1
2ras2 P12J 1 (kipa)Ko(S2a) + Jo(kipa)K1 (s2a) . (3.lOb)

where P12 = 61 S2/1 2 k1 p > 0.



The energy lost is determined by

dW q2 00
-q2R lim dw iwlt 1 - / 2a (3.11)

dz 27r p--o o1 1 2

The radiation only happens at the poles of a, for which the following condition is

satisfied,

p12Jl(klpa)Ko(S2a) + Jo(klpa)Ki(S2a) = 0 . (3.12)

The energy lost becomes the summation of the residue of the discrete frequencies

when the guidance condition is satisfied.

When the outer layer is a LHM, the formulations are still the same. The poles are

determined by the same equation, but they occur at different positions since p12 < 0

now.

3.4 Cerenkov radiation in a metallic wave guide

filled with a LHM

3.4.1 Metallic wave guide fully filled with a LHM

For this case, the configuration is the same as in Fig. 3-1, except that the dielectric 2 is

changed into a perfect electric conductor (PEC), which is a very good approximation

for a metal in GHz frequency band.

When the Cerenkov radiation condition is satisfied, the Green's function for this

problem is

g(p) = -4No(kpp) + aJo(kpp) . (3.13)

At p = a, the boundary condition requires Ez(p = a) = 0, the a is then determined,

-= o(ka) (3.14)
4Jo (kda)

The energy lost by the moving charge due to the Cerenkov radiation is calculated



as the electric field acting on the charge itself [15],

=dW Relimpo fo dW (pe - )

X -N0kP+ No( kpa) f Jo(kpp) . (3.15)
4 No(kpa) I [p ..

When the material is lossless, the energy loss becomes a summation of the residues

of the discrete frequencies, which are actually the guided modes by the same reason

as for case 4.

When there is no dispersion, the energy loss is [15]

dW 2q2  1 (3.16)
dz 47ra 2  _ [J0m(Um) 16)

where u, is the mth zero of Jo(x), and Wm = um/(a •/-r - 2).

Required by the causality, a LHM is always dispersive, and therefore we studied

the energy loss when the dispersion exists. In the microwave frequency range, the

LHM is realized by SRRs, and metallic rods, which can be approximated using the

known dispersion models, Lorentz and Drude models, respectively [16]. We use the

same model as in [16], since the parameters were chosen according to the experimental

results.

w2

r() = 1 - + W (3.17a)

Fw 2
r(W) = 1 - 2 w2 (3.17b)

where wp = 27 x 10 GHz is the effective plasma frequency for the metallic rods,

wo = 27r x 4 GHz is the resonant frequency for SRRs, F = 0.56, ye are Ym are the

collision frequencies which account for the loss of the material. The real parts of Er (w)

and •,(w) are plotted in Fig. 3-2.
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Figure 3-2: The permittivity and permeability from the model
and (3.17b). The loss is assumed to be zero. Both permittivity
are negative in the frequency range [4, 6] GHz.
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When the collision frequencies are zero, the permittivity and permeability are both

real, for which the derivative with respect to the frequency should be considered. The

energy loss is then represented as [15]

dW U (3.18)
dz 27rT 2 m  C(Wm)WmJ1 (Um)2a-w Vr - r/3 2 - 1

where w,r can be easily solved by plugging the models of Eq. (3.17a) for permittvity

Er(W) and Eq. (3.17b) for permeability IPr(w) into

-a pr(Wm) Er(Wm)m02 - 1 =
V

(3.19)

- - r

7

in Eqs. (3.17a)
and permeabilty
and permeabilty

--
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Figure 3-3: The discrete modes for the lossless dispersive LHM where the Cerenkov
radiation is satisfied. The velocity of the charged particle is 3 = 0.9, and the radius
of the waveguide is a = 1cm. The continuous curve is R{n 2} -- ~{ r}, the dashed
line indicates the value of I-, above which the condition R{n 2f 2} > 1 is satisfied,
and Cerenkov radiation can happen. The discrete modes determined by Eq. (3.19)
are depicted by the filled squares.

The positions of the modes are depicted in Fig. 3-3. We can find that as the order

of the modes m increases, the frequency decreases, which is contrary to that of a

non-dispersion material, where the frequency increases as m increases. This result is

due to the strong dispersion of the permeability near the resonant frequency.

When the loss is considered, the singularities disappear. The energy loss can be

directly calculated from Eq. (3.15). In order for comparison, we also calculated the

energy loss when the LHM is not bounded by the metallic wall. The results are shown

in Fig. 3-4.
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are calculated.

Fig. 3-4(a) indicates the discrete frequencies, marked as hollow circles, at which

particles radiate energy. These modes are corresponding to those marked in Fig. 3-

3. As the frequency goes to the resonant frequency, the modes become denser. It is

worth noting that the radiated energy at discrete frequencies in the waveguide is much

higher than that of the unbounded case, depicted as red (continuous) curve. At those

particular frequencies, the radiation is greatly enhanced by almost 9 orders. However,

if we compare the total radiated energy in the frequency band [4.002,5.117] GHz in
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which the Cerenkov radiation condition is satisfied, i.e. we compare the summation of

energy loss per unit length at the discrete frequencies with m = 1,2, ... , 15 which are

marked as hollow circle in Fig. 3-3, and the integration of the continuous spectrum

for an unbounded case which is plotted as the solid curve in Fig. 3-3. For the example

we used, the total radiated energy per unit length in a waveguide is dWwaveguide/dz =

1.07 x 10--5 eV/m while the total energy loss per unit length, when the metallic bound is

removed, is dWunbounded/dz = 2.4653 x 10- 6eV/m. It is seen that the charged particle

will radiate four times more energy in a waveguide. The main effect of the waveguide

is to make the radiated energy concentrate at those frequencies which could resonant

in the waveguide, i.e. the guidance condition is satisfied. The frequency range where

we made the comparison is a little bit off from the resonant frequency 4 GHz. The

reason is that the number of modes will go to infinity because of the singularity of p

when the losses are ignored. Meanwhile, the radiated energy of the unbounded case

will also blow up since 1a goes to infinity. Therefore there is of no physical meaning

to include the frequencies which are too close to the resonant frequency, since all the

singular behaviors will be canceled once the loss is considered. However, the previous

comparison is still valid, which will be demonstrated when we explore the results

where the loss is included.

When we consider the loss by increasing the collision frequencies ye and 7m, the

radiation spectrum becomes continuous. From Figs. 3-4(b) to 3-4(d), we can find that

the radiated energy per unit length has peaks at the frequencies which correspond to

those guided modes in the lossless case as in Fig. 3-3. The amplitude of the radiated

energy is much higher at the frequencies of the guided modes than others. As the

loss increases, the peaks become wider, and the peaks near the resonant frequency

are less and less separated, since the loss is very high near the resonant frequency

which make the arguments of the Bessel function being further from the zeros. Also

the difference between the radiated energy at the frequencies of guided modes and

other frequencies becomes smaller. The radiated spectrum is getting closer to that of

the unbounded case for larger losses. This could be understood as the waves decay

very fast after they are radiated from the particle in high loss materials. Therefore



the wave reflected by the PEC is very weak and cannot form a strongly constructive

resonance inside the waveguide. It is also limited by the PEC waveguide that there

is no guided evanescent wave to be supported.
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Figure 3-5: The total radiated energy per unit length for different losses, where the loss
is indicated by the collision frequency y = y, = Ym. For simplicity, we assume that
the permittivity and permeability have the same collision frequencies. The circles
indicate the total radiated energy per unit length in a waveguide, while the cross
indicates that of the unbounded case.

To study the effect of the loss on the total radiated energy, the numerical integra-

tion is performed to calculate the total radiated energy per unit path for the cases

shown in Figs. 3-4(b) to 3-4(d). The results are shown in Fig. 3-5. It is seen that the

total radiated energy increases as the loss decreases for both cases, which will finally

converge to the lossless cases, respectively. Even when the loss exists, the charged

particle always loses more energy when it travels inside the waveguide than that in

the unbounded LHM. This result is consistent with the analysis for the lossless case.

As the loss increases, the differences between the two cases are getting smaller, which
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is a direct result of the fact that the radiated energy distributions tend to overlap

when the loss increases.

The direction of the energy is along the cylinder axis which is determined by the

sign of the permittivity c, and the energy will flow in the same direction as the particle

motion z when 3?{c} > 0, and in the opposite direction -z when 3?{c} < 0, which is

the case in Figs. 3-4.

3.4.2 The effect of the radiation of a vacuum channel in the

center of the waveguide

Currently, the LHMs are composite structures with different materials, such as the

metallic strips for the split ring resonators (SRRs) and rods and dielectric materials

for holding the strips. Complicated interactions could happen when the relativistic

charged particles go through these materials, such as transition radiation, ionization

loss, all of which could add lots of noise for the possible experimental detection of the

above discussed Cerenkov radiation. Therefore it might be better to leave a vacuum

channel as a channel in the center to allow the particle to pass. The noise due to

the interaction between the particle and the materials used for construction can be

avoided. Therefore, the effect of the hollow hole is studied in this section with a

configuration shown in Fig. 3-6.

PEC

v
• zq •2b 2aI

PEC

Figure 3-6: Region 1 is free space with cIr = 1 and J-LrI = 1, and is located in the
center with a radius of a, where the particle can pass through. The LHM is in region
2 with a < p < b. The permittivity C2r and permeability J-L2r are given in Eqs. (3.17a)
and (3.17b) respectively.

57



Since the strong frequency dispersion of LHM, two cases should be studied

nJ 2 > 1 and n23 < 1.

When n /32 > 1, the radial component of the wave number is real, and the wave

inside the LHM layer is propagating. The Green's functions are

1
gi(P) = Ko(sip) + alo(sip) for 0 < p < a,27o

92(p) 0(k2pP) + Jo(k 2pp) for a < p < b.

(3.20a)

(3.20b)

The coefficients are solved by matching the boundary condition at p = a and

p =: b,

1 p12 K1 (sla)po - Ko(sia)qo

27 p1211(sia)po + Io(sia)qo

Jo (k2pb)
27rak2p P121 (sia)po + Io(Sla)qo

vT l(k- \ )

27rak2p P1211(sia)po + o(a)qo

where pi:! = E k2p and

Po = Jo(k 2pb)No(k 2pa) - Jo(k 2pa)No(k 2 b) ,

qo = Jl(k2pa)No(k 2pb) - Jo(k 2pb)N(k 2 a) .

(3.22a)

(3.22b)

Similarly, the energy loss of the particle is determined by Eq. (3.6), and there is

radiation only at the poles of a,

p1211(sla)po + I(sla)qo = 0 . (3.23)

When mn$22 < 1, there are evanescent waves inside the LHM layer. The Green's

functions for the LHM layer should be

92(p) = Ko(s 2p) + (Io(s 2p) for a < p < b .

a = (3.21a)

(3.21b)

(3.21c)
o fp

(3.24)



The coefficients are solved as

1 P12Ki(sla)po + Ko(sla)qo
27- p 12 1 (sla)po - Io(sla)qo

1 Io(s 2b)
I = (3.25b)-2as2 P12(sa)po - Io(sla)qo (3.25b)

1 Ko(s 2b)

-27as2 1211(sla)po - Io(sa)qo (3.25

where P12 = " and
6281

Po = Io(s 2a)Ko(s 2b) - Io(s 2b)Ko(s 2a) , (3.26a)

qo = Ii(S2a)Ko(s 2b) + Io(s 2b)Ki(s 2a) . (3.26b)

The pole is now determined by

p1211(sla)po - Io(sia)qo = 0 . (3.27)

In this case, there is no cutoff on the particle's velocity. No matter how slow the

particle moves, there could be a surface plasmon excited. The existence of the surface

plasmon is not only determined by the particle's velocity, but also by the radii a and

b, as well as the dispersion of the LHM.

Again, when the loss is considered, Eqs. (3.23) and (3.27) can be used to find the

approximate frequencies for the peaks of the radiation spectrum.

We applied the models in Eqs. (3.17a) and (3.17b) with the collision frequency

ye = •y == 10' rad/s. The distribution of the radiated energy at different frequencies

is plotted in Fig. 3-7.

The peak at 4.5 GHz is due to the LH behavior of the material, at which both

the permittivity and permeability of LHM have negative real parts, and the wave is

propagating dominantly inside the LHM layer with R{n f 2 } > 1. When the collision

frequencies is reduced, we have observed similar phenomenon as in Fig. 3-4, which is

that the peaks are getting narrower, and more peaks are separated near the resonant

frequency..
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Figure 3-7: The energy loss distribution at different frequencies for a hole in the
center of a waveguide filled with LHM. The collision frequency is -y = Y"m = 10'
rad/s. The radii are a = 0.5cm, and b = 1.5cm. The thickness of LHM is kept as
1cm. These parameters were chosen according to a setup of an experiment for some
RHM dielectrics [17].

The peak near 8.6 GHz, which is not present in Fig. 3-4, is due to the excitation

of the surface plasmon at the boundary between the LHM and the vacuum, since the

permittivity of the LHM has a negative real part while its permeability has a positive

real part already. This surface plasmon peak is much stronger than those propagating

peaks. The reason is that the imaginary parts of the permittivity and permeability

are much smaller at the frequencies far from the resonant frequency, the argument is

closer to the pole in Eq. (3.27) for the lossless case. This surface plasmon peak should

be carefully distinguished from the expected propagating peaks, since this peak can

be realized by a plasma, which is already a known phenomenon.



3.5 3-Layer problem

Although the channel in the center can allow the particle to pass without interacting

with the dielectric material for clean Cerenkov radiation, the amplitude of the radia-

tion is reduced due to the hole. It has been investigated that a plasma with a negative

real part of the permittivity can amplify the radiation by the excitation of a surface

plasmon. However, the plasma behavior of the natural material is mostly common in

the optical frequency range. As will be shown here, this limitation can be overcome

by an LHM, for which the properties are conserved by scaling the structure.

A three-layer problem shown in Fig. 3-8 is discussed here to investigate the ability

of compensating the effect of the channel by a LHM.

We only consider an interesting case where

• Layer 1: ° < p < a, Elr = 1, and J..Llr = 1 ni/32 < 1;

• Layer 2: a < p < b, LHM;

• Layer 3: b < p < 00, E3r > 0, J..L3r > 0, n~/32 > 1.

RHM3

2b 2al

,""ll"'f"""""~

~ h ::i '

........... ,...-""-'-~,~~ ~

RHM3

v.Z
Figure 3-8: Similar to Fig. 3-6, with the PEe in the region p > b replaced with a
RHM.

The cases for both the propagating and evanescent waves should be considered.

When ~(n~/32) > 1, there is a propagating wave in layer 2. The Green's functions in
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the 3 layers are written as

1
g1(p) = -Ko(sip) + alo(sip)

27

92(P) = 0No(k2pP) + 0Jo(k2pp)

93(P) = rHo1 ) (k 3pp)

for 0 < p <a,

for a < p < b,

for b < p < oo00 .

The coefficient r is solved as

-1 1

= (r 2k2pk 3pab) flf2 + f3f4

where

fi = p121l(X 1)No(X2) - IO(X)N)1 (x2)

f2 = p23 J(y2)Ho1 )(Y3) - Jo(y 2)H (y3 ) ,

f3 = p12 1(Xi)Jo(x 2) - 0 (1) J1 (X2) ,

f4 = -p23 1( 2)HO') (y3) + No(Y2)HH (y3).

The other coefficients can be obtained from r as follows

= k3pb [P23 J1 (y 2 )Ho 1) () - Jo(Y2 ) H1) (Y 3)]

= k3,b [-P23Nl1 (y 2)Ho) (y3) + No(Y 2) ) (y3)] ,

1 K1 (xi)
27" Ii(zxi)

k2p [~1 (X2) + J1 (X2)] ,

sli (Xl)

ýw- _- t, Ww22 2--where s = - W2 pl 1 , k2p - 2 
2 ,E kp 2- - 2

k2pa, Y2 == k2pb, Y3 = ka3 b, P12 = k and P23 =

x1 = sia, X2 =

When R(n 2/ 2) < 1, the wave is evanescent inside the LHM layer, and the Green's

function inside this region is

92(P) = WKo(s 2p) + (Io(s2p) for a < p < b.

(3.28a)

(3.28b)

(3.28c)

(3.29)

(3.30a)

(3.30b)

(3.30c)

(3.30d)

(3.31a)

(3.31b)

(3.31c)

(3.32)



The energy Loss is given by Eq. (3.3) with the subscripts of the permittivity and

permeability replaced with 3.

The coefficients are found as

-1 1n = (3.33)
S2rs 2k3,ab flf2 + f3f4 (3.33)

where

fh =P1211(x1)Ko(x 2) + Io(xI)Kl(X2 ) , (3.34a)

f2 =p23 l (y2)H (y3) - Io(y 2)H~ (y 3) , (3.34b)

f3 =P1 211(Xi)Io(X 2)- Io(xi)(1 2) , (3.34c)

f4 =P23KI(y 2)HO(y 3) + Ko(y 2)H~1'(y 3) . (3.34d)

Similarly, other coefficients are found as follows

= -k3pb [P23Ii(Y 2)Hgol)(y 3 ) - Io(Y2)H1)(y3)] '7 , (3.35a)

-= -k3pb [p23K1(y2)Ho1)(Y3) + Ko(Y2)H) (y3)] , (3.35b)

a = (xi) + [-K,(x2 2)] , (3.35c)

2 822where s, = V -w 1 1, S2 = V -W2262, k3p = 2 363 ~ x = s1 a,

z2 = s2a, y2 = s2b, y3 = k3ab, P12 = , and P23 = E3

The behavior of the terms in the denominator of r can be easily understood by

using the asymptotic behavior of the modified Bessel function for large arguments.

When a and b are large enough such that sta >> 1, s 2a >> 1, the denominator of 7r is

dominated by f2 which is approximately es2b. Combined with fl, then the amplitude

of r7 is proportional to e-s1 a- 82(b -a), which represents the wave decays in both layer 1

and 2, and therefore the radiation in the third layer is decreased as the radii a and

b are increased even much more than for the first case in the two layer problems.

However, we note that fi is the same as the denominator in Eqs. (3.5b), which means

that when fi = 0, a surface plasmon is excited on the boundary between layers 1



and 2. The dominant term f2 is canceled by fl, and therefore when fi = 0, the

second term of the denominator of q becomes dominant, whose asymptotic behavior

is f3 f4 OC esa+82a- 82b. 77 is then approximately proportional to e-sa+s2(b- a), which

means that the surface plasmon compensates for the decaying of the wave in layer 1.

Note that R{fE2r} < 0 is required for the existence of the surface plasmon.

In comparison with the case where R{n2/3} > 1, 77 decays approximately as e-sla

because there is no surface plasmon when the wave is propagating in layer 2. When

there is no surface plasmon, the radiation is dominated by those frequencies where

the wave is propagating inside the LHM layer, whereas the modes corresponding to

the surface plasmon will dominate when the guidance condition is satisfied.

The above discussion is illustrated by the numerical examples. For simplicity, we

first assume a non-dispersive LHM with E2r < 0 and A2r < 0 and being constants.
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Figure 3-9: The amplitude of 77 when changing the constitutive parameters of the
layer 2. The numbers inside the figure indicate the permittivity and permeability
(E2r,012r). The radii are a = 1cm b = 2cm. The velocity of the particle is / = 0.9.

Fig. 3-9 shows the distribution of the energy loss per unit length for different
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combinations of permittivity and permeability satisfying E2rJ.l2r{32 < 1, which means

the wave is evanescent inside layer 2. The radii are set to a = 1cm and b = 2cm,

and the velocity of the particle is {3 = 0.9. In order for comparison, we first plot

the case where layer 2 is free space also as the dotted line, which is equivalent to

a larger channel with radius b. For the commonly discussed matched case where

(E2n J.l2r) = (-1, -1), it is shown that the energy loss when the layer is a LHM is

higher than that for a free space layer. This is because P12 is negative when layer 2

is a LHM and positive when layer 2 is a RHM, which means II is in general smaller

for a LHM than for a RHM, and will result in a higher value of the energy loss for

a LHM. However, the amplitude is still less than the case where layer 2 is removed,

and there is no amplification of the evanescent wave.
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Figure 3-10: The real part of the longitudinal electric field Ez is plotted at 7GHz
with (E2nJ.l2r = (-0.4, -1.5)). The radii are a = 1cm b = 2cm. The velocity of the
particle is {3 = 0.9. The white lines at p = 1cm indicate the boundary between layers
1 and 2, and those at p = 2cm indicate the boundary between layers 2 and 3.

When (E2r,J.l2r) = (-0.4,-1.5), a strong peak clearly appears in Fig. 3-9 at

7.7GHz, which indicates that a surface plasmon is excited, as illustrated in Fig. 3-
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10. We have observed that fi = 0 at 7GHz corresponding to the surface plasmon,

however the maximum of q is at 7.7GHz. The reason is that the second term of the

denominator of r continues to decay after 7GHz, and the total denominator reaches

a minimum at 7.7GHz.

Although the frequency of the surface plasmon is determined by the inner radius

a, the maximum of r is affected by the outer radius b. For different b, the growth

rate of f2 is different, the larger the radius b, the faster f2 grows, therefore, the less

impact of the surface plasmon. As shown in Fig. 3-11, as the radius b increases, the

frequency of the maximal q is closer to 7GHz, the frequency for the surface plasmon.

The narrower bandwidth as b increases is due to the faster growth rate of f2, and the

radiation of those frequencies only in the very vicinity of 7GHz is amplified.
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Figure 3-11: The amplitude of q when changing the radius b,
the figure in units of cm. The permittivity and permeability

2r = -1.5. The inner radius is a = 1cm.
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When the dispersion and the loss of the LHM are considered, both the propagating

and evanescent waves at different frequencies should be considered, and calculated

with the formulations shown previously. The distribution of 1r/[ is plotted in Fig. 3-12.

It is seen that r has both propagating peaks (E2r and A2r have negative real parts),

and a surface plasmon peak (only the real part of C2r is negative). For different

effective electron plasma frequencies, the position and the amplitude of the plasma

peaks are different, which allows for more flexible applications. In Fig. 3-12(a), the

surface plasmon peak is at around 8GHz, only when R{E2r} < 0. The transverse wave

number S2 determines the amplitude and bandwidth of the peak, and the larger the

S2, the larger the amplitude, and the narrower the bandwidth. The surface plasmon

peak in Fig. 3-12(a) is at a frequency higher than the zeros of the real part of the

permeability around 6GHz, and therefore, 0 < R{fP 2r} < 1. When the effective

electron plasma frequency is shifted lower than 6GHz, the plasma peak can be moved

to frequencies lower than the resonant frequency of the permeability, as shown in

Fig. 3-12(b).

In this case, the transverse wave number s2 is much larger than that in Fig. 3-

12(a), since the permeability has a large positive real part at this frequency. As a

result, the surface plasmon peak has a higher amplitude in Fig. 3-12(b) than that

in Fig. 3-12(a). This implies that in order to realize the same amplification effect,

the case in Fig. 3-12(b) just needs a thinner layer of the material, a smaller b - a.

The reason that the amplitude of the propagating peak is lower than that of the

surface plasmon peak, is that the traverse wave number in the LHM frequency region

is smaller than that of the plasma frequency region.
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Figure 3-12: The amplitude of'TJfor different effective electron plasma frequencies of
the model for the permittivity in Eq. (3.17a). The collision frequency is assumed tobe Ie = 1m = 107rad/s in all the cases. The radii are a = 1cm and b = 2cm. The
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3.6 Conclusion

The behavior of the Cerenkov radiation is investigated thoroughly for a particle trav-

eling along the axis of the multi layer cylindrical media involving a LHM. The cases

with the metallic wave guided can be used to guide a possible experimental obser-

vation of the reversed Cerenkov radiation in a LHM. When there is no channel for

the particle in the center, it is shown that the total radiated energy by one particle

per unit length is about 10- 6eV. The typical charge for an electron bunch that can

be realized by experiments [17] is about 2nC, which is equivalent to roughly 1010

electrons. The radiated energy is about 10- 5 J per electron bunch for a waveguide of

im length. The radiated power is on the order of 10/W if we only consider one bunch

per second, and the total power should be higher if the multi bunches are considered,

typically 103 to 106 bunches per second. For the LHM experiments at the microwave

frequency range, a standard waveguide port with the corresponding wavelength is

normally used as a receiver. The resolution can be -50dBm, which corresponds to

10nW. The radiated energy is at least 3 orders higher than the resolution. This is

actually not surprising, since high power microwave beam can be generated through

Cerenkov radiation in this kind of wave guide.

However, we should note that in all the above estimations, we assume all the

particles in a bunch simultaneously generate the coherent radiation. In a real electron

bunch, the electrons are not moving all together, instead, they will interact with each

other, and the individual electron could be accelerated. Furthermore, if there is a

focusing mechanism to confine the electron bunch, combined with the interactions,

the electrons will oscillate. The non-uniform motion of electrons will result in large

background radiation. Also, the electromagnetic field, which is used to confine the

electron bunch, could be an important source of the noise which may be mixed with

the signal.

According to the main purpose of this chapter, we just want to identify the new

physics phenomena theoretically. In future studies along this topic, all of the above

effects should be considered and compared with the amplitude of the real signal.



When the central channel is considered, the radiated energy is reduced by about

an order of magnitude in the frequency range of [4.002,5.117]GHz. However, more

importantly, a strong plasma peak will be present, which should be carefully distin-

guished in the experiment studies.

Finally, the 3-layer problem shows a possible application for our study. The central

channel is good for avoiding the noise from the interactions between the charged par-

ticles and the atoms of the materials; however, the radiated energy is also decreased

exponentially. This effect is much worse at higher frequencies, since the radius can-

not be very small, and it could be already many wavelengths for the radiations in

the optical frequencies, where the most detection was made. Adding a LHM layer

can compensate and even amplify the radiation at the frequencies where the surface

plasmon is excited. The narrow band of the amplification can be used to overcome

the dispersion effect of the Cerenkov detection in the high energy application. To

detect the velocity of the high energy charged unknown particles, the Cerenkov ra-

diation is commonly used where the velocity can be determined from the angle of

the radiation. However, the dispersion of the detector material, although small, can

smear out the angle, which makes the detection less precise. The LHM layer can be

used as a frequency selector with a very narrow band, which could be reduced by

increasing the thickness of the LHM layer. Therefore, in the third medium, the de-

tector material (some RHM with n3 2 > 1) has a radiation peak only at the selected

frequency, therefore overcoming the dispersion effect in the third medium.

It should be noted that only a negative real part of the permittivity is required

for the existence of the surface plasmon, and therefore the electron plasma is enough,

which has been theoretically and experimentally investigated. However, the combi-

nation with the dispersion of the permeability can offer more flexibility for the design

of the instruments when a thinner or thicker thickness of the LHM layer can be cho-

sen. Also the behavior of the permittivity and permeability of the LHM are scalable

with the dimensions of the structure of the LHM, currently SRRs and rods. This

scaling ability can allow the detection and application of the amplification effect at

frequencies ranging almost from GHz to THz.



Chapter 4

Effect of the poles for a LHM slab

In this chapter, we will discuss two phenomena related to the singularities of electro-

magnetic fields when a LHM slab is present.

4.1 Effect of Poles on the Sub-Wavelength Focus-

ing by a LHM Slab

4.1.1 Introduction

Among all the phenomena in Vesalago's original paper [1], a LHM slab lens is probably

the most popular topic. Pendry firstly raised the concept of a "Perfect Lens" in [18]:

by using a LHM slab, for which the evanescent waves can be amplified and the sub-

wavelength focusing can be realized, i.e. the field distribution at the source can be

perfectly reproduced at the image point. A transfer function has been used to analyze

the resolution abilities of LHM slabs for lossless [19] and lossy [20] cases. The results

showed that the resolution is determined by the deviations from the real value of -1

in the relative permeability and permittivity, as well as the thickness of the slab.

Here we discuss this problem by directly calculating the electric and magnetic

fields inside a slab of a LHM. We first show that there is an infinite number of poles

in the complex kz plane (the z component of wave vector k), and that a specific pole

is located on the integral path of the field in all regions. We analyze the importance
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Figure 4-1: a LHM slab of thickness d2 - d1 = d is located between z = d1 and z = d2.

of this specific pole, and its physical meaning.

4.1.2 Configurations of the problem

In this section we are considering the standard LHM lensing configuration as shown

in Fig. 4-1. The permittivity €i and permeability /-li for i E {1, 2, 3} shown here

represent relative values. Region 1 and region 3 are free-space, with /-l1 = /-l3 = 1, and

€1 = €3 = 1. a LHM slab is located in region 2 between z = d1 and z = d2, and is

infinite in both x and y directions. In the examples discussed in this letter, d1 = A/2

and d = d2 - d1 = A. The relative permeability and permittivity of the slab, /-l2 and

€2, have real parts that may take negative values. The current and electric field are

expressed in frequency domain, 8 (r), which are related to the time domain quantities

by 8(1', t) = ~{8(r)e-iwt}, where 8 represents current J or electric field E.

A line source is located at the origin, whose current can be expressed as:

J(1') = xI8(y)8(z) . (4.1)

Expressing the field in terms of a spectrum of TE waves, the electric field in each
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region can be written as [12, 21]

EI+X = (eik'z z + Re - iklzz) Elin eikvy dky , (4.2a)

E2x = (Ae ik2 z + Be - ik2z) Eli. eiky dk , (4.2b)

Eax = (Teik3z z) Elin eikyy dky, (4.2c)

where Ein= - , kiz is the i component of the wave vector, and 1+ denotes the

wher lin Z 4irkiI

region 0 < z < dl. In Eqs. (4.2), R is the reflection coefficient, T is the transmission

coefficient, and A, B are the coefficients of the forward and backward waves inside

the slab. The magnetic field can be directly obtained from Maxwell's equations.

By matching the boundary conditions at z = dl and z = d2 , the coefficients can

be obtained as in [12, 21],

4 eiklzdl eik2z(d2-d) 6 -ik3zd2

(1 + P12)(1 +P23)(1 + R1 2R 23ei2k2z(d2- d )) '

2 e-i(k2z-k1z)dl

(1 + 2)(1 + R12R 2 3 ei2k2z( d2 - d2)) '

2R 23 e-i(k2z-klz)dl ei2k2zd2

(1 +p12)(1 + R12R 23 ei2k2z(d2- d1)) '

R = ei2
klzdl R 12 + R 23 ei2k2z(d2- d i)

(1 + R12R 23ei2k2z(d2-d))(.3d)

where

P12 = , (4.4a)

, 2k3z
P23 , (4.4b)

A2kl -3 k 2z

R12 = 2k1z + lk2z (4.4c)
I2klz + /I-tk2z

R 23 = (4.4d)
A3k2z + /12k3z



4.1.3 Analysis of the pole

An important property is that all the coefficients (R, A, B, and T) have a common

denominator

1 + R12R 23 ei2k2z(d2- d l) , (4.5)

which can be zero for some specific values of k2z.

Due to the complexity of expression (4.5), it is not possible to find its roots

analytically in most cases. However, we can analytically find the pole locations for a

special case, in which the physical meaning of the pole is best illustrated. The special

case starts by taking the following expressions of E2 and A 2:

1
112 (1 + 6) 2 (4.6)1+6' (4.6)

where 6 is real and 0 < 6 << 1. We choose this configuration in order to keep

k 2 = k 2 == k .

Phase matching implies that kly = k2y = k3y = ky so that kz = klz = k3z = -k2z-

It can be proven that the solutions of the electric field and magnetic field are

identical whether we choose +kz or -kz. According to the convention in [18], we

shall choose k2z = -kz in this section, which allows the local reflection coefficients to

be simplified as,

R12 l and R 23 =

We are interested in the behavior of an electromagnetic wave in region 3 where

the focusing can be observed. Thus, we express the electric field in region 3 as

w upLo 1 8(1 + 6)
E3a =

4x (2 + 6)2

f0 cos kyy d ky (4.7)
0 k-z eikz2d 

-  (-1
2

The reason, that the integration range is from 0 to +oo, is that we choose the origin

at the source, therefore the integration is symmetric.



For this situation, the poles of the integrand are determined by

eikz 2
d _ (2_)2 = 0, (4.8)

and in terms of k, k_ = - + Iln( ) , (4.9)

where m is an integer.

For the sake of comparison, we can calculate the poles associated with a material

where both permittivity and permeability are positive (we call this material a Right

Handed Material, RHM). To do this, we use A2 = 1 + 6, and E2 = i-, and follow the

same procedure, as outlined before. We obtain,

eikz2 d - (2+6)2 = 0 (4.10)

same as before kz - m -ln (_) . (4.11)

We can directly see from Eqs. (4.9) and (4.11) that the poles of the LHM have

a positive imaginary part, while those of the RHM have a negative imaginary part.

This property is clearly visible in Fig. 4-2 in the kz plane.
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Figure 4-2: Poles for a LHM and a RHM in the kz plane with 6 = 0.01.

The poles for the LHM are in the upper Riemann sheet in the kz plane, whereas

those for the RHM are in the lower Riemann sheet. The square root of the upper

Riemann sheet satisfies the requirement that the evanescent waves should vanish at

infinity, therefore the part of the integral path corresponding to k. > k in the k. plane

maps onto the imaginary axis Oi to +ooi in the k_ plane. In addition, the pole of the

LHM with m = 0 lies exactly on the integration path of Eq. (4.7), and therefore its

contribution to the total electric and magnetic fields must be accounted for.

From Eq. (4.9), we can define:

k m = In 2 6  , (4.12)

where "max" means the maximum evanescent component that has a non-vanishing

amplitude at the image point, which will be discussed later. The pole corresponds

to a surface plasmon wave [18] on the two boundaries of the LHM slab, which is the
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same as the guided mode with an imaginary transverse wave number in the LHM

slab, which was indicated in [22].

Fig. 4-2 clearly shows that the integration path of Eqs. (4.2) passes through a

LHM pole but not through an RHM pole (for which the imaginary part is negative).

Therefore this proves that a LHM slab can support a surface plasmon wave while

an RHM slab cannot. In addition, when 6 - 0, the pole goes to infinity along the

imaginary axis of kz, which is consistent with Fig. 5 in [22], making the numerical

evaluation of the integral increasingly difficult.

Figure 4-3: Definition of the Sommerfelt integral path (SIP) in the kz plane.

In order to calculate the fields of Eqs. (4.2), we need to redefine the integration

path into the Sommerfeld Integration Path (SIP), which is conveniently defined in

the kz plane, as shown in Fig. 4-3. The path passes the pole on its right-hand side

because the pole would move to left if Y 2 and E2 had positive imaginary parts, i.e. if

r?



the material was lossy. The fields can then be calculated by performing the numerical

integration along the above defined SIP for any non-zero 6.

4.1.4 Effect of the pole on the focusing of a LHM slab

For the sake of illustration, we consider a line source located at the origin with a

frequency f = 1 GHz. We choose 6 = 10- so that the amplitude of the surface wave

is not too high and dense compared to the regions other than the boundaries, and

so that we can observe the periodicity of the surface plasmon at the boundary of the

LHM slab and its effect on focusing at the image point [18] at z = 0.6 m, y = 0 m.

If 6 is smaller, the amplitude of the surface plasmon wave increases as the dielectric

constants (P2, E2) approaches (-1, -1), which will eventually make the field pattern

not observable in those regions except for the boundaries.

The amplitude of Ex is shown in Fig. 4-4 for the three regions. As predicted, one

can observe the surface wave at the two boundaries. The spatial period in ý is found

to be approximately 0.18 m, which is smaller than A = 0.3 m.

If we consider the pole with kz = k~ ax7 of Eq. (4.12), the corresponding ky is given

by ky = /k - (kax)2, and a spatial period in the ý direction can be defined as

27r
Ay = (4.13)

k2++ 2 2

By plugging the numerical values given above into Eq. (4.13), we obtain AY=

0.19 m, which is very close to what we have empirically observed in Fig. 4-4. Therefore

it confirms that the pole determines the surface mode at the boundaries between the

RHM and the LHM.
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Figure 4-4: Amplitude of E, with 6 = 1 x 10- 3. The LHM slab is located between
dl = 0.15 n and d2 = 0.45 m. The Source is at z = 0, and the image is at z = 0.6 m.

Next, it is interesting to study the distribution of the amplitude of the fields inside

the slab. Fig. 4-5 shows the amplitude of Ex in the three regions. We can see that

the evanescent wave under kmax can be amplified inside the slab, and keeps a non-

vanishing amplitude at the image plane, while the evanescent waves with k, > km a x

cannot be amplified. Therefore only those evanescent waves with kg < kmax can

contribute to the focusing at the image plane, hence limiting the resolution ability of

the slab.
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Figure 4-5: Amplitude of E, for different plane wave components. The source is
located at z = 0, and the image is at z = 0.6 m.

4.1.5 Effect of the pole on the resolution ability of the LHM

slab

In order to further investigate the resolution ability of the LHM slab, we consider a

screen with two slits located at z = 0, which, upon a plane wave incidence, can be

modeled as two line sources. The separation between the two slits is 6,, and we use

the SIP defined in Fig. 4-3 to calculate the electric field Ez, magnetic field Hy, and

the i component of the Poynting vector Sz = EHy*.

An interesting property of the LHM slab is its ability to resolve images with

a separation smaller than the diffraction limit A/4. To address this question, we

purposely choose 6 = 1 x 10- 13, such that AY = 0.2A < A/4 according to Eq. (4.13).

Of course, we can also tune the thickness of the slab d to achieve such a fine

resolution, with a larger 6 [19]. The concern here is that once the slab becomes



much thinner, the source has been put much closer to the first boundary accordingly,

otherwise, the image at the other side of the slab cannot be achieved. However,

technically, there is a limit of the distance between the source and the slab, which

should be at least larger than the size of an atom. On the other hand, we can always

tune the parameters of the LHM material, currently split ring resonators and metallic

rods [2], to get the desired the dielectric constants (p2, 62).

When 6y = A, = 0.2A, the amplitude of Sz is shown in Fig. 4-6(a). The solid

curve shows Sz = (E( ) + E( 2) )(H (1) + H( 2))* if we regard the two sources in coherent

superposition, and the dashed curve shows Sz = S + Sz2) - E)H ) * + E 2)Hy2 ) *

if we regard the two sources in incoherent superposition. For this value of Jy, the two

peaks can be well resolved in both cases.

If we reduce the separation of the two slits to 6y = 0.15A < Ay, one can see from

Fig. 4-6(b) that the two peaks of the incoherent case can be well resolved, while those

for the coherent case are reaching a resolution limit, corroborating the conclusion

that the resolution ability of the LHM slab is closely related to AY, which in turn is

determined by the pole.

This phenomenon can be further explained by using the uncertainty principle of

quantum theory. The uncertainty principle says that for a photon, the uncertainty of

position Ay and uncertainty of momentum in that direction Apy satisfy

2r
AyApy < h, from which we can get Ay < 2 (4.14)

where py = hky for photons.

It is easy to understand that the smallest uncertainty of the position in 9 is deter-

mined by the available wave vectors of the plane wave components at the image plane.

Since the evanescent waves decay in a RHM, only propagating plane waves contribute

to the focusing at the image plane. Therefore the sub-wavelength resolution is only

achievable in the near-field.

From Fig. 4-5 we see that the evanescent waves with ky < km •" can be amplified

and transmitted to the far field image plane. The smallest uncertainty in y is then
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given by
27r

Ay < -A = A~m (4.15)

It can therefore be directly understood why the pole sets a limit on the resolution

ability of the LHM slab. When 5 -+ 0, the pole moves to infinity, and Akmax - o0.

This approaches the requirement of the "Perfect Lens", which requires that all evanes-

cent waves be amplified and transmitted to the image plane. This is consistent with

our analysis of the role of the pole on the transmission of the evanescent waves.

4.1.6 Conclusion

We can conclude that the pole lying on the integration path of the electric and mag-

netic fields in a LHM slab determines a special guided mode, which is an evanescent

wave. In addition, this pole determines an upper limit below which the evanescent

waves can be transmitted to realize sub-wavelength focusing at the far field image

plane, thereby determining the resolution ability of the LHM slab. The special fea-

tures of a LHM compared to a RHM are due to this pole, since its contribution has

to be included into the field integrals of the LHM but not into those of the RHM.

4.2 Guided modes with a linearly varying trans-

verse field inside a Left-Handed dielectric slab

4.2.1 Introduction

Guided waves are normally supported by a dielectric slab surrounded by a less dense

media, where the fields decay at the infinities in the transverse directions. The fields

inside the dielectric slab are normally described with exponential functions. Depend-

ing upon their transverse wave number k,, the fields profiles can be described with

trigonometric functions such as sines or cosines when k, is real, or hyperbolic func-

tions such as hyperbolic sine (sinh) or hyperbolic cosine (cosh) when k, is imaginary.

The trigonometric modes exist in normal materials where the real parts of both the



permittivity and permeability are positive [12, 23], while the hyperbolic modes can

be supported by plasma media where the permittivity has a negative real part for

TM waves [24, 25, 26, 27, 28, 29, 30, 31]. It is known that trigonometric and hy-

perbolic modes cannot coexist in either configuration. However they can coexist in

left-handed materials (LHM) [1], where both the permittivity and permeability have

negative real parts. Both types of guided modes were shown in [16, 22, 32] for sym-

metric configurations (where the regions on the two sides of the slab are identical),

and in [33] for asymmetric configurations. The possible coexistence of these two types

of modes is due to the fact that the poles corresponding to the hyperbolic modes lie

in different Riemann sheets for a RHM (normal material in contrast with a LHM)

and an LHM [34, 7]. In this section, a guided mode with a different profile, a linear

function, is shown to exist when the transverse wave number k, = 0 for a LHM slab

with certain thickness [8]. From now on, we call this mode the linear mode. Physi-

cally, the trigonometric or hyperbolic modes can be understood as a superposition of

two propagating, or two evanescent waves inside a slab. The coordinates T and time

t of each of these waves appear in the form of k T 7 - wt through wave vector k and

angular frequency w, which is a direct extension of the solution for one-dimensional

wave equation presented by Landau [35]. However, as will be shown in this section,

this form does not hold in the transverse coordinate x for the linear mode.

4.2.2 Linear mode for asymmetric guided modes

The configuration is shown in Fig. 4-7. The permittivity ej and permeability Aj

of the three regions (j E {1, 2, 3}) represent relative values and are taken to be

real. Without loss of generality, regions 1 and 3 are assumed to be a RHM, but not

necessarily identical; region 2 is assumed to be an LHM, where 22 and 62 may have

negative real parts. In the case of TE modes (TM modes can be studied similarly),

the non-zero fields are Eju, Hjx, and Hjz. We assume a time dependence of e- iwt
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Figure 4-7: A dielectric slab is located between x = 0 and x d. The shaded region
represents a dielectric slab which extends to infinity in the y and 2 directions. The
sketched curves show the known profiles of hyperbolic and trigonometric modes.

throughout this paper, and the electric fields in the three regions can be written as:

Ely = eLx ikzz

E2y = (Ae ik 2xX - Be-ik2xx)eikzz

E3y = Te-3x eikzz

for x < 0,

for 0 <x <d,

for x > d ,

where kz2  = /kgc 2 1 2 - kz, ko is the wave number in free space, and 1,3 =

- k~1,3/1 ,3 are positive to ensure a decay of the electric field as x - ±+oo.

The electric fields in regions 2 and 3 are normalized to that in region 1, and the mag-

netic fieldbs are obtained from Faraday's law accordingly. By matching the boundary

conditions at x = 0 and x = d for the tangential components of the electric and

magnetic fields, the coefficients A, B, and T are obtained as follows:

(4.16a)

(4.16b)

(4.16c)



1 i ___1 1 1 12&1A 1 = i 2al B = 1 + 2l (4.17a)
2 2 p 1k 2 x ' 2 2 pik2x a

T1 = e-a3d[ (eik2xd + e-ik2xd)

i -A21 (eik2zd _ e-ik2xd)l (4.17b)
2 pilk 2X

T= e-3d[I (eik2d e-ik2zd)2= 2 i2 3(e
2i1 t 2a 3

1 /13a1 (eik2.d + e-ik2d)] . (4.17c)

2 pl a3

The coefficients TI and T2 represent the transmission coefficient T but are obtained

from matching the tangential electric and magnetic fields at x = d, respectively. The

guidance condition for k2x L 0 can be obtained by letting T1 = T2 and yields

e 2ik2xd _ (iOa1 2 + k 2xIz1 )(i 3 2  k2x 3 ) (4.18)
(ialA2 - k2xA1)(ia 3A2 - k2xP3)

The guided modes can be found numerically by sweeping k_ and finding the values

which satisfy Eq. (4.18).

Because of the singularity in the second term of Eq. (4.17b) when k2z = 0, the

guidance condition for this mode has to be obtained by taking the limit of Eqs. (4.17b)

and (4.17c) as k2x -+ 0:
p2&ld p3Ol1 + . 13a, (4.19)

1A11 11Ce

The thickness d for this linear mode is

d 01 3 + 
1 3 01  v n' 2 - (4.20)

fL2k1C3 2r/12n - n 2 •n2 - n2

where nj ejpj. Contrary to the normal process of determining the tangential wave

number for a given thickness d, the process is reversed here so that we have to find the

thickness d knowing the tangential wave number k, = k2 (for k2x = 0). The thickness

d must be real and positive, which determines the existence of the guided mode at

k2= = 0. It immediately follows from Eq. (4.20) that a physical guided linear mode



can be supported in LHM slabs, while a slab of RHM leads to a non-physical guided

mode where the field grows outside the slab (a, and/or a3 are negative in this case).

This is due to the fact that the poles corresponding to the hyperbolic modes of the

RHM lie in the lower Riemann sheet, which correspond to non-physical modes, while

those of LHM lie in the upper Riemann sheet, which correspond to physically guided

modes [34, 7].

From the thickness of the slab d in Eq. (4.20), we can find the fields in region

2. Coefficients A and B are singular when k2x = 0, which suggests that expressing

the field profile as exponential functions is not ideal for this mode. The new basis

functions are obtained by reorganizing the terms to cancel the singularity, and yields

trigonometric functions for k2x real (kz < k2) and hyperbolic functions for k2x imagi-

nary (kz :> k2). Taking the limit as k2x --+ 0, the field expressions in region 2 can be

written as follows,

E 2y= (1+ L2514X) eik2ze-iwt' (4.21a)

iai
H2z = eik2zeiwt , (4.21b)

H2 k2 1 A ) eik2ze-iwt . (4.21c)

Note that the above expressions can also be obtained by writing the fields in the

slab directly as linear functions based on the approximation e±ik2zx f 1 + ik2xX when

k2I z 0. The transmission coefficient T for the field in region 3 is 1 + " with
/ '1

which the field in region 3 can be written accordingly.

Observing the solution in Eq. (4.21a), the space and time coordinates do not

obey a form of Ik - - wt like other trigonometric or hyperbolic modes. The profile

function along i is therefore not a harmonic function. Instead, the electric field in

the transverse direction is a linear function of x as shown in Eq. (4.21a), and the

longitudinal magnetic field is a constant as shown in Eq. (4.21b). However, both

fields satisfy the Maxwell equations.



Also,the linear solution of the wave function can only exist in a bounded region,

for example inside a slab, since the electric field grows linearly to infinity as the

coordinate x -- oo00.

A numerical example is used to demonstrate the existence of the linear mode. The

constitutive parameters are chosen as (E ,p1)= (1,1), (E2 ,2)= (-1,-4), and (E3,AL3)=(1,2),

the frequency is set at 10 GHz, and the thickness of the slab calculated from Eq. (4.20)

is 0.792A0. The corresponding tangential electric and magnetic fields distributions at

k2x = 0 are shown in Fig. 4-8, where both plots show the existence of a surface wave.

A better match between media 2 and 3 causes the field at the second boundary to have

a larger amplitude than that of the fields at the first boundary. The one-dimensional

plots of the fields at z = 0 shown in Fig. 4-9 illustrate the linearity of the electric

field, and the constant longitudinal magnetic field H2z across the slab.

Upon using the same example, the values of the longitudinal wave vector kz for the

guided mode are plotted against the thickness of the slab in Fig. 4-10. The dashed

line indicates the position kz = k2 , which corresponds to k2x = 0. By observing

the evolution of the modes, we can find that this linear mode is a transitional mode

between the sine and the sinh modes in terms of the transverse electric field E, for TE

modes. For this configuration, there is only one anti-symmetric mode since the slab

is very thin. As the thickness of the slab increases, the higher order symmetric and

anti-symmetric trigonometric modes appear. The modes with kz > k2 are hyperbolic

with sinh functions as profiles as illustrated in the insets of Fig. 4-10, while the modes

with k, < k2 are trigonometric with sine functions as profiles. It was mentioned in [16]

that kz =: k2 is the turning point between trigonometric and hyperbolic modes, but

the existence of the mode was not shown. The linear mode shown here confirms

that it serves as a transitional mode between the sinh and sine profiles. The modes

presented in Fig. 4-10 are all anti-symmetric. The sine function and sinh function

have opposite signs of convexities in the same side of the null point. As kz approaches

k2 , the slope of the profile approaches that of the linear mode, at which the convexity

is 0. Then, the convexity changes as k_ deviates from k 2. In terms of the transverse

wave number, k2 x = 0 at kz = k2 is the only possible transition point between real and
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for the mode kz = k2, (El,J.Ll)=(l,l), (E2,J.L2)=(-1,-4), and (E3,1L3)=(1,2).

89



-0.1 0 0.1 0.2

x/a,

(a) Ey

-0.2 -0.1 0 0.1 0.2

x/xo
(b) Hz

Figure 4-9: Distribution of the electric (a) and magnetic (b) fields for the mode
k, = k2 at z = 0. It can be noted that E, and H, have a 7r/2 phase difference.
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Figure 4-10: Evolution of the guided modes according to the thickness of the slab for
the configuration (Et,J.Ll)=(l,l), (E2,J.L2)=(-1,-4), (E3,J.L3)=(1,2).

imaginary values of k2x, which corresponds to trigonometric and hyperbolic modes,

respectively.

4.2.3 Linear mode for symmetric guided modes

It is equally important to examine whether the transitional mode also exists for

symmetric modes between cosh and cosine functions. In general, this mode does

not exist in both a RHM and a LHM. Mathematically it can be seen directly from

the field solution of Eqs. (4.21): the only possible transitional function between cosh

and cosine modes is a constant, which corresponds to a constant electric field and

al = O. Therefore, the transitional mode for symmetric modes cannot exist for

arbitrary configurations but only for the special case where ki = k~ = k~. The

electric fields Ey = eik2Z are identical in the three regions, and have no variation

along the transverse x direction, which yield magnetic fields with zero z component,

and constant x component. Consequently this corresponds to a TEM mode.
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The absence of the symmetric transitional mode for general cases can be under-

stood by noting the two lowest propagating modes which have a cutoff: TE1 is the

lowest anti-symmetric mode, and TE2 is the lowest symmetric mode. Since the pro-

file for the TE2 mode is a cosine function but with more than one period variation

inside the slab, it cannot be a transition between the cosh and the cosine functions.

In addition, the transition between the cosh and the sine functions is also not possi-

ble because of their different symmetries. In order to break the symmetry, the only

possible solution is for the field at one boundary to be zero, which is not a physical

nontrivial solution. Hence, the only possible transitional mode for symmetric modes

is the TEM mode studied in this section.

4.2.4 Conclusion

In conclusion, a unique linear physical guided mode is presented for k 2x = 0 in a LHM

slab with very special properties. The linear profile in the transverse direction of the

mode serves as a smooth transition between the sine modes and sinh modes. The

properties of this unique linear mode are discussed and illustrated by the numerical

examples. The constant longitudinal magnetic field for TE modes, and electric field

for TM modes can offer more degrees of freedom in designing planar wave guides for

various applications.



Chapter 5

Novel LH meta-material design for

Traveling Line Current Source

5.1 Introduction

In previous chapters, we have assumed an ideal homogeneous isotropic Left-Handed

material whose permeability and permittivity were modeled by Lorentz and Drude

models. In order for the possible experimental demonstration of the previous theo-

retical conclusions, we need to have a design which can realize backward Cerenkov

radiation.

As already known by the researchers, that there is no natural material simulta-

neously exhibiting negative permittivity and permeability. However, we know that

small resonators, such as split ring resonators (SRR) can have a strong response to

the incident magnetic field, which can result in a negative permeability in a narrow

band higher than the resonant frequency [3]. The negative permittivity is actually

more popular since many metals, for example bulk silver, behave as a plasma in the

optical frequency range, whose permittivity is negative in the range below the plasma

frequency. Pendry [4] have proposed that when an electric field acts along the arrays

of thin metal wires, the effective electron mass can be increased by several orders,

which lowers the plasma frequency to GHz. Therefore, the effective negative permit-

tivity can be realized in the microwave frequency band. It is further demonstrated by



the experiment [2] that the effective negative permittivity and permeability can be

simultaneously realized in the GHz frequency range. The concepts of split ring res-

onators and thin metal wire were widely adopted, and various structures [36, 37, 38]

were proposed and verified by both simulations and experiments.

However, the basic feature of Cerenkov radiation, TM wave, prevents us to use

these existing designs. The reason can be explained by reviewing each of the available

4 designs.

To realize backward Cerenkov radiation, the minimum requirement of the dielec-

tric constants are

Er =r--

(5.1a)

(5.lb)1
where we assumed that the charged particles move along i direction. The dielectric

constant matrices indicate that we need the split ring with its normal in the ý direc-

tion, and thin metal wires in the : and ý directions. However, all of the previously

realized structures are for TE incidence waves, which satisfy

/
Er =

A r

0
0

2'
(5.2a)

(5.2b)

where the two negative elements of ir were realized by arranging the rings in two

J



directions.

The first LHM design is the split ring resonators as proposed in [3] in combination

with the thin metal wire [4], as shown in Fig. 5-1. It was reported in [39] that this

structure has bianisotropy, which means the electric and magnetic responses can affect

each other as the incidence polarization changes, and a non-zero off-diagonal element

appears. This will complicate the calculations, and is not suitable for experiment.

-H1

W

-~I jc4~
Figure 5-t1: The split ring resonators as realized in [2]. The parameters are taken as
the same in [2], where c=0.25mm, d=0.30mm, w=2.62mm, g=0.46mm, and a=5mm.

Another ring was first proposed for the near infra red frequency range in [36], and

was scaled to GHz frequency range [40] as shown in Fig. 5-2. This ring lacks the

symmetry of the plane in which the ring is located.

These split ring resonators can be modeled by a lumped capacitance and induc-
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Figure 5-2: The second split ring resonator in [40]. The parameters are taken as the
same in the paper, where w = g = d = 0.24 mm, L = 3.12 mm, and L = 2.16 mm.
The lattice constant is 5.04mm in the propagation direction, and (6mm x 6mm) in
the lateral directions. The rod (light gray) has a width of 0.5 mm and is 1 mm away
from the ring.

tance. The capacitance of these two rings is due to the electric displacement field

vector between the edges of the inner and outer rings for the first ring, and between

the edges of the two single rings for the second ring. Therefore, these rings are also

called edge coupled rings [39].

Another type of ring is called side coupled ring, which is represented by Q-ring

and S-ring as in Figs. 5-3 and 5-4, respectively. The metallic strips are printed on

both sides. The capacitance of the resonator is due to the sides of the front and back

rings. One feature of these two types of LH metamaterials is that metallic rods and

the rings are together, not like the first two designs, in which the rings and rods are

separated.

Although all of these four designs have been verified by experiments using TE

wave incidence, they cannot easily be modified for use in TM wave incidence. The



Figure 5-3: The O-ring resonator in [37]. The parameters are taken as the same
in the paper, where r=1.5mm, w=O.4mm, h=O.2mm, 1=2mm, and d=4mm. The
permittivity for the dielectric board is 1.5.

first two designs have a rod-touching problem in the experiments, which requires

the metallic rods touch the top and bottom sides of the waveguide to make the

rods effectively infinitely long. If not, the rods will be finite, and will not behave

as a plasma, instead the permittivity will have a resonance shape. But due to the

limitations of the dimensions, the resonant frequency of the permittivity is normally

much higher than that of the permeability due to the resonance of the rings. The

resonant frequency of the permittivity will go down as the length of the rods increase,

and therefore the unit cells for the rings are different from that of the rods, which

is not good for isotropy. The other two rings overcame this problem by making the

rings and rods together, such that the total lengths of the metallic strips are much

longer than the unit cell size. However, the O-ring and S-ring are too complicated
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Figure 5-4: The S-ring resonator in [38]. The parameters are taken as the same in
the paper, where a=5.2mm, b=2.8mm, h=0.4mm, and d=0.5mm. The permittivity
for the dielectric board is 4.6.

to be directly extended to two dimensions. Each unit cell can only have rods in one

direction; therefore each cell can only supply one direction for negative permittivity

and one direction for negative permeability. A new LH metamaterial design for TM

is essential and required for the realization of backward Cerenkov radiation.



5.2 A new LHM design for TM incident wave

Our aim is to have a design which can have the dielectric constants in form of

Eqs. (5.la) and (5.lb). Therefore, we need to have rods in two dimensions.

5.2.1 The dimensions

We adopted the side-couple principle for the new design. The rings and rods lie in x-y

plane. The top view of a unit cell is shown in Fig. 5-5, and the bottom shape is the

top one rotated by 90 degree around the normal of the board as shown in Fig. 5-6(a).

Fig. 5-6(b) shows the side view of a unit cell, and the dimensions in the z direction

are also marked. The periodicity in z is a in order to make the unit cell cubic.

a

Figure 5-5: This is the top view of the design. The purple color means the dielectric
board, whose permittivity is Er = 4. The metal (green color) is in L-shape and the
diagonal strip. a=5mm is the periodicity, d=0.24mm is the gap between the diagonal
metal strip and the L-shaped metals, as well as the width of the diagonal metal strip,
b=0.3mm is the distance between the L-shaped metals and the boundary of the unit
cell, and w=0.48mm is the width of the L-shape metals.

The two diagonal metal strips on the top and bottom will serve as rods for two

orthogonal directions, which can realize isotropic negative permittivity in the x and

if directions.
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(a) Bottom View.

a

(b) Side View.

Figure 5-6: The periodicity in the normal direction of the board is also a=5mm, which
make the unit cell a cube. tm=0.05mm is the thickness of the metal, and t=0.2mm
is the thickness of the dielectric board.
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In order to lower the resonant frequency of the rods, we need to make the rods

longer. Therefore, the diagonal strips are made to touch the boundary of a unit cell.

The adjacent cells will be the center one rotated by 90 degree along the normal of the

plane, the i direction. Through this transformation, the rods of the adjacent cells will

be connected together; therefore, the length will be much larger than the dimensions

of a unit cell, and the resonances of the rods and rings will be better matched.

The two L shaped metal strips on the top side can couple with the two on the

bottom to form a resonator. When a magnetic field along the . direction is incident

upon the ring, the charge distribution will be built up on the rings since they are not

closed.

5.2.2 Reflection and transmission simulations

Starting from this section, we will work on identifying LH behavior using numerical

simulations. The simulations here are all performed using CST Microwave Studio 5.0,

in which the essential simulation method is Finite Difference Time Domain (FDTD).

Two numerical experiments are most commonly used. The first one is the reflec-

tion and transmission simulations, and the other is prism simulations which will be

introduced in the next section.

For the reflection and transmission simulations, the purpose is to have a TEM

incident wave, and to observe a transmission peak when both rings and rods coexist.

The setup of our simulations is shown in Fig. 5-7.

One unit cell of the structure is located at the origin with the normal of the rings

in the i direction. The two waveguide ports are placed at both sides of the unit cell in

the Q direction. Port 1 will be the source, and Port 2 is the receiver. In order to ensure

a magnetic field along the ý direction to excite the rings, the boundary condition in the

i direction is set to be a perfect magnetic conductor (PMC). Similarly, the boundary

condition in the , direction is set to be a perfect electric conductor (PEC), and an

electric field in the , direction can be achieved. With these boundary conditions, a

TEM wave is propagating along the ý direction from Port 1 to Port 2.

The reflection and transmission are measured through S-parameters, and are rep-
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Figure 5-7: The setup of the reflection and transmission simulations for one cell. The
red color region indicates the waveguide ports. The distance between each waveguide
port to the nearest edge of the unit cell is 5mm, and the port size is 5mm x 5mm in
the x-z plane.

resented as 811 and 812 respectively. The results are shown in Fig. 5-8. A peak of 812

can be clearly observed around 5.8GHz

We are expecting that the effective permittivity and permeability can be simulta-

neously negative at this frequency. However, a transmission peak does not necessarily

indicate LH behavior in this frequency range. Therefore, the main purpose for the

reflection and transmission simulation is to find the frequency range, where we will

perform prism simulations.
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Figure 5-8: S11 and S12 for the reflection and transmission simulation.

5.2.3 Prism simulations

The task of this section is to test whether or not the discovered pass band around

5.8GHz is due to the LH property, i.e. simultaneously negative permittivity and per-

meability. Known from the literature, among all experiments, the negative refraction

in a prism experiment is the most convincing proof of LH properties. In the rest of

the section, we will arrange the unit cells into a prism shape, and run simulations to

observe the refraction angles at different frequencies. In the following two sections,

both the TM and TE setups are shown for the prism simulations.

TM incidence setup

We adopt the commonly used prism angles [2] as shown in Fig. 5-9. The ratio between

the number of cells in the , direction and that in the 9 direction is 3:1. The angle

of the prism is Op = arctan(1/3) f 18'. In order to make the beam narrow enough
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for a clear identification of the refraction angle, the prism is composed of 18 cells in

the incident side, which is 1.8Ao for the center frequency 6GHz. Therefore, there are

6 layers in the y direction.

Lossy
Metal

PEe Air

Waveguide Port

Figure 5-9: The top views of the prism setup for the TM incident wave. A waveguide
port is placed at y = -6mm, which is 3.5mm to the horizontal boundary of the prism.
Two PEC pieces (in blue color) are at the both sides of the waveguide port in the x
direction. The dimension for each PEC piece is 4mm in the y direction and 5mm in
the x direction. Two thin lossy metal pieces (in yellow color) are placed between the
prism and the PEC, with the dimension being Imm in the y direction and 5mm in the
x direction. The two air pieces are placed on the top (bottom) of the waveguide port
to prevent the waveguide port touching the top (bottom) boundary. The dimension
for each air piece is 5mm in the y direction, 2.5mm in the x direction, and 0.5mm in
the z direction.

The purpose for the PEC pieces is to limit the basic mode of the waveguide port

which has an electric field in the x direction, and a magnetic field in the z direction;

therefore a clean TEM incident wave can be formed. Two thin lossy metal pieces

(in yellow color) are placed between the prism and the PEC in order to prevent the

radiation from the surface waves when the wave is incident upon the prism. The air

pieces on the top and bottom of the waveguide are to prevent the waveguide touching

the boundary, and also force the program to add enough mesh lines to make the

results accurate.

The boundary conditions in the x and y directions are set to "open", by which the

program will use perfect matched layers (PML) on both sides of the directions. This
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is a good feature of this design that the ends of the rods do not need to touch the wall

of the wave guide. Since all the diagonal rods are connected, they are long enough

to overlap the resonant frequency with that of the rings. The boundary condition

in the 2 direction is periodic with the prism in the center. There are 3 layers in

the 2 direction. The periodicity in the 2 direction is 5mm, which is the same as

the dimension of a unit cell. The PEC and lossy metal pieces are both 15mm in 2

direction.

During the simulations, the incident wave is propagating along the +- direction.

Both the near field and far field behaviors are monitored.

First, we observe the reflection coefficient at the waveguide port. The S-parameter

S 11 is shown in Fig. 5-10. A pass band between 5GHz to 7GHz can be observed

clearly, which lies in the same frequency range as in the reflection and transmission

simulations.

S-Parameter Magnitude in dB
10 I

-5 ..

- 1 .. .. . .

-3

- 1 5 ............. . ........... .. . .

-35-1 0 ........ ... ......... I I I-15 ............. _E ............. _ I ......... ........... I I ...... _1 ............ I .............

-40.

3 4 5 6 7 8 9 10

Frequency (GHz)

Figure 5-10: S11 for the TM setup prism simulation.

105



Secondly, the far field radiation patterns at different frequencies are observed. The

linear plots of the far field beam are shown in Figs. 5-11. At the observed frequencies,

the angle of the main beam at the far field is 138' for 6GHz, 124' for 6.3GHz, and

1150 for 6.6GHz. All of these fall in the negative refraction region, since the normal

to the prism is at 1080.

(a) At 6GHz. Main lobe
magnitude 0.439VA/m 2 , main
lobe direction 1370, side lobe
level -9.7dB.

(b) At 6.3GHz. Main lobe
magnitude 0.409VA/m 2 , main
lobe direction 1240, side lobe
level -12.5dB.

(c) At 6.6GHz. Main lobe
magnitude 0.594VA/m 2, main
lobe direction 1150, side lobe
level -12.7dB.

Figure 5-11: The far field patterns of the power density in linear scale at a radius of
im with respect to the center of the prism.
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It is not necessary to show the far field pattern for all frequencies in the pass band.

A summary of the refraction angles is given in Fig. 5-12. All the angles are adjusted

so that the angles in Fig. 5-12 are the actual refraction angles with respect to the

normal of the prism exit side. A negative refraction band can be clearly observed

from 6GHz to 7GHz. The overall slope of the refraction angle is positive, which is

consistent with the expectation that after the resonance, the refractive index increases

from negative values to zero. Also 1GHz is wide enough for a possible experimental

verification. The refraction angles for the frequencies below 6GHz do not show any

consistent trend, which could be due to multiple reasons, for example the complicated

behavior near the resonant frequency. However, what we are mainly emphasizing here

is the behavior in the frequency band between 6GHz and 7GHz, where the structure

shows a consistent and stable LH behavior.
lr

On 20

0

c -20
0

S-40

-60

-Rni

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7

frequency (GHz)

Figure 5-12: Refraction angles of the main beams for the prism simulation for the far
field power density distribution. The refraction angle is defined as in the inserted ray
diagram.

Besides the refraction angles, the loss is another important parameter for evalu-
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ating the performance of the structure. If the loss is too high, the transmitted power

could be too low to be identified in possible experimental verifications. Therefore we

did the same simulations in the same frequency band by just removing the prism.

The power at im radius is compared with that of the prism simulations. Only the

absolute values at the peak of the beam were compared, and the results are shown

in Fig. 5-13. It shows that roughly 80% of the power is transmitted at 6GHz, and

the transmitted power is maintained above 50% for the frequency band of interest.

The percentage of the transmitted power is higher than 100% at 6.8GHz and 6.9GHz,

because the beam is actually narrower after the wave exits from the prism. This high

transmission percentage shows that the loss of the structure is very low, which is

another very good feature for experiments and applications.

120

100

80

60

40

20

5 5.2 5.4 5.6 5.8 6

frequency
6.2 6.4 6.6 6.8

(GHz)

Figure 5-13: The ratio of the peak power density with the prism to that without the
prism. The ratio for 6.8GHz is larger than 100%, because the beam for the prism
simulation is narrower than that of the case when the prism is removed, 25.6' with
the prism versus 26.90 without the prism. The same reason also applies for the value
at 6.9GHz.
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It is also worth noting that the transmission for the frequencies below 6GHz is

much lower, which could again be due to the effect of the resonance and can serve as

a confirmation of the inconsistent behavior of the refraction angles in this frequency

band.

U
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Figure 5-14: The relative side lobe level in dB for the TM prism simulations, where
the side lobe level is defined the relative magnitude of the second maximum of the
far field pattern with respect to the peak magnitude of the main lobe.

The level of the side lobe is another important factor which should be considered

carefully for the prism experiment. If the side lobe is very strong and comparable to

the main lobe, it may be very difficult to identify the real refraction angle due to the

LH property of the structure, and therefore may lead to wrong results. We present

the relative side lobe level with respect to the main beam in Fig. 5-14. It is seen

that the relative side lobe levels are below -7dB for most frequencies between 6GHz

and 7GHz, except between -5dB to -4dB for 6.1GHz and 6.2GHz. In general these

side lobe levels are low enough for them to be distinguished from the main lobe. The

low side lobe level provides a strong evidence that the observed main beam angles do
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represent the refraction angle of through the prism.

Again, the side lobe levels below 6GHz are mostly high, above -3dB, which shows

the behavior of the structure at the resonant frequency are less predictable.

Fig. 5-15 is a two dimensional plot of the Hz field in the near field at 6GHz. The

pattern shows that the wave is propagating toward the negative direction (thinner

side of the prism) after it exits from the prism. This is consistent with the far field

observation, and is a clear demonstration of the negative refraction.

AI.
1

0.938
0.813
0.688
0.563
0.138
0.313
0.188

o
-0.188
-0.313
-0.138
-0.563
-0.68B
-0.813
-0.93B

-1

Figure 5-15: The near field plot of Hz at z = 0 at 6GHz.

We have thus shown the complete evaluation of the structure in Fig. 5-5 through

the refraction angle, loss, and the relative side lobe level for a TM prism simulation.

All of these results confirm that the structure behaves as a LHM in the frequency

range between 6GHz and 7GHz for the TM wave incidence. As to the best of our

knowledge, this structure is the first design which is isotropic for TM wave incidence.

TE incidence setup

This section shows that the same structure in Fig. 5-5 can also work for the TE

incident wave also. Since our unit cell is a cubic, we can just erect the unit cells and

align them as in Fig. 5-16.

The top and bottom boundary conditions along the z axis are set to PEe. Besides
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Figure 5-16: The setup for the TE incident prism simulation.

the ability to force an electric field along the z direction for the basic mode, this

boundary condition can also effectively extend the rods to infinity due to the mirror

effect of PEC.

Two cells are erected along the z direction to form the minimum repeatable cell

by translation operations. Similar to the TM prism, there are 18 cells in the incident

side of the prism; therefore the incident port size is kept the same as for the TM

prism simulations. At the top and bottom sides of the wave guide port, PEC strips

(Green) are placed to ensure that the electric field is along the z direction, and to

make the wave guide port not touching the simulation domain boundaries. At both

sides in the x direction, two quadrangles (color) are placed. Their tilted faces form

a horn to make the wave propagating out smoothly. The material is a lossy metal,

which can also absorb the wave propagating in the x direction and reduce the side

lobes due to the finite size of the prism.

The refraction angles at the far field are summarized in Fig. 5-17.

A negative refraction band is observed between 5.7 GHz to 7.2GHz. Note that

the bandwidth is a little wider than for the TM case. The reason is that the rods are

effectively extended to infinity due to the PEC boundary conditions. The behavior of

the rods will be very close to that of a plasma; therefore a wider overlapping negative

band can be expected.
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Figure 5-17: The refraction angles of the TE prism simulation at the far field. The
angles are observed from the power density (VA/m 2 ) at a distance of im. The angles
are the actual angle in the x - y plane and are subtracted by 1080 to reflect the real
refraction angle. The refraction is defined the same way as in the insert of Fig. 5-12.

Similarly, we also present the percentage of the transmitted power and the relative

side lobe level in Fig. 5-18(a) and Fig. 5-18(b), respectively. In the negative refraction

band, the transmitted power is mostly higher than 60% which indicates that the

structure has low loss and good transmission. The side lobe levels are less than -6dB,

and the observed negative transmission peaks are reliable.
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5 5.5 6 6.5 7 7.5

frequency (GHz)

(a) The percentage of the transmitted power
peak value with respect to the values of air.

-10

-15

-20

5 5.5 6 6.5 7

frequency
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8 8.5

density at the

8 8.5

(b) The relative side lobe level in dB for the TE prism simu-
lations.

Figure 5-18: Plots of the percentage of the transmitted power and the side lobe levels.
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In order to directly compare the performance of the design for the TM and TE se-

tups, we plotted the refractive index in Fig. 5-19. The refractive indices are obtained

directly using Snell's law. This is already enough to give us an estimate of the refrac-

tive indices at different frequencies. The overlapping negative refraction frequency

band shows that the design is robust for both the TM and TE simulations. It is also

possible to make a 3D isotropic LHM by combining the TM and TE arrangements in

the overlapped frequency for the LH behavior.

X

C
Ua)

-o
r"

a)

5 5.5 6 6.5 7 7.5 8 8.5 9

frequency (GHz)

Figure 5-19: The inverted refractive index for both the TM and TE prism simulations.

5.3 Modeling of traveling line current

When a charged particle passes through the LH structure, all the frequencies will

shwo radiation, forward or backward, propagating or evanescent. Therefore we may

not get clear backward radiation results if we shoot the charged particle directly into

the structure given its high dispersive properties.
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We t:herefore propose to use a traveling line current source to investigate the

properties of Cerenkov radiation in LH structures. This is easily understandable

from theory.

When a charged particle travels along the - direction, the current can be written

as
p)J(T, t) = 6,qv-) 6(x - vt) (5.3)

2A p

where p represents the radial dimension in the y - z plane. This may be different

from common sense, because here we just want to keep the setup of the prism, and

to have the particle travel along the , direction. The current can then be expressed

as a superposition of the full spectrum through use of the Fourier transform, where

each spectral component is expressed as

J(T, w) - 4q 6(p)eikz- , (5.4)
4r 2p

where kx = w/v. The radiation of each frequency component in a LH structure can be

investigated, and the radiated power will be pure backward if we choose the frequency

in the negative refraction band of the TM case.

However, this is just a theoretic model for the traveling current, and it is not

realizable in real experiments. Therefore, we further developed an antenna array to

model the traveling current, as shown in Fig. 5-20. We used 20 electric dipoles for

a whole length of 10cm. At 6GHz, the length is 2A0. The distance of two adjacent

dipoles is A = 5mm = Ao/10. A fixed phase difference a = kA is set between two

adjacent dipoles, which accounts for the phase change as the current travels in the

continuous model.
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Figure 5-20: Modeling process of traveling current. ~ is the distance between the
two adjacent dipole, which is 5mm in our simulation here, and the center frequency
is 6GHz. The big arrows indicate the modeling processes from the charged particle
motion to a ideal traveling current, and to an array of dipoles.

y

x

Figure 5-21: 3D far field radiation pattern for dipole arrays. The distance between
the adjacent dipoles is ~ = 5mm. In order to have the radiation angle in 60°, the
effective wave vector kx along the direction of the antenna array should be ko/2,
therefore the phase difference Q' is 18° for this simulation.
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By adjusting the phase a, we can effectively change k,. The radiation angle can

be set to any angle, 0 = arccos(k,/ko). For simplicity, we set k. = ko/2, and therefore

a = k/A = 180 with the radiation angle being 600. Fig. 5-21 shows the 3D radiation

pattern. A cone pointing 600 is formed as shown in Fig. 5-22. The formed cone is

identical to the radiation of a charged particle in non-dispersive normal media, which

is what we want to achieve with our antenna array model.

90

15

180

21

)

30

270
Figure 5-22: 2D far field radiation pattern at 6GHz for an array of 20 dipoles as
shown in Fig. 5-20, with A = 5mm, and a = 180. The angular width is 29.50 and
is defined as the width of the angles at which the power density is 3dB lower than
the peak value. The side lobe level is -12.0dB, by which we can clearly identify the
direction of the main beam.
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Figure 5-23: Hz field at 6GHz for the antenna array of 20 dipoles, with A = 5mm,
and a = 1.8. A clear phase front can be defined.

Both Figs. 5-22 and 5-23 confirm the quality of the beam. In Fig. 5-22, the

angular with of the beam is 29.50, which is narrow enough for a flat phase front as

shown in Fig. 5-23. With this flat phase front, we can ensure the radiated wave is

approximately plane wave when it incident upon the LHM.
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5.4 Radiation of traveling line current in LH struc-

tures

It is of great interest to study the phenomenon when we put the antenna array into

LH structures.

5.4.1 Traveling line current in homogeneous isotropic RH

and LH materials

In order to make some theoretical predictions, we first put two effective LHMs on the

two sides of the antenna array. The effective material is assumed to have a permit-

tivity and permeability that is described by the Drude model. Also for simplicity,

we adjust the model, such that both the permittivity and permeability are -1 at

6.4GHz in order to match the results for our prism simulations, in which the effective

refractive index is approximately -1 for TM wave incidence as shown in Fig. 5-19.

110 10A

150

Figure 5-24: The setup for the simulation by putting the antenna array shown in
Fig. 5-20 in between two effective LHM slabs. The length unit is mm for the dimen-
sions marked in the figure.
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We are expecting the phase to be titled in the opposite direction in the LHM in

comparison with that of air. The simulation results are the same as expectation, as

shown in Fig. 5-25. Here Hz is plotted, and this result can be used as a benchmark

for the following simulations for the real structure.
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Figure 5-25: Simulated Hz field pattern at 6.4GHz when the antenna array is put in
between the two effective LHM slabs (see Fig. 5-24).
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5.4.2 Traveling line current In the new LH meta-material

design

Meta- material as a slab shape

Immediately following the previous section, we put the antenna array into the LH
structure, as shown in Fig. 5-26.
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Figure 5-26: The setup for the simulation by putting antenna array in between the
LH stucture slabs.

The LH structure is made such that it covers the length of the antenna array.
There are 28 cells in the x direction. The extra 4 cells are at the both ends of the
antenna array in x direction are to catch the radiation out of the two ends of the
antenna array, and therefore the magnitudes of the side lobes are reduced.

Figs. 5-27(a), 5-27(b), and 5-28(a) show the simulated magnetic fieldat 6GHz at
3 different planes for z = Omm, 1.25mm, and 2.5mm.
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(b) z = 1.25mm.

Figure 5-27: Distribution of Hz field in the x - y plane at 6GHz.
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(b) 6.4GHz.

Figure 5-28: Distribution of Hz field in the x - y plane for z = 2.5mm.
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Observing the Hz field at z = Omm, as shown in Fig. 5-27(a), the field inside the

LHM slab is much stronger than outside. The backward phase pattern is not clear

here. This is because the structure is resonating, and a high field is generated.

When we observe outside the structure on the plane at z = 1.25mm, the field

strength in the region above the structure is much lower now. It is easy to notice that

the normal direction of the phase front is pointing into the center in the interested

region.

Fig. 5-28(a) shows the Hz field on the plane for z = 2.5mm at 6GHz. This

position is in the middle of two adjacent layers of the structure. So the field is more

homogeneous. The phase is propagating toward the x axis.

From the prism simulations results in Fig. 5-19, we know that the effective refrac-

tive index of the structure at 6GHz is about -1.6 for TM incident waves. Therefore

the refraction angle in the structure should be smaller than the incident angle. As

we can see in Fig. 5-28(a), the more flat phase inside the structure indicates that

the propagating direction is closer to the normal of the boundary, which is consistent

with expectation.

In order to further verify the LH behavior at a different frequency, we observed

the Hz field distribution at another frequency 6.4GHz, at which the structure has an

effective refractive index close to -1. As shown in Fig. 5-28(b), the refraction angle

inside the structure is actually larger, because the absolute value of the refractive

index inside the structure becomes smaller.

The x component of the electric field is also observed at the plane z = 2.5mm

for the frequencies at both 6GHz and 6.4GHz in Figs. 5-29. The electric field is

more homogeneous than the magnetic field, because the observed frequency is close

to the magnetic resonant frequency of the rings, and the Hz field is dominant. The

different refraction angles inside the structure region clearly demonstrate the different

effective refractive index at these two frequencies. In Fig. 5-29(a), the phase inside

and outside the structure region has almost the same slope but with a different sign,

which is consistent with the effective -1 refractive index at 6.4GHz.
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Figure 5-29: Distribution of the Ex field in the x - y plane for z = 2.5mm.
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Since the structures are arranged as a slab, the far field radiation pattern should

not be affected. The angle of the main lobe should still be 600. The far field pattern

is shown in Fig. 5-30. The bottom structure slab was removed in order to compare

the amplitude and estimate the loss of the slab.

We confirmed that the upward smaller lobe is the far field radiation after the wave

exits from the LHM slab. Both the reflection and inherit loss of the structure make

this lobe 3.6dB lower than the lobe without the structure. The 40 off from 3000 is

due to the corner effect of the finite LHM slab.

on

D

180

21 30

270
Figure 5-30: The far field power density of the radiation for the antenna array inside
the LH structure. The bottom piece is removed in order to compare the relative
magnitude of the free space radiation and the radiation after passing through the
slab. The lobe at 600 for LH structure is 3.6dB lower than the lobe at 2960 for free
space.
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Meta- material as a prism shape

We have demonstrated in the previous section that the backward wave can be formed

inside the LH structure slab when we use the antenna array as the traveling line

source. However, as shown in Fig. 5-30, the far field radiation direction will not be

changed, which makes it difficult to verify the presence of the backward wave through

experiments. Although the researchers can insert some sensor into the space between

the two layers of the structure, a far field clear signal which can show the backward

wave effect is still desirable.

Therefore, we propose to change the shape of the LH structure around the antenna

array to be a prism. The prism angle is the same as in Fig. 5-9, with the prism angle

being approximately 180
• The setup of the simulations is shown in Fig. 5-31.

Figure 5-31: The antenna array is surrounded by two LH structures in prism shape.
In comparison with Fig. 5-26, the LH slabs are replaced with the LH prism.

According to this angle, we adjust the phase difference Q to 11.10 in order to make
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the wave radiate to 72° with respect to the x direction in air, other parameters the

same. The rationale behind this adjustment is that we select the incident angle to the

prism as 18° at which the backward wave inside the prism will have its phase front

aligned with the prism exit boundary, which forms a normal incidence from the prism

to the air. A ray diagram shown in Fig. 5-32 illustrates the directions of the exit

beam when the structure behaves as a LHM and as a RHM. Through this design, the

separation of the beams of the LHM and the RHM frequency bands can be amplified,

which can make the experimental signal clearer.

Figure 5-32: The Ray diagram shows the different exit directions for the prism's
behavior as a LHM and as a RHM. The far field direction will be amplified through
this design. The black arrow line indicates the incident wave from the antenna array.
The yellow dash-doted lines are the normal of the two boundaries of the prism. The
direction of the beam in the LHM (RHM) frequency band is indicated as red (blue)
arrow.
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With this design, the refraction angles inside the prism will be widely separated

when the effective refractive index of the LHM changes from small negative to small

positive as the frequency increases. For the small negative refractive index, the re-

fracted wave inside the prism will hit the tilted side of the prism, and the final

refraction angles in the free space, after the wave exits from the prism, will be close

to the normal direction of the tilted side of the prism. This is because the effective

refractive index is close to 0, and all the refracted beam into the free space will be

along the normal, which is 1080 in the x-y plane. Interestingly, for very small positive

refractive index, the refraction angle inside the prism could very large, such that the

refracted the wave will hit the right side of the prism first, and the main beam will

exit from the right side of the prism, and form a main lobe along the :i direction.

There still will be a lobe in the normal direction of the tilted side of the prism which

is due to the multiple reflection inside the prism. As a whole picture, we should

expect the far field main beam angle (with respect to the i axis) decrease to 1080

when the effective refractive index changes from negative value to 0, and then a main

lobe should be expected at 0O which corresponds to the , direction, while a decreased

lobe in 1080 should still exist.

When the frequency decreases and passes the resonant frequency, the refraction

angle inside the prism will not be separated very widely, but the refraction angle in

the free space will be widely separated. The reason is that the effective refractive

index will change very quickly from large negative to large positive.

The far field patterns of the radiated wave for several frequencies in the LH band

are shown in Figs. 5-33. For the observed frequencies, 6.1GHz to 6.6GHz, backward

radiated main lobes are obtained. As the frequency increases, a general trend of

reducing the angle can be concluded, which is consistent with the previous prism

simulations. The LH frequency band lies higher than the resonant frequency, by

causality, so that the refractive index should increase from negative value to 0. The

multi-lobes at 6GHz could be due to the fact that this frequency is close to the

resonant frequency, at which the behavior of the structure is not stable.
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Figure 5-33: Far field radiation pattern for
inside the LH prism.
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LH frequency band for the antenna array

130

Main

Main

Main



For all these simulations, the input power was normalized to 1W, where each

antenna has a feeding current of 1A. And the far field pattern is the plot of the power

density at a distance of 1m away from the prism. In this setup, the peak power

density for the main lobe is 1.12W/m2 •

For completeness, we also show the near field plot of Ex field at 6.4GHz in Fig. 5-

34. The small triangle shape along the x direction for y close to 0 shows the cone

of the radiation from the antenna array in air. After the wave enters the prism, the

normal of the phase points to inward. We can see that the phase inside the prism

align with the exit boundary of the prism, which indicate that the effective refractive

index is close to -1. This result is the same as what we have observed in the initial

prism simulation, "the effective refractive index at 6.4GHz is close to _1" .
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Figure 5-34: Near field plot of Ex at 6.4GHz.
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5.5 Conclusions

We have shown our new LHM design for TM wave incidence in this chapter. The

properties of the design were fully explored through numerical simulations. This new

design can be scaled to the THz frequency band to realize the LHM prism experiment

in the THz frequency band, which cannot be achieved by previous available designs.

We also designed an antenna array to model the traveling current, a decomposed

component of charged particle motion. The various simulations confirm that this new

design can generate the backward wave when the antenna array is put in between.

In a typical LHM prism experiment, the input power for a single antenna is 10mW,

and the detector was placed 15cm away from the prism, with the resolution being

0.03nW/mnm 2 . If we scale our input power to the typical experiment input, 10mW,

the power density for the main lobe at 30cm (6 times the wavelength) is 124nW/mm 2.

This value is more than 4,000 times higher than the resolution of the detector. There-

fore the far field signal should be detectable.
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Chapter 6

Conclusions

In Chapter 2, we have theoretically studied Cerenkov radiation in an unbounded

homogeneous effective LHM. The second kind of Hankel function is shown to be the

proper Green's function, which can describe the forward and incoming phase, while

the calculated Poynting vector is outgoing and backward. With this choice of Green's

functions, both the energy and momentum conservation can be satisfied. And we also

learned, the momentum and the energy flow are in the opposite directions in a LHM.

When the dispersion is considered, the medium will behave as a RHM in the frequency

band for both positive permittivity and permeability, and as a LHM in the frequency

band for both negative permittivity and permeability. Therefore the corresponding

Green's functions should be chosen at different frequency bands. As a result, when

a relativistic charged particle passes, both forward and backward radiations will be

generated. The total radiation depends on the dispersion of the permittivity and

permeability. When loss is induced, the backward radiation will be reduced, since the

LH band always falls in the close region, higher than the resonant frequency, in which

the loss is high. Therefore the radiation will be dominated by the low frequency region

far from the resonance, where the dielectric constants are positive and the loss is very

low. As the loss decreases, the radiation near the resonance becomes dominate, since

the refractive index is much higher in this range. The backward radiation lobe is then

observable.

In Chapter 3, the LHM is filled into a cylindrical wave guide. When a charged
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particle passes through the axis of the cylinder, a surface plasmon can be excited,

which enables a LHM to have one more mechanism for particles to lose energy that

a RHM. Also with the ability to support a backward propagating wave in it, a LHM

has the best mechanism for the particle to lose energy. If the LHM core is coated

with metal, peaks can appear at certain frequencies when the guidance condition is

satisfied. The radiation will be enhanced at these frequencies, and therefore the total

radiated energy can be higher than in the unbounded LHM. It is possible to shoot

a focused electron beam into the LHM waveguide, and to generate the backward

radiation. However the possible noises induced by the electromagnetic fields used for

control the electron beam, and the drifting effect of the electrons should be considered

in reality. The existence of the surface wave can also be applied to compensate for

the radiation decay due to the vacuum channel. At those frequencies, the surface

plasmon can be excited at certain frequency and the field can be amplified in the

LHM layer. At this frequency, the radiation will have a much higher amplitude than

other frequencies when the wave enters into the third layer, in which the Cerenkov

radiation condition is satisfied. These properties could be used to improve a Cerenkov

detector or be used as a frequency selector.

In Chapter 5, a special new design is introduced specifically for Cerenkov radiation,

for essentially TM wave incidence. The new design has a two dimensional isotropic

negative permittivity, and a negative permeability in the normal direction. This

design has one more negative dimension than other designs. Through the numerical

simulations, we showed that the new design has a LH band between 6GHz to 7GHz.

It has low loss which is an important advantage for applications. This design is the

first generic design for TM wave incidence, and therefore it opens the possibility to

realize a prism experiment for a LHM in the THz frequency range. Because it is a

layered structure, there is no need to erect any rods or rings as required by other

previous designs. The researchers can simply use the currently available techniques

to build this design layer by layer. A lot more interesting properties and applications

of a LHM can be explored with this new design. In order to verify that the new design

can support a backward wave from the radiation, we designed an antenna array to
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model the traveling line current, which is a single frequency component when the

particle motion is decomposed into the frequency domain. With this antenna, we can

easily select the frequency and adjust the radiation angle, which is actually realizable

in the microwave frequency band. We then put the antenna array in between the two

LHM slabs. The simulation results show that the phase front inside the LHM slab

tilts toward to the x axis, which is consistent with our expectation. Furthermore, the

LHM slabs are then replaced with LHM prisms. The purpose is to make the far field

radiation point in the backward direction in the LH frequency band, and to point in

the forward direction in the RH frequency band. Therefore, the effect of backward

radiation can be detected at the far field. The simulation results confirm our design.

These results can be a basis for future experiments.

Besides the topics of Cerenkov radiation, this thesis also investigated two phe-

nomena related to the surface wave difference between RHM and LHM systems. In

the application of the perfect lens, the pole of the transmission coefficient indicates

the existence of a surface plasmon. This pole will actually limit the resolution of the

LHM slab lens. As the mismatch decreases, the pole becomes larger, and therefore

more evanescent components are amplified, and the resolution is increased. When

the LHM is used as a planar waveguide, a unique guided mode can exist when the

transverse wave vector is equal to 0. Normally, this is just a redundant solution and

never corresponds to any guided mode. Only when the slab is an LHM, this mode

can exist as a transition mode between anti-symmetric hyperbolic and anti-symmetric

trigonometric modes.

In conclusion, this thesis has built the theoretical basis for Cerenkov radiation in

LHM systems. More importantly, a new design is proposed and simulated, which can

be used to verify the theory, and for many other practical applications.
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