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ABSTRACT

Hydroturbine operators who wish to collect cavitation inten-
sity data to estimate cavitation erosion rates and calculate
remaining useful life (RUL) of the turbine runner face sev-
eral practical challenges related to long term cavitation detec-
tion. This paper presents a novel method that addresses these
challenges including: a method to create an adaptive cavi-
tation threshold, and automation of the cavitation detection
process. These two strategies result in collecting consistent
cavitation intensity data. While domain knowledge and man-
ual interpretation are used to choose an appropriate cavita-
tion sensitivity parameter (CSP), the remainder of the process
is automated using both supervised and unsupervised learn-
ing methods. A case study based on ramp-down data, taken
from a production hydroturbine, is presented and validated
using independently gathered survey data from the same hy-
droturbine. Results indicate that this fully automated pro-
cess for selecting cavitation thresholds and classifying cav-
itation performs well when compared to manually selected
thresholds. This approach provides hydroturbine operators
and researchers with a clear and effective way to perform au-
tomated, long term, cavitation detection, and assessment.

1. INTRODUCTION

Hydroturbines produce 6.3% of all electrical generation and
48% of renewable energy in the USA (U.S. Energy Infor-
mation Administration, 2015). While hydro power plants
have existed for well over 100 years, issues such as cavita-
tion damage to hydroturbine runners remain problematic for
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plant operators (Khurana, Navtej, & Singh, 2012). This pa-
per presents a method to automatically detect damaging cav-
itation events using existing installed sensors whose data are
used to recalibrate the cavitation detection algorithm using
hydroturbine ramp-down or ramp-up. This is of particular
interest to hydro plant operators since it eliminates required
user input and hydroturbine downtime.

The underlying motivation for this work is to reach the goal
of estimating remaining useful life (RUL) for hydroturbines,
specifically when there is cavitation erosion. It is common
practice to use a fixed schedule (based on operating experi-
ence) to repair cavitation damage on hydroturbine runners. If
RUL can be accurately estimated, then condition-based main-
tenance of hydroturbines can be implemented. The necessary
steps to develop RUL predictions for hydroturbines are as fol-
lows:

1. Select a sensor-based cavitation detection method for iden-
tifying erosive cavitation and measuring its intensity.

2. Collect cavitation intensity data for a test period that is
long enough for accumulative cavitation damage to be
measured.

3. Measure the runner material loss over the test period and
correlate the loss with the measured cavitation intensity
over the same period.

4. Create an erosion rate model for use in estimating runner
RUL at any future state based on accumulated cavitation
intensity.

It is important to note that a significant amount of data is re-
quired including: 1) cavitation detection data, 2) cavitation
intensity data, and 3) runner material loss data. These data
would then be correlated to develop an erosion rate model to
estimate runner RUL. The complexities involved with track-
ing cavitation detection and intensity data for long periods
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in industrial environments have historically been a barrier to
creating a prognostic model. For instance, many indicators
sensitive to the onset of cavitation, also called a cavitation
sensitivity parameter (CSP) as first introduced in (McKee et
al., 2015), have specific hardware requirements such as using
specialty sensors or high speed acquisition hardware that is
not commonly found in hydro plants and is difficult to main-
tain. Collecting and evaluating data through cavitation sur-
veys to develop CSPs is disruptive to hydro plant operations
and data-intensive, especially when developing a cavitation
threshold. Many diagnostic methods found in the literature do
not suggest a way to establish a cavitation detection thresh-
old, leaving the decision up to the hydro plant operator. A
static cavitation detection threshold can become invalid due
to changing hydro plant operating conditions, for instance due
to: changes in flow rate, hydrostatic head changes (e.g., the
reservoir’s height changes due to drought or flooding), the
number of hydroturbines operating in the hydro plant simul-
taneously, or disturbances to the inlet or outlet flow. The vi-
brations that sensors monitor can also be affected by internal
changes, causing detection errors from a variety of sources in-
cluding: repairs made to the hydroturbine runner, worsening
of cavitation damage to the runner, faults related to the hydro-
turbine shaft or bearings, changes in detection instrumenta-
tion (intentional or otherwise), and sensor drift. Determining
the root cause for a static cavitation detection threshold be-
coming invalid is difficult, i.e., a stationary threshold cannot
determine if plant operating conditions or hydroturbine con-
ditions are the source of the error. Likewise, cavitation in-
tensity measurements are affected by the same problems that
affect a static cavitation detection threshold. In summary, ex-
isting methods used in industry and in the literature to detect
cavitation in a hydroturbine are (1) based on single source
measurements, (2) require manual analysis of many different
CSPs, or (3) combine many of the same CSPs while experi-
encing many of the issues noted above.

The first three steps of the RUL prediction process have been
carried out in laboratory tests, but the methods used are not
practical for monitoring a hydroturbine in a production power
plant environment. Complications with data quality, sensor
placement, long term robustness of the data collection hard-
ware, and the requirement of manual interaction with the de-
tection system have thwarted attempts to carry out similar
tests on production hydroturbines. To our knowledge, results
have yet to be published that correlate cavitation erosion rates
with data taken from a production hydroturbine. The lack of
widespread acceptance or implementation of cavitation moni-
toring for estimating erosion rates suggests the existing meth-
ods are either not effective or not accessible to most hydro-
turbine operators.

The issues with establishing a RUL prediction process de-
scribed above suggest that an adaptive approach that is easily
automated would be more successful for long term RUL pre-

diction on production hydroturbines. This paper addresses
the first two steps in developing a RUL prediction method: 1)
detecting erosive cavitation and, 2) collecting cavitation in-
tensity data. Here cavitation detection is approached by im-
plementing both supervised and unsupervised learning. Cav-
itation detection is a simple classification problem with two
classes: cavitation exists (class 1) or it does not (class -1).
With properly labeled training data, many different super-
vised classification methods can be used to solve this prob-
lem. Supervised learning provides a more sophisticated ap-
proach to cavitation detection as compared to setting linear
thresholds; however, even these algorithms will become in-
accurate as sensor data and operating conditions change over
time. To solve the problem of drift in the data and operating
conditions, a classification algorithm (classifier) could be re-
trained at intervals (tantamount to re-calibrating); however,
labeled training data would have to be re-generated under the
new hydroturbine conditions. The need to manually gener-
ate labeled training data impedes the automation of the pro-
cess and increases the likelihood of miss-classification due to
sensor failure, changing operating conditions, or neglect. A
more robust approach is to view the creation of training data
as an unsupervised learning problem that can be automated
once initial parameters are set using domain knowledge. We
use this approach to identify operating regions where the hy-
droturbine is experiencing cavitation using an initially man-
ual process but is then automated to re-calibrate the classifier
during ramp-up or ramp-down of the hydroturbine. The in-
tensity of cavitation is determined through calculation of the
Mahalanobis distance (MD) from a set of baseline data. The
baseline data is generated from the ramp-down or ramp-up
data, with the initial ramp-down or ramp-up requiring manual
selection of cavitation and cavitation-free operating zones.
After the initial manual selection of the operating zones, the
process is automated and auto-updates of the cavitation and
cavitation-free operating zones are based on the then current
hydroturbine running conditions and sensor data.

This paper contributes to the literature a process that addresses
the first two steps of developing a RUL prediction for hy-
droturbines. While the process is demonstrated using prox-
imity probes, it is important to note that this process will
work with any sensor commonly used to monitor hydrotur-
bines and is capable of detecting cavitation events. A feature
selection method is demonstrated that is simple and can be
generalized to many different sensors and CSPs. The fea-
ture selection process can be performed on a small amount
of data with minimal intrusion to the hydroturbine and hy-
dro plant. After an appropriate CSP is selected, our method
can be fully automated, greatly increasing the likelihood of
successful long-term cavitation detection and cavitation in-
tensity monitoring. This paper demonstrates using an adap-
tive threshold that automatically learns the new conditions by
collecting a small amount of ramp-up or ramp-down data. We
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introduce the MD to hydroturbine cavitation detection and in-
tensity monitoring from the field of cavitation detection in hy-
draulic pumps where the MD is used as a basis for both estab-
lishing cavitation detection thresholds and tracking cavitation
intensity. Our method is flexible and multivariate, allowing
for the incorporation of many different CSPs thus providing
hydro plant operators flexibility in deployment to suit their
own specific plant conditions.

1.1. Original Contributions

To summarize, the original contributions of this paper are:

• a method for creating an adaptive cavitation threshold for
hydroturbines using machine learning

• a method for automating the detection of cavitation that
is appropriate for use in production hydroturbines

• provide necessary tools needed for predicting RUL

2. BACKGROUND

Cavitation is one of the most common faults that occurs in
hydroturbines (Dorji & Ghomashchi, 2014; Kumar & Saini,
2010) and the damage caused by cavitation can be very costly
to repair (Bourdon, Farhat, Mossoba, & Lavigne, 1999; “The
Knowledge Stream - Detecting Cavitation to Protect and Main-
tain Hydraulic Turbines”, 2014). Cavitation in hydroturbines
is the formation of vapor bubbles in the water flowing through
the hydroturbine and occurs when abrupt changes in water ve-
locity cause local pressures to fall below the fluid vapor pres-
sure (Dular & Petkovšek, 2015). Vapor bubbles typically de-
velop on or near the hydroturbine runner, but can form in any
area where the flowing water reaches higher than expected ve-
locities. When cavitation bubbles collapse, they release large
amounts of energy that are destructive to nearby surfaces.

The available water head and flow play a significant role in
determining if cavitation will develop during turbine opera-
tion (Avellan, 2004). Hydroturbines are designed to prevent
cavitation from forming under normal running conditions;
however, discussion with hydroturbine operators has revealed
several factors outside of the control of designers make elimi-
nating cavitation, and damage caused by cavitation, a difficult
task including: 1) available head may change outside of de-
sign conditions due to seasonal reservoir variations, floods,
or drought; 2) turbulent flow caused by damage or obstruc-
tions at the inlet of the hydroturbine; 3) erosion damage on
the runner can encourage the formation of cavitation; and 4)
the complexity of cavitation formation and collapse makes
the amount of damage caused by cavitation difficult to predict
in hydroturbines (Dular & Petkovšek, 2015; Jian, Petkovšek,
Houlin, Širok, & Dular, 2015).

2.1. Cavitation Detection in Hydroturbines

Hydroturbine researchers generically use the term cavitation
detection to refer to diagnostic methods that involve sensor
measurements, signal processing, and data analysis to aid in
determining when cavitation is present (Escaler, Egusquiza,
Farhat, Avellan, & Coussirat, 2006; Cencı̂c, Hocevar, & Sirok,
2014; Escaler, Ekanger, Francke, Kjeldsen, & Nielsen, 2014).
This definition, however, is ambiguous about key elements of
collecting long term cavitation data for studying erosion rates.
For the purposes of this paper, we divide cavitation detection
into three distinct actions:

• Applying a diagnostic method to sensor measurements
to create an indicator sensitive to the onset of cavitation
– a CSP as introduced in (McKee et al., 2015).

• Establishing a cavitation threshold (when using a single
CSP) or a decision boundary (when using multiple CSPs)
that is used to decide when cavitation is present.

• Measuring cavitation intensity in a way that can be used
to calculate or estimate cavitation erosion rates.

Many diagnostic methods are available to hydroturbine oper-
ators for creating a CSP (Varga, JJ and Sebestyen, Gy and
Fay, 1969; Bajic, 2002; Escaler et al., 2006; Rus, Dular,
Sirok, Hocevar, & Kern, 2007; Cencı̂c et al., 2014; Escaler et
al., 2014). Unfortunately, cavitation intensity measurements
are not directly addressed in these diagnostic methods and the
action of establishing a cavitation threshold is completely ig-
nored. With the exception of work by Dorey, et al. (Dorey,
J.M.; Laperrousaz, E.; Avellan, F.; Dupont, P.; Simoneau,
R.; Bourdon, 1996), in collaboration with Bourdon, et al.
(Bourdon et al., 1996) and continued by Francois (Francois,
2012), cavitation diagnostics studies have focused on short
term data collection and manual data analysis.

2.2. Instrumentation for Cavitation Detection

When a cavitation bubble collapses on the surface of the hy-
droturbine runner, the shock wave it creates propagates through
the hydroturbine and surrounding water. Cavitation creates
significant erosive damage when thousands of bubbles col-
lapse over a short period of time producing vibration response
between 3000 and 400,000 Hz (Escaler et al., 2006; Cencı̂c
et al., 2014). Detecting the high frequency response of cav-
itation directly requires sophisticated sensors and equipment
meant for high frequency applications, thus accelerometers
and acoustic emission sensors are frequently used.

Since hydroturbines have relatively low shaft speeds (typi-
cally well below 20 Hz (Gordon, 2001; Escaler et al., 2006),
high frequency monitoring equipment is specific to cavitation
detection. Other fault conditions such as balance and align-
ment problems occur at frequencies below 500 Hz and are
monitored with low sample rate data acquisition equipment
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and proximity probes that produce a signal proportional to
the relative movement between the sensor and the hydrotur-
bine shaft. Due to added cost, more sophisticated cavitation
detection sensing is not typically included on production hy-
droturbines.

Pennacchi, et al. (Pennacchi, Borghesani, & Chatterton, 2015)
showed that proximity probes can be used for diagnosing cav-
itation. Instead of measuring cavitation events directly, they
used synchronous averaging and spectral kurtosis to monitor
the hydroturbine shaft’s natural frequency response fluid in-
stability. In their implementation, the signal is filtered around
the natural frequency of the shaft.

2.3. Cavitation Intensity

Dular et al. (Dular, Stoffel, & Širok, 2006) developed a cav-
itation damage model that expresses cavitation damage, Arel

(damage area), in terms of the time a surface is exposed to
cavitation, τ , the cavitation shedding frequency, f , the proba-
bility of a cavitation event (referred to as a micro-jet by Dular
et al.), P (mj), and the velocity characteristics of the flowing
water, vref and v, as follows:

Arel =
ApitτfP (mj)

Aref

(
v

vref

)2

(1)

where Aref is the total reference area and Apit is the pit area.
The damage model was verified on a radial pump with f and
v being measured during the experiment and P (mj) being
held constant. The significance of this model is that cavita-
tion damage is related to cavitation intensity based on local
fluid velocity, exposure time, and the frequency of cavitation
events.

In a practical implementation one must choose sensor types
and locations as well as CSPs that give reliable intensity mea-
surements. Variation in the structure and layout of differ-
ent hydroturbines combined with different sensor types and
placement make amplitude measurements difficult to com-
pare. The measurement scale (or unit) of a CSP is depen-
dent on the sensor type and the measured value is affected
by the sensor location (Schmidt et al., 2014). Cavitation tests
on production hydroturbines are usually performed with ac-
celerometers and acoustic emission sensors placed on the up-
per and lower hydroturbine bearings as well as the stems of
the guide vanes that control water flow rate into the turbine
runner (Bajic, Services, Gmbh, & Zithe, 2003; Escaler et
al., 2006; Cencı̂c et al., 2014; Escaler et al., 2014). Proxim-
ity probes are typically located in or near the hydroturbine’s
bearings. Each accelerometer, acoustic emission sensor, and
proximity probe will produce a signal with a different ampli-
tude. Unfortunately, this means cavitation intensity measure-
ments gathered directly from the sensor’s native measurement
scale can only be performed once the sensor’s response to
cavitation excitation is known.

To address the issue of signal amplitude variation, data nor-
malization is used. Z-score standardization is a popular method
of normalization when comparing and analyzing multivari-
ate data with different amplitude scales (Milligan & Cooper,
1988; Keogh & Kasetty, 2002; Nandi, Liu, & Wong, n.d.;
Kan, Tan, & Mathew, 2015). Z-score standardization - of-
ten called ’standardization’ - linearly transforms the data to
have a mean of zero and a variance of 1. A data set X =
[x1, x2, . . . , xn] is standardized by normalizing the differ-
ence between the set mean µx and each set value by the set
standard deviation, σx, as shown below:

X̂ =
xi − µx

σx
for i = 1 . . . n (2)

The standardized amplitude values are unit-less and measure
the distance, in standard deviations, from the mean of the
data. In vibration analysis, standardization prevents high am-
plitude signals from dominating the analysis and obscuring
important low amplitude features.

Standardization is frequently used as a data preparation step
for machinery diagnostics and prognostics (Saxena, Celaya,
Saha, Saha, & Goebel, 2009; Khelf, Laouar, Bouchelaghem,
Rémond, & Saad, 2013; Ramasso & Saxena, 2014; Kan et
al., 2015); however, we were unable to find it as a step in any
published hydroturbine cavitation diagnostic research. In-
stead of standardization, researchers apply other methods of
normalization such as dividing a set of frequency spectra by
the first spectrum collected (Bajic, 2002; Cencı̂c et al., 2014)
or do not normalize at all. Presumably, normalization is not
deemed necessary because researchers and practitioners of-
ten compare vibration signals that have the same magnitude
scale or are following a collection and analysis process spec-
ified in an international standard (ISO, 2005). We choose to
standardize our vibration signals for two reasons: 1) vibra-
tion amplitude has a non-linear relationship with respect to
frequency (e.g., acceleration scales with the square of the fre-
quency relative to displacement, a = 2df2), and 2) vibration
amplitude is affected by the transmissibility between the vi-
bration source and the sensor location, i.e., sensors installed
at different locations will observe different amplitudes for the
same vibration event (Schmidt et al., 2014). We have found
that standardizing signals between different types of sensors,
sensor locations, and frequency ranges allows for a consistent
comparison of vibration amplitude.

2.4. Mahalanobis Distance

Cavitation detection can be viewed as an online process that
examines new vibration signal observations, i.e., xn+1, to de-
termine if cavitation is present. By using a baseline of vibra-
tion data when no cavitation occurs to determine a µbase and
applying the concept of standarization as expressed in Eq. 2
one can assess the difference between the current reading and

4



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

the baseline measurement. The Mahalanobis distance, Eq.
(3) is a multivariate extension of this concept that is useful
for outlier detection, structural health monitoring, clustering,
and detecting cavitation in pumps (De Maesschalck, Jouan-
Rimbaud, & Massart, 2000; Figueiredo, Park, Farinholt, Far-
rar, & Lee, 2012; Inacio, Lemos, & Caminhas, 2014; McKee
et al., 2015).

MD = [(xn+1 − µbase)Σ
−1(xn+1 − µbase)

T ]
1
2 (3)

In the multivariate case, X now becomes a set of variables,
such as observations from multiple sensors while the hydro-
turbine is in a healthy state, and xn+1 contains the next ob-
servation from every sensor. The covariance matrix, Σ, is
calculated using the expression:

Σx =
1

n− 1
(X)T (X) (4)

The Mahalanobis distance (MD) is useful for cavitation de-
tection because it takes into account the correlation of the
sensor data and allows us to describe and compare the dis-
tribution of several sensors using a single metric. In terms of
establishing a threshold for identifying cavitation, instead of
creating a threshold for each available sensor, we now have
a single threshold that incorporates all the signals. When X
contains observations from a single sensor, the MD reduces
to an expression similar to Eq. (2), i.e.,

MD =

[
(xn+1 − µbase)

2

σ2
base

] 1
2

(5)

This single variable form no longer contains a covariance ma-
trix, but still takes into account the distribution of the healthy
baseline data for its distance metric. Equation (5) should be
used when only one sensor is available for cavitation mea-
surements, or when sensor signals are modeled as indepen-
dent observations.

2.5. Prognostics and Erosion Rate Prediction

Prognostics can be defined as the process of forecasting the
remaining useful life RUL, probability of failure, or future
condition of a component or system (Jardine, Lin, & Banje-
vic, 2006; An, Kim, & Choi, 2013; Kan et al., 2015). Prog-
nostic models are categorized as physics-based, data-driven,
or combination approaches. Physics-based models require a
mathematical understanding of the degradation phenomenon
affecting the system of interest, whereas data-driven mod-
els rely on condition monitoring or training data collected
from the system. Under the right circumstance, both mod-
els are effective. In practice, both strategies are needed since
mathematical models require experimental validation, which
is fundamentally data driven. Similarly, data-driven meth-

ods require an understanding of the underlying physics to
collect meaningful data. Current physics-based approaches
for cavitation prognostics focus on predicting erosion rates.
The underlying mechanisms of cavitation have been shown to
be quite complex (Dular & Petkovšek, 2015), yet numerical
methods developed for erosion rate prediction have been ex-
perimentally verified in simplified systems (Flageul, a Archer,
& C, 2012; Jian et al., 2015). Though progressing, numerical
methods for predicting erosion rates have yet to be verified
under conditions and geometries as complex as an operat-
ing hydroturbine. Physics-based prognostic models require
knowledge of very complex environments and mechanisms
that make them hard to build for practical applications (Heng,
Zhang, Tan, & Mathew, 2009; Kan et al., 2015).

Researchers developing data-driven prognostic models also
focus on estimating erosion rates. As previously mentioned,
laboratory experiments have verified that damage caused by
cavitation is related to cavitation intensity, which in turn can
be measured through vibration and acoustic emission. Pro-
ducing similar results outside of the controlled environment
of the laboratory has proven to be much more complex. Ham-
mitt and De discussed predicting erosion rates from sensor
measurements as early as 1979 (Hammitt & De, 1979), but
focused primarily on cavitation erosion on simple shapes in
laboratory environments. Francois (Francois, 2012) has writ-
ten about a major power producers’ attempts at erosion rate
estimation; however, no results have been published as of yet.
Wolff, Jones and March (Wolff, Jones, & March, 2005) at-
tempted a similar endeavor at another major power plant in
an attempt to establish an erosion rate model, but insufficient
data stymied this effort. Similar research in other fields has
shown that data-driven prognostic models are often plagued
by problems with data quality and data quantity. It is for this
reason that we focus our research in this paper on improving
long-term cavitation detection and intensity monitoring for
production hydro plants.

3. METHODOLOGY

In this section, we present a methodology for collecting the
sensor data needed to create remaining useful life models for
hydroturbine runners. The underlying concept of our method-
ology is that sensor signals collected from a hydroturbine
ramp-down and ramp-up (a small data set that requires mini-
mal disruption to power production) can be used to 1) select
a CSP, 2) create a threshold for identifying cavitation, and
3) create a baseline for measuring cavitation intensity. When
automated means are used for creating training sets (an un-
supervised learning problem) and for classifying cavitation
(a supervised learning problem), our method can be used to
create a fully automated cavitation detection strategy that can
adjust for sensor drift and changes in operating conditions of
the hydroturbine.
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We approach cavitation detection from a machine learning
framework by breaking it into four steps: 1) Select Cavita-
tion Features, 2) Create Training Sets, 3) Train Classifier, and
4) Measure Intensity. Our methodology was developed using
vibration data collected from four proximity probes mounted
on an 85 MW hydroturbine. Our feature selection process
can easily be used with other sensor types more commonly
selected for cavitation detection including accelerometers or
acoustic emission sensors; however, an advantage to using
proximity probes for cavitation detection is that many older
hydroturbine units are permanently instrumented with prox-
imity probes. This is often not the case for accelerometers
and acoustic emission sensors that have higher frequency re-
sponse ranges, but require hardware capable of faster sam-
pling rates. Additionally, the use of four sensors demon-
strates how the method has multi-dimensional capability that
both improves the classification accuracy and is more robust
for longer term usage since it doesn’t rely on a single signal
source that can more easily be corrupted by noise.

3.1. Select Cavitation Features

In this work, the feature being selected is the frequency range
used for the CSP calculations used to predict when a hydro-
turbine is experiencing cavitation. This definition for a fea-
ture could easily be expanded to include the sensor type and
sensor location when these additional options exist (Gregg,
Steele, & Bossuyt, 2016).

Step 1: Collect Ramp-Down Data

The features used in our method are created from raw data
collected from the hydroturbine as it ramps linearly between
its maximum and minimum power output running conditions1.
When using proximity probes for cavitation detection, the
minimum sampling rate used to collect the data should be
based on the higher of either the blade passing frequency, fb,
or the guide vane passing frequency, fv . For a give hydrotur-
bine running speed, N, fb and fv are defined as follows: fb =
N(# of runner blades), and fv = N(# of guide vanes).

Based on the typical values of running speed, the number of
guide vanes, and the number of runner blades on hydrotur-
bines found in literature (Escaler et al., 2006; Cencı̂c et al.,
2014), and taking into account the Nyquist theorem, a sample
rate of at least 1,000 Hz is recommended.

The amount of time in seconds the hydroturbine takes to go
through the ramp-down will affect the amount of data col-
lected, its frequency resolution, and total number of points
available to create training data. Here a 60 - 90 second ramp-
down produces sufficient data, however, these lengths were

1The direction of the ramp – up from minimum to maximum or down from
maximum to minimum power output – is not important to the research pre-
sented here, although in other applications the differences in ramp – up and
ramp – down are important. Throughout this text, unless otherwise noted,
we generically use the term ramp-down to signify a ramp in either direction.

based on the data available for our analysis.

Step 2: Calculate the Variance of Each Frequency

In Step 2, we search for vibration frequency ranges in the
ramp-down data that significantly change in amplitude over
time. During the hydroturbine ramp-down, the speed of the
turbine remains constant and the only variables that change
are generation load and water flow through the turbine. Vi-
bration frequencies dependent on water flow can be further
analyzed to determine if they are related to cavitation. The
following process, when applied to the ramp-down data col-
lected in Step 1, allows us to identify frequencies dependent
on water flow: 1) the ramp-down data is divided into 1 sec-
ond blocks, 2) the direct current (DC) (zero frequency) trend
is removed in each block resulting in data centered around
zero, 3) the discrete Fourier transform (DFT) of each block
is computed, and 4) the sample variance of each frequency
value across all blocks is calculated.

The frequency resolution of a spectrum, fres, is dependent on
the period of the data collected, T , and correspondingly, the
sample frequency, fs, and the number of data samples, N .

fres =
1

T
=
fs
N

(6)

By selecting a ramp-down data block length of 1 second, the
resulting DFT calculation will produce a spectrum with a res-
olution of 1 Hz, which is sufficient to differentiate cavitation
related frequencies ranges within the ramp-down data. The
total number of 1 second blocks of data that will be created, t,
is dependent on the total length of ramp-down data collected.
Selecting block lengths of 1 second provides both sufficient
frequency resolution and training data.

When used to detect shaft vibration on a hydroturbine, prox-
imity probes produce a signal proportional to the distance be-
tween the tip of the proximity probe and the surface of the tur-
bine shaft. The vibration signal from a proximity probe will
therefore oscillate around the average distance between the
proximity probe and the shaft which adds a DC offset to the
signal. In addition to the added offset, each vibration block
is likely to have a slight linear trend in the DC portion of the
signal that will cause the DFT to have a large zero frequency
amplitude that obscures the amplitude of higher frequencies
of interest. The DC offset and linear trend should be calcu-
lated and subtracted from each data block. The DFT of each
block of ramp-down data can then be calculated using the fast
Fourier transform algorithm
(Cooley & Tukey, 1964).

Recall that the flow rate of water through the turbine run-
ner is the only running condition variable that changes in the
hydroturbine during ramp-down. As noted by Escaler et al.
(Escaler & Egusquiza, 2003; Escaler et al., 2006, 2014), cav-
itation is related to flow rate and causes vibration at multiple
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frequencies including running speed, fb, and fv , as well as
through broad-band high frequency noise. As such, vibration
frequencies with significant change in amplitude throughout
the ramp-down data are marked as being related to cavitation.
The change in amplitude of vibration frequencies throughout
the ramp-down is expressed by the variance of each column
of the Ŷ matrix. Variance is calculated from the mean, µ,
using (Montgomery & Runger, 2007).

var =

∑n
0 [xi − µ]2

n− 1
(7)

The result of applying Eq. (7) to the columns of Ŷ is a sin-
gle vector that is plotted to form a variance frequency spec-
trum. The variance frequency spectrum is used to quickly
identify frequencies that change during ramp-down and are
subsequently related to changes in water flow rate through
the hydroturbine.

Step 3: Select CSP Frequency Ranges

The CSP chosen in our methodology for cavitation detection
is calculated from the root mean square (RMS) amplitude of
proximity probe vibration within one or multiple frequency
bands. CSPs based on RMS calculations and frequency filters
have been shown to be effective for cavitation detection in
both hydroturbines and pumps, (McKee et al., 2015; Cencı̂c
et al., 2014) and are practical to implement since they can be
easily derived using either digital or analog methods 2

The frequency bands to use for RMS calculations are based
on the variance frequency spectrum created in Step 2. More
generally, when using proximity probes for cavitation detec-
tion in hydroturbines, three frequency regions are of interest:

1. Vibration frequencies below running speed are affected
by draft tube swirl, and Von Karmen vortex shedding, or
other hydraulic instabilities (Escaler et al., 2006).

2. Increased vibration frequencies at running speed can also
be an indicator of hydraulic instability; however, running
speed vibration may also be influenced by other types
of faults including unbalance, misalignment, and bear-
ing wear. (Egusquiza, Valero, Valentin, Presas, & Ro-
driguez, 2015).

3. High frequency vibration at fv , fb, as well as general
broadband vibration is associated with cavitation that
causes erosion on runner blades.

3.2. Create Training Sets

In our methodology, we treat erosive cavitation detection as
a binary classification problem with categories: CAVITATION
and NO-CAVITATION, and numerically represent them as
2For accelerometers or acoustic emission sensors, demodulation methods
(Bourdon, Simoneau, & Lavigne, 1989; Escaler et al., 2006, 2014) can also
be used as a basis for the CSP; however, demodulation relies on the use of
frequency bands beyond the sensing capabilities of proximity probes.

{1, -1}, respectively. For reasons described earlier, we use
MD to establish labels for the initial set of training data. Stan-
dardizing MD helps with separation of data and interpreting
the results. Each point in the training set can be categorized
manually, or in an automated fashion using an unsupervised
learning algorithm using these steps:

1. Band pass filter the previously collected sensor data ramp-
down signals around each frequency range of interest de-
termined from the Cavitation Feature Selection step.

2. Divide the filtered signals into 1 second blocks and cal-
culate the RMS of each block. The result is a ramp-down
data set for each frequency range of interest (xf1···xfn).

3. Select the baseline data for calculating MD by plotting
the standardized RMS amplitude of each ramp-down data
set versus sample number and identifying a continuous
sample range free from cavitation or other faults. This
sample range,Xbaseline, is the baseline data and is meant
to be representative of the fault free distribution of the
data for each frequency range and sensor. As a general
rule of thumb, the baseline data should contain at least
30 samples (Montgomery & Runger, 2007)3.

4. Combine the ramp down sets, (xf1···xfn), into a single
matrixX and calculate the MD of the values in the ramp-
down data sets by first calculating the covariance matrix
of Xbaseline with Eq. (4) then applying Eq. (3) to the
remaining values in X . Values for µ are calculated from
Xbaseline. The MD values can then be standardized by
applying Eq. (2).

5. To categorize the data manually, use ramp-down data
from the frequency range(s) most representative of ero-
sive cavitation and plot the standardized MD of the ramp-
down data versus sample number. Select a cavitation
threshold value that is visually above the points in the
Xbaseline sample range. When using standardized MD, a
conservative threshold, corresponding to fewer false pos-
itives, will be close to 1 and a more aggressive threshold,
corresponding to more false negatives, will be close to
or below 0. All points with a MD larger than the thresh-
old belong in the CAVITATION category and all the other
points belong in the NO-CAVITATION category.

6. To automate data categorization, instead of visually se-
lecting a threshold, use an unsupervised learning algo-
rithm such as k-means clustering (Pollard, 1981) to sep-
arate the ramp-down data from Step 5 into two clusters.
The NO-CAVITATION cluster should minimally contain
all the samples in the Xbaseline range.

3If the RMS values of the vibration data is assumed to be normally dis-
tributed, the number of sample points can be reduced(Toyota, Niho, &
Chen, 2000).
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3.3. Train a Classifier

Once cavitation features are selected and training sets are cre-
ated, cavitation detection is automated by applying a classifi-
cation algorithm to new cavitation features that are generated
to predict if the hydroturbine is experiencing erosive cavita-
tion. When classifying cavitation with a supervised machine
learning algorithm, an additional training step is required that
allows the algorithm to generate its own cavitation threshold
(more generally, this is called a decision boundary or hyper-
plane) from the training sets created in the previous step.

As a method for evaluating classifiers, we suggest compar-
ing the classifier predictions to a naı̈ve, single variable algo-
rithm that calculates the standardized MD, x̂MD, of each new
value based Xbaseline and compares this value to the thresh-
old established to create the training set. Given a threshold,
pseudocode for this classifier is as follows:

FOR new RMS value x

calculate x̂MD

IF x̂MD > threshold

classify x as 1 (Cavitation)
Calculate and save cavitation intensity
based on xMD

ELSE

classify x as −1 (No Cavitation)

END

The accuracy obtained by applying the naı̈ve classification
algorithm can be used as a baseline for comparing more so-
phisticated classification algorithms. The advantages of using
a naı̈ve classifier are ease of implementation, low computing
cost, which makes it feasible to use in either an on-line or
batch mode, and good accuracy. The disadvantage of such a
simple classifier is that it is based on a single variable that is
not sensitive to other, non-cavitation related faults so it can-
not be used for more generalized fault detection. A multi-
dimensional classification algorithm such as a support vector
machine (SVM) may be used to take advantage of features
created from other frequency ranges to both enhance cavi-
tation detection and classify other fault states such as non-
erosive cavitation.

3.4. Measuring Cavitation Intensity

We use the MD of the CSP most representative of erosive cav-
itation as our cavitation intensity measurement. MD is suited
well for measuring cavitation intensity because it automati-
cally accounts for variability in the sensor signal. The benefit
of this is best shown graphically using real hydroturbine data.
Figure 1 shows RMS vibration amplitude with respect to time
of a hydroturbine going through a ramp-down as measured by
two sensors mounted at different locations. Sensor 1 clearly

records a higher maximum amplitude as well as accumulated
amplitude (area under the curve) from the erosive cavitation
zone in sample range 11 - 38. It is also evident that Sensor
1 increases in amplitude more than Sensor 2 over the base-
line range from sample 55 - 100. By contrast, Figure 2 shows
the same sensor data, but with amplitude measured as MD.
Sensor 2 now clearly shows a higher total, and accumulated
amplitude since the MD calculation takes into account the
lower variance (as measured by standard deviation) of Sen-
sor 2 through the base-line range. In this way, signals that
are more stable when cavitation is not present can contribute
more to the intensity measurement.

Figure 1. Sensor vibration amplitude comparison from a hy-
droturbine ramp-down as measured in RMS

In summary, the first half of our cavitation detection method
uses hydroturbine ramp-up or ramp-down data as an input and
returns a training set of CSPs that are used to establish ero-
sive cavitation thresholds. The second half of our cavitation
detection strategy creates cavitation thresholds based on the
CSPs as described above. The final output is a set of cavita-
tion CSPs created from the sensors being used for cavitation
detection, and cavitation thresholds that can adapt to changes
in running condition whenever the hydroturbine goes through
a ramp-up or ramp-down.

4. CASE STUDY

We present here a case study using vibration data collected
from an 85 Megawatts (MW) hydroturbine known to be ex-
periencing erosive cavitation and located at a hydro power
plant in the American West4. Vibration data were collected
from four proximity probes mounted 90 degrees apart facing
the hydroturbine’s main shaft. Proximity Probes 1 and 2 were
located near the hyroturbine’s lower bearing while Proximity

4Our data source has asked for the exact location and details of the hydro
plant to remain confidential.
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Figure 2. Sensor vibration amplitude comparison from a hy-
droturbine ramp-down as measured in Mahalanobis Distance

Probes 3 and 4 were located near the upper bearing. Signals
from the proximity probes were sampled at a rate of 10,000
Hz. The data used for feature selection and to create train-
ing sets were collected while the hydroturbine ran through
a continuous ramp-down from 85 MW to 0 MW over a 100
second period, which was divided into 1 second blocks. The
power produced versus time by the hydroturbine during the
ramp-down is shown in Figure 3.

Figure 3. Hydroturbine power versus time during the ramp-
down

The goal of this case study is to both demonstrate the method-
ology presented in this paper and compare hydroturbine cav-
itation classification accuracy using the following four ap-
proaches: 1) Classify cavitation with a naı̈ve threshold classi-
fier and a manually selected cavitation threshold, 2) Classify
cavitation with a naı̈ve threshold classifier and a cavitation
threshold found by applying an unsupervised learning algo-

rithm, 3) Classify cavitation with a supervised learning algo-
rithm and training data that is manually labeled, and 4) Clas-
sify cavitation with a supervised learning algorithm and train-
ing data that is labeled by applying an unsupervised learning
algorithm. A SVM was selected as the supervised learning
algorithm to use for predicting cavitation classes and a K-
Means was selected as the unsupervised algorithm for label-
ing training data. SVM and K-means algorithms used for this
case study are based on the corresponding built-in functions
of Matlab (v2015a) with the Statistics and Machine Learning
Toolbox.

The SVM, as described by Cortes and Vapnik (Cortes & Vap-
nik, 1995), is a machine learning algorithm for binary clas-
sification problems that is frequently used to detect machine
faults in the field of condition monitoring (Widodo & Yang,
2007). SVMs were selected for this case study due to their
high accuracy, low computational burden, ease of use, and
popularity in the machine learning community (Samanta, Al-
Balushi, & Al-Araimi, 2003; Witten & Frank, 2005; Wu et
al., 2008).

K-Means clustering, described by Hartigan (Hartigan, 1975),
is a heuristic algorithm that aims to divide M data points into
K clusters so that the sum of squares is minimized within
each cluster. The K-means algorithm used in this case study
(Lloyd, 1982; Hartigan & Wong, 1979) is iterative and re-
quires the practitioner to choose a value for K as well as K
data points, called seeds, that are initially assigned to their
own cluster. Next, the point to cluster centroid distance of
each data point is calculated and all points included in the
cluster analysis are assigned to the cluster with the closest
centroid. The new cluster centroid is then calculated and the
data points are then re-assigned based on the new centroid.
This repeats until clusters are no longer re-assigned after the
new centroids are calculated. The final cluster results are de-
pendent on the value of the K seeds selected for the first cen-
troid calculation. To obtain consistent results for establishing
a cavitation threshold, a segmentation technique similar to bi-
level thresholding (Pal & Pal, 1993) was used where the input
value ofK was always equal to 2, and the minimum and max-
imum CSP values in the training set were used as seeds.

4.1. Step 1: Select Cavitation Features

A fast Fourier transform (FFT) was calculated for each block
of ramp-down data, then the variance spectrum was created
to determine how vibration frequencies responded during the
hydroturbine ramp-down. The proximity probes responses to
the ramp-down as can be seen in Figure 4. Based on the vari-
ance spectra, three frequency ranges (Figure 5) were identi-
fied as features to use for calculating CSPs:

Frequency Range 1 = 1 – 3 Hz
Frequency Range 2 = 3 – 30 Hz
Frequency Range 3 = 50 – 90 Hz
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Frequency Range 1 is made up of frequencies below running
speed, while Frequency Range 2 includes the shaft rotating
frequency and its first several harmonics. Frequency Range 3
includes the hydroturbine blade-pass and vane-pass frequen-
cies.

Figure 4. Variance spectrum of all four proximity probe sig-
nals

4.2. Step 2: Create Training Sets

Next, the sample range to use as baseline data for the MD
calculation,Xbaseline, was chosen by analyzing the standard-
ized amplitude of the three CSPs in the time domain over the
hydroturbine ramp-down as shown in Figure 6. Because the
CSP’s amplitudes for samples 55 to 100 are relatively low and
steady, this sample range was chosen for Xbaseline.

Figure 5. Variance spectrum showing the frequency ranges
used for calculating the CSP values

As previously explained, Frequency Range 3 is expected to
be the most sensitive to erosive cavitation; however, when a
multi-dimensional classifier is used for prediction, all three
ranges can be used to improve accuracy. One reason for the

improvement in accuracy is that each frequency range has
an independent response to flow during the ramp-down. The
independence of each CSP is evident when comparing their
standardized amplitude in the time domain during the ramp-
down, as shown in Figure 6.

Figure 6. CSP values plotted versus ramp-down sample num-
ber

Once Xbaseline was selected, the standardized MD distance
was calculated for all of X . It is important to note that MD
can be calculated in its multivariate form, Eq. (3), where X
is a combination of CSPs from all the proximity probes, or
the single variable MD can be calculated independently for
each sensor using Eq. (5). When performing the multivari-
ate calculation, there will be a single set of MD values which
means only a single threshold will be needed for all the sen-
sor measurements. However, the single variable calculation
will produce 4 sets of MD values and 4 thresholds, only one
of which will need to be selected for labeling training data.
Results from both methods are presented in our case study.

Based on the Frequency Range 3 CSP values, cavitation thresh-
olds were first selected manually – using both the multivari-
ate MD calculation and the single variable method – then by
automating the method utilizing a K-means clustering algo-
rithm. The selected cavitation thresholds are shown in Table
1.

These cavitation thresholds are used for labeling training sets
as well as for classifying cavitation when applying the naı̈ve
classifier. Training sets for binary classification can only have
one label; however, a unique set of labels will be produced for
each proximity probe due to slight variations in amplitude be-
tween each sensor. For example, Figure 7 shows several CSP
values between sample 1 and sample 10 are above the cavita-
tion threshold for Proximity Probe 3, but below the cavitation
threshold for the other proximity probes. In our analysis, the
classification labels established by applying the thresholds to
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Single Variable Thresholds

Manual 1 0.018
Manual 2 -0.110
Manual 3 -0.386
Manual 4 -0.392
K-means 1 0.338
K-means 2 0.162
K-means 3 0.494
K-means 4 0.622

Multivariate Thresholds

Manual 0.474
K-means 0.380

Table 1. Cavitation thresholds for labeling training data

data from Proximity Probe 2 were used for labeling the train-
ing sets. Figure 8 shows the multivariate threshold and result-
ing classification labels found by applying a K-Means cluster-
ing algorithm to the training set containing all the proximity
probe CSPs.

Figure 7. The manually selected, single variable cavitation
threshold (dashed red line)

4.3. Step 3: Train Classifiers

The naı̈ve classifier does not require additional training be-
yond establishing a cavitation threshold. A label for each new
observation is generated by directly comparing its standard-
ized MD to the cavitation threshold then labeling the obser-
vation ”1” if the value is above the threshold, or ”-1” if it is
not. The observations the naı̈ve classifier uses for compar-
ison are data points from one proximity probe, for the sin-
gle variable case, or all the proximity probes, for the multi-

Figure 8. The multivariate cavitation threshold found through
k-means clustering (dashed red line)

variate case, with a single value based on the CSP calculated
from Frequency Range 3. In other words, the naı̈ve classifier
uses a one-dimensional cavitation threshold and acts on one-
dimensional data. Accuracy testing for the naı̈ve classifier
included one test for each proximity probe, and one for the
multivariate threshold, using both the manually and K-Means
selected thresholds, resulting in 10 accuracy values.

The SVMs also rely on the labeled training sets to construct
a decision boundary; however, the boundary can be multi-
dimensional, which means the training set and testing set can
simultaneously include any or all of the proximity probes and
CSPs. The benefits of a multi-dimensional decision boundary
include more accurate classification predictions on data that
is not linearly separable as well as the ability to extend the
capabilities of a classifier to recognize more than just two cat-
egories of data. The multi-dimensional capability of a SVM
also means a decision must be made about which proximity
probes and CSPs to include in the training. For our analysis,
we decided to train and test a SVM for every unique combi-
nation proximity probe and CSP, and compare the combina-
tions with the highest accuracy. There are 4 proximity probes,
and 3 CSPs for each of the proximity probes, which means
that there are 12 individual training sets and 212 − 1 = 4095
unique combinations of these 12 training sets.

We also looked at the multivariate threshold case where there
is only one CSP for each frequency range for a total of 7
unique combinations. A potential advantage of using an SVM
is its capability to find non-linear thresholds. The correctly
classified test data (Figure 7) shows that a non-linear cavita-
tion threshold may be appropriate. To test this hypothesis we
trained SVM models with polynomial kernels with orders 1 to
8 to test how a non-linear boundary affected classification ac-
curacy. Non-linear SVM models were only trained and tested
for the multivariate threshold case.
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4.4. Step 4: Verification - Classification Test Results

Data used for testing accuracy of the SVM and naı̈ve clas-
sifiers as well as calculating cavitation intensity were col-
lected while the hydroturbine ran for prolonged periods in 17
unique flow rates ranging from 5 MW to 85 MW in 5 MW
increments; 24 seconds of data was collected for each flow
rate which was then divided into 1 second blocks resulting in
408 total blocks of vibration data used to create the test data.
Other running condition variables such as hydrostatic head,
other turbines in the plant operating, and other factors were
held effectively constant throughout the data collection pe-
riod. The correct class labels for the training set were created
manually using more traditional cavitation detection methods
as well as sensor data from accelerometers and acoustic emis-
sion sensors. Additional information on the full analysis and
general cavitation detection methods used to create the class
labels can be found in (Gregg et al., 2016; US Department
of the Interior Bureau of Reclamation, 2014; Escaler et al.,
2006; Escaler & Egusquiza, 2003).

The naı̈ve and SVM classifier algorithms were applied to the
test data and the resulting class predictions were compared
to the correct class labels to determine the prediction accu-
racy. Cavitation intensity was calculated directly from the
MD of the test data. The accumulated cavitation intensity
over the whole data set, Itotal, is calculated by taking the MD
of each CSP identified by the classifier as being in the cavi-
tation class, XMD−cavitation and multiplying it by the time
block length used to create the CSP, tblock as shown in Eq.
(8). For the training and testing data, the time block length is
1 second and only CSPs created from Frequency Range 3 are
used for intensity measurements.

Itotal =
∑

(XMD−cavitation)(tblock) (8)

Classifier accuracy results for the top performing training set
combinations based on single variable thresholds are shown
in Table 2 (see Appendix). For the SVM results, proxim-
ity probe/CSP pairs are abbreviated with the proximity probe
number first, ”-”, then ’CSP’ followed by the frequency range
used to create the CSP. For example, a training set created
with data collected from Proximity Probe 1 that uses Fre-
quency Range 1 for the CSP calculation would be abbreviated
”PP1-CSP1”.

Classifier accuracy results based on multivariate thresholds
are shown in Table 3(see Appendix). Since all the proximity
probe data are combined in the multivariate case, only the
frequency range used for training and the order of the non-
linear polynomial threshold are noted.

Figure 9 graphically shows the correct classification labels
for the test data. Labels predicted by the naı̈ve classifiers are
shown in Figures 10 and 11. Labels predicted by the SVM

classifiers are shown in Figures 12 and 13.

Figure 9. Test data shown with correct classifications using
traditional, manual analysis techniques

Figure 10. Test data shown with labels predicted by the naı̈ve
classifier using manually selected threshold

5. DISCUSSION

The methodology outlined in this paper provides several ben-
efits when compared to other cavitation detection strategies.
Additionally, our method addresses common problems asso-
ciated with cavitation thresholds and intensity measurements.
While the method presented here does not yet provide cavita-
tion erosion rate calculations, it provides the tools necessary
to automate the collect of cavitation intensity data, a crucial
step toward creating an erosion rate model for production hy-
droturbines.

The cavitation detection process described in this paper was
demonstrated on ramp-down data collected from proximity
probes on a hydroturbine experiencing erosive cavitation. This
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Figure 11. Test data shown with labels predicted by the naı̈ve
classifier using threshold found using k-means clustering

approach was chosen because these types of sensors do not
require data acquisition equipment capable of high sample
rates, and they are typically already installed on older hydro-
turbines. Another benefit of this method is that it can be ap-
plied to data collected from other types of sensors including
accelerometers, acoustic emission sensors, or pressure trans-
ducers, i.e., any sensor type that can be used to create a cavi-
tation sensitivity parameter (CSP) sensitive to erosive cavita-
tion.

The cavitation detection process presented here addresses is-
sues unique to long term data collection by establishing a
cavitation threshold from hydroturbine ramp-down data and
demonstrates how the process can be automated using an un-
supervised learning algorithm. This strategy allows the thresh-
olds to adapt to changes in running condition with minimal
disruption to power production, and without human interven-
tion. Here thresholds were established using a 90 second
ramp-down, while cavitation surveys traditionally used to col-
lect data for cavitation detection require stepping the hydro-
turbine through a series of running conditions that can take
several hours or even days to perform, and many more hours
of manual analysis.

The method presented in this paper is a good starting point
for researchers and hydroturbine operators to better under-
stand how to collect cavitation intensity data on a hydrotur-
bines for an extended period of time. The method can be
used to identify a CSP, automate the training and classifica-
tion process, and keep thresholds relevant through changes in
operating conditions.

6. CONCLUSION

This paper presents both a novel method for creating adaptive
cavitation thresholds as well as a machine learning frame-

Figure 12. Test data with labels predicted by linear SVM
model trained from data labeled using manually selected, sin-
gle variable threshold and the training set PP3-CSP1, PP4-
CSP1, PP1-CSP3, PP4-CSP3, PP3-CSP2

work for automated cavitation detection for hydroturbines.
Adaptive thresholds can be used to address issues encoun-
tered during long term cavitation detection caused by vari-
ability in the hydroturbine’s operating conditions – a criti-
cal part of collecting consistent intensity data for estimat-
ing erosion rates on hydroturbine runners. The framework
outlined here for automated cavitation detection provides a
guideline for making data collection more practical and ac-
cessible for hydroturbine operators and researcher wishing to
estimate cavitation erosion rates and runner remaining useful
life (RUL).

Adaptive cavitation thresholds are generated by first collect-
ing sensor data from a hydroturbine ramp-down, creating cav-
itation sensitivity parameter (CSP)s from the data and calcu-
lating the Mahalanobis distance (MD) to create clear separa-
tion between the healthy running state and conditions where
the hydroturbine is experiencing cavitation. This approach al-
lows a new cavitation threshold to be generated quickly while
minimizing impact on power production of the hydroturbine,
and being adaptable to variations in the turbine’s running con-
ditions. To automate the cavitation detection process, the cav-
itation threshold is used to create class labels for the ramp-
down data that are used to train a supervised learning algo-
rithm for classifying cavitation. Although domain knowledge
is still required to select appropriate CSPs, the remainder of
the process is automated by applying unsupervised learning
to label the training set.

The results presented here show that K-Means and support
vector machine (SVM)s for cavitation detection performed
better than a process based on manually selected thresholds,
demonstrating the usefulness of the machine learning frame-
work. This approach provides hydroturbine operators and re-
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Figure 13. Test data with labels predicted by a 5th order poly-
nomial SVM model trained from data labeled using multivari-
ate threshold found with k-means clustering

searchers with a clear and effective way to perform automated
cavitation detection and provides the basis for determining
RUL.

7. FUTURE WORK

One important next step is to verify the methods for cavita-
tion detection and intensity measurements by means of a long
term study using a production hydroturbine. The larger data
sets collected from such a study could be used to verify the
accuracy and adaptability of the process demonstrated here
and would lead to sufficient results to start correlating cavi-
tation intensity measurements with erosion damage rates on
turbine runners.
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APPENDIX

Classifier Training and Testing Set % Correct Itotal

naı̈ve, with Proximity Probe 1 95.3 2457
manually selected Proximity Probe 2 95.3 2473
threshold Proximity Probe 3 93.6 2696

Proximity Probe 4 92.2 2395

naı̈ve, with Proximity Probe 1 91.2 2433
K-Means selected Proximity Probe 2 94.6 2473
threshold Proximity Probe 3 89.0 2661

Proximity Probe 4 85.1 2395

SVM, trained with PP2-CSP1, PP2-CSP3, PP3-CSP3, PP2-CSP2 95.6 2446
manually selected PP2-CSP1, PP2-CSP3, PP3-CSP3, PP2-CSP2, PP3-CSP2 95.3 2433
threshold PP1-CSP3, PP2-CSP3, PP3-CSP3, PP1-CSP2. PP2-CSP2 95.1 2520

SVM, trained with PP3-CSP1, PP4-CSP1, PP1-CSP3, PP4-CSP3, PP3-CSP2 99.0 2638
K-Means selected PP3-CSP1, PP4-CSP1, PP1-CSP3, PP2-CSP3, PP4-CSP3, PP4-

CSP2
98.7 2633

threshold PP3-CSP1, PP4-CSP1, PP1-CSP3, PP2-CSP3, PP4-CSP3, PP1-
CSP2, PP4-CSP2

98.7 2640

PP3-CSP1, PP4-CSP1, PP1-CSP3 98.5 2625

Table 2. Classifier test results for single variable thresholds

Classifier Training and Testing Set % Correct Itotal

CSP2, CSP3, 1st order 94.1 2711
non-linear SVM CSP2, CSP3, 2nd order 94.1 2711
trained with CSP1, CSP2, CSP3, 3rd order 94.4 2720
manually selected CSP1, CSP2, CSP3, 4th order 96.8 2829
multivariate CSP1, CSP2, CSP3, 5th order 97.8 2866
threshold CSP1, CSP2, CSP3, 6th order 97.3 2833

CSP1, CSP2, CSP3, 7th order 96.8 2798
CSP1, CSP2, CSP3, 8th order 96.1 2740

CSP2, CSP3, 1st order 94.1 2711
non-linear SVM CSP3, 2nd order 93.6 2777
trained with CSP3, 3rd order 94.0 2696
K-means selected CSP1, CSP2, CSP3, 4th order 95.1 2916
multivariate CSP1, CSP2, CSP3, 5th order 97.5 2891
threshold CSP1, CSP2, CSP3, 6th order 97.3 2891

CSP1, CSP2, CSP3, 7th order 96.8 2951
CSP1, CSP2, CSP3, 8th order 96.1 2891

naı̈ve, with multi-
variate, manually se-
lected threshold

CSP3 94.1 2711

naı̈ve, with multi-
variate, K-means se-
lected threshold

CSP3 94.1 2711

Table 3. Classifier test results for multivariate thresholds
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