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ABSTRACT

In order to reduce unnecessary stops and expensive down-
time originating from clutch failure of construction equip-
ment machines; adequate real time sensor data measured
on the machine in combination with feature extraction and
classification methods may be utilized.

This paper presents a framework with feature extraction
methods and an anomaly detection module combined with
Case-Based Reasoning (CBR) for on-board clutch slippage
detection and diagnosis in heavy duty equipment. The fea-
ture extraction methods used are Moving Average Square
Value Filtering (MASVF) and a measure of the fourth or-
der statistical properties of the signals implemented as con-
tinuous queries over data streams. The anomaly detection
module has two components, the Gaussian Mixture Model
(GMM) and the Logistics Regression classifier. CBR is a
learning approach that classifies faults by creating a new
solution for a new fault case from the solution of the pre-
vious fault cases. Through use of a data stream manage-
ment system and continuous queries (CQs), the anomaly
detection module continuously waits for a clutch slippage
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event detected by the feature extraction methods, the query
returns a set of features, which activates the anomaly de-
tection module. The first component of the anomaly detec-
tion module trains a GMM to extracted features while the
second component uses a Logistic Regression classifier for
classifying normal and anomalous data. When an anomaly
is detected, the Case-Based diagnosis module is activated
for fault severity estimation.

1. INTRODUCTION

Being present in a highly competitive business area, the
heavy duty construction equipment industry strives to com-
pete effectively with the market challenges by continuously
providing better features/systems to meet customer needs
and requirements. The customer needs and requirements
include, e.g., improved availability and avoided unplanned
stops, predictable/proactive maintenance instead of reactive
maintenance, as well as highly accurate work planning.

With increasing complexity in the machines, more and more
research is directed towards developing intelligent machines
where it is possible to automatically (remotely) monitor the
health of sub-systems and major components in the ma-
chine (Setu et al., 2006). Such a component is the au-
tomatic transmission clutches, which may be considered
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as a crucial component of its driveline. To reduce service
cost and to improve uptime, an on-board data driven detec-
tion and diagnosis technique based on real time sensor data
from the machine is considered. In this way, the health of
the clutch material may be continuously monitored, and if
the clutch health starts to degrade a service and/or repair
may be scheduled well in advance of a potential clutch fail-
ure. The feature extraction and anomaly detection module
combined with case-based reasoning (CBR) for on-board
clutch slippage detection and diagnosis are implemented via
a data stream management system (DSMS) and continuous
queries (CQs), which allows numerical analysis packages
to be plugged in (Xu, Wedlund, Helgoson, & Risch, 2013;
Zeitler & Risch, 2011).

In (Olsson, Källström, et al., 2014), we proposed the di-
agnostic approach shown in Fig. 1. The system consists
of the three parts. The first part (1) is the feature extrac-
tion module presented in the previous section. The second
part (2) is the on-board anomaly detection part. The third
part (3) is the off-board case-based fault diagnosis part. The
anomaly detection was done by a probabilistic classifier (we
used logistic regression) that was trained to recognize nor-
mal cases and anomalous cases based on a small sample of
known anomalies (faults), while the anomalies were diag-
nosed by a CBR approach off-line. In this paper, we give a
more detailed analysis of each component and we also as-
sess the performance of the parts as a whole while in the
previous paper we only tested them individually.

2. AUTOMATIC TRANSMISSION CLUTCHES

A clutch enables the connection and transfer of torque be-
tween two rotating shafts when engaged (Lingesten, 2012).
Heavy duty equipment generally has an automatic transmis-
sion with a multiple disc wet clutch (Lingesten, 2012). A
wet clutch is simply a clutch that operates while submerged
in a lubricant, and this lowers the friction between the discs
as compared to a dry clutch (Mäki, 2005). The multiple
disc wet clutches allow engagement while there is a large
difference between the rotation speeds of the two shafts
(Lingesten, 2012). A multiple disc wet clutch pack con-
sists of separator discs, friction discs, lubricant, piston and
two shafts (Lingesten, 2012). Furthermore, multiple disc
wet clutches are illustrated in Fig. 2 and explanations are
available below:

1. Gear /Output shaft
2. Hub (output shaft side)
3. End plate
4. Friction disc
5. Returning spring
6. Separator disc
7. Drum (input shaft side)

8. Piston
9. Input shaft

10. Lubrication line
11. Bearing

The clutch plates are arranged in such a way that one of
the discs is driven by a hub and the other by a drum, see
Fig. 1 (Ompusunggu, Papy, Vandenplas, Sas, & Brussel,
2012). The drum and hub are driven by a joint that allows
axial movement such as splines and lugs (Ompusunggu et
al., 2012). In the clutch pack along its axial direction every
other disc is a separator disc and in between the separator
discs are the friction disc. The friction material in the fric-
tion discs are coated with either paper, asbestos or sintered
bronze, while the separator discs are basically steel plates
(Lingesten, 2012). The asbestos material is not used any-
more due to its high toxicity (Lingesten, 2012).

To engage the clutch, a hydraulic induced normal force is
applied to the clutch piston thereby clamping together the
friction disc and the separator disc, which allows torque
transfer between the two shafts (Mäki, 2005). Clutch discs
in the multiple disc wet clutch pack are designed to slip for
a defined period of time (slip time) in order not to burn the
clutch material due to excessive friction (Berglund, 2013).
The friction characteristics of the wet clutches are crucial
for the ultimate performance of the automatic transmission
because they define how long time the clutches slip during
an engagement (Fatima, Marklund, & Larsson, 2013).

Furthermore, a clutch is considered to have failed when it
can no longer transmit the desired torque. The level of
torque transfer in wet clutches is controlled by the gener-
ated friction in it, and a good and stable friction coefficient
which keeps output torque at a required level is important
(Fatima et al., 2013; Fatima, Marklund, & Larsson, 2012).
Thus, clutch slippage is a result of diminishing frictional
characteristics of the clutch system (Fatima et al., 2013).
The friction characteristics of the clutch material are influ-
enced by different factors such as the clutch material struc-
ture, porosity, lubricant and permeability (Berglund, 2013;
Marklund, 2010). Furthermore, the coefficient of friction
may be affected by sliding speed, varying load, boundary
friction, contact temperature of clutch plates and friction
due to fluid flow through the friction material (thin-film fric-
tion) (Fatima et al., 2012; Devlin et al., 2004).

Thus, degradation of the wet clutch results in a continual
drop in the coefficient of friction throughout the clutch ser-
vice life (Fatima et al., 2013).

To sum up, many factors influence the service life of the
multiple disc wet clutches and most of these factors are dif-
ficult to isolate and accurately measure. This makes it al-
most impossible to match the service life condition of the
transmission in an actual machine with corresponding test
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Figure 1. The proposed on-board and off-board diagnosis framework.

Figure 2. Multiple disc wet Clutch pack 2-D view
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rig computation (Kazunari, Akihiko, & Takeshi, 2009).
This concerns factors such as temperature of clutch plates,
coefficient of friction, torque transfer, drag torque, normal
force, oil viscosity, oil quality, oil temperature in the clutch
pack, absorbed energy, absorbed energy rate, etc. Kazunari
et al. 2009 focused on the degradation level of wet clutches
due to temperature and they developed the T-N curve (i.e.
temperature vs. frequency of occurrence) for the life cal-
culation of multiple wet clutches (Kazunari et al., 2009).
However, the method presented by Kazunari et al. required
knowledge of the inner and outer temperatures of the mul-
tiple wet clutch pack as well as the S-N curve (i.e. fatigue
strength vs. frequency of occurrence) of the metal thermal
deformation, which only is possible to measure in a test rig.

Since many of the factors that influence the frictional char-
acteristic of the clutch are only measurable in a test rig but
not measurable in today’s actual heavy duty machine, this
paper addresses the gap in condition monitoring of auto-
matic transmission clutches in an actual heavy duty ma-
chine by monitoring the health of the clutch material on-
board the machine using the available controller area net-
works (CAN-bus) signals in the machine together with the
feature extraction and anomaly detection module combined
with case-based reasoning (CBR) to prevent clutch failure.

3. RESEARCH APPROACH FOR INDUSTRIAL CASE STUDY

The research approach was based on experimentation in an
industrial setting using a Volvo L90F wheel loader. The ex-
perimental set-up, data collection and extraction, data anal-
ysis and feature extraction, and CBR are further described
below in this section.

3.1. Experimental Set-up and Data Collection/Extraction

Real time sensor data measurements were logged on the
machine with the CAN-bus and broadcasted to the on-board
DSMS via a CAN-bus wrapper. The CAN-bus (controllers
area network) is the standard message-based protocol which
allows different electronic components (e.g. electronic con-
trol units, sensors, micro-controllers, actuators, devices, etc.)
to communicate (Marx, Luck, Pitla, & Hoy, 2016). Fur-
thermore, the CAN-bus allows data logging from different
sensors (Marx et al., 2016).

The signals logged from the machine CAN-bus are the trans-
mission oil temperature, turbine torque, clutch 1 and 2 dif-
ferential speeds, out-going speed, input speed, turbine speed,
off-going slip, on-going slip, engaged gear, gear direction,
shifting from 1 to 2 and 2 to 1. The data was logged with
a 32-bit CAN-bus at a baud rate of 250 kBaud correspond-
ing to 7.995 MBits/s. To read the digital data from machine
CAN-bus signals, a sampling frequency of 500Hz was used.

Due to too much heat generated in the Forward 2 and 1

clutches of the L90F wheel loader machine, only gear shifts
from gear one to two and vice versa were logged for this ex-
periment. To simulate leakage in the clutches, two manual
needle valves were installed on the pressure out-takes on
the clutch 1 and clutch 2. This enables the adjustment of
the oil pressure going to the piston in the clutches. Each of
the needle valves can be opened in seven steps (each step
corresponding to 3600) simulating different severity of the
fault. The system was set up as Fig. 4 shows.

3.2. DATA ANALYSIS/FEATURE EXTRACTION

3.2.1. Higher Order Statistical Properties

Commonly when statistical properties of stochastic processes
are studied the mean, autocorrelation, autocovariance, etc.
of a process are considered (Bendat & Piersol, 2010). The
autocorrelation, autocovariance, etc. are so-called second-
order statistical properties, higher-order statistical proper-
ties or non-Gaussian properties are of third-order or higher
(Manolakis, Ingle, & Kogon, 2000). The moments mk of a
random process X(n),n ∈ Z are given by (Papoulis, 1991):

mk = E[xk(n)] k = 1,2, ..

where E[·] is the expectation operator and the central mo-
ments of random process are defined as:

mc
k = E[(x(n)−E[x(n)])k] k = 1,2, ..

The first central moment is always zero, the second cen-
tral moment is the variance. However, the skewness γ3

x(n)
is defined as a normalized third central moment according
to (Manolakis et al., 2000):

γ
3
x(n) = E

 (x(n)−E[x(n)])3

σ3
x(n)

=
mc

3

σ3
x(n)

(1)

where E[·] is the expectation operator. The skewness pro-
vides a measure on the asymmetry of a probability density
function around its mean. Furthermore, the kurtosis γ4

x(n) is
defined as the normalized fourth central moment subtracted
with three and is given by (Manolakis et al., 2000):

γ
4
x(n) = E

 (x(n)−E[x(n)])4

σ4
x(n)

−3 =
mc

4

σ4
x(n)
−3 (2)

The kurtosis gives an indication of the ”peakedness” and
the ”tailedness” of a probability density function (DeCarlo,
1997; Manolakis et al., 2000). For a Gaussian distributed
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Figure 3. L90F Wheel Loader

Figure 4. Newly Installed needle valves on the pressure outlets on the Transmission of the L90F complete machine
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random process the kurtosis value is 0 (DeCarlo, 1997;
Manolakis et al., 2000).

3.2.2. Mean Square Value and Moving Average Square
Value Filtering (MASVF)

Usually mean and mean square values of random signals
may be estimated with the aid of time averages and/or en-
semble averages depending on the underlying physical phe-
nomenon a signal originates from (Bendat & Piersol, 2010).
For instance, if the underlying physical phenomenon from
which a random signal originates enables time averaging for
the estimation of an unbiased and consistent mean square
value of the signal, the signal may be considered to be weakly
ergodic. Weakly ergodic stochastic processes constitute a
subset of weakly stationary stochastic processes (Bendat &
Piersol, 2010). For instance, unbiased and consistent es-
timates of the mean value, the auto correlation and auto
covariance of a weakly ergodic stochastic process may be
estimated with the aid of time averages (Bendat & Piersol,
2010). The mean value E[x(n)] of a weakly ergodic signal
x(n), n = 1,2, ...,N may be estimated using a time average,
according to:

Ê[x(n)] =
1
N

N−1

∑
n=0

x(n) (3)

Where n is the discrete time and N is the number of samples
included in the time average. The estimate Ê[x(n)] is an
unbiased estimate of the true mean value, E[x(n)] (Bendat
& Piersol, 2010). In the same way, an estimate of the mean
square value E[x2(n)] of a weakly ergodic process may be
produced as (Bendat & Piersol, 2010):

Ê[x2(n)] =
1
N

N−1

∑
n=0

x2(n) (4)

The variance or the second central moment, σ2
x(n), of weakly

ergodic stochastic process may now conveniently be esti-
mated as (Bendat & Piersol, 2010):

σ̂
2
x(n) =

1
N

N−1

∑
n=0

(x(n)− Ê[x(n)])2 (5)

If a stochastic process X(n),n ∈ Z is fourth-order ergodic
the kurtosis γ4

x(n) may be consistently estimated as (Manolakis
et al., 2000):

γ̂
4
x(n) =

1
N ∑

N−1
n=0 (x(n)− Ê[x(n)])4

( 1
N ∑

N−1
n=0 (x(n)− Ê[x(n)])2)2

−3 (6)

To estimate the mean value, mean square value, etc. for a

non-stationary stochastic process so-called moving time av-
eraging may be utilized (Bendat & Piersol, 2010; Andren,
Håkansson, Brandt, & Claesson, 2004). An estimate of a
time varying mean value for a signal x(n) with the aid of
moving averaging may be produced as:

Ê[x(n)] =
1
N

N−1

∑
j=0

x(n− j), n ∈ {N−1,N, . . .} (7)

For the selection of the length N of the moving time aver-
age the time constant of the non-stationary behavior of the
stochastic process and the variance of the estimates have to
be considered. Consequently, the moving averaging proce-
dure for the estimation of a time varying mean square value
may, e.g., be expressed as:

Ê[x2(n)] =
1
N

N−1

∑
j=0

x2(n− j), n ∈ {N−1,N, . . .} (8)

The moving averaging procedure may for instance be car-
ried out with the aid of a FIR filter having the impulse re-
sponse:

h(n) =

{
1
N , 0≤ n≤ N−1
0 , otherwise

(9)

The MASVF is realized by filtering squared samples of a
signal with an adequate filter (Andren et al., 2004). Thus,
an estimate of the time varying mean square value of a sig-
nal x(n) may for instance be produced according to the con-
volution sum:

Ê[x2(n)] =
1
N

N−1

∑
j=0

x2(n− j)h( j), n ∈ {N−1,N, . . .} (10)

The moving average square value filtering not only smooth-
ens random variations of the signal but also gives an indica-
tion of the mean square properties of a signal (Andren et al.,
2004). The mean square value estimates may also provide
information about the stationarity of a signal (Bendat &
Piersol, 2010). The moving average filter acts as a low-pass
filter over the squared magnitude of the signal, the part of
the squared signal that is within the bandwidth of the filter
is not attenuated while the part of the squared signal that is
outside the bandwidth of the filter is attenuated (Andren et
al., 2004). The averaging time defines the length of the filter
(Andren et al., 2004). If different time varying properties of
the mean square value of a signal are desired, filters with
different lengths may be used instead of filters with fixed
length (Andren et al., 2004).
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3.2.3. The Gaussian Mixture Model and Logistic Re-
gression

A common statistical model for modelling continuously val-
ued data is the multivariate Gaussian mixture model (GMM)
(Murphy, 2012). A GMM assumes that cases are generated
by a set of clusters of Gaussian distributions. Thus, a GMM
is the weighted sum of the set of Gaussian distributions:

p(~x) =
z

∑
Z=1

p(~x|z)p(z) (11)

p(~x|z) = 1
2
√

2πK
∣∣∑z
∣∣e−(~x−~µz)

T ~
∑
−1
z (~x−~µz) (12)

where ~x is a case represented as a numerical vector with
length K, Z is the number of clusters, z denotes a specific
cluster, p(z) is the probability of the cluster and p(~x|z) is
the likelihood of case ~x conditioned on cluster z, while ~µz
is a vector of mean values and ~∑z is the correlation matrix

for cluster z, and
∣∣∣~∑z

∣∣∣ is the determinant of ~∑z . The param-

eters ~∑z, ~µz, and p(z) are estimated using the Expectation-
Maximization algorithm (Dempster, Laird, & Rubin, 1977).
A Gaussian mixture model can in principle model any type
of distribution with a large enough number of cluster com-
ponents.

A commonly used algorithm for classifying data is the lo-
gistics regression classifier (LRC). LRC is a binary classi-
fier that can separate between two classes (Murphy, 2012).
LRC is, as the name tells, a linear classifier, which can be
considered a discrete version of linear regression. The LRC
probability distributions for two classes c ∈ [0,1] given a
feature vector~x is

p(c = 1|~x) = 1

1+ exp( ~−ωT~x)
(13)

p(c = 0|~x) = exp(−~ωT~x)
1+ exp(−~ωT~x)

(14)

where ~ω is a weight vector with K + 1 weights assuming
that x has K +1 features including an extra feature that is 1
for all cases. A case is then classified as c = 1 if ~ωT~x ≥ 0
and c= 0 otherwise. The logistic regression is well suited to
use on board a machine since it is a simple algorithm with a
small number of parameters. Also, since it is a discrimina-
tive classifier, it makes few assumptions of the distribution
on of the independent features of~x in contrast to generative
classifiers where the distribution of~x is also modeled.

3.3. ANOMALY DETECTION

Anomaly detection is about finding patterns that deviate
substantially from what is considered normal (Chandola,
Banerjee, & Kumar, 2009). Typically, it is assumed that

the normal cases are much more common than the abnor-
mal and faulty cases, so that what constitutes the normal
pattern can be learned. Since not all fault classes need to be
known in advance, anomaly detection has become a popular
approach for fault detection. There are two approaches to
anomaly detection, unsupervised and supervised anomaly
detection. In the unsupervised approach, it is assumed that
there are no known anomalous cases in which case a model
is created based on all data and the cases not fitting the
model with respect to a specified criterion are considered
anomalous. In the supervised approach there is a small set
of known anomalous cases that can be used for training a
machine learning model that can be adjusted to an imbal-
anced data set.

In this work, we assume that there is a large set of cases
known to be normal and a relatively small set of cases known
to be anomalous. In addition, not all fault classes are known
beforehand, so new faults should also be detected. Thus,
given these assumptions, an ordinary classifier is not suffi-
cient, and therefore, we use a supervised anomaly detection
approach instead.

In the proposed approach, the anomaly detection compo-
nent is continuously monitoring the vehicle by classifying
the extracted signal features into normal or anomalous using
a continuous query running on the machine. If a case is con-
sidered anomalous, the signals are sent off-board for further
analysis. In addition, the anomaly detection method should
be fast and light-weight, since it should be able to handle
continuous streams of data on-board a machine. However,
it is not required that the anomaly detection model is created
on-board, so that is done off-board in the current setup.

A common way of doing anomaly detection is to fit a statis-
tical model to the non-anomalous cases and then, by choos-
ing a suitable threshold, classify cases above the threshold
as normal and below the threshold as anomalous since they
are unlikely (Chandola et al., 2009). So, in this simple sta-
tistical approach ~x is defined to be anomalous if p(~x) <
α where α is a small threshold that is selected using the
anomalous cases and p(~x) is the probability of ~x given the
statistical model. This can be formulated as a probability
distribution as follows (c = 1 means~x is anomalous):

p(c = 1|~x) = 1 if p(~x)< α else 0 (15)

Cases below the threshold are unlikely to have been gener-
ated by the statistical model and therefore considered anoma-
lous. However, this can be seen as a binary classification
problem with two outcomes and where the probability p(~x)
is the single input to the classifier.

Generalizing from the above approach, we can transform
the problem into a statistical classification problem, where
instead a soft threshold is learned by training a probabilistic

7
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classifier using the output of the statistical model as input.
Thus, the statistical model is used to generate ferature to the
classifier. By fitting the non-anomalous data to a statistical
model and then fit a probabilistic classifier to the probabil-
ity distribution of the classifier, we get two advantages: (1)
the degree of anomaly is now measured as a probability (not
only yes or no), and (2) the threshold is part of the statis-
tical model and can be automatically learned. In addition,
by using the statistical model of non-anomalous cases for
feature generation, we also hypothesize that it will be eas-
ier to detect faults from unknown fault classes compared to
training a classifier directly on the original features. As sta-
tistical model of the normal data, we use a set of GMMs
and as a probabilistic classifier, we use logistic regression.
So, the GMMs are only trained on normal data while the
logistic regression is fitted on both anomalous and normal
data and thereby, automatically learns the thresholds for de-
ciding when a case is anomalous or not.

Normally, in case of anomaly detection, GMMs are fitted
to all features, while in our approach, the GMMs are fitted
to each feature independently of the other features. Thus,
each GMM can measure the anomalousness of each feature
independently of the others. Output is then a new feature
vector with the log-likelihood of each pair of feature value
and cluster. For instance, 5 signals where 5 features are ex-
tracted from each signal will result in 25 features in total. In
addition, fitting a GMM with 5 cluster components to each
extracted feature will result in a total of 125 log-likelihoods.
Thus, the GMMs can also be seen as a way of discretizing
the data into a vector of the same length as the number of
clusters with a value for each cluster. However, if there are
any dependencies between features, the logistic regression
will at least partially take that into account. Thus, the lo-
gistic regression uses the log-likelihood features to learn to
separate between normal and anomalous signals.

3.4. CASE-BASED REASONING (CBR)

Given that the anomaly detection module detects an anomaly,
we use CBR to make a diagnosis of the anomaly. CBR
makes the assumption that similar problems tend to have
similar solutions (Aamodt & Plaza, 1994). Thus, CBR as-
sumes that new solutions to a new problem can be con-
structed by retrieving a set of previous solution to similar
problems. The most commonly used CBR algorithm is the
k-nearest neighbor algorithm (Aha, Kibler, & Albeit, 1991).
Similar to our previous work, we use CBR, not only for
fault diagnosis, but also to support manual decisions by pre-
senting the set of most relevant cases (Leake & McSherry,
2005).

CBR, in contrast to model-based approaches, does not gen-
eralize into a model, but makes predictions directly from
the cases. Therefore, an advantage of using CBR compared

to model-based approaches is that, if the classification al-
gorithm does not propose a good solution, a CBR-based
approach can nevertheless support experts in finding a di-
agnosis by being able to retrieve and present the set of the
most relevant cases. Thereby, CBR can support manual de-
cision making in addition to automatic fault classification.

A CBR approach requires a measure of similarity between
cases, and as in our previous papers, we define the similar-
ity between two cases as how similarly they deviate from
the normal cases with respect to a statistical model. For
measuring the similarity between cases, we, as before, use
the symmetric Kullback-Leibler divergence (J-divergence)
(Kullback & Leibler, 1951). The J-divergence is a statisti-
cal measure for comparing the similarity between two prob-
ability distributions. For statistically modeling the normal
cases, we also as before fit a GMM to each feature inde-
pendent of the other features (Olsson, Gillblad, Funk, &
Xiong, 2014).

Subsequently, we compare two cases as the difference be-
tween the probabilities of the clusters given the cases. There-
fore, let~z be a vector with one cluster for each feature k =
1, ...,K then the J-divergence between two cases ~xi, ~x j with
respect to the distribution of~z is as follows:

J(~xi,~x j) = ∑
~z

log
p(~z|~xi)

p(~z|~x j)

(
p(~z|~xi)− p(~z|~x j)

)
=

K

∑
k=1

Z

∑
zk=1

log
p(zk|xk

i )

p(zk|xk
j))

(
p(zk|xk

i )− p(zk|xk
j)
)

≤
K

∑
k=1

Z

∑
zk=1

∣∣ log(p(xk
i |zk))− log(p(xk

j|zk))
∣∣

where p(~z|~xi) = p(z1|x1
i ) · p(z2|x2

i ) · . . . · p(zK |xK
i ) (assum-

ing independence of cluster zk given feature k and value

xk
i ) and p(zk|xk) =

p(xk|zk)pzk

p(xk)
and log p(~z|~xi)

p(~z|~x j)
= log p(~z|~xi) -

log p(~z|~x j). The less-than-equal is valid since log p(zk|xk
i ) -

log p(zk|xk
j) = log p(xk

i |zk) - log p(xk
j|zk) + log p(xk

j) -
log p(xk

i ) (last terms are independent of zk and thereby can-
celed out in the sum) and max(

∣∣p(zk|xk
i ) - )− p(zk|xk

j)
∣∣) =

1. Thus, from the J-divergence, we can derive, as an up-
per bound, the Manhattan distance with respect to the log-
likelihood of each cluster. As final metric for comparing
cases, we will use the Manhattan distance with normalized
and weighted log-likelihood features. The weights were
estimated using the average of the maximum information
coefficient (MIC) between the classes or severity and the
normalized features (Murphy, 2012). Then the resulting
metrics is as follows:

d(~xi,~x j) =
K

∑
k=1

Z

∑
zk=1

ωk
∣∣ log p(xk

i |zk)− log p(xk
j|zk)

∣∣
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Table 1. Kurtosis values when there is no clutch slippage

Diff.
Speed1

Diff.
Speed2

Output
Speed

Turbine
Speed

Turbine Torque

5.634 4.9055 5.6837 3.5152 3.5172

6.5279 5.8958 4.1985 4.3244 4.1297

7.1882 6.6851 4.4596 4.7167 5.1261

2.4357 2.2671 3.8482 1.8557 1.8729

where normalization and MIC are included in ωk for each
feature.

For making off-board fault classification, we would use the
k-nearest neighbor algorithm that makes a majority vote to
classify the anomalous cases, but where an anomalous case
is sent to manual investigation if the percentage of nearest
neighbors voting for the class is less than a threshold of
90%. Thus, we require at least 9 out of 10 neighbors to
be of the same class to accept it as the final classification.
For severity estimation, we use the average severity of the
retrieved set of cases.

4. RESULTS

4.1. Mean Square Value and Sliding Mean Square Value
filtering

With needle valve 2 alone fully opened the clutch hydraulic
system compensated for the leakage and no slippage was
observed. So, needle valve 2 was kept fully opened and
value 1 was opened gradually to give different degrees of
value opening indicating clutch slippage. In order to detect
slippage, the engagement part of the clutch 1 differential
speed signal for each gear shifts were passed through the
moving average square value filter. The averaging length
of 10 samples was used. After filtering, the absolute mean
square value of each differential speed signal was subtracted
from the filtered signal to clearly give an indication of slip-
page as presented in Fig. 5.

4.2. Higher order Statistics:Kurtosis

The kurtosis of the engagement part of each signal is esti-
mated and the results given in tables 1 and 2.

The results from the kurtosis values in tables 1 and 2 shows
a variation for the different signals for clutch slippage and
non-clutch slippage.

4.3. Detecting Anomalies

For evaluation of the anomaly detection, we have collected
389 cases of which 110 are fault cases with valve open-
ing 0-7 where 0 indicates a normal case and 7 indicates the
fault with the highest severity. In case of anomaly detec-

Table 2. Kurtosis values when there is clutch slippage

Diff.
Speed1

Diff.
Speed2

Output
Speed

Turbine
Speed

Turbine Torque

1.811 2.0128 3.2147 1.6865 1.7863

1.9542 2.0576 4.6225 1.8431 2.2753

1.6627 1.8836 3.8121 1.6731 1.8809

1.6541 1.7516 2.2406 1.6332 1.7420

1.7767 1.6713 2.8705 1.5620 1.7888

Table 3. The average precision (AP) for the clutch slip di-
agnosis.

Feature Type AP (3 features) AP (5 features)

Original features 0.934 0.926

BIC cluster 0.947 0.898

AP cluster (2 and 4) 0.925 0.923

tion, we assumed the two classes: normal (0 valve open-
ings) and anomalous (1-7 valve openings) cases. We fit-
ted the GMMs and the logistic regression 10 times on ran-
domly split data where the training data constituted 80%
of the normal data and 20% of the anomalous data and for
testing, we used the remaining data.1 When fitting the lo-
gistic regression, we also used l1 norm regularization with
5-fold cross-validation on the training data, and for man-
aging the imbalance between the classes in the data since
there are many more normal data points than anomalous, we
trained the logistic regression using a cost function where
the classes are weighted proportional to the size of each
class. The performance was measured using the Average
Precision score (AP) and the Precision-Recall curves (PRC)
(Saito & Rehmsmeier, 2015). The AP corresponds to the
area under the PRC.

In Table 3, the result from applying the anomaly detection
algorithm to a test set is shown. The signal features used in
the 3 feature set-up consists of the signal length, its mean
value and standard deviation. The signal features used in
the 5 features set up also included the kurtosis and the max-
imum of the sliding mean square value filtering of the clutch
1 differential speed signal. The meaning of each row is as
follows: Original features approach means that no cluster-
ing is done, and only the original 3 or 5 features were used.
BIC cluster approach refers to automatically selecting the
number of used clusters per features by testing the model fit
of the GMM to the data using the Bayesian Information Cri-
terion (BIC) measure (Schwarz et al., 1978). In contrast, the

1Recall from previous section that the GMM is fitted only to the normal
data, while logistic regression to both normal and anomalous data.
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Figure 5. The Sliding Mean Square value filtering of clutch 1 differential speed showing clutch slippage and non- clutch
slippage

AP cluster approach selects the number of clusters with the
largest AP for a validation set when using the same number
of clusters for every signal feature (the BIC cluster selects
a unique number of clusters per feature).

The results are shown Fig. 6 in form of PRC curves for
each approach to clustering.2 The further up to the right
the curves are, the better is the showed performance. The
curves look quite similar, but apparently, the best AP score
is 0.947 for the BIC cluster with 3 features. However, what
is striking is that the BIC cluster for 5 features has the worst
AP score of 0.898, while the difference between 3 or 5 fea-
tures in the other cases are small. Adding the two extra fea-
tures was bad for the BIC cluster, but the 5 features was also
worse in the two other cases, although only a little worse.
Regardless, the result shows that we are indeed able to de-
tect the oil leakage using the proposed approach. In the next
section, we will investigate the performance when we also
add diagnosis after the anomaly detection.

4.4. Case-based Prediction

For evaluation of the CBR diagnosis component, we have
used the same data set as for anomaly detection. How-
ever, since the data set only have a single type of fault but
with varying severity the evaluation can only be restricted

2Notice that the Recall is only approximately equal to zero when the Pre-
cision is approximately equal to one.

to severity estimation. In this evaluation, we diagnose the
output from the anomaly detection component, and thus,
false positives must be managed. In this case, since we
are testing the fault diagnosis and the anomaly detection in
combination, we increase the training data to include 50%
anomalous data but still with 80% normal data as when the
anomaly detection was evaluated. When training the CBR,
we have selected the number of neighbors using 10-fold
cross validation. In this case, the k-nearest neighbor algo-
rithm has to be trained using the same data as was used for
training the anomaly detection algorithm. However, it is not
straightforward whether to add all training cases or a sub-
set since there are more normal cases than the anomalous
cases. Thus, we tried three different ways of managing the
normal cases in the training set: (1) add all normal cases,
(2) add no normal cases, and (3) add only normal cases that
are misclassified by the anomaly detection module. Table
4 shows the average MSE of the test sets for the different
clustering approach. We only show for the 3 features set
up. As can be seen, the MSE is lowest for the second way
of managing the normal cases in the training set. Thus, in
this case, it is better to add no normal cases. However, this
will probably change as we get more cases. In Table 5, we
show the performance for the different valve openings and
the valve opening 1 had the least while 7 has the highest
error. We see a similar pattern for the mean absolute er-
ror. However, we can only conclude that it is really hard to
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Figure 6. Precision-Recall curves (PRC) for anomaly detection with Average Precision scores (AP) as point values.

Table 4. Result from running both anomaly detection and
CBR diagnosis measured in MSE, (1) all normal cases, (2)
no normal cases, and (3) only misclassified normal cases.

All (1) No (2) Miss. (3)

Original features 8.42 7.60 8.11

BIC cluster 8.54 7.56 8.12

AP cluster (6, 10, and 10) 8.32 7.52 7.75

predict the larger valve openings from the data.

To summarize the most important results, we find the use of
combining feature extraction, anomaly detection and CBR
as a useful framework for clutch slippage detection and di-
agnosis. Further, we have verified and extended previous
research into a framework usable for other sub-systems or
major components in heavy duty machines or construction
equipment.

5. DISCUSSIONS AND CONCLUSIONS

The main results of the study are a framework with feature
extraction and anomaly detection combined with CBR for
clutch slippage detection and diagnosis. The above results,
which are enabled by the use of on-board sensor technol-
ogy and distributed analytics through a DSMS and CQs,
demonstrates that clutch slippage patterns of the automatic

Table 5. Mean Absolute Error and Mean Square Error for
each valve opening

Valve Opening Mean Absolute
Error

Mean Squared
Error

0 0.044 0.044

1 0.0 0.0

2 1.0 1.0

3 2.11 4.55

4 3.0 9.0

5 4.21 17.9

6 5.19 27.1

7 6.03 36.4

transmission clutches in an actual heavy duty construction
equipment can be detected using a Moving Average Square
Value filter combined with a measure of the higher order
statistics, Kurtosis. It has also been established that the
clutch slippage patterns can further be diagnosed into dif-
ferent severity of fault cases, i.e. levels of valve openings,
using the anomaly detection module and case-based rea-
soning. However, we showed that detecting the presence
of valve openings is easy but to estimate the severity is not
easy. We also showed that fitting a GMM on each individual
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feature improved the anomaly detection but did not largely
affect the CBR performance. However, more data is needed
to draw any certain conclusions. The detection and diagno-
sis framework is of a general nature, and can be transferred
to other settings and machines - however, the specific data
collection and analysis methods applied may need to be ex-
changed for adequate ones fitting the context and specific
needs.

Regarding related future work, it would be interesting to
continue with monitoring the health of Automatic Trans-
mission Fluids (ATF) on-board via additional sensors at-
tached to the machine, since the oil has a lot of informa-
tion concerning the health of the automatic transmission
clutches (Fatima et al., 2012). In practical settings, to of-
fer customers a possibility to monitor a fleet of machines
with diagnostics for each machine may save both money
and time, as for instance potential clutch failures may be
predicted well in advance before they occur. Being able to
predict potential problems to a large extent allows for act-
ing in a proactive manner and planning the maintenance in-
stead of doing reactive maintenance when something has al-
ready occurred or broken down. Other components, which
are critical for the availability of the machine and its func-
tion, could further be monitored as well in order to improve
the customers’ productivity and the availability level of the
construction equipment. The data-driven approach, which
has been developed, is generic and can thus be applied to
other components other than the clutches. In this way, sev-
eral critical components on a machine can be continuously
monitored.

The result from this work may also be used to support new
and emerging business models, which for instance require
fleet management and monitoring to be able to predict prob-
lems and act proactively related to maintenance and long-
term management of operations. Offers based on these emerg-
ing business models may also be sold with availability, re-
sult or productivity clauses, requiring the provider to take
additional costs and manage additional responsibility and
risk - and consequently being compensated for that. Exam-
ples of such emerging business models are: Product-Service
Systems/Industrial Product-Service Systems (Meier, Roy,
& Seliger, 2008) and Functional Products (Lindström et
al., 2013). In order to stay ahead in the global competition
and meet the customers’ needs, it is required that corpora-
tions develop their core competences and customer offers.
To successfully develop core competences, technology and
customer offers, it is necessary to learn more on what is of-
fered, how it is used in the customer applications and how
to keep it operating exceeding the customers expectations.
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University of Technology.

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly
detection: A survey. ACM Computing Surveys
(CSUR), 41(3), 79-86.

DeCarlo, L. T. (1997). On the meaning and use of kurtosis.
In Psychological methods.

Dempster, A., Laird, N., & Rubin, D. (1977). Maxi-
mum likelihood from incomplete data via the em al-
gorithm. In Journal of the royal statistical society.

Devlin, M., Tersigni, S., Senn, J., Turner, T., Jao, T., &
Yatsunami, K. (2004). Effect of friction material on
the relative contribution of thin-film friction to over-
all friction in clutches. In Sae international.

Fatima, N., Marklund, P., & Larsson, R. (2012). Water con-
tamination effect in wet clutch system. In Proceed-
ings of the institute of mechanical engineers, part d,
journal of automobile engineering.

Fatima, N., Marklund, P., & Larsson, R. (2013). Influence
of clutch output shaft inertia and stiffness on the per-
formance of the wet clutch. Tribology Transactions,
56(2), 310-319.

Kazunari, O., Akihiko, F., & Takeshi, H. (2009). Pro-
posal of field life design method for wet multiple
plate clutches of automatic transmission on forklift-
trucks. In Sae international.

Kullback, S., & Leibler, R. (1951). On information and suf-

12



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

ficiency. The Annals of Mathematics Statistics, 22(1),
79-86.

Leake, D., & McSherry, D. (2005). Introduction to the
special issue on explanation in case-based reasoning
(Vol. 24; Tech. Rep. No. 2). Artificial Intelligence
Review,.

Lindström, J., Plankina, D., Nilsson, K., Parida, V., Yli-
nenää, H., & Karlsson, L. (2013). Functional prod-
ucts: Business model elements. In Proceedings of 5th
cirp international conference on industrial product-
service systems.

Lingesten, N. (2012). Wear behavior of wet clutches (Un-
published doctoral dissertation). Luleå University of
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