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ABSTRACT

Wind energy is growing increasingly popular in the United
States, so it is imperative to make it as cost competitive
as possible. Operations and Maintenance (O&M) make up
20-25% of the total cost of onshore wind projects. Un-
planned maintenance contributes approximately 75% of the
total maintenance costs (WWEA, 2012). Condition-based
maintenance strategies intend to maximize the uptime by
reducing to the amounts of unplanned maintenance. This
should result in an overall decrease in the cost of main-
tenance. Wind turbines produce an interesting challenge,
because their main shaft rotation is both slow and non-
stationary. Through the use of adaptive resampling and order
tracking, both of these challenges were combated as the bear-
ing fault was identified in the order spectrum then tracked as
it progressed. The fault was identified as an outer race defect
on the main bearing that initiated sometime during or before
installation. The total energy in the order spectrum around the
bearing fault rate was identified as a potential front-runner for
a prognostic parameter. This paper presents a case study ap-
plication to operational wind turbine bearing data to demon-
strate the ease and intuitiveness of combining adaptive resam-
pling and order tracking to diagnose faults for slow, nonsta-
tionary bearings. Prognosis of remaining useful life is pro-
posed with features extracted from the order spectrum, but
additional data are needed to develop and demonstrate this
analysis.

1. INTRODUCTION

Bearings are an essential part of most power transmission de-
vices. Bearings are associated with spinning devices, such
as turbines, generators, shafts, and motors. If a bearing fails,
that device is no longer able to complete its task. Bearings
are notably the leading cause of failure in rotating equip-
ment (Williams, Ribadeneira, Billington, & Kurfess, 2001).
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In many cases, this can lead to an unplanned outage as the
turbine must stop all related activities to fix the broken piece
of equipment. This takes away from production time and
can be very costly. If we were able to predict when a cer-
tain component will fail, we would be able to mitigate the
negative effects of this outcome by changing to a more op-
timized operating condition or by replacing or maintaining
the component during a scheduled maintenance outage be-
fore it breaks. This so-called condition-based maintenance
(CBM) specifically for wind turbine applications has been
well-studied in the recent literature; CBM systems rely on
early fault detection and component or system health assess-
ment. Three types of signals being explored include: vibra-
tion, acoustic emission, and oil analysis. Vibration is one of
the most common signals analyzed in the wind turbine indus-
try. Vibration analysis can be used for online monitoring and
fault detection with the signals being improved through fil-
tering techniques to enhance the signal-to-noise ratio. Multi-
dimensional features from the signal can then be collapsed
into a single feature and used for fault classification (Li &
Frogley, 2013). Vibration analysis has also been used for pre-
dicting wind turbine gearbox health using techniques such
as adaptive neuro-fuzzy inference system and nonlinear au-
toregressive model with exogenous inputs (Hussain & Gab-
bar, 2013). Acoustic emission (AE) analysis has been ap-
plied to diagnosis the health of structural components, but
can also be used to defects and imbalances in rotating ma-
chinery (Niknam, Thomas, Hines, & Sawhney, 2013). Oil
analysis can provide extremely early warnings for impending
machine malfunctions. Online monitoring using particle fil-
tering and measurements of the oil’s viscosity and dielectric
constant can be used as performance parameters for system
health and prediction of the system’s remaining useful life
(Zhu, Yoon, He, Qu, & Bechhoefer, 2013).

Bearings can take on a variety of different forms, ranging
from ball or roller bearings to more exotic types such as plan-
etary bearings. The basic design of a bearing consists of a
rolling element, a cage, an inner race, and an outer race; these
components are shown for a standard ball bearing in Figure
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Figure 1. A standard ball bearing with major components: 1.
Outer race, 2. Ball, 3. Cage, 4. Inner race.

1. This system is lubricated, typically with oil, to prevent
undesired friction between the metal elements. When a fault
occurs, vibration analysis can be used to diagnose the defec-
tive component. As the bearing spins, the rolling elements
will pass by the defect creating an impact much like a car
driving over a pothole. The impact frequency is different for
each element of the bearing; each element has its own charac-
teristic defect frequency (Rai & Mohanty, 2006). Frequency
analysis for rotating components is typically done through a
Fourier transform. This approach, however, is not appropriate
for wind turbines whose rotational speed is nonstationary.

By implementing on bearing fault detection and diagnostics
and failure prognostics, we can develop a CBM plan to re-
duce the number and duration of unplanned outages and sub-
sequent costs. CBM is a four step process: data collection,
data monitoring, fault diagnostics, and prognostics (Jardine,
Lin, & Banjevic, 2006). The current work focuses on data
monitoring and fault diagnostics for drivetrain bearings in
wind turbines. The analysis proposed for fault detection and
diagnosis may be extensible to support prognostics as well,
though more data are needed to evaluate the efficacy of this
approach. Prognostics is the ultimate enabling technology for
CBM. The estimated remaining useful life is used to make in-
formed decisions concerning the component’s operating con-
ditions and future maintenance schedules.

This paper presents a case study application of adaptive re-
sampling and order tracking to address limitations of tradi-
tional frequency analysis for nonstationary wind turbine bear-
ings. Data from three wind turbine drivetrains are inves-
tigated; these data include two healthy drivetrains and one
faulted drivetrain. The following section provides a brief
background on bearing fault detection and identification, fre-
quency analysis, and order tracking. Section 3 presents the
adaptive resampling and order tracking algorithms proposed.
The wind turbine bearing data are described in Section 4 fol-
lowed the results of the fault detection and diagnosis in Sec-
tion 5. Potential health indicators are suggested for bearing

prognosis, though sufficient data are not available to demon-
strate these indicators. Finally conclusions and areas of po-
tential future development are given in Section 6.

2. BACKGROUND

Some instigators of bearing faults include manufacturing er-
ror, improper installation, inadequate lubrication, and lubri-
cate contamination (Tandon & Choudhury, 1999). During in-
stallation, proper handling procedures must be followed. A
clean environment is ideal. Even the smallest contaminate
can lead to three body abrasion, bearing wear, and prema-
ture failure. Improper installation can also directly damage
the bearing elements. Unintended forces, such as a hammer
blow, can dent the outer ring, rupture the inner ring, or press
the rolling elements into the races. An indention on either
raceway, called brinelling, leads to significant damage. Each
rolling element traverses the indention at each rotation, which
can exacerbate the problem with each pass. Lubrication is es-
sential for the longevity of the bearing. Under-filling, over-
filling, water contamination, particulate contamination, lubri-
cation mixing, and over-heating all can cause lubrication fail-
ure in bearings. Lubrication failure leads to an inadequate
barrier between the rolling elements and the races. Exces-
sive metal-to-metal contact leads to overheating and eventu-
ally bearing failure. Lastly, overloading a bearing is simply
putting the bearing in a situation that it was not designed to
withstand. These design limits include temperature, load, and
shaft speed. Exceeding any of these limits can shorten the
bearing’s life.

Defects on any of the main elements of the bearing lead to
characteristic defect frequencies in the frequency domain.
The characteristic defect frequency is a function of bearing
geometry and shaft frequency. As the shaft spins faster, the
bearing’s characteristic defect frequencies increase; because
the number of impacts in a given time period increases. The
equations used to calculate a ball bearing’s characteristic de-
fect frequency for the ball spin, outer race frequency, inner
race frequency and fundamental train frequency are given in
equations 1-4, respectively.

fbs = fs
pd
bd

(1 − b2d
p2d
cos2β) (1)

for = fs
Nb
2

(1 − bd
pd
cosβ) (2)

fir = fs
Nb
2

(1 +
bd
pd
cosβ) (3)

fft =
fs
2

(1 − bd
pd
cosβ) (4)

2



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Figure 2. Primary dimensions of a ball bearing (Zhang et al.,
2014).

where bd is the ball diameter, pd is the pitch diameter, Nb is
the number of balls, β is the contact angle, fs is the frequency
of the shaft, fbs is the ball spin frequency, for is the outer race
frequency, fir is the inner race frequency, and fft is the funda-
mental train frequency, also known as the cage pass frequency
(Rai & Mohanty, 2006). The fundamental train frequency is
used to locate faults in the bearing cage. Figure 2 shows the
dimensions of a bearing through a schematic of the bearing’s
cross section.

When analyzing a vibration signal, it is commonplace to use a
Fast Fourier Transform (FFT). The FFT transforms the time-
domain signal into the frequency domain through the use of
complex exponentials (Rai & Mohanty, 2006). It is much
easier to see trends in periodic data through measurement
of the frequency content. The FFT yields the signal’s aver-
age frequency content over the time period. By its defini-
tion, the FFT assumes that the signal is stationary (Colombo,
Arora, Depace, & Vinik, 2015). As mentioned previously,
the signal is nonstationary due to changes in the shaft’s fre-
quency. It would be inappropriate to use the FFT directly.
Mutliple methods can be implemented to analyze this type of
non-stationary data including: the Hilbert transform (Huang
& Shen, 2014), time synchronous averaging (Bechhoefer &
Kingsley, 2009) and adaptive resampling (Blough, 2006).

The Hilbert transform preserves the signal’s shape, ampli-
tude, and phase relations by decomposing the nonstation-
ary signal into elementary time-varying components. The
Hilbert transformation is not a transformation into a new do-
main, but more closely resembles a linear filter. This tech-
nique allows the energy of each instantaneous frequency to
be calculated. Although the Hilbert transform has proven use-
ful in some applications, there are still doubts regarding the
Hilbert transform’s reliability as counterexamples and para-
doxes have been found (Feldman, 2011).

Time synchronous averaging is a technique used to minimize
or eliminate frequencies that are not synchronized with the
shaft frequency. Time synchronous averaging takes each ro-
tation of the shaft and averages those signals in the time do-
main. This has proved to be an effective technique for gears

on a nonstationary shaft, because the gears experience no
slippage. Their rotational speed is in-sync with the shaft. This
technique is less effective for bearings, because they’re quasi-
stationary. As the bearings turn, they can experience some
slippage, so the bearing’s rates are not perfectly in-sync with
the shaft. By using time synchronous averaging, the bearing’s
signal is effectively averaged out (Bechhoefer, Hecke, & He,
2013). Another technique, such as adaptive resampling, must
be used to properly capture the bearing’s signal. Adaptive re-
sampling has proven to be an effective technique in analyzing
nonstationary, bearing vibration signals.

3. ADAPTIVE RESAMPLING

The goal of adaptive resampling is to convert the original
dataset that contains time-varying frequency components into
a dataset that appears to be time invariant. After this pro-
cess, techniques that rely on a stationary dataset can be used.
Fourier transform and wavelets are two examples of such
techniques (Blough, 2006).

An example of a stationary, time invariant signal can be seen
in Figure 3. This figure consists of four plots. The top-most
plot shows the frequency over time, which is constant for the
first example. The second plot marks the relative times at
which the data is sampled. Sensors typically have a constant
sampling rate, so the time space between each sample should
be consistent. The third plot marks where on the shaft’s axis
the sample is being taken with an ’X’. From the third plot, we
can determine the sample spacing relative to the shaft’s angle,
θ. This plot shows a constant 8 samples/revolution. The final
plot shows the sampled waveform in the angle domain. For
the case of a stationary signal, sampling with the respect to
the time domain or angle domain does not make a difference.
The constant ∆t in the time domain leads to a constant ∆θ in
the angle domain (Blough, 2006). An FFT can be applied to
the sampled waveform with no concern.

Figure 4 shows a similar series of plots as Figure 3 with the
exception that the frequency is increasing as a function of
time. Again, the sampling ∆t in the time domain is held con-
stant. As the shaft frequency increases, the angular position
of each sample changes. A constant ∆t in the time domain
no longer corresponds to a constant ∆θ in the angle domain.
The final plot in Figure 4 shows the sampled waveform in
the angle domain. The frequency of the waveform is slowly
increasing, so naturally this waveform will not reside in one
spectral line in the frequency spectrum (Blough, 2006). This
smearing becomes problematic, because the shaft’s frequency
is used in many processing applications. A smeared shaft fre-
quency will lead to smeared characteristic defect frequency
making the fault harder to detect.

Figure 5 has the same steadily increasing function as Figure
4. In this case however, adaptive resampling is used to ensure
a constant angular spacing. A variable ∆t in the time domain
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Figure 3. Sampling a stationary signal with constant ∆t in
the time domain leads to a constant ∆θ in the angular domain
(Blough, 2006).

Figure 4. Sampling a non-stationary signal with constant ∆t
in the time domain leads to a non-constant ∆θ in the angular
domain (Blough, 2006).

leads to a constant ∆θ in the angular domain. This is done in
practice through the use of a tachometer (Blough, 2006). The
tachometer provides a reference signal, so the time domain
can be correlated to the angle domain. As the frequency of the
shaft increases or decreases, the number of samples taken in
the time domain must also be increased or decreased accord-
ingly. The newly sampled waveform is now based in the angle
domain, which may be referred to as the order domain. The
varying frequency component that is originally used to align
the angle domain is the reference frequency. This frequency
is said to be the 1st order. For the wind turbine system, the 1st
order is the shaft frequency. Equations 1-4 show the charac-
teristic defect frequencies for various faults commonly found
in a bearing. All of these frequencies have a linear relation-
ship with the shaft frequency. With the shaft order being one,
the bearing characteristic fault rates of 0.45, 10.8, 12.7, and

Figure 5. Sampling a non-stationary signal with a resampled
(non-constant) ∆t in the time domain leads to a constant ∆θ
in the angular domain (Blough, 2006).

15.3 are the orders of those faults, respectively. The magni-
tude of the fault’s order in the order domain can then be used
to diagnose which fault is present in the system.

As the waveform has been converted from the time domain
to the angle domain, so must the functions used to analyze
them. The formula for the generalized Fourier series in the
time domain is given by equation 5 (Tolstov, 1962):

f(x) = a0 +

∞∑
n=1

ancos(nt) +

∞∑
n=1

bnsin(nt) (5)

where the coefficients are

an =
1

π

∫ π

−π
f(t)cos(nt)dt (6)

bn =
1

π

∫ π

−π
f(t)sin(nt)dt (7)

a0 =
1

2π

∫ π

−π
f(t)dt (8)

The analogous coefficients for the Fourier series in the angu-
lar domain can be seen in equations 9 and 10.

am =

N∑
n=1

f(n∆θ)cos(2πomn∆θ) (9)

bm =

N∑
n=1

f(n∆θ)sin(2πomn∆θ) (10)
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Figure 6. Analysis algorithm to combine adaptive resampling
and order tracking for fault detection and diagnosis.

∆θ =
1

N ∗ ∆ theta
(11)

where N is the total number of sample points, ∆θ is the an-
gular spacing between the resampled samples and om is the
order being analyzed. Equation 11 shows the resulting order
spacing for the order spectrum as a function of total sample
points and size of angular spacing (Blough, 2006).

Figure 6 summaries the steps taken to implement adaptive re-
sampling and order tracking. The initial, raw vibration data
is first cleaned by removing any erroneous data entries or ob-
vious outliers. The tach pulses are used to calculate the RPM
of the shaft at any given moment. Adaptive resampling uses
both the vibration data and the shaft velocity to convert the
nonstationary, time-domain signal into a stationary, angular
domain signal. An FFT in the angular domain extracts the
frequencies from the signal. Order tracking then allows us to
easily locate and determine if any faults are present.

4. WIND TURBINE BEARING DATA

The bearing data sets to be analyzed are from the main rotor
and carrier bearings of three separate wind turbines. Rela-
tive locations of these bearings inside a wind turbine fuselage
are shown in Figure 7. We focus primarily on the bearings’
vibrations attained from accelerometers placed close to the
bearings for fault detection. The accelerometers have a sam-
pling rate of 3,052 samples/second over a 120 second acquisi-
tion period. This gives each of the data sets 366,240 points of

Figure 7. Schematic of a wind turbine two-point mounted
high-speed drivetrain (Zipp, 2012). The hub holds the wind
turbine’s blades. The main and the carrier bearings are lo-
cated in front (to the left in the figure) of the gearbox, and are
typically spherical roller bearings. The main bearing is the
primary focus of this paper.

data per acquisition. Measurements of the main shaft’s speed
were taken simultaneously with a tachometer.

The dimensions of each bearing are unknown, but the rates
of characteristic defect frequencies are given. The rate is a
dimensionless ratio between the fault frequency and the shaft
frequency. The fault frequency will change as the shaft fre-
quency changes, as seen in equations 1 - 4. The rate is useful,
because it is constant. The cage, ball, outer race, and inner
race rates are 0.45, 10.8, 12.7, and 15.3, respectively. By
knowing the shaft frequency, we can use these rates to de-
termine characteristic defect frequencies. This task is trivial
when the shaft frequency is stationary, or constant, but this is
not the case for a wind turbine shaft. Variations as large as 5%
in two seconds can be seen in the shaft’s speed. This can be
due to: bandwidth limits in the control system, varying loads
from the generator, shifting wind conditions, torque ripple,
or tower shadow (Dolan & Lehn, 2006). The control system
cannot be expected to keep the shaft at a perfectly constant
speed, but rather at a speed within a prescribed bandwidth.
When the speed is outside of this bandwidth, control actions
are taken to correct the speed. Variations in the electrical load
of the generator will produce in a change in the mechanical
load that the generator shaft sees. The change in load can
be seen in the change in shaft speed. Wind speeds are time
varying due to gusts and other common weather conditions.
Torque ripple is a change in the torque seen by the rotor as
the magnetic fields of the stator and rotor repel one another as
the rotor spins. This could be due to the flux density distribu-
tion around the airgap or deficiencies in the wiring geometry
(Holtz & Springob, 1996). Tower shadow occurs when the
wind turbine blades pass in front of the wind turbine tower.
The lift that drives the blades to spin is reduced, because the
wind is stalled in front of the tower (Dolan & Lehn, 2006).
All of these effects contribute to the nonstationary nature of
the shaft frequency.
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Figure 8. Measured tachometer signal during 120 second ac-
quisition period.

5. RESULTS

The main and carrier bearing in three different wind turbine
systems were monitored with accelerometers. These systems
are slow with non-stationary rotational velocities. Adaptive
resampling and order tracking were used to diagnose and
track potential faults.

5.1. Data Resampling

Adaptive resampling consists of three general steps: obtain-
ing a reference signal, resampling from time to angle domain,
and performing an angle domain FFT. The tachometer signal
in Figure 8 is the reference signal, which is used to acquire
time points of equal angular intervals. The tachometer signal
was given in terms time versus tach pulse. Although this is
unintuitive, it can still be useful.

The value of tach pulse/second can be calculated by taking the
difference between adjacent points from Figure 8. Equation
12 can then be used to calculate the RPM of the shaft at any
desired time point

RPM =
(Pulse Frequency, pulses/sec) × (60 sec/min)

(Sensor pulses/revolution)
(12)

where the tach ratio is the ratio of pulse/tach pulse. The in-
stantaneous shaft speed over a 120 second acquisition period
is seen in Figure 9. Wind speed, torque ripple, tower shadow,
and measurement noise all contribute the oscillations seen in
Figure 9.

The raw vibration signal has a DC offset as seen in Figure 10.
While most accelerometers are AC-coupled, the ones used to
monitor this wind turbine were DC-coupled. The DC type ac-
celerometers are useful for measuring low frequency signals
with both constant or dynamic accelerations (White, Adams,

Figure 9. Calculated instantaneous shaft speed over the 120
second acquisition period.

Figure 10. Typical raw vibration signal from main bearing

& Rumsey, 2009). The signals of interest range between 0.15
and 5 Hz. The DC type accelerometer can be used for signals
0 and 100 Hz (White et al., 2009). This DC offset is removed
before performing the angle domain FFT. If the DC offset
were present in the signal for the FFT, the largest spectral
line in the frequency spectrum would be the zero frequency,
which is not very informative or useful.

The vibration signal, with the DC offset removed, is then re-
sampled according to the reference, tachometer signal. This
new signal has constant angular spacing and can be seen in
Figure 11. It’s generally good practice to view the vibration
data in the time domain before working with the data in an-
other domain. Significant outliers and large trends can be
seen in the time domain upon visual inspection. For a more
detailed analysis, a Fourier transform needs to be performed
to view the frequency spectrum.

6
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Figure 11. Resampled vibration signal from main bearing
with DC component removed

5.2. Order Analysis and Detection

Although three machines were given in the original data set,
the focus of these results is on machine 2, because the data
set shows clear signs of a bearing fault. The other machines’
order spectrums will be shown as a comparison to see the
differences between faulted and unfaulted signals. Figure 13
shows the full order spectrum from machine 2’s main bear-
ing during the first data acquisition period. The data are be-
ing sampled at a rate of 3052 samples/second, while the shaft
is only turning at 0.33 Hz. In an order spectrum, the shaft’s
turning speed is the order of one, and all other frequencies are
multiples of the shaft frequency. The Nyquist criterion must
still be satisfied, so the sampling rate must be at least twice
that of the largest frequency. With the sampling rate being so
much larger than the shaft frequency, an excessive number of
orders can be seen. The bearing fault rates of 0.45, 10.8, 12.7,
and 15.3 cannot be seen in Figure 13, but other notable fea-
tures from the system can. A large peak can be seen at order
90. The gearbox in a wind turbine commonly has a ratio of
90:1. The gearbox increases the rotational speed of the slow
main-shaft to a higher speed, which more suitable for a gen-
erator. This signal is very loud as the gear’s teeth push past
one another. Harmonics of this signal can be seen at the order
of 180, 270, and 360. Another large peak can be seen around
the order of 2,500. This peak is likely associated with a gear
on a higher speed shaft further down the wind turbine drive-
train. It can also be seen that the main bearing signal has a
large amount of noise over all frequency spectrum. This noise
is large compared to the noise seen by the carrier bearing in
Figure 20.

Machine 1, 2, and 3’s order spectrums have been plotted to
illustrate the similarities in the overall order spectrum seen
in figures 12, 13, and 14, respectively. Consistencies can be

Figure 12. Complete order spectrum of Machine 1’s main
bearing from the first data acquisition period.

Figure 13. Complete order spectrum of Machine 2’s main
bearing from the first data acquisition period.

seen between the level of noise present and the other features,
such as the gearbox and the higher frequency bearing.

Machine 2’s data set was taken over nine time periods. For
conciseness, emphasis is placed on the beginning, middle,
and end of this data set, which correspond to acquisition 1,
5, and 9 in the figure titles, respectively. Figure 15 shows the
same data as Figure 13, but is refocused to display the first
twenty orders. It is easy to see the bearing fault rates at this
scale. The fault rates and shaft frequency are marked with a
dashed red line.

The two largest peaks seen in Figure 15 are the order of 1
and 12.7. These orders correspond to the shaft frequency and
the outer race fault frequency. The shaft order has an RMS
amplitude of 0.0033, while the outer race fault order has an

7
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Figure 14. Complete order spectrum of Machine 3’s main
bearing from the first data acquisition period.

RMS amplitude of 0.0021. Both amplitudes are well above
the noise amplitude of 0.001.

The zoomed-in order spectrums for machine 1 and 3 can be
seen in figures 16 and 17, respectively. The shaft and fault fre-
quencies have been marked with dashed lines for easy recog-
nition. Machine 1 shows no noticeable fault frequencies with
the only peak of note being the shaft frequency located at or-
der 1. Machine 3, in figure 17, has a busier order spectrum.
Significant peaks can be seen at order 1, 3, and 6. The first
order is the shaft frequency. The third and sixth order are
most likely related to the number of wind turbine blades and
potentially a harmonic. No major peaks can be seen at any
of the bearing fault frequencies leading to the conclusion that
both machine 1 and 3’s main bearings are currently healthy.

Figure 18 is the order spectrum of the main bearing from the
fifth acquisition period of machine 2. This is the midpoint
of the data set. The peaks located at shaft and outer race
fault orders are still present. The shaft order peak remained
constant with an RMS amplitude of 0.0033, while the outer
race fault order increased slightly to an RMS amplitude of
0.0025. A new peak has developed at the order of 3, which
could potentially be related to the wind turbine blades. Most
wind turbines have three blades, but more information about
this system would need to be known before the new peak can
be confidently identified as relating to the blades. The new
peak is the largest in this window with an RMS amplitude of
almost 0.0035. A harmonic of this peak can be seen at the
order of 6.

Figure 19 shows the order spectrum from machine 2’s main
bearing during the final acquisition period. The system either
fails or undergoes maintenance after this acquisition period.
The two major peaks in Figure 19 are once again the shaft
and outer race fault orders. The peak relating to the wind tur-

Figure 15. Order spectrum of Machine 2’s main bearing from
the first data acquisition period showing only first 20 orders.
Bearing characteristic fault rates and the shaft order are indi-
cated with dashed red lines. The shaft is located at order =
1. The cage, ball, outer race, and inner race correspond to the
orders of 0.45, 10.8, 12.7, and 15.3, respectively.

bine blades has settled down to an RMS amplitude of 0.0018,
while the shaft and outer race fault RMS amplitudes are at an
all time high of 0.0039 and 0.0033, respectively. The value
of 0.0039 g’s may not seem like a lot, but for such a low fre-
quency shaft (0.33 Hz), it corresponds to a velocity of 0.78
in/sec RMS and a displacement of 25.8 mm peak-to-peak.
There is also a ”skirt” starting to develop in the spectrum
around the outer race fault frequency in 19. The skirt refers
to the frequencies immediately adjacent to the bearing fault
frequency can still be related to the fault itself. Bearings are
quasi-stationary, which means that they slip in relation to the
shaft turning. Even with perfect knowledge of the geometry,
the characteristic fault frequencies are not exact (Bechhoefer
et al., 2013).

With the early presence of the outer race fault order in Figure
15, it can be concluded the outer race defect was introduced
early in the bearing’s life. This could be due to a variety
of reasons including: manufacturing error, electrical pitting
or shock loading during installation (Tandon & Choudhury,
1999).

The same analysis was completed for Machine 2’s carrier
bearing. The carrier bearing has the same dimensions as the
main bearing and is located on the same shaft. The carrier
bearing is located between the main bearing and the gear-
box. Because of its dimensions, the carrier bearing and the
main bearing have the same fault frequencies. The full order
spectrum of machine 2’s carrier bearing during the first data
acquisition period can be seen in Figure 20. The noise level

8
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Figure 16. Order spectrum of Machine 1’s main bearing from
the first data acquisition period showing only first 20 orders.
Key orders are indicated with red dashed lines: fs = 1; fft =
0.45; fbs = 10.8; for = 12.7; fir = 15.3.

across all frequencies is much lower than that of the main
bearing. The largest amplitude in this spectrum is related to
the gearbox at the order of 90. The fault frequency signal
may be small, but it is still at least twice the amplitude of the
surrounding noise in the other frequency bins.

Figures 23, 24, and 25 in the appendix show the order spec-
trum of machine 2’s carrier bearing over the first, fifth, and
last acquisition period, respectively. These plots show the
same bearing fault with a similar fault progression as the main
bearing. However, the carrier bearing’s RMS amplitudes are
an order of magnitude smaller than that of the main bearing
for both the shaft and outer race fault peaks. Without further
knowledge of the location of the sensors, it is difficult to de-
termine whether the outer race fault peak seen in the main
bearing’s order spectrum is related to the carrier bearing’s
outer race fault peak. It is hard to imagine a scenario where
both bearings experience the same fault and the damage pro-
gresses in such a similar fashion. With the RMS amplitude
of the main bearing’s fault rate being an order of magnitude
larger than that of the carrier bearing’s, it appears that the fault
resides in the main bearing, but is still being picked up by the
carrier bearing’s accelerometer due to their close proximity.

5.3. Prognostic Parameter Identification

Since the fault has been diagnosed, finding an appropriate
prognostic parameter to estimate the bearing’s remaining use-
ful life becomes the next priority. These parameters are typi-
cally established from expert judgment, but are compared ob-
jectively with other potential prognostic parameters through
their monotonicity, trendability, and prognosability (Coble &
Hines, 2012). Trendability and prognosability are both fea-
tures of a population of prognostic parameters. This fault

Figure 17. Order spectrum of Machine 3’s main bearing from
the first data acquisition period showing only first 20 orders.
Key orders are indicated with red dashed lines: fs = 1; fft =
0.45; fbs = 10.8; for = 12.7; fir = 15.3

only appeared in one of the data sets, so these two features
were not evaluated. Monotonicity describes the positive or
negative tendency of the data. Monotonicity is based off the
assumption that the fault can only grow, because the system
cannot self-heal (Coble & Hines, 2012).The monotonicity of
the signal was used to evaluate potential prognostic parameter
candidates.

The two prognostic parameters tested are peak RMS ampli-
tude at the bearing fault frequency and total energy surround-
ing the bearing fault frequency. Peak RMS amplitude at the
bearing rate was chosen as a candidate due to its simplicity.
Upon first inspection of the data in the order spectrum, a vi-
sual peak at the bearing fault frequency may suggest that a
fault of that type has occurred. Total energy surrounding the
bearing fault frequency is slightly more sophisticated. Know-
ing that the bearing is quasi-stationary, all frequencies in the
immediate area of the bearing fault could have been produced
by the bearing fault itself. The slippage of the bearing is hy-
pothesized to be the reason for the skirt that develops around
the bearing fault order.

The peak RMS amplitudes of the bearing fault rate for the
main bearing are plotted in Figure 21. There are nine total
acquisition periods, so there are nine instances of the peak
amplitude. There is no clear positive or negative trend seen
in Figure 21 by this parameter over the life of the bearing.
The peak RMS amplitude is therefore rejected as a potential
prognostic parameter.

The other candidate as a prognostic parameter is the total en-
ergy around the outer race fault order. The total energy for
this parameter was calculated by integrating from order 12.2
to 13.2. This effectively allows the bearing fault to slip for-
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Figure 18. Order spectrum of Machine 2’s main bearing
from the fifth data acquisition period showing only the first
20 orders. Key orders are indicated with red dashed lines:
fs = 1; fft = 0.45; fbs = 10.8; for = 12.7; fir = 15.3

ward or backward equal to one half of the shaft frequency and
still contribute to the prognostic parameter. This parameter
was selected on a priori knowledge that the rolling elements
inside bearings can slip. Energy surrounding the fault’s order
may be related to the fault itself. The width of the interval
around the fault’s order was chosen to accommodate as much
surrounding orders as possible without overlapping orders of
interest, such as the cage order of 0.45 and the shaft order of
1. The energy surrounding the fault’s order in the main bear-
ing in plotted in Figure 22. The overall trend of this plot is
positive with a negative dip during the third and eighth ac-
quisition. The majority of the data passes the monotonicity
criteria, so this variable could be a potential prognostic pa-
rameter.

The energy surrounding the outer race fault frequency was
plotted for both machines 1 and 3 in figures 26 and 27, re-
spectively. Both of these bearings were deemed healthy, so no
major trends are expected in these figures. There is no clear
monotonic trend in either of these signals, but the scale seems
to be similar to that of the faulted signal seem in machine 2.
The peak RMS value for the outer race fault frequency for
both machine 1 and 3 can be seen in figures 28 and 29, re-
spectively. These figures show a clear difference from the
magnitude seen in the faulted signal and that of the unfaulted
signals. These magnitudes are significantly smaller and are
within the range of the surrounding noise. It may be useful to
combine the results from the total energy and peak RMS val-
ues; since the total energy exhibits a useful monotonic trend,
while the peak RMS value is the major determining factor for
fault diagnosis.

Figure 19. Order spectrum of Machine 2’s main bearing
from the last data acquisition period showing only the first
20 orders. Key orders are indicated with red dashed lines:
fs = 1; fft = 0.45; fbs = 10.8; for = 12.7; fir = 15.3

6. CONCLUSIONS

Wind turbines shafts have nonstationary frequencies that can-
not be treated with traditional stationary frequency analysis
techniques. With adaptive resampling, signals that are not
stationary in the time domain can resampled to appear sta-
tionary in the angle domain. An angle domain FFT can then
be applied to the newly resampled signal. Order tracking al-
lows the faults to be distinguished easily. These techniques
were implemented on vibration data collected at the main and
carrier bearings of a wind turbine. An outer race fault was
detected for machine 2. This fault was confirmed in post-
mortem examinations. The damage propagation from this
fault was slow due to the low shaft speed. A higher RPM
shaft sees more passes from the rolling elements over a given
period of time. This would lead to more impacts, faster dam-
age accumulation, and a shorter bearing life. Once a fault is
detected for a bearing on the wind turbine’s main shaft, there
should be plenty of time to monitor the fault and schedule
appropriate maintenance actions during a routine outage.
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APPENDIX

Figure 23. Order spectrum of Machine 2’s carrier bearing
from the first data acquisition period showing only the first
20 orders. Key orders are indicated with red dashed lines:
fs = 1; fft = 0.45; fbs = 10.8; for = 12.7; fir = 15.3
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Figure 24. Order spectrum of Machine 2’s carrier bearing
from the fifth data acquisition period showing only the first
20 orders. Key orders are indicated with red dashed lines:
fs = 1; fft = 0.45; fbs = 10.8; for = 12.7; fir = 15.3

Figure 25. Order spectrum of Machine 2’s carrier bearing
from the last data acquisition period showing only the first
20 orders. Key orders are indicated with red dashed lines:
fs = 1; fft = 0.45; fbs = 10.8; for = 12.7; fir = 15.3

Figure 26. Total energy around the fault frequency of the
main bearing of Machine 1 for each data acquisition period.

Figure 27. Total energy around the fault frequency of the
main bearing of Machine 3 for each data acquisition period.
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Figure 28. Peak RMS for the fault frequency of the main
bearing of Machine 1 for each data acquisition period.

Figure 29. Peak RMS for the fault frequency of the main
bearing of Machine 3 for each data acquisition period.
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