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ABSTRACT

An autonomous unmanned aerial system (UAS) needs, dur-
ing the flight, accurate information about the current failure
state of the aircraft and its capabilities in order to safely per-
form its mission and properly react to contingencies. The
flight battery of an electric-propulsion aircraft is its most rel-
evant resource. Model-based prognostics algorithms are used
to obtain good estimates of its current state of charge and
remaining capacity. However, these algorithms can have a
large computational footprint. We present Prognostics-as-a-
Service, a hybrid approach combining on-board computation
with server-based prognostics on the ground.

In this paper, we focus on the role, battery prognostics plays
for the safe operation of a highly autonomous aircraft: prog-
nostics for (1) continuous on-board safety monitoring, (2)
for UAS operations, and (3) for contingency planning. We
present the NASA Autonomous Operating System (AOS) and
discuss how the autonomous components closely work to-
gether with on-board and server-based ground prognostics
systems. We will illustrate the system with case studies on
small NASA unmanned aircraft.

1. INTRODUCTION

Unmanned Aerial Systems (UASs) are being increasingly used
in different application areas. These range from package de-
livery (Beckman, Haskin, Rolnik, & Vule, 2017; Lisso, 2017),
automatic surveying (Gašparović & Gajski, 2016), precision
agriculture (Gómez-Candón, De Castro, & López-Granados,
2014), search-and-rescue (Polka, Ptak, & Kuziora, 2017), med-
ical package delivery (Thiels, Aho, Zietlow, & Jenkins, 2015;
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Jones & Despotou, 2019), etc., to applications in Urban Area
Mobility (UAM) to transport humans in small un-piloted air-
craft over short distances.

The goal of all these applications is to break away from pi-
loted remote control toward full autonomous operations, where
the flight computer of the UAS has full authority over the
aircraft and cargo. Obviously, most of these UAS applica-
tions are, at least to some extend, safety-critical. Failures
during operation could potentially lead to loss of human life
in UAM applications, could cause damage on the ground, or,
at least would result in the loss of the mission and vehicle.
Therefore, the autonomous components (AUC) controlling
the UAS must be able to detect system degradation, failures,
environmental anomalies, as well as be aware of the system’s
current health state and capabilities. Only with that infor-
mation the autonomous component can react accordingly and
come up with necessary contingency actions that avoid safety
violations and minimize risks while trying to perform the cur-
rent mission/task as good as possible.

Typical examples include fault detection, diagnosis, and re-
covery (FDDR) on critical subsystems like the engines, elec-
trical subsystem, or actuators. While the FDDR system re-
acts on failures that have already occurred, reliable knowl-
edge about the vehicle’s resources and likelihood about future
failures is extremely important so that the AUC can make in-
formed decisions.

For most UAS applications, electric-propulsion aircraft are
used. This means, one or more high-power batteries are driv-
ing all motors and propellers of the vehicle. For such an
aircraft, the flight battery is obviously the most relevant re-
source. Its status and remaining charge needs to be carefully
measured and monitored. Also, the batteries for avionics and
on-board computation should be monitored as well, as they
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might use up to 25% of the overall UAS power consumption
(Caccamo, 2017).

At each point in time during the flight, the AUC needs reli-
able information about the current state-of-charge (SOC) of
the battery and if the battery has enough remaining capacity
to safely fly the entire mission. Due to the complex and non-
linear battery characteristics, these values cannot be directly
measured as it is possible with a gas-powered aircraft. Prog-
nostics systems have been developed to be able to exactly
address these questions. Mostly model-based, the prognos-
tics system monitors the battery, provides up-to-date statisti-
cal information about the current state-of-charge (SOC) and
the rest of useful life (RUL) for the flight battery.

In this paper, we focus on the role, prognostics plays for the
safe operation of highly autonomous aircraft. We identify
three major application areas: (1) prognostics for continuous
safety and performance monitoring of the UAS components
and battery, (2) prognostics for improved operations and mis-
sion planning, and (3) prognostics for contingency planning.

However, accurate prognostics algorithms have a large com-
putational footprint, which may prohibit it from running on
the on-board flight computer. In this paper, we therefore in-
vestigate interfacing the on-board autonomous components to
a hybrid prognostics architecture: PaaS. PaaS (Prognostic-as-
a-Service) (Teubert, Daigle, Sankararaman, Goebel, & Watkins,
2017) is a ground-based server system that communicates
with the on-board systems and provides results for complex
prognostics tasks, which cannot be executed by the on-board
computer hardware. That way, prognostics tasks, even going
beyond just one vehicle, can be executed as effectively and
accurately as possible, given current restrictions of on-board
computational resources, availability of ground communica-
tion links, and required timeliness of prognostics solutions.

As our environment in this paper, we use the Autonomy Oper-
ating System (AOS), a software system and framework (Lowry
et al., 2018) that has been developed at NASA Ames. AOS
provides important capabilities that are necessary for the au-
tonomous operation of a UAS and features automatic execu-
tion of flight plans, natural-language communication with Air
Traffic Control, as well as contingency planning, diagnostics,
and prognostics.

In this paper, we discuss different prognostics applications
within AOS and illustrate them with case studies carried out
on a simulated fixed-wing UAS and on actual test flights with
small multi copters.

The rest of this paper is structured as follows: Sections 2
and 3 provide the background on the Autonomous Operat-
ing System (AOS) and battery modeling and prognostics. In
Section 4, we present the hybrid PaaS system. Section 5 fo-
cuses on the role of prognostics for on-board monitoring. In
Section 6 we present how prognostics can help with mission

planning, and in Section 7 we demonstrate the role of prog-
nostics for contingency planning. Section 8 presents related
work and Section 9 summarizes the paper, discusses future
work and concludes.

2. BACKGROUND: THE AUTONOMY OPERATING SYS-
TEM (AOS)

The Autonomy Operating system (AOS) is a software sys-
tem that enables core capabilities for the autonomous opera-
tions of an unmanned aircraft (Lowry et al., 2018). It is based
on the NASA Core Flight System (cFS) system (McComas,
2012) and provides a higher-level layer of infrastructure, ap-
plications, and communication mechanisms.

The AOS architecture, shown in Figure 1, provides capabil-
ities for the execution of flight plans, natural-language com-
munication with Air Traffic Control (Lowry, Pressburger, Dahl,
& Dalal, 2019), Diagnostics, Prognostics, and contingency
planning (Schumann, Mahadevan, Sweet, et al., 2019). The
underlying cFS system provides a “software bus,” which is
a publish-subscribe architecture that is used for communica-
tion between the different components or applications of the
system. These can be activated on regular schedule, in our
case with a rate of up to 10Hz. AOS is communicating with
a low level flight control software (Figure 1 bottom) to ob-
tain sensor and aircraft status information and to issue low
level commands. In our case, we use a slightly modified ver-
sion of the Open-source ArduCopter software,1 running on
a PixHawk hardware,2 which directly interfaces with sensors
and controls the motors of the UAS and which is in charge to
keep the aircraft in the air and perform waypoint-to-waypoint
flights.

R2U2

PLEXIL

NASA cFS/cFE

CommsComms

NLP

Server

DM

AOS

DR

oPRG

PaaS

Arducopter

Autopilot

ground-based systems

PaaS

PRG

Models
UTM

Figure 1. High-level architecture of the AOS system

Our model-based diagnostics, prognostics, and contingency
planning framework is implemented as several applications
on top of the cFS system and centered around the Decision
Maker (DM). Figure 1 shows the flow of information: Sen-

1
http://ardupilot.org/copter/

2
pixhawk.org
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sor and status data from the UAS are transmitted by the Ar-
duCopter flight software into the AOS system. These data are
used to perform diagnosis, prognostics, and monitoring (Fig-
ure 1, left). The Diagnostic Reasoner (DR) performs model-
based detection and isolation of failures, using an efficient al-
gorithm based upon diagnosability matrices (Schumann, Ma-
hadevan, Sweet, et al., 2019). The R2U2 (Realizable, Re-
sponsive, Unobtrusive Unit), which will be described in more
detail below is continuously monitoring the system behav-
ior using temporal logic observers and Bayesian reasoners.
The on-board prognostics (oPRG) engine performs model-
based determination of SOC and RUL for the flight battery,
using the Kalman filter based algorithm as described earlier
in this paper. More elaborate prognostics tasks that would
consume to too much on-board resources are handled by the
PaaS (Prognostics as a Service) client, which would use a
ground-based server for the computation.

The current health status of the UAS as obtained by these
modules are updated with a 0.5Hz rate and then handed over
to the DM. The DM performs logic-based search to find (a)
active diagnostic procedures to improve the diagnostic reso-
lution (if necessary) and (b) contingency flight plans, which
can be safely executed under the current circumstances. If
necessary, such contingency plans might contain emergency
actions like, for example, cutting short the flight, diversion
to a nearby airport for emergency landing, or an immedi-
ate ditch by activating an on-board parachute. The gener-
ated active diagnosis or contingency plan is sent to PLEXIL
(Verma, Jonsson, Pasareanu, & Iatauro, 2006). PLEXIL is
an event-driven planner that has been customized to execute
flight plans for nominal/off-nominal operations, which might
require Air Traffic Control (ATC) interaction. Spoken ATC
commands are processed by the Natural Language Processing
(NLP) unit in AOS (Lowry et al., 2019). During plan execu-
tion, PLEXIL emits a sequence of commands and waypoints
to the low-level autopilot that the UAS will follow.

AOS can optionally communicate with a ground station (Fig-
ure 1, right), which contains the PaaS server with it multi-
ple prognostics models and algorithms as well as UTM (Un-
manned Traffic Management) interfaces, which provide ser-
vices for aircraft separation, management of reserved vol-
umes, and coordination between multiple UAS sharing the
airspace (Federal Aviation Administration, 2020).

3. BACKGROUND: BATTERY MODELING AND PROG-
NOSTICS

In order to predict end-of-discharge (EOD) as defined by a
voltage cutoff, the battery model must compute the voltage
as a function of time given the current drawn from the bat-
tery. There are several electro-chemical processes that con-
tribute to the cell’s potential that make this a difficult prob-
lem. For the purposes of on-line prognostics, we focus here

Figure 2. Battery voltages (from (Daigle & Kulkarni, 2013))

on a lumped-parameter ordinary differential equations form
that still considers the main electro-chemical processes.

The voltages of a single cell in a battery pack are summarized
in Figure 2. The overall battery voltage V (t) is the differ-
ence between the potential at the positive current collector,
�s(0, t), and the negative current collector, �s(L, t), minus
resistance losses at the current collectors (not shown in the
diagram). As shown in the figure, the potentials vary with
the distance d 2 [0, L], because the loss varies with distance
from the current collectors.

Battery potentials as seen in Figure 2 at the current collec-
tors are described by several voltage terms. At the positive
current collector is the equilibrium potential VU,p. This volt-
age is then reduced by Vs,p, due to the solid-phase ohmic re-
sistance, and V⌘,p, the surface overpotential. The electrolyte
ohmic resistance then causes another drop Ve. At the nega-
tive electrode, there is a drop V⌘,n due to the surface over-
potential, and a drop Vs,n due to the solid-phase resistance.
The voltage drops again due to the equilibrium potential at
the negative current collector VU,n. Details of the developed
battery model are discussed in (Daigle & Kulkarni, 2013).

3.1. State of Charge

State of Charge (SOC) of a battery is conventionally defined
to be 1 when the battery is fully charged and 0 when the bat-
tery is discharged to a set voltage threshold. In this model,
it is analogous to the mole fraction xn, but scaled from 0 to
1. There is a difference here between nominal SOC and ap-
parent SOC. Nominal SOC would be computed based on the
combination of the bulk and surface layer control volumes
in the negative electrode, whereas apparent SOC would be
computed based only on the surface layer. That is, a battery
can be discharged at a given rate, and reach the voltage cut-
off, i.e., apparent SOC is then 0 as discussed earlier. But,
once the concentration gradient settles out, the surface layer
will be partially replenished and the battery can be discharged
further, i.e, apparent SOC increases whereas nominal SOC

3
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remains the same.

Nominal (n) and apparent (a) SOC are defined by equations
below:

SOCn =
qn

0.6qmax , and SOCa =
qs,n

0.6qmaxs,n
,

where q
maxs,n = q

max vs,n

vn
. The factor 1/0.6 comes from the

fact that the mole fraction at the positive electrode cannot go
below 0.4 (Daigle & Kulkarni, 2013), therefore SOC of 1
corresponds to the point where qn = 0.6qmaxs,n .

The model contains as states x, qs,p, qb,p, qb,n, qs,n, V 0
o

, V 0
⌘,p

,
and V

0
⌘,n

. The single model output is V . Model validation
for a variable loading scenario is shown in Fig. 3. The load
changes every 2 minutes (Fig. 3A), resulting in corresponding
changes in voltage. Fig. 3B shows that the voltage predictions
are fairly accurate in response to changes in load. Some er-
rors are still present that may possibly be accounted for by
including temperature effects.

3.2. Prognostics

In this section we discuss our developed battery prognosis
framework following the general estimation-prediction method-
ology of model-based prognostics (Luo, Pattipati, Qiao, &
Chigusa, 2008; Orchard, Tobar, & Vachtsevanos, 2009; Daigle
& Goebel, 2013; Daigle & Kulkarni, 2013). Similar approaches
have been used for prognosis of pneumatic valves (Daigle,
Kulkarni, & Gorospe, 2014; Kulkarni, Daigle, Gorospe, &
Goebel, 2014) as well as for Current/Pressure (I/P) Transduc-
ers (IPT) (Teubert & Daigle, 2013, 2014). The formulation
of the prognostics problem is summarized below followed by
a brief description of the estimation and prediction approach.

3.2.1. Problem Formulation

The system model may be generally defined as

x(k + 1) = f(k,x(k),✓(k),u(k),v(k)), and
y(k) = h(k,x(k),✓(k),u(k),n(k)),

where k is the discrete time variable, x(k) 2 Rnx is the
state vector, ✓(k) 2 Rn✓ is the unknown parameter vector,
u(k) 2 Rnu is the input vector, v(k) 2 Rnv is the process
noise vector, f is the state equation, y(k) 2 Rny is the output
vector, n(k) 2 Rnn is the measurement noise vector, and h
is the output equation.3

In prognostics, the occurrence of an event E is to be pre-
dicted, that is defined with respect to the states, parameters,
and inputs of the system. The event is defined as the earliest
instant that some event threshold TE : Rnx⇥Rn✓⇥Rnu ! B,
where B , {0, 1} changes from the value 0 to 1. That is, the
time of the event kE at some time of prediction kP is defined

3Bold typeface denotes vectors, and na denotes the length of a vector a.

as

kE(kP ) , inf{k 2 N : k � kP ^ TE(x(k),✓(k),u(k)) = 1}.

The time remaining until that event, �kE , is defined as

�kE(kP ) , kE(kP )� kP .

For system health management, TE is defined via a set of per-
formance constraints that define what the acceptable states of
the system are, based on x(k), ✓(k), and u(k) (Daigle &
Goebel, 2013). For batteries, we are interested in predict-
ing the end of discharge (EOD) time, i.e., the time at which
the battery voltage will deplete below the voltage threshold
VEOD.

Models of the system components are constructed in this pa-
radigm that capture both nominal behavior, as well as faulty
behavior and damage progression. Using these models, ob-
servations can be mapped back to the health state of the sys-
tem as represented in x and ✓. An estimation algorithm, such
as the Kalman filter (KF), unscented Kalman filter (UKF),
or particle filter (PF), is used to solve these types of prob-
lems (Daigle, Saha, & Goebel, 2012). In this work an UKF
based approach in implemented. This state-parameter esti-
mate, along with a prediction of the future usage of the com-
ponent, is used as input to a prediction algorithm that com-
putes the time to EOD. The difference between EOD and cur-
rent time is called the remaining useful life (RUL) (Daigle &
Goebel, 2013; Daigle, Saxena, & Goebel, 2012).

3.2.2. Prognostics Architecture

In our model-based prognostics architecture (Daigle & Goebel,
2013), there are two sequential problems, (i) the estimation
problem, which requires determining a joint state-parameter
estimate p(x(k),✓(k)|y(k0:k)) based on the history of ob-
servations up to time k, y(k0:k), and (ii) the prediction prob-
lem, which determines at kP , using p(x(k),✓(k)|y(k0:k)),
a probability distribution p(kE(kP )|y(k0:kP )). The distribu-
tion for �kE can be computed from p(kE(kP )|y(k0:kP )) by
subtracting kP .

The prognostics architecture is shown in Figure 4. In dis-
crete time k, the system i.e. any model in this case li-ion
battery model, is provided with inputs uk and provides mea-
sured outputs yk. The estimation module uses this informa-
tion, along with the system model, to compute an estimate
p(x(k),✓(k)|y(k0:k)). The prediction module uses the joint
state-parameter distribution and the system model, along with
hypothesized future inputs, to compute the probability distri-
bution p(kE(kP )|y(k0:kP )) at given prediction times kP .

Estimation. A detailed electro-chemistry (EC) based physics
model of component behavior is developed using nominal
data from the testbed (Daigle & Kulkarni, 2013). This work
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Figure 4. Prognostics architecture with identification, state
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requirements based on the future flight plan.

implements the developed EC model to estimate and predict
health state of the battery. An unscented Kalman filter (UKF)
is implemented to obtain the state estimate from the sensor
measurements. Details of the implemented framework for
battery modeling are discussed in (Daigle & Kulkarni, 2013).

Prediction. Whereas the SOC value can be calculated di-
rectly from the current state, the calculation of remaining-
useful life (RUL) requires an estimate of the future load pro-
file. With that information, a Monte Carlo forward integra-
tion is used to obtain the mean of RUL and its distribution.
For an electric UAS, the power requirements are directly re-
lated to the planned future flight path. Here, we assume that
the flight computer, the sensors, and the avionics is operated
using a different battery, which is not considered here4. Our
model-based prediction architecture shown in Figure 4 fea-
tures an extended model-based prediction component which,
given the planned future flight plan first estimates a load pro-
file and then uses that to perform the prediction. For this
work, we used a simplified model for small fixed-wing air-
craft described in (Schumann, Roychoudhury, & Kulkarni,
2015).

There are different approaches being implemented in the prog-
nostics framework. Model based approaches include first prin-

4In general, the batteries for avionics and on-board computation should be
monitored as well, as they might use up to 25% of the overall UAS power
consumption (Caccamo, 2017).

Table 1. Prognostics algorithms for monitoring M and pre-
diction P of different tasks: from battery prognostics, Air-
craft (AC) with multiple Failure Modes (FM), to system
wide prognostics. Algorithms include Extended (EKF) and
Unscented (UKF) Kalman Filters, Particle Filters (PF), and
Bayesian techniques (Bayes).

Task M P Algorithms
Threshold U, I Y N
SoC Y Y EKF
RUL (const load) Y Y EKF, UKF
RUL (flight plan) Y Y EKF, UKF, PF
RUL (FP, error bars) Y Y PF, Bayes
RUL (multiple FPs) - Y PF
RUL + FMs Y Y PF, Bayes
Multiple AC Y Y PF, Bayes

ciples based, lumped parameter physics based, empirical mod-
els etc. Data driven approaches include DNNs, machine learn-
ing approaches and several others. Depending upon the com-
putational complexities the processing can be done onboard
(Gorospe, Daigle, Sankararaman, Kulkarni, & Ng, 2017) or
off-board as in the case of PaaS (Teubert et al., 2017) which
will be discussed in the next section.

Though in this work decision making is based on battery state
of charge estimation, the frame work is able to take differ-
ent state of health inputs for vehicle like motor/ESC, power
conditioning circuit, sense-and-avoid info as well as external
factors like weather etc. Resulting outputs from respective
algorithms can then combined be combined to indicate over-
all health index based on severity and priority to the decision
making framework.

The input parameters for the algorithm as well as the prognos-
tics estimates vary depending on the application framework.
In this case the inputs to the algorithm are voltage, current
while the output is SOC estimate as well as RUL for the SOC
to reach set threshold. The lower threshold bound is defined
by the operator and can change based on the safety require-
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ments. Based on the threshold bounds the prediction horizon
changes which is updated in the initialization parameters.

4. PROGNOSTICS AS A SERVICE (PAAS)

Most approaches for prognostics require significant compu-
tational resources. This is especially true for prognostics of
critical aviation systems, where risk-tolerance is very low.
For sample-based prediction approaches commonly used in
prognostics, the number of samples required to predict with
the confidence needed for these risk-intolerant applications
is prohibitively great for many aircraft. This observation led
to the team’s creation of the Prognostics As-A-Service (PaaS)
Domain Specific Software Architecture (DSSA) (Watkins, Teu-
bert, & Ossenfort, 2019).

4.1. Architecture Decision: On-board, As-A-Service, and
Hybrid

The design decision of where to perform prognostics (on-
board, as-a-service, or some combination) is an important
one. Below are a few considerations that should be consid-
ered:

Advantages of a PaaS architecture:

• Greater Computational Resources: Computational de-
mand is a function of risk tolerance, prognostic horizon,
and the number of prognosed systems. Many platforms
cannot host the computer needed to perform prognostics
to their performance requirements. Cloud resources in-
creases resources enabling prognostics with greater pre-
cision, prognostic horizon, and number of systems.

• Resource Sharing: On-board prognostics applications are
dormant when the platform is not in use. Cloud-based
PaaS architectures take advantage of on-demand resources,
reducing costs for some applications.

• Intelligent Data Leveraging: In the PaaS architecture,
data from many systems are fed to a centralized loca-
tion. This opens the door for algorithms that leverage all
this data to improve models and provide better service.

• Update and Installation Ease: For many applications phys-
ical access to the machine is limited, and updating soft-
ware is difficult. The PaaS architecture enables fleet-
wide deployment of new features and bug fixes.

Advantages of on-board architecture:

• No Link Dependence: PaaS architectures require stable
communication to transmit sensor data and predictions.
Applications where communications are unstable and the
failures are time-critical have no tolerance for dropouts.

• Reduced Latency: Communication with PaaS typically
adds a round-trip latency of at least 150ms. This is ac-
ceptable for most applications, but for a few rare ex-
tremely time-critical targets, this latency is too high.

• Security: Though there are technologies to mitigate these,
the communication link creates additional security risks.

• No Link Needs: On-board architectures reduce the plat-
form communication requirements (bandwidth, etc.).

For some applications the advantages of an on-board archi-
tecture may not apply. This is true for long-term degradation
where the aircraft can interact with PaaS off-line upon landing
using a reliable hard line connection, or when communication
is guaranteed reliable and secure.

Conversely, when communication is spotty and systems de-
grade quickly the advantages of the on-board architecture may
far outweigh those of the PaaS architecture.

For many cases, a hybrid architecture may be ideal. Here are a
few different approaches for hybrid prognostics architectures:

1. Perform critical functions on-board: critical functions,
such as those that degrade quickly (time-critical) and are
critical to safety are done completely on-board.

2. Perform link critical functions on-board: For bandwidth
constrained applications, those functions that require the
largest amount of bandwidth are done completely on-
board

3. Perform a minimum amount of prognostics for all sys-
tems on-board: Some basic prognostics can be done on-
board, with lower precision and a shorter time horizon.
Longer, more precise prognostics for strategic decision
making can still be done on a PaaS architecture. This
maintains just enough capability to preserve safety in the
event of loss of communications.

Some additional notes on the decision to perform prognostics
on-board or as-a-service can be found in (Sankararaman &
Teubert, 2017).

The architecture described in Section 4.3 is designed to be
used to supplement on-board PHM capabilities, or provide
prognostics capabilities to platforms without any on-board
PHM.

4.2. General Use-Case

PaaS architectures like the one described here have common
elements in the way they are used. These are illustrated in
Figure 5. Understanding the basics of how a PaaS architec-
ture is used is important for understanding the architecture
itself.

First, pilots, operators, or the vehicles themselves request prog-
nostics services from a menu of available services (Step 1),
beginning their prognostics session. They must have set up
accounts and configured them to describe the systems on-
board their fleet beforehand (this needs only to be done once).

Once the session has begun, sensor data required for prog-
nostics (which is specific to the system(s) being prognosed) is

6
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Figure 5. Overview of PaaS operations

streamed to the PaaS service (Step 2). The PaaS service uses
this and the pre-supplied configuration to perform prognostics
(Step 3). The results from prognostics are used by decision-
makers to inform decisions to preserve safety and maintain
efficiency of the vehicle (Step 4). Decision-makers may in-
clude on-board like pilots (both machine or human), ground
operators or supervisors, or fleet managers. They can also be
other stakeholders like air traffic controllers, automated air
traffic management services, maintainers (predictive mainte-
nance), or even emergency responders.

Steps 2–4 repeat for the duration of the mission. Once the
mission is completed, the session is closed.

4.3. PaaS Architecture

PaaS uses a layered architecture style. There are three distinct
layers: the REST (Representational State Transfer) API, the
Service Layer, and the Execution Layer, further described in
Sections 4.3.1-4.3.3. Each of these only communicate with
their adjacent layers.

Understanding the function of these layers requires an under-
standing of the hierarchy of entities used to organize infor-
mation in the PaaS Architecture. The relationships between
the different entities is illustrated in Figure 6 and each of the
entities are described below.

User. A single user of the PaaS service. Can own multiple
platforms.

Platform. A collection of prognostic targets (systems) to be
analyzed together, such as an aircraft or vehicle. Each plat-
form has one or more systems associated with it and are owned
by Users.

Session. A session is created when a user requests prognostics
for systems in one of their platforms. The user terminates the
session when they no longer need prognostics. Sessions are
tied to a single platform.

System. A discrete object on a platform that can be analyzed

Figure 6. PaaS Entity Relationships

(e.g., ’battery1’ on ’UAS3’). Systems are owned by the spe-
cific platform (e.g., aircraft) that they are on.

Component. A physical object that is used in a system (e.g.,
battery with serial abc123). The component stores config-
uration information that is specific to a particular physical
device. They are used to track health between multiple ses-
sions. Components are assigned to a system (e.g., component
’battery abc123’ is assigned as system ’battery1’ on platform
’UAS3’).

Data Point. A single sensor value, such as a battery voltage
or vehicle latitude.

Event. A single prediction of an event. Includes current state
(e.g., State of Health), prediction of time of event, and event
state at various ”save points” between now and time of event.

4.3.1. Layer 1: REST API

Representational State Transfer (REST) is a web architec-
ture that allows for both querying and updating of resources
using HTTP requests. The REST style provides a uniform
stateless architecture that fits well into today’s web-centric
world. The API is not without limitation however. In partic-
ular, the REST format (and HTTP in general) do not provide
any mechanism for push-based notifications. Due to this lim-
itation, the current API requires that clients poll periodically
to receive new events.
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Table 2. PaaS URIs

URI GET POST PUT DELETE
/component X X X X

/data X
/event X

/platform X X X X
/session X X X
/system X X X X

/user X X X

The PaaS API was designed according to the OpenAPI spec-
ifications (Swagger, 2020). The primary Uniform Resource
Indicators (URIs) are summarized in Table 2. GET requests
are used to request information, POST requests create some-
thing new, PUT requests update information, and DELETE
requests delete the specified resource.

Note that REST was used for the preliminary implementation
of the PaaS Architecture, but future implementations could
use alternate protocols.

4.3.2. Layer 2: Service Layer

The service layer executes the primary “business logic” of
the system. This includes input validation, session manage-
ment, storage and retrieval of data from the database. Ses-
sion management activities include the spinning off of a new
”Prognostics Application” in the execution layer for each new
session, then configuring the application to perform prognos-
tics on the systems for that platform by passing configuration
parameters for the systems of interest to the prognostics ap-
plication.

4.3.3. Layer 3: Execution Layer

The execution layer implements the logic for prognostics de-
scribed in Section 3.2. This layer consists of multiple prog-
nostics applications, one for each active session.

In PaaS, Prognostics Applications are built on top of the Generic
Software Architecture for Prognostics (GSAP), and publicly
released software framework for building prognostics appli-
cations. The GSAP Architecture is described in greater detail
in the 2017 GSAP paper (Teubert et al., 2017), and on its
website5. Since the publishing of that paper, the GSAP ar-
chitecture has been updated to adopt an event-driven archi-
tecture style, where observers and predictors communicate
asynchronously. GSAP was adapted to support the needs of
the PaaS framework.

4.4. Notes on Architecture in Practice

In practice, a PaaS architecture could provide services to a
large number of aircraft. PaaS could be potentially be im-
5https://software.nasa.gov/software/ARC-17748-1A

plemented as a single service supplier for a broad range of
customers—a Supplemental Data Service Provider (SDSP)
in the UAS Traffic Management (UTM) architecture. In this
case the SDSP would provide services to customers for a
price (either subscription or demand-based).

Alternately, PaaS architectures could be implemented by or-
ganizations that operate a large number of vehicles to provide
private prognostics services to their fleet. The prognostics
services could be extended beyond aircraft to also provide
prognostics for ground support equipment.

This architecture was adapted by the NASA System Wide
Safety (SWS) Project to create the SWS Service (Corbetta,
Banerjee, Okolo, Gorospe, & Luchinsky, 2019), a REST ser-
vice for providing estimates of safety metrics and predictions
of how safety will change with time. It was also used in the
NASA Convergent Aeronautics Solutions (CAS) PaaS Incu-
bation Project, and the NASA CASAS autonomous decision
making effort.

5. PROGNOSTICS FOR ON-BOARD MONITORING

For safe and reliable autonomous operations, the UAS must
continuously monitor its state and health. In case of failures,
deviations, or unfavorable prognostics results, the flight soft-
ware for the UAS must be able to, without any ground sup-
port, plan and execute appropriate contingency measures that
help to keep the UAS safe in the air and allows it to com-
plete the mission as best as possible. In order to achieve
this goal, the AOS system has several advanced diagnostic
engines, which can in combination with the on-board prog-
nostics engine and PaaS provide and process current health
information and future estimates.

5.1. The R2U2 Monitoring System

Whereas DR as a diagnostic engine is mainly used for fault
detection and diagnosis (Schumann, Mahadevan, Sweet, et
al., 2019), the R2U2 (Realizable, Responsive, and Unobtru-
sive Unit) (Rozier & Schumann, 2017; Reinbacher, Rozier, &
Schumann, 2014; Geist, Rozier, & Schumann, 2014) is an on-
board monitoring system to continuously monitor system and
safety properties of the aircraft during flight. Health models
within this framework (Schumann, Rozier, et al., 2015) are
defined using Metric Temporal Logic (MTL) and Mission-
time Linear Temporal Logic (LTL) (Reinbacher et al., 2014)
for expressing temporal properties as well as Bayesian Net-
works (BN) for probabilistic and diagnostic reasoning. A
signal processing unit reads in continuous sensor signals or
information from the prognostics unit and performs filtering
and discretization operations.

A large number of safety and performance properties can be
formulated using temporal logic. Properties range from sim-
ple instantaneous ones, like Ubatt > 13.5V indicating that

8
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Figure 7. A: Measured battery voltage and current, estimated SOC and RUL for a constant load profile. The UAS takes off at
t = 100s and touches down at t = 700s. The system is turned off at t = 930s. B: Probability distribution for RUL over flight
time.

the battery voltage must never drop below 13.5V to complex
temporal specifications, for example

⇤((Ibatt > 30A)U[0 s,29 s](Ibatt  30A))

This property is violated, if more than 30A are drawn for
more than 30 consecutive seconds. The temporal “until” op-
erator U monitors the temporal requirement. For the defini-
tion of all temporal operators and more examples see (Rozier
& Schumann, 2017; Schumann, Roychoudhury, & Kulkarni,
2015).

There is a number of safety properties that define flight safety
with respect to the future flight path of the aircraft. For ex-
ample, the current flight plan requires the aircraft to fly over
a high mountain. Obviously the climb to the top uses up con-
siderable battery power, so the pilot (or autopilot) must en-
sure that during the 10-minute climb, the battery level, i.e.,
the average State of Charge (µSOC ) always stays above 30%:

⇤(climb-mountain ! ⇤[10min](µSOC > 30%))

There is only one catch: R2U2 is no magic crystal ball, which
can look into the future. Thus the above formula can only be
evaluated after 10 minutes; prior to that time, R2U2 returns
maybe. This is, of course, not helpful for the auto-pilot since
it has to make the decision to fly over the mountain or not
prior to even attempting the climb.

We therefore integrate the prognostics engine into the R2U2
framework. We now can formulate safety properties that di-
rectly access prognostics information. The above safety prop-
erty now would be simply formulated as:

⇤(climb-mountain ! RUL(FP) > 10min),

where RUL(FP) is the rest of useful life estimate after given

the flight plan FP has been executed. This formula can be
evaluated immediately and be the basis of the autonomous
decision to keep or change the current flight plan (see Sec-
tion 6 for a detailed example).

5.2. Example: Monitoring the SOC Estimate

Figure 7 shows the results of a test flight with AOS running
on an X8+ octo-copter at the NASA Ames Research Center.
The X8+ was powered by two parallel banks of Tattu 22.2V
25C 6S 22000mAh LiPo Battery packs. Figure 7A shows
measured battery voltage and current as well as the SOC in
% during the flight as estimated by the on-board prognos-
tics. The bottom panel shows the estimated RUL for a pre-
dicted constant current draw of Ī = 20A. Since this scenario
does not involve any strong climbs, the estimation of RUL
with a constant load seems to be appropriate. Uncertainties
in the current draw can be modeled in our architecture by
carrying out the RUL estimation for samples from a Gaus-
sian distributed load current I = N (Ī ,�2). Figure 7B shows
how the probability density function (PDF) for load current
of I[A] = N (20, 4). develops during the flight. As expected,
the mean of RUL is a straight line as in Figure 7A and the
variance of RUL decreases toward the end of the flight exper-
iment.

6. PROGNOSTICS FOR ON-BOARD OPERATIONS

For successful and safe autonomous operations, the UAS must
be capable of adjusting the current mission and flight plan ac-
cording to the current system status and environmental con-
ditions. The prognostics component play a central role in
finding out, which flight plans and trajectories are possible
and compatible with the current and predicted battery status.
Note that this dynamic analysis and re-planning of trajecto-
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ries is a part of nominal autonomous aircraft operations and
in contrast to contingency planning, which will be discussed
in Section 7.

In this paper, we present a simulation case study with a sim-
ulation model of the Langley Edge R5 aircraft (Hogge et al.,
2015). This aircraft is a large RC-style aircraft with 6 ft
wingspan and a take-off weight of approximately 18 kg. This
aircraft is in active use at NASA LaRC for UAS-related re-
search. An existing model for the dynamics and the battery
of the aircraft made it a suitable candidate for this case study.
The Edge was powered by 2S3P configuration of Thunder-
power 7800mAH battery packs. In an UAM (Urban Area
Mobility) scenario, the aircraft must find as suitable trajectory
between points A and B. Such a trajectory must obey numer-
ous constraints (restricted zones, flight time, other aircraft,
weather, etc), one of the most important ones concern the
availability of enough battery power. In our simple demon-
stration scenario, the shortest direct path is flying over a moun-
tain, a distance of approximately 14.3nm , requiring a strong
climb of 4,600 vertical feet. An alternative trajectory around
the mountain does not require any climbs/descends, but is
substantially longer (17.3nm). Here, we analyze (a) flying
over the mountain, (b) going around the mountain at level
altitude with high speed (60 kts), and (c) going around the
mountain with an energy-conserving 40 kts. While the air-
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and RUL with constant power use for three trajectory variants
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Figure 9. Probability densities for RUL at the beginning of
the flight t = 0s (top) and at the decision point t = 400s
(bottom) with �pwr = 0.1 for variants (a)—blue, (b)—red,
and (c)—green.

craft is in the air, R2U2 and the prognostics engines contin-
uously monitor the battery of the aircraft and calculate SOC
and RUL for existing flight plan. If there is an opportunity or
need to evaluate a different future flight plan (e.g., to slowly
go around the mountain), PDFs for the RUL of the various
trajectories are calculated on-board.

For these flight-plans, the power consumption is being cal-
culated using a simplified model (Schumann, Roychoudhury,
& Kulkarni, 2015). The RUL calculation during the flight
uses the actual battery state into account, which is updated
using measured power consumption of the aircraft. Figure 8
shows the actual power requirements for trajectory variants
(a), (b), and (c), and the altitude profile in flight levels (FL).
For the first 400 seconds all trajectories are the same. Obvi-
ously, the higher power consumption of (a) and (b) cause a
lower SOC, which goes below 50%. Note that the mountain
route and fast flight around the mountain reaches the destina-
tion earlier; hence the lines are shorter. If we calculate the
RUL according the to high power usage similar to that in the
initial flight segment, the faster, but power-hungrier variants
end up with a shorter RUL.

If we require a minimum RUL of at least 3,000 seconds at
the destination, both SOC and RUL estimation do not allow
help us in the early stages of the flight to make a decision on
which route can actually be flown. Only some time after our
decision point at t = 400, we could see that only the slow
route around the mountain allows for enough safety margin.
We therefore perform RUL predictions using the variants of
the intended flight path. In order to accommodate uncertain-
ties, which might, for example, arise due to weather, we draw
the power requirements from a Gaussian distribution. If cur-
rent wind-speed and direction were available, an even more
accurate prediction of RUL would be possible.
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Figure 9 shows the resulting RUL distribution at the begin-
ning of the flight (t = 0). At that point in time, all three vari-
ants seem to be possible, albeit variant (b) is risky, when we
require a minimum RUL of 3000s (top panel). At t = 400s
(just before the decision has to be made), the situation looks
differently: variants (a) and (b) are not safe, only the slow
flight around the mountain obeys our safety requirements,

7. PROGNOSTICS FOR CONTINGENCY PLANNING

In the case of a failure or an off-nominal situation, an au-
tonomous aircraft must be able to detect and correctly diag-
nose the fault conditions and prepare a suitable contingency
plan to mitigate the failure or safely modify or end the mis-
sion, all without human intervention or mandatory ground
support. Here again, prognostics play an important role dur-
ing the construction of the contingency plan. If, for example,
the UAS has to divert to an emergency airport, then prognos-
tics is needed to determine if there is enough battery capacity
left to even reach that airport and land there. Otherwise, other
contingency measures (e.g., land at nearest landing spot) need
to be considered right away.

Within the AOS system, the Decision Maker (DM) is in charge
of contingency planning. As shown in Figure 1 above, the
DM receives continuous inputs from the diagnostics, moni-
toring, and prognostics components carrying information about
the current system health. Based upon the current informa-
tion, the DM first tries to disambiguate the failure modes us-
ing active diagnosis procedures (see (Schumann, Mahadevan,
Lowry, & Karsai, 2019) for details), before using a logic-
based search algorithm to construct a contingency plan us-
ing model-based contingency schemas. Contingency actions
include: active diagnosis, aircraft reconfiguration (e.g., us-
ing the second battery pack), taking a shortcut (e.g., skip-
ping a delivery spot), deviate to an emergency airport, land a
the nearest safe landing spot, or pull the parachute for a soft
crash landing. These schemas, which are listed in Table 3,
are then instantiated and “plugged” together to form a contin-
gency plan that is ultimately sent to the PLEXIL planner for
execution. During that schema-based search, the prognostics
engine must be consulted multiple times as most schemas in
Table 3 need prognostics evaluation. Any potential modifica-
tion of the flight plan, e.g., by taking a short cut or deviate
to an emergency airport, but also an aircraft reconfiguration
triggers a prognostics evaluation. Only if the resources are
estimated to be sufficient, a contingency plan can be consid-
ered. In our AOS architecture, DM uses a simplistic but effi-
cient on-board prognostics module during the search; poten-
tial contingency plans are then checked by the hybrid prog-
nostics engine.

Let us consider the following small example: the UAS, cur-
rently at position X (Figure 10) has to fly along waypoints
[A,B,C,D,E, L], where L is the final destination airport.

Between waypoints C and D there is a substantial mountain
range. The regular flight plan calls for a traverse over the
mountains; an alternative, but much longer route around the
mountains would be [A,B,C, F,G,E2, L]. E1 and E2 de-
note alternate emergency airports. At the current point X ,
the aircraft is subjected to a failure, which is diagnosed as
a stuck elevator (see (Schumann, Mahadevan, Sweet, et al.,
2019) for details on the failure mode). The stuck elevator has
substantial impact on the performance of the aircraft; the DM
consults the on-board failure models to determine that, in this
case, strong climbs are not safe.

E1
A

E2

C

B

D

X

L

F
G

Figure 10. Diagram of waypoints with alternatives (dot-
dashed), possible divergence routes (dashed) and emergency
airports E1, E2.

The DM now performs a search, trying to apply the schemas
from Table 3 starting with the one with least severity and
impact. During the planning search, the DM finds out that
it could follow the original flight plan along the waypoints
[A,B,C], but cannot traverse to D due to the mountain range.
A short-cut (fly directly to L) or a deviation to E2 are not
possible because of the mountains. The alternative route,
continuing via [F,G,E2, L] is ruled out, because the battery
resources would not be sufficient, as determined by the on-
board prognostics. The search now back-tracks to waypoint
B: short-cut to D is not possible, again, because it would lead
over the mountains. However, a deviation to E1 is possible,
because no strong climb is needed. During the search the po-
tential use of a schema also requires calls to the prognostics

FP AD R S DA LI P

hX,A,B,C,D, Li

R S DA LI P

ADFP R S DA LI P

FP

LI PDASRADFP

[] hX,A,B,E1,?i

AD

hX,Ai

hX,A,Bi

hX,A,B,Ci

hX,A,B,C,Di

hX,A,B,C, F,G,E2, Li

Figure 11. Search tree of DM for situation in Fig. 11. Cur-
rent path (black), unsuccessfully explored (red), potentially
explorable (blue). The small red triangle corresponds to
the search along the alternative route [A,B,C, F,G,E2, L],
which is rejected by prognostics due to insufficient battery
resources.
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Table 3. Contingency schemas with severity S. wi are waypoints and PRG denotes if prognostics is needed for schema
evaluation.

Action A S Contingency plan PRG Description
[] empty 0 [] N mission G concluded, no action to be taken
FP flight-plan 0 hwi, ...w?i Y follow flight plan to next waypoint wi

AD active diagnosis 0–2 hwk, Da, ...i N perform active diagnosis Da at waypoint wk

R reconfig 1 hwi, wi+1, ...i Y reconfigure aircraft (e.g., alternate battery or sensors)
S shortcut 1 hwi�1, wi+1, ...i Y skip waypoint wi. Fly directly to wi+1

DA deviate-airport 2 hw0
1, w

0
2, . . . , w

0
?i Y deviate to emergency airport w0

?. Mission G terminated
LI land-immediate 3 hw0i Y land at nearest safe waypoint w0. Mission is terminated
P parachute 4 [] N pull parachute at current location. G is terminated

system. In our case, the DM uses prognostics information to
find out if there is enough battery remaining to fly the route
[X,A,B,E1], which it is. Finally, Figure 11 shows a graphi-
cal representation of the search tree for that scenario.

This example is part of a simulation case study for a fixed-
wing UAS described in (Schumann, Mahadevan, Sweet, et
al., 2019). A related scenario concerning an altimeter sen-
sor failure has been successfully test-flown at NASA ARC
on a DJI S1000+ (Schumann, Mahadevan, Lowry, & Karsai,
2019).

8. RELATED WORK

Systems Health Management framework applied to aerospace
domain has been discussed in (Johnson et al., 2011; Orsagh,
Brown, Romer, Dabnev, & Hess, 2005; Ashby & Byer, 2002;
Hess, 2002; Hess, Calvello, & Frith, 2005; Millar, 2007)
ranging from structural, machine, avionics systems, etc. Prog-
nostics-based decision making in the Aerospace domain has
been addressed, for example in (Balaban & Alonso, 2012).
Here, techniques from optimization and game theory have
been used for Dynamic Constraint Redesign (DCR), which
enables decision making in a continuous space and deals with
mission reconfiguration. The underlying numerical algorithms,
based, for example on Particle Filters (Sweet et al., 2014)
have been employed for different autonomous vehicles. This
formulation can deal with complex and continuous mission
re-configurations but is mathematically more challenging and
has a substantial computational footprint.

Due to restricted on-board computing capabilities, contingency
management for autonomous and electric aircraft have been
restricted to fail-safe operations, like loitering, immediate land-
ing or return to home plate. Approaches to more complex
contingency planning for UASs have been developed for the
planning and pre-flight assessment (DiFelici & Wargo, 2016)
or concern a “holistic” multi-level contingency management
system that spans UAS, communications, weather, and battle
teams (Franke, Hughes, & Jameson, 2006). The actual plan-
ning uses the Lockheed Martin tool TeamWorks (Franke et

al., 2006) and only has limited control or monitoring capa-
bilities on-board. On-board path planning by dynamic proba-
bilistic reconfiguration is described in (Wzorek & Doherty,
2006), but does not incorporate diagnosis or failure-based
contingency management.

A system for flight mission planning, which addresses the
specific problem of autonomous battery recharging is pre-
sented in (Tseng, Chau, Elbassioni, & Khonji, 2017). It uses
elaborate graph optimization algorithms, but is not being run
on-board.

9. CONCLUSIONS

In this paper, we discussed how prognostics plays an impor-
tant role for autonomous electric-propulsion aircraft. Obvi-
ously, the current state of the battery as well as good estimates
on the rest of useful life (RUL) for the flight battery is most
essential for all aircraft with electric propulsion, whether pi-
loted or not. We presented a chemo-electrical battery model
that allow the accurate determination of the state of charge
and discussed methods for prognostics and general prognos-
tics architecture.

Our main focus of this paper is on how prognostics can facili-
tate or even enable safe and effective autonomous operations.
Based upon the case study of the NASA Autonomous Oper-
ating System (AOS), we discuss: prognostics for safety and
health monitoring during the flight, prognostics for flight op-
erations and trajectory planning, and prognostics for on-board
contingency planning. For each of these application areas, we
motivated the necessity and presented results of a simulation
case study or an actual test flight with an electric UAS.

Although all autonomy components are operating on-board
the vehicle, the high computational footprint of model-based
prognostics algorithms makes it viable to run certain predic-
tion tasks on a ground-based server architecture. In this paper,
we presented Prognostics as a Service (PaaS) and discussed it
architecture and integration into the on-board AOS autonomy
software.
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The results of our case studies show that accurate, real-time
prognostics play an important role for autonomous aircraft
during nominal operations and off-nominal situations. How-
ever, there is a number of open areas, which will part of future
work. Prognostics is always associated with uncertainties,
which advanced prognostics algorithms can estimate. Carry-
ing over this probabilistic information toward the on-board
reasoning will make it possible to yield more justifiable de-
cisions with attached confidence metrics. Research will also
be necessary on how to extend the application of prognos-
tics beyond a single mission of a single UAS: how can long-
term effects like battery ageing and prognostics for multiple
vehicles or fleets be modeled and efficiently integrated into
the on-board systems. Finally, model-based prognostics of
other safety-critical hardware components, like engines, mo-
tor bearings, or hydraulic subsystems must be integrated into
the autonomous software system in order to improve safety,
reliability, and effectiveness of UAS operations and mainte-
nance.
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