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ABSTRACT

A prototype version of a video based eye movement monitor has
been developed and used to perform experiments with human subjects.
While primarily intended for monitoring torsional eye movements, it
could also be adapted to measure other types of ocular motion. A
contact lens mounted feature provides a stable and distinct image for
a low light level video camera. The video output signal is filtered,
processed, and the results are then transmitted toa computer. There, they
are reconstructed and stored for later analysis, including trigonometric
comparisons which yield a total arfgle of rotation of the feature and,
thus, the eye.

Existing torsional eye movement monitors are cumbersome, time
consuming and somewhat hazardous. The lens used in this research is
rendered totally adherent to a subject's eye with little discomfort
and no potential danger. Furthermore, resolution of better than 6
minutes of arc has been achieved, matching that reported by these
other methods. Electronic processing and computer analysis allow for
repetitive evaluation of a large number of video fields. In addition,
preliminary evidence indicates that this scheme may be implemented to
provide a real time assessment of eye position and orientation.
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CHAPTER 1

INTRODUCTION

This thesis involves the development of a video eye monitor that is

designed to track eye movements, especially torsional ones. This research

was stimulated by an interest in understanding visual-vestibular inter-

actions, and to observe the phenomenon of ocular counterrolling (OCR)

which is considered to be the only completely acceptable measurement of

otolith function. Ocular counterrolling or counter torsion is the

involuntary conjugate movement of the eyes about their lines of gaze

opposite to the lateral inclination of the head with respect to gravity.

Counterrolling reflexes have evolved in all animals and man to help

keep a stable image on the retina. Head movements in one direction -

are countered by proportional eye movements in the opposite direction,

so that objects in the visual field are stabilized. Accepted measurements

of ocular countertorsion, however, are difficult to perform and time

consuming. The most widely used method is that of E.A. Miller,

who, in 1962, described a photographic technique where a 35 mm

slide of a.counterrolled eye is rotated through a dove prism until

it is aligned with a reference position slide. The angle the prism

is rotated determines the estimated angle of ocular counterrolling.

Because of the limitations of the few existing techniques, a new tech-

nique has been developed for observing this motion. A video
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television camera and scanner track the rotation of a pattern placed

on a soft contact lens. The lens can be marked in such a manner as to

provide distinct images to the device. Furthermore, the lens can be

rendered totally adherent to the surface of a subject's eye.

The video method is appropriate for use in dynamic, visually

noisy environments and is well suited for use in viewing a line

against the background of the human eye. An image of the eye with

the contact lens is focussed on the camera tube and the resulting

video output filtered, processed, condensed and read into a computer.

There, it is reconstructed and stored for eventual handling, including

trigonometric comparisons which extract a total angle of rotation of

the contact lens image and thus the eye.

A minimum resolvable angle of less than 6 minutes of arc was

achieved from measurements of an abstract target. A standard error of

estimate about the computed angle of less than a minute was found for

eveluation of fixed straight line targets, 2 to 4 minutes for moving

lines and 7 to 10 minutes of arc for contact lens mounted features.

Miller reported a resolution of 5.3 minutes. At the same time, ver-

sions of his technique extended to dynamic measurements that have a

sampling rate limited by the time required to recharge the photoflash.

Furthermore, tedious hours of frame by frame analysis are required .

With the present video-method, analysis is automatic. at a sampling rate

of 60 fields per second. In addition, field-by-field review of the raw

and analyzed data is also possible.
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This new technique should prove to be of some interest to a

variety of people. A fast, automatic and simple to use external indi-

cation of otolith function would be of invaluable clinical assistance

in evaluating the otolithic vestibulo-ocular reflex. In addition,

other types of eye motion can also be detected with slight, if any,

modification. Vertical and horizontal nystagmus are two important

measures of vestibular function which could then also be measured.

Further, if a compact, precise device of this nature were to be used

for 'in-space' observation of counterrolling, it would be possible to

assess the effects of weightlessness on otolith information usage. It

has been proposed that these very effects contribute heavily to dis-

orientation and motion sickness, problems that still pose operational

barriers to-manned space flight.

The development of the basic concept behind this work was dis-

cussed in my Bachelor's thesis. There, a voltage comparator was used

to analyze a video signal of a white line against a black background.

Nothing more sophisticated than a large stationary line could be

evaluated. The possibility of using a sandwich of soft contact lenses

to hold a trackable object was discussed, but an acceptable feature

had not yet been developed.

This thesis describes four major areas of research. First, the

development of a contact lens mounted feature which not only adheres

to the eye, presenting a well defined tracking object, but which also

does not interfere with the subject's vision or pose safety hazards.
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Second, improvement of the video signal processor so that it

can extract the coordinates of a moving feature from the background

noise of the eye. This required an extensive amount of noise elimi-

nation, signal filtering, as well as image enhancement and processing.

Third, the interfacing of the signal processor to a digital computer,

enabling data storage at the video field refresh rate.

The final phase of this thesis consists of data analysis, in-

cluding determination of eye angle with respect to time, and evalu-

ating the performance of the system as a whole. Abstract targets

such as black lines on white backgrounds are processed in the same

manner as data from real eyes for determination of the system reso-

lution.

In summary, this prototype version of a video based eye movement

monitor is capable of tracking a contact lens mounted feature with

accuracy and resolution matching existing techniques. At the same

time, it does so at a significantly increased sampling rate. The

lens is safe and sanitary and may be adapted for use in other moni-

toring systems. Further, electronic digital processing and computer

data analysis permit sophisticated analysis of many points per field.

Lastly, it has been shown that this scheme is suitable for implemen-

tation as a real time system for evaluation of many types of eye

movements.
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1.2 Thesis Organization

Chapter 2 presents a brief review of the role of the inner ear in

refining eye movements, especially ocular counterrolling. Chapter 3

details and compares some representative attempts at measuring torsional

eye movements with this work. A summary table is provided as well.

Chapters 4, 5, and 6 describe the methods employed in this research

including descriptions of the experimental equipment and data recording

and analysis techniques. Chapter 7 presents and discusses the results

of this work, including theoretical and empirical evaluations of minimum

resolvable angle for estimation of eye rotation, accuracy determinations,

and certain other key observations. This work is then contrasted to the

techniques mentioned in Chapter 3. Chapter 8 provides suggestions for

further investigation and some conclusions.

A series of appendices are included as well. Appendix A is a

"User's Guide" suggesting step by step operation of the prototype system

from experiment to data analysis. Program output, photographs or com-

puter generated plots of the monitor display are provided. Appendix B

contains listing of the computer programs used in this work. Appendix

C details the considerations that must be made in determining and per-

haps altering the size of the buffers used in data writes to the disk.

Appedix D is an updated summary of a theoretical explanation for the

lens adherence properties. The bulk of this investigation is reported

in my Bachelor's thesis. Some background information on these lenses

is also provided. Appendix E describes certain video signals and

defines video terminology necessary for understanding this thesis.
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CHAPTER 2

INNER EAR AND OCR: DYNAM4IC AND STATIC

The eyeball, supported in the orbit by fascia and ligaments, is

rotated by the ocular muscles around a centroid of rotation whose

locus is within the globe. No fixed center of rotation can be found

due to translatory globe movements and for this reason some feel that

no analysis of eye movements can be made in exact quantitative terms

[Adler, 1965]. Nonetheless, for almost as long as man has been using

his eyes to examine the world about him, those on the outside have been

peering in through -his eyes trying to understand the body within.

From a mechanical point of view, one may consider rotations about

three separate axes: the vertical (z) axis, which produces horizontal

movement; the horizontal (x) axis, leading to elevation or depression

of the globe, and the anteroposterior (y) axis, producing torsion,

clockwise or counterclockwise. Movements about the first two of these

axes can be voluntarily elicited, but it will be one of the involuntary

reflexes of the third axis that will be concern of this thesis.

The vestibular apparatus of the inner ear coordinates and modifies

all voluntary eye movements according to the position of the head in
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in space. These refining influences attempt to provide a stable

and clear image to the retina by repositioning the visual axis.

The inner ear, or labyrinth, consists of two parts: the utricular

and saccular otoliths, and also the semicircular canals. Figure 2.1

shows their apparent position with respect to the auditory portion of

the ear. The maculae in each utricle and saccule are receptor organs

connected to the brain by the vestibular nerve. They consist

of sensory epithelium consisting of hair cells and

supporting cells. and overlaid with a gelati-nous- membrane in which are em-

bedded calcium carbonate crystals called otoconia. These crystals

have a higher specific gravity than their surroundings and thus are

displaced by changes in the direction and magnitude in gravity or

inertial forces relative to the macular plates. Though the precise

mode of stimulation is still contested, it may be said that sensory

cell cilia, embedded within the gelatinous layer are bent by

slight relative displacement of the otolithic membrane. The hair cell acts

as a transducer converting mechani cal. energy- to neural impulses in- the af-

ferent neuron. The frequency pattern of nerve impulses traveling over the

eighth nerve to the brain depends upon the anatomical. spatial arrange-

ment of the two pairs of- otolith organs. and their orientation with

respect to .the actQg gravitoinertial force.

These impulses produce changes in muscular tonus causing postural

changes which persist as long as the head position is maintained. Tonic

impulses also reach extraocular muscles producing compensatory eye

rotations that. maintain the vertical meridians of the cornea
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Figure 2.1

(A) The vestibular system.

(B) Relationship of the two sets of semicircular canals
(from Vander, Sherman and Luciano, 1973).

posterior superior
semicircular semicircular

canal canal

utriol

late ro
semicircular

canal cochlea

A
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in their original primary position, vertical and parallel to each other.

When the head is tilted, the eyes execute these torsional movements

about their anteroposterios axes, so that as the head tilts, the

vertical meridians of the corneas tend to stay erect. This compensatory

torsional movement, known as ocular counterrolling (OCR), is illustrated

in the figures below from Duke-Elder [1973] and Adler [1965]. In

Figure 3a, right shoulder head tilt requires levocycloversion, or

conjugate ocular torsion to the left, be produced by increasing the tone

to the right superior oblique and right superior rectus muscles

(intorsion) and to the left oblique and the left inferior rectus muscles

(extorsion).

A distinction must 'be made between static and dynamic OCR. The

former, as illustrated in Figures 2 and 3, is a long-term static or

DC component of rotation that is thought to be otolithic in nature.

While the latter contains additional movements such as rotatory jitter or

torsional nystagmus, perhaps as a result of information relayed by the

semicircular canals. Most early investigations were concerned with the

static phenomenon since measurement techniques available lack the bandwidth

or analysis capability to handle dynamic information. Miller could only

report that he observed variations of up to a degree. Robinson irrigated

the ear with 42*C water to calorically induce up to 1 degree of torsional

nystagmus at 0.5* per second. Melvill Jones (1964) found 2 Hz roll nystagmus

of, at maximum, 10 degrees in magnitude, by recording eye movements of subjects

in aerodynamic spin. Galoygari et al (1973, 1976)working with tilt and
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A,-~

Figure 2.2 Compensatory
the head.

<->#aS
-4

movements of the eyes on inclination of

Otolith apparatus

IV Nucleus '

I I Nucleus

Sup oblique

Sup. rectus -

lnf oblique
Anf rectus

A

Figure 2.3

Otolith apparatus

IV Nucleus

Ill Nucleus.

Sup oblique,+

Sup rectus

rInf oblique
-nf rectus

The effects of head tilting. A, the head is tilted toward
the right shoulder. In the absence of any compensating
mechanism, the vertical meridians of the corneas are tilted
to the right. B, the otolith apparatus compensates for
this and keeps the vertical meridians perpendicular. Plus
marks; increased tonus of muscles. (From Held, 1966).
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galvanic vestibular stimulation as means of inducing OCR reported

torsional saccades in the range of 0.5 to 8 dearees with velocities

from 100 to 200 degrees/second. Finally, Matin (1964) photoelec-

trically measured 5 minutes of arc from calorically invoked torsional

nystagmus occurring at about 3 Hz.

The following table summarizes these results and will be used

in the discussion of my own results presented in Chapter 5.

AUTHOR SACCADE FREQUENCY MODE OF OCR
MAGNITUDE VELOCITY STIMULATION

tRobinson 10 velocity.0.5 0 /sec caloric
(1963)

Melvill Jones 10 deg 2 Hz aerodynamic spin
(19.64)

Matin (1964) 5 min 3 Hz caloric

Galoygan 0.5 - 8 deg velocities of head tilt, galvanic
(1973, 1976) 100-200 deg/sec

Table 2.1 Reported magnitudes and frequencies (or
torsional nystagmus

velocities) of
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CHAPTER 3

PREVIOUS EFFORTS

Over the years, many methods have been developed for examination

of eye movements. Few acceptable methods, however, exist for monitor-

ing ocular counterrolling. Those that are used are primarily suitable

for static OCR, possessing neither sufficient sampling rate to observe

the dynamic movements nor the practical ability to analyze large amounts

of data.

3.1 Afterimage

One of the earliest and most basic techniques prints a well-defined

afterimage on a subject's retina by shining a bright source or flashing

a bright light in a subject's eyes. Periodic flashes of the light will

leave a trace of afterimages, whose density indicates fixation duration

and the spacing of which indicates the velocity of eye movements.

Since the retinal afterimage moves with the eye, the subject may

be asked to align an object with his afterimage, to achieve a subjective

determination of eye movement. In the same manner, subjects have been

asked to track their blind spots by keeping an object out of sight.

The spot, 20 degrees off the axis of rotation, travels with the eye.

Though no elaborate apparatus or attachments to the eye are

necessary, nor is .he head restrained, these methods suffer from a number

of drawbacks. Flashes of light produce a series of eye movements and
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blinks, and intermittent illumination is required to maintain the

effect. Blind spot tracking is difficult, unnatural and unreliable.

Furthermore, there is some evidence that afterimages induce perceptual

phenomenon (Aubert-Muller) which may cause faulty compensatory eye

movements. In these subjective methods, the subject is interpreting

his own visual impressions and Fluur (1974) has concluded that this

leads to a large uncertainty. More reliable and more reproducible

objective techniques have, therefore, been designed to allow an in-

vestigator to observe artificial or natural landmarks on the human eye.

Tracking of the iris-scleral boundary (the limbus), iral folds

and pigment, scleral blood vessels, corneal reflections and the

retina have all been demonstrated. However, there is a lack of

uniformity from- subject to subject and even for the same subject di-

urnally or for slightly varying experimental conditions. Furthermore,

examination of the- eye has shown that scleral and conjunctival

blood vessels are nearly indisti.nguishable, though one is imbedded in the

globe and the other riding over it; and that iral features contort

with pupil contraction and dilation. To circumvent some of these

problems, drugs have been applied or lights flashed in the subject's

eye to maintain constant pupil diameter.

Fluur used a goniometer ocular attached to a Zeiss microscope to

allow an observer to track these landmarks. This ocular has in its

visual field a hair cross, which can be rotated about a circular

protractor. The investigator attempts to keep track of one or two

iral landmarks as the eye shifts. Fluur contrasted the 3 degree
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variability in this method with 3 to 10 degrees he found in subjective

afterimage indications of movement.

3.2 Photographic OCR Determination

The classic method for determining ocular counterrolling from

photographic recordings of natural landmarks was developed by Miller

in 1962. Magnified test images are successively superimposed upon a

projected image of the subject's eye in a reference state. The com-

parison photograph is rotated until the landmarks on the two images

of the iris are aligned. Miller [1963, 1965] reported a -precision of

±5.3 minutes of arc for determination of static OCR throughout 360

degrees of body roll. Difficulties arise due to required manual

alignment and use of natural features. Yet, this technique has been

implemented in many forms. Hannen et al (1966), Kellogg (1977), and

Diamond et al (1979), among others, have used Miller's technique for

evaluation of photographs taken at a maximum of once every 0.1 second

as the subject was being rotated about his visual axis.

Melvill Jones (1963, 1965) described a cine-photographic method

comprising a forward-facing cine camera with close-up lens mounted on

one side of a helmet fixed to a subject's head by a dental bite board.

This allowed a. sampling of 16, 32, and 64 frames per second and pro-

vided an accuracy of ±1 degree for torsional eye movements. Yet, as

the others, it required frame by frame correlation for analysis, a

task which is monumental and subject to error. Each frame must be

manually correlated with a test frame and then, in some cases,
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correlated a second time with a photographic record of body tilt.

Nonetheless, this method is in use in many forms today and work in

improving it is continuing. Lichtenberg (1979), for example, utilized

fiduciary marks within each photograph as a means of assessing an eye

angle independent of head movement.

3.3 Contact Lenses

According to Young and Sheena [1975], the most precise measure-

ments are made with the use of a device attached to the eye with a

contact lens. Methods utilizing eye attachments, started with work

on animals and incl:uded tattoo marks on the cornea, sutures in the

conjunctiva, and other depositions on the corneal surface. Later,

investigations in thi.s area were extended to humans where corneal

deposition of various gelatinous mixtures or organic matter were

made. These were followed by the placement of mirrors, sheets of

plastic or metal in the eye. But for the most part, modern tech-

niques have concentrated on the use of contact lenses.

Ditchburn cites Orchansky's attempt in 1889 as one of the earliest

recorded attempts at using contact lens like material. In that case,

a metal or glass shell was placed over the cornea. A mirror with a

small hole for the pupil was then fastened to the shell. Light was

reflected from the mirror onto a moving film. Many other investigators

attached mirrors to contact lenses and, in 1956, Fender separated the

mirror from the lens with a stalk which led to the mounting of a large

number of objects on stalks attached to the contact lenses, including
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polarized lenses, various grid materials, and line diagrams (e.g.

Forgacs et al, 1973).

Such systems have been applied to OCR measurements as well. Kamada

et al (1976) placed a number of different transducers on contact lenses

to reflect light such that it impinged on cells in two charge coupled

arrays. Phase differences in the positions of the two arrays are noted

and used to determine the angle of rotation. They report 5 to 8 minutes

of resolution for bandwidths of 200 to 1000 Hz.

Goloygan, Petrov and Zenkin (1973, 1976) studied dynamic cyclo-

torsion in response to pendular motion, and caloric as well as galvanic

stimulation of the inner ear. They reported a 0.1 degree accuracy with

an apparatus consisting of a suction cup, affixed to the eye, which

reflected light onto a slit photokymograph as it rotated with the eye,

Matin (1964) used the electrical outputs from photocells which

measure deflections of beams from two plane mirrors embedded in a scleral

contact lens to get a continuous recording of these orthogonal components

of eye rotations. These outputs were fed into an array of operational

amplifiers, permitting the on-line analog recording of a variety of

mathematical fractions of eye movement. Though, he reports a resolution

of two seconds of arc and flat frequency response from DC to 1.35 KHz,

his use of contact lens mirrors is questionable and his optical align-

ment impractically crucial.

Robinson (1963) introduced the principal nonoptical contact lens

measuring method. A special contact lens is made to adhere to the eye

by applying a negative pressure to the back of the lens. Topical anes-

thesi (ornithine) is administered prior to lens insertion. Two small
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wire coils perpendicularly oriented to each other are embedded in the

contact lens and used to pick up an induced voltage from two large

perpendicular electromagnetic coils surrounding the subject. The

induced voltage, read through wires extending from the lens, varies

only with the size of the eye angle relative to the magnetic field and

is independent of head position with the uniform position of the field.

He was able to note approximately 1 degree of torsional nystagmus and

claimed resolution of 15 seconds of arc at a 1 Hz bandwidth. Collewijn

et al (1975) attempted to improve on this method by devising a flexible

ring which fits on the limbic area, concentric with the cornea. The

ring is cast out of silicon rubber in a special mold. The eye is

anesthetized, the ring wetted with Ringer's solution, placed on the

limbus and pressed firmly upon the eye. Fluid between the eye and the

ring is evacuated in this way and the elasticity of the ring causes

an underpressure which keeps the ring firmly in place. This method

is of great importance since it is free of head movement influences.

Yet, the lens and wires may pose some potential safety hazard.

Both Ditchburn and Young and Sheena concur that there are

important advantages to contact lens systems such as these. With

methods of this sort, eye rotation may be measured at good, if

not best, possible resolution. There are, however, serious drawbacks

which are common to most of the lens techniques. Many do not

adapt readily to observation of torsional motions and all cause

discomfort or have certain associated physical hazards. Mirrors,

wires and metal objects may tear or abrade the eye. Hard lenses of
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any material reshape the cornea. Those methods utilizing negative

pressure for adherence pose considerable danger due to the possibilities

of corneal drying, deformation, deoxygenation, or edema. Worse still,

damage to the accommodation muscles may occur as a result of the pres-

sure stress.

Some lenses are not firmly attached to the eye and thus slip and

wander. Those that adhere rigidly are often painful and difficult to

use with human beings. Subject's vision or experimental results may

be impaired by such lenses as well as by the interference of the feature

with transduction, vision, etc. Many require some form of topical anes-

thesia (e.g. ophthaine (Robinson), tetracaine (Forgacs et al, 1973),

novesine (Collewijn et al,. 1975)) whichis undesirable as it may affect

the eye movements under observation or the process of visual discrimi-

nation. Further, the body's first line of defense (pain) is inhibited

by this shut down of the early warning system and effects such as

abrasion may continue unnoticed and may eventually lead to serious

damage. In addition, there is the expense of providing custom fit

lenses for all subjects, which, when coupled with the discomfort and

inconvenience for use, make hard contact lens systems inappropriate

for use in widespread investigations of large populations.

It is obvious that standard techniques for detecting OCR not only

cannot quantify the effect dynamically, but are also highly unacceptable

for use with humans. Though an ideal monitor would be noninvasive, some

sort of contact lens system is necessary to measure ocular counter-
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rolling for the assessment of otolith function. The use of two "soft"

contact lenses or a feature molded into a single soft lens coupled with

the devised scanning system described in this thesis will allow measure-

ment of this phenomenon without the attendent risks and expenses.

The sandwich of two soft contact lenses about a dark feature such

as a black hair may be made to adhere to the eye surface under appro-

priate conditions. If the pupil is whitened through standard 'bright

pupil' procedures the stable and safe hard lens embedded hair appears

as a high contrast feature mounted to the eye. Current investigations

are proceeding towards molding or casting of the hair into a single

contact lens. Relevant characteristics of the lens material and.

certain chemical and physical phenomena associated with the mechanics

of lens adherence are presented in Appendix D. Below, the objectives

in developing these lenses and the most recent work that has been

done with them is described.
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Photograph 3.1 Video image presented to the VSP of black hair sand-
wiched between two soft lenses mounted on 'bright
pupiled' subject's eye.
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AUTHOR SCAN TECHNIQUE ANALYSIS METHOD SAMLENG BANDWIDTH

MILLER photographic frame by frame
correlation

2 HANNEN 10 Hz

3 MELVILL cine frame by frame 64 Hz
JONES correlation

4 FLUUR goniometer investigator limited by
alignment human manual

frequency
response

5 FLUUR afterimage subject
alignment

6 MATIN photoelectric analog.solution 500 Hz
differential
equations

YAMADA optical 200-1000 Hz
correlation

8 ROBINSON Jsearch coil 1000 Hz

9 GALOYGAN slit photo- time preci-
kymograph sion 70 msec

10 EDELMAN video electronic 60 Hz

Table 3.la Summary of representative methods of measuring

torsional eye movements
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ACCURACY NOISE NATURAL_ CONTACT LENS TOPICAL FLUID
LEVEL LANDMARKS MOUNTED OBJECT ANESTHESIA EVACUATION

1
5.31 X

2 >
30

60' X

4

30 X

5
3 - 10*

6
3" mirrors X X

7
5- 8' mirrors X X

8 15' 'coil of wire X X

9
0.10 light source X X

10
> 6' soft lens-hair

Table 3.lb
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CHAPTER 4

CONTACT LENS MOUNTED FEATURE, VISUALLY INDUCED OCR,
AND EXPERIMENTAL SETUP

4.1 Dark Feature on Bright Pupil

At the outset, it was hoped that a pattern could be placed in the

"sandwich" which would not interfere with subject vision or eye move-

ments and would be safe, comfortable, and easily discernable. Given

the simplest detection scheme, such as a threshold detector, one would

naturally attempt to utilize a straight high contrast transition. Though

different materials, such as thread, plastics, paper, etc., were placed

between the two lenses, concern for comfort and 'sandwich' integrity

suggested that- attention be directed towards small, thin objects, The

bonding properties of the lenses appear (Appendix D) to be proportional

to the surface area. Thus, line targets on a contrast background

material that covered much of the lens were ruled out. Natural features

of the eye were utilized to their fullest to provide the dark or light

background.

The pupil, the eye's "black hole", provided the most promising con-

trast and fishing line, white thread, white hair, and light wire were

placed in the lens as well as fine chemical tubing filled with ophthal-

mological fluorescent dye (sodium fluorescene) and dyed colored thread.

The colored objects were viewed under different light conditions and

through complementary filters, so that, for example, a blue thread

was observed under a blue filter. The blue object appeared lighter
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than the rest of the image and stood out against the background of the

eye. Problems arose due to the width of certain materials. Objects

appeared grossly large and interfered with the lens adherence as well.

Fine wire seemed to be the solution, yet drawn gold fibers initi-

ated safety concerns for on occasion the wire broke through the thinner

contact lens. Human hair, obviously biocompatible, was substituted.

Attempts at using white hair against the black of the pupil, however,

were not successful. Microscopic examination of the hair revealed it

to be translucent and at times little different in appearance from the

contact lens. A black hair against a white pupil was implemented by

means of a 'bright pupil' arrangement. This involves the direction of

a beam of light along the optical axis. Focussed as a point on the

retina, it should return as a beam which entirely fills the pupil,

making it appear white. A Dolan-Jenner Fiber Lite high intensity

illuminator (Model 170-D) projected light through a hood at the end of

which was mounted a near IR (89B Polaroid) gelatin filter, providing

a nearly invisible (dim red) beam. The cable and small black hood are

evident in Photographs 4.2 and 4.3. In a setup requiring television

observation of the eye, the incident illumination is reflected on the

eye by a beam splitter placed in the path between the subject and the

camera (see Figure 4.1).
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4.2 Inducing OCR

Though ocular counterrolling has traditionally been thought of as

an otolithic reflex responding to changes in the gravitoinertial vector

with respect to the head, there is some evidence-itcan be influenced

by changes in perception of orientation. Thus, while OCR is often in-

duced by utilizing the vestibular reflex through actual head or body

tilt or through galvanic or caloric stimulation of the inner ear,

it is also possible to produce OCR through use of moving visual displays.

Thus, a subject looking at the center of a large display rotating

in a frontal plane about the line of sight experiences a number of per-

ceptual, oculomotor, and postural phenomena. A clockwise field rotation

will usually produce a counterclockwise sensation of self-motion known

as vection. In addition, cyclotorsion of the observer's eyes in the

same direction as that of the rotating field and a roll of the

apparent horizontal in the opposite direction of the field are apparent.

Numerous studies have dealt with these effects.

Visually induced eye torsion is typically on the order of 1* to

2* (Dichgans et al, 1972) while eye torsion produced by head tilt

(true OCR) may be as large as 60 to 8* (Miller, 1961).

Finke and Held (.197B) argue for- the existence of relatively

independent processes underlying induced tilt and ocular torsion

during observation of rotating visual fields about the line of sight.

Yet,induced tilt may still be used as an effective means of stimulating

ocular torsion for testing.

A rotating pattern was projected on a wide white screen by placing
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Photograph 4.1 Plastic hemispherical dome mounted on rotating hub.
Light source in dome center projects random pattern
of dots onto a wide white screen.
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a light source inside a clear plastic hemisphere with randomly placed

dots. The dome as shown in the photograph below, was mounted on a

hub which could be variably rotated from 0 to 90 degrees per second.

Brandt et al (1975) investigated the use of such patterns as stimulus

displays. They concluded that the maximum induced tilt resulted when

the ratio of dot area to total stimulus field area was between 15

and 70 percent; a 22 percent dot density appeared to work well. They

also found that stationary contrasts inhibit visually induced self-

motion and that the location in depth of these contrasts has a signi-

ficant effect upon this inhibition. This effect is considerable

when constrasts are located in the background or the moving stimuli,

but weak when appearing in the foreground. For this reason, compelling

circularvection was experienced whether the subject stood in front of

the dome or in back of it, or whether a video camera was visible to

the subject or not.
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Photograph 4.2

Photograph 4.3

Experimental setup; dome dots are projected on the
white screen in the background.

Subject in test position, normally room lights are out
with dome source providing sole illumination.
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Photograph 4.4 Closeup of subject, head restraint and bite board.
Hooded cable is fiber optics bundle with IR filter
mounted on its end.
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4.3 Experimental Apparatus

The restraint setup evident in the above photographs limits head

movements which often occurred at vection onset, perhaps as a form of

compensation. An adjustable chin rest and movable temple pressure

disks are used along with a dental bite board. The bite board is

formed by softening Kerr Dental impression sticks about a piece of

metal. Subjects bite into the compound leaving an impression of their

teeth. The board is held in an adjustable clamp and the entire restraint

setup aligned with the light source and video camera.

4.3.1 Low Light Level Video Camera

The heart of any television camera is its pickup tube. Different

tubes serve different needs. Minimum visual illumination is used to

avoid providing the subject with spatial orientation cues. To achieve

high resolution at such low light levels, a PANASONIC Newvicon tube was

inserted inside a standard PANASONIC WV-200P television camera. As the

spectral sensitivity graph below shows, the Newvicon has a much higher

sensitivity over the visible and near infrared light range when compared

to standard and silicon vidicon. It can, in fact, be used in complete

visual darkness with invisible infrared illumination. This feature

allows us to achieve an especially large bright pupil since infrared

light shows very little in the visible region, causing little pupil con-

traction. The Newvicon has limited blooming of high brightness details

and good picture quality due to high tube resolution, 550-650 TV lines

at picture center and low dark.current level (0.7 nA).
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Figure 4.2 Spectral Sensitivity Chart Contrasting three Panasonic Tubes
(Newvicon tube S4075 used in our set up)

4.3.2 Camera Lens

In viewing the human eye, a number of key issues arise. First,

equipment should be aligned as closely as possible to the ideal bright

pupil arrangement, where the camera is 90' to the light source and the

light source 90* to the eye. The beam splitter in line with the camera

and subject should be oriented at 45* to reflect light into the eye and

at the same time allow transmission of the image of the eye to the

camera. Misalignment in any direction will decrease the amount of

4-

Newvicon S4

Silicon Vidicon 20 PE15

Standard Vidicon 20PE13A200

400
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light reflected into and from the eye, decreasing the illumination

and therefore the contrast. All parts of the system should therefore

be mounted on a single metal table or plate. A wood pallet supported

the prototype set up and no great concern was given to precise and rigid

mounting. This may have contributed somewhat to data variability and

detracted from overall performance. Second, it is critical that one

focus on the feature in the contact lens and not on the eye. This is dif-

ficult but aided by the shallow depth of field of the macro lens; when

the lens feature is in focus the eye beneath is not. Thus, the feature

stands out all the more, providing the video signal processor with a good

target.

Third, in striving to fill the field of view with the iris and

pupil alone, a 1 to 1 reproduction ratio is required. It is important

to keep in mind that this will require a long lens and therefore a con-

siderable mount of light, since when the image size and object size are

equal, the distance to film plane from the lens and from lens to object

must be equal as well. Likewise, the increased distance to the film

plane requires increased light intensity. Use of the 'bright pupil' not

only illuminated the eye at a sufficient level but since it 'fills' the pupil

with light, the field of view contains a bright area corresponding to the

pupil and a relatively dark surround. The camera tube assembly will accept

any C-mount lens such as are used in television 16 mm format. An adapter

is available to mount an 35 mm F-mount lens to this former format. Thus a

high resolution Nikon f2 photomic 105 mm medical micro-Nikor lens
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with extension tube fills the screen with an image of the iris and

pupil alone.

4.3.3 Video Tape Recorder

A high resolution, 330 lines monochrome, video cassette recorder

allows for recording of eye movements for repetitive playback and

analysis at some time after the experiment. If real time analysis

is performed, simultaneous taping will assure that a copy of the

complete data is available. The PANASONIC NV-9300 Vf Rused has
A

adjustable still frame which permits the user to stop on a particular

video field and to manually feed the tape through the recording heads.

This is especially convenient in- examining the recording for detail.
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CHAPTER 5

VIDEO SIGNAL PROCESSOR

An electronic device detects a specific pattern from a video

picture of the eye. It uses a high speed differential comparator

to find high contrast transitions in a filtered and enhanced ver-

sionof the video signal. If the transition occurs within a

user defined segment of the full video scan line, the horizontal-

and vertical coordinates of the transition are transferred to a

digital computer in real time. There, they are stored on an RK05

disk for future data analysis. A quick means of assessing the

operation of the detection is provided by overlaying the comparator

output upon the video image. The key elements of the video signal

processor (VSP) are depicted in the block diagram of Figure 5.1.
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5.1 DC Restoration

The video signal is an amplitude modulated waveform consisting of

video information and blanking and synchronization pulses (see Appendix

E). Though there are regulated standards for the frequencies of these

pulses, the amplitudes seem to vary from camera to camera, at times

drastically. Furthermore, the signal is often corrupted by noise. To

assure that the detection system was analysing a signal with constant

reference, a DC restoration circuit was inserted. The signal, termi-

nated with a 75 Q resistor to ground, is passed through two capacitors

in parallel. Negative excursions, such as sync signals, are then

clamped to a desired level which may be potentiometer adjusted. A

100 KQ resistor to ground slowly (T = 1 sec) discharges the capacitors

to assure that line hum or other artifacts do not erroneously shut off

the diode by pulling the signal high.

5.2 Signal Enhancement

The characteristic rounded pulse-like shape of a hair in a contact

lens sandwich suggests that it may be discriminated from other signals

by some type of matched filter. A resonant, RLC circuit, may be the

best suited, but two RC circits were used to implement a band pass

filter. The enhanced signal was compared with a threshold, set by a

potentiometer voldtage divider. Care was taken to keep all grounds

in close proximity to minimize noise. A high speed differential com-

parator (LM 361) with complementary outputs and independent strobes is
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used. Hysteresis reduced spurious transitidns, leading to a sharper

threshold and some noise and oscillation immunity as well. A 10 pf

capacitor in parallel with the 100 KM feedback resistor eliminates

high frequency spikes.

The comparator output is ANDed with two selection pulses to ex-

clude unwanted transitions, such as corneal reflections, from appearing

as detected features. The first pulse, the 'active line' signal, is

set whenever the current video line is a scan from which data is being

sampled. The second, the 'video gate' is generated by passing the

inverted horizontal sync through two series monostable multivibrators.

It sets a window within the video field whose width and location may

be set by.varying potentiometers controlling the single shot time

constants. The gated signal represents acceptable data and is passed

to the digital coordinate transfer circuitry. It is also used to

'highlight' the video image.

5.3 Highlighting

To provide the user with an immediate assessment of the detection

circuitry operation, the acceptable data signal is overlayed on the

vildeo image. White dots are superimposed upon objects detected on

active lines within the video window. In this manner, the threshold

and window can be adjusted and corrected to provide the optimum data

to the computer.
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Photograph 5.1 Subject mounted Softlens-hair 'sandwich' at VSP video
output (directly connected to video input)

Photograph 5.2 VSP highlighted video output version of photograph 5.1.
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5.4 Data Transfer

To assure data flow integrity, every other line must be skipped.

This provides one video scan's time for storage of data in proper

registers and computer reading of this information. A DIP switch is

used to allow adjustable initialization of the synchronous binary

counter which controls the lAine sampling rate. The count starts from

this initial value and proceeds up to 16, whereupon the carry output

is set activating the rest of the circuit as well as reloading the

counter to the initial value. The activation includes enabling of

the X-coordinate register and the updating of a counter that counts

the number of comparator 'hits' per scanned video line. This four

bit binary counter notes up to 16 comparator accepted images on a

line. Its lower two bits (s0, s1) are used as the write addresses

for the X-coordinate storage registers. The s, s l directed transfer

of the count value from the X-coordinate counter to one of the four

files takes place only when the latches are enabled. The formation

of this pulse is depicted in Figure 5.2.

Computer data rate limitations constrain the amount of data that

may be gathered in a given time. In the present configuration, the

LPS is only fast enough to get one X,Y pair every two scan lines.

Thus, if every other line (EOL) is to be sampled, only one of the

four horizontal coordinates may be read along with the scan line value.

If additional lines are skipped, as they may be set by the DIP switch,

more points may be taken per line. This choice between points per

line and lines per frame may be eliminated by implementation of a num-

ber of the suggestions in Chapter 8.
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The horizontal position counters are cleared by the horizontal

sync pulse extracted from the video waveform by the 6280A video to

analog converter. This module, which is produced by Optical Electronics,

Inc. (OEI), provides video output, separated vertical and horizontal

sync pulses, vertical and horizontal ramps and blanking pulses, from

a composite video input. Some of these pulses are used to clock various

states of the circuitry in the device so that the electronic pro-

cessing is in synchrony with the video image. It is set for standard

television rates of 16 msec fields and 63.5 sec lines, but may be

adjusted for other frame rates and sweep times.

While most of the clocking in the circuit is set by the module

or signals from other components, the system sweep time is set by an

external clock. A 10 MHz crystal oscillator provides a clock for the

image position counters. At this rate, the horizontal coordinate

binary counters sample a 63.5 wsec video line approximately 635 times.

The counters are cleared by the horizontal sync pulse and therefore

count out points along every video line.

When the comparator signifies that a point is part of the desired

pattern and the line counter circuit notes that the current line is

desired or active, an enable pulse is formed to control the data

acquisition. This pulse enables the LS670 storage file to accept

counter data. The following timing diagram illustrates how this pulse

is established to sample points only along active lines.
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The Y-coordinate or vertical position represents the line on

which the detected image is found. It is read from two counters,

clocked by the horizontal sync pulses and cleared after every field.

This establishes a 60 Hz image refresh rate. A flip flop is

available to halve this rate to 30 Hz.

Together, the horizontal point and vertical line counters

establish the smallest video image element or pixel. The computer

polls the storage registers and Y counters for data points. records

their values on a disk and reconstructs the 'highlighted' video image.

I

i
I
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Three types of data are, then, eventually stored in the computer;

12 bits of X coordinate, 8 bits of Y coordinate data and 8 bits of

state information. Multiplexers select the data and pass it through

the inverter buffers to the LPS of the PDP 11/34. The type selection

is specified through the four lower order bits of the computer's Digital

Output Buffer; bits 3 and 2 are used for the line select addresses,

while bits 1 and 0 specify which of the four register files in the

three storage latches are to be sent as X data. The lower bits func-

tion as read addresses in the same manner as the write addresses. When

RA and R8 are both set to 0, the first register file is opened and

used as the X-data line into the line multiplexers. Schematics detail-

ing all components of the processor are presented below. The following

chapter discusses software and control of the video signal processor.

Register sheets summarize the form of the three data types and a block

diagram is provided to illustrate the synchronization of the computer

and VSP. Device operation is described in the User's Guide of Appendix I.
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CHAPTER 6

VSP DATA TRANSACTIONS

In this prototype version data is stored in real time and analyzed

later. That is, if a camera or video tape recorder is supplying a

video signal to the VSP, the processed data can be written onto an RK05

disk at the 60 Hz video field rate. Once stored, extensive and repeti-

tive processing can be used to extract the feature angle for each field.

The real time analysis system would bypass this intermediate step by

using a dedicated processor (microprocessor or minicomputer) to provide

the angle in real time. The speed and processing requirements of such

an analysis exceeds the capabilities of the PDP 11/34 available for this

work. In addition, since this thesis represents the preliminary phases

of a major project, it is logical to split the data analysis development

into two distinct tasks. The first - investigating means for data

transfer and the second - approaches for analyzing the data.

This separation makes it possible to establish the optimum

analysis techniques- independent of problems associated with high samp-

ling rates. The same data may be evaluated many times with different

schemes or for the same scheme with different parametric values. When

the most effective method is found, the two tasks, transfer and analysis,

may be combined and consideration given to real time implementation.

Linear regression provided the most acceptable results to date; yet,
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a more complex polynomial fit may better suit the curved contact

lens mounted feature.

The block diagram above illustrates the various data modalities

and processing options available to the user in operation of the

system. These include the choice between analysis of direct versus

recorded video data and selection of different data handling modes.

Names of the software routines are listed next to the tasks they

control. Each option is described in this chapter along with a

description of the challenges presented by the processing constraints

and the compromises they necessitated. Segments of the implemented

computer programs are presented to provide the reader with some

appreciation for the. structure of the code necessary for data transfer.

Complete listings may be found in Appendix B. A flow chart emphasizing

the synchronization between the computer and the VSP is included

here as well.

6.1 Data Transfer

Vertical and horizontal coordinates of a detected image are passed

from the VSP to the computer under the direction of the DEC Lab Peripheral

System(LPS). The LPS is controlled by a computer program which initiates

the sampling after assuring that the VSP scans are synchronized with the

LPS reads. Real time writing was accomplished by first placing the data

in one of two memory buffers. As one buffer is filled, an asynchronous

write is started and the second buffer used for data acceptance. In

this manner, data is read at 60 Hz and formatted such that each field

establishes a disk block 200 words long.
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The Lab Peripheral System data register module (LPSDR) controls

LSP Input/Output. Its main functional units include a 16-bit buffered

output register, a 16-bit input register, a status register, and an

interrupt control section. The output register may be loaded from or

read into by the central processor. When loaded, the register initiates

an INTernal NEW DATA READY signal, a zero going pulse of 1 psec duration.

This pulse is placed on the output lines in addition to the 16 data

lines. The external device interfaced to the LPS receives the data and

issues an EXTernal DATA ACCEPT signal, indicating that the output reg-

ister may now be loaded with new data. Receipt of that signal sets

the output flag of the status register and, if the output interrupt

enable bit is set, causes an interrupt.

To load the input register, the external device applies data to

the lines and generates the signal EXT NEW DATA READY (ENDR), which

loads the register and sets the input flag of the status register.

When the central processor has read the data, the signal INTERNAL DATA

ACCEPT is transmitted back to the external device, which can then send

another ENDR. If two signals are sent before the first is acknowledged,

data from the first signal is lost.

In our system, a software I/0 'handshake' generated the EXTernal

NEW DATA READY pulse. Bit 4 on the digital output line is connected

to the ENDR pin at the I/0 interface. A software pulse is generated

by alternatingly setting and clearing this bit. Bits 0 and 3 are used
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TABLE 6.1

LPSDR Input/Output Pin Assignments

Digital Input,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

RDY

Pin Digital Output

Ground

INT NEW DATA RDY

EXT DATA ACC

EXT DATA 03

EXT DATA 00

Ground

EXT DATA 05

EXT DATA 07

Ground

EXT DATA 10

EXT DATA 14

EXT DATA 04

EXT DATA 06

Ground

EXT DATA 02

EXT DATA 01

Ground

EXT DATA 08

EXT DATA 11

Ground

EXT DATA 15

EXT DATA 09

Ground

EXT DATA 12

EXT DATA 13

Ground

EXT NEW DATA

INT DATA ACC

IN DATA 03

IN DATA 00

Ground

IN DATA 05

IN DATA 07

Ground

IN DATA 10

IN DATA 14

IN DATA 04

IN DATA 06

Ground

IN DATA 02

IN DATA 01

Ground

IN DATA 08

IN DATA 11

Ground

IN DATA 15

IN DATA 09

Ground

IN DATA 12

IN DATA 13
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Figure 6.2
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to instruct the VSP as to which data is to be provided to the data

multiplexers and from there to the LPS interface. Bits 0 and 1

select one of four possible horizontal hits by directing the LS670

through its read pins RA and RB, while bits 2 and 3 specify the type

of data to be sent along the input lines from the LS153 4 line to 1

line multiplexers to the I/0 interface. Thus, when the DOB presents

an OOXX to the VSP, horizontal data is presented to the LS153's from

the LS670's. XX determines which of the first four comparator hits

along a vertical line scan are to be sent; 00 hit 1, 01 hit 2, etc.

If, instead, a 01 in bits 2 and 3 of the DOB requests the Y,

vertical coordinate of the line and a 10 requests status information.

This includes the number of hits per line and state of the ACTIVE FIELD

and ACTIVE LINE signals. the register sheets above summarize these

different buffer modalities.

The following segments of the data transfer computer program may

explain the actions described above still further.

DIGITAL OUTPUT
BUFFER ' ENDR PULSE

bits 4 3 2 1 0
MOV # l,@#DOB ; 0 0 0 00 Get second

MOV #21,@#DOB ; 1 0 0 0 0 horizontal

MOV # l,@#DOB ; 0 1 0 0 0 hit coordinate

MOV @#DOB,RO ; Read data on input lines in software register 0

As noted, VSP status information is also provided. This data is

used to evaluate the signal processor's operation and to synchronize

the VSP and LPS before the reads take place. The four lowest order
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status bits are the number of comparator detections for a given line.

They may be used to assess the proper level of the comparator thres-

hold. A very large number signifies that the threshold is too low

and too much of the image is being passed as the tracking feature,

while a very small number or 0 might indicate the reverse. Though not

currently in use, a feedback loop may be implemented to control the

threshola in this manner.

Bits 6 and 7 are used as synchronization pulses. They are examined

prior to data sampling to assure that this sampling starts at the top

of a video field and that data may be read from the beginning of active

lines. The machine code fragment below illustrates that by looking

for a transition in the AL or AF signals, data sampling will occur at

the correct places and not wi thin an active field or line.

MOL: MOV #10,@#DOB ; generate ENOR pulse and ask
MOV #30,@#DOB ; for VSP status information
MOV #10,@#DOB
MOV #DIBRO ; read digital input lines
CLR @#DGS ; clear digital status register
BIT #100,RO ; is bit 6 set?
BEQ MOL ; yes, loop since middle of AL

; no, wait since on nonactive line

NAL: MOV #10,@#OOB
MOV #30,@#DOB
MOV #10,@#DOB
MOV #DIB,RO
CLR @#DGS
BIT #100,RO ; is bit 6 set? No, loop till
BNE NAL ; Yes signifying transition to AL

The same code is used for AF synchronization by changing bit test

query to BIT #200,RO; examining bit 7.
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This scheme, however, presents severe drawbacks, for every time a

line is to be scanned a full series of synchronization evaluation

instructions must be executed along with the actual data read. Chapter

6 discusses means of eliminating some of this code and allowing added

time for actual data sampling.

In short, the horizontal coordinate of a comparator hit is recorded

alone, with its scan line position once synchronization has verified

that sampling may be initiated. Currently, 99 such lines are scanned

per field. A field counter recorded at the start of each field and a

termination indicator at the end are added to yield 200 words of data

per field. This is executed- every 16 milliseconds, at the 60 Hz video

field rate. Normal WRITEs to disk are therefore ruled out, since they

require 350 msec- for completion.

Instead, a dual buffering scheme has been set up to work with

asynchronous WRITEs. These writes to disk occur when time is available

and allow for continued independent program operation requiring only

that enough time for the write be allocated before the next write request

of that save variable. Thirty-two video fields are written into a

memory buffer, and when filled, a write is initiated and the second

buffer called upon to receive the next thirty-two fields. When it

is filled, its write is initiated and the first buffer, already written,

is once again ready to accept more fields to repeat the cycle.

The disk, handler queue has been expanded to accept additional

write requests.' This assures that write requests will not be blocked

by other processes. At the same time, interrupts are locked out during

data sampling so as not to disturb data transfer from the VSP.
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Appendix C describes the choice of buffer size and a description

of the operation of the collection and storage routines may be found

in the systems user's guide. Precise details as to the workings of

the DEC-Lab Peripheral System may be found in the LPSll-Laboratory

Peripheral System User's Guide (DEC-ll-HLPGA-B-D).

An overview of the transfer procedure as implemented in the soft-

ware is depicted in the flow chart id Figure 6.1 '1

6.2 Data Analysis

Once data has been recorded on disk, movement of the feature, as

represented by the data, must be extracted. The main concern of this

work is the evaluation of purely cyclotorsional eye movements; torsion

about the anteroposterior axis. Thus, an angular shift from field to

field must be assessed. To do this, a line is fitted to the data

and an angle computed for each line. Artifacts such as noise and

the curvature of the line feature required that certain points be

rejected before the fit. This chapter discusses the problem noted

above, the considerations that went into implementation of the

existing analysis routines and suggestions for future development.

Various forms of line fit were investigated. Regression analysis

provided the most effective means of filtering data and rejecting

outliers. In addition, though it is now linear in nature, it may be

expanded to higher order terms with few modifications.
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The linear regression routine defines a slope b and an x-intercept

for each field. These values approximate an actual first order linear

regression of the form X = A + BY. The regression on Y is used because

this system is searching to locate the horizontal coordinate along a

given vertical line. Quiie conveniently, the targets are near vertical

also dictating desirability of an X on Y regression. A standard devi-

ation of the horizontal coordinates from the regressed results is used

on repeated passes through the same data to reject points lying outside

a specified limit, as illustrated in the figure on the next page. The

limit is composed of a user specified multiple,, S, of the standard devia-

tions o , plus some fixed constant A, which may also be varied at execu-

tion ttma;. so lim. = Sax +A. A vertical software window simultaneously

excludes noise points from regions above and below the actual feature.

The user may repeat the analysis along the same field of data as

many times as desired before moving on to the next field. Noise free

signals will require only one or two additional passes after the first,

while noisy images may need several iterations for best fit. (See

results section for discussion.)

At the program start, the user is queried for the data file to be

analyzed and a file name for the data file into which the linear regres-

sion parameters are to be entered. A second query allows for limitation

of the number of fields. Thus, the entire data file or only a small

segment of it may be analyzed. The analysis currently starts from the

first field, but the simple adjustment to the program code will allow

for examination to start on any field, as is the case in the program

SP.FOR that permits data viewing.
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Figure 6.4 Data collection flow diagram emphasizing computer-VSP
synchronization
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6.2.1 Vertical Window

Very often bad data will appear at the top andbottom of the video

field. These points may represent a region of the scan above or below

the pupil, or that part of the pupil with no target across it. An ad-

justable vertical window can be used to delimit valid data. The window

limits may be specified with a light pen sighting or through specific

reference to a certain scan line. If the light pen is used, the system

operator is asked to pinpoint two points from a display of the first

field of data. The program searches the data array for the actual point

closest to the light pen indication and then takes the scan lines they

lie on as the top and bottom boundaries of the window. After selection,

the window limits are displayed against the data points to provide the

user with an illustration of the possible effect of rejecting points out-

side the window, and the opportunity to reposition these boundaries.

6.2.2 Data Rejection

When the window is set, the analysis begins. Horizontal data

points, starting from the top of the window, are compared to what is

predicted from the previous pass's linear regression. If the difference

is greater than the limit mentioned above, the point is excluded from

analysis for that field. If two or less points remain, the entire field

is rejected. The first pass through the first field is a straight re-

gression with no point rejection. While the first pass through for each

field after that uses the last field's standard deviation in its limit.
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Each successive pass of the same field uses the previous pass's linear

regression line and standard deviation forcomparison.

The slope and x-intercept are determined from N accepted points

in NF accepted fields to provide the fit x = a + by, where

Ex.

a = x

b1 A

A

N

zy.

N

zy.

zyi

zyz

1

zx.i

_y.x.
11

1y

[Eykx - Eyizy x ]1

[NEy x - y)x ]

L y -(1 )1

This has been simplified for computational purposes to

1969; Draper and Smith, 1966; Brown and Hollander, 1977):

(see Bevington,

b N* Zyix -zyjxj

N*y - (Ey )2z

x - bry.
and a =

N

Finally, an angle for the line may be determined by adding 900

to the arctangent of the slope. The 900 is needed to bring the computer

acrtangent function into the regions corresponding to the video coor-

dinate system where positive y is down the screen, since the scans are

generated starting from the top.
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6.2.3 Scaling

In standard television systems, the aspect ratio, or the ratio of

frame width to frame height is 4 to 3. Furthermore, increments in hori-

zontal direction do not equal those in the vertical. A 10 MHz crystal

controlled clock establishes 520 samples along the 52 usec of each of

the 240 scan lines in a video field. Thus, before any analysis takes

place, it is essential that the X and Y video be normalized to the

same units. A scaling constant, DK, has been determined to be equal

to 0.6745 from normalization of a 450 line. If desired, this value

maybeedetermined afresh before each experiment to account for camera

variations.

6.2.4 Statistics

The analysis routine also generates a series of statistical

parameters that provide indication of the accuracy of fit. This

information is provided at the completion of the regression, where-

upon the user is given the opportunity to rerun the analysis for a

different series of parameters. If he chooses not to do so, the

program is terminated and the regression parameters and summary

information written into the data file specified when the program

was started.

This summary includes: the number of fields analyzed, as well

as the number and location of the fields rejected; the vertical win-

dow limits, top and bottom; the user specified number of intrafield

standard deviations to be used in point rejection; and an average
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slope, standard deviation from this average for all fields, and the

average standard error of angle estimate.

190 fields 2 loopsy line 1 t 89
had limited excursion of 0.9330 rt. s.d.s + 5.000
averaEe slope= 105.72 ds1rs, s.d. from -:::slope::-= 24.352 minIs

average standard error of anijle estimate= 12.615 mins

0 Fields were rejectedy includins numbers4

Number of Fields

Some fields are rejected because they contain noisy data, others

because the fit is bad, etc. The number of fields analyzed is thus

presented along with the number of rejected fields.

Average Theta and Standard Deviation

Associated with the analysis of a large number of fields is an

average angle e and an estimate of the standard deviation .from this

mean, ^.
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NEF

= e . /)q where NSF = starting field
i=NSF

NEF = end field

including only the accepted

fields

and 
NEF

N-1

The angle estimate e should only be regarded as an estimate of the

true angle e which maybe obtained from the regression of the data points.

The reliability of this estimate may be evaluated by computing a confi-

dence interval for e. This will provide a means of assessing how much

faith should be assigned to this angle estimate.' Such an interval may

take the form of

, n-2

where the value ta/2 is the upper a/2 percentile of Student's t-distri-

bution with n-2 degrees of freedom, a is the standard error of the

angle estimate, and 100*(l-a) is the confidence coefficient.

There are a number of ways of estimating the standard error of

0 only two of which were utilized. Both require knowledge of

the standard error assodiated with the regressed estimate of the

linear fit.- This is equal to the ratio of the standard deviation of

x after it has been regressed on y, to the sum of the deviations in y.
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ax,y
b NEF

i=NSF 1

where
NE F\

a =1C' Z (x. [a + byg)]
xty f=NSF

N-2

Note, two degrees of freedom are lost, one for the determination

of the regressed values and the other for the error estimate.

A conservative estimate of Fe may be found by determining a

minimum and maximum angle for each fit based on the low and high limit

errors of estimate about the regressed slope. In short, for

b+ = b + Cb' + = tan' (b+)

b_ = b - Fb2 e- = tan 1 (b)

The standard error of angle estimate may then be thought of as the

averaged difference of these two angles, or, E: = (0+ + 6_)/2, as

depicted below.
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b/b -

Figure 6.5 Illustration of e as computed by averaging the difference
of maximum and minimum possible angle estimates

Problems arise with this due to the non-linearity of the arctangent

function. To a first approximation, however, this provides a good

estimate of e.

A second means attempts to bring the standard deviation of the

slope through the arctangent function, by relying on the following

argument.

For y = f(x), the first term of a Taylor expansion will provide

y = yO + f'(x 0)(x - x0 ) where y0 = f(x0)

leading to

y - y0 = f(x0)(x - x0 ) and

Ay = f'(x 0) Ax

If we let y = e and x = b and allow the differentials to represent the

standard errors then

e = f'(b) Eb

If f(b) is the arctangent function, its derivative with respect to b is

1/(1 + b2). Thus, Fe = (1/1 + b2)Eb radians. This is only a linear-

ization ignoring higher order terms. However, since we are dealing

with extremely small deviations, the estimate is reasonably valid.
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Both methods were implemented and yielded approximately the same

results. Yet, because of the non-linear arc tangent function, the second

was favored and used in the reported results for tracking of a contact

lens mounted feature and a moving abstract target.
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CHAPTER 7

RESULTS

A series of tests were performed to characterize the performance

of the system as it might be used for the measurement of ocular counter-

rolling. Though far from extensive, they included: assessment of minimum

resolvable angle and accuracy or goodness of fit. Evaluations were based

on analysis of static straight lines, rotating straight lines, and con-

tact lens mounted features adhered to a subject's eye. This chapter

presents a summary of these experiments and some theoretical limitations

of the system and- then contrasts them to other techniques for measuring

OCR as discussed in Chapter 3.

7.1 Theoretical Resolution

The use of video not only imposes the 60 Hz field rate but a

vertical resolution of approximately 1 in 480 as well. The 10 MHz

clock rate allows for 520 divisions along each active part of a video

scan line. This leads to a 1 part in 520 horizontal resolution.

With this information, it is possible to establish a theoretical

minimum resolvable angle, $ . A most conservative estimate can be found

by linking two endpoints to form a line and then rotating the line through

' about one endpoint such that the other is displaced a single horizontal
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element AX. Thus, p = arctan which maybe simplified to Ap X
AY

using the small angle approximation.

-AX -

AY

where AY is the number of scan

lines intersecting the tracking

feature

Figure 7.1 Minimum resolvable angle, p, as determined by rotation
about one endpoint.

Ninety-nine scan lines may intersect a given feature. Since every

other line is sampled and because of the interlacing of field lines in

a video frame this represents a possible high AY, of 396 lines. If

AX = 1, after normalization ' = 5.8'. This value only represents what

may be expected from an analysis joining only the two endpoints.

It may even increase if one were to require that the center of rotation

lie on the feature itself. In this case, as depicted in Figure 7.2

below, ' is doubled to 11.6'.
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Figure 7.2 Minimum resolvable angle, p, as assessed from rotation
about a point along the feature.

Still further, the angle may increase if a curved feature occupying

less of the video field is used. Thus, it is essential that additional

points be used to demarcate the feature. These extra values will not

only average out the probability of error associated with assigning a

detected point to its actual value, but will also allow for the dis-

crimination of line features with horizontal excursions less than A X.

Susceptibility to large deviations from the mean will be minimized and

the problems that other techniques which use only 2, 3, or 5 points per

image avoided. Chapter 8 provides some suggestions as to how further

points may be achieved. Nonetheless, better than 6 minutes of arc has

been resolved with the present scheme.
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7.2 Empirical Resolution

As an empirical determination of the minimum resolvable angle, an

abstract target consisting of a black line on white background was

attached. to a protractor accurate to 0.1 degree. Angles were deter-

mined after rotating the protractor -arm the smallest

discernable angle. Repeated tests indicated that when the protractor

was displaced a tenth of a degree, the system indicated precisely this

amount. Rotations on the order of 3 minutes were observed by rotating

the protractor less than the smallest demarcation, but due to this

limit in demarcation, no exact measurement less than 0.1 degree could

be made. It is felt that the system is capable of discerning these

smaller movements but characterization of such is unnecessary due to

the variabilities and uncertainties introduced by other parts of the

system. These include not only electronic noise and computational

error but also astigmatism in the camera tube and vibration

of equipment that was. secured to a wooden base. Nonetheless,

this experimental evidence falls close to the theoretical computation

of the minimum angle presented above.

7.3 Fixed Straight Line

Numerous fields of stationary lines at orientations from 0 to 1800

were examined by the system to establish system accuracy and repeata-

bility. Over 190 fields average deviations from mean angles were

found to range from 1 to 5 minutes, increasing as the feature was

rotated farther and farther from vertical. This increase corresponds
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to the decrease in the number of scan lines intersecting the feature.

At approximately 15* and 165*, as measured from the horizontal, so few

lines crossed the target that no line could be fit with assurance

greater than a few degrees.

The decrease in lines and eventual 'drop out' indicates that the

best orientation for any target should be near vertical.

The standard error of angle estimates E6 used as an assessment

of goodness of fit. Both methods discussed in the last chapter were

implemented and both found to vary from 0.1 to 2 minutes of arc,

and. increased with non-vertical orientation.

The test data was, for the most part, so noise free that only

one or two points out of the total of 99 did not lie directly on the

target. These points were easily rejected by large ranges of values for

S and A. One had only to be careful that for targets at about 90*, A

not be set to zero. In this case., most of the points lie on X ,..and

a becomes negligible. Thus, Sa plays little, if any, part in point

rejection and if A = 0, a point limit of zero would be set into effect.

The figure below is a characteristic hard copy output generated by the

routine that overlays the regressed line upon actual data. The vertical

window is also depicted and in this figure.

7.4 Rotating Straight Line

The same lines used in the fixed case were mounted on a hub

capable of being rotated at speeds up to 90* per second. Tests per-

formed indicated that the system' could reliably track rotations
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at these velocities, Drop outs occurred, as before, as the line rotate&

toward horizontal where few points could be deciphered as belonging to

a line. a was no longer a valid statistic since the line was rotating

and T signified only the mndrange of rotation. e ranged from approx-

imately 1.0 to 5 minutes within regions where analysis could be performed.

S values of 0.933 to 2 worked best with A's of 5 to 20. The second

method of computing E:, that setting it equal to 1/(l+b2 ) * eb was used

in these tests to avoid problems associated with the nonlinearity of the

tangent function. Quite understandably, E. varied with angle. For,

when b increases, the feature is becoming more vertical, more lines are

intersecting the target and both 1/(l+b 2) and Eb decrease slightly.

The photograph below shows a plot of G versus time for a line

rotating 15*/sec. Abcissal tick marks occur every 0.1 sec and on the

ordinate every 5*. One may notice that at 1 second e has indeed

increased 15*, 2 seconds 300 and so on.

7.5 Subject Contact Lens Mounted Feature

Two subjects were placed in the experimental setup a number of

times and both experienced compelling circularvection showing a variety

of eye movements. The most important for this work was an apparent

rotary nystagmus or jitter overlayed upon a static cyclotorsional shift

in eye position. The movements were quite fast but observable on video

tape , usually just prior to vection or soon after losing it.

e for regression in contact lens features ranged from 7 to 20

minutes of arc. Larger values representing noisier signals with a number
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Photograph 7.1 Orientation angle versus time, plot for a line rotating
at 15*/sec
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Figure 7.2 Eye angle versus time plot of what may be OCR or i
torsional saccades.



Figure 7.4 Two overlays of fitted lines to data extracted from contact lens mounted features.

LO
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of outlying points and variations along the detected line. A A of 5

was usually used with values of S ranging from 0.933 to 2 and together

with two iterations provided the best answer in most cases. It is not

clear at this time what affects small values of S have. If S is set to

less than 1, artificial biasing of the fit may occur. Further study of

the effect of variations in these parameters must be done. A regressed

line-data overlay is provided as an example of the fit in Figure 7.4.

Photograph 7.2, of eye angle versus time, seems to show saccadic

movements, 1.5 to 2 degrees in magnitude at a frequency of 10 Hz. These

movements, as noted, were observed on video tape as jerky rotary eye

movements. Though, it is not clear that they represent ocular counter-

rolling in the strict sense of the word, they do fall within the wide

range of frequencies and magnitudes reported from previous experiments.

A summary of the discussion in Chapter 3 is repeated here to highlight

the variation.

Robinson (1963) irrigated the ear with water at 47*C to calorically

stimulate almost a degree of torsional saccades rotating half a degree

per second. Matin (1964) invoked 5 minute 3 Hz nystagmoid motions

through vestibular caloric stimulation. Melvill Jones (1964) brought an

airplane into aerodynamic spin to elicit 10' roll saccades at 2 Hz. More

recently, Galoygan et al (1973, 1976) found 0.5-8.0* of OCR at velocities

ranging from 100 to 200 0/sec by using both head tilt and galvanic and

caloric inner ear stimulation.

Thus, large variations in observations of dynamic OCR have been

recorded in the photographs of eye angle Versus time fit within the

range of these values. The observed 1 to 2 degrees in magnitude
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closely follows Finke and Held's (1978) observation of visually

induced 'static torsional nystagmus. The 10 Hz frequency may seem a bit

fast but extrapolation of Galoygan results yield a range of 12.5 to 400 Hz.

Nonetheless, it is hoped that further investigations will verify the

finding of this work. It is important that more rigid and secure

experimental apparatus be used along with implementation of a number of

other suggestions presented in Chapter 8. Yet, what is clear is that

significant components of roll nystagmus may very well be found at

frequencies higher than 10 or 15 Hz. The most commonly used torsional

measurements accomplished through extensions of Miller's photographic

technique have,, at best,a 5 Hz bandwidth. Thus, serious consideration

should be given to reassessing existing practices.

7.6 Summary of System Performance

- A minirmuwresolvable angle of better than 6 minutes was

observed in. analysis gf abstract targets. Accuracy tests indicated

a maximum of 20' for contact lens images and minimum of .1' for a

fixed straight line. (See Table 7.1) Student's t-testfor 64 to 90

points on a line provided an average confidence interval of approximately

half a degree with 99% confidence. Finally, system stability of 1' - 5'

was observed for analysis of 190 sequential fields of a fixed line

target. In addition, no difference was noted in the analysis of the same

numerical data. That is, once the data was collected, the same analytical

parameters yielded the same results on any run of the analysis routines.
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Minimum Resolvable Angle

FIXED LINE 1-5

ROTATING LINE

CONTACT LENS FEATURE

<0.1 * (6' of arc)

e

' 1-2' of arc

- 1-5'

- 7-20'

Table 7.1 Summary of System Performance
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7.7 Contact Lens

The second aspect of this work was the development of a contact lens

mounted feature. As described above, numerous objects were used as tracking

targets before they were replaced by thin human hair. This feature provides

a high constant image against the brightened pupil. The lens adheres on the

average of 20 to 30 minutes after initial placement in the eye. Excessive

tearing or blinking may cause the adherence to the eye to decrease, but at

.all times the lens sandwich remained intact. Further, the lens can easily

be reattached by administering a few drops of distilled water.

The bottom lens of the sandwich can become slightly dried out on

occasion. This leads to a slight puckering of the lens and greater

adherence in a few spots.' These spots appear as dark images to the video

system but are easily eliminated by a voluntary blink. This last action

smooths out the lens somewhat and refreshes it with tears. At the same

time, however, it may decrease the duration of adherence. Ongoing

research into a single lens molded about a dark fiber is expected to

-.alleviate it, not eliminate this problem. Further details on this are

in the next chapter.

In general, the lenses are easy to handle and quite tolerable to

wear. Both subjects participated in experiments after wearing the lenses

for the first time though neither had worn contact lenses before. One

subject became quite adroit at inserting and removing the lenses by

himself. It is, however, recommended that a second person aid in

placement to assure proper alignment. A further modification, as

discussed in Chapter 8, will allow for quick assessment of the contact

lens feature orientation.
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7.8 Comparison of Technique with Previous Methods

Table 3.1 summarizes some of the representative techniques for

measuring OCR as discussed in Chapter 3. Three major concerns are

used as points of focus, including: sampling rate or for continuous

systems bandwidth; accuracy, which in some cases was reported as a

noise level; and ease and safety of operation. This last category

should not be overlooked, for in many ways it may affect the

results and analysis. Schemes that require extremely precise optical

alignment are not acceptable. Furthermore, though Robinson, Matin and

Yamada provide a real time readout, their use of mirrors and coils in

contact lenses poses safety problems. They all also require topical

anesthesia. -

All methods but the two reportedbyFluur which rely most heavily

on human observation of direct eye movements have an accuracy of a

degree or less. Photographic techniques suffer because of length

of time from experiment to results. Film must not only be processed

but analysed frame-by-frame. In addition, the maximum sampling rate

of 10 Hz may miss the fast eye movements such as rotatary nystagmus.

Melvill Jones 64 Hz cine-photographic scheme expands the rate but still

requires frame-by-frame correlation and even at that suffers from

an accuracy of + 1*.

In summation, the two major developments of this research, the

VSP (hardware) - data analysis (software) electronic processing and

the soft contact lens mounted feature establish this work as a viable

alternative to existing techniques for measuring eye movements. The
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use of a video camera provides a 60 Hz data rate, and the option of

electronic processing circumvents the time, limitations and errors

associated with manual alignments by utilization of many points per field.

In addition, the system may be used to track a number of eye movements

and adopted to other areas ,of scientific research.

Furthermore, the feasibility of a real time dedicated device of

this nature has been illustrated.

Secondly, a soft contact lens has been developed that not only does

not require topical anesthesia but is also safe and easy to use and

readily adaptable to other systems.
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CHAPTER 8

SUGGESTIONS FOR FUTURE INVESTIGATIONS

A prototype model of an instrument capable of monitoring torsional

eye movements has been built. Many aspects of the project are open for

improvement. In the following discussion, I have detailed some of the

more promising ones.

Aside from the verification of results and further study into

matters such as analysis control parameters, the most critical problems

arise because of timing constraints of the PDP 11/34. Upgrading of the

present computer with, for example, DMA interface to the unibus may be

considered. However, it is hoped that eventually a stand-alone unit

will be developed. This might require more sophisticated digital hard-

ware or may involve the use of a microprocessor. If the remainder of

the system simplifications and suggestions are implemented, it is pos-

sible that such a device could be built.

8.1 Monitoring Other Eye Movements and Head Immobilization

This video method is not limited to tracking ocular cycloversion

alone. It can, in its present form, monitor other types of eye

movements. Vertical and horizontal nystagmus are two important

measures of vestibular function which can be observed. The regression
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yields a center of gravity (the first moment) as a pair, TY, as well

as A the X intercept. Preliminary tests have shown the horizontal

translation may be observed by noting the change of A or T with

time and vertical nystagmus by tracking.Y. No data is currently

available but these movements, slower than rotatory nystagmus, most

assuredly may be traced by the system. One must, however, assure that

the center of moment is indeed the feature's center or rotation. This

can be accomplished by allowing the entire line to fall within the

verti-cal window.

As noted in Chapter 4, data variability can be decreased by

aligning the light, camera and beam splitter precisely, as well as

securing them properly. In this work, a wooden pallet was used as a

base on which to mount the key equipment components. However, future

research should utilize a straight metal slab or table. Mountings should

be secure and rigid in addition to adjustable. It is anticipated that

this will lead to more accurate measurements.

As a second step, one might deal with a better means of immobilizing

the head. Subjects tend to perform compensatory postural or head movements

with the onset of vection. A bite board was used alo.ng with a standard

three pressure point head rest but this did not provide sufficient support.

Furthermore, the subject was forced to stand leaning somewhat forward into

the rest, which not only provided tactile and proprioceptive cues, but also

was somewhat tiring.
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A new apparatus should be built around the more stable equipment

mounting mentioned above. Fiduciary marks, such as a line or series

of dots held constant with respect to the head, in front of the eye,

may allow less severe head restraint. Lichtenberg (1979) used these

marks successfully in photographic OCR measurements. He connected

an aluminum extension with two block dots to a bite board. The dots,

immobile with respect to the skull , rested just below the bottom eye

lid and provided two constant features for sighting in analysis.

A swing or bench may allow the subject to sit comfortably and at the

same time may remove motion cues received through the feet or from

perception of lean.

8.2 Enhancing Feature Extraction

Currently the VSP-computer interface as controlled by the DEC

Lab Peripheral System allows for a transfer of one set of coordinates

every other scan line. Several means may be used to increase the

data flow and thereby better demarcate the contact lens feature. One may

consider the purchase of a Direct Memory Address (DMA) unibus interface

or the implementation of interrupt control. Ultimately, however, one would

like to circumvect the LPS and refer to each of the VSP coordinate registers

as memory location. If this could be done tremendous overhead could be

avoided. Secondly, the number of these locations may be compacted by

applying to the higher order bits on the digital input lines. Since there

are at most 12 bits of X data and 8 of Y these two signals may be placed

at bits 13 and 14. In this manner, they will always be available for

examination.
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As an aside, it is advised that the cable be rewired. It

is now a single cable of 13 twisted pairs of wire. Some data

lines are thus wrapped about each other. Two cables should be

wired, one input and one output, and each data line should have

a ground line as its twisted mate. Another means of increasing

the integrity of the feature extraction is to sample fewer lines

but more points per line. Since only one coordinate may be

selected for each collection, some bad data may be accepted to

the exclusion of desirable points. A more sophisticated transfer

routine would collect many points along a line and then select

which of these points fit on the feature.

8.3 Real Time Evaluation of Eye Position

An important aspect of this work is that it is adaptable

for real time implementation. Since two iterations after the

first analysis pass yield the same results as 10, 20 or 50 addi-

tional passes, extensive iterations appear to be unnecessary.

Thus, analysis may be done by a smaller dedicated processor

such as an LSI-ll. Certain software tasks may be performed

within the hardware. Vertical windowing can be accomplished

by delaying the scan a specified number of lines. In short,

it is quite possible to free the Man Vehicle Laboratory PDP 11/34

to operate on more important tasks such as the control of other
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devices. In this manner, the VSP system may be used with a

number of ongoing MVL experiments requiring eye movement moni-

toring.

8.4 Contact Lens Implementation

In the course of our work, Dr. Cavallerano and I have been

using the lens sandwich described in Chapter 4. This has worked

quite well, yet two final extensions of this work may enable use

of this both in eye movement research and in vision correction.

The first extension involves the molding of a fine hair or wire

into the lens itself. This would do away with the bulk and mul-

tiple layers associated with the sandwich and allow for repeti-

tive alignment of the feature in the same orientation for each

subjects' lens. Indications are that standard molding techniques

could possibly be directly modified to accomplish this. This

would also permit the addition of another line feature that would

allow more veridical discrimination of torsional movements from

translational displacements. The second target might form an L

with the first lens. Furthermore, objects previously used in

other eye monitoring schemes may be embedded within the SOFLENS,

including the Robinson search coil (Robinson, 1963), the Collewijn

ring (Collewijn et al, 1965), and the Ish-Shalom ferromagnetic

ring (Ish-Shalom, 1978). These modifications will make the lens
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a permanent research tool, far less expensive, far easier to handle,

and more sanitary than existing contact lens mounted features.

Dr. Cavallerano has suggested truncating or cutting off the

bottom of a molded lens with a vertically oriented feature. This

would greatly aid in aligning the nearly invisible feature on the

eye.

The second extension follows this lead into the field of

vision correction. This, first proposed in my bachelor's thesis,

involves molding a hard contact lens within soft contact lens

material. The advantage of hard lenses, visual acuity and cor-

rection of astigmatism, would be provided without the associated

irritation of standard hard lenses. Recent innovations with gas

permeable lenses may also be taken advantage of.



103

8.5 Higher Order Fit

Current techniques fit the data outlining a target with a

linear regression fit of the form X = A + BY. The contact lens

feature, however, has an apparent curvature which increases in

radius as it is displaced from the central meridian of the eye.

That is, when the target is aligned across the camera's axis of

scan, it will look nearly linear, but as it moves across the

eye it will appear increasingly curved. A higher order of fit

can be used. One must first assess how the angle will be ex-

tracted from this regression. It may be the case that the

first order fit and computation tangent to a higher order fit

are equivalent. Secondly, such implementation may pose limit-

ations on a real time analysis.

8.5.1 Regression Coefficients and Statistical Parameters for

nth Order Polynomial Fit

The implementation of a higher order regression is of no

major problem. Standard statistical techniques exist for fitting

curves of all types to data. Polynomial regressions extend the

basics of linear regression to the nth order. A power series

polynomial, such as X = A + BY + CY2 + .... MYn can be most effec-

tive in reconstructing curved data.
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In this case, one would simpl

for n + 1 coefficients in the foll

b= 1

N

Eyi

Eyi 2

Eyi

E Xiyi

N

Eyi

zyi 2

Ey

Eyi 2

Zyi
3

y expand to n + 1 simultaneous equations

owing manner.

zyi 2

z 3

Eyi2

Zxi

Zyixi

Eyi2xi

and so on, replacing the jth colume in A with the first column in a

to achieve the jth coefficient. The experimental standard error of

estimate remains

N-n-l C Xactual X predictedS =
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where N-n-i is the number of degrees of freedom v for a fit of a

polynomial of degree n, to a set of N data points. (Recall the linear

case where n=l and v=N-2. See also Bevington(1969).)

8.5.2 Slope Determination

A critical consideration for implementation of a higher order fit

is the extraction of an angle for the curve. For first order regressions

where X=A+BY, dxB. But, as the degree of the polynomial increases thedy

slope does too, and = B+CY+...+MNYN-1, including not only higher
dy

order terms but a dependence upon a specific y value as well. The

question must be raised whether, in-any event, the lineart regression does

not provide a more suitable valde for the slope. Currently, it has

only been established that within certain bounds a linear fit is

reasonable. There are however, limitations; mainly that the lens

mounted feature be close to the center of the eye where the data will

appear primarily linear. It has been found that even in the most

eccentric cases it is %possible to utilize the linear fit by excluding

the endpoints from analysis as illustrated in the figure below.

8.6 Polar Mapping

One may desire to leave the Cartesian coordinate sytem altogether

and attempt analysis of rotational movements in polar coordinates. The

distribution of points along a certain vector magnitude or angle may be

an effective means of assesing line orientation or torsional shift.
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Duda and Hart (1973) describe a number of means of p,G mappings.

8.7 Further Rejection

The statistics generated by the regression analysis provides

-valuable insight into the variability of the data and the accuracy or

goodness of the fit. Large values of a3 and e may signify that a

certain field is of questionable reliability. This, then, may be used

as a criteria for rejecting fields altogether or assigning a weighting

of significance to an estimate of a specific angle.

8.8 Phase Lock Loop on Horizontal Clock

The 10 MHz horizontal data sampling clock is initiated at the

start of every horizontal line. There may be a slight discrepancy

from scan line to scan line, thus, one might introduce a phase lock

loop to synchronize all line rates. This will add to data integrity

and may reduce ac and .

8.9 Increased Magnification

Increased magnification may fill the entire video field with

the pupil alone or just that portion of the pupil containing the feature

and the locus of its excursion. While, this would increase expected

resolution, it will also require rigid head restraint, for head move-

ments will pull the eye out of the camera view.
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APPENDIX A

System Users Guide

Four operations are required to monitor eye movements and to

perform the necessary data analysis as well as evaluation of this analysis.

The following pages contain step-by-step discussion of the experiment,

computer data collection, data analysis and analysis evaluation. A number

of examples are provided where appropriate.

I. Experimental Set Up

The computer programs that analyze the eye movements require

positional coordinates of a target. Thus, as noted.in :the recommendations

for further work, this system may be used for a variety of applications.

This section deals with what form a rotating target such as a contact

lens-mounted object should take to be-converted to such positional

information and how the user may conclude if the desired feature is

accepted.

I.1 Video Signal Processor

The signal processor will accept any video compatible signal of any

image and detect transitions that rise above a certain voltage threshold.

The coordinates of the first four transitions are stored and upon computer

request sent for data storage along with their scan line. This section

discusses the workings of the VSP. The user must only deal with: the

video input, output and highlighted output signals; the threshold
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TARGET

CAMERA

VTR

VIDEO

HIGH
VSP, LIGHTED

VIDEO

COMPUTER

PREVIEW PLOT

SPLOT.FOR PLTHTA.F m

REGRESSION OVERLAY
ANALYSIS Regression

on Data
LSN.FOR SNM.FOR

READ
Parameter

File
RLRP.FOR

Figure A.1 System Options
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r-
V.

FT. ~

Photograph A.1 User, computer, plotter, etc.

Photograph A.2 Front view of setup. Note: VSP and VTR on cart,
monitor displaying VSP highlighted output.
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adjustment; vertical window alignment; and computer ditital output and

input control.

I.1.1 Video Input, Output, Highlighted Video

A video camera or tape recorded video image may be used as input

to the VSP. For that matter, any video signal may be analyzed. The

middle of the three UHF jacks on the VSP front panel is for video in-

put. It may be tapped at the output, jack 1, for monitoring of the

direct image. This signal is analyzed and then presented to the

computer for analysis in digital form. A potentiometer controlled

voltage divider provides a threshold for the direction circuitry.

This pot appears on the front panel between the on-off switch and the

video jacks. Its operation raises and lowers the threshold and its

effect can be noted by viewing the highlighted video output. The

highlighted video signal is an overlay of the computer output upon

the video image. When an image is detected by the VSP within the

horizontal video window, a corresponding "very white" signal appears

on the highlighted video image. In this manner, a full field image

of the passed and rejected features are presented to the user. If

the signal is acceptable, data collection and disk storage can be

initiated. If not, the threshold may need to be adjusted or the

window realigned.

The window is designed to limit the extent of the video image

presented to the detection circuit. It is set by two monostable

multivibrators with adjustable time constants, set by potentio-

meters. These pots lie on the digital circuitry board and are



111

readily accessible. The affect of their adjustment may also be noted within

the highlighted image by turning the threshold way down leaving the part

of the lines within the video gate whiteried.

Two 25 pin jacks on the back panel accept the digital input and

output lines from the computer. These lines run from the back of the

PDP 11/34 Lab Peripheral System (LPS) carring synchronizing information

and data.

When the user has decided that the desired feature lies within the

video window and the threshold is properly set, collection and data storage

may begin.

Ii. Computer Data Collection

Currently, data is collected every other line on every field.

This represents an effective 12 KHz data rate. As discussed in Chapter 3,

limitations on the computer allowed for collection of only one horizontal

coordinate and a vertical scan line. The video signal processor has pro-

visions for selecting up to four hits along any line. The user must

decide which of the four to choose. Four separate computer data collection

programs are available.: XOM, XlM, X2M, X3M, one for each point. Each

program is a self-contained assembly language routine requiring no user

input other than the RUN command. They were written for speed and utilize

the double buffer technique discussed in Chapter 3. Data is written into

X_M.DAT data files which may be renamed later if they are to be saved.

The first few lines of the program contain the number of lines to

be scanned per field, the number of fields to be placed in a buffer and



112

Photograph A.3 Highlighted video displayed on
front panel

video monitor. (Note,

Photograph A.4 Cable and jacks of VSP panel.
on opposite side not shown.

Power cord receptacle
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the number of passes to be made through the double buffering scheme. The

first two numbers indicate the buffer length at

BL= number of lines number of fields

field buffer

If they are changed, the buffer length designated in the WRITE statements

and the dimension statements at the program end must be modified as well.

It should be noted that a disk block -expects to be a multiple of

256 words. Even if each field does not contain 256 words, it is essential

that each buffer be a multiple of this number. Currently, there are 200

words per field. This includes: a field counter, a field terminator

marker (a-1), and a horizontal and vertical coordinate for the 99 lines

scanned. At 32 fields per buffer, this data will occupy 25 disk blocks.

The number of passes allows for specification of repetitive collection.

Each pass accepts 64 fields or 1.066 seconds of data and places this

into 50 blocks. Thus, 6.4 seconds occupies 300 blocks and the entire

1.2 Mword RK05 disk will be filled with approximately 2.7 minutes of data

in 80 passes.

If these numbers are to be altered, a batch file XM.BAT contains

the necessary code to recompile and link the edited version.

In short, when the user has decided that the video signal processor

in extracting the target in the best manner, he need only run one of

four collection routines and the data will be recorded in a corresponding

data file.
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III. Data Preview

A quick illustration of the quality of the data that has been

collected can be seen by running PRVW. This program generates and

plots x,y pairs from the data as well as listing their values. Any

field within the file may be examined upon specification of the user.

In this manner, noisy or faulty data will stand out clearly and another

collection of data can be initiated before any data analysis has been

started. A hard copy output of the data points may be printed on the

x,y plotter. A sample run is provided along with an example of the

output.
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IV. Data Analysis

When acceptable data is stored within a data file, an analysis

will fit a line to the data and establish an angle for that line.

Statistics are generated for the analysis to examine the strength

of fit and accuracy of the angle. The latest version of the analysis

routine is a program known as LSN. It performs a linear regression on

the horizontal data to achieve a X = A + BY fit. Points that may rep-

resent erroneous data are rejected in a number of fashions. The user

is expected to interact closely with this program, and in the following

sections, the various queries and expected responses are presented,

mostly by way of example.

.R LSN

Once the program has been initiated, the user is expected to

enter the name of the disk file containing the data to be

analyzed and the file into which the analysis results will

be written.

*ENTER DATA filename: DKl:XlM.DAT

*ENTER PARAMETER datafile: DKl:PXlM.DAT

These files are opened, the data file to be read from and the

parameter file to be written into. The first field of data

is displayed on the screen and a subroutine WINDM is called

to set a window about the points.
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.R LSN

Enter INPUT Filename*DK'IE3

Enter OUTPUT Filename*DK1 :PE3
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Please enter two integers for ITOP and IBOT* 17890

ITOP or IBOT mav not exceed 99 please reenter values: 1,89

Are wou happv with the window settings.
Y(ves) enters limits, N(no) restarts limit setting.
S(set) allows the user to enter values for ITOP and IBOT4Y

89 Points, from line 17. to 195.
Enter NF(#fields),ILSP(#self loops)w

RPV(SDX multiplier) and DEL(pt. rej. const3nt):190.3 *933K5.

PAUSE -- Press -::RETURN:- to start analisis - -



119

Photograph A.5 Light pen window definition. Current pen position
displayed in upper right hand corner of display
terminal.

PAUSE Hit <RETU1N> for summary lriformation.--

190 fields 2 loa-sv line 1 to 89
had limited excursion of 0.9330 P t. s.d.s + 5.00
average slope= 94.68 drsy s.d. from <slope>= 19.790 Rins
average standard error of ariale estimate= 14.247 mins

0 Fields were rejectedv includir numbers

<di f>.2 .8

Enter a Y to RERUN Prolramp N to EXITTr-
PAUSE -
TYPE <(CR. TO EXIT
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Scan lines at the top and bottom of the field are excluded. They

represent the parts of the eye with no feature, or just points that are

obviously bad. The program requests specification of a window top and

bottom and permits this specification by means of a light pen hit upon

a particular point or by direct line specification. If the light pen

is used, the user sights it upon a point perhaps representing the end-

point of a tracking feature or points slightly above or below it and

then signifies that the choice is to be entered. Until this signal is

sent, the light pen can be moved about anywhere on the screen and its

coordinates displayed to the user at the top of the CRT screen. When

a point is entered, it may be reentered before the next is specified.

Once both are specified, the program searches the array of data points

for the scan line closest to the light pert indication. The lines are

drawn on the screen over the points and, if unacceptable, the limits

may be reentered by direct specification of two lines or once again

through the light pen. The process may be run again and again until

the user is satisfied that obviously bad points are excluded and that

good data from following fields will not be affected by these limits.

The user must decide how the analysis should be done. A regres-

sion is performed that rejects outlying points, i.e. points that lie

outside a certain window. This window is determined by adding some

multiple of the standard deviation of the horizontal coordinates and

a constant value, lim = Sa-X + A. The user is asked to specify S and

A, as well as the number of fields to be analyzed and the number of

iterations on each field. The outlyer rejection uses the standard
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deviation of the horizontal coordinate (a ) of the previous field for

the first pass through a field of data and updates this value upon each

iteration.

These values may be determined by the initial preview of the data.

Very good data will not be aided by numerous iterations or large win-

dows, while for ppor data the reverse may be true. In some cases, S

or A may be set to zero. Repeated use will give a user the best feel

for what these values should be. Chapter 4 discusses some of the sel-

ection criteria.
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V. Analysis Evaluation

The final phase of the system is the evaluation of the analysis.

The primary means of review is provided by the summary of information

at the end of the analysis. The user is left with an immediate indica-

tion of what occurred. The entire parameter data file may be read by

running RLRP. A printout containing the summary information and the

subsequent line by line regressed values appears. These lines include

the field number, the number of points evaluated per field, the slopes

and intercept, normalized and unnormalized, as well as the angle and

its associated error of estimate. In this manner, the user may note

whether a field was rejected or a significant number of points found

unacceptable. In short, a quick overall assessment of the data can

be achieved.

The routine SNM, on the other hand, provides a graphic illustration

of the results. It prints out the results within the parameter data

file and displays the data along with the window and line fit. Poor

fits are immediately evident, good fits are easily recognizable. There,

as in S, the user may choose to examine any field within the file,

skipping forward or backward at will. It should be noted, however,

that there is some distortion due to display screen astigmatism and

the line over the points should not be visualized as an absolute indi-

cation of goodness of fit. A hard copy output may be requested and

plotted with default or user specified scaling parameters.

Finally, the user may plot the data versus time by running

PLTHTA. This program has a zoom feature which allows for an overall

view of all the points over the entire range of angles, 0 to 360 degrees.
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A user may ask to see only a part of the points within a few degrees.

The axes, lengths, and tick marks are externally scaled. The ordinate

ticks are incremented every 50, and the abscissa incremented every 0.1

second.



Figure A.4 Overlay of fit to a hair mounted over bottom half of the pupil.
Vertical window excluded noise including that found in region
of pupil above contact lens feature.



Figure A.3 Overlay of fit to two contact lens features.
Curvature resulted from positioning of hair adjacent
to pupil-iris border. Vertical window limited analysis
to linear region.



.R SNM

Enter data fiIertname*DK1I*E1

Enter fi lename containirinO 1 irn. reo. Par rameters *DK IPEI

This anal%.sis of 190 fields vieldedt
an averaEie sloye of 91.875 degs, s.d. 20.07
aver-alqe StanidaITrd error on anale estimate 12 .5:1.mins
reJection window: 0. 9330 so d # s + 5.0000

1 1 80 145,880 0.039 92.256 13.734
Hard CoP13(Y or N)? N

Hit :RETRN> to see rnex<t set of F-oints v or
enter E to exity S if wou want to set NREC toU'.IseifS

Enter n(3. fields want to sk:i Y(+/-) :105

106 106 79 152.089 0.045 91.2.595 11.324
Hard Coru(Y or N)? S

Hit *RETURN> to see nex<t set of Fointsor
enter E to ex :ity S if sou want to set NREC you rse Ilf :S

Enter no.* fi:. el ds want to ski ,(+/-):--34

72 72 75 144,396 0.027 91.519 13.992
Hard Copv(Y c)Ir N)? Y

Enter 1) to use efau1t Paralmete rs i: t

Amin=:: 0.00--400.00 Araox= 520.00 38.00 V0= 0.00 0.00
PA ISE ---- ZERO P1...OTTER NOWY THEN HIT CR



PAUSE ZERO FPL:IfTTER NOW, THEN HIT CR

P-'AUSE ZERO PLOTTER NOWY THEN HIT CR

PAUSE -- ZERO PLOTTER NOWY THEN HIT CR

Tv.e Y to re:I ot ( rescal1e)# Y

Enter 1. to use Default r-arameters N

Enter Axmi, Aumin v Axmax v Awmax, Vx0 YV.j0 :0.,- - . v 520. 0 0. P 0.

PAUSE -- ZERO PLOTTER NOW,, THEN HIT CR

t~wpe Y to rev-ot( rescale) N

Hit <.*RETUjRN:. t(:) see next set of r-ints, or
enter E to ex it S if twou want to set NREC wou rise 1 f E:

PAUSE .-
TYPE <CR> TO EXIT



Enter data filename**DKI 1#PE1

190 45.00 211.00 0.933 5,000 91.875 20.073 12.5109

Enter YMIN & YMAXYN'FPNEF# 0.,180.v---45,4567

To rerurn Frosiram tise Rthen <RETI.JRN::. R

190 45.00 211.00 0.933 5.000 91.875 20.073 12.5109

Enter YMIN & YMAXYNSFNEF: 85.v95.,0,42'

To re run * rosi ram tuw'e R y then (FE1TJFN> : N

PAUSE ------
TYPE <CR.> TO EXIT

co

.R PLTHTA
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Photograph A.6 Eye angle versus time plot generated by PLTHTA.FOR.
Abscissal tick marks of 0.1 sec and ordinatal demar-
cations of 2.50 are evident along the axes.
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APPENDIX B

This appendix contains

routines described above.

1 XIM MACRO

2 SP(lot)

3 LSN

4 WINDMI

5 RLRP

6 SNM

7 PLTHTA

FORTRAN

-FORTRAN

FORTRAN

FORTRAN

FORTRAN

FORTRAN

listings of the computer code for the

Synchronizes sampling, controls data

transfer from the VSP to the LPS, and,

using a dual buffer system and asynch-

ronous writes, places data on RK05 disk.

Displays data on VT-li CRT for preview

and is capable of generating hard copy

output.

Regression analysis routine.

Subroutine of LSN used to establish

vertical window about data points.

Reads file containing results of regression.

Provides overlay display of regressed fit

on actual data for each field. Hard copy

may be called for.

Plots eye angle versus time, zoom feature

allows scrutiny of any subset of points.
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.TITLE XIM

.GLOBL x1MYDUF1,BLJF2
-MCALL ..V2. . Y.WRITEr.EXIT

.MCALL .CL.O5E .ENTER Y .FETCHY .QSET

..V2.. ;VERSION II MCALL instructions

RO=0 ! Temr-or:'r data resister
R =%I ;bloek count
R!=Z 2 ;buffer pointer

3=1 3 =n%. sam-led video scan line./field
r4=.4 ;rc of fieldi pe buffer
R 5-5 ;no. Passes throujh dual buffers

PC=7

DGS=170410
ID=170412

DOB=170414

N L I NES= 143
NFLDS=40
NPSSES=3

X1M:

LP #

;DiIitdl Status Buffper
;ri itaI Input RufPer 
;Digital OutPut sufft.?r

'lock at 99 linesy if start -st 17 215
32 fields/buffer

;no. fields/(2*no. fields/:uffe r)

.FETCH *HSPACEtPGNAM

MOV 4NPSSESYR5
CLR R1
.ENTER *EAREA,11 iPGNAM
.QSET ai1,#5

MOV *BUF1,R2
MOV *NFLDSR4

LPF1: MOV FCNT,(R2')+
INC FCNT
MOV NLINESR3

,Wait for beinrnins of
B0AFW1 MOVB *10,r*DOB

MOVB t30Y, R4DOB
MOIVB *10y@#DJB
MOVB @tDIBRO
CLR Q*0GS
B T 4100,R0
BNE BOFW1

BOFWOI MOVB M10 r *DOB
MOVt3 f30 , *t'OB
MOVE' #1.Qy *DOBc

CLR tMfUGIS
mIT 0 DR0
W-0 EUFW0

a field
;SELECT

*Load device handler

?CLEAR block count resister
;enter file on channel 1
;add 5 elements to the I/O aueue
;starting at 01

;load BUF1 Pointer
;field/buffer test resister

;Place frame no. at top of arra4
;Increment Frame no.
;Load scan line counter req.ister

BITS OF LS153

*AF bit set?
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MFPS &*OLDPSW
MTPS #7

;Wait for beciinnin of
EOW1: MOVB #30,LDOB

MOVB #10,QDOB
MOVB @0DIBYRO
CLR @D(33
BIT 4200PRO
BED EOW1

EOWO: MOVB #30,(?DOB
MOVB *10,@tDOB
MOVB @*DIBRo
CLR @GDGS
BIT -t200,RO
RNE EOWO

MOV #24,FtDOB,
MOV *4p@#DOB
MOV O*DIBRO
BIC #177400RO
MOV ROP(R2)+

MOV
MOV
mOV
BIC
MOV

*21 Y@*DOB
*1,@*DOB
@#DIBRO
f170000RO.
RO, (R2)+

SOB R3,EOW1

MOV #177777, (R2)+

MTPS G*OLDPSW

DEC R4
rPE(U W 1
JMP LPF1

;save current .interrupt level
;disable interrupts

active line

;AL. bit set?

'Pulse V.S.P. to Aet YVAL

;Mask out upper bvte
,Read in YVAL

;Select X data
;Read in XVAL
;Mask out uper 4 bits

;if less than NLINES scannedcontinue

;-1 sianifies arraj termination

;restore interrupt level

;DECrement field loop counter
;if completed 1-fieldt WRITE
;otherwise get another field of data

.WRITE .WAREA,41,4BUF1,*14400,R1
ALiD :1310R ; increment block number bu 25.

W1
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MOV 4NFLD1SR4 ?start on BUF2

LF'F2: MOV QFCNT,(R2)+
INC 2$FCNT
MOV *NLINESYR3

BOFW3: MOVB
MOVE
MOVBE
MOVB
CLR
OIT
BNE

t3Opl:DOB
$30 , Q$DOB
4#:L,@ODOB
@t-DIBYRO

WIDGS
#100,RO
BOFW3

;SELECT BITS OF LS153

;AF bit set?

F'42: IMOVB #i.0O( DOB
MOV.U 430,PPDOB
MOVB *10, @tDOB
MOVB DttIBRO
CLR RfEGS
BIT 1100,RO
BEQ BFW2

MTPS @#OLDPSW
MTPS #7

E(JW2 MOVB #30p@*DOB
MOVB *10,&tDOB
MOVB @#DIBRO
CLR @#DGS
BIT #200PRO
BEQ EOW2

EOW3: MOVB
MOVB
MOVB
CLR
BIT
BNE

MOV
MOV
MOV
BIC
MOV

MOV
MOV
NOV
DT C
MOV

;AF?

FAL bit set?

#30,@*DOB
*I1OY@DOB
@SDIBYRO

04 iGS
4200,RO
EOW3 -

424, tDOB
*4,G DOB
@4DIB, RO
177400, RO

RO, (R2)+

*21 1@DOB

04 ID I B 7,RNO
1170000 , RO
ROv (R2)+

SOB R3PEOW2

LP2:
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MOV 4177777,(R2)+

MTPS @*OLDPSW

DEC R4
SEQ W2
JMP LPF2

.WRIrE *WAREA,#1,*BUF2,#6400.,R1
ADD #25.,R1 ;INCrement block number

DEC R5
BE CLS
JMP LP

.CLOSE *1

;DECrement PASS countEr
'CLOSE file if throush Processin:s
;otherwise start asain

tclose channel 1

.EXIT

EAREA:
FCNT:
FL D

OLDPSW:

Q1#:
WAREA #

.BLKW
*WORD
.WORD
*BLKW
.WORD
.BLKW
.WORD

5 Version II MCALL parameter storaie
0 ,Intialize FIELD counter
0 Initialize filed loop counter
I ?Save space for old interrupt level
0 Intilaize number of Passes
7*5 ;Queue area (35 decimal words)
0Y0,0v0,0 ;.WRITE(..V2..) parameter storase

PGNAM: *RAD50 !DK18
.RAD50 "X1M
.RAD50 "DAT'

HSPACE: .BLKW 400

;device
fi 1ename

,extension
'1DK HANDLER

FUF1: .BLKW 14400
LF2: .BLKW 14400
b- rV=tfldj/buffer* ( (*r-ts/line**lines/ld)+FCNT + (-1)
#6400= 32 *(( 2 * 99 )+ 1 + 1

.END XIM

CLS:
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PROGRAM SPLOT

Version VI
SERIES OF SNAPSHOTS

3-June-79

DIMENSION IBUF(1500),IVLIST(200),A2,99)
DIMENSION AMIN(2),AMAX(2),V(2,99)
LOOICAL*1 SETrYESPYNSvEXTYOX
DATA SET/'S'/YYES/'Y'/FEXT/'E'/FNO/'N'/

TYPE 5
5 FORMAT(1H ' En

CALL ASSIGN(17
DEFINE FILE 1

NREC=1

ter data filename*6
,-1)
(256y200rUyNREC)

DK=. 6745
NLD=99

30 READ(1'NREC) IVLIST

TYPE 40,IVLIST(1)-
40 FORMAT(I5)

CALL FREE
CALL INIT(IBUF71500)
CALL SCAL(0.r400.y520.,-38.)

IX=NLD

!ranme of 438 Y values

!X array argument

DO 100 ILe2y(2*NLD)+1,2 !DISPLAY loop

X=IVLIST(IL+1)
Y=IVLIST(IL)
CALL APNT(XvYi)

A( 1, IX)=X*DK
A(2,IX)=-Y
IX=IX-1

CONTINUE

C
C

!Plot points

100
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TYPE 150
150 FORMAT(1Ho' Hard Copv?(Y or N:',$)

ACCEPT 160YYNS
160 FORMAT(AI)

IF(YNS. EQ .YES) GOTO 165 !Plot? ves, goto 165
GOTO 190 !Else skip

C ******* Hard Copv Plot
165 PAUSE '-If plotter set hit RETURN-'

CALL MAXMIN(NLDAAMINPAMAX) !Find mra:< and min
C XMIN(1)=0.
C XMIN(2)=0.
C XMAX(1)=520.
C XMAX(2)=384.

CALL SCALER(NLDYAYAMINYAMAXPV) !Scaled X arraw in V
CALL ZERO(A(1,1),A(2yl))
CALL PO.INT(NLDYV) !Plot Points

TYPE 170
170 FORMAT(,iHY' Enter Y to replot:',$)

ACCEPT 180,YNS
ISO FORMAT(A1)

IF (YNS. EQ *YES) GOTO 165

C ******* Next Field?
190 TYPE 200
200 FORMAT(1Hv' Hit <RETURN> to see next set of Pointsor

I ' enter E to exit, S i.f Lou want to set NREC vourself ',$)
ACCEPT 210,YNS

210 FORMAT(A1)

IF(YNS. NE..SET) GOTO 250
TYPE 230

230 FORMAT(1HY' Enter NREC:'Y$)
ACCEPT 240,NREC

240 FORMAT(I5)
GOTO 30

250 IF(YNS. EQ .EXT) CALL EXIT

GOTO 30 !Otherwise Just loor-

END
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PROGRAM LSN

Version XXI 24-MAY-79
Does analysis specified times on self
Rejects overlappin: frames

COMMON /IVLIST/IVLIST,/ITP/ITPP/IBT/IBTY/N/N
COMMON /TOP/TOPT/BOT/BOT
DIMENSION RTS(500),RDAT(8), IB(100)
LOGICAL YONYES
INTEGER*2 IVLIST(200)
DATA YES/'Y'/

DK=.6745

PI=3.14159265
RTD=180./PI !Radians to Degrees

TYPE 10
10 FORMAT(1H3X,Enter INPUT Filenamef'$)

CALL ASSIGN(2y,-1)
DEFINE FILE 2(512,200,UyIUU)

TYPE 15
15 FORMAT(1H,3Xy'Enter OUTPUT Filename:'$)

CALL ASSIGN(3pt-1)
DEFINE FILE 3(512F16,UPIU)

20 IUU=1
IU=2

READ (2'1) IVLIST
CALL WINDM1

!displav 1st field of data
!call window routine

TYPE 30
30 FORMAT(1Hr' Enter NF(tfields),ILSP(*self loops), ',/y

1 ' RPV(SDX multiplier) and DEL(pt. reJ. constant)*',$)
ACCEPT 40,NFILSPRPVDEL

40 FORMAT<(2I5y2F7.3)

C NF=no. frames to be analvsed, N=no. lines in window
NLF=NF !Preserve NF for LOOPins
NS=N !Preserve no. lines

DRT=0.

SSDT=0.
SMT=0.
SMTSQ=0,

PAUSE 'Press <RETUIN> to start analysis - -'

I=1 !intailize slope vector cointer
IBFLD=O lintialize bad field coujr

C
C
C
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DO 200 IF=1INLF

ISL=-ILSP !intialize same field loop

READ(2'IUU) IVLIST

C Reject fields with overlappindi data
C Test to see that successive scan lines indeed follow each other.
C Reject those fields were two sucessive lines have a value less
C than the Preceedinl line. Ie. reject if line i+1 nad line i+2
C have a line value less than line i. Dual test allows for some
C noise.

DO 222 ILT=15Q,199,2
IF (IVLIST(ILT). OT .IVLIST(ILT-2))GOTO 222
IF (IVLIST(ILT+2). GT *IVLIST(ILT-2))GOTO 222

IBFLD=IEFLD+1
IB(IBFLD)=IVLIST(1)
NF=NF-1 !IDecremernt Field counter
GOTO 200

222 CONTINUE

50 N=NS !Reintialize N
SUMY=0. 'must compute since
SUMXY=O. !reject certain Points
SUMX=0.
SUMXX=0.
SUMYY=0..
SDIF=0.

DO 100, ILL=ITPIBT

IL=( ILL-1)*2

Y=IVLIST (2+IL)
X=IVLIST(3+IL)

C ******* Point limit test and rejection

IF (IF.EQ.1.AN1IISL.EQ.-ILSP) GOTO 85 !1ST FLDt'1ST PS NO R.

RLP=A+B*Y !Predicted Point
DIF=ABS(RLP-DK*X) !current Point-RLP

RJW=RPV*SDX+DEL !Rejection window=K*sd+del
IF(DIF. LT .RJW) GOTO 85

N=N-1 !* Points=-1

C I:-nore point that falls out of excusion, GOTO 10() avyt:d UMinA
C If less than 2 points in the field fit the criteria skiF' anelsi-
C ignore field and GOTO 80 and then 200

IF (N-2) 80 ,80,100
80 NF=NF-1 !decrenent field counter

IBFLD=IBFLD+1 inc rejected f:ield counter
IB(IBFLD)=IVLIST(1) !add field to rejected list

GOTO 200 !and skiP analisis
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C ******** Points SUMmin!

85 SUMXY=SUMXY+X*Y
SUMX=SUMX+X
SUMXX=SUMXX+X*X
SUMY=SUMY+Y
SUMYY=SUMYY+Y*Y
SDIF=SDIF+DIF*DIF

CONTINUE100

C ******** Slope, Intercept and An le determination

DEN=N*SUMYY-SUMY*SUMY
IF (DEN. NE .0) GOTO 190

B=0.
BU=0 .
AU=SUMX/N
A=AU*DK
THETA=90.

GOTO 195

190 BU=(N*SUMXY-SUMX*SUMY) / DEN
B=BU*DK

AU=(SUMX-BU*SUMY)/N
A= (DK*SUMX-B*SUMY ) /N

! unnormalized slope

!Y in tercept, X=A+BY

SDY=SQRT(DEN/(N*N)) !SD=SQRT(Diff Sum of Sas/N)
SDX=DK*SQRT((N*SUMXX-SUMX*SUMX)/(N*N))

ISL=ISL+1
IF (ISL) 50,50,196

THETA=90.+RTD*ATANCB)

!increment loop counter
!loop till reaches zero

ASDIF=SDIF/N !avera:Ie Xred.-Xact.

SDXY=SQRT(SDIF/(N-2)) !reSression s.d.
SDB=SDXY/SQRT(DEN/N) !slope s.d.

RBF'=B+SDB !slo;-e+s.d. of ;lopem+
RTF=ATAN(RBPF) !angle assoc. w/ m+
RBN=B-SDB !slope-s.d. of slope=mrr-
RTN=ATAN(RDN) !angle assoc. w/ rmi-

C Standard error of angle estimate
C method I* del(thetea)
C SDT=60.*(RTP-RTN)/2.
C method II: 1st term taylor exPansion

SDT=60.*SDB*RTD/(1.+BAB)

195

196



140

RTS(I)=THETA
I=I+1

DRT=THETA-ROT
ROT=THETA

!vector of anSles
!INCrement vector counter

!Angular shift
!update last frame's slope

SSDT=SSDT+SDT !sum of SDT's
SMT=SMT+THETA !sum of slopes
SMTS=SMTSQ+THETA*THETA !sum of sauares

RDAT(1)=IF
RDAT(2)=N
RDAT(3)=A
RDAT(4)=AU
RDAT(5) =B
RDAT(6)=BU
RDAT(7)=THETA
RDAT(8)=SDT

!field number
Ino. points accepted this field
!normalized regressed x-intercept
!unnormalized x-intercept
!normalized regressed slope
!unnormalized slope
!angle of line
!s.d. of anle

WRITE(3'IU) RDAT

200 CONTINUE

ASDT=SSDT/NF
AVT=SMT/NF

DF2=0.
DO 225 I=1NF

DF=RTS(I)-AVT
DF2=DF2+(DF*DF)

CONTINUE
SDAT=SQRT(DF2/NF)*60.

!average SDM
!average slope

!s.d.(min.s)

PAUSE '--Hit <RETURN> for summarv information.--'

TYPE 250YNFYILSPYITPPIBTiRPVYDELYAVTYSDATASDT.
250 FORMAT(1H,/,I6,' fields ',I,' loops, line ',13,' to ',I,

1 /y' had limited excursion of ',F7.4,' Pt. s.d.s + ',F7.3v
1 /P' averase slope= 'YF6.2y' dIrs, ',
1 ' s.d. from Psloe>= ',F6.39' mins'/v
1 ' average standard error of angle estimate= 'FF6.3,' mins',/)

TYPE 275,IBFLD
275 FORMAT(1HI6,' Fields were reJected,includinA numbrs '

IF (IBFLD) 285y285y277 !skip PrintinE if no fields reJecti

277 DO 285 ILS=1IBFLDPB
WRITE(7,200) (IB(ILS+J),J:=0,7)

280 FORMAT(SI6)
285 CONTINUE

225
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TYPE 286,ASDIF
286 FORMAT(1Hy/r' <dif>='yF10.5y/)

RDAT(1)=NF
RDAT(2)=TOP
RDAT(3)=BOT
RDAT(4)=RPV
RDAT(5)=DEL
RDAT(6)=AVT
RDAT(7)=SDAT
RDAT(8)=ASDT
WRITE(3'1) RDAT

!number of fields analysed
!scan line at window top
!scan line at window bottom
!Point rejection SDX multir'lier
!Point rejection constant
!average angle for NF fields
!SD from average angle
!average SDM

TYPE 300
300 FORMAT(1H,' Enter a Y to RERUN Program, N to EXIT*',$)

ACCEPT 350,YON
350 FORMAT(A1)

IF (YON. EQ .YES) GOTO 20

CALL EXIT

END

LSN.BAT !LSN BATCH FILE

$JOB/RT1 1
.R FORTRAN
*LSNYLSN=LSN/W
*R LINK
*LSNYLSN=LSNYVTLIB/F/C
*WINDM1
$EOJ
*

I



PROGRAM RLRP
C READs linear regression Parameter files

C The first 25 lines of the specified file
C are read before the user is aueried as to
C wether he wishes to continue or riot, The
C same occurs at line 50, from then on the
C readini is uninterrupted.

DIMENSION RDAT(S)

WRITE(7v 100) N
100 FORMAT(2XW'ENTER FILENAME:'$)

CALL ASSIGN(1,v-)
DEFINE FILE 1 (256u16pIJwNREC)

NREC=1-

READ (1'NREC) RIDAT
NF=-R4DAT( 1) Inumber of fields analused
TOP=RDAT(2) Iscan line at to- of vertical window
B(TI"=RDAT (3) Iscan line at bottom of vertical window
RPV=RDAT (4) !SDX multiplier in Point reJection window
1EL=RDAAT(5) iconstant in Point rejection window
AVM=RDAT(6) !averaf1e of NF angles
SI1=:R:DA T(7) !standard deviation from AVM
ASDM=A*TI(8) laverase standard error of estimate on angle



WRITE(7v160)
160 FORMAT(lHv3Xv'NF'r4Xv'Top' dXi'Bot' BXv'S'y6Xv'Del',

1 4X,'<Theta>',4X,'S.[.'t5X,'<SE>')

WRITE(7,175)NFTOPYBOCTRPVDELAVMSI)ASIM
175 FORMAT(XI5,2F8.0,2Xr2F8.3,X,2F9.3,F9.2,/)

WRITE(7v180)
180 FORMAT(1 Iti 5XY '#Fld' r3Xr '#Pts' v4XY

1 'A',5Xv'AU'p9X,'B',7XY'BU'r4X'Theta'4X'SDM')

IL=I1 lintialize block count

150 CONTINUE

READ( 1 'NREC) RDAT

WRITE(7p200)RDAT
200 FORMAT(3Xv2F7.Ov6F8.3)

LCNT=25*IL iPrint blocks of 25 and then

IF (NREC-LCNT) 150,400400

PAUSE 'To continue hit RETURN'

I0UERY to continue

IL=:II.A1 lanother 25 blocks read
Irrint headina

60To 150

500 END

400

-h

(A)
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PROGRAM SNM

Version VIII
SERIES OF SNAPSHOTS

2-June-79

DIMENSION IBUF(1500),IVLIST(200),RDAT(8)
DIMENSION AR(2,99),SA(2,99),AMIN(2),AMAX(2)
DIMENSION APR(2,99),SFR(2,99),VZERO(2)

*DIMENSION ATP(2,2),STP(2,2),ArT(2,2),SEBT(2!,2)
LOGICAL*1 DEF,DOSEXTSETYESYNSYOX
DATA DEF/'D'/PEXT/'E'/,SET/'S'/,YES/'Y'/

TYPE 4
4 FORMAT(1H,' Enter data filename#',$)

CALL ASSIGN(1,,-1)
DEFINE FILE 1 (512v200PUNREC)

TYPE 6
6 FORMAT(1H,' Enter filename containing lin. re-. Parameters*'$)

CALL ASSIGN(2,,-1)
DEFINE FILE 2 (512,16,UNRC)

READ(2'2)RDAT
IFF=RDAT(1)
NREC=IFF
NRC=1

READ(2'NRC)RDAT
NF=RDAT(1)
TOP=RDAT(2)
BOT=RDAT(3)-
RPV=RDAT(4)
DEL=RDAT(5)
AVT=RDAT(6)
SDAT=RDAT(7)
ASDT=RDAT(8)

!Set first field

!number fields analvsed
!vertical window top
!vertcal window bottom
!SDX multiplier for Point rej. window
!Point rejection window constant
!average angle
!s.d from average angle
!averase standard anrle error
!of estimate

TYPE 9PNFrAVTSDATyASDTRPV,DEL
9 FORMAT(1H,'This analysis of 'YI5' fields vielded*',/,
1 ',an averase slope of 'SF8.3,' dess, s.d. ',F8.2,/,
1 ' average standard error on anvle estimate 'F8.2,'mins'y/,
1 ' rejection window*'.,FS.4,' s.d.s + ',F8.4)

NLD=99
DK=.6745

30 READ(1'NREC) IVLIST-

C
.C
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READ(2'NRC) RDAT
IF=RDAT( 1)

NREC=IF+l
N=RDAT(2)
A=RDAT(3)
AU=RDAT(4)
B=RDAT(5)
BU=RDAT(6)
THETA=RDAT (7)
SDT=RDAT(8)

CALL FREE
CALL INIT(IBUF,1500)
CALL SCAL(O.7,4Q0.,520.,-38.)

IX=NLD

DO 100, IL=27(2*NLD)+1,2

Y=IVLIST( IL)
X=IVLIST(IL+1)
CALL APNT(XyY,1)

AR(1,IX)=X
AR(2,IX)=-Y

APR(1 IX)=AU+BU*Y
APR(2,IX)=AR(2vIX)

!svnc data and Parameter files
!# points analysed this field
!red ressed x-intercey-t
!unnormalized intercept
!resressed slope
!unnormalized slope
!angle of line feature
!standard error of est. on THET'A

range of 438 Y values

!Arrav arsument

!DISPLAY loop

!PLOT points

!Actual value

!Predicted value

IX=IX-1

CONTINUE

C ******** Draw Windcrw limits

CALL APNT(20.yTOPO,,-5)
CALL LVECT(480.YO.)

CALL APNT(20.,BOTPOY-5)
CALL LVECT(480.YO.)

C ******** Plot Linear Regressed line over data points

FPY=-25.
RLPY=275 .

FPX=AL+ BU*FPY
RLFX=AU+BU*RLFPY

DY=RLF'Y-FPY
DX=RLPX-FPX

CALL APNT(FPXYFPY,0F-5)
CALL LVECT(DXDY)

!X resressed rredicti

!draw line

100
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WRITE(7,170) (NREC-1)rIFNABTHETASDT
170 FORMAT(2Xy3I5y4F12.3)

C ********** Hard Copv?

TYPE 171
171 FORMAT(1H,'Hard Copv(Y or N)? ',$)

ACCEPT 172,YNS
172 FORMAT(A1)

IF (YNS. EQ .YES) GOTO 173
GOTO 199

173 TYPE 174
174 FORMAT(' Enter D to use Default

ACCEPT 175YDOS
175 FORMAT(A1)

IF (DOS. NE .DEF) GOTO 177

C ******* Default scalinS factors
AMIN(1)=0.
AMIN(2)=-400.
AMAXC1)=520.
AMAX(2)=38.
VZERO(1)=0.
VZERO(2)=0.

!Hard Copy? YES, Go3To 173
!else. skip and GOTO 199

Parameters:'7$)
!Defualt Or user Set

!GOTO 183 to let user set MAXMIN

!plotter zero

TYPE 176,AMINYAMAXYVZERO !Print values for user reference

176 FORMAT(1Hr' Amin=',2F7.2.' Amax=',2F7.2,' VO=',2F7.2)

GOTO 180 !Skip sclin settinS

177 TYPE 178
178 FORMAT(1Hv' Enter AxminAyminAxraxAymaYX0,VYQt'$)

ACCEPT 179,AMINAMAXYVZERO
179 FORMAT(6F7.2)

180 CALL SCALER(NLDARAMINAMAXSA)
CALL ZERO(VZERO) !z
CALL POINT(NLDSA) !P

CALL SCALER(NLErAPRAMINAMAXSPR)
CALL ZERO(VZERO) I:

CALL LINE(NLDySPR)

!SA is scaled AR
ero Plotter
lot Points

!SPR scaled PAR
ero plotter
ink redressed F-oints



147

ATP(1,1)=AMIN(1)+20.
ATP(2p1)=-TOP
ATP(1y2)=AMAX(1)-20.
ATP(2,2)=-TOP
CALL SCALER(2,ATP,AMINAMAXSTP)
CALL ZERO(VZERO)
CALL LINE(2,STP)

ABT(1y1)=AMIN(1)+20.
ABT(2y1)=-BOT
ABT(1y2)=AMAX(1)-20.
ABT(2,2)=-BOT
CALL SCALER(2,ABTAMINAMAXSBT)
CALL ZERO(VZERO)
CALL LINE(2,SBT)

!Set up top limi-t of
!vertical window

!gcale
!zero Plotter
!draw top of window

!Set up window bottom

!scale
!zero Plotte '
!draw window bottom

TYPE 186
186 FORMAT(1H,' Tvpe Y to replot(rescale)'$)

ACCEPT 187,YNS
187 FORMAT(A1)

IF (YNS. EQ .YES) GOTO 173 !GOTO 183 to replot

C ********** Next Field?

199 TYPE 200
200 FORMAT(1Hy' Hit <RETURN> to see next set of Pointsor ',/

1 ' enter E to exit, S if vou want to set NREC yourself',$
ACCEPT 210YNS

210 FORMAT(A1)

IF(YNS. NE .SET) GOTO 250
TYPE 230

230 FORMAT(1H,' Enter no. fields want to skie(+/-)',$)
ACCEPT 240,ISKP

240 FORMAT(I5)

ISKP=ISKP-1
NREC=NREC+ISK-
NRC=NRC+ISKP

GOTO 30

250 IF(YNS. EQ .EXT) CALL EXIT

GOTO 30 !Otherwise Just loor

END



148

SUBROUTINE WINDM1

C Version VIII 12-June-79
C Based on a snapshot of the first frame an up er and lower
C limit is set on the video scar, lines. These limits, ITOP and
C IBOT will be sent to the angle determination routine, ANG.
C Onlv Points within these scan lines and the video sate
C hardware window will be Processed for rotation.

COMMON /IVLIST/IVLISTY/ITP/ITP/IBT/IBTY/N/N
COMMON /TOP/TOP,/BOT/BOT
LOGICAL*1 ANSPBDOLtBPBRGKNOSETYYESPYON
DIMENSION IBUF(1500),RY(2),IVLIST(200)
DATA BDOL/'$'/,BP/'P'/,NO/'N'/,SET/'S'/PYES/'Y'/

CALL FREE
CALL INIT(IBUF,1500)

C CALL SCAL(.,.,1545.,1300.) Scales for rectans ular dis,-a
C Using this same ratio for x=520 v becomes 438.
C The fourth nuadrant is used here. Later in the pro'am verthini
C is chanred to have the negative values, Positive; but, Y still
C increases down the screen.

CALL SCAL(O.,400.y520.r-38*) !400.+38.=438 Y values

NLD=99 !No. lines down scan

CALL APNT(180.,0.-OY-7)
TX=20. !intial light Pen Position

TY=20.

CALL TEXT('Light Pen Coordinates: X= '
CALL NMBR(1,TX,'FS.2')
CALL TEXT(' Y= ')
CALL NMBR(2,TY)

C PLOT POINTS

PAUSE '-Hit <CR>-. to displaw the first set of comparator HITs-'

90 DO 100 ILL=1NLD !DISPLAY loop

IL=(ILL-I)*2

X=IVLIST(3+IL)
Y=IVLIST(2+IL)

CALL APNT(XY1) !plot Points

100 CONTINUE



C ********E.nab1e light Pen

110 WRITE(7,120)
120 FORMAT(' P<RET> will enable Light Pen, ($.:RET> terminates) '$)

ACCEPT 130YBR
130 FORMAT(A1)

IF(BR *EQ* BP) GO TO 140
IF(BR *EO. BDOL) CALL EXIT

GOTO 110 lIf no acceptable response rectueru

140 CALL TRAK(TXPTY) !Call light Pen tracking feature

145 DO 190, IY=1,2 !loop for top & bottom limits

PAUSE ' Position light Pen and hit <RETURN>t'

150 CALL NMBR(1,TX) IUPdated light Pen Positions
CALL NMBR(2yTY)

180 RY(IY)=TY

TYPE 185,RY(IY)
185 FORMAT(1H'Is 'vF7.2t' an acceptable boundarw?(Y or N):',$)

ACCEPT 1B6uYUN
186 FORMAT (A1

IF (YON. NE .NO) GOTO 190 Ito get next level or
Ito exit, otherwise

PAUSE 'RePosition $ hit <RETURN>(osition uPdated above)'
GuT. 15 0 iet new value

190 CONTINUE
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C ******** Find actual values closest to window limits

OLDY=ABS(RY(1)-IVLIST(2))
TOP=IVLIST(2)
ITOP=1

DO 200 IFIX=2,NLD !Search
IFL=2+(IFIX-1)*2 !actual.
RNWY=ABS(RY(i)-IVLIST(IFL))
IF(RNWY. GT .OLDY) GOTO 200
TOP=IVLIST(IFL)
ITOP=IFIX
OLDY=ABS(RYC1)-IVLIST(IFL))

200 CONTINUE

OLDY=ABS(RY(2)-IVLIST(2))
BOT=IVLIST%(2)
IBOT=1

DO 210Y IFIX=2yNLD !Se
IFL=2+(IFIX-1)*2
RNWY=ABS(RY(2)-IVLIST(IFL))
IF(RNWY. GT .OLDY) GOTO 210
BOT=IVLIST(IFL)
IBOT=IFIX
OLDY=ABS(RY(2)-IVLIST(IFL))

210 CONTINUE

!set top limit

data arrav for
line closest to
!light Pen hit

!set bottom limi

arch for closest lin

TYPE 212YITOPYIBOT
212 FORMAT(1H,' Window between ',I6j' & 'P16)

C ********* Plot WINDOW limits

215 CALL APNT(20.vBOTr0o,-5)
CALL LVECT(480.P0.)
CALL AFNT(20.TOP0, -3)
CALL LVECT(480.y0.)
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TYPE 220
220 FORMAT(1H,' Are wou happv with the window settings+',/,

1 ' Y(yes) enters limits, N(no) restarts limit settin.',/
2 ' S(set) allows the user to enter values for ITOP and IBOT'',$)

ACCEPT 230Y0K
230 FORMAT(A1)

IF (OK. EQ .NO) GOTO 145
IF (OK. EQ .SET) GOTO 240
GOTO 270 ! assumes <CR> represents YES response

240 TYPE 250
250 FORMAT(1H,' Please enter two inrtegers for ITOP aid IBOT: ',$"
255 ACCEPT 260,ITOPIBOT
260 FORMAT(219)

IF (ITO'P.GTNLD.OR.IBOT.GT.NLD) GOTO 265
BOT=IVLIST(2+(I IOT-1)*2)
TDP=IVLIST(2+(ITOP-1)*2)

GOTO 215

265 TYPE 266tNLD
266 FORMAT(1H,' ITOP or IBOT maz not exceed 'YI5,

1 ' Please reenter values: ',$)
GOTO 255

270 ITP=MINO(ITOPIBOT) !Independent of order entered
IBT=MAXO(ITOPIBOT) !ITP lower limit, IBT upper limit

TOP=AMIN1(TOPYBOT) !TOP loer scan line
BOT=AMAX1(TOP,BOT) !BOT upper scna line

N=IABS(ITP-IBT)+1

TYPE 280yN? TOPFBOT
280 FORMAT(1HY3XI4,' Foints, from line 'FF5.0,' to ',F5.0)

END
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PROGRAM PLTHTA

C 20-May-79
C THETA(Y) vs. time(X) is plotted using the results of LSMRT.
C The time scale ma- be user specified and the time scale set
C bv the rpogram in accordance with the number of fields
C that were analysed.

DIMENSION IBUF(1500),RDAT(8)
LOGICAL*1 QRY7RERUN
DATA RERUN/'R'/

DK=1545./1300. !screen aspect ratio

TYPE 5
5 FORMAT(1H,' Enter data filename+*'f$)

CALL ASSIGN(1,-1)
DEFINE FILE 1 (256v16?UYNREC)

50 NREC=1

READ(1'NREC) RDAT
NF=RDAT(1) !number of fields analised
TOP=RDAT(2) !scan line at top of vertical window
BOT=RDAT(3) !scan line at bottom of vertical window
RPV=RDAT(4) !SDX multiplier in point reJectiun window
DEL=RDAT(S) !constant in point rejection window
AVT=RDAT(6) !averaze of NF angles
SDAT=RDAT(7) !standard deviation from AVT
ASDT=RDAT(8) !averaoe standard error of estimate or onrle

WRITE(7, 175) NFv TOPY BOT, RPV, DEL, AVT, SDAT , A3DT
FORMAT(X I5,2F8.2,X,2F8.3,Xy2F9.3rF9.4./)175

TYPE 180
180 FORMAT(HY'Enter YMIN Z YMAXPNSFYNEF* ',$)

ACCEPT 185,YMINYMAXrNSFvNEF
185 FORMAT(2F3.2,2I5)

IF (NSF. LT .2) NSF=2 !first record is summary of data -
IF (NEF. GT .NF)NEF=NF !cant l1o beyond last file
NFT=NEF-NSF !total t$fields analized

DIX=1000./60.
XMIN=NSF*DIX
XMAX=(NEF+12)*DTX

YL=ABS(YMAX-YMIN)
TLX=YL/250.
TLY=NF/20.

!time increments in rmsee
!*1st field * 16.66 msec/field
!#fields+12 * 16.66 msec/field

!width of Y a>xis
! tick length

CALL FREE
CALL INIT(IBUF,1500)
CALL SCAL(XMINYMINXMAXYMAX)
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C ******* Construct AXES

CALL APNT(O.Y0.P0P-5)
CALL VECT(XMAX,0.)
LIX=1+(NFT+12)/6
TIX=-6.*DIX

C
C
C

C
C

!goto orilin
!draw X-axis
!X loop iricrement
!tick increment alonri X-axis

DO 100 IX=1?LIX
X=XMIN-TIX*(IX-1.) !tick value in msec
CALL RDOT(0.,-15.,0.,-5) !Position X axis numberins
CALL NMBR(1,X,'F5.1')
CALL VECT(0.rTLX) !draw tick mark

100 CALL RDOT(TIXP-TLXjO,-5) !return to X-axis I move back .1 sec

CALL APNT(1.yYMINv0y-5-) !Ioto end of Y-axis
CALL VECT(0.vYL) !draw Y-axis
LIY=I+YL/5 !Y loop increment
TIY=-5. !tick increment alonE Y axis
DO 200 IY=lLIY
Y=YMAX-TIY*(IY-1.) !desrees
CALL NMBR(2,Y)
CALL VECT(TLY,0.) !draw tick mark

200 CALL RDOT(-TLYPTIYr0y-5) !return to Y axes & drop TIY dgrs

NREC=NSF
DX=DIX !initialize time increment

DO 400 IF=NSFYNEF+1

READ(1'NREC)RDAT

IF (IF.GT.NSF) GOTO 350
ILF=RDAT(M)-1
DX=NSF*DIX

RT=RDAT(7)
ICF=RDAT(1)
DF=ICF-ILF
DF=1.
DX=DX+DF*DIX

CALL APNT(DXRT,1)
ILF=ICF

400 CONTINUE

!intialiZe last field
!intialize X value

!theta
!current field
!field increment

!time increment
!16.666 msec/field

!save field counter

TYPE 425
425 FORMAT(1H,' To rerun Program tvpe Rythen <RETURN>-',$)

ACCEPT 450YORY
450 FORMAT(A1)

IF(ORY. EQ .RERUN) GOTO 50
CALL EXIT lotherwise EXIT

END

350
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APPENDIX C

In choosing the number of words per field and number of fields

per buffer, certain I/0 timing and disk formatting requirements had to

be adhered to. The discussion of these considerations not only lend an

appreciation for the critical time factor under which the system is

currently operating, but also provides future users with a means of

assessing the effect of modification to the data collection and disk

storage routines.

The Digital Equipment Corporation PDP 34/11 computer in use with

the VSP has a core memory and all timing values below are for this unit

alone.

1 DISK SPACE

The RK05 disk used with this computer has approximately 4800 tracks.

Each track contains 12 sectors of 256 words yielding 3072 words per track.

Each of the dual buffers must therefore be a multiple of 256. Theoretically,

this would fit the video field ideally, since it contains 256 scan lines.

However, the first 17 and last 17 scan lines- contain only sync information,

and on occasion every third line is sampled by the VSP. Thus, less than

128 lines Are scanned per field.

2 WRITE TIMING

Each time an empty track is to be located on the average 50 msec

(85 msec maximum) is required. Each word that is to be written occupies
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11.1 isec and a disk revolution takes .40 msec.

With these requirements in mind, 32 fields of 200 words were used

for each buffer. The 200 words represented 99 lines of X, Y pairs, a

field counter and a field termination indicator. Unfortunately, these

buffers will occupy 1 sector more than 2 tracks. Yet there is more than

enough time to collect and store all the data with no loss even by the

most conservative estimate. This latter would include: 3 track posi-

tionings, 6400 word writes, etc., plus some margin, amounting to about

460 msec per buffer. Thirty two fields, on the other hand, allow a

512 msec respite before a buffer must be cleaned to accept new data. An

extra 50+ msec is available or about 3+ video fields.

It should be noted once again that if the buffer sizes are altered,

the time and space requirements noted here must be reconsidef'ed.
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APPENDIX D

CONTACT LENS 'SANDWICH': DEVELOPMENT AND THEORY

A contact lens mounted feature was chosen for tracking for determination

of ocular counterrolling. For this purpose, a new "soft" contact lens

"sandwich" was designed. Relevant characteristics of the lens material,

certain chemical phenomena and the mechanics of the lens developed are

presented below as an update of work presented in my bachelors thesis.

Standard hard contact lens material, polymethylmethacrylate has been

and is still widely used in the formation of corneal and scleral lenses

and shells. If handled with care and precision, hard lenses may be fit

successfully, yet lenses of'this material possess a number of serious

drawbacks. Friction and pressure of the rigid polymer is at the very

least uncomfortable and may lead to mechanical damage to surface

tissues in contact with the lens. Gases, , water and many physiological

solutes are restrained from flowing across the lens due to the nature

of its permeability. Attempts to alleviate some of these deficiencies

include grooves and holes cut into the lens. However, these methods

have not proved efficacious. Aside from the mechanical trauma, the

effects of corneal epithelial hypoxia are also often evident (Ruben,

1972). Adhesion of such lensesd.t 3 human eye to provide a tracking

image for eye monitoring presents even greater hazards. Mounted objects

such as mirrors and coils increase the chances of cornea abrasions, defor-

mation and edema. In addition, fluid is evacuated from behind the lens to

establish a negative pressure that forces this lens onto the eye. This may
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This may very well lead to damage to the ocular accommodation muscles. Poly-

hydroxyethylmethacrylate (poly-HEMA) has been used as just such a substitute.

It is far from perfect material, however, it does present both physical

(comfort, permeability) and chemical .(highly stable) advantages over the harder

materials. (Ratner and Hoffman 1976).

The Bausch and Lomb SOFLENS contact lens comes in a limited number of

sizes (three for prescription lens use and one for non-prescription plano

lenses). They therefore avoid the impositions associated with custom fitting.

Further, subjects wearing these lenses, even the relatively bulky sandwich

types, feel little, if any, discomfort. The development and use of a sand-

wich of two soft contact lens bonded about a fine fiber, such as a human hair,

was described in Chapter 4. This sandwich provides clear and distinct images

to a video monitoring system. It may prove to be a viable alternative 'to other

systems as well, and may be adapted to hold the coils, cores and rings pre-

viously embedded in other types of lenses

Two subjects participated in experiments involved in this research. Both

reported no loss in their powers of visual discrimination and we have observed

no impediment to eye movement. No anesthesia is required prior to insertion

and fluid evacuation is not needed to establish a negative pressure to adhere

the lens to the eye. The worst observed effects were those of expected adap-

tation problems of subjects who had never worn contact lenses. There was some

initial teafing, which soon disappeared. Yet both the subjects were examined

with the eye movement monitor after wearing the lenses for the first time.

Neither had worn contact lenses prior to this time. Subsequent examination

by an optometrist in the MIT Medical Department showed no edema or other

corneal damage.
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The purpose of this appendix is then to discuss the use of a softlens

sandwich as it may be used in an eye monitoring system. Theoretical

ideas as to why the composite lens is so stable and binding; and, why

it can be made to adhere so well, for desired time periods, to surfaces

with which it comes in contact, are also provided.

THE SOFLENS MATERIAL

The soft contact lens materials, SOFLENS (polymacon), consists of

approximately 60% poly (2-hydroxyethylmethacrylate) and 40% water

(by weight when immersed in normal saline solution). Poly-(HEMA)

is an organic polymer, thus its properties can'best be understood

by considering the characteristics of polymers.

Primary chemical bonds along polymer chains are generally entirely

satisfied. The only forces between molecules are secondary forces

of attraction (these forces will be of relatively minor importance

in the 'lens sticking theory'), which are relatively minor compared

to the primary bond forces. The high molecular weight of polymers

allows these forces to build up enough to impart excellent strength,

dimensional stability and other mechanical properties to the the

substance.

The SOFLENS material is a hydrogel, a subclass of polymers which

exhibit the ability to swell in water and retain a significant fraction

of water within their structure without dissolving.
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FIGURE D.1

Poly (2-hydroxyethylmethylmethacrylate) p-HEMA Segment

P-HEMA consists of a three dimensional network of such segments repeated

many times and swollen in aqueous media.
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Hydrogels

Hydrogels are three dimensional, water swollen, networks of hydro-

phylic polymers, generally ionically or covalently crosslinked, consisting

of two components: the polymer network and an aqueous solution. The

Bausch and Lomb SOFLENS contact lens, for example, consists of 61.4% HEMA

polymer and 38.6% water by weight in its hydrated state. The network, as

described above, is composed of a large number of chemically related

subunits bonded together. It is constant in quantity, presenting no

significant physical change with changes in the environment. There is

mobility of polymer segments, particularly in the interfacial zone

(that region functioning as a boundary to other environments) and this

mobility will be of specific interest with regard to the adherence

characteristics of tackiness of the lens.

The polymer network interacts with the second component, the aqueous

solution, by swelling to some equilibrium value. Unlike the polymer

network, the solution is variable and in the SOFLENS, the water content

may range from 37 to 42% by weight for the HEMA hydrogel. At equilibrium

swelling, the chemical potentials of the water in the gel and the water

surrounding the gel are equal. The variance in water content may then

be seen as being influenced by the tonicity of the surrounding solution.

The combined aqueous gel network can be relatively strong or weak,

generally becoming weaker as the amount of water in the hydrogel

decreases. The mechanical behavior of the gel, which we believe con-

tributes to the unique adherence properties of the SOFLENS, is influenced

by the swelling of the lenses as well as certain other key properties,
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including the nature of the poly-network, tacticity, etc.

The surface and interfacial properties of the hydrogels are somewhat

similar to those of natural biological gels and tissues, and are there-

fore highly biocompatible, receiving increasing attention in utilization

for biomedical applications. In addition, a number of analogies have

been made between the hydrogel/water interface and the living cell/

physiological solution interface. These comparisons aid our understanding

of the mechanics involved in certain physical properties of the gels

and permit us to extrapolate and establish further theories regarding

the interaction of hydrogels with themselves as well as other surfaces

and materials.

The most important feature of hydrogels, as far as we are concerned,

is their ability to equilibrate with and 'follow' many environmental

changes. The addition of macromolecules, too large to penetrate the

hydrogel, to the solution surrounding the gel lowers the chemical

potential of the water in the solution. Water will then flow out of

the hydrogel, causing the polymer network to contract. This action

leads to a balancing of the potential of the water in the network with

that of the water in solution. The process of such equilibration in

essence creates a swelling pressure equal to the osmotic pressure and

it is this pressure which leads to some of the interesting mechanical

side effects with regards to the adherence of poly-HEMA materials.

In polymer chemistry, the peculiar characteristics which cause

two polymer or rubber surfaces to adhere or coalesce is known as

tack or autoadhesion. It has been shown to depend upon the interdiffusion
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of segments of polymer molecules across the rubber surface (Ledwith and

Norton, 1975; Morton, 1973). Some synthetic polymers have much better

tack than others partly due to the inherent strength of the uncross-

linked polymer, but also due to the greater ease of molecular diffusion

across the polymer interface.

Tack is tremendous practical importance. Composite rubber articles

such as tires are built by use of this property. Surfaces, 'freshened'

with suitable solvents, are merely stuck together and pressed into place.

Though contact lenses are as far a cry from automobile tires as

hydrogels are from tire rubber, a valuable analogy may be drawn. Both

rubber and gel are polymers with many entangled chains in constant

molecular motion. This motion and the very properties that lead to the

formation of the polymer from the polymer units lead to adherence

of the more: complex poly-network to other. surfaces under

the proper conditions.

Chen and Cyr (1970) describe this adherence and note that when

a dry hydrocolloid is moistened with water, long chains of the polymer

are hydrated and liberated to a freely moving state. When bought close

to a substrate, the stretched, entangled or twisted molecules are

now able to match their active sites to those on the hydrophylic sub-

strate to form adhesive bonds or to match with each other to form co-

hesive bonds. Maximum adhesion is achieved in the presence of an

optimum amount of water at or near the interface. If an insufficient

amount of water is used, active wet adhesive sites are not completely

liberated and exposed for interactions, while an excessive amount of
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water causes overextension of hydrogen bonds and other adhesive forces

leading to a weakening of the adhesion.

The Hydrogel Environment and its Changes

All molecules undergo continuous random motion. In this manner,

molecules are able to move from one region of a solution to another.

In a solution, many molecular collisions may occur, each altering the

direction of the molecule's movement. Over a period of time, these

collisions establish a random walk or path for each molecule. A

large number of these paths taken together can lead to a flux or dif-

fusion of molecules in one direction, which, as Vander et al (1973).

note always proceeds from a high to a low concentration, even in the

absence of a specified force, such as pressure. The magnitude of the

net flux is determined by the magnitude of the concentration gradient.

When, as a result of these molecular migrations, the concentration is

uniform throughout the solution, a state is reached where the net flux

is zero. This is known as diffusion equilibrium and, once reached

further changes in concentration do not occur.

A membrane which permits the free passage of selected molecules

while restraining others is classified as a semipermeable membrane;

only partially free to the passage of molecules. If a membrane which

allows only water to pass through it were placed between two compartments

of different concentrations, a new diffusion of water or osmosis will

occur. Such an effect occurs as long as the concentraction gradient

exists. If both the water and the solute can cross the boundary, diffusion
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proceeds in both directions; the solute concentration gradient promotes

a flow of solute molecules to the lower osmolar concentration region,

while the water concentration gradient prompts osmosis in the direction

of lower water concentration. Such an exchange occurs until the con-

centration of both solute and water are equal in each compartment.

If a semipermeable membrane is placed at the boundary of the two

sections and is permeable only to water, the equilibration process may

only utilize water flow. Since the only way the solutions can become

equilibrated is to have water from the more dilute compartment flow

into the more concentrated compartment, a net volume change results.

If the dilute solutions is pure water, this volume change-will continue

until the column of liquid in the solution compartment exerts a force

equal to the osmotic pressure.

In the case where both water and solute can pass through the membrane,

no net change in volume will occur. When the membrane restricts the flow

of solute molecules, a net change in volume must occur due to the

dilution process.

Lens Reactions to Changes in the Environment

The SOFLENS contact lens may be regarded as a semi-permeable membrane

and the mechanics of ion flow across it may be thought of as a combination

of the two effects described above. It allows the passage of water and

other small molecules and ions, but prevents the passage of larger ions

and macromolecules such as protein. In the eye, there are two compartments

with associated concentrations. The first compartment is the corneal

surface consisting of a mucus layer and a tear layer made up of water and
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solids. Adler (1965) reports that the solid phase (actually in solution

with the tears) makes up about 2% of the total and consists primarily of

protein (mostly urea at a concentration equal to that found in plasma)

and sodium, potassium and chloride ions (at a concentration higher than

that found in plasma). The second compartment is the interior of the

lens made up of the polymer network and its aqueous phase. When the two

compartments come in contact, a net exchange of ions or water will occur

if their concentrations are not equal.

Refojo(1975) summarized the different osmotic effects associated

with the hydrogel lens. He notes that the contact lens may be isotonic

(of equal tonicity or osmotic pressure), hypertonic (of higher osmotic

pressure) or hypotonic (of lower osmotic pressure) with respect to the

tear layers in the eye. The tonicity of the gel aqueous phase may be

controlled and manipulated by the solution the lens is stored in.

In general, the SOFLENS material is held in a solution whose salt

concentration is roughly comparable to that which is found in the normal

eye (0.85 to 0.90% saline). When a contact lens stored in this solution

is placed in the eye, little net ionic migration will take place. The

lens' aqueous phase and the eye's tear layer are isotonic with respect

to each other. There will be a continual interchange of tear and lens

fluid, yet Refojo notes that there will be no overall change in the tear

tonicity and no changes in the optical or physical characteristics of

the lens.

If the storage solution has a concentration sufficiently different

from the tear layer, changes can be induced. If the lens is placed in
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distilled water, it will become hypotonic with respect to the tear layer.

When placed in the eye, a concentration gradient will- exist, water will

move from the aqueous phase of the lens to the tears (in an effort to

dilute the tears), and K, Na, and Cl ions will tend to flow from the

tears into the lens. These exchanges will continue to occur until

equilibration, at which point a state of isotonicity is attained. The

dominant transport of water out of the lens, however, leads to a net

contraction of the lens and with this shrinkage, the lens adheres to the

cornea. Further evidence to support this view is provided by a coincidental

finding in the study of ionic flow by Refojo (1967) and others. It was

noted that as the concentration of a solution containing certain ionic

compounds increases, the percentage of water in the hydrogel decreases.

These ions are, in fact, the primary ions found ih the tears, potassium,

sodium and choride.

If the lens is bathed in a solution (such as an NaCl solution) with

salt concentrations higher than the normal 0.85%, the lens can be made hyper-

tonic to the tears. In the case, the reverse of the hypotonic reaction

will occur. Placed in the eye, such a lens will osmotically draw water

from the tears into the lens and the lens will swell. Again, salt will

also move into the more dilute solution, from the lens into the tears,

causing discomfort. Worse, however, the corneal epithelium is dried out

from the osmotic effect and this may cause ocular irritation. Once more,

these interchanges will continue until isotonicity is reached, at which

time the normal interchanges will again take place.

It is this property or physical reaction of flow and contraction
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which we believe to be one of the major contributors to the sticking of

the lens to the eye. It is our experience that a lens soaked in distilled

water adheres rather tenaciously to the cornea for a considerable period

of time (15 minutes to 2 hours, observed). Such adherence is consistent*

with the osmotic processes detailed above, since the distilled water

aqueous phase within the lens will flow out into the eye due to the dif-

ference in concentration. Salt will also tend to flow in and eventually

equilibrium will be reached. However, at this equilibrium point, the

lens will contain less volume of solution than its optimum amount

and will consequently be smaller in size, thus adhering more tightly to

the cornea. Eventually, the lens will rehydrate by absorption of tears

and the adhesion will lessen.

It seems reasonable to postulate that a combination of these

effects is taking place at the boundary between the two soft lenses.

These would include in probable order of decreasing contribution,

autoadhesion, covalent bonding, and hydrogen bonding.

Autoadhesion refers to the natural tack of the poly-HEMA material

in contact with itself. The presence of partially unreacted

monomer chains on the surface of the left lens further contributes

to the soft-lens-soft-lens adhesion. In the presence of an aqueous

phase, these chains obtain the mobility to attain the proper configuration

for formation of covalent or hydrogen bonds. Hydrogen bonds between

the two lenses wou.ld be a fairly minor effect, but given the presence

of an aqueous phase at the boundary, a lens-water-lens hydrogen bond

bridging effect is quite possible and would enhance the stability of
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the adhesion. This effect would be lost in the presence of an excess -

of water, as would some of the covalent bonding. The covalent bonding

would be of the same type responsible for the formation of the polymer

from the monomer, but on a much smaller scale since only a small pro-

portion of the available monomer chains would attain the proper con-

figuration to form covalent bonds. Thus, these bonds would be relatively

easily broken in a situation where the two large lens masses are being

forced apart.

This drift of polymer fibrils and the constant movement of other

entangled strands might be of some value in further explaining the strength

of the observed adherence. In dry tack, one of the effects includes the

extension of fibrils which contact and latch onto the other surface.

Strands of material from this second surface are pulled toward the fibrils,

forming a physical bond. If enough bonds are formed, adhesion may result.

Wet adhesion is a dynamic phenomenon unlike the somewhat static occurrence

in the dry state, yet it is not unlikely that the same kind of effect

may occur. Fibrils from the polymer, constantly moving, extend from

the network surface, and when they come in contact with another surface

with similar fibrils, they might adhere to its strands.

In the case of a lens-lens sandwich, this is far from unreasonable.

Two of the same materials with wandering fibrils touch. These same

fibrils now extending from a polynetwork mass are the same basic material

which was originally polymerized to form the mass. The same solvents

and materials are present, and one may conclude that the same properties

that led to polymerization may lead to a secondary effect.
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This effect may be promoted by the equilibration process. Ions and

water migrating out of the lens may carry polymer strands with them,

causing further fibrils to extend from the network surfaces. Ilavsky

and Prins (1970) note that when p-HEMA is subjected to a distortion,

its original interchain correlation is partially destroyed. When the

stress is relaxed, reorientation regions in the polymer network may be

observed. It might also be possible that a reorganization occurs

leading to interaction with external material.

As noted before, we had to rub the lens sandwich between the thumb

and forefinger to separate it, perhaps shearing this adhesive bond. One

must bear in mind, however, that this is a small secondary effect. It

is, as proposed, quite possibly an interesting minor contributor to the

adhesion and should be viewed accordingly.

Summary

A number of interesting properties of the SOFLENS material became

evident during this study. The SOFLENS contact lens sandwich adheres

to the eye especially fast and for longer times than expected. based

on previous work. It was noted that the heavier the lens, the quicker

it stuck and the more prolonged its adherence.

This led to the belief that the added weight contributed additional

pressure forcing the lens into closer contact with the cornea. In

addition, it supported the view that many factors come into play in
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contributing to the adherence of the lens to the eye or to another

lens of the same material.

An attempt has been made to summarize the available material describing

the nature, of the contact lenses and their application in eye movement

tracking. It has been shown that their optimum application involves the

use of a sandwich of two soft contact lenses with almost any desired

marker inserted between the two. These sandwiches, under the appropriate

conditions, can be made to adhere to the cornea for considerable periods

of time and provide a stable landmark for eye tracking.

One of the more challenging aspects of this work involved the investi-

gation of the mechanism of adherence of the soft contact lens to the cornea.

Diffusive forces die out after approximately 15 seconds, thus, other forces

must play a role in the adherence. Several probable explanations were

advanced, including osmotic shrinking and weight considerations. The

manner in which the lenses stuck to each other was also investigated.

Possible explanations for this were covalent bond formation and hydrogen

bond formation stabilizing the natural tack-induced tenacity.

This is a summary of a more detailed explanation presented in

my bachelor's thesis (Edelman, 1978).
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APPENDIX E

VIDEO

Throughout this thesis, constant references have been made regarding terms

describing various aspects of video technology. The next few pages will

hopefully serve as an elementary guide and glossary for such information.

Additional details regarding any of the video signals and their processing

can be found in the suggested readings at the end of this appendix.

Scanning:

In the process of transmission known as scanning, a video picture is

broken up into individual elements instead of being handled as an entire

scene. In current systems, the picture is recorded in horizontal lines,

or strips, which are transmitted one at a time.

The electron scanning beam begins at the upper left-hand corner of the

screen or mosaic (point A in Figure E.1 below). Deflection coils create

a magnetic field which causes the beam to sweep horizontally across the

camera 'pickup' tube at a uniform speed. At the same time, a set of ver-

tical deflection coils deflects the beam slightly downward. When the

beam reaches the right-hand border of the picture, it is rapidly swept

back to the left hand side in a motion known as horizontal retrace. Scan-

ning from left to right, and slightly downward, the beam sweeps across the

screen until it reaches the bottom (point B in Figure E.1). There, it is

returned to the top of the screen by the vertical deflection coils. This
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vertical retrace sets the beam at point C where it is ready to scan the

horizontal picture sections that lie between the lines previously scanned.

When the beam reaches point D, the entire two part scan of the picture is

comple te. Start of Start of
A field C field

ODD LINES

*-EVEN LINES

-- RETRACE LINES

End of field B End of D
field

FIGURE E. The interlaced scanning pattern of a raster

This method of scanning is known as interlaced, referring to the fitting

together of two picture halves to make a whole. The scanned halves are

called fields; odd-numbered scanning lines appear in the odd field, even

in the even field. These two fields combine their different information

to produce a full picture or frame. Last, a third type of signal is

transmitted to control the blanking of the screen. When horizontal or

vertical retrace occurs, the beam may produce objectional interference if

shown on the screen. Thus, blanking pulses are sent to black out this

scan section. Horizontal blanking pulses appear, then, 15,750 times per

second. A vertical counterpart occurs 60 times per second, at the end of

every field.
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In standard American television systems, 525 lines are scanned per

frame and thirty such frames, or 15,750 lines, are transmitted every

second. These lines are split between the two fields 262 1/2 lines per

field. This is shown in the above figure. Field 1 ends on a half line

and field 2 starts on a half line.

Only 490 of the lines in a frame are active, the remainder occurring

during the vertical retrace period when the viewing tube is blacked out.

Complete synchronization must be maintained between scanning at the

transmitter and the receiver. To effect this, synchronizing pulses are

transmitted along with the video signal to lock the receiver oscillators,

vertical and horizontal, into step with those at the transmitter.

The following figure provides a view of the sync pulses transmitted

for one complete frame. The first waveform represents events that might

occur in the first field, and the second waveform represents the second

field of a picture.

There are many important features in the figure, but only a few are

worthy of immediate notice. First, it should be noted that there is a

horizontal half-line (0.5H) difference between the two fields. Second,

it should be noted that the vertical sync pulses are serrated and not

presented as one continuous signal. This provides a means of locking

the horizontal oscillation of the receiver in synchronization with the

system during the transmission of vertical sync information, preventing

drift which might otherwise occur. Finally, a group of six equalizing

pulses precede and follow the vertical pulse. These pulses
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are of a shorter duration than the square pulses and are transmitted to

insure uniform spacing of the interlaced scanning lines and to prevent

loss of synchronism during vertical retrace.

In summary, then, three types of information amplitude modulate

the video transmitter: video, blanking and synchronizating. These

signals are assigned different amplitudes and therefore offer varying

degrees of modulation. The figure below illustrates these modulation

levels in terms of relative amplitudes and approximate voltage values.
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