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to different mechanical environments 
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Abstract 
 

We routinely produce movements under different mechanical contexts. All interactions with 
the physical environment, such as swinging a hammer or lifting a carton of milk, alter the forces 
experienced during movement. With repeated experience, sensorimotor maps are adapted to 
maintain a high level of movement performance regardless of the mechanical environment. This 
dissertation explored the contribution of the precentral cortex to this process of motor adaptation. 
In the first experiment, we recorded precentral neural activity in rhesus monkeys that were 
trained to perform visually-cued reaching movements while holding on to a robotic 
manipulandum capable of changing the forces experienced during the task. Preparation and 
control of the reaching movements were correlated with single cell activity throughout the 
precentral cortex, including the primary motor cortex and five different premotor areas. 
Precentral field potential activity was also modulated during the reaching behavior, particularly 
in the beta and high gamma frequency bands. When novel forces were introduced, single cell 
activity changed in a manner that specifically compensated for the applied forces and mirrored 
the time course of behavioral adaptation. Force-related changes were present in the field 
potential activity as well. Some of these changes were maintained following removal of the 
forces. Control data and simulations revealed that these residual changes were well described by 
a model of noisy adaptation in a redundant cortical network. In the second experiment, human 
subjects performed the same reaching paradigm after receiving transcranial magnetic stimulation 
to transiently inhibit cortical activity. Initial learning of the novel force environment was normal 
but recall of the field 24 hours later was impaired relative to controls. Taken together, the results 
suggest that distributed areas within the precentral cortex are involved in recalibrating 
sensorimotor maps to fit the present mechanical context and in initiating a memory trace of 
newly-experienced environments.   
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Foreword 
 

We routinely produce movements under different mechanical contexts. Behaviors such as 

swinging a hammer, opening a door, and lifting a carton of milk all involve forces acting on the 

moving arm that are not present when the arm is moving freely. Indeed, all interactions with the 

physical environment alter the forces experienced during a movement. Behavioral studies show 

that subjects quickly adapt to and proactively compensate for these forces in order to maintain a 

high level of movement performance regardless of the mechanical environment. The motor 

system generally provides proactive compensation by developing some estimate of the 

relationship between forces and motions of the body. This relationship is governed by the laws of 

classical mechanics and is referred to as a system’s equations of motion, or movement dynamics. 

The neural transformation that estimates this relationship is often referred to as an “internal 

model” of the dynamics. This dissertation explores the motor cortical contribution to adapting 

and storing this transformation. 

 Maintaining good performance in a changing environment generally involves not only 

adaptive estimates of the dynamics of movement, but also adaptive estimates of the kinematics 

of movement (Atkeson, 1989). The latter provide mappings between kinematic variables in 

different coordinate frames, which are a function of the possibly changing geometry of the 

elements involved (e.g. size and orientation of tools). The study of internal models of movement 

kinematics has a long history compared to the relatively recent study of dynamics models (Held 

and Freedman, 1963). The degree to which kinematics and dynamics mappings are adapted and 

stored independently is uncertain (Krakauer et al., 1999; Tong et al., 2002). Furthermore, the 

robotics literature provides examples of unified adaptive controllers that deal with both 

kinematic and dynamic uncertainties in parallel (Cheah et al., 2006). Nevertheless, for practical 

reasons, this thesis focuses exclusively on internal models of dynamics with the 

acknowledgement that it is just one component of adaptive movement control. 

In addition, recalibration of an internal model to the relevant mechanical context is just one 

type of motor learning. Other types include learning the sequence of movements involved in a 

new motor skill and learning a mapping between a sensory stimulus and a motor response (Sanes 

and Donoghue, 2000). Internal models of movement dynamics differ from the latter type of 

learning in that the learned transformation is governed by the physical laws of motion rather than 

arbitrary “man-made” laws (e.g. a green light maps to pressing the car accelerator). Finally, the 
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general concept of internal models, in which neural networks mimic the input-output properties 

of physical systems, has relevance to many other functions of the brain, including perception and 

cognition (Wolpert et al., 2003; Davidson and Wolpert, 2005). Thus, while this thesis has a 

narrow focus with respect to motor system function, it is also germane to the study of internal 

models across systems neuroscience. 

The work presented in this thesis focuses exclusively on adaptation during arm reaching 

behaviors in the primate. As such, Chapter 1 is devoted to characterizing the psychophysics of 

reaching in familiar and novel mechanical environments. Chapters 2 and 3 quantify motor 

cortical activity during the familiar reaching task. These chapters provide a reference with which 

to judge changes in activity associated with motor learning. Chapters 4 and 5 quantify changes in 

motor cortical activity that are correlated with adaptation to novel environments. Finally, in 

Chapter 6 we present a study which tested the causal link between motor cortex and adaptation, 

to complement the correlational analyses of the previous chapters.  
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1 Psychophysics of reaching in familiar and novel environments 
 
 
1.1 Introduction 
 

Through interaction with the physical environment, even familiar movements can experience 

novel, perturbing forces. For example, simply holding a mass in your hand can change the 

position-, velocity-, and acceleration-dependence of shoulder and elbow torques during whole-

arm reaching. Without proper recalibration of the motor controller, these changes in the 

dynamics can degrade performance. Psychophysical experiments can give insight into how this 

recalibration occurs. We begin this chapter with a review of the psychophysics of adaptive 

control in humans. Then the remainder of the chapter explores the psychophysics of adaptive 

control in monkeys. This will provide the behavioral background for interpreting the monkey 

neurophysiological data presented in later chapters. 

 

Human psychophysics 

Many psychophysical studies have been conducted over the past 12 years to address how 

humans adapt to changes in dynamics (Shadmehr and Wise, 2005). The initial studies altered the 

dynamics of reaching movements with novel velocity-dependent forces. Lackner and DiZio 

(1994) used velocity-dependent inertial forces (Coriolis forces), created by rotating the room in 

which the subjects performed the task. Shadmehr and Mussa-Ivaldi (1994) used velocity-

dependent mechanical forces (curl force field) generated by a robotic arm held by the subject. 

Subsequent studies have used many other methods to alter the movement dynamics during 

reaching (Flanagan and Wing, 1997; Sainburg et al., 1999; Dingwell et al., 2002; Lai et al., 2003; 

Mah and Mussa-Ivaldi, 2003). These methods differ not only in how they perturbed the 

movement dynamics, but also in what type of sensory information the nervous system receives 

regarding the novel forces (e.g. cutaneous feedback is available in mechanical but not inertial 

perturbations). Typically, these studies analyze movement kinematics (e.g. arm position and 

velocity) before, during, and after the perturbation. A robust finding across these studies is that 

subjects adapt to the altered dynamics such that their kinematics is indistinguishable from what it 

was under control (i.e. normal dynamics) conditions. 
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Adaptation to novel movement dynamics can be achieved by both dynamics-specific and 

dynamics-nonspecific mechanisms. The former can be referred to as model-based control, where 

an internal model of the specific altered dynamical environment is acquired by the nervous 

system and used to generate feed-forward motor commands. The latter can be achieved by 

simply co-contracting antagonistic muscles indiscriminately to increased overall arm stiffness in 

order to minimize the effect of perturbations. The theoretical utility of these mechanism for 

adaptive control has been demonstrated in the engineering literature (Tin and Poon, 2005). To 

dissociate these mechanisms, control trials of normal dynamics can be used, either randomly 

interspersed during adaptation (“catch trials”) or in a block following adaptation. If a mirror 

pattern of errors is seen in these control trials (i.e. equal but oppositely directed errors to that of 

the early adaptation trials), it indicates a feed-forward strategy is being used consistent with 

model-based control. Such dynamics-specific errors are referred to as “aftereffects”. If no errors 

are seen, then the adaptation is likely nonspecific (although, see next paragraph). In the studies 

mentioned above, subjects exhibited aftereffects after adaptation to the altered dynamics. Thus, 

these studies provide evidence that human reaching movements are controlled using adaptive 

estimates of the movement dynamics. 

There are two types of dynamics-specific mechanisms for adaptation: a proactive mechanism 

(i.e. internal model-based control) (Kawato, 1999) and a reactive mechanism (i.e. impedance 

control) (Hogan, 1985). Internal model-based control is proactive in the sense that the controller 

produces a compensatory response for a predicted perturbation without regard for whether the 

perturbation actually occurs. This is why aftereffects occur on catch trials. On the contrary, the 

perturbation must occur for an impedance controller to generate a compensatory response. What 

differentiates impedance control from a nonspecific co-contraction strategy is the characteristics 

of the response it generates; impedance controllers adapt the reactive response to optimally 

counteract the predicted perturbation. Hence, impedance control is specific to the dynamics since 

it relies on a prediction of the mechanical environment. However, impedance controllers do not 

produce aftereffects as defined above. Rather, to dissociate an impedance controller from 

nonspecific co-contraction, one must show that the constitutive mechanical properties of the arm 

(i.e., stiffness, viscosity, inertia) are specifically adapted to the environment. Specific adaptation 

of arm stiffness has been shown to occur when subjects make reaching movements in a 

divergent, position-dependent force field (Burdet et al., 2001). This study shows that in such 
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unstable dynamics, subjects actually cannot form internal models of the pattern of forces and 

thus resort to a reactive control strategy. Therefore, whether a proactive or reactive mechanism is 

employed by the motor system depends on how the movement dynamics is altered. In fact, both 

mechanisms may be used simultaneously when some components of the movement dynamics are 

amenable to internal model-based control and others are not (Franklin et al., 2003; Osu et al., 

2003). 

An important issue regarding dynamics-specific adaptation is whether the nervous system 

learns a mapping from the mechanical states (i.e. positions, velocities, and accelerations) of the 

arm to the novel forces or whether it just memorizes a temporal sequence of forces for each 

trajectory it experiences in the altered dynamics. Conditt and colleagues found that adaptation to 

velocity-dependent forces generalized across different movements that visited the same 

mechanical states (Conditt et al., 1997). Furthermore, the human motor system tends to represent 

forces as a function of mechanical state even when those forces are purely a function of time 

(Conditt and Mussa-Ivaldi, 1999). Therefore, the computations underlying control of reaching 

movements include an adaptable neural transformation between limb motions and forces. This 

transformation is not likely solving the equations of motion explicitly. Rather, acquisition of 

internal models may result from a relatively simple adaptation law driven implicitly by 

performance errors that ultimately leads to a neural transformation that approximates the 

movement dynamics. Several formulations of how this may occur have been proposed (Atkeson, 

1989; Sanner and Kosha, 1999; Gribble and Ostry, 2000; Thoroughman and Shadmehr, 2000). 

The implicit nature of the adaptation process has recently been demonstrated. When velocity-

dependent curl forces were applied with incrementally increasing amplitude across trials, 

memory of the novel dynamics was the same as when the forces were applied at full magnitude 

on every trial (Klassen et al., 2005). This result suggests large errors are not needed to recalibrate 

an internal model and the recalibration can occur without conscious awareness. 

A related, but different, question is to what degree the learned map of the movement 

dynamics generalizes to mechanical states that were not experienced during learning. If the map 

was the exact equations of motion, it would generalize to all states. At the other extreme, if the 

map was a “look-up table” between motions and forces previously experienced, it would not 

generalize at all. Biologically, this map must be generated by combination of basis elements, or 

nodes in a neural network. Accordingly, generalization is partially a function of how broadly 
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tuned these basis elements are to the mechanical states of the limb. Studies indicate that the basis 

elements have broad position tuning (Shadmehr and Moussavi, 2000), more narrow velocity and 

directional tuning (Gandolfo et al., 1996; Thoroughman and Shadmehr, 2000; Donchin et al., 

2003), and weak acceleration tuning (Hwang et al., 2006). The network supporting motor 

adaptation may also rapidly select or adapt the tuning of basis elements based on the spatial 

complexity of the dynamical environment (Thoroughman and Taylor, 2005). The psychophysics 

of generalization has also revealed the coordinate frame of internal model computations. In 

particular, the network represents motions and forces in an intrinsic (i.e. muscle or joint) rather 

than an extrinsic (i.e. hand) coordinate frame (Shadmehr and Mussa-Ivaldi, 1994; Gandolfo et 

al., 1996; Shadmehr and Moussavi, 2000; Malfait et al., 2002; Malfait et al., 2005). 

Next, we consider the controller architecture—that is, how an internal model of movement 

dynamics is used to generate predictive motor commands. Many different model-based controller 

architectures can, in theory, produce similar system behavior. One architecture is to use the 

model of the plant dynamics to predict the current motion of the limb from past motor commands 

and delayed sensory feedback, and to generate new commands based on the difference between 

predicted and desired motion. When an internal model is used with this causality, it is often 

called a “forward” model (Jordan and Rumelhart, 1992; Miall and Wolpert, 1996). Alternatively, 

when an internal model is used to predict the motor commands required to produce a desired 

motion, it is called an “inverse” model (Atkeson, 1989). Both controllers are viable in theory, as 

is an architecture that uses forward and inverse models of the plant dynamics to both compute 

commands needed to produce desired movements and anticipate the consequences of motor 

commands (Wolpert and Kawato, 1998; Bhushan and Shadmehr, 1999; Wang et al., 2001; 

Flanagan et al., 2003). The actual architecture almost certainly involves an inverse model 

(Bhushan and Shadmehr, 1999) and likely also includes a forward model, although the evidence 

(Wolpert et al., 1995; Ariff et al., 2002; Nanayakkara and Shadmehr, 2003) has been rather non-

specific (Mehta and Schaal, 2002). As any of these control architectures could, at least 

theoretically, be responsible for the behavioral results summarized above, I describe the neural 

transformation used for adaptive reaching control only as a map between arm motions and 

forces, without assigning a causality to the relationship. 

Finally, several studies have explored how internal models of movement dynamics are stored 

in memory. To date, all the work on this topic has specifically looked at whether newly acquired 
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internal models go through a process of consolidation, where consolidation is defined as a time-

dependent stabilization (i.e. resistance to interference) of the memory (McGaugh, 2000). 

Brashers-Krug et al. (1996) used an “ABA” paradigm in which subjects adapted to novel 

dynamics (A1) and then, after a variable wait, had to learn a different dynamics (B), and finally 

were brought back the next day to perform the first dynamics (A2) to test for retention of 

learning. They found that retention only occurred if session B occurred more than 4 hours after 

session A1. This evidence supports the consolidation hypothesis, suggesting that memories of 

novel movement dynamics are initially labile and easily overwritten, but by about 4 hours after 

acquisition they have become resistant to interference from new learning. While a subsequent 

study confirmed this result (Shadmehr and Brashers-Krug, 1997), a more recent study failed to 

find any interval between A1 and B (up to 1 week) which allowed retention of learning, 

suggesting memories of movement dynamics are always overwritten (Caithness et al., 2004). 

This discrepancy has been reconciled by a study that showed intermittent practice of the 

dynamics due to the presence of catch trials (which were used by the Brashers-Krug studies but 

not by Caithness et al.) is critical to memory stabilization (Overduin et al., 2006).   

We should note that some people have challenged the notion that we acquire internal models 

of the dynamics of movement, arguing both that the evidence cited above is not specific and that 

theoretically the use of such internal models to control movement is physiologically implausible 

(Ostry and Feldman, 2003). We believe these arguments are in general well reasoned, but only 

when very narrow definitions are used for what an internal model is and how it can be used. 

Here, we broadly equate the existence of an internal model of movement dynamics with the 

ability to control the dynamics of movement in an anticipatory manner (Kalaska et al., 1997). 

Under this definition, the existence of internal models is practically a truism. The presence of 

adaptation aftereffects is a hallmark of anticipatory control and, therefore, of internal models. 

Regarding physiological implausibility, Ostry and Feldman (2003) argue that controlling muscle 

force is implausible (preferring muscle length instead) and therefore the use of an inverse 

internal model, which maps desired motions into appropriate forces, is implausible. However, 

this logic is easily circumvented by broadening the definition of how an internal model could be 

used. In particular, the model’s output need not be the ultimate motor command if, for example, 

the internal model is embedded in a hierarchical motor controller architecture that may 

ultimately map desire motion to muscle length or to some other control variable.          
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In summary, humans adaptively control reaching movements to meet the mechanical 

demands of each task. Underlying proactive forms of adaptive control is a plastic neural 

transformation, or internal model, that approximates the physical relationship between the 

motions and forces involved in the task. The internal model can be used to predict appropriate 

motor commands from desired limb motions and predict the motion consequences of past motor 

commands. 

 

Monkey psychophysics 

With the human psychophysics of dynamic motor adaptation well described, the next step is 

to determine what neural structures are responsible for this type of learning. Work has begun in 

this direction by drawing upon neuropathological populations (Maschke et al., 2004; Smith and 

Shadmehr, 2005; Chen et al., 2006), as well as by using non-invasive techniques such as 

functional imaging (Diedrichsen et al., 2005) and transcranial magnetic stimulation (Richardson 

et al., 2006) in neurologically-intact individuals. Complementary to this work is the use of 

invasive neural recordings in non-human primates. A series of papers have explored how the 

cortical motor areas of rhesus monkeys are involved in adapting reaching movements to novel 

environments (Gandolfo et al., 2000; Li et al., 2001; Padoa-Schioppa et al., 2002, 2004; Xiao et 

al., 2006). The psychophysics of adaptation in the monkey has been described in these papers, 

but not in the same detail or rigor as the human studies. In this chapter, we more rigorously 

quantify the monkey psychophysics in order to have a better understanding of the behavior prior 

to looking for its neural correlates.  

 

1.2 Methods 
 
Paradigm 

We studied the behavior of five rhesus macaques (Macaca mulatta), four males and one 

female, trained to perform a visuomotor reaching task. Preliminary analyses of the behavior of 

three of the animals (F, C, R) have been reported previously (Padoa-Schioppa et al., 2002, 2004; 

Xiao et al., 2006). Data from the other two animals (K, T) were newly obtained for this thesis. 

The monkeys were trained to sit in a chair and hold on to a handle at the end of a two-link, 

planar robotic manipulandum with their right hand (Fig. 1-1A). On each trial, they moved the 
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handle in the horizontal plane between two targets located 6 cm (monkey R), 8 cm (monkeys F, 

C, and K), or 10 cm (monkey T) apart. The targets (1.5-1.7 cm white squares) and current 

position of the handle (a 0.3 cm white square) read from potentiometers on the robotic arm were 

indicated on a monitor with a black background placed approximately 75 cm in front of the 

monkey and slightly below eye level. The movements involve primarily right shoulder and 

elbow extension and flexion.  However, note that neither the wrist flexion-extension nor shoulder 

abduction-adduction angles were experimentally regulated. 

Each trial began with a 1 s hold time at the center target, followed by the presentation of a 

pseudorandomly chosen peripheral target (i.e. the cue). The peripheral target was in one of eight 

locations, spaced uniformly 45º apart in a circle around the center target. The center target 

remained on for a variable 0.5 to 1.5 s (monkeys F, C, K, and T) or 1.1 to 1.9 s (monkey R) after 

the cue to indicate the instructed delay time. Upon disappearance of the center target (i.e. the go 

signal), the monkey made a reaching movement to place the cursor in the peripheral target, 

where it had to remain for 1 s to receive a juice reward (Fig. 1-1B). Movement duration had to be 

less than 3 s and movements had to remain at all times within a region ±60º about a line 

connecting the center and peripheral targets. Any error resulted in abortion of the trial without 

reward. The hand trajectory (position and velocity) on each trial was recorded at 100 Hz. 

In control sessions, the monkeys performed at least 480 correct trials with no external forces 

(i.e. a null force field). In learning sessions, the monkeys performed ~160 correct trials with no 

external forces (baseline epoch), followed immediately by another ~160 correct trials during 

which the robotic manipulandum applied forces on the hand that were proportional and 

perpendicular to its velocity vector (force-field epoch), and finally another ~160 correct trials 

with no external forces (washout epoch). The magnitude of the velocity-dependent curl force 

field was 6 Ns/m (monkeys F, C, K, T) or 7 Ns/m (monkey R). For Monkey T, 8% of all trials 

(both correct and aborted) during the force-field epoch of each learning session were catch trials, 

where the force field was suddenly and unpredictable turned off in order to measure the time 

course of internal model formation. In the learning sessions, the force field could be either 

clockwise or counterclockwise. Thus overall, the monkeys performed reaching movements in 

three types of force fields: null field, clockwise curl field, or counterclockwise curl field. Only 

one type of field was used per daily session.  
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Analysis 

Performance was quantified on each successful trial by the signed deviation area between the 

hand path and the line connecting the beginning and end positions (Richardson et al., 2006). To 

assess robustness of our results we also computed two other performance metrics: the peak 

perpendicular displacement of the hand path from a straight line (Shadmehr and Moussavi, 2000) 

and the perpendicular displacement of the hand path 250 ms after movement onset from a 

straight line (Thoroughman and Shadmehr, 2000). All three performance metrics yielded very 

similar results; for brevity we report the results using the deviation area measure only. We also 

looked at the trial success rate, but it did not generally capture the performance as well as the 

trajectory-based measures. All aborted trials were excluded from the analysis. 

 Force field-related changes in performance were tested with five planned comparisons (t-

tests) for each session: an adaptation test (trials 161-200, ii in Fig. 1-2, versus 281-320, iii), an 

Figure 1-1.  Behavioral paradigm. A, Schematic of the approximate relative orientation of the 
monkey, robotic manipulandum, and monitor. Forces applied to the arm were proportional and 
perpendicular to the hand velocity vector. B, Schematic of the cursor (circle) and targets (squares) 
on the monitor during the four phases of each trial.   
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aftereffect test (trials 121-160, i, versus 321-360, iv), a deadaptation test (trials 321-360, iv, 

versus 441-480, v), a completeness of adaptation test (trials 121-160, i, versus 281-320, iii), and 

a completeness of deadaptation test (trials 121-160, i, versus 441-480, v). Any catch trials that 

fell within the force-field epoch blocks (ii and iii) were excluded. A per comparison error rate (p 

< 0.05) was used to judge significance since only the overall percentage of significant tests 

across sessions was of interest (conservatively assuming up to 5% were type I errors). 

In addition to the above comparisons, which lumped together trials in all eight target 

directions, we assessed whether performance changes due to the perturbation (early force field, 

trials 161-200, ii) or due to aftereffects (early washout, trials 321-360, iv) were directionally 

tuned. We took the absolute value of the performance to capture both changes in the mean and 

variance. Changes were defined relative to the mean late baseline (i) performance in the 

corresponding directions. For each monkey, performance changes were compiled across all 

learning sessions, separating clockwise from counterclockwise. The four data sets (perturbation 

or aftereffect changes due to clockwise or counterclockwise force fields) were subjected to 

Rayleigh tests for uniformity across directions with a unimodal alternative and with a bimodal 

alternative (Fisher, 1993), using Moore’s modification for weighted directional data (Moore, 

1980). 

We quantified trends in mean performance across sessions using linear regression. Also, 

correlations between across-session performance in the five blocks of trials (i, ii, iii, iv, v) were 

assessed by computing the rank correlation coefficient, with statistical significance judged by a 

permutation test.  

Finally, we looked at two additional behavioral measures: reaction time (RT) and movement 

time (MT). RT was defined as the time interval from the go signal (i.e. disappearance of the 

center target) to movement onset. Movement onset was defined as the last time at which hand 

speed crossed a 4 cm/s threshold prior to the time of peak speed. MT was defined as the time 

interval from movement onset to the time at which the cursor reached the peripheral target. To 

exclude from the analysis trials in which the monkey anticipated the go signal or was inattentive 

to the task, we place loose bounds on RT and MT (0.1 to 0.7 s and 0.3 to 1.2 s, respectively). On 

average across the five monkeys, this excluded 8.9% of successful trials from the RT analyses 

and 3.4% of successful trials from the MT analyses. 
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Figure 1-2. Example behavior of monkey K in a control session (null field) and a learning session 
(counterclockwise curl field). A, Hand trajectories from a control session. Each movement began at 
the center and ended at one of the eight peripheral targets. B, Hand trajectories from a learning 
session. C, Performance during the control session in A, quantified by the area between the 
trajectory and a straight line path (40 trial moving average shown with 95% student-t confidence 
intervals). Roman numerals indicate which paths in A correspond with which trials in C. D, 
Performance during the learning session in B. Note that the trajectory perturbation (change from i 
to ii), adaptation (ii to iii), aftereffect (i to iv), and deadaptation (iv to v) are well captured by the 
signed deviation area measure. 

1.3 Results 
 
Adaptation, aftereffect, and deadaptation 

Each monkey was over-trained on the null-field (i.e. control) reaching task for several 

months prior to experiencing any forces. Typical behavior during a control session is shown in 

Figure 1-2A. Despite the loose regulation of hand path (see Methods), the paths from the center 

target to each of the eight peripheral targets were quite straight. To quantify the straightness, on 

each trial we computed the signed area between the hand path and a straight line connecting the 

center and peripheral targets (deviation area). The mean deviation area was generally near zero 

throughout all 480 trials of the control session (Fig. 1-2C). 

In learning sessions, the monkeys initially performed 160 null-field trials (baseline epoch). 

Then for the next 160 trials, they were exposed to forces that were proportional and 

perpendicular (either counterclockwise or clockwise) to the hand velocity vector (force-field 
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epoch). These perturbing forces caused the hand paths to become curved (Fig. 1-2B, ii). With 

experience making movements in the force field the paths became straighter, indicating the 

monkeys adapted to the forces (Fig. 1-2B, iii). Next, the forces were abruptly turned off and the 

monkey performed a final 160 null-field trials (washout epoch). Turning off the force field 

caused the hand paths to be curved again, but this time in the direction opposite to that seen in 

the early force-field epoch (Fig. 1-2B, iv). This phenomenon is called the aftereffect of 

adaptation. Finally, the hand paths once again became straight by the end of the washout 

indicating the monkeys had deadapted back to null-field conditions (Fig. 1-2B, v).  

The adaptation, aftereffect, and deadaptation can be seen clearly in the time course of 

deviation area changes (Fig. 1-2D, ii to iii, i to iv, and iv to v, respectively). We tested whether 

Figure 1-3.  Significance of adaptation, aftereffect, and deadaptation in each learning session for 
all five monkeys. Each marker indicates the mean performance (deviation area) over a 40 trial 
block in one session. The lines between the markers represent a statistical comparison of two 
blocks (t-test). Black lines indicate the test was significant (p < 0.05); gray lines indicate the test 
was insignificant (p > 0.05). Sessions are divided according to the applied force field: counter-
clockwise (left column) and clockwise (right column). 
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these changes were statistically significant in each session. Across all five monkeys there were 

206 learning sessions. Out of 618 tests (i.e. tests of adaptation, aftereffect, and deadaptation in 

each session), 375 (60.7%) were significant (t-test, 5% level). To emphasize that these changes 

were related to the force fields, we performed the same tests for the 56 control sessions. Only 7 

of the 168 tests (4.2%) were significant, which is below the level of chance. The results of these 

tests for each monkey are shown in Figure 1-3. Each line represents a statistical test and its color 

indicates whether the test was significant (black) or insignificant (gray). There were differences 

between monkeys in the number of significant tests. In monkey K, all learning-session tests were 

significant (Fig. 1-3, first row). Monkeys C had a smaller percentage of learning sessions with 

significant adaptation, but almost every learning session was still significant for aftereffects and 

deadaptation (Fig. 1-3, second row). Monkey T had even fewer sessions with significant 

adaptation and had some sessions without significant aftereffects or deadaptation either (Fig. 1-3, 

fifth row). The percent of learning sessions with significant adaptation, aftereffects, or 

deadaptation for each monkey is summarized in Figure 1-4 (black bars). 

Next, we tested the completeness of adaptation and deadaptation. In learning sessions with 

significant adaptation or deadaptation, we compared the performance in the late baseline epoch 

Figure 1-4.  Summary of significance of adaptation, aftereffect, and deadaptation for all five 
monkeys (K, C, R, F, and T). Black bars indicate the percent of all learning sessions (i.e. sessions 
that applied either counterclockwise or clockwise force fields) that had a significant adaptation 
(left), aftereffect (middle), or deadaptation (right). Gray bars indicate the percent of all learning 
sessions with significant, but incomplete adaptation or deadaptation. Control sessions are excluded.  
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with that of the late force-field or washout epoch. The results for each monkey are summarized 

in Figure 1-4 (gray bars). Overall, 59 of 80 sessions (73.8%) with significant adaptation had 

significant differences between late baseline and late force-field epoch performance (t-test, 5% 

level). In all cases the differences were due to under-compensation, not over-compensation, of 

the force field. Also, 50 of 163 sessions (30.7%) with significant deadaptation had significant 

differences between late baseline and late washout epoch performance (t-test, 5% level). 

Force-field related changes in performance were generally not uniform across the eight 

reaching directions, due possibly to mechanical anisotropies of the limb. For example, in monkey 

K, trajectory perturbations in early force field trials due to clockwise forces were much more 

pronounced in the 113º and 293º target directions than the 23º and 203º directions, thus forming 

a bimodal distribution of error across target direction (Fig. 1-5A, top left). This bimodal tuning 

was significant (Rayleigh test, p < 0.001), as indicated in the figure by a red line along the major 

Figure 1-5. Directional tuning of performance in early force field trials and early washout trials. A, 
Hand trajectories are shown along with polar plots of the mean absolute change in performance, 
relative to late baseline, in each direction for monkey K. Gray regions indicate 95% confidence 
intervals on the mean. Red lines indicate significant unimodal (radial line) or bimodal (axial line) 
tuning based on Rayleigh tests (p < 0.01).  B-E, same as in A but for the other four monkeys. 
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axis of the distribution. The trajectory perturbations due to counterclockwise forces were 

distributed bimodally as well, however the distribution was oriented differently (Fig. 1-5A, 

bottom left). Therefore, the directional dependency of trajectory errors was force-field specific. 

This directional tuning and force-field specificity could also be seen in the early washout trials, 

where trajectory perturbations were due to adaptation aftereffects instead of applied forces (Fig. 

1-5A, right). There was a correspondence in directional tuning between clockwise-deviated 

trajectories and counterclockwise-deviated trajectories regardless of the source of the deviation 

(direct perturbation from applied forces or aftereffects of learned forces). These observations 

were generally seen in the other four monkeys as well (Fig. 1-5B,C,D,E). However, while some 

commonalities existed, the specific distribution of errors across directions often differed between 

monkeys, possibly reflecting inter-monkey differences in the use of redundant degrees of 

freedom of the limb (e.g. at the wrist and shoulder). The directional tuning of performance in the 

early force field and washout trials was clearly related to the forces, since no such tuning was 

found in late baseline trials of learning sessions or in early force field or washout trials of control 

sessions (Rayleigh tests, p > 0.01; data not shown). Lastly, nearly the same directional tuning 

was seen in adaptation and deadaptation changes (data not shown). Thus adaptation and 

deadaptation was most evident in movements that incurred the largest initial deviations. 

The presence of adaptation aftereffects indicates that the monkeys used a proactive control 

Figure 1-6. Catch trial performance of monkey T. A, Performance on null-field trials during the 
force-field epoch (i.e. catch trials) of the first session with a counterclockwise force field. The gray 
band indicates the 95% confidence interval on the mean performance during the baseline epoch. B, 
All catch trials performed by monkey T during counterclockwise force-field sessions. Performance 
is relative to the mean baseline epoch performance in each session. 
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strategy that specifically took into account the nature of the change in dynamics (i.e. the addition 

of a velocity-dependent force). The time course of internal model formation was investigated in 

one monkey (T) by suddenly removing the forces on random trials (catch trials) during the force-

field epoch. Figure 1-6A shows the catch trial performance on the monkey’s first session with 

counterclockwise forces. While early catch trial performance looked very similar to baseline 

performance, aftereffects were frequently seen after about 50 force-field trials. This time course 

was not, however, a consistent feature of subsequent sessions with the counterclockwise forces. 

When the catch trials from all such learning sessions were plotted (Fig. 1-6B), no clear trend was 

seen. The same was true of the clockwise force-field sessions (data not shown). In 33 of 38 

learning sessions (86.8%), the mean catch trial performance was significantly different from the 

mean baseline performance (t-test, 5% level), indicating that on average catch trials produced 

adaptation aftereffects. However, the lack of any consistent trend across force-field epoch trials 

may indicate that the monkey was able to recall his initial experience with the forces and in 

subsequent sessions use a proactive control strategy throughout the force-field epoch, even on 

early trials. Evidence for retention of force-field learning is presented in the next section.       

In summary, the monkeys adaptively controlled movements, though incompletely, using a 

proactive internal-model based approach to maintain good performance despite changes in 

movement dynamics. However, one seemingly contradictory result evident in Figures 1-3 and 1-

4 is that in many cases the monkeys had significant aftereffects and deadaptation without 

significant adaptation. How can one deadapt or have adaptation aftereffects without first 

adapting? The answer may be related to the fact that, as mentioned in the Introduction, there is 

more than one mechanism for adaptation. In addition to acquiring an internal model of the force 

field, one may effectively compensate for perturbing forces through modulating the impedance 

of the limb. This latter mechanism may mask the presence of the former when both are operating 

simultaneously (see Discussion). 

 

Across-session performance   

Figure 1-3 shows that the mean performance in each of the five blocks of trials was variable 

across sessions. We were interested in whether the performance variability in any two blocks of 

trials was correlated. Essentially this analysis could tell us how the performance in one block of 

trials is related to the performance in another block of trials. We computed the rank correlation 
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between the mean performance in learning sessions for each pair of trial blocks, for a total of 10 

comparisons per monkey. The results of this analysis are summarized in Table 1-1. For all five 

monkeys, their performance in the late baseline epoch was not significantly related to their 

performance in the force field or washout epochs (Table 1-1, comparisons 1, 2, 3, and 4). In 

contrast, in all but one case, their performance in early force-field trials and early washout trials 

was positively correlated with their performance in late force-field trials and late washout trials, 

respectively (Table 1-1, comparisons 5 and 10). These relationships can also be seen in the 

relative ordering of the lines showing adaptation and deadaptation in Figure 1-3. Finally, with the 

exception of monkey F, the performance in the force-field epoch was negatively correlated with 

the performance in the washout epoch (Table 1-1, comparisons 6, 7, 8, and 9). Taking into 

account the difference in sign of the deviation area in these two epochs, this relationship 

indicates that relatively good (bad) performance in the force field epoch occurred in sessions that 

also had relatively good (bad) performance in the washout epoch.  

Next, we studied the how the performance changed from one daily session to the next. The 

sequence of force fields presented across sessions was different for each monkey. However, for 

each monkey, there were a series of sessions in which the same force field was applied. We 

looked at how the mean performance in the late baseline epoch, early force field epoch, and early 

washout epoch changed across sessions after repeated exposure to the same force field. 

Significant trends in performance, as judged by a fitted linear regression line to the data with 

   K  C  R  F  T  
1. late base (i) Early force (ii) -0.54  0.24  0.03  -0.07  -0.12  
2. late base (i) late force (iii) -0.45  0.15  0.01  -0.05  0.14  
3. late base (i) Early wash (iv) 0.38  0.07  0.09  0.34  0.24  
4. late base (i) late wash (v) 0.56  0.07  0.06  0.42  0.36  
5. early force (ii) late force (iii) 0.85 * 0.87 * 0.95 * 0.58 * 0.76 * 
6. early force (ii) Early wash (iv) -0.87 * -0.77 * -0.86 * -0.14  -0.83 * 
7. early force (ii) late wash (v) -0.83 * -0.72 * -0.76 * -0.26  -0.63 * 
8. late force (iii) Early wash (iv) -0.84 * -0.77 * -0.84 * 0.05  -0.68 * 
9. late force (iii) late wash (v) -0.79 * -0.72 * -0.73 * -0.02  -0.54 * 

10. early wash (iv) late wash (v) 0.84 * 0.79 * 0.86 * 0.41  0.81 * 

Table 1-1. Correlation between the mean performance in different blocks of trials. For each monkey and pair of 
trial blocks given in the first two columns, Spearman’s rank correlation coefficient was computed to indicate the 
monotonic relationship between the mean performance in those blocks across all learning sessions. An asterisk 
(*) next to the rank correlation coefficient indicates that the correlation was statistically significant (p < 0.001), 
as judged by a permutation test. Null field sessions are excluded. 
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non-zero slope (p < 0.05), were seen in all monkeys except monkey R. In Figure 1-7, we show 

one series of sessions for each of the other four monkeys to illustrate the types of trends 

observed. For monkey T, the mean performance in the late baseline epoch showed a significant 

trend across sessions, whereas this was not the case for the other three monkeys (Fig. 1-7). In 

particular, the baseline performance moved in the direction of the force field perturbations (i.e. 

more positive). This unique baseline trend across days has also been seen in human subjects 

performing this task and seems to be related to the presence of catch trials (Donchin and 

Shadmehr, 2004), which monkey T experienced but the others did not. In the force-field epoch, 

all four monkeys showed a progressive improvement in mean performance (i.e. absolute value of 

the deviation area got smaller) across sessions (Fig. 1-7). The early washout performance often 

also improved with experience in the same force field, although not for monkey C (Fig. 1-7).  

 The results shown in Figure 1-7 suggest that the monkeys retain some memory of their 

experiences moving in the altered dynamical environment and that this impacts their 

Figure 1-7. Behavioral evidence of long-term learning of the curl force fields. The mean 
performance in the last 40 trials of the baseline epoch (circle), first 40 trials of the force-field epoch 
(x), and first 40 trials of the washout epoch (square) are plotted for a series of daily sessions in 
which the monkey experienced the same force field each day.  
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performance on subsequent days. Taken together with the correlation analysis between trial 

blocks, we can say that the initial movement perturbation due to the force field (early force-field 

epoch performance) and the initial movement perturbation due to adaptation aftereffects (early 

washout performance) were correlated and tended to decrease after multiple sessions with the 

same force field.   

 

Reaction time and movement time 

In addition to the foregoing analysis of force field-related performance, we looked at two 

more general behavioral measures: reaction time (RT) and movement time (MT). RT was the 

time from the go signal to movement onset and MT was the time from movement onset to the 

movement end (see Methods). First, we asked whether RT and MT changed as a function of the 

duration of the instructed delay time (DT). The DT (i.e. time from the cue signal to the go signal) 

was randomly varied on each trial, with a uniform probability distribution. The information 

provided during the DT was the spatial target to which the upcoming movement should be 

directed (Fig. 1-1). As the only uncertainty during the DT is the time at which the go signal is 

given, the paradigm is a simple (as opposed to choice) reaction time task. Psychological studies 

in humans have long shown that in simple reaction time tasks, there is an inverse relationship 

between the DT and RT (Niemi and Naatanen, 1981) although there is generally no relationship 

Figure 1-8. Examples of significant reaction time (RT) and movement time (MT) relationships. A, 
RT as a function of the instructed delay time for one session by monkey F. Crosses indicate the 
mean RT for trials with the shortest and longest delay times (0.2 s bins). B, RT as a function of 
trials for one session by monkey T. Crosses indicate the mean RT for first and last 80 trials of the 
session. C, MT as a function of trials for one session by monkey T. Crosses indicate the mean MT 
for first and last 80 trials of the session. 
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between the DT and MT. We found this to be the case for the monkeys. We compared the RTs or 

MTs between trials with the shortest DTs (DT = 0.5 to 0.7 s for monkeys F, C, K, and T or DT = 

1.1 to 1.3 s for monkey R) and trials with the longest DTs (DT = 1.3 to 1.5 s for monkeys F, C, 

K, and T or DT = 1.7 to 1.9 s for monkey R). In 98.3% of sessions across all monkeys, the mean 

RT in trials with the shortest DTs was longer than the mean RT in trials with the longest DTs 

(one-tailed t-test, 1% level). An example of this inverse relationship is shown in Figure 1-8A. 

However, in only 4.2% of sessions across all monkeys was the mean MT different between trials 

with the shortest and longest DTs (t-test, 1% level). 

Second, we asked whether the RT and MT were stationary as a function of trial number. We 

compared the RTs or MTs between the first 80 trials and last 80 trials of each session. Across 

monkeys R, F, C, and K, 16.7% of sessions were significant for a change in RT and 17.4% of 

sessions were significant for a change in MT (t-test, 1% level). Of those changes, there was 

nearly an equal likelihood that the RT or MT would increase as decrease throughout the session. 

The behavior of monkey T was, however, significantly less stationary than the other four 

monkeys. 60% of monkey T’s sessions had a significant change in RT and 80% had a significant 

change in MT (t-test, 1% level). In all cases, the RT and MT decreased throughout the session 

(see Fig. 1-8B,C for examples). 

 

1.4 Discussion 
 

In this chapter, we have analyzed the psychophysics of five monkeys trained to perform 

reaching movements in null-field and curl force-field environments. First, the monkeys generally 

adapted their movements from the null-field to the force-field and deadapted from the force-field 

back to the null field. Second, adaptation aftereffects were prominent, indicating that the 

adaptation mechanism was proactive. Third, consistent changes in performance were seen across 

sessions with the same force field indicating there was some long-term learning or memory 

component of this task. All three of these findings have been reported previously (Gandolfo et 

al., 2000; Li et al., 2001; Padoa-Schioppa et al., 2002, 2004; Xiao et al., 2006). However, there 

are a number of details to these, and other, findings that were discovered by our analysis. Below 

we discuss these details in the context of interpreting neuronal data. 

 

Deadaptation without adaptation  
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In many cases, we found that an aftereffect and deadaptation occurred in a session without 

significant prior adaptation (Fig. 1-3). There are several possible explanations for this. First, 

significant co-contraction of arm muscles at the beginning of the force-field epoch could mask 

adaptation as we define it (i.e. performance improvement from the early to late force-field 

epoch). Indeed, work in humans suggests that the initial phase of learning novel environments is 

dominated by an increase in arm stiffness, which eventually subsides once an internal model of 

the environment is formed (Thoroughman and Shadmehr, 1999; Osu et al., 2002; Franklin et al., 

2003; Osu et al., 2003). Impedance control early in the force-field epoch and internal model-

based control late in the force-field epoch could result in a nearly constant level of error 

throughout the epoch despite gradual acquisition of the internal model. However the 

improvements in early force-field epoch performance, and the corresponding lack of significant 

adaptation, occurred only after several daily sessions with the same force field (Fig. 1-6). It is 

somewhat counterintuitive that experience with a stable force field would lead to increased arm 

stiffness when encountering the force field again. It seems reasonable that the factors (e.g. 

metabolic efficiency) driving the transition from impedance control to internal model-based 

control when adapting to an environment would also prefer using an already acquired internal 

model when experiencing that environment again. Thus as a second possibility, immediate recall 

or faster acquisition (in << 40 trials) of an internal model of the force field could also improve 

performance at the beginning of the force-field epoch such that no adaptation is observed by our 

analysis. This explanation makes more intuitive sense with the across-session performance 

results, inter-epoch correlation analysis, and catch trial results. However, we did not measure 

arm impedance in these experiments and therefore we cannot rule out the first scenario. 

Our results suggest that the large variation in degree of behavioral adaptation across sessions 

should be taken into account when analyzing the neural data. Correlates of adaptation (or 

memory recall) may be best captured by looking for co-variations with these across-session 

differences. 

 

Incomplete adaptation and deadaptation  

We found that force-field epoch performance did not return to the baseline level in nearly 

74% of learning sessions with significant adaptation. This incomplete adaptation has important 

implications regarding interpretation of neuronal data. The previous non-human primate studies 
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using this task were largely devoted to dissociating cortical motor activity associated with 

movement kinematics and movement dynamics (Gandolfo et al., 2000; Li et al., 2001; Padoa-

Schioppa et al., 2002, 2004; Xiao et al., 2006). The question of whether motor cortex encodes 

kinematics (i.e. relatively high-level motor commands) or dynamics (i.e. relatively low-level 

motor commands) has dominated motor cortex physiology for 40 years (Evarts, 1968). The null-

field “center-out” reaching task that we employ, as first developed by Georgopoulos and 

colleagues (Georgopoulos et al., 1982), has highly correlated kinematic and dynamic variables 

and thus, on its own, is a poor paradigm for dissociating the cortical representation of these 

variables (Chan and Moran, 2006). However, much in the same manner as Evarts’ original work 

on this question, Gandolfo and colleagues applied forces during the center-out reaching task and 

analyzed the neural data before and after adaptation to these forces (Gandolfo et al., 2000). A 

dissociation between kinematics and dynamics was then achieved, provided that the monkey’s 

kinematics before and after adaptation was the same. However, in the monkeys we analyzed, 

74% of the time the adaptation was not complete and the kinematics before and after adaptation 

were not the same. Based on this behavioral result, we cannot, by any analysis, make strong 

claims as to whether kinematics or dynamics are represented in motor cortex. Rather, our goal in 

analyzing the neuronal data will be to look for learning-related activity, which does not rely on 

the completeness of the learning. 

We also found that washout epoch performance did not return to the baseline level in nearly 

31% of learning sessions with significant deadaptation. Compared to 74% in the case of 

adaptation, we can say that the monkeys tended to completely deadapt back to null field 

conditions much more than they completely adapted to the force fields. This is despite there 

being an equal number of trials (160) in the force-field and washout epochs. The discrepancy 

may be due to a difference in the rates of adaptation and deadaptation. It has been shown in 

humans that adaptation to a novel force field is generally much slower than deadaptation back to 

a null field (Shadmehr et al., 1998; Davidson and Wolpert, 2004; Smith et al., 2006). We could 

not more directly assess this possibility since the variance of the performance measure was 

generally too large to estimate the learning rate with reasonable confidence. Another possibility 

is that adaptation and deadaptation processes have the same rate but there is a limit to how 

straight the monkey can make its trajectories in the force field, perhaps due to tradeoffs between 

performance and stability. 
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Changes in reaction time and movement time 

Finally, we found that reaction time (RT) and movement time (MT) changed from the 

beginning to the end of a session. This was most prominent in monkey T, where RT changed in 

60% of the sessions and MT changed in 80% of the sessions. This result is also important to 

interpreting neuronal activity. Several of the previous studies found there to be a difference in the 

activity of many cells from the baseline epoch to the washout epoch and interpreted this change 

to be indicative of a memory of the force field (Gandolfo et al., 2000; Li et al., 2001). This 

interpretation is invalid if the neural changes are correlated with behavioral changes from the 

baseline to washout epoch. Thus changes in RT and MT should be considered, along with 

performance changes due to incomplete deadaptation as described in the last section, when 

validating putative memory-related neuronal activity.     
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2 Cortical motor activity during reaching: I. time-domain analysis 
 
 
2.1 Introduction 
 

In recent years, anatomical studies have identified at least six distinct premotor areas in the 

primate frontal lobe (Dum and Strick, 2002). Understanding the differential contribution of these 

areas to the preparation and execution of reaching movements is a matter of ongoing research 

(Kalaska and Crammond, 1992; Kalaska et al., 1997). This is particularly true of the three 

cingulate motor areas, located within the cingulate sulcus on the medial wall of the cerebral 

hemisphere, whose physiology has only recently been studied (Cadoret and Smith, 1995, 1997; 

Shima and Tanji, 1998; Backus et al., 2001; Akkal et al., 2002; Russo et al., 2002; Crutcher et 

al., 2004; Hoshi et al., 2005).  

Through a series of investigations into cortical correlates of movement dynamics, we have 

accumulated a relatively large database of cells recorded in a reaching paradigm involving both 

familiar and novel dynamical environments (Gandolfo et al., 2000; Li et al., 2001; Padoa-

Schioppa et al., 2002, 2004; Xiao et al., 2006). This database includes cells from primary motor 

cortex (M1), dorsal premotor cortex (PMd), the supplementary motor area (SMA), and the 

dorsal, ventral, and rostral cingulate motor areas (CMAd, CMAv, and CMAr). Here we 

compared how each of the areas is involved in a well-rehearsed reaching task (i.e. in the familiar 

environment). Previous studies have compared neuronal activity between one or two cingulate 

areas and another motor area (usually SMA), but never have all three cingulate areas been 

compared to each other or to M1, SMA, and PMd. The unprecedented breadth of our study, 

therefore, provides a more global view of cortical motor activity during reaching. 

Our analysis focused on timing of neuronal activity relative to behavioral events. The 

behavioral paradigm included an instructed delay between target presentation and response 

initiation and between response completion and reward. Thus the task allowed the dissociation of 

activity associated with movement preparation, movement execution, and reward anticipation. 

We quantified the relative proportion of cells associated with each of these stages of the task. 

The paradigm also involved movements in eight different directions. So at each task stage the 

activity was also classified based on its tuning to movement direction. To provide additional 

perspective on the neuronal activity, we also analyzed the task-relatedness and directional-
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selectivity of activity at two other levels of the motor system: at the level of muscles, as reflected 

in the electromyogram, and at the level of cortical networks, as reflected in the local field 

potential. 

 
2.2 Methods  
 

Five rhesus macaques (Macaca mulatta) were used in this study (referred to as monkeys K, 

C, R, F, and T). The behavioral paradigm has been described previously (Chapter 1). Also, 

experimental procedures and initial results have been reported previously for monkeys C, R, and 

F (Padoa-Schioppa et al., 2002, 2004; Xiao et al., 2006). Here we reanalyzed those data along 

with newly obtained recordings from two other monkeys (K and T). Experimental procedures 

adhered to National Institutes of Health guidelines on the use of animals and were approved by 

the Massachusetts Institute of Technology Committee for Animal Care. 

 

Surgery 

All surgeries were performed using sterile techniques with the monkey under general 

anesthesia. After sufficiently training on the task, a stainless steel head restraining device was 

fixed to the skull near lambda. The monkey was then re-trained to perform the task under head-

fixed conditions. Then a circular craniotomy was performed, leaving the dura mater intact, and a 

stainless steel recording well was fixed to the skull around this site. Relative to the interaural line 

(rostral zero) and midline (lateral zero; left cerebral hemisphere), the center of the craniotomy 

was 23 mm rostral and 0 mm lateral in K, 22 mm rostral and 0 mm lateral in C, 20 mm rostral 

and 15 mm lateral in T, 18 mm rostral and 0 mm lateral in F, and 16 mm rostral and 15 mm 

lateral in R. The diameter of the craniotomy was 28 mm in monkeys K, C, and T, 19 mm in 

monkey F, and 18 mm in monkey R. Systemic antibiotics and analgesics were given following 

the surgeries and the monkeys were allowed several days of rest to recover from each procedure. 

The exposed dura mater was treated with topical antibiotics and anti-inflammatories daily. 

Periodically (once every ~2-3 weeks), scarring that would accumulate over the dura mater was 

mechanically removed. 

In one monkey (T), we also implanted 11 chronic intramuscular electrodes in the right arm. 

Each electrode was made of two Teflon-coated 50-µm stainless steel wires knotted together at 

one end. The knot was covered by a wax ball that insulated the two cut ends and anchored the 
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electrode under the muscle belly. A 1-3 mm segment of insulation was stripped from both wires 

at a distance from the wax ball such that the exposed segments would lie approximately in the 

middle of the muscle belly. The orientation of the intramuscular electrodes was approximately 

parallel to the muscle fibers. The following muscles were implanted: rhomboid, trapezius (2 

electrodes), infraspinatus, supraspinatus, pectoralis major, deltoid (2 electrodes), biceps brachii 

(2 electrodes), and triceps brachii. Six additional muscles were implanted, but due to poor signal 

quality their recordings were excluded. After electrode implantation, the wires were tunneled 

subcutaneously and attached to a cranially-mounted connector. 

 

Electrophysiology 

Intracortical microstimulation (ICMS) was used to map the arm representations of the 

cortical motor areas. ICMS consisted of 50 ms trains of biphasic pulses at 330 Hz, with 0.2 ms 

pulse duration and 10-120 µA pulse amplitude. Stimulus-evoked muscle twitches were observed 

and mapped to the cortical location of the stimulus (Fig. 2-1B).  

After locating the arm representations, extracellular recordings were made from these 

locations during each session that the monkeys performed the task. For the recordings, we used 

epoxylite-insulated tungsten microelectrodes, with 1-3 MΩ impedance and 250 µm diameter 

shaft tapered down to a 3 µm diameter tip (FHC). The electrodes were lowered transdurally 

using a custom-made manual microdrive with a depth resolution of approximately 30 µm. Due to 

dimpling of the cortex upon penetration and limitations in depth resolution, the laminar location 

of the recorded cortical cells was generally not known. Up to eight electrodes were used in each 

recording session. The analog electrical signals from the electrodes were passed first to a 

preamplifying headstage (AI 401, Axon Instruments or HS-27, Neuralynx) located about 5 cm 

from the electrodes, then to an amplifier (Cyberamp 380, Axon Instruments or Lynx-8, 

Neuralynx) where they were amplified (10000 gain) and filtered (300 Hz to 10 kHz passband) to 

obtain multiunit activity, and finally to an A/D board (DT3010, Data Translation) where they 

were digitized (12 bit resolution at 32 kHz/channel). The multiunit activity was not recorded 

continuously, but rather action potentials (i.e. spikes) were detected online by a manually-

determined threshold crossing and only the spike times, along with behavioral task event times, 

were recorded to file with 0.1-ms resolution. Spike waveforms (i.e. 1.00 or 1.75 ms of the 

continuous signal around the spike time) were also saved for subsequent offline spike sorting. 
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Spike sorting was done manually, with the aid of software packages (Autocut 3, DataWave 

Technologies; MClust 3.3, A. David Redish, University of Minnesota), by detecting clusters in 

spike waveform feature space. Clusters of spikes were assumed to come from one neuron if they 

were: (1) reasonably separated from other clusters and noise spikes in feature space, (2) had 

temporally continuous, if not constant, waveform features, and (3) exhibited at least a 1 ms 

refractory period. Spike clusters meeting these criteria were classified as single unit activity. 

In monkey T, the preamplified signals were amplified and filtered in two different ways in 

order to extract both multiunit activity (as above) and local field potentials. For the latter, the 

analog signal was filtered with a passband of 10 Hz (1st-order Butterworth) to 400 Hz (4th-order 

Bessel), amplified by 5000, digitized (12 bit resolution at 2 kHz/channel), and recorded 

continuously to file. 

Electromyographic (EMG) data was recorded in monkey T for seven days following the 

completion of the cortical recording sessions. The EMG signals were amplified (5000 gain), 

filtered (10 Hz to 1000 Hz passband, 60 Hz notch filter), digitized (12 bit resolution at 2 

kHz/channel), and recorded continuously to file. 

 

Anatomy and histology 

At the end of the recording sessions, the boundaries of the recording sites were marked with 

electrolytic lesions (cathodal current, 20 µA, 2 min). Then the monkeys were given an overdose 

of pentobarbital sodium and perfused transcardially with heparinized saline followed by buffered 

formalin. India ink was used to mark the surface of the cortex at selected coordinates near the 

recording sites. The brains were then removed from the skull and photographed to record 

anatomical landmarks (e.g. sulci) relative to the recording sites. In monkey F, the brain was 

sectioned and stained with cresyl violet for histological analysis. Monkey T died from bloat prior 

to applying electrolytic lesions, but the relative anatomical location of the recording sites was 

confirmed through gross anatomy. 

 

Analysis 

In this chapter, we restricted the analysis to the baseline epoch in order to focus on 

characterizing cortical motor activity during reaching in a familiar environment. In particular, we 

analyzed neural activity recorded during the last 120 trials (15 trials to each of the 8 targets) of 



 37

the baseline epoch of each session. The first 40 baseline trials were excluded due to the potential 

for behavioral instability, from the monkey readjusting to the experimental conditions, and 

recording instability, from rebounding movement of the neural tissue relative to the electrode, 

during this time. 

The reaching task consisted of five behavioral intervals (center hold, CH; delay time, DT; 

reaction time, RT; movement time, MT; target hold, TH) divided by four events (peripheral 

target on, cue; center target off, go; movement onset, mo; movement end, me). Definitions of 

these intervals and events have been stated previously (Figure 1-1, Chapter 1). The goals of our 

analysis were to quantify the average neural activity changes relative to these events (i.e. 

quantify event-related activity) and characterize differences in event-related activity between the 

cortical motor areas.  

SUA. Event-related single unit activity was studied using two complementary analyses. First, 

we explored the activity in a continuous, holistic fashion using the whole trial. This permitted at 

least a qualitative comparison between the firing rates at any two times, without bias from 

subjectively focusing on only certain parts of the trial. Second, we compared the firing rate in 

several trial windows, identified from the first analysis, to provide more quantitative results.  

For the whole-trial analysis, we aligned each trial on all four behavioral events, despite the 

inter-trial differences in duration of the DT, RT, and MT (CH and TH were always 1 s each). DT 

activity was aligned on the cue rather than the go signal, as this is most appropriate for 

identifying cue-related and preparatory-related activity, and padded out to the longest DT 

duration to make it of constant length. We analyzed DT activity only up to the time at which half 

the trials (60 trials) had yet to encounter the go signal (first 1 s of DT in monkeys K, C, T, F; first 

1.5 s of DT in monkey R), as beyond this point the analysis would be based on too few trials. We 

then resampled the DT activity of monkey R to have the same length as that of the other 

monkeys. RT and MT activity were aligned on both bordering events (go to mo and mo to me, 

respectively) by temporally rescaling the data to have a duration of 300 ms and 600 ms 

(approximately the mean RT and MT durations across all monkeys), respectively. The final 

result of these procedures was a whole trial record of constant length (rescaled duration of 3.9 s) 

with both pre- and post-alignment on the cue, mo, and me events and post-alignment on the go 

event. Due to the temporal rescaling, the RT and MT activity in all monkeys was not in absolute 

time, but rather in time relative to the duration of the interval (i.e. a spike at 150 ms after the go 
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signal in the rescaled data occurred half way between the go and mo events in the unscaled data). 

Also the DT activity in monkey R, while in absolute time, was not in the same time units as the 

DT activity from the other monkeys. These two time-scale manipulations effectively normalized 

the behavior in time across trials and monkeys.  

After aligning the data, we computed the instantaneous firing rate within each interval on 

each trial by convolving the spike train with a Gaussian window (50 ms standard deviation). 

Using the instantaneous firing rate in the 15 trials to each target direction, we computed the 

significance of directional tuning at each instant in time. Significance of tuning was based on a 

one-tailed permutation test on the resultant vector magnitude (rvm) of the directional data. The 

distribution of the rvm under the null hypothesis (i.e. no tuning, uniform or antipodal symmetric 

distribution of firing rates across target directions) was obtained by shuffling the relationship 

between trial and direction, computing the rvm for this shuffled data, and repeating these two 

steps 1000 times. If less than 10 values from this distribution were greater that the actual rvm, 

the tuning was considered to be significant (p < 0.01). When the directional tuning was 

significant, we also computed the preferred direction of the tuning curve (i.e. the direction of the 

resultant vector). We summarized the activity of each cell using these three quantities: mean 

instantaneous firing rate, instantaneous tuning significance, and instantaneous preferred 

direction. For the mean instantaneous firing rate, we averaged over trials in all eight directions 

when the tuning was not significant and over trials in the four directions closest to the preferred 

direction (i.e. the preferred hemifield) when the tuning was significant.  

Next, we excluded from the whole-trial analysis cells whose activity was not significantly 

modulated during the task. We defined a statistic, the modulation index, which quantified 

changes in the mean instantaneous firing rate for each cell based on 95% student-t confidence 

intervals on this mean (cim). The modulation index was defined as the fraction of time (out the 

3.9-s rescaled trial duration) that the lower cim was greater than the median firing rate (i.e. 

excitation) and the upper cim was less than the median firing rate (i.e. inhibition). The 

modulation index could range from 0 (no modulation) to 1 (continuous modulation). To estimate 

the distribution of this statistic under the null hypothesis (i.e. no modulation, constant firing rate), 

we generated surrogate data by simulating stationary Poisson point processes. In particular, we 

computed the modulation index for 1000 surrogate “cells”, each with 120 Poisson spike trains of 

3.9-s duration that were convolved with the same Gaussian window used for the real data. As the 
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modulation index is sensitive only to modulation duration, not amplitude, the simulated 

modulation index distribution was largely independent of the chosen firing rate of the Poisson 

spike trains. Nevertheless, we chose the across-cell distribution of firing rates to correspond to 

that of the real data (exponential distribution, P(r) = exp(-r/8)/8 where r is the firing rate in Hz 

and r ≥ 0.3 Hz, see below). The 99th percentile of the generated modulation index distribution 

(0.16) was used as the critical value for rejecting the null hypothesis. The simulations, as well as 

observation of the real data, indicated that cells with very low but relatively constant firing rates 

were not always detected by the above procedure. Thus we also removed from the analysis cells 

with average firing rate less than 0.3 Hz. 

For the population whole-trial analysis, we z-score transformed the mean instantaneous firing 

rate for each cell (i.e. subtracted the mean and divided by the standard deviation). This allowed 

us to focus only on the modulation timing with respect to behavioral events. Then we identified 

subpopulations using the k-means clustering algorithm, which iteratively defined clusters of 

whole-trial activity patterns by minimizing the within-cluster sum of distances from the cluster 

centroids. Two different types of activity patterns were used to define the subpopulations: the 

instantaneous firing rate and the instantaneous tuning significance. The latter was a binary vector 

where zero indicated no tuning and one indicated tuning. Distance in the 390-dimensional space 

(i.e. the length of each rescaled trial) was defined to be squared Euclidean distance for the 

instantaneous firing rate and Hamming distance (i.e. percentage of differing bits between binary 

vectors) for the instantaneous tuning significance. Other distance measures produced very similar 

results. To compensate for the potential convergence of the algorithm to local minima, the 

clustering procedure was repeated 100 times with randomly-selected initial centroid locations. 

The repetition with the least error was chosen. The number of clusters, k, was chosen 

subjectively, however the major results of the analysis were evident across many values of k. To 

compare across the cortical areas, the clustering was done on all areas simultaneously. Then we 

used a two-way contingency table test, Pearson’s chi-squared, to determine whether there was a 

relationship between the activity pattern clusters and the cortical areas. 

In addition to the whole-trial analysis, we performed a second, more conventional analysis of 

event-related single unit activity without aligning the data on multiple events. We analyzed the 

mean firing rate within four, 400-ms perievent windows to quantify cue-related activity (post-cue 

window, cue + 50 ms to cue + 450 ms), preparatory-, or set-, related activity (delay-time 
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window, cue + 500 ms to cue + 900 ms, for monkeys T, C, F, K, or cue + 1000 ms to cue + 1400 

ms, for monkey R), movement-related activity (movement-time window, mo – 100 ms to mo + 

300 ms) and reward-related activity (target-hold window, me + 600 ms to me + 1000 ms). We 

compared the activity in each of these four windows to control activity (center-hold window, cue 

– 700 ms to cue – 300 ms) using a two-way, repeated-measures ANOVA with window and target 

direction as factors. We reported only the main effects of window and interaction effects of 

window x direction. Main effects of direction were redundant since control activity was not 

directionally tuned and, therefore, they were almost entirely due to window x direction 

interactions. A main effect of window in this test could reflect either phasic event-related activity 

or tonic activity associated with a previous event. Therefore we also compared the mean activity 

in the delay-time, movement-time, and target-hold windows with the mean activity in the 400-ms 

preceding each window using a second two-way, repeated-measures ANOVA. A significant 

main or interaction effect was indicative of phasic event-related activity or directional tuning, 

respectively. Note, the interaction effect in this test could reflect onset of tuning or a change in 

tuning; we did not distinguish between these two possibilities. Thus, for each cell we performed 

seven tests: one to determine cue-related activity (which, being the first event in the trial, was 

always defined to be phasic), and two tests each to determine the tonic and phasic components of 

set-related, movement-related, and reward-related activity. In each test we also noted the sign of 

the difference in means to classify the changes as either excitatory or inhibitory. For consistency, 

we only included in this analysis cells which were significantly modulated according to the 

whole-trial test described above. 

LFP. We also studied event-related local field potential activity. The LFPs were first 

preprocessed with both frequency- and time-domain filters to remove two sources of noise. 

Power-line noise was attenuated with a stopband filterbank, with stopbands centered on each 60 

Hz harmonic from 60 Hz to 480 Hz and of width 3 Hz (for centers <= 150 Hz) or 6 Hz (for 

center > 150 Hz). We used elliptical filters (40 dB attenuation in the stopbands, 0.5 dB ripple in 

the passbands) run in both forward and reverse directions to prevent phase distortion. Brief noise 

(< 40 ms duration) at the time of each behavioral event was present in many of the early LFP 

recordings due to electrical crosstalk in the acquisition system. We removed this noise and 

replace it with a reflection of the signal occurring immediately before the noise. Finally, the 

LFPs were low-pass filtered with a zero-phase, 2nd order Butterworth filter with 100 Hz nominal 
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cutoff frequency. 

After preprocessing, we aligned the LFPs to each of the four behavioral events individually 

and averaged over the 120 trials. By visual inspection, there appeared to be two relatively 

consistent event-related potential (ERP) complexes with three peaks each: a negative (cN1)-

positive (cP1)-negative (cN2) complex occurring after the cue and a positive (mP1)-negative 

(mN1)-positive (mP2) complex occurring around movement onset. The latter could often also be 

seen when aligning trials on the go signal rather than movement onset. We identify these nine 

peaks (i.e. cN1-cP1-cN2, aligning on the cue, and both sets of mP1-mN1-mP2, aligning on the 

go or mo), and their duration, in each trial-averaged LFP. The duration was defined by the first 

zero crossing on either side of the peak. 

Next, we determined the significance of the peaks. The strength of a peak was defined to be 

the square root of the integral of the square of the signal over the identified peak duration (rms). 

We calculate the rms for all peaks (i.e. between every two consecutive zero-crossings) in a 1.75 s 

window around the relevant event (cue, go, or mo). The result was an approximately exponential 

distribution of rms values. If the putative ERP peak had a rms that was greater than 3 times the 

mean of this distribution (approximately 95th percentile assuming an exponential distribution) 

and had a duration greater than 50 ms, it was considered significant. The latter criterion was to 

ensure the peak was not due to residual noise, which was typically of short duration. LFPs that 

had at least one significant peak were defined as being modulated (Table 2-1). 

As a measure of the contribution of each trial to an ERP, we projected the signal in each trial 

onto the trial-averaged signal over the duration of the peak. The projection captured the 

similarity in phase between each trial signal and the mean signal, weighted by the trial signal’s 

amplitude. This measure was appropriate given that, in agreement with recent EEG literature, the 

ERPs appeared to result more from phase resetting of ongoing field potential oscillations rather 

than from addition of a high-amplitude signal to background field potential activity (Makeig et 

al., 2002; Jansen et al., 2003; Klimesch et al., 2004; Gruber et al., 2005). Using this measure, we 

looked for relationships between ERPs and behavior that have been identified recently. We 

tested the relationship between ERP strength and movement direction (Cardoso de Oliveira et al., 

2001; Mehring et al., 2003a; Rickert et al., 2005) and between ERP strength and both instructed 

delay duration and reaction time (Roux et al., 2006). The significance of each relationship was 

assessed using a permutation test. 
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EMG. Finally, we examined the event-related modulation of electromyographic (EMG) 

signals. Preprocessing the EMG involved removal of occasional brief, high amplitude artifacts 

using a time-domain filter similar to that used in the LFPs. Then the EMG amplitude envelope 

on each trial was estimated by rectifying and lowpass filtering (zero-phase, 2nd-order Butterworth 

filter with 10 Hz cutoff frequency) the signal. To facilitate comparison with the single-cell data, 

the EMG amplitude was aligned on multiple events and the instantaneous preferred direction was 

computed in the same manner as the SUA whole-trial analysis described above.    

 
2.3 Results 
 
Neural database 

We recorded cortical motor activity in five rhesus macaques while they performed a 

visuomotor reaching task. As the task involved movement of the right arm, we targeted our 

recordings to the arm representation of motor areas in the left cerebral hemisphere (Fig. 2-1A, 

region inside the dashed lines). There are at least seven anatomically distinct motor areas in the 

monkey cerebral cortex: primary motor cortex (M1) and six premotor areas (Dum and Strick, 

2002). The premotor areas (dorsal premotor, PMd; ventral premotor, PMv; supplementary motor 

area, SMA; rostral cingulate motor area, CMAr; dorsal cingulate motor area, CMAd; and ventral 

cingulate motor area, CMAv) are operational defined as cortical regions that project directly to 

M1 and to the spinal cord, both cervical and lumbar segments (Dum and Strick, 1991). The 

corticospinal neurons in most of these areas are topographically organized such that there are 

spatially-distinct arm (cervical-projecting) and leg (lumbar-projecting) representations (He et al., 

1993, 1995). We used intracortical microstimulation (ICMS) to distinguish between different 

motor areas and to locate the arm representation within each area (Mitz and Wise, 1987; Luppino 

et al., 1991). Specifically, we mapped the lateral motor areas (M1, PMd, and PMv) in monkeys T 

and R and the medial motor areas (SMA, CMAr, CMAd, CMAv) in monkeys C and K. 

The ICMS maps were quite consistent between monkeys. Figure 2-1B shows the composite 

ICMS map of both lateral motor areas (from monkey T) and medial motor areas (from monkey 

C), generated by aligning the map from each monkey rostrocaudally on the genu of the arcuate 

sulcus and mediolateral on the midline. Just rostral of the central sulcus, the threshold stimulus 

intensity was lowest and the somatic representations had a mediolateral distribution: face 

(lateral) to arm to leg (medial). These are characteristic features of M1. The threshold stimulus 
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intensity increased as we moved rostrally toward the arcuate sulcus, indicating a transition from 

M1 to PMv (lateral to spur of the arcuate sulcus) and PMd (medial to spur of the arcuate sulcus). 

Near the midline was the caudal leg representation and rostral arm representation of SMA. The 

arm representation continued rostrally past the level of the genu of the arcuate sulcus into the 

preSMA, an area we do not consider premotor since it does not send direct projections to the 

spinal cord (He et al., 1995). Moving down the medial wall (i.e. ventrally) from preSMA is 

CMAr, which had an arm representation that extended over both dorsal and ventral banks of the 

cingulate sulcus and possibly a leg representation as well. More caudally in the dorsal bank of 

the cingulate sulcus were two interleaved leg and arm representations of CMAd. Finally, on the 

caudal part of the ventral bank of the cingulate sulcus was the arm representation, and possibly 

Figure 2-1. Intracortical microstimulation (ICMS) results. A, Schematic of the left hemisphere 
of a rhesus macaque brain. The dashed lines indicate the approximate area of the cerebral cortex 
shown in B and in Figure 2-2A,B. B, Composite ICMS map from monkeys T and C. Diamonds, 
squares, and circles indicate where the leg, arm, and face are represented in the cortex, 
respectively. The color indicates the minimum stimulus intensity required to elicit a response. 
Solid thick lines show the relative location of sulci (CS, central sulcus; AS, arcuate sulcus; SPcS, 
superior precentral sulcus; CgS, cingulate sulcus). Dashed thin lines are the putative borders 
between different cortical motor areas (M1, primary motor; PMv and PMd, ventral and dorsal 
premotor; SMA and preSMA, supplementary and pre-supplementary motor areas; CMAr, 
CMAv, and CMAd, rostral, ventral, and dorsal cingulate motor areas).   
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even more caudal leg representation, of CMAv. This map is largely congruent with maps from 

anatomical studies (c.f. Fig. 17 in He et al. (1993), lateral motor areas; Fig. 8 in He et al. (1995), 

medial motor areas). Note that the composite ICMS map in Figure 2-1B is just for illustrative 

purposes; the assignment of recording locations to different cortical motor area was based on the 

anatomy and physiology (i.e. ICMS results) of each monkey individually. Also, in monkey F, the 

SMA recording locations were verified by histological analysis rather than ICMS (Padoa-

Schioppa et al., 2004). 

From the identified arm representations, we recorded single unit activity (SUA) and local 

field potentials (LFPs) while the monkeys performed the reaching task. A summary of the 

recording locations from all monkeys is given in Figure 2-2 (cortical anatomy aligned across 

monkeys as in Figure 2-1B). Overall, we recorded from 981 single cells in six cortical motor 

areas and 339 LFPs in two cortical motor areas (Table 2-1). From those totals, 261 cells and 129 

LFPs were recorded in control sessions. The remaining neural activity was recorded in learning 

sessions in which either a counterclockwise or a clockwise curl force field was applied.  

Figure 2-2. Neural recording locations. A, Location of single unit activity recorded from all five 
monkeys. The size of the circle indicates the number of cells recorded at each location (see scale 
on the lower right). B, Location of local field potentials recorded from monkey T. Sulci are 
indicated by solid thick lines and area borders are indicated by dashed thin lines, as in Fig. 2-1B. 
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However, below we describe only the activity preceding the application of forces (i.e. activity 

recorded during the baseline epoch of each session). 

 

Event-related neuronal activity 

Of the 981 recorded cells, 857 were significantly modulated during the baseline epoch (Table 

2-1, last row; see Methods). There were a variety of modulation patterns in relation to the four 

behavioral events of the task (cue signal, go signal, movement onset, movement end). Several 

examples are shown in Figure 2-3. In Figure 2-3A, we show raster plots for one SMA cell both 

before (top) and after (bottom) aligning the activity to all four events. This alignment procedure 

temporally normalized the behavior across trials, which allowed us to examine average event-

related activity continuously along the trial duration (see Methods). The neuronal activity 

gradually increased between the cue and go signals (i.e. during the instructed delay time), rapidly 

decreased after the go signal, and finally increased again following movement end, as captured 

by the instantaneous firing rate (Figure 2-3A, middle). The cell was not directionally tuned at 

any point along the trial. In contrast, the cells shown in Figures 2-3B (PMd cell) and 2-3C 

(CMAd cell) were tuned to the target direction. When tuning was significant, as determined by a 

permutation test, the mean instantaneous firing rate was based on the activity in the four 

directions closest to the preferred direction (i.e. the preferred hemifield; thick line in top plots of 

Fig. 2-3B,C) rather than the activity in all eight directions (thin line in top plots of Fig. 2-3B,C). 

Some cells became directionally tuned during the instructed delay time, soon after the target 

 

Table 2-1. Neural database. Single unit activity (SUA) and local field potentials (LFP) recorded in each cortical 
area (M1, PMd, SMA, CMAr, CMAd, CMAv) for each monkey (T, R, F, C, K). The last row indicates the 
number of cells and LFPs that were significantly modulated during the task. 
 

  SUA LFP 
  M1 PMd SMA CMAr CMAd CMAv M1 PMd 
          

T 198 63     239 100 
R 47 112       
F   59      
C   245 47 93 31   m

on
ke

ys
 

K    19 50 17   
         

total 245 175 304 66 143 48 239 100 
mod 220 164 293 43 100 37 229 86 
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presentation (cue), as seen in Figure 2-3B. We characterized the tuning curve at each point in 

time with a single parameter: the preferred direction (PD; thick line, bottom plots of Fig. 2-

3B,C). The PD was often not constant. For the cell in Figure 2-3B, the change in PD from the 

delay time to the target hold time was about 140 degrees. Finally, the most typical modulation 

was an increase in directionally-tuned activity during the reaction time just prior to movement, as 

in Figure 2-3C. 

The average activity across the population of significantly modulated cells in each cortical 

motor area is shown in Figure 2-4. All areas had a phasic, excitatory response around movement 

onset, as was expected of motor areas (Fig. 2-4, top row). PMd also had an excitatory population 

response after the cue, suggesting this area was involved in the visuomotor transformation. SMA 

had maintained excitation in the post-movement period in contrast to PMd, where the post-

movement response was largely inhibitory. Directional tuning was most prominent during 

Figure 2-3. Examples of single unit activity. A, SMA cell. Raster plot of activity prior to 
alignment procedure, with trials ordered by delay time (top). Mean instantaneous firing rate of 
aligned activity with 95% confidence intervals in gray (middle). Raster plot of aligned activity, 
with trials ordered by target direction (bottom). B, PMd cell. Thick lines indicate mean 
instantaneous firing rate of the preferred hemifield (top) and instantaneous preferred direction 
(bottom). Absence of a thick line indicates insignificant tuning. C, CMAd cell. 
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movement (Fig. 2-4, bottom row). M1 had the highest percent of cells with significant tuning, 

reaching nearly 70% at movement onset. M1, PMd, and to a lesser extent SMA, showed 

directional tuning in the delay time, starting approximately 100 ms after the cue. Tuning 

persisted after movement during the target hold time. Directional tuning was less frequent in the 

cingulate motor areas, particularly in CMAr. 

 The distribution of PDs for each area is shown in Figure 2-5 (CMAr and CMAv were 

omitted due to the paucity of tuning in these areas). Since we observed that the instantaneous PD 

of any given cell could change over the course of the trial (e.g. Fig. 2-3B), we chose to look at 

the PD distribution as a function to time as well. The distribution of mean PDs in each non-

overlapping, 150-ms window was tested for uniformity with a unimodal alternative and a 

bimodal alternative (Rayleigh tests, familywise error rate, p < 0.05). The PD distribution of M1 

was mostly uniform, except for broad unimodal tuning (red crosses in Fig. 2-5) at movement 

onset and bimodal tuning (red circles in Fig. 2-5) just prior to the reward. PMd also had a 

unimodal PD distribution during movement, as well as during the early instructed delay time. 

Finally, both SMA and CMAd had significant bimodal tuning throughout parts of the reaction 

time, movement time, and target hold time. Interestingly, the major axes of the bimodal 

distributions were nearly identical in SMA and CMAd (approximately 150º-330º axis). Also the 

preferred directions of the unimodal distributions during the movement time in M1 and PMd 

Figure 2-4. Population average single unit activity for six cortical motor areas. Top row, the 
population mean of the z-score transformed instantaneous firing rates. Gray regions indicate 95% 
student-t confidence intervals on the mean. Dotted horizontal line is at the level of the average 
center-hold activity. Bottom row, the percent of all cells that were significantly directionally 
tuned at each point in time. 
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were very similar (approximately 230º) and nearly orthogonal to the bimodal axis of SMA and 

CMAd. 

Next, we explored the variability about the mean population responses and, in particular, 

whether distinct subpopulations could be defined. Towards this goal, we used the k-mean 

clustering algorithm to define groups of cells with similar event-related activity (see Methods). 

Clustering was done both on the instantaneous firing rate and the instantaneous tuning 

significance of each cell. For simplicity of presentation, we included only the four areas from 

which we had collected the most cells (M1, PMd, SMA, and CMAd). The results of the cluster 

analysis are shown in Figure 2-6. For the instantaneous firing rate, we show six clusters (Fig. 2-

6, top row) although there was no clear correct number of clusters. An objective measure of 

cluster quality, silhouette analysis, indicated that the clusters were not particularly well separated 

(average silhouette value of 0.23, out of a possible 1, when extracting between 2 and 12 clusters). 

Thus the firing rate patterns form more of a continuum. Nevertheless, the cluster analysis served 

to highlight different dimensions of this continuum. Furthermore, several distinguishing features 

between the cortical areas were evident regardless of the number of clusters extracted. Below we 

Figure 2-5. Population preferred direction distributions across time. Contour plots are two-
dimensional histograms of the number of cells with a particular preferred direction at a particular 
time. Red crosses indicate the preferred direction of the distribution when it was significantly 
unimodal (Rayleigh test, p < 0.025). Red circles indicate the major axis of the distribution when 
it was significantly bimodal (Rayleigh test with bimodal alternative, p < 0.025). 
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highlight three of these features. 

First, there was a predominance of PMd cell activity in the post-cue, instructed delay time. 

This can be seen in cluster 2 (Fig. 2-6, top row), which consisted of cells that had a ramp-like 

increase in firing rate during the instructed delay. We formed a two-way contingency table of the 

number of cells in each cortical area that were either in the cluster or not in the cluster (4 x 2 

table). We found that the two categorical variables (cortical area and cluster inclusion) were not 

independent (χ2(3) = 23.08, p < 0.0001). Indeed, over 20% of PMd cells were included in cluster 

2 while the same was true of less than 10% of cells from any other area (Fig. 2-6, top right). 

Second, tonic movement-related activity was more prevalent in the medial motor areas (SMA 

and CMAd) than the lateral motor areas (M1 and PMd), as can be seen in cluster 4 (χ2(3) = 

36.43, p < 0.0001). PMd, in particular, had relatively little activity extending into the target hold 

time. Third, phasic movement-related activity was more prevalent in the lateral motor areas than 

the medial motor areas, as can be seen in cluster 5 (χ2(3) = 24.62, p < 0.0001). 

There were six basic patterns of directional tuning significance along the trials (Fig. 2-6, 

bottom row). Cells in cluster 1 were significantly tuned during the delay time and reaction time 

and then became untuned during the movement time. PMd had the highest proportion of cells in 

Figure 2-6. Subpopulations of event-related activity defined by cluster analysis. Left, clustered 
instantaneous firing rate (top) and instantaneous tuning significance (bottom) profiles. Middle, 
average profile of each cluster. 95% confidence intervals on the mean shown in gray. Right, 
percent of cells from each cortical area that are in each cluster. An asterisk indicates a significant 
difference in the proportion of cells from each area in the cluster (χ2 test, p < 0.05). 
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this group while CMAd had no cells in this group (χ2(3) = 21.92, p = 0.0001). Cluster 2 was 

composed of a roughly equal proportion of cells from each area that were tuned briefly around 

movement onset (χ2(3) = 3.49, p = 0.3223). Cells in cluster 3 were tuned continuously from the 

delay time through the target hold time. M1 had the highest proportion of cells in this group and, 

again, CMAd had no cells in this group (χ2(3) = 19.59, p = 0.0002). Conversely, cluster 4, which 

had relatively high number of CMAd cells and low number of M1 cells, had no consistent tuning 

at any time (χ2(3) = 52.90, p < 0.0001). Cells in cluster 5 were tuned in the movement time and 

target hold time but not the delay time. M1 and SMA had the highest proportion of cells in this 

cluster (χ2(3) = 14.16, p = 0.0027). Finally, cluster 6 was composed of a similar proportion of 

cells from each area that were tuned throughout the movement time (χ2(3) = 4.17, p = 0.2438). 

This analysis shows that CMAd had no appreciable delay time directional tuning (clusters 1 and 

3), CMAd had relatively less tuning overall than the other areas (cluster 4), and PMd had 

relatively little tuning during the target hold time compared to M1 and SMA (clusters 5). It also 

demonstrates that, as expected, the cue signal (clusters 1 and 3) and go signal (clusters 2, 5, and 

6) were the primary events that triggered the onset of directional tuning.  

To further quantify event-related neuronal activity, independent from the preceding whole-

trial analysis, we analyzed the average firing rate in four, 400-ms perievent windows to identify 

cue-related, set-related, movement-related, and reward-related activity (see Methods). We 

performed two, two-way ANOVAs (factors: window, target direction) in order to compare the 

activity in these windows both to control activity during the center hold (to identify total, tonic + 

phasic, changes) and to activity in a 400-ms window preceding each of these windows (to 

identify only phasic changes). The proportion of significant main effects of window (p < 0.05) 

for each cortical area is shown in the Figure 2-7A, separated by whether the change was 

excitatory or inhibitory. The colored and uncolored portions of the bars indicate the proportion of 

phasic and tonic activity changes, respectively. When grouping the results shown in Figure 2-7A 

across all cortical areas, there were two striking features. First, a greater proportion of mean 

firing rate changes were excitatory in the movement window (75.8%) relative to the other three 

windows (46.5%, 45.8%, and 50.5%; χ2(3) = 155.15, p < 0.0001). Second, out of all significant 

changes in mean firing rate, a much greater proportion were tonic in the set (38.0%) and reward 

(29.5%) windows than in the movement window (6.4%) (χ2(2) = 189.00, p < 0.0001; the cue 

window was by definition always phasic, see Methods). This latter result suggests (1) that cue- 
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and movement-related activity were often tonic, extending into the set and reward windows, 

respectively and (2) the duration of set-related activity did not often extend past movement onset. 

All of these features can be readily observed in the firing rate profiles (Figs. 2-3 and 2-6).  

When comparing the results shown in Figure 2-7A between the cortical areas, there were also 

several significant features. First, PMd had proportionally more cue-related activity (60.1%) than 

the other areas (χ2(5) = 25.40, p = 0.0001), as observed in the population and subpopulation 

whole-trial analyses above. Second, as we also observed in the previous analyses (e.g. Fig. 2-4), 

total excitatory set-related activity was more prominent in M1, PMd, and SMA (28.2%, grouped) 

than the cingulate areas (11.7%, grouped; χ2(1) = 20.91, p < 0.0001). Third, the proportion of 

Figure 2-7. Proportion of event-related changes in mean firing rate and directional tuning. A, 
Percent of cells classified as cue-, set-, movement-, or reward-related based on significant 
changes in mean firing rate. Top: colored portions of the bars indicate proportion of phasic event-
related changes relative to the activity just preceding the event (main effect of window in 1st two-
way ANOVA, p < 0.05). Full bars, both colored (phasic) and uncolored (tonic) portions, indicate 
proportion of event-related changes relative to control activity during the center hold (main effect 
of window in 2nd two-way ANOVA, p < 0.05). The relative proportion of excitatory and 
inhibitory changes is indicated by the direction (upward or downward, respectively) of the bars. 
Bottom: Proportion of changes relative to control activity (i.e. phasic + tonic), combining both 
excitatory and inhibitory. B, Same as in A but for significant directional tuning (window x 
direction interaction in 1st and 2nd two-way ANOVAs, p < 0.05).  
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phasic movement-related activity was similarly large in each area (ranging from 72.1% to 

89.1%; χ2(5) = 5.20, p = 0.3922). Fourth, the tonic reward-related activity was mostly excitatory 

in the four medial motor areas, mostly inhibitory in PMd, and equally excitatory and inhibitory 

in M1. These reward-related features are also apparent in the population activity profiles in 

Figure 2-4, particularly for PMd and SMA. 

The proportion of significant window x direction interactions (p < 0.05) for each cortical area 

is shown in the Figure 2-7B. These results largely mirror the whole-trial directional tuning 

analysis presented in Figure 2-4 (bottom row) and Figure 2-6 (bottom row), despite the 

difference in tuning significance criteria. Directional tuning in the post-cue window was 

proportional much higher in PMd (23%) than the other areas (< 5%; χ2(5) = 81.75, p < 0.0001). 

Tuning during the set window was also most prominent in PMd, however it was more related to 

tonic activity from the cue (26%) than from phasic set-related activity (12%). The cingulate 

motor areas had very little tuning overall. However, the caudal cingulate areas had much more 

directional tuning during movement (32.1%, grouped) compared to CMAr (7%; χ2(1) = 10.72, p 

= 0.0011). Lastly, SMA had a notably high proportion of phasic reward-related tuning (27%) 

compared to all other areas (< 16%; χ2(5) = 39.98, p < 0.0001).    

Finally, we examined the extent to which instructed delay-time activity, tentatively called 

preparatory or set activity above, truly reflected movement preparation. In particular, we asked 

whether there was a correlation between single unit delay-time activity and a measure of motor 

preparedness—the reaction time (RT) (Kubota and Hamada, 1979; Lecas et al., 1986; Riehle and 

Requin, 1993). In the behavioral RT analysis (Chapter 1), we found that in almost all sessions 

there was a significant negative correlation between duration of the instructed delay and the RT. 

Ramp-like single unit activity during the delay (e.g. cluster 2 in Fig. 2-6, top row) would 

therefore imply a correlation between unit activity and the RT. Here we sought to quantify that 

relationship explicitly. For each session, we performed a trial-by-trial correlation between the RT 

and the average firing rate in the 400 ms preceding the go signal. Unlike the previous analyses, 

we used all trials within a session (i.e. baseline, force field, and washout epoch trials) to 

maximize statistical power and to be consistent with the behavioral RT analysis. For robustness, 

we both excluded trials with extreme RT values (less than 100 ms or more than 600 ms) and used 

a rank correlation coefficient (Kendall’s τ). The results, listed in Table 2-2, are sorted according 

to whether the delay-time activity was greater than, less than, or the same as the center-hold 
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activity (as judged by two, one-tailed t-tests; p < 0.05). Overall the correlations were fairly weak 

(τ < ±0.3 for all cells). However, the sign of a statistically significant correlation was generally 

appropriate for the sign of the change in activity during the delay, suggesting that the test results 

were not spurious. For example in SMA, negative correlations with RT were observed in 25% of 

cells with excitatory delay-time activity and only 4% of cells with inhibitory delay-time activity. 

Conversely, positive correlations with RT were observed in 16% of cells with inhibitory delay-

time activity and only 2% of cells with excitatory delay-time activity. Thus, as implied by the 

previous analyses, changes in delay-time activity were often correlated with movement 

preparation.           

In summary, all cortical motor areas had a high proportion of cells that were engaged in the 

reaching task. Each area had a phasic, excitatory population response around movement onset 

with a corresponding increase in proportion of directionally tuned cells. However, there were 

several differences between the cortical areas, which were most apparent either in the delay-time 

before movement or the target hold-time after movement. PMd activity began and ended earlier 

in the trial compared to the other areas. Significant cue-related activity was most prominent in 

PMd. The three cingulate motor areas were unique in their relative lack of excitatory set-related 

activity and directional tuning. Within the cingulate, CMAr had less directional tuning than the 

caudal cingulate areas. M1 and SMA activity was very similar, although the latter tended to have 

more tonic movement-related activity and reward-related tuning. Finally, there was a striking 

similarity in the bimodal PD distributions of the SMA and CMAd and the unimodal PD 

 

Table 2-2. Incidence (and %) of significant correlations between the reaction time and the average firing rate in 
the last 400 ms of the delay time (Kendall’s τ, p < 0.05 as judged by a permutation test). The values are divided 
according to both the sign of the correlation and whether the delay-time activity was excitatory, inhibitory, or the 
same relative to the center-hold activity (two, one-tailed t-tests, p < 0.05). 
 

 M1 PMd SMA 
 N τ > 0 τ < 0 N τ > 0 τ < 0 N τ > 0 τ < 0 

excit. 34 1 (3) 14 (41) 72 0 (0) 34 (47) 63 1 (2) 16 (25) 
inhib. 86 14 (16) 7 (8) 41 5 (12) 3 (7) 92 15 (16) 4 (4) 
same 125 6 (5) 33 (26) 62 1 (2) 14 (23) 149 17 (11) 15 (10) 

 CMAd CMAv CMAr 
 N τ > 0 τ < 0 N τ > 0 τ < 0 N τ > 0 τ < 0 

excit. 6 0 (0) 1 (17) 2 0 (0) 0 (0) 5 0 (0) 1 (20) 
inhib. 36 2 (6) 1 (3) 16 3 (19) 0 (0) 19 2 (11) 0 (0) 
same 101 1 (1) 9 (9) 30 0 (0) 0 (0) 42 4 (10) 1 (2) 
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distributions of M1 and PMd. Interestingly, the PD distributions of the medial areas and lateral 

areas were nearly orthogonal to one another. 

 

Event-related LFP activity 

There were two prominent event-related potentials in the trial-averaged LFPs: a cue-evoked 

potential (cEP) and a movement-evoked potential (mEP). An example is shown in Figure 2-8. In 

this example, the cEP had three components, or peaks: a negative peak (cN1), a positive peak 

(cP1), and a second negative peak (cN2). The mEP also had three components, but with the 

reverse polarity: a positive peak (mP1), a negative peak (mN1), and a second positive peak 

(mP2). The mEP was also evident when aligning on the go signal, although mN1 and mP2 were 

less pronounced than in the movement onset alignment (Fig. 2-8A). There were no evoked 

potentials associated with the end of movement.  

Figure 2-8. Example of event-related potentials in a trial-averaged LFP. A, Average LFP aligned 
on each of the four behavioral events (cue, go, mo, me). Arrows point to each component of the 
cue-related potentials (cN1, cP1, cN2) and movement-related potentials (mP1, mN1, mP2). The 
movement-related potentials can be seen both by aligning on the go signal and on movement 
onset. B, The cP1 component and mN1 component were tuned to the direction of movement. 
Vertical lines are mean ± sem of the projection of each trial in a given direction along the trial-
averaged LFP component. The cosine fit to these values is also shown. C, The strength of the 
mN1 component was inversely proportional to the duration of the instructed delay. 
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315 out of the 339 recorded LFPs had at least one ERP component that was significant 

(Table 2-1, last row; see Methods). mEPs were more frequent than cEPs in both M1 and PMd 

(Table 2-3). The most frequent evoked-potential component in both cortical areas was mP2, 

which was significant in 88% of M1 LFPs and 73% of PMd LFPs. The latency of the first cue-

related peak, cN1, was about 120 ms in both areas. The latency of the first movement-related 

peak after the go signal, mP1, was about 215 ms in both areas. The incidence and strength of 

mEPs in PMd were less than in M1, although the cEPs were in all respects similar in both areas 

(Table 2-3). 

A substantial fraction of event-related potentials were broadly, unimodally tuned to the 

direction of movement. In the example LFP in Figure 2-8A, both the cP1 peak and the mN1 peak 

had significant directional tuning (Fig. 2-8B; permutation test on the resultant vector magnitude 

statistic, p < 0.05). The cP1 peak was directionally tuned in 20% of M1 LFPs and 26% of PMd 

LFPs that had a significant cP1 peak (Table 2-3). For the mN1 peak, these percentages were 22% 

and 23%, respectively. As seen in Figure 2-8C, the preferred directions of tuning in the cEP and 

mEP generally differed. Over the 34 M1 LFPs with at least one tuned peak in both the cEP and 

mEP, the average difference in preferred direction was 63 deg. Another example of tuning, this 

time where both the mN1 and mP2 peaks are significantly tuned, is shown in Figure 2-9A. In the 

 

Table 2-3. Statistics on event-related potentials (ERPs). ‘mod’ is the incidence (and %) of significant ERP 
peaks. ‘peak’ is the time of the ERP peak relative to the event (ms; mean ± sd). ‘rms’ is the strength of the ERP 
peak (µV•s; mean ± sd). ‘dir’ is the incidence (and %) of directional tuning of significant ERP peaks. ‘delay’ and 
‘rt’ are the incidence (and %) of a correlation with the delay and reaction time of significant ERPs, respectively.  
 

 M1 
 cue go mo 
 cN1 cP1 cN2 mP1 mN1 mP2 mP1 mN1 mP2 

mod 53 (22) 110 (46) 19 (8) 54 (23) 188 (79) 177 (74) 77 (32) 199 (83) 210 (88) 
peak 121 ± 14 209 ± 19 298 ± 25 213 ± 18 301 ± 42 442 ± 52 -124 ± 23 -41 ± 20 83 ± 51 
rms 3.5 ± 1.0 3.2 ± 0.9 2.4 ± 0.8 2.7 ± 1.1 5.2 ± 2.2 3.1 ± 1.4 2.7 ± 1.3 6.7 ± 3.0 4.2 ± 1.7
dir 6 (11) 22 (20) 1 (5) 9 (17) 13 (7) 35 (20) 12 (16) 44 (22) 58 (28) 

delay 4 (8) 7 (6) 2 (10) 3 (5) 63 (34) 16 (9) 2 (3) 89 (45) 39 (19) 
rt 0 (0) 4 (4) 3 (16) 11 (20) 120 (64) 100 (56) 6 (8) 89 (45) 45 (21) 
 PMd 
 cue go mo 
 cN1 cP1 cN2 mP1 mN1 mP2 mP1 mN1 mP2 

mod 27 (27) 50 (50) 9 (9) 10 (10) 55 (55) 54 (54) 19 (19) 62 (62) 73 (73) 
peak 122 ± 12 207 ± 27 276 ± 24 217 ± 38 313 ± 82 447 ± 60 -148 ± 35 -49 ± 20 88 ± 48 
rms 3.3 ± 1.4 3.1 ± 1.0 2.2 ± 0.5 2.2 ± 0.6 3.8 ± 1.7 2.8 ± 1.2 2.0 ± 0.8 4.5 ± 2.2 3.3 ± 1.6
dir 4 (14) 13 (26) 3 (33) 2 (20) 6 (11) 5 (9) 0 (0) 14 (23) 18 (25) 

delay 2 (7) 4 (8) 1 (11) 2 (20) 10 (18) 1 (2) 2 (11) 18 (29) 8 (11) 
rt 0 (0) 3 (6) 0 (0) 0 (0) 20 (36) 24 (44) 2 (11) 17 (27) 7 (10) 
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mEP, tuning was more frequent in later peaks (mN1 and mP2) than in mP1 (Table 2-3). Over the 

population, the distribution of preferred directions was significantly nonuniform (Rayleigh tests, 

p < 0.025). The preferred directions of the cP1 peaks were unimodally distributed with a mean 

direction of 48º (M1) and 50º (PMd). The preferred directions of the mP2 peaks were unimodally 

distributed with a mean direction of 104º (M1) and 103º (PMd).   

Finally, some components of the mEP were modulated by the duration of the instructed delay 

period. For example, in Figure 2-8C and Figure 2-9B, the strength of the mN1 peak was 

negatively correlated with the delay time (permutation test on Kendall’s τ statistic, p < 0.05). In 

fact, component mN1 was negatively correlated with the delay time in 45% of M1 LFPs with 

significant mN1 peaks (Table 2-3). The same was true for the mP2 component in 19% of M1 

LFPs. These percentages were lower in PMd (29% and 11%, respectively). The correlations were 

generally weak (e.g. τ = -0.20 ± 0.06 for the mN1 peaks in M1), but consistently negative. The 

incidence of significant correlations for the other peaks (mP1 and the cEP peaks) was near 

chance levels (assuming 5% type I errors) or inconclusive due to an inadequate number of 

Figure 2-9. Examples of relationship between movement-evoked potentials (mEPs) and 
behavior. A, Trial-averaged LFP aligned on movement onset and sorted by movement direction. 
The mEP shows broad, unimodal tuning to movement direction. B, Trial-averaged LFP aligned 
on movement onset and sorted by duration of the instructed delay. The negative peak of the mEP 
is largest when delay times are short. 
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significant peaks. Since the reaction time (RT) was correlated with the delay duration (Chapter 

1), it is not surprising that the mEP was also correlated with the RT. In fact, the mEP-RT 

correlations were often even more pronounced, particularly for the go-aligned mEP (Table 2-3). 

In summary, evoked-potentials were present following the cue and go signals, further 

demonstrating the saliency of these events. The relationship of the evoked potentials to both 

movement direction and delay duration suggests that, like the neuronal activity described above, 

they reflect cortical processing of movement preparation and execution. The cEP was in all 

respects essentially the same in both cortical areas, but the mEP was more prominent and more 

often related to the delay duration and reaction time in M1 than in PMd. 

 

Event-related EMG activity 

EMGs were recorded from 11 intramuscular electrodes implanted in eight proximal arm 

muscles in monkey T for seven sessions following completion of the cortical recordings. These 

data were obtained to provide insight into how the neural activity described above resembled or 

Figure 2-10. Event-related electromyographic (EMG) activity of proximal arm muscles. For 
each of the eight muscles, the mean EMG (top; all directions, thin line; preferred hemifield, thick 
line) and instantaneous preferred direction of activity (bottom) is shown, along with 95% 
confidence intervals. 
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differed from the muscular activity required to make the reaching movements. In Figure 2-10 we 

show the mean activity, and its instantaneous preferred direction, for the eight muscles. 

Trapezius, deltoid, and biceps were implanted with two electrodes each, but the activity was very 

similar on each pair and thus not shown separately. Furthermore, the mean activity and preferred 

direction of activity was very similar for each muscle across sessions. Thus Figure 2-10 just 

shows the activity of each muscle in one representative session. 

Four features of the EMG activity stood out. First, the activity profiles were composed of 

phasic (rhomboid, trapezius, deltoid, supraspinatus, triceps) or tonic (infraspinatus, biceps, 

pectoralis) movement-related activity with no cue-related or set-related activity. Second, the 

activity was tuned to movement direction in most muscles (all but triceps), with tuning onset 

occurring in the reaction time and continuing throughout the movement and target-hold times. 

Third, the preferred direction did not change much over the course of the trial. Fourth, the 

preferred directions of these proximal muscles were clustered around 250-300 degrees 

(rhomboid, trapezius, deltoid, infraspinatus) and 100-150 degrees (biceps, pectoralis, 

supraspinatus). These preferred directions for the most part agree with the known mechanical 

actions of the muscles, except for supraspinatus which was, however, only weakly tuned. 

 

Comparison of PD distributions 

As described above, nonuniform PD distributions were a notable feature of the population 

analysis at all three physiological levels (SUA, LFP, and EMG). We more directly compared 

these distributions in Figure 2-11. Across all levels, the nonuniformities tended to lie along one 

of two approximately orthogonal axes. The proximal muscle activity, mEP, movement activity of 

CMAd, and target hold activity of M1, SMA, and CMAd all had a disproportionate number of 

PDs along the ~150º-330º axis. The cEP, delay activity of PMd, and movement activity of M1 

and PMd all had a disproportionate number of PDs along the ~50º-230º axis. Below we discuss 

several interpretations of this arrangement of directional representations. 

 

2.4 Discussion  
 

This chapter examined how six cortical motor areas in the rhesus macaque are involved in 

planning and executing well-rehearsed reaching movements. Many features of the neural activity 

for each area have been reported previously, as we discuss below. However, the strength and 
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uniqueness of the current study was in comparing the relative prominence of these features 

across so many different areas and different levels (muscles, single cells, networks) of the motor 

system. 

 

Distributed network for movement preparation and control 

Our results emphasize the distributed nature of motor processing in the frontal lobe (Kalaska 

and Crammond, 1992). Activity in the five premotor areas was proportionally very similar to that 

of M1 during movement initiation. Anatomical studies have shown that each of these premotor 

areas projects to the spinal cord and M1 (Dum and Strick, 2002). The strong premotor area 

responses suggest that these parallel motor pathways are indeed used to recruit muscles involved 

in reaching. 

Figure 2-11. Preferred direction (PD) distributions of SUA, LFP, and EMG activity. The  SUA 
and EMG distributions are of the average PDs during the last 500 ms of the instructed delay (top 
row), the interval -100 ms to +400 ms around movement onset (middle row), and the last 500 ms 
of the target hold period (bottom row). The LFP distributions are for the cP1 peak of the cue-
evoked potential (top row) and the mP2 peak of the movement-evoked potential (middle row). 
Thick red lines indicate significant unimodal (radial line) or bimodal (axial line) distributions 
based on Rayleigh tests (p < 0.025).     
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Likewise, several different areas contributed to movement preparation. During the instructed 

delay prior to movement, M1, SMA, and PMd had sustained, excitatory neuronal responses that 

were typically directionally tuned (Tanji and Evarts, 1976; Tanji et al., 1980; Weinrich and Wise, 

1982). This set-related activity was often correlated with the reaction time, indicating that it truly 

reflected the preparation for movement (Kubota and Hamada, 1979; Lecas et al., 1986; Riehle 

and Requin, 1993). PMd was unique in that it had the highest proportion of cells with phasic 

responses to the visual cue (Weinrich and Wise, 1982). This is consistent with more specific 

evidence linking this area to a prominent role in visuomotor transformations (di Pellegrino and 

Wise, 1993; Crammond and Kalaska, 1994; Shen and Alexander, 1997; Cisek and Kalaska, 

2004).  

The preparatory responses in the cingulate motor areas, however, were comparatively more 

inhibitory and untuned. In fact, CMAr was uniquely untuned to movement direction throughout 

the task (Hoshi et al., 2005). A prominent feature of the cingulate areas, as well as SMA, was 

tonic, excitatory movement-related activity lasting throughout the post-movement hold time and 

up until the reward (Akkal et al., 2002). This is in contrast to PMd activity, which was more 

phasic and inhibitory following movement. Post-movement, reward-related activity has been 

previously documented in the CMAr (Shima and Tanji, 1998; Akkal et al., 2002; Hoshi et al., 

2005), although not, to our knowledge, in the caudal cingulate motor areas. 

 

Nonuniform neuronal PD distributions 

The analysis of event-related neuronal changes, as summarized above, suggested that all the 

cortical motor areas were similarly engaged during movement and differentially engaged before 

and after movement. However, even during movement there was some indication of 

heterogeneity of function. In particular, we found that both during and after movement the PD 

distributions of SMA and CMAd were quite different from the PD distributions of M1 and PMd 

and all distributions were often significantly nonuniform.  

Nonuniform PD distributions have been reported previously in M1 (Georgopoulos et al., 

1982; Scott and Kalaska, 1997; Scott et al., 2001; Mitsuda and Onorati, 2002; Kurtzer et al., 

2006; Naselaris et al., 2006a). However, many other reports of PD distributions, including the 

initial report on the SMA data analyzed here (Padoa-Schioppa et al., 2004) and the only such 

report on the caudal cingulate (Russo et al., 2002), concluded that the distributions were uniform. 
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There are at least two reasons for this discrepancy. First, nonuniform PD distributions are 

correlated with anisotropic mechanical properties of the limb (Scott et al., 2001). Task 

differences in limb configuration change the degree of mechanical anisotropy and, 

correspondingly, the distribution of PDs (Scott and Kalaska, 1997). This does not explain, 

however, different conclusions reached from the same data set (Padoa-Schioppa et al., 2004). For 

this, it is important to note that many of the nonuniform PD distributions found by us and others 

were bimodal, just as the mechanical properties (e.g. endpoint inertia) are bimodal. Thus a 

second reason for a discrepancy in inference on the shape of a PD distribution is the specific 

hypothesis test used to make the inference. Padoa-Schioppa et al. (2004) and Russo et al. (2002) 

used the standard Rayleigh test, whose null and alternative hypotheses are uniformity and 

unimodality, respectively (Fisher, 1993). Bimodal distributions will generally fail to show 

significance in this test. Indeed, notwithstanding differences in task and analysis details, the 

SMA and CMAd PD distributions reported in these papers (Fig. 6, target-hold, in Padoa-

Schioppa et al., 2004; Fig. 11, movement, in Russo et al., 2002) actually appear to agree quite 

closely with our results. 

The functional significance of the nonuniform neuronal PD distributions and of differences in 

nonuniformity between lateral and medial cortical areas cannot be conclusively determined from 

the present data. PD distributions play a central role in the population vector theory of 

representation in the motor cortex (Georgopoulos et al., 1986; Georgopoulos et al., 1988). We 

did not include an analysis of the population vectors in this chapter, as it provided no additional 

insight into the physiology (Mussa-Ivaldi, 1988; Sanger, 1994). Essentially, the population 

vectors deviated from the direction of movement in a way that simply reflected the specific 

nonuniformity of the PD distribution (Scott et al., 2001).  

Some insight into the functional significance of the nonuniform PD distributions can, 

however, be made by considering the results of the EMG analysis. The proximal musculature 

was most active in movements away from or toward the body. The PD distributions of CMAd, 

both in movement and target hold, and of M1 and SMA during the target hold were oriented 

approximately along this same axis. Thus one interpretation is that CMAd was involved mostly 

in controlling proximal muscles and that most of the neuronal target hold activity was also 

associated with controlling proximal muscles. Several other reports have also shown that the 

nonuniformity in neuronal PD distributions is due to an overrepresentation of movements away 
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from and toward the body (Scott et al., 2001; Kurtzer et al., 2006; Naselaris et al., 2006a). This 

could reflect either the need for greater overall muscular effort in these directions (Scott et al., 

2001) or that statistically the monkey, in its everyday life, tends to make more reaches in these 

directions (Naselaris et al., 2006a).  

While we did not record from distal arm muscles, we can deduce from the lack of proximal 

arm activity that distal muscles were more involved in reaching along the orthogonal axis (to the 

left and toward the body and to the right and away from the body). Anecdotally, there appeared 

to be greater changes in wrist angle along these directions, thus implicating forearm muscles, 

although we did not specifically measure the joint kinematics. Therefore a tentative 

interpretation is that the unimodal PD distributions in M1 and PMd during movement reflect 

control of the more distal musculature.  

 

Evoked potentials in the precentral cortex 

The LFPs in both M1 and PMd were found to have two major event-related potentials: one 

occurring about 120 ms after the cue signal (cEP) and another occurring about 215 ms after the 

go signal (mEP). The mEP has been described in many primate electrophysiological studies 

(Gemba and Sasaki, 1984; Cardoso de Oliveira et al., 2001; Donchin et al., 2001; Mehring et al., 

2003a; Rickert et al., 2005; Roux et al., 2006). The cEP has received less attention in this 

literature, however it is likely distinct from the mEP only when an instructed delay period is 

present. Indeed, one recent study that did include an instructed delay period found an evoked 

potential with similar latency from the instructional cue as that found here (O'Leary and 

Hatsopoulos, 2006). The cEP and mEP were only evident in the trial-averaged LFP, rather than 

individual trials, and thus seemed to reflect phase-locking, rather than amplitude modulation, of 

the LFP (Makeig et al., 2002; Jansen et al., 2003; Klimesch et al., 2004; Gruber et al., 2005). 

O’Leary and Hatsopoulos (2006), using frequency-domain rather than time-domain techniques, 

showed explicitly that M1 and PMd LFP oscillations in three different frequency bands are 

indeed phase-locked at a latency of about 120 ms following visual cue presentation.  

LFPs are thought to reflect synchronized postsynaptic currents in a relatively large 

population of neurons in the vicinity of the recording electrode (Klee et al., 1965; Mitzdorf, 

1985). The cEP and mEP therefore indicate that, not surprisingly, the cue and go events trigger a 

large amount of coincident activity in motor and premotor cortices. The cEP and mEP were 
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found to have consistently opposite polarity, likely due to the electric dipoles created by active 

neurons (Johnston and Wu, 1995). In particular, excitatory synaptic inputs associated with visual 

input to the network (cEP) cause the soma to act as a current source and the dendrites as a 

current sink whereas somatic action potentials associated with motor outputs of the network 

(mEP) cause the soma to be a sink and dendrites to be a source. Since our technique for isolating 

single cells likely resulted in electrode locations closer to the soma (i.e. in deeper cortical layers), 

these dipole orientations will result in the observed large positive peak for the cEP and large 

negative peak for the mEP. 

Directional tuning of evoked potentials has been observed previously for both the cEP 

(O'Leary and Hatsopoulos, 2006) and mEP (Cardoso de Oliveira et al., 2001; Mehring et al., 

2003a; Rickert et al., 2005; O'Leary and Hatsopoulos, 2006). Here we found directional tuning in 

approximately a quarter of the significant evoked potentials. It is somewhat surprising that M1 

and PMd LFPs, which as mentioned above are the sum of activity from a large number 

(~thousands) of neurons, are directionally tuned. If one assumes a simple model that cortical 

neurons control a muscle, or group of muscles with similar action, and the neural tuning simply 

reflects the muscular tuning, then one would not expect tuning of the LFPs given that muscle 

representations in motor cortex are known to be quite distributed (Rathelot and Strick, 2006). 

However, there is some physiological evidence of small-scale spatial ordering of directional 

tuning in the motor cortex (Amirikian and Georgopoulos, 2003; Ben-Shaul et al., 2003; Naselaris 

et al., 2006b). In fact, the mere presence of LFP directional tuning might itself be evidence of 

this spatial ordering (Mehring et al., 2003b).  

The PD distributions of both the cEP and mEP were significantly nonuniform (O'Leary and 

Hatsopoulos, 2006). The mean direction of the mEP PD distribution was oriented away from the 

body and aligned closely with the axis of preferred directions of proximal muscles. This 

relationship might indicate that the increased mEP amplitude in this direction reflects a 

biomechanical requirement for greater muscular effort and thus more coincident, motor output-

related activity. This interpretation implies that tuning of evoked-potentials may not be due to 

any spatial order of directional representation in motor cortex and, in fact, not due to the 

directional tuning of motor cortical neurons at all. Rather, assuming the LFP reflects a 

sufficiently large number of cortical cells, the mEP tuning may simple be a result of the need for 

more cortical motor output in some movement directions than others. The cEP had even sharper 
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unimodal tuning, both in M1 and PMd. The mean direction was similar to that of the delay-time 

PD distribution of PMd cells, suggesting a link between the single cell and network levels of 

delay-time activity.   

Surprisingly, the strength of the mEP was modulated by the duration of the instructed delay 

and correlated with the reaction time. Roux et al. (2006) observed a similar effect, although 

emphasized that the modulation primarily occurred during the mP1 peak. Here the modulation 

was more prevalent in the mN1 and, to a lesser extent, mP2 peaks. It is not clear exactly why the 

level of movement preparedness should impact the mEP. The EEG literature has documented a 

potential, called the contingent negative variation (CNV), which occurs during an instructed 

delay over large regions of the scalp and whose amplitude is related to level of expectance or 

preparedness of movement (Walter et al., 1964; Brunia, 1999). However, the absolute amplitude 

of the CNV is positively, not negatively, correlated with expectancy (Trillenberg et al., 2000). 

Thus the CNV is more closely related to the ramp-like increase in set-related activity that we and 

others have observed in PMd, M1, and SMA neurons as well as in the basal ganglia (Alexander 

and Crutcher, 1990). This latter area is thought to be the source of the CNV (Ikeda et al., 1997; 

Brunia, 1999). Here we did not observe the CNV, probably since we high-pass filtered the LFP 

recordings in line with other non-human primate field potential studies. 

One hypothesis for the negative correlation of the mEP amplitude and delay duration is that a 

function of movement preparation is to prime downstream circuits (e.g. bring spinal neurons 

closer to threshold). With downstream circuits sufficiently primed, presumably less cortical 

output would be need to drive the movement and therefore the mEP would be of lower 

amplitude. With short delays, and the priming function not completed, presumably more cortical 

output would be need to drive the movement and the result would be a higher amplitude mEP. 

Spinal interneurons are indeed primed during an instructed delay prior to movement (Prut and 

Fetz, 1999). Furthermore, motor preparedness has been shown to be correlated with the strength 

of gamma-band coherence between motor cortex and spinal neurons (Schoffelen et al., 2005). 

Finally, a recent human TMS study has found corticospinal excitability is modulated by the level 

of expectance and that spinal, rather than cortical, mechanisms are likely responsible for these 

changes (van Elswijk et al., 2007). 

 

Interpretational limitations 
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The “center-out” reaching task employed in this study has several limitations with regard to 

interpretation of neural data. First, we cannot dissociate whether cue-related activity, both in 

SUA and LFPs, is a visual response to the target or a movement planning response (Shen and 

Alexander, 1997). Second, although we often referred to post-movement, target-hold activity as 

related to the reward, we can not rule out the possibility that the activity is related to planning the 

unregulated, post-reward movement back to the center target to start the next trial. Third, the 

baseline, center-out reaching task is not designed to dissociate between different cortical 

representations, either in terms of the variable represented or the coordinate frame of the 

representation (Paninski et al., 2004; Chan and Moran, 2006). Thus, our emphasis on quantifying 

tuning of neural activity to the direction of movement should not be interpreted as advocating 

any particular encoding scheme in motor cortex. Rather, directional tuning is simply a very 

prominent feature of the activity which could reflect encoding of movement kinematics or 

kinetics in a variety of coordinate frames.   

Three other limitations are related not to the task, but to the dataset. First, the contrasts 

highlighted above between lateral and medial motor areas, including post-movement activity and 

PD distributions, could not be observed in a single animal with the current data set. The data 

from the lateral areas and medial areas were collected in different animals. A second limitation 

was the relatively small number of cells collected in CMAr and CMAv. Due to this fact, we did 

not emphasize the cell classification proportions in these areas. A third limitation was that the 

LFP data were recorded from only one monkey. Preliminary data (44 LFPs from M1 and PMd) 

from a second monkey had similar evoked potentials following the cue and movement onset as 

those reported in this chapter. However, the second monkey’s data also indicated that setting the 

high-pass cutoff frequency of the analog LFP filter to 1 Hz, instead of 10 Hz (see Methods), 

caused there to be more low frequency peaks associated with each evoked potential. For 

example, for the mEP there was a second negative peak as described by Rickert et al. (2005). 

 

Conclusions 

Control of the visuomotor reaching behavior was distributed across many cortical motor 

areas. PMd was most involved in responding to the visual cue and, with M1 and SMA, in the 

visuomotor transformation required to plan the upcoming movement. Network activity in these 

areas suggested that part of the movement planning may have involved priming downstream 
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circuits. All areas were similarly involved in executing the movement, though possibly with 

some specialization regarding the control of proximal (SMA, CMAd) versus distal (M1, PMd) 

muscles. M1, SMA, and CMAd all participated in the post-movement target hold, where the 

activity was mostly restricted to movement directions involving proximal muscles. 
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3 Cortical motor activity during reaching: II. time-frequency analysis 

 
 
3.1 Introduction 
 

Oscillatory neural activity is pervasive in the motor system, as in other brain systems 

(MacKay, 1997; Farmer, 1998; Schnitzler and Gross, 2005). In the motor areas of the precentral 

cortex, field potentials oscillate at several frequencies contingent on behavioral context. Beta 

band (~15-35 Hz) precentral oscillations have greatest amplitude during movement preparation 

(Sanes and Donoghue, 1993; Donoghue et al., 1998; Rubino et al., 2006), maintained posture 

(Baker et al., 1997; Baker et al., 1999), and exploratory movements (Murthy and Fetz, 1992, 

1996a; Donoghue et al., 1998), but generally attenuate during well-rehearsed movements (Sanes 

and Donoghue, 1993; Donoghue et al., 1998; Pfurtscheller et al., 2003; Rickert et al., 2005). 

High gamma band (~60-100 Hz) precentral oscillations, on the other hand, generally have 

increased amplitude during well-rehearsed movements (Pfurtscheller et al., 2003) and are 

modulated by movement parameters such as direction and speed (Rickert et al., 2005; Heldman 

et al., 2006).  

Field potential oscillations likely play a role in cortical motor processing as they modulate 

single cell activity. In particular, field potential oscillations are associated with synchronous (i.e. 

phase-locked) oscillatory discharge of precentral cortical neurons (Murthy and Fetz, 1996b; 

MacKay, 1997). Several hypotheses have been advanced regarding the functional role of these 

synchronous oscillations. First, synchronous oscillatory activity of precentral neurons may allow 

more efficient communication with other neuronal populations (Salinas and Sejnowski, 2001) 

and more efficient recruitment of muscular activity (Baker et al., 1999). Second, synchronized 

neuronal oscillations, or correlated neuronal activity in general, may in fact encode motor 

information such as desired movement direction (Hatsopoulos et al., 1998; Maynard et al., 1999; 

Oram et al., 2001). Third, oscillatory neuronal activity may promote learning through spike-

timing-dependent plasticity by naturally correlating pre- and post-synaptic activity (Sejnowski 

and Paulsen, 2006). However, to date there has been little evidence linking oscillatory activity 

with motor learning. 

Here, we investigated the role of oscillatory neural activity in a particular type of motor 

learning: adaptation to altered mechanical environments. In this chapter, we begin with a 
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thorough characterization of precentral neural oscillations during reaching in a familiar 

environment. In the next chapter, we explore how features of the oscillations change when 

adapting to a novel environment. 

 

3.2 Methods 
 

The behavioral (Chapter 1) and electrophysiological (Chapter 2) methods have been 

described previously. The neural database analyzed in this chapter was the same as in Chapter 2. 

 

Analysis 

We restricted the analysis to the last 120 trials of the baseline epoch to focus only on the 

oscillatory activity that occurred during reaching in the familiar environment. 

The recorded local field potential (LFP) activity was filtered to remove noise, as in Chapter 

2. Recordings with very low amplitude signal or with excessive spectral noise peaks not removed 

by the filtering were excluded from the analysis. The remaining LFPs (79%, 268 of 339 across 

all cortical areas) were subjected to the following analyses. 

Power spectrograms were computed from the filtered LFPs using the short-time discrete 

Fourier transform with a sliding Hamming window of 200 ms width, stepped every 20 ms. This 

time-frequency analysis allowed us to characterize what oscillations where present, and at what 

time, during the baseline reaching task. Frequencies between 1 Hz and 95 Hz were analyzed in 

four, 1100 ms time epochs around the cue signal, go signal, movement onset (mo), and 

movement end (me) events. The noise filtering removed or significantly degraded any signal 

between 55 Hz and 65 Hz and therefore this band was removed from the spectrograms. Power at 

frequencies higher than 95 Hz was not analyzed since it was likely related to spiking neuronal 

activity, which was analyzed previously (Chapter 2). 

Two frequency bands, the 12-27 Hz band (i.e. beta band) and the 70-95 Hz band (i.e. gamma 

band), were subjected to a time-resolved directional tuning analysis using the same sliding 

windows as for the spectrograms. For this analysis, average intra-band power was calculated on 

each trial. Then a permutation test was used, as in Chapter 2, to determine whether the power 

varied significantly with target direction. The standard permutation test described in Chapter 2 

assessed whether directional tuning was unimodal. However, bimodal tuning also appeared to be 
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a prominent feature of the LFP activity (see Results). Therefore we performed two permutation 

tests, one with a unimodal alternative and one with a bimodal alternative (achieved by doubling 

the angles at each direction, modulo 360 deg), each with a significance level of p = 0.025 for a 

familywise error rate of p = 0.05. If the p-value of both tests was less than 0.025, then the tuning 

curve was classified based on the test with the lowest p-value. At each instance of significant 

tuning, the preferred direction (unimodal) or major axis (bimodal) of the tuning curve was 

computed through vector summation.  

We also examined the relationship between neuronal activity and beta or gamma LFP 

oscillations. First, the LFP was bandpass filtered to isolate the beta or gamma oscillations using a 

2nd-order Butterworth filter run in both forward and reverse directions to prevent phase 

distortion. Then we estimated the instantaneous amplitude and phase of the oscillations. This can 

be done using either a complex wavelet or the Hilbert transform (Le Van Quyen et al., 2001), of 

which we chose the latter. Then we compiled the LFP amplitude and phase corresponding to 

each spike time. A Rayleigh test was used to determine whether the distribution of phases 

corresponding to all the spike times of a cell was significantly nonuniform. 

To compare directional tuning curves, Pearson’s correlation coefficient was computed for the 

mean tuning curves of each pair of LFP and single cell recordings on the same electrode and 

each pair of simultaneously recorded LFPs. A significant relationship between tuning curves was 

assessed at the population level by determining, with a t-test, if the mean of the distribution of 

correlation coefficients was significantly nonzero.       

 

3.3 Results 

 
LFP oscillations and behavior 

Local field potentials (LFPs) recorded in the precentral cortex exhibited oscillatory activity 

during distinct phases of the reaching task. Figure 3-1A shows a spectrogram computed from the 

activity of one LFP. First, at the lowest frequencies (< 12 Hz) power occurred predominantly at 

the time of the cue and movement onset (mo). Power at these low frequencies was another 

manifestation of the cue- and movement-evoked potentials characterized previously using a 

time-domain analysis (see Chapter 2). Second, the highest power in the spectrum was 

concentrated in a band around 20 Hz, which we refer to as the beta (β) band (12-27 Hz). Beta-
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band oscillations gradually increased in amplitude during the center hold (CH), gradually 

decreased throughout the instructed delay time (DT) and movement time (MT), and finally 

increased at the end of movement (me) and throughout the target hold time (TH). Thus 

maintained posture was associated with high-amplitude, beta-band oscillations while movement 

(including the movement back to the center just prior to the start of the CH) caused a decrease in 

oscillation amplitude at these frequencies. Third, higher-frequency oscillations around 70-95 Hz, 

which we refer to as the gamma (γ) band, were present during movement and not during the 

other phases of the task. Gamma band power was about 10-fold less than beta-band power, but 

showed clear modulation with movement, as can be seen in the temporal profile of average 

power in Figure 3-1B. Fourth, the task-relatedness of oscillations with frequencies between the 

beta and gamma bands (~35-70 Hz) was less consistent and at least partially unobservable due to 

power-line noise (white-out segment in Fig. 3-1A). These four observations held true at the 

population level as well (Fig. 3-3A,B). There were no consistent differences between the 

Figure 3-1. Oscillatory activity of an example LFP recorded in M1. A, Power spectrogram of 
LFP activity, averaged across the last 120 trials of the baseline epoch. CH = center hold; DT = 
delay time; MT = movement time; TH = target hold; mo = movement onset; me = movement 
end. B, Average power in the 12-27 Hz band (β-band, red) and the 70-95 Hz band (γ-band, blue) 
as a function of time. Times at which the power was significantly tuned to target direction are 
indicated above each trace. C, Tuning curves (mean ± sem) of average β (blue) and γ (red) power 
in a 200-ms window at the end of the MT (arrow in B). Power is relative to the all-trial mean 
power in each band. 
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amplitude of LFP oscillations in M1 and PMd. Thus for Figure 3-3, as well as the rest of the 

chapter, the M1 and PMd LFPs were combined into a single data set. 

In addition to these event-related modulations, power in both the beta and gamma bands 

systematically varied with the direction of movement. A time-resolved analysis of spectral 

directional tuning for the example LFP shown in Figure 3-1 found that both beta- and gamma-

band power were tuned at various times during the MT and the TH (Fig. 3-1B). The tuning 

curves at the end of the MT (arrow in Fig. 3-1B) were broadly unimodal, similar to the cosine 

tuning of single cell activity, and the preferred directions (PDs) of the beta- and gamma-band 

tuning curves were almost 180º apart (Fig. 3-1C). However, we also observed that beta 

oscillations were often bimodally, rather than unimodally, tuned to direction. An example is 

show in Figure 3-2A. During the TH, this LFP had relatively high beta-band power in the 

Figure 3-2. Bimodal directional tuning of beta oscillations. A, Spectrograms of target hold LFP 
activity in each of the eight movement directions for the example LFP. B, Tuning curve of β-
band power for the example in A. 
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rightward and leftward directions and relatively low beta-band power in the forward and 

backward directions. Thus the tuning curve was bimodal (Fig. 3-2B). Across the population, 

spectral tuning in the beta band occurred primarily in the early DT (several 100 ms after cue 

presentation) and during the TH following movement (Fig. 3-3C, red). This tuning was unimodal 

in the DT (solid red line in Fig. 3-3C) and both unimodal and bimodal (dashed red line in Fig. 3-

3C) in the TH. In contrast, spectral tuning in the gamma band was only prominent during 

movement and was largely unimodal (Fig. 3-3C, blue).  

The orientation of the spectral tuning curves was relatively consistent across recordings and 

Figure 3-3. Population spectrogram and spectral tuning analysis. A, Mean spectrogram averaged 
across all LFPs. B, Average power in the β-band (red) and γ-band (blue) as a function of time. C, 
Fraction of LFPs with tuned β-band (red) or γ-band (blue) power at each time point. Solid and 
dashed lines indicate unimodal and bimodal tuning, respectively. D, Preferred direction 
distributions (unimodal) and major axis distribution (bimodal) of the tuned activity in each band 
at the times indicated by the arrows in C. 
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quite specific to both frequency band and time epoch. The distribution of preferred directions 

(unimodal tuning curve orientation) and major axes (bimodal tuning curve orientation) for three 

specific 200-ms time windows (early DT, late MT, late TH; arrows in Fig. 3-3C) are shown in 

Figure 3-3D. The beta-band PD distributions in the early DT, late MT, and late TH windows 

were unimodal (Rayleigh test, p < 0.001) with mean directions of 83º, 105º, and 215º, 

respectively. The major axes of the beta-band bimodal tuning curves of the late TH window were 

also highly clustered with a mean along the 168º-348º axis. For the gamma-band, the PD 

distribution of the late MT window was significantly unimodal (Rayleigh test, p < 0.001), with a 

mean direction of 304º. Interestingly, during the MT the beta- and gamma-band PD distributions 

were nearly 180º apart, as in the example in Figure 3-1. The consistency of tuning orientation 

across the population is further demonstrated by and partially attributable to the high correlation 

between tuning curves of simultaneously-recorded LFPs (Fig. 3-4A). For the 168 pairs of LFPs 

that were recorded simultaneously, the distribution of correlation coefficients (black bars in Fig. 

3-4A) was much different than the distribution expected if the tuning curves were completely 

uncorrelated (gray lines in Fig. 3-4A; derived from 10,000 pairs of shuffled cosine tuning curves 

matched to the experimental spatial sampling frequency). This was true both of beta-band tuning 

(Fig. 3-4A, top row) and gamma-band tuning (Fig. 3-4A, bottom row) in all three time windows. 

The mean of the correlation coefficient distribution was always significantly positive (t-test, p < 

0.001) and was the highest for beta-band tuning curves in the late TH window (mean correlation 

= 0.71). Note that these correlations across simultaneously-recorded LFPs were true despite 

fairly large inter-electrode distances, which ranged from 1 mm to 15 mm and averaged about 4 

mm.    

Finally, power in the beta-band was often significantly correlated with reaction time (RT). 

This relationship can be seen implicitly in the spectrograms of Figures 3-1 and 3-3. Beta-band 

power gradually decreased throughout the DT. Since we previously found that the instructed DT 

duration (0.5 to 1.5 s, uniformly distributed) was negatively correlated with the RT (see Chapter 

1), this means that beta-band power was likely also correlated with the RT. As we did for the 

single cell activity in Chapter 2, we more explicitly analyzed this relationship by computing the 

trial-by-trial correlation between the DT or RT and the average beta-band power in the 400 ms 

preceding the go signal. Like that previous analysis, we both included trials in all three epochs to 

maximize statistical power and, for robustness, excluded trials with extreme RT values (less than 
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100 ms or more than 600 ms). Example relationships are shown in Figure 3-5. Beta-band power 

was significantly negatively correlated with the instructed DT in 94% of the LFPs (permutation 

test, p < 0.05; rank correlation coefficient, r = -0.22 ± 0.12, mean ± std). Beta-band power was 

weakly positively correlated with the RT in 67% of the LFPs (permutation test, p < 0.05; rank 

correlation coefficient, r = 0.08 ± 0.07, mean ± std). The correlation with RT was often due to 

the tails of the RT distribution, as seen in the example in Figure 3-5. Very short or long RTs 

were seen only with low or high beta band power, respectively. But the majority of the RTs 

around the middle of the distribution had very little relationship with beta-band power. 

Figure 3-4. Directional tuning curve correlations for beta- and gamma-band LFP activity in three 
time windows (early DT, late MT, and late TH). A, Correlation between mean tuning curves of 
pairs of simultaneously recorded LFPs. The correlation coefficient distribution is shown (black) 
along with the distribution expected if the tuning curves were uncorrelated (gray). m = mean of 
distribution; p = p-value of t-test. B, Same as A but for paired LFP and SUA recordings made 
simultaneously on the same electrode. 
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Significant correlations between gamma-band power and the DT and RT were only present in 

13% and 16% of the LFPs, respectively. 

In summary, precentral LFP oscillations were very reliably related to several features of the 

reaching behavior. High-amplitude oscillations in the 12-27 Hz (beta) range were present both 

before and after but not during the reaching movements. Likewise, these beta oscillations were 

directionally tuned mostly in the pre-movement delay time, where they were unimodally tuned, 

or post-movement hold time, where they were bimodally tuned. The pre-movement beta 

oscillations were also correlated with the level of movement preparedness, as quantified by the 

RT. High-amplitude oscillations in the 70-95 Hz (gamma) range were present only during 

movement, were only directionally tuned during movement, and exhibited very little 

involvement in movement preparation.   

 

LFP oscillations and single cell activity 

In addition to these behavioral correlates, LFP oscillations were closely associated with the 

timing of spiking activity in precentral cortical neurons. In particular, single cell activity was 

often phase-locked to oscillations in both the beta band and the gamma band. An example of the 

relationship between beta-band LFP oscillations and single cell activity is shown in Figure 3-6. 

Beta oscillations in one trial are shown along with the spike times (in red) of a cell recorded on 

the same electrode (Fig. 3-6, top left). Below this trace are estimates of the instantaneous 

amplitude and instantaneous phase of the oscillations, derived from the Hilbert transform of the 

Figure 3-5. Example of correlations between beta-band power and the delay time and reaction 
time. For both plots, power is the average power in the 400 ms prior to the go signal on each trial 
from one LFP. Linear regression lines are shown along with the rank correlation coefficient (r). 
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signal (see Methods). As shown in the previous section, the beta-band oscillations are of highest 

amplitude before and after movement. Focusing only on the high amplitude portion before 

movement (box in left column), it is clear that the spikes occurred at relatively consistent times 

relative to the beta oscillation: at phases between -50º and -100º, which correspond to the up-

slope of the oscillation about midway from trough to peak (Fig. 3-6, right column). A similar 

example, only for gamma-band oscillations, is shown in Figure 3-7. Again as described in the 

last section, the gamma oscillations have highest amplitude during movement (Fig. 3-7, left 

column). Focusing on a narrow window just after movement onset (box in left column), we again 

saw phase-locking of the spikes (Fig. 3-7, right column). In this case, however, the spikes 

occurred closer to the trough of the oscillation. 

To quantify these effects across trials, for each cell recorded simultaneously with an LFP we 

compiled the phase and amplitude of the beta and gamma oscillations at each spike time. Then 

Figure 3-6. Example of relationship between beta-band LFP oscillations and single cell activity. 
The 12-27 Hz bandpass LFP for one trial is shown in the top row. The red tick marks indicate 
spike times of one cell recorded on the same electrode as the LFP. The instantaneous amplitude 
and phase of the LFP beta oscillations, derived from the Hilbert transform of the signal, are 
shown in the middle and bottom row, respectively. A phase of -180 and 180 corresponds to the 
oscillation trough and a phase of 0 corresponds to the oscillation peak. Red dots in the bottom 
right plot mark the phase of the oscillation at each spike time. The box in the left column 
indicates the portion of the trial that is shown in the right column.
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we used the Rayleigh test to determine whether the distribution of phases for each cell was 

uniform, indicating no phase-locking, or nonuniform, indicating phase-locking. Since the degree 

of phase-locking was likely contingent on the amplitude of the oscillation, for each cell we 

divided the spikes, and their associated phases, into two groups: those occurring when the 

oscillation amplitude was greater than or less than the median amplitude. An example of the 

results of this analysis for one cell is shown in Figure 3-8A. The distributions of phases were 

nonuniform (Rayleigh tests, p < 10-6) indicating that spikes of this cell were phase-locked to both 

beta and gamma oscillations. This effect was more pronounced for high-amplitude oscillations 

(Fig. 3-8A, bottom row) than low-amplitude oscillations (Fig. 3-8A, top row). The mean phase 

of the beta phase and gamma phase distributions differed. Like the example trials in Figures 3-6 

and 3-7, spikes tended to occur on the upslope from trough to peak of beta oscillations and at the 

trough of gamma oscillations.  

Figure 3-7. Example of relationship between gamma-band LFP oscillations and single cell 
activity. The 70-95 Hz bandpass LFP for one trial is shown in the top row. The red tick marks 
indicate spike times of one cell recorded on the same electrode as the LFP. The instantaneous 
amplitude and phase of the LFP beta oscillations, derived from the Hilbert transform of the 
signal, are shown in the middle and bottom row, respectively. Red dots in the bottom right plot 
mark the phase of the oscillation at each spike time. Note that -180 and 180 are the same phase 
(the trough). The box in the left column indicates the portion of the trial that is shown in the right 
column. 



 78

The phase-locking of single cell activity seen in the example in Figure 3-8A was very typical 

of the population. Of the 198 cells recorded simultaneously with LFPs, 63% had activity that was 

phase-locked to high-amplitude beta oscillations and 57% had activity that was phase-locked to 

high-amplitude gamma oscillations (Rayleigh test, p < 10-6). For low-amplitude oscillations, the 

percentages were 13% and 28%, respectively, indicating that phase-locking was often a function 

of oscillation amplitude. The mean phase for each of the cells significantly phase-locked to the 

Figure 3-8. Phase-locked single cell activity to beta and gamma LFP oscillations. A, Distribution 
of oscillation phase at each spike time for one example cell, separated by whether the spike 
occurred during a period of high (above median) or low (below median) oscillation amplitude. B, 
Distribution of mean phase for all cells with significant phase-locking (Rayleigh test, p < 10-6). 
Inset shows grand mean phase across all cells relative to peak and trough of oscillation. 
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high-amplitude oscillations is shown in Figure 3-8B. The distribution of mean phases for both 

the beta-band and gamma-band was strongly unimodal, suggesting that the relationship between 

single cell activity and LFP oscillations was relatively consistent across precentral neurons. The 

inset of Figure 3-8B indicates the grand mean phase, which was -98º for the beta oscillations and 

-160º for the gamma oscillations. 

A second relationship between single cell activity and LFP activity involved the similarity of 

directional tuning curves. For each of the 198 cells recorded simultaneously with LFP activity, 

we computed the correlation between the mean tuning curves of single cell firing rate and LFP 

power in the beta or gamma band. This comparison was made for three separate time windows, 

early DT, late MT, and late TH, as we did for the LFP-LFP comparison described above. The 

distribution of correlation coefficients for each of the six comparisons (three windows x two 

frequency bands) was broad, ranging nearly from -1 to 1, due to the low spatial sampling 

frequency (45º) of the tuning curves (Fig. 3-4B). The distributions were quite similar to the 

simulated distribution of uncorrelated tuning curves (gray lines in Fig. 3-4B). However, for the 

comparisons between gamma-band tuning and spike-rate tuning the means of the distributions 

were significantly positive. The significance was marginal for the DT window (t-test, mean 

correlation = 0.06, p = 0.032) and high for the MT and TH windows (t-tests, mean correlation = 

0.14, p < 0.001 and mean correlation = 0.10, p < 0.001, respectively). Thus, across the 

population there was a slight tendency for the gamma-band LFP directional tuning to be related 

to the tuning of local cells. On the contrary, beta-band tuning and spike-rate tuning were not 

related in the DT, MT, or TH windows.   

In summary, the timing of activity in the majority of precentral neurons was influenced by 

both beta and gamma LFP oscillations. Phase-locked activity was more likely to occur with 

higher amplitude oscillations. Cells were biased towards discharging at the trough of gamma 

oscillations and on the upslope between trough and peak of beta oscillations. Furthermore, across 

the population, the directional tuning of gamma oscillations were slightly positively correlated 

with local neuronal tuning while tuning of beta oscillations was essential independent of local 

neuronal tuning. 

 

3.4 Discussion 
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In this chapter, we characterized oscillatory field potential activity in the precentral cortex 

both in terms of its relation to behavior and its relation to single cell activity. We focused on 

oscillations in two different bands, the beta (12-27 Hz) and high gamma (70-95 Hz) bands, 

which had relatively homogeneous intra-band features. Each band had unique relationships with 

behavior and neuronal activity which we discuss below.   

 

Beta oscillations in precentral cortex    

Beta oscillations are the prevailing rhythm in the precentral cortex. We found that they had 

greatest amplitude during non-movement periods and were largely absent during movement 

(Sanes and Donoghue, 1993; Pfurtscheller et al., 2003). The ‘antikinetic’ nature of beta 

oscillations in precentral cortex has long been observed (Jasper and Penfield, 1949) and is one of 

several examples of event-related desynchronization (ERD) in the brain (Brunia, 1999). As also 

reported by the original Jasper and Penfield study, the decrease in beta oscillation amplitude 

actually occurred during movement preparation such that the desynchronizing event was the 

signal cueing the upcoming movement rather than the signal initiating the movement. We further 

demonstrated the relationship between beta desynchronization and movement preparation by 

showing that beta oscillation amplitude was often positively correlated with reaction time. A 

similar correlation has been described in the beta-band field potential activity of the subthalamic 

nucleus in Parkinson’s patients (Williams et al., 2005). In fact, the prominence of beta 

oscillations in the basal ganglia of Parkinson’s patients, who suffer from akinesia, is causal 

evidence that beta desynchronization is necessary for movement initiation (Hutchison et al., 

2004). However, beta desynchronization does not have to occur globally to allow movement to 

occur. It has recently been shown that in the normal monkey, beta oscillations in the striatum are 

prevalent during rest and only decrease at focal sites during a simple motor task—sites that were 

specifically engaged in the task (Courtemanche et al., 2003). A similar result in motor cortex was 

reported much earlier, again by Jasper and Penfield, who noted that decreased beta activity 

during movement preparation was often restricted to local cortical areas that were specifically 

involved in the upcoming movement (Penfield and Jasper, 1956). The desynchronizing 

mechanism involves inhibition of cortical inhibitory interneurons thought to drive the beta 

rhythm (Hasenstaub et al., 2005) throughout the precentral cortex, basal ganglia, and cerebellum 

(Courtemanche et al., 2002).  
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An additional component of the behavior-dependent modulation of beta oscillation amplitude 

was the dependence on target direction. Directionally tuned beta-band activity occurred 

transiently in response to the cue signal and in a more sustained fashion during the hold period 

following movement but was not present during movement. The lack of beta-band tuning during 

the movement time is consistent with previous observations (Donoghue et al., 1998; Rickert et 

al., 2005). Transient cue-related tuning of beta oscillations has only recently been described 

(O'Leary and Hatsopoulos, 2006). Like this previous study, we found that the preferred 

directions of the tuning curves were clustered, at least in part due to the strong correlations 

between tuning curves of simultaneously recorded LFPs. Directional-tuned beta oscillations 

during movement preparation have also been observed at the single cell level in PMd, though 

only in a relatively small minority of neurons (Lebedev and Wise, 2000).  

The tuning of beta oscillations during the target hold is a novel finding. This finding is even 

more intriguing given that the majority of the activity was bimodally tuned—a tuning shape not 

generally seen in either LFP or neuronal activity in the precentral cortex. One interpretation of 

this result is that it arises due to anisotropic demands on the motor controller during the target 

hold. Several studies have shown that beta oscillations are intimately related to isometric motor 

output. In particular, corticomuscular coherence at beta-band frequencies is task specific, being 

present only during periods of steady muscle contraction (e.g. during maintained posture as in 

the target hold period) (Conway et al., 1995; Baker et al., 1997; Baker et al., 1999; Omlor et al., 

2007). Furthermore, cortical neuronal activity is often synchronous with beta oscillations during 

these hold periods and synchrony between cells is contingent on the similarity of their 

relationship to muscle activity (Baker et al., 2001; Jackson et al., 2003). Given this close 

connection between beta oscillations and motor output during hold periods, if certain targets 

required more active maintenance of posture while others could be achieved more passively then 

the cortical beta oscillations could reasonably be tuned to target direction. In addition, this 

mechanism could certainly result in bimodal tuning as long as the motor demands were bimodal 

(e.g. differential amount of muscular effort needed to hold at forward and backward targets 

compared to leftward and rightward targets). However, at present, we do not have direct 

evidence to support this interpretation. 

Finally, we found a relatively robust relationship between beta oscillations and single cell 

activity. Precentral neurons tended to fire during a specific phase of the beta oscillations, about 
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midway from trough to peak of an oscillatory cycle, particularly during periods of high 

amplitude oscillation. The consistency of the phase relationship across the population of cells 

with known functional heterogeneity (see Chapter 2) argues against the possibility of phase-

coding in the precentral cortex, or the encoding of information via the phase-spike relationship 

(Huxter et al., 2003; Lee et al., 2005). More generally, however, the phase-locked activity 

suggests that cortical neurons have synchronous oscillatory activity in the beta-band range prior 

to and following movement, as has been explicitly shown by cross-correlation analyses of pairs 

of single units (Murthy and Fetz, 1996b; Baker et al., 2001).               

 

Gamma oscillations in precentral cortex 

Gamma oscillations in the LFP were much lower amplitude than the beta oscillations, but 

were reliably modulated during the reaching task. In particular, the amplitude transiently 

increased during movement (Pfurtscheller et al., 2003; Rickert et al., 2005). The ‘prokinetic’ 

nature of gamma oscillations and their reciprocal relation to the ‘antikinetic’ beta oscillations has 

been observed both in precentral cortex and the basal ganglia (Schnitzler and Gross, 2005). The 

generation of gamma oscillations is, like beta oscillations, thought to involve networks of 

cortical inhibitory interneurons (McBain and Fisahn, 2001) and possibly classes of interneurons 

with intrinsic high-frequency oscillatory firing properties (Gray and McCormick, 1996; Chen 

and Fetz, 2005).  

The LFP gamma oscillations were unimodally tuned to target direction primarily during 

movement (Rickert et al., 2005). In this respect the gamma-band tuning, unlike the beta-band 

tuning, was similar to the tuning of neurons and muscles (see Chapter 2). The correlation 

between gamma-band tuning and the tuning of single cells recorded on the same electrode was 

weak but, across the population, significant. A similarly result was found previously (Mehring et 

al., 2003b). The distribution of preferred directions of the tuning was nonuniform, again 

probably due to the positive correlations between gamma-band tuning curves of simultaneously 

recorded LFPs (O'Leary and Hatsopoulos, 2006). 

As with the beta oscillations, single cell activity in the precentral cortex was consistently 

phase-locked with the gamma oscillations. The cells fired most frequently during the trough of 

the gamma oscillation cycle. A very recent study looking at single cell activity in humans found 
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phase-locking at the trough of gamma oscillations was a consistent feature across many areas of 

the brain, including frontal areas (Jacobs et al., 2007). 

 

Relationship of oscillations to evoked potentials 

In the previous chapter, we used a time-domain LFP analysis to identify evoked potentials in 

response both to the cue signal (cEP) and movement onset (mEP). Many of the properties of the 

evoked potentials were similar to those of the beta oscillations. Specifically, the cue-related beta-

band tuning had a nearly identical distribution of preferred directions as that of the cEP. The 

same was true of the small amount of movement-related beta-band tuning and the mEP. Also, 

both mEP amplitude and beta oscillation amplitude were negatively correlated with the duration 

of the instructed delay and, in turn, correlated with reaction time. Thus, the evoke potentials and 

beta-band oscillations may be essential the same phenomenon viewed in two different ways. On 

the other hand, gamma oscillation features were unrelated to the properties of the evoked 

potentials. 

We previously noted that since the cEP and mEP were not evident in individual trials, the 

evoked potentials likely reflect phase-locking to each event rather than amplitude modulation. 

This was made explicit in the work of O’Leary and Hatsopoulos (2006), who found that 

oscillations up to 45 Hz were transiently phase-locked several 100 ms after a cue signal. 

Presumably phase-locking also occurs around movement onset. Thus phase-locked beta (and 

lower) oscillations at the cue and movement onset likely produced the evoked potentials and 

were, therefore, the reason for the similarity in the properties described above. 

 

Interpretational limitations 

The data presented in this chapter were recorded from only one monkey. However, many of 

the same results have been observed in preliminary recordings (44 LFPs from M1 and PMd) 

from a second monkey. There were only two exceptions. First, in the second monkey, beta-band 

power was not correlated with the instructed delay time or RT. There was a transient beta 

desynchronization in response to the cue but the beta-band power remained fairly level after this 

until the movement-evoked desynchronization. Despite this difference, the cue-related 

directional tuning of the beta oscillations was equally as present in the second monkey. The 

reason for this discrepancy may be training. The first monkey had performed the instructed-delay 
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reaching task for approximately two years while the second monkey had only performed the task 

for about six months. Second, there was almost no bimodal direction tuning of beta oscillation 

amplitude during the target hold in the second monkey, although unimodal tuning was very 

similar. Assuming the interpretation given above, this may be due to a difference between 

animals in the postures used for the hold period. All other results, including the phase-locking of 

single cell activity to the LFP oscillations, were very similar between the two monkeys’ data 

sets.     
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4 Cortical correlates of adaptation to a novel mechanical environment 

 
 
4.1 Introduction 
 

Motor performance is a function of experience. As the adage goes, practice makes perfect. 

While adaptive perceptual or cognitive processing can play a role, experience-dependent 

performance improvements often involve an implicit recalibration of sensorimotor 

transformations. As a result, sensory stimuli (e.g. trajectory of a baseball) trigger a modified 

motor output (e.g. greater bat speed) that leads to a better behavioral outcome (e.g. ball traveling 

further).  

Recalibration of sensorimotor maps has been studied extensively in humans making reaching 

movements in altered mechanical environments (Lackner and Dizio, 1994; Shadmehr and 

Mussa-Ivaldi, 1994). The neural structures involved in this type of motor learning have been 

pursued in studies of humans with specific nervous system lesions and through functional 

imaging and transcranial magnetic stimulation (TMS) in neurologically-intact individuals. 

Adaptation is profoundly impaired in patients with global cerebellar degeneration (Maschke et 

al., 2004; Smith and Shadmehr, 2005) or with lesions to the cerebellar thalamus (Chen et al., 

2006). However, adaptation is not impaired by striatal dysfunction, at least as manifest in 

Huntington’s disease (Smith and Shadmehr, 2005). A recent fMRI study has confirmed that the 

cerebellum, but not the striatum, is involved in adaptation to novel environments (Diedrichsen et 

al., 2005). This imaging study also found that cerebral cortical structures, including primary 

motor and somatosensory cortices and posterior parietal cortex (PPC) were involved. The latter 

cortical area has also been investigated by Della-Maggiore et al. (2004), who found that single-

pulse TMS applied over the PPC 40ms after movement onset impaired adaptation relative to 

controls. Therefore, the evidence from the human literature suggests that sensorimotor adaptation 

of reaching movements involves a cerebello-thalamo-cortical circuit. 

Intracranial neural recordings in non-human primates have provided greater insight into this 

putative circuit. Neuronal activity correlated with the dynamics of arm movements has been 

found throughout motor areas of the cerebral cortex and cerebellum during behavioral tasks 

requiring minimal adaptation to applied loads (Evarts, 1968; Thach, 1978; Cheney and Fetz, 

1980; Kalaska et al., 1989; Sergio et al., 2005). These studies suggest that kinetic parameters 
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(e.g. joint torque) may be represented in motor cortex and the cerebellum but they do not 

specifically address if and how these areas are involved in adaptive control when the dynamics 

of movement are altered. Thus a series of studies were conducted that recorded neuronal activity 

in the precentral cortex of monkeys performing a reaching task very similar to the human studies 

mentioned above (Gandolfo et al., 2000; Li et al., 2001; Padoa-Schioppa et al., 2002, 2004; Xiao 

et al., 2006). A correlate of the altered task dynamics was found in the movement-related 

neuronal activity of primary motor cortex (M1), premotor cortex (PM), and supplementary motor 

area (SMA). In particular, there were systematic shifts in the directional tuning of these neurons 

between the no-force and force conditions that mirrored similar shifts in tuning of muscle 

activity (Thoroughman and Shadmehr, 1999; Shadmehr and Moussavi, 2000). In PM and SMA, 

these shifts were also apparent in the preparatory period prior to movement (Padoa-Schioppa et 

al., 2002, 2004; Xiao et al., 2006). These studies, therefore, identified cortical single-cell activity 

related to the recalibration of motor commands to meet the novel mechanical demands of a task. 

Here, we extended this series of studies to answer several further questions regarding the role 

of precentral cortex in motor adaptation. First, are the changes observed in single cell activity 

gradual, following the time-course of learning? Second, do the cingulate motor areas play a 

similar role in adaptation as M1, PM, and SMA? Finally, are correlates of adaptation also 

apparent at the level of precentral cortical networks, as reflected in the local field potential? 

 

4.2 Methods 
 

The behavioral (Chapter 1) and electrophysiological (Chapter 2) methods have been 

described previously. The neural database analyzed in this chapter was the same as in Chapters 2 

and 3. 

 

Analysis 

We analyzed electromyographic (EMG) and neural data across the three epochs of the 

behavioral task: baseline epoch (forces off), force-field epoch (forces on), and washout epoch 

(forces off). Consistent with previous work, we looked for directional tuning changes that where 

correlated with adaptation (i.e. a change between the baseline and force-field epochs) and 

deadaptation (i.e. a change between the force-field and washout epochs). In computing the tuning 

curves, the first 40 trials in each epoch were omitted to focus only on post-adaptive changes (e.g. 
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Li et al., 2001). Based on previous studies as well as our analysis of the activity in the baseline 

epoch (Chapters 2 and 3), we chose two windows in which to look for tuning changes: a 

movement window (-100 ms to 300 ms around movement onset) and a preparatory window (-

400 ms to 0 ms around the go signal). Tuning curves were computed from the average activity in 

each window of each trial. Significance of tuning was judged by a permutation test (p < 0.01; 

same as in Chapter 2). Changes in directional tuning between epochs were summarized by a 

single parameter: the shift in preferred direction. Only activity that was significantly tuned in the 

baseline and force-field epochs (adaptation) or the force-field and washout epochs (deadaptation) 

was included in this analysis. 

To capture how gradual tuning changes were, we also performed a trend analysis on the 

activity in each individual target direction and each epoch. For this analysis, we included all 

trials of the force-field and washout epochs rather than omitting the first 40 trials as before. A 

model with just a linear component, plus an offset, often fit the activity changes well. In the 

examples shown (Figs. 4-1 and 4-2), a fitted line with nonzero slope is shown only when the 

linear component was significant (linear regression, p < 0.01).  

Aside from direction tuning changes, we identified more general force field-related activity 

through a pair of one-tailed t-tests. In particular, we defined field-related activity as an increase 

(decrease) in activity in at least one direction between late baseline and early force-field epochs 

and a decrease (increase) in activity in those same directions between late force-field and early 

washout epochs. These tests were performed on 40 trial blocks at each instant along the time-

resolved activity. Activity satisfying these tests thus followed the profile of change in applied 

forces across the three epochs. 

 

4.3 Results 
 
EMG and neuronal correlates of motor adaptation 

Proximal arm muscle activity was modified in a very specific and predictable manner during 

force-field learning. An example, of the rhomboid muscle, is shown in Figure 4-1. During the 

baseline epoch, rhomboid EMG activity was highest when reaching to targets toward the body 

and to the right (~338º target direction; Fig. 4-1A). Subsequently, when a clockwise force field 

was imposed EMG activity gradually increased in all directions, with the largest increases 

occurring in the 293º and 248º target directions (Fig. 4-1A). Note that these directions are 
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clockwise relative to the baseline preferred direction (PD) and resulted in a force-field epoch 

directional tuning curve that was shifted relative to the baseline tuning curve (Fig. 4-1B). The 

constant rate of change of the EMG in these specific directions was correlated with the constant 

rate of performance improvement in the force-field epoch (Fig. 4-1C). In this session, there was 

little behavioral deadaptation during the washout epoch. Likewise, aside from a mean difference, 

the EMG tuning curves were very similar in the force-field and washout epochs (Fig. 4-1B). 

Mean differences in tuning curves across epochs may be attributed to non-specific effects such as 

fatigue but the PD shifts were specific to the force-field adaptation, as will be shown more 

conclusively in the population analysis below. 

Although somewhat counterintuitive, a shift in EMG PD toward the same, rather than 

opposite, direction of the curl force field was the appropriate compensatory response. The curl 

field produced forces perpendicular to the direction of movement. Thus, forces experienced in 

Figure 4-1. An example of changes in the directional tuning of rhomboid muscle activity during 
adaptation to a clockwise force field. A, Average EMG amplitude on each trial in a window 
around movement onset (-100 ms to +300 ms), sorted by target direction. Color indicates the 
absence (blue and green) or presence (red) of the force field. B, Cosine fits of the activity shown 
in A. Vertical dotted lines mark the preferred direction of each tuning curve. C, Behavioral 
performance in the session from which the EMG activity shown in A and B was recorded (mean 
deviation area over 40 trial blocks).  
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movement directions that were perpendicular to the EMG PD were oriented along the muscle’s 

line of action (i.e. movement direction 90º from PD ± force 90º from movement direction = force 

0º or 180º from PD). A force 0º or 180º relative to the PD will shorten or lengthen the muscle, 

respectively. Since muscles can only pull, not push, compensatory EMG activity only developed 

for forces oriented 180º relative to the PD. In a clockwise or counterclockwise curl field, such 

force orientations occurred on movements 90º clockwise or counterclockwise from the EMG PD, 

respectively. Therefore, in clockwise fields compensatory activity occurred in directions 

clockwise to the baseline EMG PD and in counterclockwise fields compensatory activity 

occurred in directions counterclockwise to the baseline EMG PD, resulting in the observed PD 

shifts. 

Similar changes in directional tuning were observed in the cortical neuronal activity. An 

example, of one M1 neuron, is shown in Figure 4-2. For this cell, the baseline epoch firing rate 

Figure 4-2. An example of changes in the directional tuning of M1 neuronal activity during 
adaptation to a counterclockwise force field. A, Average firing rate on each trial in a window 
around movement onset (-100 ms to +300 ms), sorted by target direction. Color indicates the 
absence (blue and green) or presence (red) of the force field. B, Cosine fits of the activity shown 
in A. Vertical dotted lines mark the preferred direction of each tuning curve. C, Behavioral 
performance in the session from which the neuronal activity shown in A and B was recorded 
(mean deviation area over 40 trial blocks).  
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was highest when reaching in the 113º target direction (Fig. 4-2A). The onset of a 

counterclockwise force field caused the firing rate to gradually increase in the 158º, 203º, and 

247º target directions, but decrease in the 113º and 68º directions (Fig. 4-2A). The result was a 

counterclockwise shift in PD between baseline and force-field epoch tuning curves (Fig. 4-2B). 

Again, the gradual increase in firing rate in field-appropriate directions was correlated with the 

gradual performance improvement over the force-field epoch (Fig. 4-2C). Also in this session, 

significant deadaptation occurred during the washout epoch (Fig. 4-2C). A correlate of this 

deadaptation can be seen in the washout epoch tuning curve of this cell, whose PD shifted 

clockwise back towards the baseline PD, although not completely (Fig. 4-2B). 

Field-appropriate PD shifts in EMG and neuronal activity were also present at the population 

level. In the top row of Figure 4-3, we show the distribution of adaptation PD shifts and 

deadaptation PD shifts for EMG activity recorded in clockwise, counterclockwise, or null-field 

(i.e. control) sessions. Only muscles in which multiple reliable recordings were obtained in all 

three types of force fields where included in the distributions (rhomboid, infraspinatus, biceps 

brachii, and pectoralis). In the counterclockwise field, the adaptation and deadaptation 

distributions of EMG PD shifts had significantly nonzero means of 14.2 deg and -25.1 deg, 

respectively (t-test, p < 0.01). In the clockwise field, only the adaptation distribution mean (-16.2 

deg) reached significance. These population effects truly reflect the motor learning processes 

since the sign of the shifts were appropriate for the force field and since no significant population 

shift was seen for the control sessions.    

The neuronal population PD shifts are shown in the middle row (preparatory activity) and 

bottom row (movement activity) of Figure 4-3. These distributions are derived from all M1, 

PMd, and SMA cells with significant directional tuning in the baseline and force-field epochs 

(adaptation) or force-field and washout epochs (deadaptation). The cingulate motor areas were 

excluded from this analysis since there was relatively little directional tuning in these areas (see 

Chapter 2). The combined M1, PMd, and SMA PD shift distributions for the movement window 

were very similar to the EMG PD shift distributions. In the counterclockwise field, the 

adaptation and deadaptation distributions of neuronal PD shifts had significantly nonzero means 

of 8.0 deg and -6.5 deg, respectively (t-test, p < 0.01). In the clockwise field, only the adaptation 

distribution mean (-10.5 deg) was significant. Again, there was no significant population PD 
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shift for the null-field sessions. For the preparatory activity, only the adaptation distribution 

mean in the counterclockwise field (5.3 deg) was significant (Fig. 4-3, middle row). 

Table 4-1 gives the mean population PD shifts considering M1, PMd, and SMA separately. 

The PD shifts for clockwise sessions were multiplied by -1 and then combined with the 

counterclockwise session PD shifts to pool the data in the “fielded” sessions. Thus, field-

appropriate adaptation was a positive PD shift and field-appropriate deadaptation was a negative 

shift. All three areas had significant population PD shifts of movement activity for adaptation, 

but only PMd had a similar shift for deadaptation. SMA was the only area to have a significant 

population PD shift of preparatory activity. None of the control session shifts were significant. 

Figure 4-3. Cumulative distributions of shifts in the preferred direction (PD) of muscle 
(rhomboid, infraspinatus, biceps, pectoralis) and neuronal (M1, PMd, SMA) activity between 
baseline and force-field epochs (adaptation; first column) and between force-field and washout 
epochs (deadaptation; second column). The PDs were computed from average activity in a 
movement window (mo-100 ms to mo+300 ms) or preparatory window (go-400ms to go). CW = 
clockwise force field; NULL = null force field; CCW = counterclockwise force field; N = 
number of muscles/cells in distribution; m = mean of distribution. Asterisks indicate that the 
distribution mean was significantly non-zero at the p < 0.05 (*) or p < 0.01 (**) level (t-test).   
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While directional tuning changes were the most specific correlate of learning the novel curl 

field environments, they were not the only evidence of field-induced modulation of cortical 

activity. Indeed, average movement-related activity of many cells followed the profile of change 

in applied forces across the three epochs. Two examples are shown in Figure 4-4A, where 

average firing rate of the cells was resolved both in time relative to movement onset and across 

trials. In both cases, average movement-related activity was prolonged in duration and increased 

in magnitude during the force-field epoch relative to both the baseline and washout epochs. Less 

frequently, cells exhibit a decrease in activity during the force-field epoch (not shown). These 

changes followed the “off-on-off” profile of force-field application across the three epochs and 

were therefore termed field-related activity. Though not specific to the type of force field like the 

directional tuning changes, field-related activity may reflect the need for an overall increased 

motor output to compensate for the applied forces.  

We identified cells with field-related activity using one-tailed t-tests of the activity at the two 

transitions between epochs (see Methods). The number of cells with such activity for each 

cortical area is shown in Figure 4-4B (control includes all cells recorded in null-field sessions; 

CMA includes all three cingulate areas). All cortical areas had a greater number of cells with 

field-related activity than was expected by chance. The field-related activity occurred mostly 

during the movement time, although in PMd significant activity was also seen during the delay 

and reaction periods. Notably, the cingulate motor areas had a significant amount of field-related 

activity, but proportionally less than the other areas. Field-related activity was, in fact, specific to 

the force fields since it was only present at chance levels in cells recorded during control (null-

field) sessions. Similar results were found when we applied the same analysis to the EMG 

database (Fig. 4-4C). 

 

Table 4-1. Mean population PD shifts for M1, PMd, and SMA (in degrees). P = preparatory activity mean; M = 
movement activity mean. Shaded boxes indicate the distribution mean was nonzero (t-test, p < 0.05).  
 
 

  adaptation deadaptation 
  M1 PMd SMA M1 PMd SMA

control 1.1 0.9 -0.4 2.8 -5.4 2.5 P 

fielded -1.3 3.7 6.8 4.4 -3.6 0.2 
control 0.4 2.3 1.9 1.1 5.2 -6.8 

M
 

fielded 8.5 8.3 9.7 -3.8 -8.6 -5.4 
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In summary, activity changes specific to the presence of an altered mechanical environment 

were seen in proximal arm muscles and precentral cortical neurons. Directional tuning of the 

activity, both in movement and in preparation for movement, gradually changed to specifically 

compensate for the force fields. As with the baseline physiology (Chapter 2), differences 

between cortical areas during adaptation were subtle. However, there were proportionally less 

force field-related activity changes in the cingulate motor areas than the other areas and PMd and 

SMA exhibited preparatory adaptive changes while M1 and CMA did not.   

 

LFP correlates of motor adaptation 

Next, we investigated whether correlates of adaptation were also present in the field 

potentials produced by precentral neuronal populations. In Chapters 2 and 3, we found that both 

time-domain and frequency-domain features of the LFPs were tuned to movement direction. 

Figure 4-4. Force field-related activity of cortical cells and proximal arm muscles. A, Two 
examples of field-related activity. For each cell, the average firing rate is shown as a function of 
both time (relative to movement onset) and trial (40 trial moving average across baseline, force-
field, and washout epochs, stepping in 8 trial increments, no inter-epoch overlap). B, Number of 
cells in each cortical area with significant field-related activity at a given time. Horizontal dashed 
line indicates the 0.05*N level of assumed type I errors. C, Same as in B, but for EMG activity 
(includes rhomboid, infraspinatus, biceps, and pectoralis recordings).  
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Based on the preceding analysis of the present chapter, it was natural to ask whether this 

directional tuning systematically changed during adaptation and washout. However, these 

features were generally only tuned in around 25% of LFPs during the baseline epoch and very 

few of the features, often less than 10%, were significantly tuned in all three epochs. Thus the 

database was too small to get statistically sound results from a population PD shift analysis 

similar to that shown above for the muscle and single cell activity.  

Rather than look at how the LFP activity’s relation to behavior changed during adaptation, 

we simply analyzed how the LFPs themselves changed across epochs. The most noticeable 

change in the evoked potentials during the force-field epoch was the presence of extra late peaks 

in the mEP. For example, in Figure 4-5A, the mEP has an extra negative and positive peak 

Figure 4-5. Across-epoch changes in evoked potentials of M1 LFPs. A, The mEP of an example 
LFP in each of the three epochs. Arrows point to extra mEP peaks seen only during the force 
field epoch, during which a counterclockwise field was applied. B, The cEP (top row) and mEP 
(bottom row) of the grand mean across all M1 LFPs (black, mean of all M1 LFPs recorded 
during null-field sessions; red, mean of all M1 LFPs recorded during counterclockwise sessions). 
Arrows again point to the extra mEP peaks. C, Scatter plots of adaptation changes versus 
washout changes in cP1 (top) and mN1 (bottom) magnitude (root-mean-square, rms). Lines 
indicate a significant mean shift in rms (t-test, p < 0.05). 
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following the mP2 peak in the force-field epoch, but not in the baseline or washout epochs. 

While these extra mEP peaks were not seen in all LFPs, they were present in the population mEP 

calculated by taking the grand mean across all M1 LFPs (Fig. 4-5B, bottom row, red; for 

simplicity only the average for counterclockwise-field sessions is shown but similar effects were 

seen in clockwise-field sessions). To control for the possibility that the late peaks were due to a 

nonspecific time-related effect, we also computed the population mEP for all null-field sessions. 

No extra peaks were present in the null-field population mEP (Fig. 4-5B, bottom row, black). 

Unlike the mEP, the cEP changed very little across epochs (Fig. 4-5B, top row), aside from 

slight changes in the magnitude (rms) of the peaks. Across the population, there was a mean 

decrease in rms of the cP1 peak from the force-field to washout epochs (Fig. 4-5C, top; t-test, p < 

0.05). This decrease was present both in fielded and null-field sessions and therefore was likely 

not due to adaptation or deadaptation processes. Shifts in cP1 rms also occurred from baseline to 

force-field epochs, but the mean shift was not significantly different from zero. Similar 

magnitude changes were seen for the mEP (Fig. 4-5C, bottom). However, rather than decreasing, 

the mN1 peak magnitude increased from force-field to washout epochs (t-test, p < 0.05). Again, 

these changes in peak magnitude, unlike the changes in number of peaks, were present in the 

null-field sessions and thus probably due to time-related effects (e.g. fatigue). Finally, both the 

changes in number and magnitude of the cEP and mEP peaks were qualitatively similar in the 

PMd LFPs (data not shown). 

Force field-related changes were also apparent in LFP oscillations. In the gamma band, 

adaptation and deadaptation were associated with a transient increase and decrease, respectively, 

in oscillation amplitude during movement (Fig. 4-6, bottom row). These movement-time (MT) 

changes were not seen during null-field sessions, indicating that they were specific to the 

presence of the forces. However, the changes were not specific for the type of force field since 

the polarity and magnitude were roughly equivalent in the clockwise and counterclockwise field. 

Notice that in addition to these transient changes, the overall power in the gamma band tonically 

increased from baseline to force-field epoch and from force-field to washout epoch (i.e. both 

adaptation and deadaptation changes were positive; Fig. 4-6, bottom row). 

In the beta band, several changes in oscillation amplitude occurred but only two of which 

were specific to the presence of clockwise or counterclockwise forces. These two field-related 

changes occurred in the early center hold (CH) time and in the early target hold (TH) time 
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(arrows in Fig. 4-6, top row). Both times occur immediately after a movement: either the 

movement from center to target or the movement from target back to center. At both times, the 

beta oscillations are transiently decreased for adaptation and transiently increased for 

deadaptation relative both to zero and to the change seen during the null-field sessions. Again, 

these changes were essentially the same for clockwise and counterclockwise forces, indicating 

that they were not specific to the type of force field. There were also relatively large changes that 

occurred just prior to movement, in the delay time (DT) and the late TH. In particular, pre-

movement beta oscillation amplitude was lower in the washout epoch compared to the other 

epochs (Fig. 4-6, top row). This change was not due to deadaptation since it was also present 

during null-field sessions. Furthermore, it was likely related to the decrease in cEP magnitude 

during the washout epoch (Fig. 4-5C). 

Figure 4-6. Force-field related changes in beta (top row) and gamma (bottom row) oscillation 
amplitude, averaged over all LFPs. Adaptation changes (red) = force-field epoch power – 
baseline epoch power. Deadaptation changes (green) = washout epoch power – force-field epoch 
power. Mean changes ± 95% confidence intervals on the mean are shown. Arrows mark times at 
which force-field related changes occur (i.e. changes due to clockwise and counterclockwise 
fields but not due to null field). 
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In summary, activity changes specific to the presence of an altered mechanical environment 

were seen in the precentral LFP activity. However, these changes were not specific to the type of 

environment (i.e. clockwise versus counterclockwise curl field). The field-related changes 

occurred either during movement, in the mEP and gamma-band oscillations, or immediately after 

movement, in the beta-band oscillations. Adaptation was associated with an increase in power in 

the gamma band and a decrease in power in the beta band at these times. The opposite was true 

of deadaptation.  

 

4.4 Discussion 
 

In this chapter, we identified physiological correlates of behavioral adaptation to novel 

mechanical environments. First, we replicated the finding that adaptation to a velocity-dependent 

curl field is associated with directional tuning changes in both arm muscles (Thoroughman and 

Shadmehr, 1999; Shadmehr and Moussavi, 2000) and neurons of M1, SMA, and PMd (Gandolfo 

et al., 2000; Li et al., 2001; Padoa-Schioppa et al., 2002, 2004; Xiao et al., 2006). These changes 

often occurred gradually and primarily during movement but also, in some cases, during 

movement preparation. Second, we found that the cingulate motor areas, while not directionally 

tuned, do participate in force-field adaptation in a limited way. Third, we identified several 

correlates of motor adaptation in local field potential activity of the precentral cortex. 

The force-field related changes in cingulate neuronal activity were modest but well above 

chance. To our knowledge, no previous study has looked at perturbation responses in the 

cingulate. Our work suggests that a minority of these neurons reflect some aspect of the 

perturbation or compensatory response to applied forces. This is perhaps not surprising given 

their anatomical connections to M1 and the spinal cord are on par with other cortical premotor 

areas (Dum and Strick, 2002). 

As for the LFP response, the gamma-band oscillation amplitude changes were very similar to 

the changes seen in motor cortical neurons. In particular, there was an increase in activity during 

the movement time when the forces were applied. The beta-band oscillation amplitude changes, 

however, were unique. The post-movement decrease in amplitude during adaptation suggests a 

prolonged beta desynchronization carrying over into the hold time due to the increased kinetic 

activity during movements in the force field. When this kinetic load was removed during 
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washout, the post-movement activity returned to normal. Thus the force field-related effects in 

beta activity can be interpreted as further demonstrating the antikinetic preference of these 

oscillations.           

The measured changes in both cingulate activity and LFP activity were not specific to the 

type of force field, but rather specific only to the presence of forces. Therefore, the changes 

could be interpreted as a correlate of the general increased effort needed to move in the force-

field environment instead of a tailored response to the specific forces. However, the latter cannot 

be ruled out as the specificity of the change is a function of the metric used to quantify the 

change (i.e. using the absolute value of the preferred direction shift would yield the same 

conclusion for the direction tuning change analysis).   

As we mentioned in Chapter 1, the force field-related changes do not necessarily indicate that 

movement dynamics are encoded in either the single cell or LFP activity. Much of the behavioral 

adaptation was incomplete, particularly in the monkey from which the LFP activity was 

recorded. Thus, there were both dynamic and kinematic differences between the late baseline 

epoch and late force-field epoch behavior to which the activity changes may relate. The same 

was true, although to a lesser degree, for the force-field to washout changes.  

Finally, several of the previous studies observed changes in activity from the baseline to 

force field epoch that did not reverse during the washout (Li et al., 2001; Padoa-Schioppa et al., 

2004). These residual activity changes were interpreted as a correlate of memory of the learned 

force-field environment. We did not specifically compare baseline activity to washout activity to 

look for residual changes in this chapter. We explored this topic, both through data analysis and 

modeling, in Chapter 5. 
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5 Motor adaptation with unstable cortical representations1 
 
 
5.1 Introduction 
 

Neural recordings in behaving animals have revealed much about the mechanisms underlying 

motor learning. Changes in single-unit activity have been correlated with learning sensorimotor 

associations (Mitz et al., 1991; Ojakangas and Ebner, 1992; Wise et al., 1998; Paz et al., 2003; 

Paz and Vaadia, 2004), learning movement sequences and skills (Nakamura et al., 1998; Cohen 

and Nicolelis, 2004), and adapting to novel mechanical environments (Gandolfo et al., 2000; Li 

et al., 2001; Padoa-Schioppa et al., 2002, 2004; Xiao et al., 2006). 

One assumption implicit in many of these studies is that there is an underlying stable neural 

representation for familiar behavior, and thus changes in the neural representation necessarily 

reflect motor learning. Empirical support for this assumption is limited to just a few studies 

(Schmidt et al., 1976; Thompson and Best, 1990; Nicolelis et al., 1997; Williams et al., 1999; 

Taylor et al., 2002; Greenberg and Wilson, 2004). However, there are several indications that 

neural representations may, under some circumstances, change even without obvious learning. 

For example, when exposed to a fixed environment, hippocampal place fields in mice changed 

over the course of several hours when attentional demands were low (Kentros et al., 2004). 

Another study, which motivates the present work, showed that when monkeys performed a 

familiar reaching task the directional tuning of neurons in the supplementary motor area (SMA) 

changed substantially (Padoa-Schioppa et al., 2004). We refer to such changes in neural 

representations, which occur without obvious learning, as background changes. The cause of 

background changes and their function are unknown. Background changes may be related to 

adaptation to slow changes in the environment, e.g. muscle fatigue. Alternatively, background 

changes may be unrelated to behavior, and the neural representation of familiar tasks may be 

truly unstable. The main objective of this work is to study what such instability implies for the 

plasticity mechanisms underlying motor learning.  

In the first half of this chapter we characterize background changes by reanalyzing data from 

the above mentioned recordings in SMA as well as new data from similar experiments in the 

                                                 
1 This thesis chapter is a revision of a manuscript accepted for publication: Rokni U, Richardson AG, Bizzi E, Seung 
HS (2007) Motor learning with unstable neural representations. Neuron, in press. 
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primary motor cortex (MI). We study how the directional tuning changes in a "control" 

experiment in which the monkey practices a familiar reaching task, and in a “learning” 

experiment in which the monkey reaches in the presence of novel forces. In the second half of 

this chapter we explore the theoretical implications of the assumed instability of the motor 

cortical representation. It has been suggested previously that changes in tuning curves may 

cancel out at the level of the motor output (Li et al., 2001). Here, we relate this idea to a 

phenomenon in the theory of neural networks, which we term redundant networks. A network is 

redundant if it uses more neurons than needed to solve its task, such that the neural 

representation may change without affecting the overall behavior. Using a simple model, we 

show that noisy learning in a redundant motor cortex produces a background of behaviorally 

irrelevant changes in tuning curves. Additionally, we examine what further assumptions about 

the nature of synaptic plasticity are required to explain the observed properties of the background 

changes. 

 

5.2 Methods 

 
The behavioral (Chapter 1) and electrophysiological (Chapter 2) methods have been 

described previously. Regarding the electrophysiological methods, recording quality was critical 

to the arguments advanced in this chapter. To assess how the recording quality impacted our 

results, some of the analyses described below were repeated on a subset of neurons which were 

judged subjectively to be: (1) the best-isolated, by having no overlap between their clusters and 

other clusters or noise spikes in at least one projection of feature space, and (2) the most stable, 

by having temporally constant waveform features. The results of our analysis were similar 

whether we included all cells or just the best isolated, most stable cells (Table 5-1). As further 

evidence that unstable tuning was not due to unstable recordings, we show several examples of 

tuning curve instabilities in stably recorded cells (Fig. 5-1). 

 

Data analysis 

We analyzed 136 cells (93 from M1 and 43 from SMA) recorded during the control (null-

field) experiment and 304 cells (105 from M1 and 199 from SMA) recorded during the learning 

(clockwise- or counterclockwise-field) experiment. Only M1 and SMA were analyzed since they 
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had the best balance between control and learning data. For each cell and each trial, we 

computed the average firing rate between 100 ms prior to movement onset and 300 ms after 

movement onset. We identified movement onset as the last time at which hand speed crossed a 4 

cm/s threshold prior to the time of peak speed. For cells recorded during control sessions, we 

divided the trials into three consecutive blocks of 160 trials. For cells recorded during learning 

sessions, we divided the data into: entire baseline block, last 80 trials of adaptation (force-field) 

block and last 80 trials of washout block. The first 80 trials of the adaptation and washout were 

excluded to focus only on the post-adaptation phase (Li et al., 2001).  

We estimated the tuning curve of each cell in each block by 8 mean firing rates 

corresponding to the different movement directions. We fitted each tuning curve by a sum of an 

offset, which is the mean of the 8 firing rates, and a cosine function (Eq. 12). To fit the cosine 

function we defined the two-dimensional AC vector 
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where kθ  are the movement directions and kr  are the mean firing rates. The amplitude and phase 

of the cosine were set to the magnitude and direction of AC, respectively. This commonly used 

method minimizes the squared error between the cosine function and the mean firing rates. We 

used a t-test to estimate the significance of changes across blocks of mean firing rates at 

individual movement directions. Because the offsets and cosine components are averages over a 

large number of trials (160), to test the significance of their changes we used a z-test: a t-statistic 

with a Gaussian null distribution (Montgomery and Runger, 1999). For testing the changes in the 

cosine functions we used a bivariate z-test on the two dimensional AC vectors, the large sample 

analog of Hotteling’s t-statistic for multivariate data (Christensen, 2001), thus testing for changes 

in PD and/or modulation depth. To decide whether a tuning curve has a significant cosine 

component, we tested whether the AC vector is significantly different from zero by a bivariate z-

test with the assumption of isotropic noise. For the analysis of PDs, we chose only cells which 

had significant cosine components in all three blocks with p<0.05, including 93 cells in the 

control experiment (59 from M1 and 34 from SMA), and 172 cells in the learning experiment 

(67 from M1 and 105 from SMA). 

To test whether PD changes have a non-zero mean we used a z-test. The correlation between 

PD changes across cells and across time was estimated by Pearson's correlation coefficient. To 
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estimate the significance of the correlation coefficient, we used a nonparametric permutation test. 

For example, for data of pairs ( ) ( )1 1, , , ,n nx y x yK , we randomize the y-data with respect to the x-

data 1000 times and recomputed the correlation coefficient for each iteration. The p-value of the 

correlation coefficient is the fraction of times the simulated correlation coefficient had an 

absolute value larger than the real correlation coefficient. 

In order to estimate the autocorrelation of the population of PDs in the control experiment we 

binned the data into 12 consecutive blocks of 40 trials. We computed the PD of each cell within 

each block as described above. We defined the correlation between PDs in two bins numbered k 

and m as 

 ( ) ( ) ( )
1

1, cos
cellsN

i i
icells

c k m k m
N

ψ ψ
=
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where ( )i kψ  is the PD of cell i in bin k. This correlation is 1 only when the PDs in the two bins 

are equal, and -1 only when they are opposite. The autocorrelation function with lag k was 

estimated by 
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where 12binsN = . 

 

Model equations 

Model of reaching. When presented with a target in direction θ, the two sensory inputs of 

our model are activated proportionally to the coordinates of the target relative to the initial hand 

position 
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The two sensory inputs activate N motor cortical cells according to 
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where i designates the cell number and ijW  are the weights of the cortical cells’ input 

connections. ir  is interpreted as firing rate averaged over movement time relative to baseline 
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firing rate before movement, and therefore may be negative. The motor cortical cells generate an 

end-point force by 
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where i=1,2 designates the force components and ijZ  are the cells’ output weights. These 

weights were fixed to 
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where jα  are the direction of force generated by the neurons, which we distributed uniformly. 

We normalized ijZ  by 1/N such that firing rates of order 1 produce force of order 1. The final 

coordinates of the hand relative to the initial hand position were computed from if  by 
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where ijR  is the 2x2 identity matrix in the absence of the perturbation and a rotation of angle φ in 

the presence of the perturbation. 

Model of plasticity. The task of the network is to have t
i ix x= . We assume that in order to 

learn this task ijW  are incremented after each trial by 
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The second term is additive noisy synaptic changes, where ijn  are unbiased normalized i.i.d 

Gaussian noise components and σ is the noise amplitude. The first term is a leak term which 

prevents ijW  from drifting without bound. When only the first two terms are present, the synaptic 

weights perform a leaky random walk process (Fig. 5-4B), with a time constant forgetτ  and a 

variance which scales with 2 / forgetσ τ . The third term is a gradient descent learning signal, which 

is a method commonly used for teaching artificial neural networks (Rumelhart et al., 1986). This 

method optimizes a cost function E with respect to the network weights ijW  by making small 
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steps of ijW  in the direction which decreases E the most. For our model, we use the squared error 

cost 
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The gradient of this cost is related to the error by 
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Because the gradient scales as 1/N, we introduced a pre-factor N in front of the learning signal in 

Eq. (9). The gradient with respect to a synapse depends on information not local to that synapse 

(e.g. Zki in Eq. 11). Previous work has shown that the gradient can be computed by correlating 

noise in synaptic transmission with a global reward signal (Seung, 2003). Such a learning rule 

produces a noisy estimate of the gradient, which justifies our noisy gradient learning rule (Eq. 9).  

Model parameters. In order to reproduce the experimental results in Figure 6, we used the 

parameter values 50, 1500, 0.025, 60 , 10000learn forget Nτ τ σ ϕ= = = = =o . The model performs 

well already at N = 100 (see Supplemental Data), however to have better statistics we chose 

10000N = . learnτ  was set according to the learning time constants observed in the monkeys’ 

behavior during the learning experiment. We set σ to a value which in the control simulation 

produced PD changes of a magnitude similar to the observed magnitude. forgetτ  was set to 

reproduce the rate of the experimentally observed background changes. φ was fit to reproduce 

the observed anti-correlation between adaptation and washout changes. All simulations, started 

with 10000 trials of pre-training, which is considerably longer than the equilibration time of the 

synapses forgetτ  (1500 trials). Consequently, our results do not depend on the initial ijW  (which 

was zero). 

 

5.3 Results  
 
The control experiment: background changes were random and slow  

In order to characterize background changes, we have analyzed data of a control experiment 

in which monkeys performed a familiar reaching task on which they had been trained for several 

months. On each of the 480 trials, performed each day of recording, the monkey had to reach to 
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one of eight targets arranged on a circle. The hand trajectories showed relatively small changes 

between different epochs within a practice session (Chapter 1, Fig. 1-2A; see also Supplementary 

Data). We analyzed the movement-related responses of 136 cells, 43 from SMA of one monkey 

(from Padoa-Schioppa et al., 2004) and 93 from M1 of a second monkey (new data). Because we 

found similar results in both brain areas, we pooled all 136 cells in subsequent analyses. We 

characterized each cell’s movement-related activity by the mean firing rate in a time window 

from 100 ms prior to movement onset to 300 ms after movement onset. Tuning curves were 

defined by mean firing rate as a function of the eight reach directions of the task. To examine 

changes in tuning curves we artificially divided the data from the 480 trials into three 

consecutive blocks of 160 trials and computed tuning curves for each block separately. 

Tuning curves changed. The left column in Figure 5-1 shows four example cells whose 

tuning curves changed between block 1 (crosses) and block 3 (circles). This tuning instability 

was not due to recording instability, since the spike waveforms did not change from block 1 to 

block 3 (Fig. 5-1, right columns), and similar changes in tuning curves were observed in a 

subpopulation of cells judged as best-isolated and most stable (Table 5-1; see also Methods). In 

23% of the 8 directions x 136 neurons there was a statistically significant change from block 1 to 

block 3 in the mean firing rate (t-test, p<0.01). Even more significant changes were seen using 

aggregate measures of the tuning curves. 77% of the variance of the changes in tuning curves 

was accounted by changes in their offsets, and 16% was accounted by changes in the cosine 

components (total of 93%, see Supplemental Data). Therefore, to quantify the changes in tuning 

curves we first fitted the tuning curve of each cell in each block by an offset plus a cosine 

function (lines in Fig. 5-1, left column) 

 ( ) ( )cosr B Aθ θ ψ= + −  (12) 

where ( )r θ  is firing rate as a function of target direction, B is the offset, A is the modulation 

depth and ψ  is the preferred direction (PD). Next, we compared the fitted parameters between 

different blocks. We found changes in offsets (e.g. Fig. 5-1, row 4), modulation depths (e.g. Fig. 

5-1, row 1) and PDs (e.g. Fig. 5-1, row 2). In 73% of the neurons offset changes between blocks 

1 and 3 were statistically significant (z-test, p<0.01), and in 63% of the neurons changes between 

blocks 1 and 3 in the cosine function (i.e. changes in PDs and/or modulation depths) were 

statistically significant (bivariate z-test, p<0.01, see Methods). Thus, as observed by Padoa-
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Schioppa et al. (2004), motor cortical tuning curves may change even when the monkey is 

performing a familiar task.  

Background changes were random across neurons and time. We found that changes in 

offsets, modulation depths, and PDs had similar statistical properties. The statistical properties 

for PD changes of 93 neurons (out of 136) whose tuning curves had a statistically significant 

cosine component in all blocks (bivariate z-test, p<0.05) are shown in Figure 5-2. Figure 5-2A 

presents the distribution of PD changes from block 1 to block 3. The average PD change was not 

statistically different from zero (z-test, p>0.05). Figure 5-2A averages across different days, and 

hence it is possible that on a given day different neurons tend to shift their PDs in the same 

direction. To test this possibility, for all pairs of cells recorded simultaneously, we plotted the PD 

Figure 5-1. Changes in tuning curves in the control experiment. Each row corresponds to a 
sample cell. Left, Mean firing rates in block 1 (crosses) and block 3 (circles) as a function of 
movement direction, with fitted cosine tuning curves (lines). Error bars correspond to standard 
errors and arrows in second row designate the PDs. Middle and right, Random sample of 1000 
spike waveforms in block 1 (middle) and block 3 (right).  
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change of one neuron against the PD change of the other neuron (Fig. 5-2B). We found no 

statistically significant correlation among these pairs of PD changes (permutation test, p>0.05). 

In order to test whether PD changes across different times were correlated, for each cell we 

plotted the PD change from block 1 to 2 versus its PD change from block 2 to 3 (Fig. 5-2C). 

Here as well, we found no statistically significant correlation (permutation test, p>0.05). These 

results show that tuning curve changes in the control experiment were random across neurons 

and time. 

Background changes were slow. We characterized the correlation time of the randomly 

changing PDs. For this purpose, we binned the data into 12 consecutive blocks of 40 trials each. 

For every pair of bins, we computed the correlation between the populations of PDs at the two 

time bins, and averaged the correlations across all cells and among all pairs of bins separated by 

the same lag. Figure 5-2D shows the mean correlation as a function of the lag. Notice that within 

the range of lags that we measured, the correlation decayed linearly (solid line shows linear fit; 

the y-intercept is not 1 because of standard errors of the PDs). The slope of the autocorrelation 

was roughly 1/3000 trials, indicating a slow correlation time of the PDs, on the order of 

thousands of trials (notice that the correlation presented in Fig. 5-2D does not contradict the lack 

of correlation in Fig. 5-2C, because Fig. 5-2C shows that PD changes were uncorrelated across 

time, whereas Fig. 5-2D shows that the PDs themselves were correlated across time). Presently, 

it is unclear how much the correlation decays over more trials. Additionally, it is unclear whether 

the time unit relevant for these changes was number of trials or real time. 

A similar analysis showed that the offsets and modulation depths also changed slowly and 

randomly across cells and time (data not shown). 

 

Table 5-1. Statistics of tuning curve changes in the learning experiment from baseline to washout and in the 
control experiment from block 1 to block 3. ‘±’ indicates standard error.  
 
 

statistics learning 
experiment 

control 
experiment 

control experiment 
(best isolated cells) 

sig. changes in cosine (%) 63 ± 3 63 ± 4 61 ± 7 
∆ PD mean (deg) -1 ± 2 -2 ± 3 3 ± 3 
∆ PD st. dev. (deg) 35 ± 2 29 ± 3 19 ± 3 
∆ mod. depth mean (Hz) 0.6 ± 0.2 0.3 ± 0.3 1.1 ± 0.5 
∆ mod. depth st. dev. (Hz) 3.7 ± 0.2 3.3 ± 0.3 3.8 ± 0.5 
sig. changes in offset (%) 76 ± 2 73 ± 4 69 ± 7 
∆ offset mean (Hz) 1.8 ± 0.4 1.5 ± 0.7 3.3 ± 1.4 
∆ offset st. dev. (Hz) 7.0 ± 0.4 7.3 ± 0.7 10.0 ± 1.4 
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The learning experiment: learning related changes occur on top of background changes  

In this section we show that learning adds systematic changes on top of the background of 

random changes described above. The data for this analysis were recorded while the monkeys 

performed the same reaching task as above, except that novel forces generated by a robotic 

manipulandum were applied to the arm during the middle 160 trials of each session. Thus, the 

Figure 5-2. Statistics of changes in PDs in control and learning experiments. A, Distribution 
across cells of PD changes from block 1 to 3 in control experiment. B, PD change from block 1 
to 3 of one cell vs. PD change from block 1 to 3 of another cell recorded simultaneously, across 
all simultaneously recorded pairs. Each pair is represented by two points symmetrically 
positioned around the y = x diagonal (solid line). C, PD change from block 1 to 2 vs. PD change 
from block 2 to 3, across cells in control experiment. D, Autocorrelation of population of PDs 
and linear fit (solid line). E, Adaptation PD changes vs. washout PD changes across cells in 
learning experiment. Solid line represents the y = -x diagonal. F, Distribution across cells of 
baseline-to-washout PD changes in learning experiment. 
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experiment consisted of three consecutive blocks of 160 trials: (1) a baseline block in the 

absence of forces, (2) an adaptation block in the presence of forces, and (3) a washout block in 

the absence of forces. The forces applied during the adaptation block were curl velocity force 

fields, i.e. proportional to the hand speed and orthogonal to its direction of movement. The 

learning-related behavioral changes have been described previously (Chapter 1, Fig. 1-2B). 

We analyzed the responses of 172 neurons (67 from M1 and 105 from SMA) recorded during 

this novel task that had tuning curves with statistically significant cosine components in all 

blocks (bivariate z-test, p<0.05). We constructed three separate tuning curves for each neuron, 

respectively from the activity of the baseline block, the late adaptation (last 80 trials) and the late 

washout (last 80 trials). We designate the changes from baseline to late adaptation as adaptation 

changes and the changes from late adaptation to late washout as washout changes. 

In contrast with the control experiment, in which PD changes at different times were 

uncorrelated across cells (Fig. 5-2C), in the learning experiment adaptation and washout changes 

were anti-correlated and distributed along the y = -x diagonal (Fig. 5-2E; see also Padoa-

Schioppa et al., 2004). This indicates that on average adaptation changes were reversed by 

washout. However, there was also considerable spread indicating that PDs of individual cells did 

not return to their baseline values after washout. Using similar methods as we used for the 

control experiment, we found that for many cells differences in tuning curves between baseline 

and washout were statistically significant (Table 5-1; see also Padoa-Schioppa et al., 2004). It 

was previously proposed that the baseline-to-washout changes underlie learning of the force task. 

Additionally, it is possible that these changes are related to the monkeys not fully deadapting in 

the washout. To challenge these interpretations, we compared the statistics of the baseline-to-

washout changes in the learning experiment with changes in the control experiment over a 

similar number of trials. We found that the distribution of baseline-to-washout PD changes (Fig. 

5-2F) was similar to the distribution of PD changes in the control experiment from block 1 to 

block 3 (Fig. 5-2A). Furthermore, every statistic we have examined— of the changes in PDs, 

modulation depths, and offsets of the tuning curves— showed no statistically significant 

difference between the learning and control experiments (z-test, p>0.05; Table 5-1). This result 

suggests that changes from baseline to washout were unrelated to either the force adaptation or 

deadaptation processes. 
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As an alternative interpretation, we suggest that changes in tuning curves in the learning 

experiment were a sum of two components: systematic learning-related changes and random 

background changes that exist regardless of learning. The learning-related changes reverse at 

washout and are therefore responsible for the anti-correlation observed between adaptation and 

washout changes. The changes from baseline to washout are purely random background changes. 

The fact that the statistics of these background changes were so similar in the control and 

learning experiments implies that the learning-related and background changes do not interact. 

 

Theory: background changes are due to noisy learning in a redundant network 

What is the interpretation of the background changes? Perhaps background changes reflect 

subtle behavioral changes (although we did not find evidence for this, see Supplemental Data). 

Alternatively, the background changes may be behaviorally irrelevant. We have constructed a 

theory which suggests why behaviorally irrelevant changes in the neural representation might 

occur. The theory is based on three assumptions: (1) motor cortex is redundant in the sense that it 

uses more neurons than required to produce the desired sensorimotor transformation, (2) when 

practicing a task, sensory feedback about motor errors is translated to synaptic changes which 

reduce the errors, and (3) this plasticity mechanism is noisy. We found that under these 

conditions a background of behaviorally irrelevant changes in tuning curves is produced. 

Our assumption that motor cortex is redundant allows it to achieve the same sensorimotor 

transformation with different neural representations. In terms of synaptic weights, this implies a 

continuum of configurations which produce the desired sensorimotor transformation, which we 

term the optimal manifold. The synaptic configurations within this manifold are minima of the 

motor error. Therefore, one way to imagine this optimal manifold is by a flat valley in the 

landscape of the motor error as a function of synaptic weights (Fig. 5-3A). Synaptic learning can 

be described as going down the error landscape. If learning is noisy and ongoing, then even after 

reaching the valley and mastering the task, synaptic strengths continue to wander along the 

valley. Thus, a background of behaviorally irrelevant changes in the neural representation is 

produced. 
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A model of the background changes in motor cortical tuning curves 

To demonstrate our theory we constructed a simple model of a redundant cortical network 

that generates reaching movements (Salinas and Abbott, 1995). Our model generated reaching by 

the following stages (Fig. 5-3B): (a) the appearance of the target activated two sensory units, in 

proportion to the x-y coordinates of the target in the plane, (b) the sensory units activated a large 

number of motor cortical neurons, (c) the motor cortical neurons generated a two-dimensional 

end-point force on the hand and (d) the force moved the hand to a new position in the plane. 

Figure 5-3. Theory for cause of background changes. A, The learning signal pushes the synaptic 
strengths down an error landscape which has a valley of minima at the optimal manifold, and the 
noise causes the synaptic strengths to drift along this valley. B, Model of motor cortical network 
which generates reaching movements. Tuning curves of model cells are cosine shaped (inset). 
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Each of these stages was modeled as a linear static mapping. In this static framework we could 

not represent dynamic force perturbations, so we used a perturbation of a static rotation, which 

similar to the curl velocity force field required rotation of tuning curves. 

The goal of the network was to minimize the error between hand position and target position. 

For simplicity, we assumed that in order to achieve this task only the input weights of the motor 

cortical cells could be modified, whereas the cells’ output weights were fixed. In this sense, the 

sensorimotor transformation was stored in the input weights of motor cortex. We assumed that 

after each trial, i.e. a single run on the network, sensory feedback about the motor error was used 

to modify the input weights in order to reduce subsequent motor error. Our major assumption 

regarding this plasticity process was that noise was added to the learning signal, independently at 

different synapses, and that this plasticity was operative even when the network had already 

mastered its task. In addition to the noise and learning signal we also added a decay term which 

limited the degree of wandering of synaptic weights. 

We trained the model on eight targets equally spaced along a circle, as done in the 

experiments. To compute directional tuning curves of the model cells we simulated reaching 

movements to the different targets and plotted the firing rate as a function of target direction 

(during these reaching movements we artificially turned off synaptic plasticity). Notice that if the 

network was wired properly, such that movement direction equals target direction, then these 

tuning curves also described tuning to movement direction. The tuning curves of our model cells 

were cosine-shaped (Fig. 5-3B, inset), resembling the broad unimodal tuning curves observed in 

motor cortex. The cosine-shaped directional tuning stems from our assumption of a linear 

relation between firing rates and Cartesian position coordinates (Mussa-Ivaldi, 1988; Todorov, 

2000). The modulation depths and PDs of the tuning curves were determined by the cells’ input 

connections. When these connections were modified by synaptic plasticity the tuning curves 

changed. We did not model the offsets of the tuning curves. 

 

Simulation of the control experiment 

In order to show how background changes were generated and explain why they were 

random and slow, we simulated the control experiment. First, we pre-trained the model for many 

trials to mimic the excessive pre-training the monkeys had experienced. Next, we simulated 480 
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trials of the task, where at each trial the target was chosen randomly from 8 targets arranged 

uniformly on a circle. 

Model generates background changes. In the simulation of the control experiment the 

model maintained good performance (Fig. 5-4A, left; there is a small bias because of the weight 

decay term), and yet the PDs of the model cells changed considerably (inset). Thus, the neural 

representation wandered in a manifold of configurations which produced the same behavior. To 

understand this redundancy, we first consider one simple configuration of tuning curves within 

this manifold, in which the PD of each cell equals the direction of force it generates (and all cells 

have the same modulation depth). This configuration generates a motor output in the correct 

Figure 5-4. Behavior and neural representation in simulations of control experiment. A, 
Simulation with noisy learning rule, σ = 0.025, τforget = 1500, τlearn = 50. Left, Error in movement 
direction (black), error in movement amplitude as percentage of desired movement amplitude 
(gray), and PDs of three sample cells whose PDs started close to zero (inset). Right, PD 
(computed from the firing rate ri) vs. force direction (denoted αi in the Methods) from last trial of 
simulation shown on left. B, Same as A but without a learning signal, σ = 0.025, τforget = 1500, 
τlearn = 106. In both simulations N = 10000, but only 500 randomly sampled cells are shown on 
right panels. 
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direction because cells which produce force directions close to the desired direction are 

preferentially recruited, and the force components orthogonal to the desired direction cancel out. 

We refer to these tuning curves as the relevant tuning curves. Because of the vast convergence 

from cells to motor outputs, it is possible to add irrelevant components to these tuning curves, 

whose effects on the motor output cancel out. Thus, a generic configuration of tuning curves in 

the manifold can be decomposed into relevant components which produce the desired output and 

irrelevant components which do not contribute to the outputs. In such configurations PDs are 

correlated with, rather than equal to, the force directions (Fig. 5-4A, right). During noisy 

plasticity, as the neural representation wanders in the manifold, the relevant components remain 

fixed and the irrelevant components change randomly. The typical size of the irrelevant 

components is determined by the amplitude of the plasticity noise. The stronger the plasticity 

noise, the larger the irrelevant components, and therefore the weaker is the correlation between 

PDs and force directions. In our simulations, the noise amplitude was tuned to reproduce the 

magnitude of the observed PD changes.  

To emphasize the active role of the learning signal in maintaining the performance, we also 

performed a simulation with the learning signal turned off. In this case, the noise randomized the 

PDs (Fig. 5-4B, right). Consequently, cells generated forces more or less equally in all directions 

and the net output diminished (Fig. 5-4B, left). These random changes had relatively little effect 

on movement direction because they tended to averaged out. The time constant of this forgetting 

process was set by the time constant forgetτ  of the decay term in the weight update rule (see more 

on forgetτ  below). Notice that these results do not necessarily imply that in the absence of sensory 

feedback we will be immobilized, because other sources of drive, such as executive control, may 

take over. 

We compared the properties of the model-generated background changes (with the learning 

signal on) and the experimentally observed background changes. For this purpose, we replicated 

our analysis of the experimental data on the simulation data. We divided the simulation data into 

three equal blocks and used the average activity within each block to construct directional tuning 

curves. 

Local noise and high redundancy explain randomness of background changes. Figure 5-

5A,B shows that PD changes in the model were random across cells, similar to the randomness 

observed in the experimental data (compare with Fig. 5-2A,B). The randomness across cells in 
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the model resulted from our assumptions of local synaptic noise sources and a high degree of 

redundancy. An alternative to local noise sources is noise which comes from the environment, 

e.g. muscle noise, which through sensory feedback contaminates the learning signal. We found 

that such environmental noise created changes in tuning curves which were correlated across 

cells (Supplemental Data). Additionally, if redundancy is not high changes in different cells may 

Figure 5-5. Statistics of changes in tuning curves in simulations of control and learning 
experiments. A, Distribution across cells of PD changes from block 1 to 3 in control simulation. 
B, PD changes from block 1 to 3 of pairs of cells. Each pair is represented by two points 
symmetrically positioned around the y = x diagonal (solid line). C, PD change from block 1 to 2 
vs. PD change from block 2 to 3, across cells in control simulation. D, Autocorrelation of 
population of PDs. D inset, Autocorrelation over long times. E, Adaptation PD changes vs. 
washout PD changes, across cells in learning simulation. Solid line represents the y = -x  
diagonal. F, Distribution across cells of baseline-to-washout PD changes in learning simulation. 
To facilitate the comparison with the experimental results, we show in B, C and E samples of 
cells of the same size as in the corresponding subplots in Figure 5-2. Model parameter values are 
σ = 0.025, τforget = 1500, τlearn = 50, φ = 60º, N = 10000. 
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be coupled. When both local noise and high redundancy were assumed, PDs of different cells 

changed nearly independently. Figure 5-5C shows that PD changes in the model were also 

random across time, similar to the randomness observed in the experimental data (compare with 

Fig. 5-2C). The temporal randomness of the changes in the model tuning curves resulted directly 

from the temporal randomness of the noise in plasticity. 

Background changes must be slow to allow learning. The control experiment showed that 

the background changes are slow, in the sense that PDs have a correlation time on the order of 

thousands of trials. In our model, the correlation time of the background changes was determined 

by forgetτ . We set 1500forgetτ = trials, so that the autocorrelation of the PDs decayed slowly (Fig. 

5-5D), similarly to the experimental autocorrelation (Fig. 5-2D). We found that in order to obtain 

good performance of the model, forgetτ  must be much greater than the learning time constant 

which was set by another parameter, learnτ . There was continual competition between the 

learning signal which stored motor memories and plasticity noise which erased the memory. 

When forgetτ  was much larger than learnτ  the erasure caused only a slight bias of the model’s 

output (Fig. 5-4A, left). However, when forgetτ  was comparable to learnτ  this bias increased 

substantially (not shown). 

At long times, PDs were not completely randomized. Even after 10000 trials of the control 

simulation, the autocorrelation of the PDs did not vanish, but rather decayed to a positive 

baseline (Fig. 5-5D, inset). This baseline correlation reflects the fixed relevant components of the 

tuning curves. In other words, the tuning curves did not change completely arbitrarily, but were 

rather confined to configurations which produced the correct behavior. The value of this baseline 

correlation depended on the relative magnitude of the relevant and irrelevant components, which 

in turn depended on the amplitude of plasticity noise. 

 

Simulation of the learning experiment 

In order to explain how learning related changes in tuning curves combine with background 

changes, we simulated the learning experiment. We modeled the effect of the forces as a rotation 

of the outputs by 60˚. We first pre-trained the model for many trials and then trained the model 

on: (1) a baseline block of 160 trials without the perturbation, (2) an adaptation block of 160 
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trials with the rotation perturbation, and (3) a washout block of 160 trials without the 

perturbation. When the perturbation was turned on or off the model produced a large error which 

was subsequently reduced by learning (Fig. 5-6). 

We repeated the analysis we had performed on the data of the learning experiment on our 

simulation data. We computed average tuning curves for the baseline, late adaptation (last 80 

trials), and late washout (last 80 trials). As in the experiment, we designate changes from 

baseline to late adaptation as adaptation changes and changes from late adaptation to late 

washout as washout changes. 

Model generated a combination of learning-related changes and background changes. 

The learning experiment showed that adaptation and washout changes were anti-correlated, 

albeit with a considerable spread (Fig. 5-2E). We interpreted this result as indicating that changes 

in tuning curves were a sum of learning-related changes and background changes. Similarly, in 

the learning simulation the adaptation changes and washout changes were anti-correlated with 

considerable spread (Fig. 5-5E). In the model, the learning-related and background changes were 

caused by the learning signal and plasticity noise, respectively. The learning signal changed 

synaptic strengths in relevant directions in order to improve performance. At the same time, 

plasticity noise changed synapses randomly and caused behaviorally-irrelevant changes. Because 

of these irrelevant changes, after washout synapses were in a configuration which was different 

from their baseline configuration. Hence, tuning curves changed from baseline to washout (Fig. 

5-7A). 

Figure 5-6. Model’s error in movement direction in simulation of the learning experiment. 
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Similarity of baseline-to-washout changes and control changes is explained by additive 

plasticity noise. Our experiments showed that changes from baseline to washout in the learning 

experiment had similar statistics as the changes in the control experiment over a similar number 

of trials. This was also true of our model. The distribution of PD changes from baseline to 

washout (Fig. 5-5F) was very similar to the distribution of PD changes in the control simulation 

from block 1 to 3 (Fig. 5-5A; small differences between the two distributions were caused by the 

fact that learning was not entirely complete at the late washout). This similarity resulted from our 

assumption of additive plasticity noise. Because the noise was additive, the relevant changes 

caused by the learning signal and the irrelevant changes caused by the noise did not interact. 

Thus, learning a new task did not affect the statistics of the irrelevant background changes. If the 

noise were multiplicative, i.e. scaling with the motor error, learning a novel task would have 

Figure 5-7. Optimal manifolds of multiple tasks. A, Changes in tuning curves in the learning 
experiment are a combination of behaviorally relevant changes created by the learning signal and 
irrelevant changes created by plasticity noise. After washout synapses return to the manifold 
optimal for the no-force task at a configuration different from baseline. B, Learning several tasks 
with the same neural circuitry can be described as moving synaptic strengths to a configuration 
in the intersection of the manifolds optimal for these tasks. 
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increased the background changes. Linearity of neurons is not necessary to make the statistics of 

background changes independent of learning. Even with nonlinear neurons (and additive noise), 

if learning does not change the statistics of the gains between synaptic changes and firing rate 

changes, it does not change the statistics of background changes. 

 

5.4 Discussion  
 

In experiments on motor learning, it is often assumed that there is an underlying neural 

representation that is stable, and that adaptation takes place on top of this stable background. Our 

experimental and theoretical results suggest a radically different picture. The experiments show 

that tuning curves of motor cortical cells are constantly changing even when performing a 

familiar task. Furthermore, when learning a new task, learning-related changes occur on top of 

this background of changing tuning curves. To explain these results we proposed a theory which 

is based on the following assumptions: (1) motor cortex is redundant in the sense that it uses 

more neurons than required to generate the desired sensorimotor transformation, (2) when 

practicing a task, sensory feedback is transformed into synaptic changes which reduce the motor 

error, and (3) this plasticity mechanism is noisy. The basic result of our theory is that under these 

conditions a background of behaviorally irrelevant changes in tuning curves is generated. The 

redundancy of the system allows changes in the neural representations that do not affect 

behavior. The noise changes tuning curves randomly and the learning signal shapes these 

changes so they do not harm task performance. As a result, tuning curves wander randomly 

between different configurations which are behaviorally equivalent. 

Alternative interpretations. While our theory provides an explanation for why tuning 

curves changed in the control experiment, there are a number of alternative interpretations which 

at this point cannot be ruled out. Changes in tuning curves may be related to behavioral changes 

which we have overlooked, e.g. postural changes that are not reflected in our hand kinematics 

data. Additionally, it is possible that the recording electrodes injured the cells and consequently 

affected their tuning curves. Finally, perhaps neuromodulation underlies the changes in tuning 

curves, rather than synaptic changes. 

How does our interpretation of the data differ from previous interpretations? In 

previous work the significance of background changes was not fully appreciated, and 
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consequently the data were interpreted differently. Specifically, in previous work cells were 

classified by how they changed their PDs in the learning experiment. Cells were classified as:  

kinematic cells whose PDs changed very little, dynamic cells whose PDs changed during 

adaptation and changed back during washout, and memory cells whose PDs changed without 

returning to their baseline values (Li et al., 2001; Padoa-Schioppa et al., 2004). This 

classification suggests a specialization across cells. However, the data do not show clear clusters 

corresponding to these cell classes, but rather a continuum of response types (e.g. Fig. 5-2E). 

According to our interpretation, such diversity of response types does not reflect specialized cell 

classes, but rather the randomness inherent in plasticity. If our interpretation is correct, then 

recordings across days will show that cells switch randomly between the different classes. 

The previous studies proposed that changes from baseline to washout in memory cells reflect 

memory of the adaptation. In contrast, according to our theory changes in tuning curves from 

baseline to washout are behaviorally irrelevant changes caused by plasticity noise. This 

interpretation is supported by our result that the statistics of the changes from baseline to 

washout are very similar to the statistics of the changes in the control experiment over a similar 

number of trials. According to our interpretation, recordings across days will show changes that 

are uncorrelated, whereas if changes are learning related, they are more likely to be consistent 

across days. 

What additional evidence is there for the theory? According to our theory, even when 

practicing a familiar task, sensory feedback is continually used to learn and prevent noise from 

erasing motor memories. Thus, our theory predicts that in the absence of sensory feedback 

familiar tasks are forgotten (Fig. 5-4B). This prediction is confirmed by experiments that show 

that interfering with auditory feedback in adult finches or adult humans causes their well-learned 

vocalizations to slowly deteriorate (Brainard and Doupe, 2000). Additionally, our theory predicts 

that as a task becomes more demanding the neural representations become more stable. This is 

predicted to occur because when more task constraints are added the dimension of the optimal 

manifold reduces, thus reducing the drift in synaptic strengths (for this effect to be appreciable 

redundancy should be low). This prediction is confirmed by an experiment which shows that as 

the requirements on spatial navigation of mice increases the spatial representation in their 

hippocampus becomes more stable (Kentros et al., 2004). 
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How could the theory be further tested? Besides the above mentioned recordings across 

days, one may use brain computer interface (BCI) experiments, in which a population of cortical 

cells is used to control a computer device (Schwartz, 2004). The advantage of BCI experiments 

is that the mapping from neural activity to motor output is fully known. Knowledge of this 

mapping can be used to test directly our assertion that changes in the neural representation are 

shaped so they would not affect the motor output. 

What have we learned about plasticity underlying motor learning? First, from the 

existence of background changes we concluded that this plasticity process is considerably 

variable. Second, from the spatial randomness of background changes we inferred that the source 

of variability is local, i.e. independent in different synapses, rather than noise from the 

environment, e.g. muscle noise, which through sensory feedback contaminates the learning 

signal. Third, from the fact that baseline-to-washout changes in the learning experiment have 

similar statistics to changes in the control experiment we concluded that plasticity noise is 

additive. Finally, from the long correlation time of the background changes we concluded that 

noise changes synapses very slowly. According to our theory this slowness is necessary to 

prevent the noise from erasing motor memories. Notice that all these conclusions are based on 

the assumption that the observed changes in tuning curves are caused by synaptic changes. 

The meaning of tuning curves. It is commonly assumed that the tuning of a neuron’s 

activity to a movement parameter directly reflects its effect on movement. For example, a cell’s 

PD is thought to represent the direction of force it generates. However, our model shows that the 

cells’ PDs deviate randomly from the force directions (Fig. 5-4A, right). For the parameter 

values we used, the mean absolute difference between PDs and force directions was about 40˚. 

We conclude that the tuning of cells to motor parameters does not uniquely specify their effect 

on movement, but rather specifies how the cells are recruited to produce the movement. 

Doesn’t the theory imply that neural representations have no spatial order? Recent 

studies report that nearby motor cortical cells tend to have similar directional tuning, more than 

expected by a completely random arrangement (Amirikian and Georgopoulos, 2003; Ben-Shaul 

et al., 2003; Naselaris et al., 2006b). In our model PDs are correlated with the directions of end-

point forces generated by the cells (Fig. 5-4A). Therefore, if the force directions are spatially 

organized within cortex, then PDs should also be spatially organized. In our simulations, PDs of 

cells which produce similar force directions are on average 55˚ apart, and thus we predict that 
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PDs of nearby cells differ on average at least by 55˚ (this would be the case if nearby cells 

produced exactly the same force directions). This is consistent with the finding of Ben-Shaul et 

al. that during movement time PDs of nearby cells differ on average by 75˚. 

What is the function of plasticity noise? One possibility is that plasticity noise is a 

harmless phenomenon that has not been screened by natural selection. However, it is also 

possible that plasticity noise is useful for learning. It is well known in learning theory that adding 

noise to the learning process may prevent settling in local minima of the performance 

(Kirkpatrick et al., 1983). Additionally, it was proposed that stochastic plasticity is useful for 

preventing newly formed memories from overriding existing memories (Fusi, 2002). Finally, 

there is a whole class of learning methods, known as reinforcement learning, which is based on 

noise. In reinforcement learning, noise is injected into the system in order to probe different 

possible outputs and evaluate their success (Sutton and Barto, 1998). Recent studies suggest how 

reinforcement learning algorithms can be implemented in neural circuits (Seung, 2003). 

What is the function of redundancy? Redundancy provides robustness to damage and 

noise. Additionally, motor cortex may be highly redundant with respect to a given task because it 

needs to store in the same neural circuit motor memories related to other tasks. This scenario can 

be visualized with the concept of the optimal manifold, which is the continuum of all synaptic 

configurations appropriate for a given task. For example, teaching a neural circuit two tasks can 

be described as moving the synaptic strengths to a configuration in the intersection of the two 

manifolds optimal for these tasks (Fig. 5-7B). 

How would our results generalize to more complicated networks? Our linear model 

network tunes 2N synapses to perform a 2x2 linear transformation. Consequently, it has a linear 

optimal manifold of dimension 2N-4. Generally, in a linear network the manifold dimension is 

the difference between the number of synapses and the number of constraints imposed by the 

task. In a nonlinear network, the optimal manifold is curved and we speculate that its dimension 

is roughly equal to the difference between the total number of synapses and the number of 

synapses actually needed to solve the task. At present, there is no theory describing the nature of 

these manifolds. 

Statistics of modulation depths is accounted by assuming plasticity of neuronal 

excitability. While our model accounts reasonably well for the statistics of the PDs, it does not 

describe well the statistics of the modulation depths. The model predicts that the distribution of 
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modulation depths should peak at intermediate values, whereas the empirical distribution is 

peaked at low values. Additionally, the model underestimates the degree of modulation depth 

changes. We found that these problems are remedied if we assume that neuronal excitability is 

also changed plastically by learning. Thus, our data suggests that task-related information is 

stored in both synapses and intrinsic cellular properties (see Supplemental Data). 

What are the limitations of our model? In this work we chose the simplest model that 

illustrates that the neural representation of a redundant system may be inherently unstable. 

Because of its simplicity, our model did not capture accurately certain aspects of the data. Firstly, 

the model readapted to the baseline condition as fast as it learned the novel task (Fig. 5-6), 

whereas the monkeys usually readapted to the baseline faster and more completely than they 

adapted to the forces (Chapter 1). Secondly, the distributions of PD changes generated by the 

model tended to have heavier tails than the empirical distributions (compare Figs. 5-2B and 5-

5B). Thirdly, the autocorrelation of the PDs in the model had a slight curvature which was not 

observed in the data (compare Figs. 5-2C and 5-5C). Fourthly, the distribution of learning related 

PD changes in the model was more biased than the empirical distribution (compare Figs. 5-2E 

and 5-5E). 

Another limitation of our model is that synapses have a single forgetting time constant on the 

order of thousands of trials. We chose this time constant to fit the rate of background changes 

observed in our data. Since some motor tasks are retained over many years without practice, it is 

more plausible that there are multiple synaptic forgetting time constants, some of which are very 

long (Fusi, 2002). To address this issue we have extended our model to include several synaptic 

forgetting time constants. We found that the model can reproduce the observed rate of 

background changes and yet in the absence of sensory feedback partially retain motor memories 

for indefinitely long times (see Supplemental Data). Finally, in the future our model should be 

extended to allow storage of multiple sensorimotor transformations, by including contextual 

inputs (Salinas, 2004). 
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5.5 Supplemental Data 

Compact description of tuning curves changes 

The directional tuning curve of a neuron in our data is described by the set of 8 mean firing 

rates for the different movement directions. Changes in the mean firing rates across different 

directions may be correlated. In this case, changes in tuning curves can be compactly described 

by a few principal components (PCs), rather than the 8 mean firing rates. To examine this issue, 

for each neuron we computed a “difference tuning curve”, i.e. the changes from block 1 to block 

3 in mean firing rate for each direction. We then performed principal component analysis (PCA) 

on the set of difference tuning curves. We found that the first 3 PCs account for 92% of the 

variance in the changes in tuning curves (Fig. 5-s1A). Figure 5-s1B shows the first three PCs. 

The first PC (solid line) approximately corresponds to the offset of the tuning curve and the 

second and third PCs (dashed-dotted and dashed lines, respectively) approximately correspond to 

the cosine and sine components of the tuning curve. The other PCs have more complicated forms 

(data not shown). We conclude that changes in tuning curves in the control experiment can be 

Figure 5-s1. Principal component analysis of changes in tuning curves. A, Percentage of 
explained variance as a function of number of principal components. B, First three principal 
components. The components have been scaled such that they have the same root mean square, 
and therefore the y-axis has arbitrary units. 
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reasonably approximated by changes in the tuning curves’ offsets and cosine components. 

 

Comparison of changes in tuning curves with behavioral changes 

We tested whether the drift in directional tuning curves observed in the control experiment is 

related to drift in behavior. Overall, we had data from 42 control session, 15 for monkey 1 

(monkey with SMA data) and 27 for monkey 2 (monkey with MI data). We searched for 

correlations between changes in tuning curves and changes in hand trajectories across days. We 

used three measures to quantify changes in tuning curves in a given session: (1) change in PD, 

(2) change in modulation depth, and (3) change in offset. For each of these measures we 

averaged the changes from block 1 to block 3 over the cells recorded in each session. 

Additionally, we selected measures of behavioral change in two ways: (1) we chose behavioral 

measures which we judged as likely to be related to the neural measures, and (2) we performed 

principal component analysis (PCA) of the changes in trajectories within control sessions to find 

the aspects of movement which changed the most.  

We performed a total of 18 comparisons between measures of changes in tuning curves and 

measures of changes in hand trajectories. Table 5-s1 shows the p-value of the correlation found 

in each comparison (columns 2-4) and shows for each behavioral measure what fraction of 

sessions showed a significant change (column 5). Out of the 18 comparisons we have made, only 

a single comparison had a p-value less than 0.05, which is to be expected by chance. We 

conclude that we did not find a behavioral correlate of the changes in tuning curves in the control 

 

Table 5-s1. Columns 2-4, P-values of comparisons between tuning curve changes (columns) and behavioral 
changes (rows). Column 5, Fraction of control sessions with significant behavioral change from block 1 to 3 (z-
test, p<0.01). 
 
 

 PDs mod. depths offsets % sig. changes 
deviation area (both monkeys) 0.08   21 
monkey 1, tangential PC1 0.31   20 
monkey 1, tangential PC2 0.02   27 
monkey 2, tangential PC1 0.43   18 
monkey 2, tangential PC2 0.35   18 
mean speed (both monkeys)  0.86 0.74 62 
monkey 1, radial PC1  0.79 0.60 60 
monkey 1, radial PC2  0.78 0.55 40 
monkey 2, radial PC1  0.56 0.94 86 
monkey 2, radial PC2  0.12 0.12 36 
hit rates (both monkeys) 0.69 0.36 0.99 14 
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experiment. 

While there are many other comparisons that could be done, it is important to keep in mind 

that adding more comparisons lowers the statistical power of the overall experiment. 

Additionally, we emphasize that these results still do not rule out entirely the possibility that the 

neural changes are related to behavioral changes. First, it is possible that more data is required to 

detect such correlations. Second, it is possible that the neural changes are related to aspects of the 

behavior unobservable in the hand kinematics, e.g. changes in arm posture or muscle activity. 

Next, we explain the different comparisons we have made. 

PDs vs. deviation areas. It is natural to assume that changes in the cells’ PDs are related to 

changes in the direction of movement. Because the deviation area measure captured well the 

Figure 5-s2. PCA of tangential velocity profiles. A, Mean tangential velocity profile averaged 
over blocks 1 (black) and 3 (grey) of an example session. Difference shown as dashed line. B, 
Explained fraction of variance of block 1 to 3 changes in tangential velocity profile as a function 
of number of PCs. C, Velocity profiles of first two PCs. D, Mean trajectories (averaged over 
block 1 of all sessions; black) and the effect of adding/subtracting each PC (magnified by 4; 
grey). The dot represents the starting point.    



 127

changes in movement direction caused by the forces in the learning experiment (see Chapter 1), 

we used it also to describe changes in movement direction in the control experiment. We 

quantified the change in direction of movement on a given session by the change in the mean 

deviation area from block 1 to block 3. We compared the changes in deviation area with the PD 

changes, across all control sessions, pooled over both monkeys (Table 5-s1). 

PDs vs. principal components of tangential velocity change. Our choice of the deviation 

area measure for quantifying changes in movement directions is somewhat arbitrary. Another 

approach for quantifying changes in movement direction is to find the measures that changed the 

most within the control sessions. For this purpose, we performed the following principal 

component analysis (PCA). First, we examined the tangential velocity component, i.e. the 

component of the velocity orthogonal to the axis between the initial hand position and the target 

(positive tangential velocity corresponds to movement in the counter-clockwise direction). The 

temporal profile of the tangential velocity is a relatively sensitive gauge of changes in movement 

direction. Figure 5-s2A shows the tangential velocity profiles averaged over trials in block 1 

(black), and averaged over trials in block 3 (grey), in one control session. The change from block 

1 to 3 (dashed) reflects changes that occurred in movement direction. We started our analysis by 

computing the change from block 1 to 3 in the tangential velocity profile for each control 

sessions.  

Next, we performed PCA on the set of profiles of change in tangential velocity, separately 

for each monkey. In both monkeys we found that the first two principal components (PCs) 

account for roughly 50% of the variance of these profiles (Fig. 5-s2B), and therefore in 

subsequent analysis we focused on these two PCs. The profiles of these PCs are shown in Figure 

5-s2C. To facilitate the interpretation of these PCs, we computed the mean trajectory of each 

monkey (Fig. 5-s2D, black), and then perturbed these mean trajectories by adding or subtracting 

each PC (grey). Because the effects on the trajectories were rather small, we artificially 

magnified the PCs in Figure 5-s2D by a factor of 4. In both monkeys we found that the 1st PC is 

related to clockwise/counter-clockwise deviations across the entire trajectory, whereas the 2nd PC 

is related to deviations mostly at the end of the trajectories. 

Subsequently, for each control session we computed the coefficients of the two PCs. These 

coefficients represent to what extent each PC contributed to the change in the tangential velocity 

profile. Finally, we used these coefficients as our new measures of change in movement 
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direction, and compared them with the changes in PDs, across sessions, separately for the two 

monkeys (2 PCs x 2 monkeys = 4 comparisons; see Table 5-s1). To judge the statistical 

significance of the coefficient of a given PC on a given session, we computed the coefficients of 

that PC for all individual trials in blocks 1 and 3 of that session, and used a z-test to test the 

statistical significance of the difference in the means between blocks 1 and 3. 

Modulation depths and offsets vs. movement speed. Because it has been shown that the 

modulation depths and offsets of directional tuning curves of motor cortical cells scale with 

speed (Moran and Schwartz, 1999), we compared the changes in modulation depths and offsets 

to changes in endpoint (hand) speed. To quantify the change in hand speed we first computed the 

average hand speed for each trial by dividing distance from starting point to target by total 

movement time. Movement onset was defined as time when speed exceeds 4cm/s, and 

movement offset was defined as time when speed becomes less than 4cm/s. For each control 

session, we averaged the mean hand speeds within trials, across trials in block 1 and across trials 

in block 3, separately in each block. The difference between the mean speeds in blocks 1 and 3 

was our new measure of speed change. We compared this measure of speed change with the 

offset changes and modulation depth changes, across all control sessions, pooled over both 

monkeys (2 comparisons; see Table 5-s1). 

Modulation depths and offsets vs. principal components of radial velocity changes. 

Above we supplemented the change in deviation area with measures of change in movement 

direction derived by PCA of the changes in tangential velocity. Following a similar approach, we 

supplemented the change in hand speed with measures derived by PCA of the changes in radial 

velocity (the component along the axis from the starting point to the target). While changes in 

PDs are more likely related to changes in tangential velocity, changes in modulation depths and 

offsets are more likely related to changes in radial velocity. Figure 5-s3A shows for one example 

of the mean radial velocity profiles in block 1 (black), block 3 (grey), and the change from block 

1 to 3 (dashed). We performed PCA on the set of profiles of radial velocity change across all 

sessions, separately for each monkey. We found that the first two PCs account for roughly 60% 

of the variance of the changes in the radial velocity (Fig. 5-s3B). Figure 5-s3C shows the profiles 

of change in radial velocity which correspond to these PCs. To visualize the effect of these PCs 

on the movement we computed the mean radial velocity profile of each monkey (Fig. 5-s3D, 

black), and perturbed this mean profile by adding or subtracting each PC (grey). Because the 
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effects on the radial velocity profiles were small, we artificially magnified the PCs in Figure 5-

s3D by a factor of 4. The two monkeys showed qualitatively different PCs. Monkey 1 showed 

changes in movement time (PC 1), and increases/decreases in the duration of the acceleration 

phase coupled with overshooting/undershooting the target (PC 2). Monkey 2 showed changes in 

the shape of the velocity profile. 

We computed the coefficients of these PCs for each session, and used them as our new 

measures of movement changes. We compared these coefficients with the changes in modulation 

depths and offsets across sessions, separately for each monkey (2 PCs x 2 neural measures x 2 

monkeys = 8 comparisons; see Table 5-s1). The statistical significance of the coefficients was 

judged by the same method used for the coefficients of the PCs of the tangential velocity (see 

above). 

Figure 5-s3. PCA of radial velocity profiles. A, Mean radial velocity profile averaged over 
blocks 1 (black) and 3 (grey) of an example session. Difference shown as dashed line. B, 
Explained fraction of variance of block 1 to 3 changes in radial velocity profile as a function of 
number of PCs. C, Velocity profiles of first two PCs. D, Mean trajectories (averaged over block 
1 of all sessions; black) and the effect of adding/subtracting each PC (magnified by 4; grey). 
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PDs, modulation depths and offsets vs. hit rates. The above tests included only successful 

trials. It could be argued that the changes in the neuronal tuning are related to the changes in the 

probability of success. After all, getting the reward is probably the aspect of the task that is most 

important to the monkeys. Within each block in each control session we computed the 

percentage of successful trials, which we term the hit rate. Hit rates across control sessions were 

95% ± 3% for monkey 1, and 84% ± 6% for monkey 2 (mean±s.d.). Changes in hit rates from 

blocks 1 to 3 were 1.5% ± 3.6% for monkey 1 and 0.3 ± 6.9% for monkey 2 (mean±s.d.). We 

compared the changes in hit rates from blocks 1 to 3 with the changes in PDs, modulation depths 

and offsets, pooled over both monkeys (3 comparisons; see Table 5-s1). 

 

Global noise from the environment causes correlated changes across cells 

In the manuscript, we have shown that the changes in tuning curves in the control experiment 

are random across cells. Additionally, we have shown that randomness across cells can be 

reproduced by a model in which the source of variability in plasticity is local, i.e. independent 

across synapses. Here we examine the effect of global plasticity noise, i.e. noise from the 

environment which through sensory feedback contaminates the learning signal. For this purpose, 

we modify the plasticity rule (Eq. 9) to 

Figure 5-s4. Simulation of model with global noise from the environment. PDs of two model 
cells as a function of trial number. 

.
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where n is Gaussian noise that is added on top of the model output vector x, and σ is the noise 

amplitude, which we set to 1. n may be interpreted as either sensory noise, i.e. noise in the 

estimation of the hand position, or as muscle noise. We simulated the control experiment with 

this modified plasticity rule. Figure 5-s4 shows that in this simulation the PDs of different cells 

change in a correlated manner. Thus, global noise from the environment causes changes in 

tuning curves which are correlated across cells. 

 

Statistics of modulation depths explained by plasticity of neuronal excitability 

Problems with original model. The model we have presented in the main text accounts 

reasonably well for the statistics of the PDs, but does not account well for the statistics of the 

modulation depths. In order to compare the predicted statistics of the modulation depths to the 

experimental data, first we scaled the firing rates of the model cells to match the empirical mean 

modulation depth in the control condition (~5 Hz). Next, we compared the predicted distribution 

of modulation depths in the control condition to the empirical distribution (Fig. 5-s5A). The 

model predicted the distribution is peaked around modulation depths of intermediate size, 

whereas the true distribution is peaked at small modulation depths. Additionally, we examined 

the distribution of changes in modulation depths from block 1 to 3 in the control experiment 

(Fig. 5-s5B). We found that the model underestimates the changes in modulation depths. 

Similarly, we found that the model underestimates the changes in modulation depths during 

adaptation and washout in the learning experiment, although it does account for the anti-

correlation between these changes (Fig. 5-s5C). Finally, in all the distributions shown in Figure 

5-s5, the data has much heavier tails than the predicted distribution. 

The modified model. We found that the model’s discrepancies in the statistics of the 

modulation depths can be remedied by assuming an additional plasticity mechanism that alters 

neuronal excitability. In the original model, changes in tuning curves occur by synaptic 

modifications. The level of noise in these synaptic modifications was tuned to reproduce the 

degree of PD changes observed experimentally. Under these conditions, the model 

underestimated the changes in modulation depths. One possible explanation for this discrepancy 
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is the existence of an additional plasticity mechanism which changes modulation depths but not 

PDs. In order to modify a cell’s modulation depth without altering its PD the cell may change its 

excitability, and thus modify uniformly the throughput of all its synapses. Persistent changes in 

neuronal excitability have been reported previously, and were found to be correlated with 

learning in several experimental preparations (Zhang and Linden, 2003). These experience-

dependent excitability changes are a result of the modification of voltage-gated ion channels 

responsible for action potential generation and propagation. Thus, our modified model may be 

viewed as storing task-related information through both synaptic and intrinsic modifications. 

To test whether noisy learning in both synapses and neuronal excitability can account for the 

experimental data we extended the original model to include also plasticity of neuronal 

Figure 5-s5. Statistics of modulation depth in experimental data (left), original model (middle), 
and modified model (right). A, Distribution of modulation depths across cells measured from 
activity in block 1 of control experiment/simulation. B, Distribution of changes in modulation 
depths across cells from block 1 to 3 in control experiment/simulation. C, Washout change in 
modulation depth (last 80 trials of adaptation block to last 80 trials of washout block) vs. 
adaptation change in modulation depth (baseline block to last 80 trials of adaptation block) 
across cells in learning experiment/simulation. For the models, we show only a sample of cells of 
the same size as the experimental sample (172 cells). 
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excitability. In the original model the gain between the sensory input t
jx  and the firing rate of a 

cortical cell ir  was determined by the synaptic weight ijW  (see Eq. 5 in Methods). In the 

modified model, we substitute ijW  with i ijg W , where ig  is the excitability of neuron i  
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Similar to the original model, we use noisy gradient descent learning to train the model 

parameters (see Eq. 9 in Methods). However in the modified model we train both ijW  and ig  
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where ig  are constrained to be positive. , g
ij in n  are independent normalized unbiased Gaussian 

noise terms. The modified model has the same parameters as the original model and two 

additional parameters: the amplitude of the noise in plasticity of the excitabilities gσ , and the 

decay time of the excitabilities g
forgetτ . The learning time constants of the excitabilities and the 

synapses are assumed the same (denoted learnτ ) and equal to the typical learning time observed in 

the monkeys’ behavior (50 trials). As in the original model the cost that is optimized is the 

squared output error 
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The gradients of this cost with respect to ijW  and ig  are related to the error by 
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As in the simulations of the original model, before simulating the experiments we trained the 

model for 10000 trials, thus mimicking the monkeys’ previous experience. The performance of 

the model was as good as that of the original model. Adding the gain changes had a relatively 
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small effect on the changes in PDs and therefore the parameters of the original model have not 

been changed much (σ = 0.02, σg = 0.018, τforget = 1500, τlearn = 50, τgforget = 500, φ = 60º, N = 

10000)2. We tuned the parameters gσ , g
forgetτ  to match the distributions of changes in modulation 

depths in the control and learning simulations with the empirical distributions. 

Results of modified model. We found that the modified model accounts much better than 

the original model for the observed statistics of the modulation depths. Remarkably, without fine 

tuning of parameters the modified model produced a distribution of modulation depths which is 

peaked at small values and is very similar to the empirical distribution (Fig. 5-s5A). This 

distribution of modulation depths was established in the pre-training stage of the model, prior to 

the simulation of the control experiment, and regardless of initial conditions. In the original 

model cells with weak modulation depths are rare. This property of the original model is related 

to the structure of the inputs to the cortical cells. Each cortical cell sums sine and cosine 

functions of direction, weighted by two synaptic weights (see Methods). Under these conditions, 

a cell’s modulation depth is weak when a rare coincidence occurs in which both input synapses 

are weak simultaneously. More generally, when a cell receives multiple synaptic inputs with 

different directional tuning, the cell has a weak modulation depth when a rare configuration of 

synaptic weights occurs, such that the input tuning curves nearly cancel out. In contrast, in the 

modified model a neuron may have a weak modulation depth whenever its excitability is weak. 

In other words, in the original model a weak modulation depth requires several (two) variables to 

be weak simultaneously, whereas in the modified model it is sufficient that one variable, namely 

excitability, is weak. This occurs often as noise changes excitabilities, and consequently weak 

modulation depths are abundant. 

Additionally, the modified model accounts much better for the distribution of the modulation 

depth changes in the control experiment (Fig. 5-s5B). As expected, changes in modulation depths 

became larger than in the original model because of the added contribution of the excitability 

changes. To account well for the size of the modulation depth changes in the control condition 

we had to assume that random excitability changes occur on a faster time constant than synaptic 

                                                 
2 σ has been slightly reduced because the gain changes cause the PD changes to increase a little bit, indirectly. In the 
original model the random PD changes are slowed down by the learning signal as it makes corrections to the tuning 
curves in order to preserve the performance. In the modified model with the gain changes, part of these corrections 
is done by gain changes, thus less corrections are done in the synapses, and the PDs are somewhat more free to 
change. 
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changes ( 500, 1500g
forget forgetτ τ= = ). The reason for this difference in time constants is that 

empirically, modulation depths had larger fractional changes than PDs. Changes in modulation 

depths had a standard deviation of ~3 Hz, which is roughly 60% of the mean modulation depth 

(~5 Hz). In contrast, PD changes had a standard deviation of ~30˚, which is roughly 15% of the 

maximal possible change of 180˚. 

Adding the excitability changes also produced heavy tails in the distribution of changes in 

modulation depths, similar to the heavy tails observed in the experimental data (Fig. 5-s5B). 

These heavy tails result from the product of synaptic changes and excitability changes. In 

general, taking the product of two random variables tends to produce heavy tails, because 

occasionally the two variables simultaneously deviate from the average moderately, which 

causes the product to deviate from the average strongly. Thus, according to our model the heavy 

tails in the distribution of modulation depth changes reflect coincidences between excitability 

changes and synaptic changes. For similar reasons, our model produces heavy tails also in the 

distribution of the modulation depth changes in the learning experiment (Fig. 5-s5C) and in the 

distribution of the modulation depths (Fig. 5-s5A). 

We found that in order to account for the changes in modulation depths in the learning 

condition (Fig. 5-s5C) we must assume that the excitabilities are tuned to improve performance. 

When we simulated the learning experiment without the excitability gradient term in Eq. (15), 

but still included the random changes in gi, the model underestimated the size of the changes in 

modulation depths and the predicted anticorrelation between the adaptation and washout changes 

was much weaker than the empirical anticorrelation (not shown). Thus, according to our model 

excitability changes are not purely random, but are in fact tuned to improve the behavior. 

The modified model still accounts reasonably well for the statistics of the changes in PDs 

(Fig. 5-s6). The only aspect in which the modified model is slightly worse than the original 

model, is that the predicted anticorrelation between the adaptation and washout PD changes is 

somewhat weaker than the observed anticorrelation and the anticorrelation predicted by the 

original model (compare Fig. 5-s6E with Figs. 5-2E, 5-5E in Results). Because in the modified 

model part of the learning is achieved by excitability changes, it has somewhat less learning 

related changes in PDs, and therefore less anticorrelation between adaptation and washout PD 

changes. 
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Extension of model to several forgetting time constants 

In our model, noise driven changes in tuning curves are shaped by sensory driven learning, 

so they will not harm performance. In our simulations, the correlation time of the noise driven 

changes τforget was set to 1500 trials, in order to reproduce the observed correlation time of the 

tuning curves. In the absence of sensory feedback, the noise erases the motor memory stored in 

Figure 5-s6. Statistics of changes in tuning curves in simulations of control and learning 
experiments with the modified model. A, Distribution across cells of PD changes from block 1 to 
3 in control simulation. B, PD changes from block 1 to 3 of pairs of cells. Each pair is 
represented by two points symmetrically positioned around the y = x diagonal (solid line). C, PD 
change from block 1 to 2 vs. PD change from block 2 to 3, across cells in control simulation. D, 
Autocorrelation of population of PDs. D inset, Autocorrelation over long times. E, Adaptation 
PD changes vs. washout PD changes, across cells in learning simulation. Solid line represents the 
y = -x  diagonal. F, Distribution across cells of baseline-to-washout PD changes in learning 
simulation. To facilitate the comparison with the experimental results, we show in B, C and E 
samples of cells of the same size as in the corresponding subplots in Figure 5-2. 
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the network, within several time constants τforget, i.e. within several thousands of trials. This 

consequence of the model seems implausible, since some motor skills are retained, at least 

partially, over many years without practice.  

Here we show that by extending the model, such that it includes several forgetting time 

constants, it is possible to reproduce the observed correlation time of changes in tuning curves 

and yet maintain, at least partially, memory of motor skills for very long times. We assume a 

model with the same architecture as the original model, except that each sensory neuron makes a 

pair of synapses onto each motor cortical cell, including one unstable synapse and one stable 

synapse. Thus, instead of Eq. (5) in the Methods, the firing rates of the cortical cells are 

computed by 
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where ,U S
ij ijW W  are the weights of the unstable and stable synapses, respectively. ,U S

ij ijW W  are 

modified by the same rule as in the original model (see Eqs. 9 and 11 in Methods), except that 

for U
ijW  we use τforget=750 trials, and for S

ijW  we use τforget=106 trials. Additionally, we set 

Figure 5-s7. Extension of model to several forgetting time constants. A, Distribution of block 1 
to 3 PD changes in control simulation of original model. B, Same as A for extended model. C, 
Error in hand position, in % of desired movement amplitude, as a function of trial number in 
simulation of original model without sensory feedback. D, Same as C for extended model. 
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0.018σ =  for both types of synapses, and the number of cells N=1000. A similar model with two 

forgetting and learning time constants has been proposed recently to explain interesting 

behavioral findings in learning experiments (Smith et al., 2006). Here we are also interested in 

how multiple time constants affect the changes in the neural representation. 

Figure 5-s7 compares the original model with the extended model. In both models, 

simulation of the control experiment produces a similar amount of change in tuning curves (Fig. 

5-s7A,B). On the one hand, in the extended model only half of the synapses are unstable, 

whereas in the original model all synapses are unstable. On the other hand, the forgetting time 

constant of the unstable synapses is shorter in the extended model compared with the original 

model. These two effects cancel out such that tuning curves change a similar amount in both 

models. However, the performance of the models is very different when simulating without 

sensory feedback over many trials. The original model completely forgets what it has learned 

(Fig. 5-s7C), whereas the extended model partially retains what it has learned (Fig. 5-s7D). The 

extended model maintains its memory through stable synapses. We conclude that by having 

several time constants, it is possible to account for the observed degree of change in tuning 

curves and have motor skills remembered over very long times. 

 

Dependence of model performance on number of neurons 

In our simulations, the model’s output slightly deviated from the desired output. 

Furthermore, the output for the same target changed over trials, with a typical time constant of 

the learning time constant τlearn. In terms of the synaptic weights, these errors imply that the 

system fluctuates around the optimal manifold, i.e. the valley in the error landscape (Fig. 3 in 

Results). In this section we examine the dependence of these errors on the number of neurons N. 

To asses the overall performance of the model we computed the mean squared error (MSE) in 

hand position 

 
2tMSE x x= −  (19) 

where x is the hand position vector, xt is the target position vector, and K  denotes averaging 

over many trials (we used 100000 trials). We estimated the MSE for different values of N, and 

found that it asymptotes at roughly N~100 (Fig. 5-s8A, dots).  
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To understand this behavior, it is useful to separate the squared error into the squared bias 

and variance contributions  

 2MSE bias variance= +  (20) 

The bias is the systematic deviation of the hand from the target position 
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Here 
|xθ

K  denotes averaging over trials for which the target was in direction θ, xt(θ) is the 

position of the target in direction θ, and 
θ

K  denotes averaging over movement directions. The 

bias is caused by the forgetting term in our synaptic weight update rule (Eq. 9 in Methods), 

which biases the synaptic weights slightly from the optimal manifold towards zero. This bias is 

independent of N (Fig. 5-s8A, circles; small changes are caused by sampling noise). The size of 

the bias depends on the ratio of time constants τlearn/ τforget which determines the relative sizes of 

the forgetting and learning terms. When τlearn/ τforget increases the forgetting term is more 

effective in biasing the synaptic weights from the optimal manifold, and the bias increase. At the 

regime where τforget is much longer than τlearn this relation is approximately linear (Fig. 5-s8B) 

 learn
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 (22) 

The second contribution to the MSE is the variance, i.e. the randomness in hand position 
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The variability in hand position is caused by the synaptic plasticity noise which pushes the 

synaptic weights around the optimal manifold. The size of the variance depends on a number of 

factors. First, the variance decreases with N (Fig. 5-s8A, crosses), proportionally to 1/N (not 

shown), because there are on the order of N independent noise sources which average out at the 

output. Second, the variance scales with the variance of the noise σ2 (Fig. 5-s8C). Lastly, the 

variance depends on τlearn. When τlearn increases, the learning signal becomes weaker, and thus 

the force driving the synaptic weights back to the optimal manifold weakens (Eq. 9 in Methods). 

Consequently, the variance in synaptic weights and the motor output increases, in proportion to 

τlearn (Fig. 5-s8D). Putting these different factors together, we have approximately 
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Now we are in a position to explain why the MSE asymptotes at roughly N~100. The MSE 

asymptotes when the variance term becomes small relative to the bias term, which according to 

Eqs. (22),(24) implies 
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Rearranging terms we find 
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For the parameter values that we used in our simulations (τlearn=50, σ=0.025, τforget=1500), the 

right hand side of Eq. (26) is approximately 30. This explains why the error does not decrease 

much beyond N~100. 

Figure 5-s8. Dependence of model’s error in position on parameters. Baseline parameters were σ 
= 0.025, τforget =1500, τlearn = 50, and N = 100. A, Simulations with different N. B, Simulations 
with different ratios of τforget and τlearn. C, Simulations with different σ. D, Simulations with 
different τlearn. 
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6 Causal link between motor cortex and adaptation: a rTMS study3 

 
 
6.1 Introduction 
 

The human motor system generally uses acquired knowledge of the mechanical properties of 

both the arm and the environment in the control of reaching behaviors (Lackner and Dizio, 1994; 

Shadmehr and Mussa-Ivaldi, 1994; Sainburg et al., 1999). This allows the system to attenuate 

expected disturbances in an anticipatory manner and improve motor performance. Adapting to a 

novel dynamic environment involves learning new mechanical properties. Memories of specific 

environments may over time become resistant to interference from new learning, in a process 

referred to as motor memory consolidation (Brashers-Krug et al., 1996; Shadmehr and Brashers-

Krug, 1997).   

Several studies have explored the neural structures underlying adaptation to novel 

mechanical contexts using functional imaging, transcranial magnetic stimulation (TMS), and 

neurological populations. A network including the dorsolateral prefrontal cortex, posterior 

parietal cortex, striatum, and cerebellum is engaged specifically in motor adaptation, and not just 

motor execution (Shadmehr and Holcomb, 1997; Krebs et al., 1998; Nezafat et al., 2001; Della-

Maggiore et al., 2004; Maschke et al., 2004; Smith and Shadmehr, 2005). This network may 

provide both cognitive responses to movement error (Malfait and Ostry, 2004) and error-driven 

acquisition of an internal model of the movement dynamics (Kawato, 1999). As the memory of 

the movement dynamics consolidates, activity partially shifts to a network including premotor 

cortex, posterior parietal cortex, and cerebellar cortex, which may store the internal model 

(Shadmehr and Holcomb, 1997; Krebs et al., 1998; Nezafat et al., 2001). 

Human primary motor cortex (M1) is involved in several types of motor skill learning 

(Pascual-Leone et al., 1994; Karni et al., 1995; Ghilardi et al., 2000; Sanes and Donoghue, 2000) 

but does not appear to be differentially activated when adapting to new movement dynamics, 

compared to baseline execution (Shadmehr and Holcomb, 1997; Krebs et al., 1998). Single-unit 

recordings in monkeys, however, suggest that involvement of M1 in motor adaptation may not 

be apparent in more global measures of activity. In particular, distributed subsets of M1 neurons 
                                                 
3 This thesis chapter is a revision of a previously published article: Richardson AG, Overduin SA, Valero-Cabre A, 
Padoa-Schioppa C, Pascual-Leone A, Bizzi E, Press DZ (2006) Disruption of primary motor cortex before learning 
impairs memory of movement dynamics. J Neurosci 26:12466-12470. © 2006 Society for Neuroscience. 
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appear to support a memory trace of novel movement dynamics, while the population as a whole 

reflects only the task execution (Li et al., 2001). 

The present study aimed to more directly assess the role of M1 in human adaptation to novel 

dynamical environments. We used low-frequency, repetitive TMS (rTMS) to interfere with M1 

function while subjects performed reaching movements in a velocity-dependent force field. 

Applying rTMS to M1 prior to the first exposure to the force field, we tested subjects’ ability to 

adapt to the novel dynamics as well as their ability to recall these dynamics 24 hours later. We 

found that M1 disruption did not affect initial adaptation, but did hinder next-day performance 

relative to controls. These results suggest that a network including M1 may be critical to the 

early stages of motor memory development. 

 
6.2 Methods 
 
Paradigm  

Sixteen right-handed subjects (mean 25 years old; 6 males) participated in the experiment. 

Participants were screened for history of seizures, familial epilepsy, and other TMS 

contraindications. Ethical approval was obtained through the MIT Committee On the Use of 

Humans as Experimental Subjects. The subjects were randomly assigned to two experimental 

groups (“control” and “rTMS”). 

Subjects were instructed to hold onto a robotic manipulandum with their right hand and make 

reaching movements in the horizontal plane to targets presented on a vertically-oriented monitor 

(for details, see Shadmehr and Mussa-Ivaldi, 1994). Targets included four peripheral squares 

spaced around a central square at a distance of 10 cm, such that the movements from either 

central to peripheral or peripheral to central resulted in eight movement directions, uniformly 

spanning 360º. The peripheral squares were located at 0º, 45º, 90º, and 135º, according to the 

direction labels in Figure 6-2C. Subjects were given 0.50 ± 0.05 s to complete each movement. 

Trials completed in the specified time were indicated to the subject by a brief sound. Trials 

completed too quickly or too slowly were indicated to the subject by a transition in the target 

color from white to red or blue, respectively.   

Participants performed reaching movements to a pseudorandom sequence of targets in three 

different epochs, denoted as “baseline” (two subepochs of 253 ± 8 trials and 152 ± 4 trials 

separated by 15 min), “learning” (400 ± 0 trials), and “retest” (403 ± 10 trials; mean ± standard 
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deviation). The number of trials in each (sub)epoch for the control group and rTMS group did 

not significantly differ. The duration of the interval between the baseline and learning epochs 

was approximately 15 min. The learning and retest epochs were separated by 24 hr. 

All subjects experienced a null (0 N·s/m) force field during the baseline epoch, and a 

velocity-dependent clockwise field generated by the robotic manipulandum in the learning and 

retest epochs. The curl forces, of magnitude 15 N·s/m, were calculated on-line as xf &B= , where 

⎥
⎦

⎤
⎢
⎣

⎡
−

=
015

150
 B  and x&  was the movement velocity. 

TMS was delivered using a Magstim Super Rapid stimulator (Whitland, Wales, UK). 

Between the two subepochs of the baseline epoch, the location and threshold for stimulation 

were determined in the rTMS subjects. This involved using single pulses of TMS over the left 

motor cortex to determine: 1) the scalp location capable of reliably and maximally inducing 

visible contractions in the right biceps brachii muscle, and 2) the intensity threshold necessary to 

reliably elicit a motor-evoked potential in the resting right biceps muscle following standard 

criteria (at least 50 µV, present in 5 out of 10 consecutive attempts). The intensity level of the 

rTMS used in the experiment was then calculated to be 90% of the resting biceps motor 

threshold level, an intensity known to induce long-lasting depression of motor cortex excitability 

(Gangitano et al., 2002; Romero et al., 2002). Between the baseline and learning epochs, rTMS 

pulses were applied at a frequency of 1 Hz for 15 min. (i.e. 900 pulses) using a hand-held figure-

of-eight coil (double 70 mm; Magstim), positioned tangentially relative to the scalp in a 45o 

posterior-to-anterior and lateral-to-medial orientation, at the same location found to optimally 

evoke biceps activity during localization. 

We did not use sham stimulation in control subjects because the rTMS was delivered 

“offline”, while the subject was at rest prior to force field exposure. Thus it was unlikely that any 

non-specific attentional or behavioral effects of the TMS were present during the subsequent 

learning epoch (Robertson et al., 2003). In support of this claim, we found that rTMS and control 

subjects’ performance in the learning epoch (i.e. just after rTMS was applied) did not 

significantly differ, arguing that rTMS had no immediate, specific or non-specific effect on 

motor performance (Fig. 6-2A; see Results). 
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Analysis 

We quantified performance on each trial as the signed peak perpendicular deviation relative 

to a straight line connecting the beginning and end positions of the trial (Shadmehr and 

Moussavi, 2000). This performance measure was normalized in each epoch and for each group 

by subtracting the group’s average baseline epoch performance. The normalization removed 

inter-group differences in baseline task performance in order to isolate learning-specific 

performance changes. Note that without normalization, the pattern of statistically significant 

results presented in the Results was not altered. Trials in which the subject failed to reach the 

target within a 0.50 ± 0.25-s time window were excluded from the analysis. Trials were binned 

by 16 trials in each epoch and group. Statistical results were based on the within-bin-averaged 

perpendicular deviation. Not all subjects were given exactly 400 trials to complete in each of the 

learning and retest epochs (see above), hence we only used the first 24 (rather than 25) 16-trial 

bins in each of these epochs for the statistical tests. Main and interaction effects of rTMS, time 

(either individual or grouped time bins; see Results), and movement direction were assessed 

using repeated measures ANOVAs. All significant effects (at the p < 0.05 level) are reported.  

To assess the robustness of our results, we repeated the analysis using two other measures of 

performance: signed deviation angle (the angle between the lines connecting beginning and end 

positions and beginning and maximum speed positions)(Della-Maggiore et al., 2004) and signed 

deviation area (the area between the hand trajectory and the line connecting beginning and end 

positions). The results using each of these measures were very similar; for brevity we report only 

the analysis using deviation angle in the Results (Fig. 6-2B). 

 

6.3 Results 
 

Subjects exhibited a typical pattern of adaptation to the velocity-dependent force field (Fig. 

6-1; Shadmehr and Mussa-Ivaldi, 1994). Reaching trajectories produced in the clockwise force 

field environment were initially deviated in the clockwise direction. With practice, in both the 

learning and retest epoch, the trajectories returned to a less-deviated form like that exhibited 

under null-field conditions. 

In the baseline epoch, the performance was stable for both rTMS and control groups (i.e. 

there was no significant effect of Time) and there were no significant differences between the 

groups (Fig. 6-2A, left panel). Following the baseline epoch, the rTMS subjects received 15 min. 
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of 1-Hz rTMS centered over M1, while control subjects waited for an equivalent time while 

seated in the same position. Immediately after this interval, all participants performed a 400-trial 

learning epoch in a clockwise force field environment generated by the robotic manipulandum. 

Subjects adapted to the force field (Fig. 6-2A, middle panel), as supported by a significant effect 

of Time on the peak perpendicular deviation (F(23,322) = 24.48, p < 0.0001). Notably, there was no 

significant effect of rTMS on subjects’ performance.  

An effect of rTMS was, however, apparent when the participants returned 24 hours following 

learning for the retest epoch. Within the 400-trial retest epoch, subjects again adapted to the 

clockwise force field (Fig. 6-2A, right panel), captured as before by a significant main effect of 

Time (F(23,322) = 8.33, p < 0.0001). But in contrast to the learning epoch, there was also a 

significant main effect of rTMS (F(1,14) = 3.15, p = 0.0482), with the rTMS group performing 

with a higher level of error than the control group. This relative difference in error cannot be 

attributed to a relative difference in movement speed (to which the forces were proportional), as 

there was no significant main or interaction effect of rTMS on peak speed in the retest (or any 

other) epoch.  

rTMS did not completely interfere with the memory of the novel dynamics experienced in 

the learning epoch, as both groups performed with significantly less error at the beginning of the 

retest epoch than they did at the beginning of the learning epoch, although to different degrees. 

Indeed, in a comparison of the peak perpendicular deviation in the first third of the learning and 

Figure 6-1.  Subjects adapted to a velocity-dependent force field introduced in the learning epoch and 
repeated at retest 24 hr. later. The sample trajectories include all those performed by one control subject 
in the forward direction of reach, from among the 150 baseline trials and the first 150 trials performed 
in the two clockwise-field epochs. The temporal order of the trajectories within each epoch is given by 
the transition from black (early trials) to gray (late trials). 
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retest epochs (Fig. 6-2A), there were significant effects of both Time and its interaction with 

rTMS (F(1,14) = 100.67, p < 0.0001 and F(1,14) = 6.47, p = 0.0089, respectively). In fact, beyond 

the first few trials, the initial retest performance error was even less than late learning epoch 

error, particularly for the control group. Again, significant Time and rTMS × Time effects (F(1,14) 

= 8.36, p = 0.0040 and F(1,14) = 3.54, p = 0.0383, respectively) were evident in a comparison of 

the last third of the learning epoch with the first third of the retest epoch (Fig. 6-2A). 

      In addition, the effect of rTMS in the retest epoch was not uniform over all eight movement 

directions (Fig. 6-2C, right panel). A repeated-measures ANOVA, again using the peak 

perpendicular deviation measure, revealed significant main effects of rTMS (F(1,14) = 3.84, p = 

0.0325) and direction (F(7,98) = 13.47, p < 0.0001), as well as a significant rTMS × direction 

interaction (F(7,98) = 2.71, p = 0.0292). In particular, the rTMS group performed with relatively 

more error only in leftward-directed movements (Fig. 6-2C, right panel). In contrast, for the 

learning epoch (Fig. 6-2C, left panel), the same repeated-measures ANOVA revealed no 

significant main or interaction effects of rTMS, only a significant main effect of direction (F(7,98) 

= 25.52, p < 0.0001). Thus, the movement direction-specific effect of rTMS was only present at 

retest, not during initial learning. 

All of the statistically significant trends reported for the all-direction analysis were seen 

when restricting the analysis to just the three leftward-directed (135º, 180º, and 225º) movements 

(Fig. 6-2D). In particular, during the baseline epoch (Fig. 6-2D, left panel), there was no effect of 

Time or rTMS on performance. During the learning epoch (Fig. 6-2D, middle panel), there was 

only a significant main effect of Time on the peak perpendicular deviation (F(23,322) = 11.18, p < 

0.0001). During the retest epoch (Fig. 6-2D, right panel), their were significant main effects of 

both Time and rTMS (F(22,308) = 2.83, p = 0.0002 and F(1,14) = 9.69, p = 0.0024, respectively). 

This analysis again shows that the directionally-specific effect of rTMS during retest 

performance was not also present during initial acquisition of the motor skill. 

Finally, the results presented above were robust in that they could be replicated using other 

performance measures. For example, using deviation angle as the measure of performance (see 

Methods), there were again no significant changes in the baseline epoch (Fig. 6-2B, left panel) 

and only a main effect of Time (F(23,322) = 25.04, p < 0.0001) in the learning epoch (Fig. 6-2B, 

middle panel). In the retest epoch (Fig. 6-2B, right panel), there were significant effects of Time 

and rTMS (F(23,322) = 3.94, p < 0.0001 and F(1,14) = 10.57, p = 0.0018, respectively), as reported 
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previously with the peak perpendicular deviation measure. Note that in the retest epoch, the 

deviation angle measure indicates that the control group actually overcompensates for the 

clockwise force field (i.e. has counterclockwise error), while the rTMS group’s error is closer to 

zero (Fig. 6-2B, right panel). It has been previously shown that increasing uninterrupted practice 

in a force field leads to increasing overcompensation of movement trajectories (Thoroughman 

and Shadmehr, 2000). Thus, we interpret the greater counterclockwise error as being more 

adaptive and, consequently, that the rTMS group was impaired relative to the control group, 

consistent with our previous conclusion.    

 
6.4 Discussion 
 

In this experiment, we studied the role of M1 in the adaptive control of human reaching 

movements. We used rTMS to disrupt M1 function just prior to subjects’ initial exposure to a 

velocity-dependent force field. rTMS had no effect on initial performance or adaptation to the 

force field. However, when subjects performed in the same force field 24 hours later, those who 

had received rTMS the day before performed worse than those who had not. 

The use of a 15-min. train of subthreshold 1-Hz rTMS was specifically chosen to depress M1 

excitability for the duration of the learning epoch (Chen et al., 1997; Gangitano et al., 2002; 

Romero et al., 2002). Nevertheless, we found that rTMS subjects and control subjects performed 

equally in this epoch. Given that changes in M1 excitability are known to be sufficient to 

measurably affect behavior (Pascual-Leone et al., 1994), the implication is either that M1 is not 

involved in initial motor adaptation (Diedrichsen et al., 2005; Paz et al., 2005) or that its 

involvement can be acutely compensated by the recruitment of other brain areas (Lee et al., 

2003). Indeed, while changes in M1 neuronal activity mirror those of muscle activity in force 

field adaptation (Li et al., 2001), other cortical motor areas show similar activity changes (Padoa-

Schioppa et al., 2004; Xiao et al., 2006). The non-necessity of M1 in motor performance and 

early motor learning has been previously documented in both force field tasks and ballistic finger 

movement tasks (Muellbacher et al., 2002; Baraduc et al., 2004). It is important to note, 

however, that other motor cortical and even subcortical areas may also have been influenced by 

the stimulation, either by transynaptic transmission or direct volume conduction of the magnetic 

field effects (Chouinard et al., 2003), though the latter should have been quite minimal (Fox et 

al., 1997). 
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The novel result in our study was the effect of rTMS on retest performance. Both groups 

exhibited some memory of the force field in the retest epoch, since initial retest errors were not 

as large as those of the early learning epoch. However, the rTMS subjects exhibited a relative 

memory impairment. The memory impairment was not compensated by the return of M1 to 

normal function approximately 10 min. following the end of stimulation, once the effects of the 

stimulation subsided (Romero et al., 2002). This suggests that M1 plays an important role early 

in motor memory formation, starting specifically at the time of acquisition. This conclusion is 

substantiated by recent electrophysiological evidence that M1 supports a short-term memory 

trace of novel movement dynamics (Li et al., 2001). Our conclusion is also consistent with a 

recent rTMS study by a different group claiming M1 maintains a persistent representation of 

previously learned motor skills (Cothros et al., 2006). 

The relative impairment in performance of the rTMS group in the retest epoch was manifest 

only in leftward movement directions. This directional selectivity was an unexpected finding, but 

the cortical representation of arm muscles as well as their activation in force field learning may 

offer an explanation. The leftward-directional tuning of the impairment is nearly identical to the 

directionally-specific recruitment pattern of the biceps brachii muscle in a clockwise velocity-

dependent force field (Thoroughman and Shadmehr, 1999). The rTMS protocol employed here 

targeted the M1 representation of the biceps muscle, but selective stimulation of this 

representation is unlikely given the close proximity of other muscle representations in motor 

cortex (Schieber, 2001) and the known spatial resolution of TMS (Siebner and Rothwell, 2003). 

Rather, the similarity in directional tuning of the impairment and the biceps recruitment may be 

related to the distribution of corticospinal projections to proximal arm motor neuron pools. In 

humans and other primates, there are significantly more corticomotoneuronal cells projecting to 

biceps than triceps motor neurons (Palmer and Ashby, 1992). Furthermore, contrary to 

traditional clinical assumptions, lesions in human motor cortex lead to a corresponding 

distribution of proximal arm weakness: elbow flexors are affected to a relatively greater extent 

than elbow extensors in the paretic limb (Colebatch et al., 1986; Colebatch and Gandevia, 1989; 

Andrews and Bohannon, 2000). Thus we suggest that the “virtual lesion” created by rTMS had 

relatively greater effect on directions of movement that involved the greatest biceps activation. 

This may have preferentially impaired the memory of the dynamics in these directions, assuming 

the process of early memory formation is sufficiently local and not as robust to M1 disruption as 
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motor performance. 

In some respects, our results are similar to those of Muellbacher et al. (2002) who found, 

using a ballistic finger movement task, that rTMS to M1 immediately after learning interfered 

with retention of the motor skill. They concluded M1 is involved in early motor memory 

consolidation, where consolidation was defined as the stabilization of the memory (i.e., 

resistance to interference). In our study, we applied rTMS before, rather than after learning, but it 

similarly interfered with the motor memory. However, unlike the Muellbacher et al. (2002) 

study, the interference did not bring retest performance in the force field back to a naïve state. 

This was true even if one considers only leftward-directed movements (Fig. 6-2D). This 

difference in degree of learning retention after M1 disruption between a ballistic movement task 

(as in Muellbacher et al., 2002) and a force field adaptation task (as in our study) was noted 

explicitly by Baraduc et al. (2004). However, unlike Baraduc et al. (2004), our study identified 

an important role for M1 in motor memory formation of novel dynamics, one which is not 

related to memory stabilization. 

Indeed, the TMS interference in our study resulted in a pattern of retest performance that 

more closely resembles a second form of consolidation documented in the procedural memory 

literature—an offline skill improvement that occurs between practice sessions (Robertson et al., 

2004). In particular, immediately after the first few trials (during which cognitive systems may 

dominate the behavior as subjects readjust to the experimental conditions), the control group 

showed an improved performance relative to their error level late in the learning epoch. In 

contrast, the rTMS group showed no such improvement. Therefore, disruption of a network 

including M1 may selectively impair offline skill enhancement, as shown in sequence learning 

tasks (Robertson et al., 2005). While further work will be needed to specifically address this 

issue, our present findings are remarkable for their implication that proper M1 function during 

adaptation to a novel dynamical environment is important for the full development of a memory 

of these dynamics. 



 151

Conclusion  
 

Since about 1870, the precentral cortex has been know to be the primary seat of motor 

activity in the cerebral cortex (Humphrey, 1986). The work in this thesis follows a long line of 

investigation since that time concerning the specific nature of cortical motor processing. Using 

both neural recording in monkeys and neural stimulation in humans, we studied the role of the 

precentral cortex in planning and controlling reaching movements and in learning to reach in the 

presence of novel perturbing forces. Our results largely confirm and extend previous anatomical 

and physiological studies showing that many distinct areas of the precentral cortex are involved 

in motor control and motor learning. Most of the relevant discussion of these results has been 

included at the end of each chapter. However, there are several additional points to be made 

about the local field potential (LFP) results from Chapters 3 and 4. Below, we discuss these LFP 

results and propose future experiments that might aid their interpretation. 

 

Directional tuning of precentral cortical LFPs  

The amplitude of LFP oscillations, both in the beta and gamma frequency bands, was often 

tuned to movement direction (see Chapter 3). Directional tuning of LFPs recorded during 

reaching movements has only recently been documented, both in the precentral cortex (Mehring 

et al., 2003a; Rickert et al., 2005; Heldman et al., 2006; O'Leary and Hatsopoulos, 2006) and in 

the posterior parietal cortex (Scherberger et al., 2005). These findings potentially have both 

physiological and engineering implications. First, it has been suggested that the tuned LFP 

implies that their may be local spatial order to directional representation in the cortex (Mehring 

et al., 2003b). Second, it has been suggested that the LFP may be a useful neuroprosthetic control 

signal given its direction informational content and the fact that it is easier than single cells to 

record stably for long periods of time (Andersen et al., 2004).  

However, our data argues against both of these implications. We and others have found that 

simultaneously recorded LFPs on different electrodes, even when they are many millimeters 

apart, have very correlated tuning curves resulting in nonuniform, clustered preferred direction 

distributions (Scherberger et al., 2005; O'Leary and Hatsopoulos, 2006). Furthermore, we found 

there was almost no correlation between the tuning curves of LFP and single cell activity 

recorded on the same electrode. These two facts appear to be at odds with the hypothesis that 

LFP tuning is a result of local neuronal tuning. As an alternative hypothesis, the more global 
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tuning of the LFP that we observed may be due to anisotropic task demands, as described in the 

Discussion of Chapter 3. For example if the amplitude of the LFP oscillation reflects the required 

attention to a cue signal or the amount of isometric contraction needed during a hold period, then 

any movement direction-related differences in these quantities would result in LFP tuning. If 

LFP tuning is a function of the task demands, then it would probably be quite limited as a 

neuroprosthetic control signal without constant recalibration as task demands, and perhaps even 

attentional states, change. 

There are several further studies that could be done to determine whether this alternative 

hypothesis is correct. With respect to the beta-band target-hold tuning, a biomechanical model of 

the primate arm could provide insight into whether the static forces required to hold the limb at 

each of the eight peripheral targets (i.e. the joint torques counteracting gravitational forces at 

each posture) are tuned similarly. Also, further recordings of muscle activity may reveal more 

co-contraction in some directions than others. With respect to the beta-band cue-related tuning, 

we have preliminary evidence that the tuning curves were oriented along movement directions 

that experienced the most incorrect trials (data not shown). Thus, the tuning could be related to 

expectation of movement error or reward or an attentional process. To test these possibilities, the 

reaching task could be modified to get a predetermined directional bias in reaching difficulty or 

reward, which could then be compared to the directional bias of the LFP oscillation amplitude.  

The directional tuning of gamma-band oscillation amplitude during movement brings up a 

different but related issue. The increase in LFP power during movement is quite a broadband 

phenomenon, extending from around 70 Hz up to at least 200 Hz (Rickert et al., 2005). We also 

observed this broadband power increase extending all the way up to 1000 Hz, well into the 

frequency range of action potential waveforms (data not shown). Action potential waveforms, 

which are generally thought to have high frequency content, are also associated with slower 

membrane potential fluctuations (e.g. depolarizing afterpotentials and after-hyperpolarizations) 

that probably have power in the 70-200 Hz range. Thus it is certainly possible that the gamma-

band power increase during movement is merely a reflection of the fact that, over the population, 

cortical motor areas have the highest fire rates during movement (see Chapter 2). If this is the 

case then the gamma-band directional tuning, and the nonuniform preferred direction distribution 

of this tuning, could be caused by the need for globally higher firing rates in some directions due 

to the need for greater muscular effort, for example. To test this possibility an additional analysis 
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could look at whether single cell firing rates, averaged across the whole population in each 

direction separately, have the same overall directional bias as the gamma-band PD distribution. 

One piece of data that is not obviously consistent with this alternative hypothesis is the phase-

locking of spikes to the gamma oscillations. Modeling, both of the frequency content of action 

potentials and of the phase-locking of spikes to these frequencies, may provide some insight. As 

an aside, there does seem to be a gamma-band process involved in motor control that may be 

distinct from global cortical firing rates. In particular, at low gamma-band frequencies (30-70 

Hz) there is increased corticomuscular coherence during movement preparation (Schoffelen et 

al., 2005) and movement execution (Marsden et al., 2000; Omlor et al., 2007).  

 

Precentral cortical LFPs and neuroprosthetic applications 

The discussion above suggests that the directional information in the LFP signal may be task-

dependent and thus not well suited to control a neurprosthetic device. However, there is one 

minor engineering application related to the LFP signal that has become apparent in this work. In 

particular, while the high gamma band power may reflect global spiking activity in the motor 

cortex as mentioned above, even higher frequency power (600-1000 Hz) seemed to reflect the 

firing rate of local single cells recorded on the same electrode. This of course makes sense given 

that multiunit activity is obtained by bandpass filtering the recording at around 300-9000 Hz. In 

fact, although we did not include this in the thesis, the average power in the 600-1000 Hz band 

(which we’ll call the spike band) was often extremely closely correlated with the firing rate of 

the cell that had the highest amplitude waveform.  

Neuroprosthetic devices will ultimately require that recorded neural control signals be sent to 

the device wirelessly. But since detecting action potentials requires a sampling rate of around 

20000 Hz per channel and many channels (perhaps hundreds) are required for adequate control, 

the power requirements on the wireless transmission are very high. Although there are many 

proposed methods of decreasing the bandwidth of the control signal and thus the power 

requirement (Zumsteg et al., 2005), a novel method would be to simply use the spike-band 

spectral power as a surrogate for the firing rate. This would allow recording at around 2000 Hz 

per channel—a ten-fold reduction in bandwidth. This is approximately the bandwidth reduction 

that could be achieved by transmitting only spike times (Zumsteg et al., 2005). However the 

advantage of transmitting the continuous signal at about 2000 Hz is that the lower frequency 
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(e.g. beta-band) LFP signal would also be available to use as a part of the control signal. Aside 

from neuroprosthetic applications, this approach could also be useful as a low-power alternative 

for wirelessly recording neural activity from freely moving animals.    
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