
Who's Got Game (Theory)?

By

Erik Jackson Blankinship

B.A. English Literature
University of Maryland
College Park, MD, 1997

M.Ed.
Harvard University, School of Education SEP 2 u 2005

Cambridge, MA, 1998

S.M. Media Arts and Sciences
Massachusetts Institute of Technology

Cambridge, MA, 2000

Submitted to the Program in Media Arts and Sciences, ROTC
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2005

0 Massachusetts Institute of Technology, 2005
All Rights Reserved

Author
Erik Jackson Blanli hip

Program in Media Arts and S ences
September 2005

Certified by
Walter Bender

Executive Director & Senior Research Scientist

ljIUT Media Laboratory

Dr. Andrew B. Lippman
Chair, Departmental Committee on Graduate Students

Program in Media Arts and Sciences

Accepted by

Who's Got Game (Theory)?

By

Erik Jackson Blankinship

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Media Arts and Sciences.

September 2005

Abstract:

Many players enjoy the challenge of outwitting computer opponents in strategy games.
Devising strategies to defeat a computer opponent may enhance certain cognitive skills
(e.g., analysis, evaluation, planning). This thesis takes a constructionist approach to
gaming, hypothesizing that players may learn more about strategic planning by building
their own computer opponents and then playing them to understand how their strategic
theories play out in real experiments.

I have developed a graphic toolkit for designing strategy games and computer opponents.
The goal is to help students learn the underlying mathematical and computer science
theories used to win these games. The tools have been designed to eliminate the overhead
of using conventional programming languages to build games and focus students on the
pedagogical issues of designing and understanding game theory algorithms. I describe
the tools as well as initial evaluations of their effectiveness with populations of teenage
students.

Teenagers in this study posed their own problems, in the form of games they designed,
and then hypothesized about winning strategies. Of their own volition, most teenagers
iterated on their strategic designs, reformulated problems and hypotheses, isolated
variables, and informed next generation versions of this tool with astute suggestions. The
toolkit designed for this thesis has a low floor, making it easy for people to quickly start
playing with mathematical concepts, and a high ceiling for sophisticated exploration.

Thesis Supervisor: Walter Bender
Title: Executive Director & Senior Research Scientist

Thesis Committee

Thesis Advisor Walter Bender
Executive Director & Senior Scientist

MIT Media Laboratory

Thesis Reader Brian K Smith
Associate Professor

School of Information Sciences and Technology
College of Education

The Pennsylvania State University

Thesis Reader Mitchel Resnick
LEGO Papert Associate Professor of Learning Research

MIT Media Laboratory

Thesis Reader Jon Orwant
Research Director

France Telecom

Acknowledgements

I would like to thank my committee: Walter Bender and Brian Smith for their friendship
and guidance, Mitchel Resnick for inspiring me to come to the Media Lab (and helping
me to graduate), Jon Orwant for inspiration and clarity.

I would like to thank a few good friends: Pilapa Esara, Bakhtiar Mikhak, Sunil Vemuri,
and Georg Essl.

I would like to thank my fellow students in Electronic Publishing and Explanation
Architecture, along with those in the other Media Lab research groups.

I would like to thank my teachers at the Media Lab and Media Lab Europe.

I would like to thank members of the Media Lab staff, notably Missy Corley, Felice
Gardner, and Linda Peterson.

I would like to thank the generous sponsors of the Media Lab.

I would like to thank my undergraduate friends (well, not any more) from East Campus,
notably: Michael Baker, Max Van Kleek, Jim Roewe, Cliff Frey, Sagara
Wickramasekara, and Andy Marsh.

I would like to thank some friends: Lisa Clarke, Federico Grau, Benjamin Duncan, Paul
Edwards, Natasha Abramova.

I would like to thank my family: my mother and father, my brother Adam, my cousin
Olivia Crosby. I would also like to thank my family's pets: Oscar, Chewbacca,
MacDougall, MacDuff, Banjo, Buttercup and Blue.

I would like to thank the Hulk for his incredibility, Spiderman for his amazingness, and
Thor for his mightiness. I would also like to thank the Wizard of Frobozz.

This dissertation is dedicated to my uncle Holmes Crosby.

Table of Contents

1 INTRODUCTION 13

1.1 Educational Games 14
1.1.1 Simulations: Decision Making in Context 14

1.2 Game Modifications 16
1.2.1 Technical Contribution: The Gaming Calculator 16
1.2.2 Pedagogical Contribution: Testing Strategic Hypotheses 17

1.3 Overview 18

2 EXTENDED EXAMPLE 19

2.1 Introduction 19

2.2 Game Design 19
2.2.1 Board Design 20
2.2.2 Piece Design 23
2.2.3 Rules Design 25

2.3 Strategy 27
2.3.1 Number of Moves 29
2.3.2 Evaluations 33
2.3.3 Selecting Moves 37

2.4 Strategy in Context 41
2.4.1 Changing the Game 43
2.4.2 Different Heuristics 44
2.4.3 Scaling Heuristics 45

2.5 Opposition 45

2.6 Summary 46

3 DESIGN RATIONALE 48

3.1 Game Theory 48
3.1.1 Thesis Scope 50

3.2 Deep Blue, Wide Blue, and Kiddie-Pool Blue 50

3.3 Learning Programming versus Learning Strategy 50

3.4 Constructionism 51
3.4.1 Debugging Processes 51
3.4.2 Collaborative Learning 52
3.4.3 Authenticity 53

3.5 Metaphors and Meaning 54
3.5.1 Piece Design by Example 56

3.5.2 Syntonic Pieces 56

4 DESIGN AND EVALUATION 58

4.1 Diagnostics 59
4.1.1 Diagnostic Games 59

4.2 Choices 60
4.2.1 The Future Game Board 62
4.2.2 Scaffolds to Debugging 62
4.2.3 Bonsai Trees 63

4.3 Goals and Hints 64
4.3.1 Collaborative Competition 66

4.4 Systemic Evaluation of Choices 67
4.4.1 Complexity from Simplicity 69

4.5 Choosing 69

4.6 Hypothesizing with the Game Calculator 72
4.6.1 Me Versus Me 72
4.6.2 Asymmetric Star Wars 74
4.6.3 Who's Going to Win? 75

4.7 Summary 76

5 FUTURE WORK 77

5.1 Games of Perfect Information 78
5.1.1 Searching Quickly, Widely, Deeply, and Selectively 79
5.1.2 If-Then Rules 79
5.1.3 Beyond Min and Max 80
5.1.4 Finding Patterns on the Game Board 80

5.2 Partial Information, Iterative Games and the Rest of Game Theory 81

5.3 Simulations 82

5.4 Frenetic Video Games 82
5.4.1 State Machines 83

5.5 Future Pedagogical Work 84

WORKS CITED 85

11

Table of Figures
FIGURE 1.1 A GOVERNING EQUATION FROM THE OREGON TRAIL SIMULATION GAME 15
FIGURE 2.1 THE MAIN MENU OF THE GAMING CALCULATOR 20
FIGURE 2.2 THE DEFAULT BOARD-DESIGN SCREEN OF THE GAMING CALCULATOR 21
FIGURE 2.3 A HOGWARTS GAME BOARD DESIGNED WITH THE GAMING CALCULATOR'S

BOARD-DESIGN TOOLS 22
FIGURE 2.4 THE PIECE-DESIGN SCREEN OF THE GAMING CALCULATOR 23
FIGURE 2.5 A HARRY POTTER GAME-PIECE DESIGNED WITH THE GAMING CALCULATOR'S

PIECE-DESIGN TOOLS 25
FIGURE 2.6 DEFINING WINNING CONDITIONS WITH THE GAMING CALCULATOR 27
FIGURE 2.7 THE GAME-PLAYING SCREEN OF THE GAMING CALCULATOR 28
FIGURE 2.8 THE GAME TREE DIAGRAM 30
FIGURE 2.9 THE GAME TREE AND FUTURE GAME BOARD PREVIEW OF ONE OF HUXLEY'S

POSSIBLE MOVES 31
FIGURE 2.10 LOOKING TWO TURNS AHEAD ON THE GAME TREE 32
FIGURE 2.11 LOOKING THREE TURNS AHEAD ON THE GAME TREE 32
FIGURE 2.12 DEFAULT HINT DESCRIPTION INTERFACE 33
FIGURE 2.13 HINT DESCRIPTION INTERFACE WITH RELATIONS PULL-DOWN MENU

SELECTED 34
FIGURE 2.14 SELECTING ANYWHERE ON THE BOARD WITH THE HINT DESCRIPTION

INTERFACE 35
FIGURE 2.15 THE FUTURE GAME BOARD HIGHLIGHTS PIECES DESCRIBED BY A HINT 36
FIGURE 2.16 A HINT IS ADDED TO THE HINTS LIST 37
FIGURE 2.17 SELECTING "MY BEST MOVE" 38
FIGURE 2.18 THE GAME TREE WITH EXPECTED MOVES AND COUNTERMOVES

HIGHLIGHTED 39
FIGURE 2.19 MOUSING THROUGH LOWER BRANCHES OF THE GAME TREE HIGHLIGHTS

EXPECTED COUNTERMOVES 39
FIGURE 2.20 MOUSING THROUGH THE UPPER BRANCHES OF THE GAME TREE HIGHLIGHTS

PLANNED AND EXPECTED MOVES 40
FIGURE 2.21 ANIMATION OF EVALUATION SCORES CLIMBING BRANCHES OF THE GAME

TREE 40
FIGURE 2.22 THE THOUSAND TRIALS 42
FIGURE 2.23 REMOVING A BARRIER WITH THE BOARD-DESIGN TOOLS 43
FIGURE 2.24 THE GAME TREE WITH MORE BRANCHES 44
FIGURE 2.25 A HINT FOR A HARRY POTTER GAME-PIECE TO BE IN THE MIDDLE OF THE

BOARD 44
FIGURE 2.26 THE THOUSAND TRIALS WITH NEW STRATEGIES AND A MORE EQUAL

DISTRIBUTION OF WINS 46
FIGURE 3.1 THE MINIMAX THEOREM (WEISSTEIN) 48
FIGURE 3.2 THE MINIMAX ALGORITHM (RUSSELL AND NORVIG 1995) 49
FIGURE 3.3 DIFFERENT CHESS PIECE MOVEMENTS 55
FIGURE 4.1 CHESS OPENINGS VISUALIZATION (WATTENBERG AND WALCZAK 2005) 61
FIGURE 4.2 A GAME-TREE GRAPHIC OF THE FIRST THREE MOVES AND COUNTERMOVES OF

BABY BARRIER CHESS 61
FIGURE 4.3 A GRAPHICAL OVERLAY OF EVALUATION CRITERIA PROJECTED ONTO A

WHITEBOARD 66
FIGURE 5.1 PAC-MAN CHASED BY BLINKY THE GHOST 83

1 Introduction
Life is full of choices, many of which lead to unexpected outcomes. Therefore, learning
how to plan ahead to find multiple paths to satisfactory results is a useful life skill.
Because games are repeatable and enjoyable, they provide ample opportunities for
learning about decision-making and problem solving in situ. However, learning to play a
game well does not necessarily transfer to better decision-making skills. Algorithmic
analyses of options in games, and in life, provide another means for reflection on the
decision-making process. Opportunities to learn about systemic decision-making
processes are limited by the amount of computation required to do it effectively; the
opportunity to design algorithm-based decision-making systems is limited almost
exclusively to computer programmers. Most others only see the effects of these systems,
most often when they play computer games. But most people never understand, let alone
design, these systems themselves.

This thesis describes how to make systematic decision-making concepts more widely
available with the development of a new computational tool. The pedagogical goal was to
provide constructionist opportunities for learning about strategy in the familiar context of
strategy games. By constructionist, I refer to the educational research tradition of
providing learners with well-designed modeling tools with which they can build robust
mental models (Kafai and Resnick 1996). I started with an initial design for this tool and
worked through multiple enactments with students in gaming workshops, making
changes to better scaffold students' learning. The decision-making skills modeled by this
tool introduced students to a systematic way to approach problem solving: enumeration
and evaluation of all options. Students using my tool saw how they could design
computational processes to help make decisions that impact them directly.

The tool described in this dissertation models a game-theoretical decision-making
process. Game theory has practical applications in varied fields to predict and analyze
behavior. For example, military strategists and economists (Weintraub 1992) have used it
for planning and prediction. The theory has also been used for analysis of decision-
making behavior in other fields such as theology (Brams 1980) and law (Baird, Gertner et
al. 1994). As these examples illustrate, systematic decision-making has useful
applications in various contexts. However, for many teenagers-who are the focus of my
study-the practical applications are first and foremost games. Playing games is fun. I
follow the constructionist tradition of helping students design computer games but take a
new approach in that my tool de-emphasizes programming and focuses instead on
teaching the decision-making system.

I begin this chapter by describing how games have been used in educational settings to
teach decision-making. Then, I explain the approach of this thesis to learning about a
decision-making process via algorithm modification and animation. I also introduce my
design contributions and an overview of my evaluation contributions. I conclude this
chapter with a preview of the rest of the dissertation document.

1.1 Educational Games
Card games have been studied as informal opportunities for learning arithmetic such as
counting, evenness, oddness, quantities, addition, subtraction, and for introducing
probability (Golick 1998). Decks of cards have also been used to teach adults advanced
mathematics such as elementary statistics, set theory, abstract and linear algebra, and
some game theory, although not necessarily by playing games (Baker 1999). The player
or teacher who knows to look can find mathematical relationships within many games.

However, most educational games are about learning traditional school subjects extrinsic
to the games themselves. The earliest examples are from the mid 17 th century: decks of
standard playing cards decorated with illustrations and text captions of educational
subjects such as geographic locations, historical events, and heraldry (Tilley 1967). The
educational value of these decks is more as instructional material than game. A recent
example is the US Military's Iraq deck given to GIs to acquaint them with enemy names
and faces.

Even if intended for memorization of facts, playing cards that maintain their suit and rank
can still be used to play games. Many instructional computer games, in contrast, offer
only drill and practice repetition. Marketed as making math easy, these games fail to
recognize that easy games aren't much fun; hardfun is what constitutes good game
playing (Papert 1998). Arguably, these instructional games fail to sustain children's
interest because they fail to integrate "learning" and "playing".

1.1.1 Simulations: Decision Making in Context
Simulation games, in which students' decisions are intrinsic to the outcome of the game,
are more compelling than instructional games. For example, role-playing simulations in
social studies classes, such as "Model U.N." in which groups of students take the roles of
countries in diplomatic negotiations, contextualize the decision-making process with
pretense of international importance. However, because these are interpretive
simulations, it is difficult to reflect upon and analyze all decision-making factors during
or after a game.

In games with more structured rules, such as strategy games, decision-making factors are
more easily enumerated. Such was the goal when Educational Development Center
(EDC) in Cambridge, Massachusetts, developed and tested a board game in which
students moved Eskimo game pieces to hunt caribou game pieces (moved by other
players) (Carlson 1969). If the hunters didn't cooperate, they would perish from
starvation and lose the game. The game was inspired by Harvard educator Jerome Bruner
to focus students on the interdependence of man and his environment. The rules of the
game were designed to teach "that it is through careful organization of technological and

human resources that man is able to master his physical environment." That is, the rules
of the game were an artifice for simulating real-world decisions and their outcomes.

Around the same time, computer simulations were introduced into classrooms to study
their effectiveness as learning tools. These early games were text-based simulations such
as The Oregon Trail and Sumer. In these simulations, children made decisions such as

how many supplies to buy to survive a cross-continental trip or how much grain to plant
to feed an ancient city. Children's decisions were entered via a keyboard and then
descriptive outcomes were generated based on equations in the game's software. Within a

few years, the original source code of The Oregon Trail was published alongside graphs
of the game's governing equation (Rawitsch 1978):

40

0

0 200 400 9W 00 1000 100 140 1600 1000 1000

Mileage

Occurrence of "Riders Ahead" as a function of mileage
FIGURE 1.1 A GOVERNING EQUATION FROM THE OREGON TRAIL SIMULATION GAME

With this graph, players could strategize about how to play better. While some game
players might argue that this takes away the enjoyment of playing a simulation since it
reveals the outcome of decisions, it is hard to argue against the educational merit of
seeing how the algorithm impacts game play. Access to this algorithm is the equivalent of
"looking under the hood" of a simulation.

These simulations are predecessors of the more sophisticated SimCity and Civilization
graphic simulations, which have been studied by educational researchers as contexts for

learning history and urban planning (Squire 2003). However, a problem with using these

games as learning tools is that players can only intuit the governing equations of these

games and are therefore bereft of many learning opportunities for nuanced analysis (Staff
1994). Instead, students playing these games "learn the properties of a virtual world

through interacting with its symbology, learning to detect relationships among these
symbols, and inferring the game rules that govern the system" (Squire 2002). It would be

beneficial to educators if the governing equations were available for analysis and
graphing like the source code to The Oregon Trail was decades ago. It would be even
better if students could modify these equations themselves to see their effects on
simulated behavior.

1.2 Game Modifications
Children are adept at modifying the games that they play. This flexibility has been well
documented by social scientists in England (Opie and Opie 1969) whose longitudinal
study of variations in children's folk customs, including children's schoolyard and street
games, revealed subtle differences throughout England. Playground game variations
come from the children themselves. Swiss psychologist Piaget's interviews with children
found that younger boys attributed the origins of the rules for marbles to their fathers or
God (or a conflation of both) and thus considered them immutable, while older boys
credited learning the rules from peers and acknowledged they were meant to be changed
(Piaget 1965). The members of this gerontocracy also reflected on the need to balance
rules whenever changes were made so as to ensure a fair game.

Modification is a feature of some popular computer games in kids' culture today, albeit
only where the computer-game designer has provided ways for players to plug-in their
data. For example, different "skins" for a video game can change the graphics, or
different map files can create new maze games. Although making modifications to a

game provides a sense of authorship (Fine 1983), the modifications are mostly cosmetic.
The original computer programmer has already defined the rules of play; all the game
players are changing are variables. However, with an appropriate digital representation
for game rules and processes, it is possible to modify the rules of a computer game with
design primitives such as "turn", "move", "hand", "round", etc. (Orwant 1999).

For this thesis, I studied two-player, turn-based games because they provide opportunities
for learning classic strategies associated with game theory. Instead of studying just one
example strategy game, I created game-design tools that can be used to design a variety
of games, all of which could be strategized about in similar ways. I did not want to design
an exemplary educational game and then make it more educational by using it to help
students learn about strategy. Rather, I wanted students to make modifications to their
own games, to the point of being able to create them from scratch, so that they would
have access to more strategic scenarios. And by being able to create and modify
asymmetric games, children would have opportunities for reflection on balance and
fairness in relation to strategy.

1.2.1 Technical Contribution: The Gaming Calculator
Although some computer games allow modifications that can change the look, feel and
even game mechanics, simulated behavior remains the ghost in the machine. Since the
allure of many computer games comes largely from an always-available computer
opponent, my inspiration was to extend game modification to the algorithms that govern
simulated behavior. My design goal was to make complex modifications to these
algorithms relatively simple without ceding to full-blown computer programming which
is overwhelming and not tailored to learning strategy.

Game playing algorithms use logic to make decisions based on game data (Rabin 2000).
A well-designed separation of logic and data makes it possible for the same game-playing
algorithms to play different games. What I have done in this thesis is to use data to
modify not just games, but to modify the logic of the algorithms that play these games.
The contribution of this approach to learning about strategy is a focus on high-level
problems, not the maintenance of control-structures and the resultant syntax errors
associated with programming.

Consider an analogy to another tool-graphing calculators-found in most secondary
math classes today. Graphing calculators allow students to plotf(x) and to rapidly explore
how functions operate. They provide unlimited exploration within a limited problem
space. The pedagogical strength of graphing calculators is not in replacing students'
learning opportunities, but enhancing them by facilitating more inquiries than are
possible by rote calculations. Graphing calculators are also computers, which motivated
students can program to explore more complex computational ideas. In this spirit, I
introduce a gaming calculator: as a graphing calculator is designed to help students solve
problems related to equations, the gaming calculator helps to solve game-theoretical
mathematical problems.

A graphing calculator, as the name suggests, literally graphs mathematics to help
students identify patterns hidden in equations. Similarly, the gaming calculator helps
students find the mathematics hidden within games by graphing the decision-making
process into flow-chart representations. Since the decision-making modeled with this tool
is an algorithmic process, diagrams are animated to elucidate the sequential steps of that
process. These diagrams represent changes to both the modified game logic and the
current game data, providing custom learning aids for every move in a game. Therefore, a
contribution of the gaming calculator is that animated diagrams and graphics reveal the
decision-making process to help learners understand the function of their strategic
designs.

The gaming calculator makes debugging easier by linking relevant source code to its
representation in the diagrams and vice versa. For example, clicking on a line of code that
describes how to evaluate moves overlays informative graphics onto the game board;
selecting a different move from a diagram updates the game board and the overlaid
graphics accordingly. These visual scaffolds facilitate debugging by coupling the
description of a process to a representation of the process unfolding.

1.2.2 Pedagogical Contribution: Testing Strategic Hypotheses
My pedagogical focus was to help students learn about strategy by designing strategies. A
guiding instinct throughout my research was that winning games is fun and therefore
would hold the interest of students when they were learning the mathematics. This
instinct proved right as I conducted research workshops with teenage students.

Their use of the gaming calculator led to my second contribution: initial understandings
of how teenagers used the gaming calculator to develop hypotheses about strategies and

test those hypotheses by creating computer opponents. Through my workshops, I was
able to identify conceptual difficulties students had as they tried to understand the
mathematics of game theory. For instance, teenagers did not know how to systematically
plan ahead nor did they have a method for selecting their best move in a competitive
game.

While I had initial hypotheses about these difficulties, more emerged as I worked with
students and those led to further development of scaffolds in the gaming calculator and
additional trials with teenagers. This process of iteration-refining the software, testing
with teenagers, refining again based on what was learned-was used to not only discover
the conceptual difficulties but also to inform the design of supports to assist learning.

1.3 Overview

e Chapter 2 is an extended example of one teenager's learning story with a
prototype gaming calculator.

* Chapter 3 contextualizes this work within the constructionist tradition.

- Chapter 4 describes my iterative process of design and evaluation with evidence
of how students in my workshops used the gaming calculator to learn about
strategy.

* Chapter 5 describes how this thesis' design approach can be extended to enable
exploration of decision-making in other types of games that children like to play.

2 Extended Example
As part of this thesis work, I ran a series of eleven game workshops over six months to
study what teenagers learned about decision-making when they used prototype gaming
calculators to create and win strategy games. In all, 25 teenage students responded to
postings and advertisements for various game workshops. In my early workshops, we
played chess variants so that I could better understand the problems students had
understanding strategy in a familiar game. Later workshops included both game design
and strategy design. This chapter is an extended anecdote describing how one of these
later workshops ran; I show the reader how a real teenager used the gaming calculator.
At the end of the chapter, I summarize what this student learned at the workshop.

2.1 Introduction
I met Jim, age 14, on a summer afternoon at his school's library. He had responded to a
flyer advertising game workshops that was sent to the members of his junior high
school's math and chess club. His membership in such a club and his interest in my
workshop indicated he was a self-motivated teenager with an interest in solving
problems. The activity appealed enough to bring him back to school over summer
vacation.

In an informal interview, I learned that Jim had no computer programming skills,
although he had some experience making web pages with HTML. He liked to play
strategy games and computer games but had never designed one of his own. He was keen
to know what we were planning to do that afternoon; I outlined for Jim the afternoon's
agenda: I was going to teach him how to design his own strategy game, which would
consist of designing game pieces, a game board, and winning conditions. Then, he was
going to design a computer opponent to play the game he had just designed. I stressed
that our goal that afternoon was not to create an unbeatable computer opponent, but
rather to understand the process by which his opponent worked.

2.2 Game Design
Jim asked, "What kind of strategy game are we designing? Real-time strategy?" If you
are unfamiliar, real-time strategy games are a popular genre of video games in which
players control semi-autonomous armies in real time. This was a common question from
students in my workshops, indicating that teenagers today are savvy and discerning game
players.

"No, we are designing an old fashioned, two-player strategy game-a turn-taking game.
Games like chess and checkers. But your game can be different than those games. For
example, you can make game boards of different sizes and boards with barriers. You can
make pieces that can move and capture in different ways. Once you make a board and
some pieces, you can put them together into a game and each side can have different
pieces. You can also make up your own ways to win your game by describing those to
the computer. Don't worry if this sounds overwhelming. We're going to go through this
design process step by step."

I asked Jim what sort of game he would like to design, and he wasn't sure. I suggested
some popular book and movie titles as source material, and he suggested one of his own:
Harry Potter. (I later learned that his e-mail address name was a variant of Harry Potter,
and that he was a big fan of the book series). With that decided, I booted up the gaming
calculator and got Jim started designing his game.

FIGURE 2.1 THE MAIN MENU OF THE GAMING CALCULATOR

2.2.1 Board Design
I started by showing Jim how to design his own game board. The board-design screen

came up, consisting of a blank 4x4 tiled game board and a few design palettes to the side.
I showed Jim how we could change the dimensions of the game board in the Size palette,
by adjusting Width and Height sliders to create a 5x5 board. Jim increased the size of the
board to 5x5. Jim asked why we couldn't make a larger game board, at least one the size
of a real chessboard, and I told him that it was easier to learn by starting with smaller
games to minimize complexity.

10 0 m

FIGURE 2.2 THE DEFAULT BOARD-DESIGN SCREEN OF THE GAMING CALCULATOR

Next, I showed Jim how we could decorate the game board by adding some graphics. On

the menu bar, I selected the Add Color Space menu item and picked red from a color
dialog, which added a red button to a Spaces palette. Then, I added a blue button to the

Spaces palette. I explained how we could also go on the Internet and get some graphics to
add images to the spaces palette. Now that we had a few choices on our palette, I clicked

on the red button, which changed our mouse pointer from the default arrow to a small

game board pointer , indicating that the function of the mouse had been changed.
Then we clicked a space on the game board, which colored that space in, together with its
mirror space on the other side of the game board. I explained, "If you want to erase the
graphic that you put on a space, just click the space again and it will be cleared."

Jim asked, "Can you only make symmetric game boards?"

"Yeah, it's designed this way so that if both players have the same game pieces, then

strategies are interoperable regardless of which side you're playing. But, as you'll see,
each player can have different game pieces and different starting positions. Another
reason the game board is symmetric is to keep from having to spin the board around if

you're designing a strategy for both sides. It helps keep things from getting confusing."

The remaining board-design palette was labeled Barriers, and I next showed Jim how this

worked. The palette had four buttons shaped like squares, each one with a thick barrier on

a different cardinal side. Clicking on the button with a heavy barrier on its bottom side

updated the graphic of our mouse pointer into a miniature version of the button ,
indicating that the palette was active for adding barriers to the game board. Then I clicked
on a space on the game board, which dropped a thick graphic barrier on the bottom of
that space. A barrier was also added on the other side of the game board, making the
game board's barriers symmetric as well. "Only pieces that can hop, like checkers or the
knight in chess, can move over barriers."

Upon learning how to design his own game board, Jim created a board that represented
one of the dungeon passages in Hogwarts, a school in the Harry Potter story. Using the
barrier function, he added dungeon walls through the middle of the game board to create
a corridor, then cleared away some of the barriers to make passageways into the corridor.
Then, he colored in the corridor with blue tile and colored the outside area with grey tile.
Jim saved his work to disk, eager to learn what we'd do next.

ea' ca ann

FIGURE 2.3 A HOGWARTS GAME BOARD DESIGNED WITH THE GAMING CALCULATOR'S
BOARD-DESIGN TOOLS

2.2.2 Piece Design
I opened up the piece-design tool and said, "Let me show you how we define the way
pieces move around the game board you just designed."

On screen was a large 9x9 game board with a single red piece in the middle shaped like a
checker. A palette to the side was titled Moves and had buttons labeled Move, Hop, and
Stop. I clicked on the Move button, which turned the cursor into a small compass rosette

4+ and indicated that the palette was enabled.

Clicking on the game piece on the board, I dragged a path through adjacent game spaces,
which left a graphic trail on the game board extending from the game piece. I explained
to Jim, "If we added this piece to our game, this is the path it could move along. Let me
show you how it moves by animating it." I clicked on the Animate Moves button in a side
palette, and the game piece slid from its starting position along the graphic trail that we
had drawn on the game board. When it reached the end of its trail, it reappeared at the
center of the board. Jim's facial expression brightened, indicating the he thought this was
pretty cool-the game software had some graphics that moved.

FIGURE 2.4 THE PIECE-DESIGN SCREEN OF THE GAMING CALCULATOR

I explained to Jim, "If we want to make a piece jump over any barriers, or over other
pieces, we can add hop moves onto the game piece's path." I clicked on the Hop button,
and then clicked and dragged on the game board to extend the path graphic we had
already started. While moves were drawn onto the game board as straight lines, hops
were drawn as small arcs. When I next clicked the Animate Moves button, the game piece
first slid along its initial move path, as before. Then when it reached the new hop
segments of its path, the game piece hopped from space to space. "We can extend the
way a piece moves by drawing a branch on to the existing paths we've made. This is how
we'd design a piece like the knight from chess; it can fork at the end of his move."

Jim asked, "But how do we make a piece stop someplace other than at the end of its path?
Can't we stop a piece somewhere along the way? How would we design a piece like the
chess queen?"

"That's easy. Just click on the Stop button in the Moves palette, and then, on the game
board, click on spaces along your game piece's path to add stops. Now, let me show you
how you can let your game pieces capture other game pieces."

In the Captures palette, I showed Jim a list that had been automatically generated to show
all of the final stops that our game piece could make. Selecting one of these stops from
the list highlighted that stop on the game board. These stops included the ones that we
had just added along our game piece's path and the ends of every path. Above the list of
stops were two target-shaped buttons, one labeled Capture and the other labeled Move
Only On Capture. I clicked on the Capture button and then clicked on a selected space
along the game piece's path. This added a colored explosion graphic to the game board at
this space, indicating a capture.

"We aren't limited to just landing on an opponent's piece to make a capture. We can
make it so we capture pieces that we've just hopped over, or a piece in front of us, or
both. We could even make it so that if we stop here, we capture pieces all over the game
board." Jim thought this was a pretty interesting feature.

"Okay, I get it. This is like a make your own freaky-deaky chess program. What does that
Move Only On Capture button do?"

"That's so you can make pieces that capture like the pawn in chess. The pawn can move
diagonally, but only when there is an opponent's piece there to capture. You can add that
sort of limitation to how your game pieces move."

Next, I showed Jim how we could change the look of the game piece in the Appearance
palette with buttons for changing the name and color of the game piece. I also showed
him how we could use a letter of the alphabet, rendered with any of the computer's
available fonts, as the graphic. I explained how we could load in graphics from the
Internet to use as game pieces (and how, if a graphic had a transparent background, the
game piece token would automatically take the shape of the visible part of the graphic so
it would look more like a game piece).

Upon describing the process by which Jim could design his own pieces, he thought for a
bit and came up with some ideas. Jim made a Harry Potter piece that moved a little bit
like a king in chess, but it did not capture by landing on opponent's pieces. Instead, Harry
used his wand to zap pieces one space away from him in the direction of his move. Also,
Harry could not move diagonally unless there was an opponent's piece to capture. Then,
Jim made a professor piece that moved like Harry but that could move diagonally without
capturing. Finally, Jim made a ghost piece that could hop diagonally, thereby moving
through the dungeon walls of the game board. The ghost piece could capture by landing
on an opponent's piece. Jim saved all of his pieces to disk, each as a separate file.

- - ~

93.3 V capas: it c apware
Space 3.5 #c apueS: I tmo ny cawei

es9.4 & awnsm I kaeW.I
$M4.5 VUOM 110

pace 94.3 0 caIp*es: I itnape1

-o"3. cw.4 # Capnxs I .*apu

FIGURE 2.5 A HARRY POTTER GAME-PIECE DESIGNED WITH THE GAMING CALCULATOR'S
PIECE-DESIGN TOOLS

2.2.3 Rules Design
Now that Jim had designed both a game board and game pieces, he was ready to put these
pieces together to make a game. He opened the rules-design screen, which was empty
except for palettes labeled Player A Pieces, Player B Pieces, and Winning Conditions.
Using an open file dialog, we loaded in Jim's game board file, and it appeared in the
game design window. Then, in the same fashion, Jim loaded in all of the game pieces he
had just designed. The pieces were added to both the Player A Pieces and Player B
Pieces palettes.

I explained, "Here in the rules-design toolkit, we put your pieces onto the game board in
their starting positions. Player A and Player B have all of the same pieces available to
them, but they don't have to be symmetrical or even have the same pieces.

"Where you place pieces is where they will be at the beginning of your game. If you have
pieces that only advance forward, like pawns in chess, you need to make sure you start
them on your side of the board so they have somewhere to go. Player A's side is on the
bottom of the board, and Player B's side is on the top of the board."

Jim said, "So I'll put Harry on Player A's side and the Hogwarts staff on Player B's
side." He clicked on a Harry Potter piece in the Player A Pieces palette, which updated
the appearance of his pointer on the screen to a letter A, and then clicked a space on the
game board, thereby stamping a Harry Potter piece onto the game board at that space.
The game piece on the board was tinted red, indicating it was one of Player A's pieces.
Jim stamped one more Harry Potter game piece onto the board. Then Jim switched to
Player B's palette, selected a Professor piece, and stamped two of those onto the game
board, then did the same for his ghost. "Those seem like good places to start the game,"
he says, "but I don't think two Harry Potters can beat all of these other guys in a chess-
like battle."

"You don't have to make this a capture game like chess. You can have different winning
conditions for your game. For example, you can define winning as getting a piece to a
certain location, maybe crossing the board successfully."

"Oh. Then how about Harry has to cross to the other side, like sneaking around
Hogwarts, and all of the Hogwarts staff are trying to capture him. That's how they'd each
win."

I told Jim, "That sounds good. Let me show you how we can define winning conditions
for your game. The first player to reach a winning condition ends the game because only
one player can win." In the Winning Conditions palette, I showed Jim an empty list with
Add, Delete and Edit buttons at the bottom. Jim clicked on the Add button, and this
brought up a new window with a modifiable sentence composed of pull-down menus and
other widgets. The sentence read, "If [I] or more [Harry Potter] pieces [of mine] are [on
the board] at this location [image of game board with highlighted spaces], [] then I win
the game." (In this sentence, everything in brackets is a widget that Jim could adjust the
value of).

Who's Got Game (Theory)?
File Options

FIGURE 2.6 DEFINING WINNING CONDITIONS WITH THE GAMING CALCULATOR

I explained to Jim that he could describe one of his winning conditions by modifying this
sentence. The default sentence already described Jim's winning condition for Harry
pretty well, except that Jim had to click on the back row of the game board to specify that
those were the spaces where Harry had to be to win the game. Then, Jim saved his
changes, and his winning condition was added to the Winning Conditions list as "Harry
Potter on the Board".

Jim clicked Add again to create the winning condition for Player B's Hogwarts staff. Jim
used a pull-down menu to change [on the board] to [captured], which caused the
miniature game board to disappear. Then, Jim changed the number of pieces at the
beginning of the sentence to [2]. His sentence now read, "If [2] or more [Harry Potter]
pieces [of theirs] are [captured], [] then I win the game." Jim clicked save, and that
winning condition was listed on the Winning Conditions list, shortened to "2 of their
Harry Potters caught".

I explained to Jim that we could add more winning conditions. For example, Harry could
capture one of the Hogwarts teachers to win, in addition to winning by getting to the
other side of the game board. Jim thinks it over and decides to keep his game as is and
saves his game file to disk. He is ready to play.

2.3 Strategy
From the main menu, Jim clicks on the A.I button, and this brings up the game-playing
screen. After loading his game file, Jim's Hogwarts game board with all of his game
pieces on it at their starting positions appears on this screen.

l~te f~ItbW

FIGURE 2.7 THE GAME-PLAYING SCREEN OF THE GAMING CALCULATOR

To the side are two small panels labeled A and B, which I explain to Jim are where
captured pieces will end up. The A and B panels also indicate whose turn it is with a
small indicator arrow. The arrow points to the A, and I explain that games always start
with player A (but that that might change in a future version).

I suggest to Jim that we try playing his game, and he agrees. He clicks on one of his
Harry Potter pieces and drags a ghost image of it to a neighboring space on the game
board. When he releases the mouse, the ghost image disappears and the game piece itself
slides from its current location to the selected space. The turn indicator arrow also moves
to point to B.

I then refer Jim to a button on the screen labeled Make A.L Move. I explain that pressing
that button tells the computer to decide which move a player should make. I explain that
for now, pressing Make Al Move just makes a random move, but that we will design a
strategy soon. After a few moves against the random player B, Jim has won his own
game and the computer displays a message that reads, "Player A Wins! Winning
Condition: Harry on the Board."

Jim comments, "I guess my game is pretty easy to win when there isn't any real
competition."

F11#

2.3.1 Number of Moves
We select the Restart Game menu item, and the game pieces are returned to their
designated starting positions. Before we play again, I ask Jim how many possible moves
he has on his first turn. He looks over the game board and says that he has two moves. I
ask him how many countermoves Player B has, he thinks it over, and says they have 4
moves. Neither of these answers is correct, so I guide Jim through a counting process to
make sure that we are both using the same definition for number of moves. I point to the
first Harry Potter figure on the board and ask Jim how many spaces it can move to on this
turn. He answers, "two". Then I point to the other Harry and ask how many spaces it can
move to on this turn, and he answers "two".

"So how many moves, in total, can you make on your turn?"

"Oh, I guess four."

"And how many countermoves can Player B make on their turn?"

"Um, I guess... let me count... they have ten moves."

"Is that right? If you move Harry here, how many moves can they make in response?"

"Ten."

"And if you move Harry here, how many moves can they make?"

"Ten again. I see, they can make... a total of forty moves if I count everything they can
do after every move I can make."

"Let me show you a way to diagram all of these moves and countermoves."

I click on the Player A Strategy tab, and the game board disappears and up comes a new
set of screens. I explain to Jim, "This is your strategy dashboard, where you can get
information on your strategy and also where you can program your strategy. Here is a
diagram of all of your moves and countermoves: right now it is only showing your four
possible first moves."

FIGURE 2.8 THE GAME TREE DIAGRAM

I continue, "This diagram is called a Game Tree. It is like a road map, and you are at the
top of the road and you have four ways you can go. Each line represents a move you can
make. We can use the arrow keys to select and highlight different moves."

Jim clicks the arrow keys on the keyboard, and with each click, a different line on the
diagram is highlighted. Changing the highlighted move with the keyboard also changes
the configuration of game pieces on the small Future Game Board window in the corner.
I explain to Jim, "That is a possible future game board. It shows us what will happen if
we make the highlighted move. We can see an animation of the move that leads us to this
possible future game board by double clicking on the Game Tree."

Jim double clicks and the pieces on the Future Game Board momentarily fade away and
then reappear in their starting positions. Then one Harry Potter piece moves by sliding
into the space to its right. While this move is animated, that branch on the game tree is
highlighted with a red colored dashed line and a label below the Game Tree reads, "Move
by Huxley".

FIGURE 2.9 THE GAME TREE AND FUTURE GAME BOARD PREVIEW OF ONE OF HUXLEY'S
POSSIBLE MOVES

Jim asks, "Who's Huxley?"

"Huxley is a name for Player A. It helps to distinguish Player A from Player B if we give
them names, so we call Player A "Huxley" and call Player B "Robotron." Now, let me
show you how we can look ahead to see all of the countermoves that you counted out
earlier, the moves that Robotron can make on his turn."

I refer Jim to a slider labeled Number ofMoves Ahead, which has three options: 1, 2 and
3. Jim moves it from 1 to 2, and the Game Tree graphic changes: now a bunch of blue
lines appear under each of the lines representing Huxley's four moves. I explain that
these represent all of the countermoves that Robotron can make on his turn. (I also
remind Jim that blue is the color assigned to Player B and that the colors help to clarify
whose turn is whose).

Then Jim cranks the slider up to 3 moves ahead and the Game Tree gets really thick with
branches: under every counter move are a new cluster of red moves. Jim says, "That's a
whole lot of stuff when you consider everything everyone can do."

FIGURE 2.11 LOOKING THREE TURNS AHEAD ON THE GAME TREE

I explain, "Even though the computer can plan for all of these moves, right now it doesn't
know which of these moves is any good. Do you know which of these four starting
moves is better then the others?"

Jim looks at them and says, "They're all pretty much the same, I think."

"Do you think so? We are going to give Huxley hints so he knows which moves are
better than others. Then, Huxley will use those hints to come up with a number score for
all of these choices on the Game Tree. Right now, every move that Huxley knows about
is worth 0 points-they're all the same to him, unless it is a winning or a losing move.

Let me show you how we create hints for Huxley to use to figure out which moves are
better than others."

2.3.2 Evaluations
Under Player A 's Strategy tab, there is a panel titled Hints with an empty list and three
buttons titled Add, Delete and Edit. The Hints panel looks like the one Jim used to define
his game's winning conditions, but the Hints panel has an additional column with the
heading Points. Jim clicks on the Add button, and a sentence screen like the kind he used
to define winning conditions comes up, but this sentence ends with "... worth [I] points
for each one." instead of "...and I win the game."

File Options

FIGURE 2.12 DEFAULT HINT DESCRIPTION INTERFACE

Also, when Jim clicked the Add button, the Game Tree graphic faded just a little bit. I
explain to Jim that after he creates his hint, that it will be used to assign a number score to
all of those moves on the Game Tree.

"Making hints is like making winning conditions, but the difference is that a number
score is assigned to every piece described by your hint. For example, you could assign a
score of 1 point for every piece of yours that is on the game board. But you can also make
hints that assign points for pieces related in some way to other pieces. For example, you
can assign points for pieces that can be captured by other pieces, or spaces that other
pieces can move to, or pieces that can be captured by other pieces, but can't catch those
pieces. You can define those relationships by using the relationship pull-down menu.
You could have used these relationships to define winning conditions also."

File Ondains

FIGURE 2.13 HINT DESCRIPTION INTERFACE WITH RELATIONS PULL-DOWN MENU
SELECTED

Jim thinks this over, and then asks, "Okay, so, what's a good hint?"

"Well, what is important in your game? You lose your game if all of your pieces are
caught. You win your game by getting at least one of your two Harry Potters to the other
side of the game board. What hint could help you know that you're making good
decisions towards reaching that goal?"

"Having both of my Harry Potters still in the game is good."

"Okay, let me show you how you tell the computer that that is a good hint. This hint is
like Harry's winning condition, only now you want to say that it is good for a Harry to be
anywhere on the game board." Jim specifies this by using a pull-down menu to make the
hint sentence read anywhere on the board, which automatically selects all of the spaces
on the miniature game board.

who's Got Gam Mberyv

FIGURE 2.14 SELECTING ANYWHERE ON THE BOARD WITH THE HINT DESCRIPTION
INTERFACE

Next, I direct Jim to the last part of the sentence that assigns points and explain, "Now,
you want to assign a point value for each Harry on the board. By default that value is set
to 1 point per Harry." Jim decides that 1 point per Potter is good enough for now.

I refer Jim to the Future Game Board, which highlights the location of his two Harry
Potters on the game board, and underneath a sentence reads, "2 'on the board' for 1
points each = 2 pts." I explain to Jim that this particular Future Game Board is worth two
points when we use his hint to score it. I ask Jim to increase the point value on his hint
sentence, and when he does this, the sentence on the Future Game Board changes to read
"2 'on board' for 2 points each = 4 pts." Jim decides he doesn't like that change and
returns it to 1 point per Potter.

......................... ".."

Turn: Captures:

A,
2 'on board' for 1 points each = 2

FIGURE 2.15 THE FUTURE GAME BOARD HIGHLIGHTS PIECES DESCRIBED BY A HINT

Jim saves his hint and this returns him to his Hints list, where his hint is now listed. There
is also a tabulated TOTAL at the bottom of the list. Since there is only one item on the
tabulated list, Jim's hint scored at 2 points, the total number of points is also listed as 2.

ti ow~

-4

FIGUR 2.16 OAMHN S, ADEDTHTEHITMLS

abs Ie~im~mZ

On the Game Tree, the highlighted move is also scored at 2 points. The other branches at
the bottom are now sprinkled with the numbers 1 and 2. I explain to Jim that each of
these different number scores indicates how many Harry Potters are on the board
depending on which moves are made. Jim browses his mouse through the Game Tree
graphic and as he passes each branch, a different configuration of game pieces shows up
on the Future Game Board, each one highlighting the location of the Harry Potter pieces
on the game board. A few of these game states only have one Harry, as is indicated by the
number 1 on those branches of the game tree.

2.3.3 Selecting Moves
I say, "Now we're going to program Huxley to make the best move when it is his turn.
Let's start by keeping it simple and return the Think ahead this many turns slider back to
1." Huxley's four starting moves are now the only choices on the Game Tree, and each of
these moves is scored at 2 points.

I ask Jim which of these moves he should instruct Huxley to make on his turn. Jim thinks
about this a second and then says, "Well, these are all the same, but Huxley would pick
the move with the highest score. Those are his best moves." I show Jim where he can
specify this rule under the Player A Strategy tab in a sentence panel that reads, "On my
move I will pick: my best move I my worst move I a random move". A sentence ending

can be selected by clicking a radio button. "A random move" is currently selected, which
is the default setting. Jim clicks "my best move."

Who's Grot Game fheorv
File Options

Think ahead this many turn:

!I 2 3
On my turn, I will selet:

W b kyst My Worst Qadom
Move Move Move

it is Robotrons turn, I think he will select:
O MBest My Worst andom

Move Move Move

Current strategy default#nowse

SPlaye BStrtegy

Hint Nam Scort
my HW~Y an boad 2

FIGURE 2.17 SELECTING "MY BEST MOVE"

I say, "Now, let's make this a little more complicated. Let's set the Think ahead this
many turns slider up to 2 so that Huxley is planning ahead for what Robotron might do
on his turn." This change brings back the second tier countermoves on the Game Tree.

"Now, as we have it programmed, Huxley thinks that Robotron, on his moves, is going to
make a random move. That is specified here:" I refer Jim to another sentence panel with
multiple endings that reads, "I think that Robotron, on his turn, will pick: my lowest score
| my highest score | a random score". It is currently set to the default value, "a random
score

I ask Jim, "What sort of move do you think Robotron will pick on his turn?"

Jim thinks for a bit, and then selects, "my best move", and four of the highlighted
branches on the second tier are switched to select 2-point moves. One of the highlighted
branches on the second tier connects to a highlighted branch on the first tier. I explain to
Jim, "the highlighted path on the Game Tree shows both the move that Huxley plans to
make and also what Huxley expects to happen on the next turns. Huxley is making his
decision based on those expectations. Let me show you the process Huxley goes through
to make that decision."

FI

TOTAL

Add C 70747k ft7--

-- jp) (j jW~f CMIULATWM*T" 49 TuDRhSAHIA 2

FIGURE 2.18 THE GAME TREE WITH EXPECTED MOVES AND COUNTERMOVES
HIGHLIGHTED

I explain, "Huxley knows that Robotron has a range of countermoves. Looking here on
the Game Tree, we see that Huxley also knows how good these countermoves would be
for him: scores of 1 and 2. As you have programmed Huxley, he expects that Robotron
will pick a high scoring move on his turn."

While explaining this to Jim, I mouse through the four clusters of countermoves, and the
Game Tree responds by highlighting a 2-point countermove branch as I pass through
each cluster. A label on the Game Tree also updates to read, "When it is Robotron's turn,
I think he will select my best move."

0 se c.0._ _

Whn it la Robotron'sturn, 1think1*he'will select my best mve.

FIGURE 2.19 MOUSING THROUGH LOWER BRANCHES OF THE GAME TREE HIGHLIGHTS
EXPECTED COUNTERMOVES

I continue, "Huxley assigns a score to each of his four initial moves based upon these
expectations of what Robotron will do next." Mousing up to the top tier of the Game
Tree, a highlighted trail is drawn from the top of the tree down to a 2-point branch at the
bottom. A label on the Game Tree also updates to read, "On my turn, I select my best
move."

Go* YNN - - - -- - - - - - 1, -11 --- 1- 1. -1 %1------ -- -.I--,. --

77
aim - "Adw %a

FIGURE 2.20 MOUSING THROUGH THE UPPER BRANCHES OF THE GAME TREE HIGHLIGHTS
PLANNED AND EXPECTED MOVES

"Let me recap the decision-making process. First, Huxley thinks of all his possible moves
and countermoves. Then, Huxley scores all of those possible countermoves. Next,
Huxley makes an assumption about what Robotoron would do in all of those possible
scenarios. Finally, Huxley makes a decision about which move to make based on those
assumptions. Let me show you an animation of that process:"

FIGURE 2.21 ANIMATION OF EVALUATION SCORES CLIMBING BRANCHES OF THE GAME
TREE

I click the Pick Move button on the Game Tree and that begins an animation of a high
ranked score in every cluster of countermoves climbing up their branch, leaving a trail
behind them. When those scores reach their junctions with the first tier, then only one
score continues to climb to the top of the Game Tree.

I say, "Now that we understand Huxley's decision-making process, let's examine this
particular decision he is making a little more closely." I move the mouse into one of the
clusters of countermoves on the Game Tree, thereby highlighting a move scored at 2-
points which updates the pieces on the Future Game Board. "Now, this is a preferable
outcome. This is what Huxley expects will happen. Let's preview the moves and
countermoves that would happen in order for this to be the outcome." I double click on

the Game Tree, and the pieces on the Future Game Board return to their starting
positions, and then slide through the move and countermove leading to the 2-point future
state. As the game pieces move, the selected branch of the Game Tree is highlighted with
a dashed line and labels on the Game Tree are updated to read, "Move by Huxley" and
"Countermove by Robotron".

"We both agree that this selected move is a good outcome. But, let me ask you a
question: is this a likely outcome? When Robotron makes his move, he doesn't have to
choose a 2-point move; he could choose a 1-point move. This is not as good of an
outcome for us-we've lost one of our Harry Potters in this possible future. Let's watch
how this could happen." I select a 1-point countermove branch and double click on the
Game Tree. The move and countermove leading to that possible future play out on the
Future Game Board, resulting in a Harry Potter capture.

Jim thinks about this, and agrees it is rather unlikely that his opponent would pass up an
opportunity to take one of his pieces. "Yeah, I guess you're right. Robotron wouldn't
make a move that leaves me so well off. He wants to beat me."

"So how can you program Huxley to think that way?"

"I can change his programming in this sentence panel to read: 'I think Robotron will pick
my worst move'. But this way of thinking is a little confusing."

"What do you mean?"

Jim paused for a while. "His best move is my worst move. What is bad for me is good for
him. I was thinking earlier that I was somehow describing what was good for him... but
it's all about what's good for me... and Robotron keeping me from getting there."

2.4 Strategy in Context
I suggest that we play Jim's game by clicking the Make A.I Move button on both Huxley
and Robotron's turn. When Huxley makes his move, Jim sometimes looks baffled and
remarks, "what a stupid computer." When I ask Jim what he means, he says that there
were clearly good moves Huxley could have made but did not. Jim says that better hints
are in order after we finish playing this game through.

When it is Huxley's turn in the game, we refer to the Game Tree graphic and browse the
different scores of 1 and 2 to see what Huxley is thinking about. After a few turns, the
letters W and L also appear on the Game Tree's branches. I explain that these letters
represent potential wins and losses.

"Winning is an infinitely high number, and losing is an infinitely low number. So when
Huxley has to decide on his turn between a 1, a 2, and a win, he will pick the win since
that is, by far, the highest number."

After playing a game through to the end (a win for Huxley), I suggest that we try playing
again a few more times. But instead of playing turn by turn, I show Jim a way to run
through many games at top speed with a menu option called Thousand Trials. Selecting
this option brings up an animated pie graph. One of the pie slices is colored Player A red,
another pie slice is colored Player B blue, and the last slice is colored cyan and labeled
"Draws." The colored pie slices change size every few seconds, reflecting the outcome of
games being played inside the computer's memory. Underneath the pie graph is an
information panel listing the number of Player A wins, Player B wins, and draws as the
total number of games played grows towards one thousand.

O 10 Thousand-Trial1s'..-.....

B WINS:5
A WINS:92
DRAWS: 903
(1000 games played)

FIGURE 2.22 THE THOUSAND TRIALS

Jim asks, "How does a game draw?"

"There is a draw if the game pieces are in the same spaces six times or if one of the
players has no moves left to make on their turn."

The pie graph oscillates wildly at first, and then, after a few hundred games, settles into a
general shape: a lot of draws (90%), some wins for Player A (9%), and only a sliver of
wins for Player B (1%).

2.4.1 Changing the Game
"Harry is winning, but he isn't winning as much as he should. I think my game is too
hard for Harry," says Jim. "Can I change the game?"

I tell him that is a good idea and that the toolkit is designed so that he can easily make
changes to the game board, to the pieces, or the rules. Jim pops out of the game-playing
screen and back into the board-design screen, and then deletes one of the barriers. A
barrier is removed from the mirror side of the game board as well.

O e 8 wos cet caras meerrj?

FIGURE 2.23 REMOVING A BARRIER WITH THE BOARD-DESIGN TOOLS

"That's a secret passage," Jim explains. "But it's not too secret since everyone on the
game board knows about it. But that's okay."

He returns back to the game-playing screen and then reloads his game with the new
secret passage. Jim plays his game for a bit, moving through one of the new passages.
The strategy he had designed earlier remained intact, so I tell Jim to take a look at his
Game Tree to see the changes. The game tree now has many more red branches then

before his changes to the game board, and under every one of these new branches are
many more blue countermove branches.

t * am60 I) { a owe) a v c messe) #An& 4h V%06 ANlia 0

FIGURE 2.24 THE GAME TREE WITH MORE BRANCHES

Jim tries running his strategy through the Thousand Trials again. As the pie graph
changes shape, Jim sees that his change has only made it slightly easier for Harry Potter
pieces to get across the game board. It shouldn't be this hard for Huxley to win; Jim
acknowledges that his strategy needs some work.

2.4.2 Different Heuristics
I suggest that Jim think about what behavior to expect from the one hint he has given
Huxley, and he replies, "Well, I guess Harry just looks ahead and tries to avoid getting
captured but never makes it very far. All he knows is to avoid getting captured, and he
can't think far enough ahead to find the other side of the board."

Excited by this insight, Jim asks if he can add another hint to his strategy. I explain that
he can make many hints, and they will be summed together to score moves. Jim's new
hint is to assign 1 point for every Harry Potter in the middle corridor, which is the region
halfway across the game board.

0-0-6 Whs Got am (ThewW.,
Fila tanfiane

FIGURE 2.25 A HINT FOR A HARRY POTTER GAME-PIECE TO BE IN THE MIDDLE OF THE
BOARD

Now Jim retries the Thousand Trials and finds that he is winning most of his games. I ask
him what he's done and he replies, "Well now Harry knows where to go. Before he was
being hesitant, looking ahead to make sure he didn't get caught, but he didn't think at all
about where he had to go. Now Harry thinks about keeping himself safe, but he also
knows to get closer to his goal. And I know how to make him even better."

Jim then adds another hint; this one says that it is worth 1 point for Harry to capture any
of his opponent's pieces. Then Jim reruns the Thousand Trials and does considerably
worse than he expected.

Jim moans, "This isn't what is supposed to happen!"

Prompted to explain, he thinks and says, "I guess Harry is being too aggressive. I mean,
he thinks that zapping a teacher is just as good as getting to the other side of the board.
But when he is looking to zap teachers, they can zap him too. Harry thinks that capturing
pieces is just as important as getting where he has to go to win. I need to change that."

2.4.3 Scaling Heuristics
Jim changes his original "1-point per Harry Potter on the board" hint up to 3 points and
reruns the Thousand Trials. Jim is proud to see that Huxley is winning many more games
than before.

Jim explains, "Now Harry knows to stay alive, which is most important. Harry also
knows to get to the other side by going through the corridor, and, if he sees a teacher that
is easy to zap on the way, he'll capture them too. But he won't go out of his way and get
into trouble."

2.5 Opposition
I congratulate Jim, "Well, I think you've done a good job, but you do know Robotron has
just been making random moves. The Hogwarts staff was not even looking for Harry
unless he happened to be under their noses on their turn. Let me give Robotron a hint of
his own and see how the game turns out."

I switch over to Robotron's control panel and add a hint that assigns 1 point for every
Harry captured. I explain, "Since all the Hogwarts staff has to do is capture two Harry
Potters, a pretty good hint is capturing at least one. Capturing the second Harry is a
winning move, so we don't need to give Robotron that hint." I set Robotron to look one
move ahead and to pick his maximum score on his move.

We run the thousand trials, and Jim sees that he now has some competition: Robotron is
winning a few games. Then, I crank up Robotron's Think ahead this many turns slider to
3, and update his other sentence to read, "On Huxley's turn, I think he will pick my worst
move." Then, we run the Thousand Trials again, and we see that Huxley and Robotron
are just about equal now in wins. I explain to Jim, "You made Harry think ahead to be
cautious and avoid getting caught, but no one was really looking for him. Now I've made

it so everyone at Hogwarts is planning ahead to cut Harry off to keep him from getting
away!"

Thnunand Trials

B WINS:10
A WINS:9
DRAWS: 3
(22 games played)

FIGURE 2.26 THE THOUSAND TRIALS WITH NEW STRATEGIES AND A MORE EQUAL
DISTRIBUTION OF WINS

We are just about of time for our workshop, and Jim says he really liked playing Harry
Potter and would like to do it again sometime. He has some new ideas for strategies he
would like to try out and also some ideas for how to change the game.

2.6 Summary

"It was as though the potion was illuminating afew steps of the path at a time:
He could not see the final destination... but he knew that he was going the right
way..." (Rowling 2005)

- Harry Potter and Half-Blood Prince

a n a

In this citation from the Harry Potter book series, protagonist Harry has just swallowed a
good luck potion that gives him intuition about where to go and what to do. The effects of
the good luck potion are a little bit like what Jim programmed Harry to plan for and
anticipate in this chapter.

Let's review some of the things Jim learned by playing with this software toolkit:

e Don't paint yourself into a corner. By designing his own game, Jim learned that
it was good to keep his pieces' options open by removing barriers that limited
their movement. The more moves his pieces had available, the more ways Jim
could find a way to win.

e When you get to a fork in the road, stop and ask for a road map. Jim had a
difficult time enumerating all of the choices he had available to him in his own
game. Enumerating all of his countermoves was exhausting. The Game Tree
graphic helped him to understand and preview all of his choices.

- If you can't see the end of the road, you're going to need to ask for directions.
Early in the game, the Game Tree wasn't very helpful in finding that moves led to
a win until Jim created some hints. Once Jim created hints, he was able to think
systematically about his choices.

- I think that you think that I think... Jim had to anticipate what his opponent
was going to do in order to win games. This also led to his insight that "what is
good for them is what is bad for me", which is a way of explaining the minimax
algorithm.

* You win some, you lose some. By testing his strategy iteratively in the Thousand
Trials, Jim was able to get a better sense of performance benchmarks then when
just playing his game turn by turn.

3 Design Rationale
In this chapter, I explain my approach to making some complicated mathematical ideas
understandable and useful to students. I begin by comparing formal theoretical and
algorithmic representations of minimax with my own constructionist representation; over
the years, the minimax algorithm has been used to effectively play various strategy games
with computers, so I explain where my thesis fits in that tradition. Next, I introduce
previous efforts to help children become computer strategy-game designers and explain
how this work fits in that tradition. I conclude the chapter with a constructionist
explanation and rationale for design features of the gaming calculator.

3.1 Game Theory
After playing poker with friends in 1928, mathematician John Von Neumann speculated
about an optimal strategy. His approach to this problem went beyond the rules of poker to
a theoretical analysis of all games. Game theory, aptly named, describes mathematically
provable methods to increase the probability of winning games. Put differently, it is the
systematic evaluation of all choices, often in competitive situations.

Von Neumann's analysis of strategy was not simple; his game theory requires an
understanding of advanced mathematics and notational systems: it took a mathematician
to turn parlor games into homework. Consider, Von Neumann's Minimax Theorem, a
core game-theoretical contribution:

max min XTA Y = min maxX AY=v
X Y Y X

FIGURE 3.1 THE MINIMAX THEOREM (WEISSTEIN)

This thesis makes some core ideas of game theory available to children by eliminating
such formalisms and making the math relevant to their experience playing games.

Because the Minimax Theorem describes a decision-making process, it can be translated
into an explicit algorithm, making it a good candidate for solving with computational
methods. Even before computer hardware was available, Alan Turing designed software
to play the game of chess and computed a game by hand. (Since even before their
inception, computer games have been highly motivating activities!). The "computer
opponent" lost, but Turing's original algorithm, a step-by-step implementation of Von
Neumann's theorem, is applicable to any number of decision-making problems when
abstracted:

function MINIMAX-DECISION(game) returns an operator
for each op in Operators[game] do

VALUE[op] <- MINIMAX-VALUE(APPLY(op, game), game)
end
return

function MINIMAX-VALUE(state,game) returns a utility value
if TERMINAL-TEST[game] (state) then

return UTILITY[game](state)
else if MAX is to move in state then

return the highest MINIMAX-VALUE of SUCCESSORS(state)
else

return the lowest MINIMAX-VALUE of SUCCESSORS(state)

FIGURE 3.2 THE MINIMAX ALGORITHM (RUSSELL AND NORVIG 1995)

Even when expressed in this explicit algorithmic representation, minimax remains
impossibly complex for most people. However, if the minimax algorithm's operations are
described in colloquial language, the idea isn't nearly as esoteric. The crucial idea of
minimax works roughly like this: anticipate the worst things your opponent could
possibly do to you and then plan to make the best of those bad scenarios. A more
elaborate explanation can be found in many textbooks, and, for the most part,
instructional aids like textbook descriptions and diagrams are how these concepts are
taught to students.

I take a constructionist approach to game-theoretical mathematics by translating the
minimax algorithm into natural-language syntax easy enough for secondary-school
students to manipulate. I hypothesized that students could learn the math of game theory
by experimenting within the familiar context of various strategy games, instead of being
lost in abstract formalisms. Consider the natural-language description of minimax found
in the toolkit described in this dissertation:

Think ahead this many turns: [3]
On my turn, I will select [my best move].
When it is my opponent's turn, I think they will select [my worst move].

By changing the options in this description of the minimax algorithm, students can, for
example, change how far ahead to search, or alter their assumptions about how their
opponent will play. In addition to winning competitive games with minimax, the toolkit
allows students to easily modify the algorithm to play anti-games in which the goal is to
lose (maximin), for both sides to lose (minimin), or to assume that their opponent wants
them to win (maximax), to play randomly, or assume their opponent will play randomly.
This strategy-description language is coupled with real-time animation and descriptions
of the decision-making process to help learners understand the effect of their changes.
The overarching pedagogical goal of this approach is to make the mathematics of
decision-making useful to students by representing it as a design medium.

3.1.1 Thesis Scope
There are many sorts of games, but this thesis is limited to one type: two-player, turn-
based, zero-sum games of complete information; in short, games like chess and checkers.
Conway (Berlekamp, Conway et al. 2001) is known for most fully exploring
mathematical representations of this genre of games, referred to in game-theoretical
parlance as combinatorial games.

Chess, and the games generated by the gaming calculator, are games of complete
information because both players can see all of their opponent's pieces and therefore can
calculate all potential moves. The games are also zero-sum, as only one player can win,
and when that happens, the other player has lost. Allowing only games of this type
eliminates certain strategies: since both players can see all of their opponent's options,
probability is out of the scope of the decision-making process. In Chapter 5, I describe
how my pedagogical approach can be applied to other game genres.

3.2 Deep Blue, Wide Blue, and Kiddie-Pool Blue
Since Turing's hand-computed chess strategy lost its first game, it has been a long-
standing goal of computer science to create a computer chess opponent good enough to
beat expert human players. This goal was achieved by IBM's Deep Blue supercomputer
in a series of games against Grand Master Kasparov in 1997. Deep Blue won by brute
force: using the minimax algorithm, amongst others, it searched ahead billions of possible
moves and countermoves. However, although Deep Blue is very adept at playing chess, it
doesn't know how to play any other games; even tic-tac-toe and checkers are beyond it.

Recognizing this deficiency, some computer-science research has focused on the
development of a general-purpose opponent for any strategy game (Pell 1993; Orwant
1999). Keeping with IBM's nomenclature, these general-purpose computer opponents
could be referred to as Wide Blues: give them the rules to a strategy game and they'll
play. These general-purpose game players use the minimax algorithm to search through
game options, but how they evaluate their choices has to be more flexible than Deep Blue
since they don't know which game they'll be asked to play.

If Deep Blue can only play one game really well, and Wide Blue can play any number of
games reasonably well, then my software toolkit could be called Kiddie-Pool Blue: it can
play a variety of strategy games, so it is reasonably wide, but it needs user intervention to
help it play any of these games well, and it is designed for students (and kiddies of all
ages). By allowing students to design and modify games and then experiment
strategically within those games, I have sought to provide robust learning opportunities
for understanding strategy within various contexts.

3.3 Learning Programming versus Learning Strategy
In the late 1960s, researchers began to study how children could design and program their
own computer games (Papert and Solomon 1970). The first documented educational
computer-game design research was a project teaching 7th graders how to program the
relatively simple strategy game of NIM. In NIM, two players alternate taking 1, 2, or 3
matches from piles; they win by not taking the last match. Theirs was an ambitious

project for young students: learning a programming language, then building an entire
game, including the game representation, interface, and an automated strategy. A first
version of the opponent made random moves and a later opponent could simulate
"thinking ahead" by picking up an odd number of matches, thereby always leaving the
other player with a match to pick up on their turn. Programming this particular strategy is
helpful for learning how to win NIM, but is almost never applicable to any other game.

Later, Brady and Emanuel argued that, instead of students learning about low-level
computer programming, students could use a high-level strategy language to work on the
more interesting problems inherent in computer games (Brady and Emanuel 1978). They
created a NIM-strategy language that consisted of if-then rules, a relatively
straightforward way to describe decision-making. They also proposed expanding their
strategy language to describe ways to win more sophisticated games, but eschewed
teaching children to program game-tree search algorithms, instead advocating that
concepts like minimax could be represented in a better way. This thesis is, in some ways,
a development and implementation of Brady and Emanuel's proposed strategy language
and an evaluation of what students learn when they use it to play games.

3.4 Constructionism
Piaget's constructivist learning theory attributes knowledge acquisition to learners
actively constructing knowledge structures in their mind. Constructionist learning theory
asserts that providing real-world construction materials (e.g., construction paper, toy
blocks, computational toolkits) can help learners build robust mental models (Papert
1980). In other words, constructionism aims to provide appropriate modeling materials
for mental models. Computers, the machine of machines, provide nearly unlimited
constructionist opportunities because of the variety of possible design activities. Another
benefit of computation is that processes must be explicitly represented; this creates
opportunities to consciously reflect upon the process by which design decisions are made.

My game-design research was informed by constructionism, as I wanted my students to
gain mathematical fluency through design activities. A core tenet of constructionist
theory is that people learn best when they build personally meaningful artifacts, and this
is one reason why the gaming calculator allows students to be both game and strategy
designers. My approach was to have students create their own math problems (their
games) and then solve them (their strategies), all the while explicitly supporting logical
processes and mathematical discovery.

3.4.1 Debugging Processes
The processes by which most software works is opaque; we intuit behavior through
interactions on the screen (Turkle 1995). When software breaks or doesn't work as
expected, we often have no way to "look under the hood" to try and figure it out
ourselves. Part of the problem is that computer processes are most often represented
statically in text files. It is hard to see how these descriptions of software's control
structures, iterations, and recursions are tied to the execution of these processes.

Some specialized programming environments provide an animated representation of
processes to help learners understand how software functions. The original Logo
programming language is helpful in this way, as every programming step literally left a
trail behind it, a visual trace of behavior upon which the programmer could reflect while
debugging. But the usefulness of visual paths in Logo is a special case in that Logo was
used to teach geometry and paths define geometric shapes.

When programming complex behavior, visually tracing the steps for debugging the
decision-making process is not always straightforward or easy. In the computer
programming toolkit ToonTalk, algorithmic processes are designed by staging cartoon
characters and process execution is visualized as an animation (e.g., a mouse runs on
screen to sum numbers, a bird transfers information between processes) (Kahn 2000;
Kahn 2001). These animations visualize steps as they occur at a granular level and must
be viewed in succession to glean their context as part of a larger process.

In contrast, algorithm animation in the gaming calculator provides a high-level
diagrammatic overview of procedures described by game tree algorithms. My rationale
for using diagrams is to make algorithmic processes easier to understand: diagrams make
decision-making processes visible and traceable. Animated diagrams go further by
indicating the current state of a complex process, thereby providing an opportunity to
visually and chronologically trace progress. Because diagrams in the gaming calculator
are dynamically generated to represent the specific context of students' games, and
because they are linked to graphical representations of those games, the diagrams are
high-level tools for reflection: they help the students learn about decision-making. The
specific details of the graphic representation are discussed in the next chapter.

The gaming calculator's animations are designed to make debugging easier. If your
program is not working as expected, you have likely encountered a procedural bug in
your own thinking about a problem. Visualizing the steps of a procedure provides a
representation to help identify and understand what isn't working.

Supporting the learner in debugging assists learning in the constructionist tradition, as
reflecting on the steps of a complex process can lead to deeper understandings. For
example, thinking about the explicit steps involved in juggling (Papert 1980) or knot-
tying (Strohecker 1991) can help learners understand how simple steps can create
complexity. Similarly, reflecting on the steps in a decision-making process can help
learners to fix mental models of a strategic thinking process.

3.4.2 Collaborative Learning
Well-designed social experiences can be used to construct meaning in the mind of a
learner. Good constructionist environments provide students with an audience for their
work in order to support collaborative learning. For example, students who were given
the explicit task to design computer games to teach other students mathematics took their
role of teacher seriously and based their designs on what they thought other students
knew (Kafai 1995). Collaboration can be integrated into the design of a constructionist
software environment, creating an implicit peer-tutoring environment like an online

MUD (Bruckman 1998). With these examples in mind, I designed my software and
workshops to support collaboration around student-designed games.

It might seem like an oxymoron to create a collaborative learning environment around a
competitive activity, but students in my workshops moved between these two modes with
ease, with a greater emphasis on collaboration. As is discussed in Chapter 5, students
savored competitions, and when preparing for a competition, would sometimes work in
secret. After each game series, students would compare the performance benchmarks of
their strategies and then discuss, examine, and appropriate each other's code to figure out
what did and did not work.

I created a modular game system so that game boards, pieces, and strategies are
interchangeable (e.g., you can import chess pieces into your checkers game as well as try
out a strategy from one game in another). This was a design decision to encourage
collaborative design projects. Indeed, students in one workshop designed their game
collaboratively on separate machines and then integrated their pieces on one computer
and into a final product (well, not exactly final; they continued to revise as they went
along). I also made the source code of every object viewable and editable so that students
could build on each other's work. This design decision was informed by the experiences
of students who used Bruckman's MUD design toolkit Moose Crossing, in which students
created virtual objects of personal interest and showed them off to other students, who
would then view the source code of these objects and subsequently modify them to make
their own objects.

Computer programming is an open-ended activity and so unique problems are likely to
occur. Students who solve a problem can support the learning of other students. A few
times, students in my workshops were able to explain their strategies to me when I
couldn't understand what they had done-even the teacher becomes a student in a
constructionist environment.

3.4.3 Authenticity
The gaming calculator hopes to teach the mathematics of decision-making through design
and testing. The design task for the students is two-fold: game design and strategy design.
If the pedagogical goal is to teach about strategy, and the gaming calculator supports
learning strategy through design, why did I chose to make game design such a prominent
feature? Why did I not just pick one game and limit my inquiry into how students design
strategies for that game? There are two answers to this question.

My first answer relates to teaching decision-making: having students make different
games creates different decision-making situations and provides more varied learning
opportunities. Integrating game-design tools allows a learner to see how, for example,
changing their game board's size or removing barriers (as described in Chapter 2),
impacts how well the same strategy performs in a new context. Many students reigned in
their game pieces' movements after seeing that they were too powerful; or if students'
pieces were limited to only moving in one direction, they added the ability to retreat.

Moreover, when learners create their own games, they can directly control the complexity
and thereby manage the pace of their own inquiry.

The second answer in favor of game design is that allowing children to create their own
games and problems provides them with an authentic learning experience. The word
authentic is an overloaded term so let me unpack some of its definitions (Shaffer and
Resnick 1999). Within the educational research community, authentic refers to students
engaging in the same activities as professionals, asking similar questions to those that
professionals ask. A second definition is more in line with constructionism and involves
students answering hard questions that they have posed themselves, questions that they
have a personal interest in answering.

I argue that game design, when coupled with strategy design, enables authentic learning
under both definitions of the term. Real professionals in computer science-and the
natural, military, and other sciences-create game-like computer simulations and then
experiment with their simulations to evaluate different outcomes. Also, computer games
themselves are a billion-dollar industry (Entertainment Software Association 2005), and
designing games is a profession that many children aspire to and emulated in my
workshops.

Under the second definition, the gaming calculator allows students to experiment with
solutions to problems that they have created: problems in the form of games. This
authenticity motivated the students. They were compelled by the complexity of games
generated from simple rules of their own design. Also, as I describe in the next section,
being able to design a game about a fantasy world, and then see it come to life, was very
motivating to some students.

3.5 Metaphors and Meaning
I chose to support the design of games with movable and modifiable pieces, in part to
encourage metaphorical thinking. Consider these two chess pieces, one from Korean
chess and the other from western chess. They are distant relatives descendant from some
early proto-chess originating in South Asia millennia ago.

CHESS PIECE MOVEMENTS

The change of graphics from an elephant to a horse is cosmetic but carries with it the
metaphor of transport by animal, and thus holds meaning for the players. It also helps us
to trace its shared lineage. The forking movements of both pieces extend the animal
associations, even if only vaguely representative of the movements of real animals.
Relative to the movements of the other chess pieces, they make sense: horses can leap
over things; elephants can charge far ahead. That there is a metaphorical connection at all

is suggestive to many people, especially to children. The shape, names, and movements
of many game pieces are evocative and convey meaning.

A metaphorical connection between a moving game piece and some real world
counterpart is a leap of abstraction. Not every moving piece game has metaphorical
mappings; game tokens in backgammon and checkers, for example, have no obvious
counterparts. Selecting between a top hat and a boot in Monopoly also doesn't mean
much, although people have favorites and make personal associations with their
representative token. When moving a representative game token, players' language can
switch point-of-view from "I make this move" to "My piece moves here". So, although
not every game piece is a metaphor, pieces that move can be imbued with volition.

Where pieces move is important to game play, and some games also convey meaning
through their game boards; where a game is supposed to take place and what it represents
can be important to understanding the game. While Monopoly only resembles Atlantic
City with place names, the association is clearer when we buy hotels to place on the
properties. We can assume Candyland is a sweet place, even if we've never been there,
because spaces on the game board are decorated with lollipops. Chutes and Ladders set

you back or advance you across the board. In Chinese chess, metaphors are also tied to
movement rules: palaces restrict the movement of some pieces and a river prevents other

pieces from crossing. In contrast, however, are western chess and checkers boards, which
are just tiled grids.

My decision to study games with moving pieces was, in part, to leverage people's
metaphorical associations and create personally meaningful games and thus meaningful
strategic behavior. When asked if they wanted to design a game, many students were
dumbstruck and overwhelmed until I suggested that they use a fictional story world of
their choosing as source material. The toolkit was simple enough that within half an hour,
students were able to create meaningful game environments that they felt were
representative of rich fictional story worlds. Some students' games took place in the
twisty corridors of the Matrix movies, the dungeons of Harry Potter's school, and in the
mountains and fields of Tolkien's Middle-Earth. In each of these games, graphics and
barriers were carefully placed to best represent these fictional landscapes. Choice of
game pieces and their movements and captures were also carefully designed to represent
their source material, often with interesting discussion about how to best translate a
complex character's appearance into pixels and movement into vectors.

3.5.1 Piece Design by Example
In lieu of textual description of rules for how a computer should carry out of its
instructions, programming-by-example researchers have developed graphical toolkits to
build video games without the need to explicitly codify rules (Smith, Cypher et al. 1994).
Instead, the user manipulates graphics on the screen, and the toolkit infers what the
game's rules might be. For example, moving a train icon from a track icon to another
track icon could create the rule to move trains onto available track icons, thus
programming a rail-based locomotive. This line of programming-by-example research
was furthered by inferring rules for board games (McDaniel 1999).

Since I limited the scope of games designable with the gaming calculator to chess-like
games, in which players and machine already understand the rules of play, I was able to
leverage that knowledge when designing the gaming calculator. This allowed for game
designers to engage in some programming-by-example-like activities, such as defining
the movements of game pieces by drawing their path with a mouse. By no means is this
thesis a contribution to this field of research; I just mention the influence here as a tip of
the hat.

3.5.2 Syntonic Pieces
The language of some students when learning about strategy with game pieces moved to
an interesting new level: they spoke from the game pieces' point-of-view. For example,
the language used to explain the minimax decision was ascribed to their game pieces'
literally "looking around the corner" and the resultant behavior as "being cautious". The
students' language is weak but intriguing evidence of learning transference: taking a
mathematical concept and attributing it to behavior in another context, in this case a
fictional story scenario.

This descriptive language occurred because strategizing with motile game-pieces
facilitates syntonic learning of decision-making (Papert 1980). I use the term syntonic
learning as defined by Papert to describe how the movement of one's own body can be
used to reason about mathematics. The available movements of game pieces on the game
board are clearly demarcated in such a way that any child who has played hopscotch can

understand the options of his or her game piece in terms of his or her own body
movements, thereby enabling body-syntonic knowledge. That is, children could embody
their game pieces and put themselves on the board because the children and the game
pieces share the same volition. But more interesting is how games empower ego-syntonic
thinking. Because in the decision-making context of a game there are defined and explicit
goals, the game piece and the student are moving towards those goals together. Students'
reasoning about their options from the perspective of the pieces is a personal way to
understand systematic problem solving.

While making an association between the moves of something real and a game token is a
form of abstraction, ironically, the term "abstract strategy games" is used for games with
weak real-world metaphors. Some abstract strategy games, e.g., go and line-and-dot
games, make excellent candidates for teaching about planning because every game state
shows the aggregated history of the game. In these games, a comparison of the current
game state to any future game state clearly communicates what has changed. In contrast,
such comparisons with moving-piece games are more difficult because of their transitive
nature. In Chapter 5, I explore how abstract and other types of strategy games could be
incorporated into a future version of the gaming calculator.

In the next chapter, I explain why I chose specific representations to model different parts
of the decision-making process and evaluate how students responded to them in my
workshops.

4 Design and Evaluation
In this chapter, I interleave design rationales for my software with formative evaluations
of my workshops since the two were iterative. Over a six-month period, I conducted
eleven workshops with twenty-five students and made many updates to the software
based on problems students encountered. I began with an initial design and did multiple
enactments and analyses (Design-Based Research Collective 2003) to get the gaming
calculator and my workshops to work as well as described in Chapter 2.

I started with a two-week pre-test of the gaming calculator in an inner-city junior high
school. The most important thing I learned from this experience is that not every teenager
knows how to play strategy games or cares to. I spent a good deal of time explaining how
game pieces move to students who did not know checkers, chess, or any board games. To
help explain how these games work, I made a large tiled game board on the floor of their
classroom with masking tape and played games in which the students were human game
pieces. This was a fun and effective way to introduce these games to the students and
created a few rousing discussions about strategy. The class also practiced playing games
on paper game boards. Using the gaming calculator, we also designed our own game
together as a class, which most every student enjoyed. However, when we started to
strategize about how to win this game, the students who had just learned what a strategy
game was had a difficult time with the first step in the strategic process, enumerating
their moves. By then, our two weeks together were up.

The students who enjoyed this activity approached me later, after class, to find out more
about the gaming calculator. This self-selected group of students was more disposed to
learning about strategy than their peers. While these interested students worked on
strategy designs after school, one of their reluctant friends complained to me, "why can't
we just play games without thinking so much?" While this activity wasn't for him,
students interested in strategy were good candidates for my workshops.

This chapter begins with a description of a diagnostic test I conducted at the beginning of
most of my workshops. Next come sections that describe the modeled decision-making
process designed into my software: identify your options (4.2), clarify your goals (4.3),
evaluate your options (4.4), and then make your move (4.5). Each of these sections
provides a rationale for my representation and an evaluation of how students understood
what was represented. Then, in Section 4.6, I describe how students created hypotheses
and tested them with the gaming calculator. I conclude this chapter with a summary of
the problems my students had and how I overcame them.

Let me begin by explaining how the majority of my workshops were structured. Teenage
students responded to flyers advertising "Do you like games? Learn the Secrets of Game
A.I." Flyers were posted at game shops, sent to chess, math and computer clubs, and

handed out to interested neighbors. Based on response, 2-3 hour workshops were
scheduled for teenagers at game shops, schools, and their homes.

Of the 25 students in my workshops, 7 responded to notices sent to computer clubs, 6
responded to flyers sent to school math and chess clubs, 3 responded to flyers posted at
game shops, and 9 were colleagues' children, neighbors and neighbors' friends. 17 of the
students were 13-14 years old, 5 were 15-16 years old, and 3 were 17-19 years old. Only
3 students were female.

4.1 Diagnostics
To ascertain what students knew about strategy and decision-making, I conducted
informal pre-tests at the beginning of my workshops. First, I would ask how many moves
could be made in the game we were playing. Then, I would show them a 1-ply game-tree
graphic with numbers on it and ask which move they would make. I would repeat these
questions with a 2-ply and 3-ply tree, asking them to explain their decision-making
process. Every student was unfamiliar with these diagrams but nodded understanding
after the representation was explained. Students could pick their best move on a 1-ply
game tree, while 2- and 3-ply game trees presented more of a challenge. Many students
would run their finger along the horizon states of the game tree and pick the branch with
the largest spread of large numbers. This indicated that they knew larger numbers were
better and represented what was good for them, but that they were not considering their
opponents' choices.

I would then introduce them to the toolkit in the way outlined in this chapter. I would
explain that the goal was not to just win games, but to learn the process by which a
computer could win games. Many times in my workshops, I sensed that students "got it"
based on their non-verbal language and familiarity with the gaming calculator's interface.
So when it seemed to me that students understood the systematic decision-making
process modeled by the gaming calculator and could read a game tree, I would give them
the same diagnostic tests conducted at the beginning of the workshop. I wanted to know
if they could describe the minimax process outside of the context of the game being
played. It took a minimum of two tests before any of my participants were able to explain
the minimax process satisfactorily.

Once they understand the concept, however, they were comfortable enough to apply it in
other situations. When asked how they would design their agent to lose a game, they
would think and then describe maximin. With a smile they'd say, "That would be a funny
game." I would ask them if they could design that behavior in the gaming calculator and
they would, and then proceed to happily lose games. I would conduct my test at the end
of the workshop to confirm that they understand minimax.

4.1.1 Diagnostic Games
In my early workshops, we played a chess variant of my design, "baby barrier chess".
These early workshops were freewheeling, as we figured out together what worked and
what didn't, both technically and pedagogically. In my later workshops, "baby barrier
chess" was shown as an example game and then students would use my design tools to
create their own game that we would play for the rest of the workshop.

"Baby barrier chess" is played on a 5 x 5 game board, with symmetric barriers obstructing
the movements of all pieces but the knights. The pieces and winning condition are the
same as real chess: checkmate of your opponent's king. The game was specifically
designed so that within two moves, you could easily put your opponent in check if they

weren't planning ahead-a lesson my gaming calculator facilitated.

4.2 Choices
Identifying every good option in even a simple game-and in life-is not a trivial
problem. When students were asked to identify their possible moves in whichever game
they were playing, they had a difficult time enumerating all of them. Their estimates of
the total number of possible moves were always considerably lower than the actual
number. When asked to count their opponent's countermoves, their estimates were even
worse. Moreover, the moves students identified were usually those that were obviously
good; moves with subtle advantages were overlooked. When all moves seemed equal, the
ability to count options degraded further: students would often respond to questioning
about the number of moves with a shrug and an "I don't know."

Students were not able to think about this problem in an organized way. Only with
prompting could they count the moves available to each of their pieces. At my
suggestion, a few students did this by hand, a tedious, sloppy and imprecise exercise.

The gaming calculator was designed to make the identification of choices easier and
more systematic. The primary element that accomplished this was an animated,
interactive graphic. One way to illustrate possible moves could have been to sketch the
moves directly onto a graphic of the game board, similar to how a football coach would
sketch out a play. But this method quickly becomes overly complex with a tangle of lines
representing possible moves, as seen in Martin Wattenberg's visualization of starting
chess moves (see Figure 4.1):

FIGURE 4.1 CHESS OPENINGS VISUALIZATION (WATTENBERG AND WALCZAK 2005)

Shown here are only the best moves; Wattenberg's visualization prunes away less
attractive options. Instead of this approach, I use a common abstraction, a graphical
representation of choices known as a game tree (See Figure 4.2). Each branch of the
game tree represents a possible move in the game, and each junction represents a choice.

Ijj\\
FIGURE 4.2 A GAME-TREE GRAPHIC OF THE FIRST THREE MOVES AND COUNTERMOVES OF

BABY BARRIER CHESS

......................

FJ I

One goal of this abstraction is to reduce the cognitive load on the learner by clearly
delineating choices. I had several other assumptions about why this representation offers
advantages to a learner. In a multi-piece game, this representation focuses attention on all
of a game player's choices, not just the choices of particular pieces. In addition, when
looking more than one move ahead, the sequence of moves and countermoves is clear. A
third advantage is that instead of a mesh of complexity, complexity is made manageable
by fanning out all of the moves. Finally, a game tree allows students to more accurately
estimate the number of moves by a glance at the density of the graph.

When I turned on the game tree function in my software, many kids were awe-struck.
They were surprised at the sheer number of choices, and perhaps more importantly, they
immediately identified the mistake of their previous estimates. When I showed the game
tree to one of my students in a repeat diagnostic test, he said to me, "Ah, I know what this
is about now." The number of choices became clear and important.

4.2.1 The Future Game Board
There are tradeoffs in using a game-tree representation. Foremost is the cognitive
distance between the abstract game tree and the concrete game board. To help the
students bridge this gap, I added a "future game board" in a separate window to function
as a "crystal ball", showing students what possible moves on the game tree would look
like. The future game board always corresponds to the branch currently highlighted in the
game tree. Using the cursor keys, the student is able to select different branches on the
tree to see possible game moves (the sheer number of moves in many games necessitated
the use of the keyboard instead of the mouse when selecting individual moves).

At first, many students confused the graphic of the future game state with the current
game state. This is understandable: the game board and the pieces are the same, just in a
slightly different position. To remedy this problem, I designed it so that the actual game
in progress was not visible when the future game board was shown. In retrospect, it might
have been helpful if I had surrounded the future game board with a cloudy or dream-like
border.

Just seeing a future game state does not explain how you would get to that state.
Therefore, I used animation to show how game pieces would move from the current to
the future game state. When the animation played out on the future game board as
moving pieces, the corresponding branch on the game tree was animated simultaneously
with a dotted line (the line was meant to resemble a treasure map trail; follow these steps
to get to this destination).

4.2.2 Scaffolds to Debugging
I found in my early workshops that the simplest things could confuse students. For
example, the language used to explain the process of moves and countermoves could get
confusing. Referring to Player A and Player B was not sufficiently distinct to ensure that
students knew who was who. Similarly, the word "opponent" became slippery because it

had multiple meanings: they were designing a computer opponent to play on their behalf
and also playing against a computer opponent.

As a fix, I gave each player a personal name so that moves were more clearly attributed.
The programmable agents were named Huxley and Robotron (after some of my
childhood computers). These monikers solved the problem of misassociation. I also used
the names in dynamically generated explanations of the game-tree search process. For
example, "Countermove by Huxley" would be displayed when an appropriate section of
the game tree was highlighted.

The introduction of names had a secondary effect: students' language changed to indicate
that they were programming an agent, a psychological explanation, instead of just
designing rules, a mechanistic explanation (Resnick 1994). Huxley became a robot who
"knew" and "could do" things. Their language made it clear that what were ascribing
behavior to be implemented by an agent that followed their instructions. Debugging
became fixing how Huxley would play the game (Suthers, Connelly et al. 2001).

In addition to naming conventions, the moves of each player were differentiated by color.
When designing a games' rules, students selected the color for each player, and these
colors were used to both tint the game pieces on the board and their branches on the game
tree.

4.2.3 Bonsai Trees
In my first workshop, the representation of the game tree looked very different. I used an
off-the-shelf widget for visualizing tree structures. When a branch was unfurled in this
visualization, branches on the same ply were pushed down, often off the screen, to make
space. Not being able to visualize all of the moves and countermoves at one time proved
very confusing for these students. In the next design iteration, I implemented the graphic
game tree (as depicted in Figure 4.2) and understanding improved.

With this improved game tree graphic, many things relevant to strategies became
apparent to students. For example, one way an opponent can prune your game tree most
dramatically is to capture pieces. Some of these captures generated unique "bonsai" game
trees. I hypothesized that sparse branches would be easy to interpret as severely limited
choices. I found that the students could interpret these trees, but only after some
exploration with the gaming calculator. For example, two students were playing a game
of their own design in which both players had only two pieces. When the tree first
depicted a capture of either piece, the students were intrigued. They viewed those game
states on the future game board to see what was happening. Once they saw their pieces
fly off the board and correlated that with the highlighted branch, they could interpret the
rest of the tree.

In addition to changing the game tree by the moves they made, students could affect the
tree dramatically by the elements they chose when designing their game. The game-
design toolkit was designed to allow variations that had impact on the game tree: e.g., to
enlarge and to reduce the number of moves. For example, game-board barriers are a

design element that limits a piece's motility. When you add a barrier to a board, you
readily see that your choices are reduced. In designing their games, students added and
removed barriers to see how the number of choices available changed. This was a quick
process that led to many iterative design checks. Similarly, student designers would add a
new move to one of their game pieces and then check to see how their choices expanded.
The ability to "only move on capture" was added to create expansions of the game tree in
specific situations.

When designing asymmetric games, students were often intrigued by game trees that
showed a different number of choices available to each player. Students were able to
explain that this interesting diagram represented the fact that one player had more choices
than the other.

4.3 Goals and Hints
Games are different from many simulations in that they have defined goal states and
reaching a goal state terminates the simulation. A winning condition is desirable
pedagogically because it makes design decisions motivating and testable, ideas that I will
discuss in Section 4.6. For now, I want to describe how the toolkit makes it possible for
students to choose and describe goal states as well as evaluations of intermediary game
states.

A common way to describe winning conditions in many strategy games is as a
description of how pieces are related to one another on the game board, for example,
three tic-tac-toe pieces in a row, or my piece can capture your king (check). To help
students describe conditions in this way, the toolkit uses simplified natural-language
syntax. While only allowing for a rudimentary expression of location, this approach
reduces the burden on students by eliminating the need for programming, so they can
focus their efforts on learning strategy.

Because game states can be defined as relationships between spaces, pieces, and other
pieces, the problem of defining a goal state lends itself to a fill-in-the-blank sentence
structure, such as "if piece _ , owned by player , located , is next to piece

, owned by player , located __, then you ." The blanks are filled in

using pull down menus to make choices obvious and to keep students on track. My
choice of a natural-language syntax was informed by (Bruckman and Edwards 1999) and
settled on after many design iterations. The interface prevented logic errors by precluding
mutually exclusive choices, e.g., if you had selected that pieces have to be captured, then
you are not presented with menus to describe where these pieces were located on the
board. The same sentence interface is used to describe winning conditions and to describe
evaluation functions, the latter including the assignment of number values.

Even with the scaffolding sentences, students sometimes needed support to translate their
ideas for a pattern into the available language. For example, one girl wanted to describe

that limiting her opponent's queen's moves was desirable, and I had to explain how
negative numbers could describe that relationship. Using pattern language helped

students understand the specificity that a machine requires without forcing them to speak
the language of the machine.

Here is the design pattern template for sentences that describe game states:

[# >= 0] [pieces] [of minelof yours] [located on boardicaptured]
([relationship to other pieces] [# >= 0] [pieces] [of minelof yours] [located on
board]) * [pts]= score

In this notation, brackets indicate required fields and parentheses indicate an optional
relationship clause. Written out this way, it is somewhat opaque, but the following
examples illustrate that this syntax can define a variety of patterns:

If 1 King of theirs is captured then I win.
If 2 Harry Potter of mine are on the board here, then I get 2 pts for each one.

In game-theoretical jargon, +1 is used to describe a winning condition. I used the word
"win" since this is the intuitive term for game playing (under the hood, a winning
condition was defined as Integer.MAXINTEGER). By moving the winning condition
way down the number line, the range of numbers that students could use to score game
states became much broader: students could use whole numbers rather than decimals.

Let me explain how my software finds patterns. First, the minimum number of parent
nodes-each representing an active game piece-has to be found. This means, to use the
latter example sentence above, that at least 2 Harry Potters have to be found in the
specified spaces on the board. Next, if a relationship clause is used, e.g., can move or can
capture, then every actor piece is checked to see if it satisfies the conditions of that
relationship, e.g., can move to these specific spaces or can capture this number of specific
pieces. If the sentence pattern is defining an evaluation, then points are allocated for
every matching child node. If a relationship is not specified, points are allocated for every
matching parent node.

To make the computer's evaluation process transparent, the gaming calculator shows a
graphical overlay of evaluation criteria on top of the game board. This helped students to
understand the relationship between their pattern sentence and real game boards. In my
pre-test, we spent a lot of time exploring how a number score could be assigned to a
game board and we made repeated reference to the overlaid evaluation information to
understand how this process worked. We projected the information on a white board and
the students took turns marking up and counting the pieces on the board themselves to
score a board according to their rules; then I would turn on the overlay to confirm that
they were right. In Figure 4.3, a student had just marked up the 4 spaces where the two T-
Rex pieces in the lower left could move.

FIGURE 4.3 A GRAPHICAL OVERLAY OF EVALUATION CRITERIA PROJECTED ONTO A
WHITEBOARD

Because game-state hints might describe multiple pieces and various relationships, an
overlaid search result must be able to convey a lot of information. In my design, if child-
node spaces were identified by a hint, these spaces were highlighted on the game board;
mousing over these spaces would reveal the locations of their parent-node pieces. For
example, in the game state depicted in Figure 4.3, mousing into one of the target graphics
would highlight the T-Rex piece that could move there. Contextual graphics would
represent the type of relationship: explosion graphics showed pieces that could be
captured and targets showed spaces where pieces could move.

4.3.1 Collaborative Competition
My design goal was to create a collaborative learning environment in which evaluation
criteria were appropriable. It might seem contradictory that in competitive workshops in
which students wanted to beat each other in their games, students would share and
discuss strategies. However, there was open discussion of what worked to win games; the
process became a collaborative inquiry.

One of my design goals was to make hints easy enough to understand so that other
students could read and modify each other's work. This led me to add the ability for
students to "view source" of each other's hints to reveal how they worked (Blankinship,
Smith et al. 2004). I also designed my workshops to facilitate the exchange of code and
ideas. Before students tested their strategy against the default computer opponent, I asked
them to present their strategy's hints to the other students. I would encourage them to
read their hints aloud. Then we would see how their hints performed in the thousand

trials; other students took careful note of which strategies performed well. The student
whose strategy performed best received extra attention from the other students, who
asked for details about how the strategy worked; they peaked at the hints after the trials.

The gaming calculator supports the design of games with multiple winning conditions.
This means that each player can have many and differing goal states. For example, you
can create a game that is winnable by either capturing a certain piece or moving to a
certain space. I hypothesized that with more than two ways to win, students could
experiment with multiple strategies that might require thinking more broadly about their
evaluation criteria. Only one of the games designed in my workshops had multiple
winning conditions for both players: capture all of your opponent's dinosaurs or get to the
other side of the game board. However, once the game rules were shaken out and
relatively balanced, it turned out to be nearly impossible to get to the other side of the
game board without being captured first. Students' strategies focused almost exclusively
on capturing other pieces.

When students created games with asymmetric winning conditions, it had the interesting
effect of helping to clarify the minimax algorithm. When playing games with symmetric
goals, students would be distracted by trying to evaluate how good the other player's
moves were from the other player's perspective (which is not how minimax functions;
this is teased apart in the next section). When playing games with asymmetric goals,
students only focused on evaluating how good their moves were, and it was therefore
easier to understand that their opponent would prevent them from getting to their best
moves. An example of this is in the Harry Potter story from Chapter 2.

4.4 Systemic Evaluation of Choices
I would begin many workshops by asking students how they played strategy games such
as chess and checkers. Most students answered that they played randomly until they
found a killing move or a memorized tactic such as a pin or fork. Some would explain
that they played defensively, which when asked to explain, meant they tried to keep from
losing pieces.

The lack of a sophisticated strategy could be ascribed to the earlier finding that most
students were not aware of the number of choices available. But even when they saw all
of their choices on the game tree, they still had a difficult time identifying the relative
merits of each move. I displayed numerical scores on the horizon nodes of the game tree
to make differences clear, but without an evaluation function, every branch has the score
of 0.

I introduced the concept of heuristics with an analogy to the familiar search game "you're
getting warmer/you're getting colder". Like the player of this game, a computer opponent
needs guidance to know which moves bring it closer to the goal state, "red hot". I
explained how we could play this game by calling out numbers instead of qualitative
temperatures ("you're burning up" can become 500), and that is how we had to program
Huxley.

By this point in the workshop, students had already created their winning conditions and
were familiar with the pattern language and sentence interface used to describe game
states. After I prepared the ground with the "hot/cold" analogy and introducing game
states on the tree, students, with little prompting, knew how to create a hint, and they
would apply it to see the effect. Commonly, their hint would be to count the number of
their pieces on the game board for 1 point each. When only searching ahead one move,
this often did little to differentiate the moves. But when we would change the look-ahead
function to 2 or 3 moves, differences became obvious. Inevitably, depending on what
they did, they could lose pieces.

Sometimes, to make the point that moves that look similar can be distinguished from
each other, even without looking far ahead, I would create a hint that gave 1 point for
every space a piece could move to. This hint created a 1-ply game tree with lowered
scores on the ends: a center-heavy number line. When asked if they could explain this
number line, students would pause and then describe that pieces along the borders of the
game board could not move to as many spaces and therefore had lower values. They were
able to interpret how the numbers reflected real game conditions.

I also explained that we could create multiple hints so that the computer could evaluate
game states various ways, and that these hints would be summed together. The visual
representation of these multiple hints was as a simple tabulation with a "TOTAL" at the
bottom. Double-clicking any of the line items would open the hint in an editor. The
design of the toolkit synchronized the display of the selected evaluation in the tabulation,
the overlay on the future game state, and the corresponding selected tree branch. The
same evaluation number was also displayed on the tree, the tabulation, and the future
game state to clarify how the same score was represented in various parts of the decision-
making process.

Many students would create multi-hint strategies, and with almost every new hint, the
number lines on their game trees would update. In the example from Chapter 2, the
student designing the Harry Potter game increased the score for his self-preservation hint
to a larger number, and this made moves that kept Harry on the board stand out
numerically on the game tree. This method of dramatically increasing the value of a hint
to see where it is reflected on the game tree can be used as a search tool: e.g., where are
those few moves where Harry can capture but not be captured?

When developing strategies for chess variants, one student used the game tree in an
interesting way. She would enter a new hint and then see how the number-line would
change, browse through highly scored states, and tweak one of those hints even further so
as to better describe what was already a good move. In general, the students who created
hints for chess variants had much more varied point scales than students who made their
own games. For example, they would assign a rank value for each of the different chess
pieces, and then use this scale as a basis for other valuations. This scale, used by different
students in different workshops, seemed to be straight out of chess-strategy guidebooks.

Many students recognized the need for a scale that ranked hints according to their
importance, but were unsure of what the upper bounds of this scale should be. I explained
that winning was an infinitely high number and their scale was up to them. Some students
wondered if just putting in a larger number would result in better performance, but as one
student told another, "really big numbers just make you feel good about yourself, they
don't make you play better". He then explained that what was important was how much
larger one number was to another, relative scale.

One common problem students had in understanding scale related to capturing pieces.
Students would often create a hint that said it was worth the default 1 point to be able to
capture another piece. But when they played, their agent would rarely capture anything. I
would explain that they needed to specify capturing as good, not just being able to
capture. In other words, their hint said that it was good to be in striking range and nothing
about the actual strike. Then they would add a hint specifying the need to capture other
pieces, but they would leave the value at the default of 1 point. This only brought about
slightly better behavior than before. I would then explain that the computer now valued
equally being able to strike and the actual striking. Students would quickly increase the
value of striking to create the desired behavior. In creating these two rules, the students
had made a better capturer then they would have made with one rule, and they understood
this.

4.4.1 Complexity from Simplicity
The toolkit gave students control over the level of complexity in their games, thus
helping them see how different rules affected issues of balance and how simpler rules
sometimes made strategy more relevant. There was only one game design in my
workshops that was simple enough for a student to identify a guaranteed winning strategy
in two moves. This circumvented the need for all of my software's visualization tools.

This game was simple to win because of an overly powerful piece: a dinosaur that could
run all the way across the board, eating as it went. What is most interesting about the
student who was able to identify the winning strategy is that when we slightly decreased
the power of this piece, and thereby increased the complexity of the game, he was able to
determine a winning strategy in five moves within a few minutes-again, without a game
tree. An avid chess player, he commented that this game needed to be more like chess,
with simpler rules, so as to create strategic scenarios that he could not solve in his head.

4.5 Choosing
After enumerating all of the moves and evaluating them, it is finally time to make a
move! Many students were excited that we were actually going to play the game, not just
think a lot about it; little did they know that picking a move was probably the most
difficult conceptual problem they would encounter in the game. Even at this stage of the

workshop, most students were still highly motivated because they wanted to create a
machine that would win.

If only looking 1-ply ahead, every student found it easy to pick the best move on the
game tree. This was confirmed both in my diagnostic tests and when students were using

the gaming calculator. Programming Huxley to select that best score was also
straightforward to most students given the interface I created for describing this behavior.
Students had to complete this sentence: On my move, I will pick [my best move] [my
worst move] [a random move].

Clicking "best move" would then highlight the branch on the game tree with the highest
number score. If multiple branches were scored the same, then one of those branches
would be selected at random. I would explain that "best" meant the largest number value
and remind them about the hot/cold game analogy.

Next, we asked our agent to look two turns ahead, and the game tree would fill out with
our opponent's available countermoves to every one of our moves. When asked which of
these countermoves our opponent was most likely to select on his turn, students would
pause. They had a similar sentence to complete to describe this process: "When it is
Robotron's turn, I think he will pick [my best move] [my worst move] [a random move]."

After ruminating about this, nearly every student selected maximax, "my best move"!
How they came to understand what their selection meant is interesting. When asked why

they made that choice, they would often explain that they assumed the opponent,
Robotron, would pick his best move on his turn. They were reading the sentence as if the

opponent spoke it. The explanation students gave when playing symmetric games was
that their opponent would pick its best move on its turn, just as they picked their best
move on their turn.

I would re-read the command sentence to them aloud with an emphasis, "When it is
Robotron's turn I think he will pick my best move". Often times the student would look at
me for confirmation-that's right, right? It was clear that ambiguity of the language
interfered with the students' ability to understand the strategic concept.

I would next remind them that all of the scores on the game tree represented their agent's
moves and how good they were to their agent. "If Robotron makes one of these
countermoves, this number represents how good that countermove is for you." This
explanation just led them to look at me plaintively. Some students would then select
"worst score" or "random move", but when asked why, they just said they were pretty
sure "best move" wasn't right.

I did not want to give them the answer but wanted to help them figure it out on their own,
so I used the game tree to scaffold this investigation. This is how I did it: I would pick
one of the hints they had already created, and edit it to increase its value so that when the
game tree was reloaded with new scores, there was sure to be large relief between many

choices on their horizon game states. I felt it was important to keep the student's hints,
but just make one stand out a little more for this exercise.

Then, I would switch the game tree's look-ahead function to 3 moves, extending the

reach of the game tree and then selected maximax. Next, I would find and select one of

the highlighted higher scored game states on the tree, which brought up the

corresponding future game board. We would discuss why this game state was scored as
high as it was, making it clear that we both understood why it was considered a desirable
future scenario. It was agreed: it would be great if, in two moves, this is the situation we
would find ourselves in.

Then, I would animate the sequence of steps that would lead to this game state. I would
ask if what we just saw was a plausible sequence of events: would any decent computer
opponent make the move that made such a great move possible for us? For example, if
Robotron has a chance to capture one of our pieces on his turn, would he reasonably not
make that capture? Would he just step out of the way? Especially when not making that
capture means Robotron's pieces could be captured when it is our turn?

This series of questions was asked while mousing over the region of the game tree that
corresponded with the move being discussed. I designed the game tree animation to be
responsive to the location of the mouse to help facilitate this sort of conversation. When I
placed the mouse into the lower branches, representing the moves three turns ahead, all of
the scores were labeled on those branches. Moving the mouse up to a branch above, to a
previous move, displayed the selected score from the bottom branches (max, min,
random). In this way, I was visually representing how the searches for scores were being
propagated backwards. I would explain this process as "sentries who have scouted ahead
sending back their report from the horizon".

In addition to this responsive display of information, I also used an animation of the
minimax decision, in which the game-state scores were animated climbing up the
branches. When students first saw this animation, they were often wowed that so much
information was moving on the screen at one time. I would focus their attention on the
game branch under discussion by pointing at that region of the animation and replaying
it. The animation was designed to show the minimax decision occurring on all branches
simultaneously so as to impress upon students the process in which a systemic decision
was being made: every computed move and countermove was being considered. I
inferred that students understood this process as I explained it to them, but some students
later told me that it was not until the end of the lesson that they understood what was
being represented by this busy animation.

While having this conversation, I would toggle between the preferable maximum game
state on the horizon and a neighboring lower game state. This would show the outcome of
the selected move on the future game board. The lower game state was not as desirable
an outcome, but, the student would agree, was more likely to be the move available to us
after our opponent moved.

This visualization and discussion led to many students having an "aha!" moment, and
they would explain to me, "So, let me see if I understand this... Robotron's best move is

my worst move. What is best for him is what is worst for me." Many students would mull
this idea around in their mind for a while before agreeing on it. At this point, the student
would usually change the sentence for programming their computer opponent to read, "I
think Robotron will pick my worst move".

By the logic of minimax, evaluations of what is a good move are always made from the

perspective of the person playing, and an opponent's goals are completely dependent on

your own. Only evaluating the state of the game from your perspective is somewhat
counter-intuitive; most of my students thought they should evaluate their opponent's
moves independently of their own. Being aware of the minimax decision-making strategy
could be helpful in areas beyond games.

4.6 Hypothesizing with the Game Calculator
In many workshops, students learned to design their own strategy by playing against a
default computer opponent. Before playing, students would watch me create or load a
default strategy into the Player B Strategy tab as I told them that Player B's behavior
could be changed later. After playing a few games, I would let students guess the rules of
this default strategy. Without even knowing how to explicitly model a strategy of their

own, many students were able to deduce their opponent's simple rules for behavior: it
looked one move head and only wanted to capture pieces. Once they understood how
their opponent worked and how to use the gaming calculator to model their own decision-
making process (as described in the previous sections), it did not take long before they
suggested new competitions.

In this section, I describe how students posed their own problems, hypothesized about
outcomes, tested their solution in trials, analyzed results, and then began this process
again with new problems. How this line of inquiry played out in my workshops is
described in two anecdotes: one in which students played a chess variant and another in
which a group of students played an asymmetric game of their own design.

This section presents evidence to support the claim that students designed and tested

computer game strategies in ways that resemble the scientific methodology of generation
and testing of hypotheses. I conclude this section with an explanation of why my gaming
calculator was conducive to this inquiry.

4.6.1 Me Versus Me
Two boys, each aged 13, were playing "baby barrier chess", on their own laptops. We
were at a gaming shop that specializes in the sales of fantasy role-playing games and
customizable card games, and a third of the store was filled with large folding tables set
up for gamers; we worked back there. The two boys had responded to advertisements
posted at the store for my "Learn the Secrets of Game A.I." workshop.

Once they understood how the toolkit worked, the boys were ready for some new

challenges. One of the boys had an idea-an idea that excited both boys: could they run
the computer opponents they had just designed against each other? I said that that

sounded like a good idea to me; we just needed to get a disk to copy one of their strategy
files to the other laptop. But no, I had misunderstood; they wanted to see how their

computer opponents faired against themselves (but they also liked the idea of a
competition as well).

I was intrigued that they had proposed their own problem. As I guided them through how
to save their Player A strategy to disk, and then load it into the Player B Strategy tab, I
asked them how they had come up with this idea. They replied that it would just be cool
to see what would happen.

I wasn't sure of the outcome myself, so I asked the students what they expected to

happen. What were their hypotheses about the outcomes of these mirror matches? The

boys, while hyped to see the matches unfold, paused for a moment and thought about
this. The boy who had proposed the idea said, "...well, they should be equal, I mean,
both should win the same amount." And when asked why, he answered, "Because they
both have the same strategy. They will both do the same thing." The other student agreed
that this made sense. I repeated their hypotheses aloud, to make sure everyone understood
their expectations and their rationale.

We started the Thousand Trials on both laptops, and the results started to stream in (at
this early workshop, I had not yet implemented the pie graph, so results appeared line by
line in a debug console). The boys were taken aback by the results: Player B was winning
almost all of the games on both of their laptops! We confirmed that both Player A and
Player B were using the same strategy file. They thought this was particularly interesting
but did not say much beyond exclamations such as, "What is going on?"

I prompted them, "Is this what you thought would happen?"

They replied, "...no..."

"What do you think is happening? What's going on that could make these results?"

"I don't know... Player A always goes first, so maybe the player who moves first in this

game can get caught easier..."

The other boy continued, "Yeah, they put themselves out into the battlefield first so they
get hit first and... it's all downhill from there."

His friend jumped in, "Chess might be the same way... too big to test it though."

I said, "That's an interesting theory. Would you like to change something and try it
again?"

The boys thought for awhile, and then one said, "Well, even if we change the strategy, it

will be the same: they will each play the same and whoever goes first will still lose. And

we've already done that since we each did a different strategy on these two laptops." The

boys nodded their heads at each other; they had confirmed their findings in each other's

independent experiments.

Let me recap what had happened here: the students proposed a problem of their own to be

solved, a problem they did not know the answer to. When prompted, they were able to

hypothesize about an outcome. They created the experimental conditions themselves
using the gaming calculator and then ran their own experiments in a thousand trial runs.
The results from these trials disproved their hypothesis, and when prompted, they
theorized as to why.

While these students instigated their own problem, I cannot underestimate the role I
played in structuring these students' investigation. I helped to keep the students' line of
inquiry alive by asking probing questions and suggestions. In short, I played the role of a

teacher; without my intervention their line of questioning and reasoning might have been
derailed.

4.6.2 Asymmetric Star Wars
Another example of experimentation with the toolkit began when two boys from a school
chess and math club responded to mailed flyers advertising my gaming workshops. When
they arrived, the boys settled on making an asymmetric strategy game themed around the
popular Star Wars movies. We only had one laptop, so the students worked together on
the design of their game board and pieces. Their game's winning conditions were to
capture every game piece of their opponents-they had devised a death match.

I was not sure that their game was well balanced; the two designers, however, were pretty

sure that they had created a balanced game because they had thought carefully about
every design decision as they made it. To test their game, I suggested that we run a
control study first: just random moves versus random moves to see how things shook out.
The students thought this was a good idea too, and we launched the thousand trials to
discover that Player A and Player B fared equally well. I was impressed. From my own
experience, developing balanced asymmetric games was difficult, let alone on a first try.

The thousand trials allowed them to prove the balance of the game, which served as a
control for their later experimentation.

As per the format of my workshops, I loaded in the default Player B strategy and the
students proceeded to learn about the decision-making process through explorations of
their choices with the game tree. Working together, these two students created a 5-hint
strategy. By the time they understood how the toolkit worked and their strategy was able
to defeat the default computer opponent they were not sure which of their hints was

responsible for this outcome. I asked them what they thought was responsible for their
strategy's efficacy, and they said they were not sure and that was why they wanted to
figure it out. They proposed a series of tests to determine what was actually effective in
their strategy.

The students began a systematic process of neutralizing all of their hints but one;

assigning the hints point values of 0 and then running the thousand trials to see the

outcome of these neutralizations. Their "isolate-and-iterate" approach did not find the one

killer evaluation responsible for winning the game, although one hint did do much better

than the rest. When asked to explain, they said that it was a combination of this hint with

other hints that was responsible for the peak performance.

To summarize what these students did in the context of problem solving: in an
exploratory investigation, they were able to achieve a goal state but were not able to
explain what was responsible for their success. To determine which factor was
responsible for their success, they conducted a systematic series of tests in which they
neutralized variables. While the results of these tests were inconclusive, they did identify
a strong factor.

The approach of these students to testing their strategies was not unique: in three different
workshops, students conducted similar isolate-and-iterate tests on their strategies. In each
of these cases, students instigated these investigations on their own, and in two of these
cases they continued to work on the problem after the workshop had ended. The
compulsion to understand what was responsible for their winning condition was
motivating.

4.6.3 Who's Going to Win?
Students can pose and test hypotheses in many domains, but modifiable strategy games
are especially conducive to inquiry because they are fun, because they have elements that
can be isolated and changed, and, because of their terminal states, they are easily
repeatable. In short, the interesting microworld of a strategy game provides opportunities
for iterative testing. Chess-like games, in particular, are uniquely testable in that they
have a binary outcome: you win or you lose (or, in some cases, draw).

Since the gaming calculator's simulated microworlds have definable terminal states, they
can be easily batch tested using the thousand trials feature. This feature is particularly
helpful in hypothesis testing in that experiments can be easily repeated and the results are
summarized in an intuitive pie chart. Game series are commonplace in chess tournaments
and sporting events for this reason: the game player with the better strategy will shake out
in the end despite flukes and lucky breaks. Also, because the toolkit allows games to be
easily modified one element at a time, students are naturally driven to experiment with
cause and effect. Pull-down menus also encourage experimentation by making choices
obvious.

Games are interesting to teenagers because they are microworlds in which they have
direct and understandable control over behavior. This is different from most science
experiments available to young students. In many science-fair experiments, for example,
students set up seed conditions to see how things will grow, then stand back and observe
and measure results. This is most literally the case in potted plant triptych presentations.
In contrast, experimentation in games is directly controlled by the choices of the game
player, and this volition can be described in a straightforward way with the gaming
calculator.

When students use my gaming calculator, the creative focus is on description of desirable
game states, not on programming control structures. This focus on algorithm
modification instead of algorithm implementation has the benefit of focusing students on
the debugging of behavior instead of syntax errors. In other words, debugging in the
gaming calculator is not about trying to make autonomous behavior work since that is a

given; it is about making autonomous behavior work well, which is testable by counting
wins.

4.7 Summary
Using the gaming calculator, students learned about a decision-making process in which
systemic evaluation determined which of their choices was best. Students had many
issues with learning this process, and the design of my software helped to scaffold their
understanding. Students' attention was held throughout the learning process because of
their compulsion to design winning strategies for their games.

It was difficult for students to predict the number of moves and countermoves in familiar
games. To scaffold their understanding of this number and what it represented, my
software produced game tree graphics that fanned out all of their choices. Students were
able to understand this representation and also understand how their design decisions
modified this representation.

It was difficult for students to differentiate their choices systematically. To scaffold
learning this process, I employed many strategies. Foremost, I focused students on the
design of descriptive evaluations of good game states since this step in the decision-
making process encourages generative and creative solutions. Natural-language syntax
was found to help students be the most expressive in their evaluations, and graphical
overlays of their criteria over actual game boards was helpful to students understanding
how their evaluations were used to generate number scores of different choices.

How to plan ahead in a competitive game, specifically how to describe the minimax
decision, was very difficult for students to understand. To scaffold learning this process, I
provided students with ways to modify the minimax algorithm to encourage
experimentation. I found that animating the effect of students' modifications to this
process helped them to understand it better. I also found that without repeated instruction
students could not describe or apply this algorithm in other situations; despite many
software scaffolds, instruction remained of utmost importance. I also found that
instruction could come from a collaborative environment of peers around strategy games,
despite the competitive nature of game playing.

I found that students, often of their own volition, would generate and test hypotheses
around strategy games. Since their hypotheses were testable by winning, once their test
was complete (a game or series of games was over), students would modify their
hypotheses and re-test in an iterative fashion. As part of this iterative hypotheses testing
cycle, I found that some students would isolate variables as a meta-strategy for
understanding what made more effective strategies in their games. The gaming calculator
was found to be successful in scaffolding this inquiry by enabling modification to the key
steps in the decision-making process.

5 Future Work
This dissertation has described how teenagers were able to design computer games and
computer opponents to play their games by modifying game-theoretical algorithms. This
is a promising finding for educators who are looking for ways to get students interested in
mathematics. Two of my study participants quickly realized that they were, in effect, in a
specialized mathematics workshop. They confided with smiles, "This is really math class,
isn't it? We won't tell." Playing around with mathematics (literally!) in the familiar
context of games gave numbers a practical application: winning.

This thesis' contributions are a new computational tool, the gaming calculator, and
observations of how this tool helps students to learn game-theoretical concepts. A
specific result is that students were indeed able to construct solutions to complex
decision-making problems through iterative hypothesis testing.

Another contribution of this thesis is supporting evidence of the more general idea that
providing design scaffolding based upon high-level modification is more productive than
low-level syntactic manipulations. This closing chapter explores how the gaming
calculator could be extended technically to further support this general idea. One of my
goals was to make the gaming calculator simple enough for non-programmers to learn
quickly but expressive enough for sophisticated exploration. I believe that this goal was
met, but there are many ways a next-generation version could help learners explore more
strategic concepts without confusing the novice. Future versions of the gaming calculator
will be far more expressive, allowing for the design of more interesting games and, as
follows, more interesting strategies to win those games. Section 5.1 describes
enhancements to the gaming calculator for games of perfect information (the type of
games this thesis explored) and 5.2 describes how other strategy games could be
supported. Section 5.3 describes how computer simulations could be modified and 5.4
looks at frenetic video games. These explorations employ data-driven artificial-
intelligence modifications to focus learners' attention on behavior, not implementation.

That many of my study participants continued to work independently at the end of
workshops or asked for a copy of the software suggests that brief, intense workshops
could be extended to allow more time for learners to investigate. If my comparison of the
gaming calculator to a graphing calculator holds, then it is helpful to look at how
graphing calculators' efficacy in classrooms is measured. Studies of students'
performance with and without graphing calculators show that students with calculators
had better comprehension in applied contexts and engaged in more problem solving
activities (Burrille 2002). Technological fluency and access to a powerful exploratory
tool allow these students to focus on asking and solving interesting problems, rather than
working on rote calculations for everyf(x).

It is a fun and improbable future in which secondary school students are tested on how
well they can play games as part of their formal mathematics assessment. However,
integration of a gaming calculator into an ongoing educational program, such as an after-
school club, an undergraduate economics course, or a gaming club, could provide many

rich and varied learning opportunities. This dissertation concludes in Section 5.5 by
describing how this work could be used in more educational settings.

5.1 Games of Perfect Information
Nearly every teenager in my studies, when introduced to the game-design capabilities of
the toolkit, asked if there were more sophisticated game-design options. Could game

pieces have hit points? Could game pieces hold different weapons? Could game pieces'

capabilities change over the course of a game (e.g., grow weaker as they were hit more
often?). This expectation was understandable. As games have grown in sophistication, so
have kids' expectations for game design. Dungeons and Dragons (D&D), a paper-and-
dice game with its origins in chess, is designed to make players into game designers, with
its varied rulebooks providing nearly unlimited combinations of resources to customize
game rules. Even if teenagers today have not played D&D, they are no doubt familiar
with its influence, as D&D has served at the thematic and rule template for many
computer games over the last thirty years.

Once teenagers in my study designed a game with the available feature set and began
work on their strategies, they became aware of just how complex their "simple" games
were. While their games provided enough of a strategic challenge for our workshops,
there is no reason not to allow for the design of more complicated games. The tool should

support learners posing and solving problems as difficult as they want to explore.

Even within the limited constraints of chess-like capture games, new rules could be made

available for game designers, as the teens' questions suggested. For example, landing on
different game board spaces could trigger interesting behaviors: addition and removal of

barriers, changing the size of the game board, or maybe changing, teleporting, removing
or adding game pieces. Another option would allow for certain pieces to have more

power than other pieces, such as only allowing pawns to capture kings, or limiting the
movements of certain pieces to regions of the game board. Many games in which a roll of

the dice determines how many spaces you can move could also be implemented, since
every outcome of a dice roll could be planned for. By no means are chess-like games the

only type of game in which moves and countermoves can be graphed on a tree. Line-and-

dot games are a popular game genre, as is go and its variants.

For every change to the rules of a game, strategies will have to be more expressive as

well. In the proposed changes to chess-like games, if the game board changes while
playing, strategies that refer to the game board will have to be described with a more

flexible language than is used to describe static, absolute positions (as they are referred to
in the current implementation). Every new game genre brings with it different ways to

evaluate progress towards winning. The current implementation of modifiable sentences

could be extended and dynamically configured to describe game states for a wide variety

of games.

While every new game rule offers exciting new ways to play, each additional choice

available to players makes for an explosive number of possible moves and countermoves,
which poses memory problems for both the computer and, more importantly, for the

learner. However, once the basic algorithm mechanics are understood, then opening a
wider range of possibilities provides more opportunities for authentic applications of their

knowledge. Ensuring a gentle introduction to these ideas with a simple game should
remain a pedagogical goal, despite the insistence by many kids that they are already game
experts.

5.1.1 Searching Quickly, Widely, Deeply, and Selectively
The implemented gaming calculator just scratches the surface of the many ways A.I.
researchers have tackled game-search problems. Looking ahead exactly one, two, three or
more turns ahead is a rather artificial (and not intelligent) way to plan in a game. For

example, in the current implementation, there is no alpha-beta pruning, no quiescence,
and no memory resource management. Many of these issues are, necessarily, complex
and tied to low-level resource allocation problems of computer science.

To help introduce the problems inherent in any practical application of game searching,
such as time and memory resources, allocation of these resources could be imposed on
strategy designers (e.g., "Hey, let's play Clue with a 40,000-move search limit" or "Let's
set our tic-tac-toe strategies to a 10-second search"). This feature would help students to
understand what makes processor speed relevant. Limiting designers to timed searches
seems to be an unfair limitation, however, since the designer with the newest and fastest
computer would always have an advantage.

If one is only evaluating a number of game states, then finding a way to describe search
order becomes an interesting problem. A depth-first search doesn't make much sense
since designers might exceed the allocated number of searches. Breadth-first search
works better in this scheme, since searches can "spill over" to the next ply. Designed and

implemented in an earlier version of my software was a feature called "selective
deepening". Instead of searching exactly 1, 2 or 3 ply ahead, selective deepening allowed
strategy designers to break from a breadth-first search if an interesting game state was
found and they wanted to explore its next moves in more depth (e.g., finding check in

chess might be worth looking into). Selective deepening was disabled during user testing
when early studies made it clear that my subjects were finding sufficiently interesting
challenges with a straight 1, 2 or 3 ply search.

It is difficult to imagine how alpha-beta pruning could be described in a way that makes it
modifiable. Nonetheless, animating its effects on state search would probably be

informative. Regardless of understanding its function, once strategists saw its effect on
their strategy's performance, they would turn on this feature.

5.1.2 If-Then Rules
A straightforward way to program a computer opponent is to provide a list of if-then

rules. For example, if you find a way to capture the queen in chess, don't waste resources

searching countermoves; just get the queen! This type of strategy rule is more accurately
called "if and if, then", since both an initial state and the desired next state have to be

satisfied. To integrate this way of picking best moves with a game-tree search, the "if-

then" state is assigned a utility function. When making the minimax decision, "if-then"
scores are treated just like evaluation scores.

This feature was implemented in the first release of my software and used by some
students. It turned out to be problematic. The students entered very concrete if-then rules
all focused on the first few moves of the game, almost leading the computer opponent by
the nose. Their if-then rules were very specific to game states, describing the position of
nearly every game piece on the board. The likelihood of their game states ever being
repeated was miniscule, given that some of their game's pieces could not retreat. After
these first few moves, their computer opponent didn't have any heuristics regarding
which moves were better than others, and the students were overwhelmed by the prospect
of entering many, many more if-then rules to guide their computer opponent through an
entire game.

These students' if-then rules retarded their progress towards creating even a simple
evaluation function. Once they were weaned off of if-then rules and encouraged to work
on evaluation functions to generally guide their strategy, they would express dismay if
their if-then rules didn't fire (because the minimax decision had found a higher scored
move a few turns ahead). It seemed students were distracted from making broad
strategies.

5.1.3 Beyond Min and Max
In the current software, strategies can be set to select maximum, minimum, and random
scores to focus learners on the most obvious choices. In earlier versions of the software, it
was possible to select from a variety of number-line relationships including the median,
average, and mean. Also, the ability to define an offset was enabled, so that students
could select, for example, two less than the highest value. This was implemented so that
strategists could make "slightly easier" opponents without having to modify their
heuristics. I kept this feature disabled in my studies but did ask participants how they
would make a slightly easier opponent. It was interesting that they all gave the same
answer: pick a move randomly every once in a while. While this would make an easier
opponent, it is more like playing against someone vaguely paying attention. Regardless,
their suggestion could also be implemented into a future version to allow learners to test
their ideas.

One student in my study suggested a more sophisticated way to pick best moves based on
risk aversion. This astute suggestion made me revisit ways a "best move" could be
defined with the gaming calculator. Future versions of the gaming calculator could
provide the ability to punch into something like a command-line tool or offer a plug-in
architecture to allow dedicated learners to perform more sophisticated analyses at
different stages of their strategic search. I give more details about this approach in the
next section.

5.1.4 Finding Patterns on the Game Board
The arrangements of pieces on a game board can be described in many ways. The

evaluation sentences in the current software are a good start but hardly complete.

Implemented, but disabled to limit the focus of the evaluation, were game-board
relationships such as "distance to" and arrangements of pieces in patterns (e.g., three
pawns in a diagonal line).

Another implemented but disabled pattern-matching feature allowed for conditionals.
With this feature enabled, evaluations would not be considered unless some game state
condition was met. For example, you could more highly value your knights in chess once
all of your pawns had been captured. This allows for a strategy to unfold in stages.

A future direction for describing game-state patterns would be to change how pieces are
referred to. Instead of referring to game pieces by name, they could be referred to by
some numbered rank (hand assigned or machine assigned). This would allow for many
strategies to be interoperable between games, so that people could see how well their
chess strategy would operate in a checkers game and vice versa.

I have not exhausted all of the ways to describe patterns on a game board. Furthermore, I
am sure that other creative minds will find patterns that are difficult to describe succinctly
with the evaluation-sentences approach I implemented. Therefore, future versions of the
software should offer a command-line tool, which provides direct access to a machine
representation of the game state so that motivated parties could create new tools to find
patterns. This approach could also be implemented with a plug-in architecture.

5.2 Partial Information, Iterative Games and the Rest of Game
Theory
Games in which you are not sure which cards you might be dealt, or which cards your
opponents have in their hand, are referred to as games of partial information. Effectively
strategizing for these games requires evaluation of probabilities and risk analysis. For

example, when playing cards, what are the chances that your opponent has an ace in their
hand? Probability is a tricky concept for many people to understand. Research could be
done to find appropriate ways to represent choices involving probability to learners.
Representation problems would extend to algorithm-animation considerations, since
probabilistic choices would be hard to represent graphically.

Games played in rounds, like poker or iterative prisoner's dilemmas, present new strategy
representation problems since players' histories can be analyzed to predict future
behavior. For example, opponents might bluff, and a strategist would want to account for

this behavior in their automated strategy. It is not clear how one would create a robust
evaluation language to describe changing strategies in lieu of other players' histories.

Partial information and iterative games are just two features of a very large taxonomy of

game-theoretical analyses of games. Not discussed here are design considerations for

non-zero sum games, games with multiple players, and simultaneous games. To make
each of these game types accessible to a tool like the game calculator will require
research. Once appropriate representations are found for these different games, a gaming
calculator could tailor its strategy-language options to that particular game's rules.

5.3 Simulations
Most behavior in computer simulations is driven by functions, in which the person
playing the game, through his or her choices, indirectly controls one or more independent
variables. Changing the independent variable moves the dependent variable, indirectly
updating features of the simulation's behavior. For example, in The Oregon Trail
simulation, the further you move your wagon across the country (the independent
variable), the greater the chance of your wagon breaking down (the dependent variable).
What makes this simulation re-playable is the element of chance (your wagon might not
break down) and choice (you can equip your wagon differently to help prevent a
breakdown).

How functions govern behavior in two-dimensional grid simulations, such as SimCity, is
not as clear as it is in a "one-dimensional" command-line game such as The Oregon
Trail. This is because multiple choices, made over time to a large area (a city), are
summed in aggregate as the dependent variable. To the player, razing many buildings in
the city might appear to be a number of different actions, while the simulation engine just
adds the number or razed buildings into a sum, which is the independent variable. Burn
down enough of your city and eventually people start to move out (the dependent
variable, responsible for simulated behavior).

If the governing functions were available (as the published code and graphs for The
Oregon Trail cited in Chapter 1 of this dissertation) they become a great asset to learners.
In addition to graphing governing functions, dependent and independent variables could
be highlighted on the graph, and graphical links to their input and output in the 2-D
simulation could be displayed (e.g., highlight and count the razed buildings). Visualizing
a simulation's governing function, maybe providing something like a simulation
dashboard, could help to elucidate how simulations are designed.

Building your own simulation, and defining your own governing functions could provide
a deeper and more interesting learning experience in the constructionist tradition. There
are a few ways you could scaffold simulation-function design. One way would be to
provide existing functions, such as hyperbolas, parabolas and even equations for s-curves,
and then ask learners to map simulated behavior to these functions. This would be a
"force-fit" approach and would stifle a lot of creativity.

A better approach would be to let simulation designers define their own functions and use

those in their simulations. They could do this by sketching functions to describe
relationships. While functions designed this way might not be expressible in concise
equations, they would provide students with the ability to be authors without being
bogged down in complex expressive algebra.

5.4 Frenetic Video Games
Not every frenetic video game has agency; asteroids and Tetris blocks just tumble
towards you. But many video games do have agents, and, therefore, strategies for their
behavior could be modeled in a new version of the gaming calculator, if the games were

grid-based. The new toolkit would support simultaneous movements of multiple game-

pieces. For example, in this possible Pac-Man scenario, there are six possible next
moves:

FIGURE 5.1 PAC-MAN CHASED BY BLINKY THE GHOST

Pac-Man has been modeled as an example program in many educational computer game
design toolkits (Papert 1996; Begel 1997). Since programs in the software toolkit
AgentSheets (Repenning, Loannidou et al. 2000) are executed on a spreadsheet-like grid,
their suggested method for programming Pac-Man ghosts' behavior is closest to the
methods that I describe in this dissertation. In AgentSheets, ghosts' behavior can be
programmed with a hill-climbing algorithm that works like this: Pac-Man's cell is given
the highest value and lower scores are diffused into surrounding cells; ghosts'
instructions are to move towards higher valued cells.

The hill-climbing algorithm is similar to the minimax algorithm in that both consider and
rank their options before making a move. But the hill-climbing algorithm only ranks its
immediate options; its tactic is to react to its environment. The minimax algorithm
behaves in the same way if it looks only one move ahead, but the algorithm is designed to
search further ahead and evaluate countermoves; its strategy is to plan ahead. The
difference between these two approaches to designing behavior could be described as
tactical versus strategic decision-making.

5.4.1 State Machines
Another way to design autonomous behavior for frenetic video games is to use state
machines. State machines work by describing desired behavior and changes in behavior
with high-level descriptive models. For example, in the video game Pac-Man, the default
ghost behavior is to "hunt Pac-Man". After Pac-Man eats a power pellet, the ghosts
switch into a new state: "run away from Pac-Man". The implementation of this behavior
change, or how to program the movement of the ghosts, is cleanly separated from the
description of the desired behavior. This approach is different, but in the spirit of Pane's
design goals (Pane 2002); this approach, too, translates natural-language descriptions of
behavior into machine rules.

5.5 Future Pedagogical Work
While it is fantastic that short, intense gaming workshops such as those studied for this
research yield interesting results, there are obvious limitations to this approach. First and
foremost, this researcher is not available to run every gaming workshop for every
interested game player, and the tools are also not available for the long-term work that
many teenagers expressed an interest in pursuing.

Many teenagers enjoyed being game designers but were rushed through the process. In
future workshops, students should be allowed much more time to experiment with the
game design possibilities of this toolkit. Once they develop a good sense of what makes
an interesting game, then they could be introduced to my game design tools. Even this
process could be slowed down to offer more time for learners to use 1-ply tactical
searches until they grow comfortable with the ideas and their representation.

Many students asked for copies of the software so they could continue to play after the
workshop ended. One of my students recommended turning the gaming calculator into an
online website so that he could continue his work and share games with his friends. This
excellent suggestion could make the educational opportunities described in this
dissertation available to more people. It could conceivably enable the formation of a
community of game and behavior designers.

Many people learned to make their own web pages using examples found with the "view
source" feature in web browsers. Looking at other people's HTML, they learned how to
markup and thereby describe layouts. People could learn to design autonomous behavior
in a similar way by viewing the source code of other people's games and strategies.

Works Cited

Baird, D. G., R. H. Gertner, et al. (1994). Game Theory and the Law. Cambridge,
Massachusetts, Harvard University Press.

Baker, R. N. (1999). Cards in the Classroom: Mathematics and Methods. Ketchikan,
Alaska, University of Alaska: 23.

Begel, A. B. (1997). Bongo: A Kids' Programming Environment for Creating Video
Games on the Web. Department of Electrical Engineering and Computer Science.
Cambridge, Massachusetts Institute of Technology. M.Eng.

Berlekamp, E. R., J. H. Conway, et al. (2001). Winning Ways for Your Mathematical
Plays. Wellesley, Massachusetts, AK Peters, Ltd.

Blankinship, E., B. Smith, et al. (2004). "Closed caption, open source." BT Technology
Journal 22(4): 151-159.

Brady, J. M. and R. B. Emanuel (1978). "An Experiment in Teaching Strategic
Thinking." Creative Computing 4(6): 106-109.

Brams, S. J. (1980). Biblical Games: Game Theory and the Hebrew Bible. Cambridge,
Massachusetts, MIT Press.

Bruckman, A. (1998). "Community Support for Constructionist Learning." Computer
Supported Cooperative Work: The Journal of Collaborative Computing 7: 47-86.

Bruckman, A. and E. Edwards (1999). Should We Leverage Natural-Language
Knowledge?
An Analysis of User Errors in a Natural-Language-Style Programming Language.

Proceedings of the 1999 Conference on Human Factors in Computing
Systems, Pittsburgh, PA, ACM Press.

Burrille, G. (2002). Handheld Graphing Technology in Secondary Mathematics:
Research Findings and Implications for Classroom Practice, Michigan State University:
122.

Carlson, E. (1969). Sixth Graders and Sumeria. Learning Through Games: A New
Approach to Problem Solving. Washington, D.C., Public Affairs Press: 141-166.

Design-Based Research Collective (2003). "Design-Based Research: An Emerging
Paradigm for Educational Inquiry." Educational Researcher 32(1): 5-8.

Entertainment Software Association (2005). Essential Facts About the Computer and
Video Game Industry.

Fine, G. A. (1983). Shared Fantasy: Role-Playing Games as Social Worlds. Chicago and
London, The University of Chicago Press.

Golick, M. (1998). Card Games for Smart Kids, Sterling Publishing Company,
Incorporated.

Jeffery, C. L. (1998). A Menagerie of Program Visualization Techniques. Software
Visualization: Programming as a Multimedia Experience. J. Stasko, J. Domingue, M. H.
Brown and B. A. Price. Cambridge, The MIT Press: 73-79.

Kafai, Y. and M. Resnick, Eds. (1996). Constructionism in Practice: Designing,
Thinking, and Learning in a Digital World. Mahwah, Lawrence Erlbaum Associates.

Kafai, Y. B. (1995). Minds in Play: Computer Game Design as a Context for Children's
Learning. Hillsdale, Lawrence Erlbaum Associates.

Kahn, K. (2000). "Programming by example: generalizing by removing detail."
Communications of the ACM 43(3): 104 - 106.

Kahn, K. (2001). Source Code Should be Animated.
http://www.toontalk.com/Papers/ddj.pdf

McDaniel, R. G. (1999). Creating Whole Applications Using Only Programming-by-
Demonstration. Computer Science Department. Pittsburgh, Carnegie Mellon University.

Opie, I. and P. Opie (1969). Children's Games in Street and Playground. London, Oxford
University Press.

Orwant, J. (1999). EGGG: The Extensible Graphical Game Generator. Media Arts and
Sciences. Cambridge, Massachusetts Institute of Technology. PhD.

Pane, J. F. (2002). A Programming System for Children that is Designed for Usability.
Computer Science Department. Pittsburgh, Carnegie Mellon University. PhD.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York,
Basic Books, Inc.

Papert, S. (1996). The Connected Family. Atlanta, Longstreet Press.

Papert, S. (1998). Does Easy Do It? Children, Games, and Learning. Game Developer:
88.

Papert, S. and C. Solomon (1970). NIM: a game-playing program. LOGO memo; no. 5.
Al memo; 254. Cambridge, Massachusetts Institute of Technology Artificial Intelligence

Laboratory.

Pell, B. (1993). Strategy Generation and Evaluation for Meta-Game Playing. The
Computer Laboratory, University of Cambridge. PhD.

Piaget, J. (1965). The Rules of the Game. The Moral Judgment of the Child. New York,
The Free Press: 13-108.

Rabin, S. (2000). The Magic of Data-Driven Design. Game Programming Gems. M.
DeLoura. Rockland, Charles River Media, Inc.

Rawitsch, D. (1978). Oregon Trail. Creative Computing. 4: 132-139.

Repenning, A., A. Ioannidou, et al. (2000). "AgentSheets: End-User Programmable
Simulations." Journal of Artificial Societies and Social Simulation 3(3).

Resnick, M. (1994). Turtles, Termites, and Traffic Jams: Explorations in Massively
Parallel Microworlds. Cambridge, The MIT Press.

Rowling, J. K. (2005). Harry Potter and the Half-Blood Prince. Fairfield, Arthur A
Levine Books.

Russell, S. J. and P. Norvig (1995). Artificial Intelligence: A Modern Approach. New
Jersey, Prentice-Hall, Inc.

Shaffer, D. W. and M. Resnick (1999). ""Thick" Authenticity: New Media and Authentic
Learning." Journal of Interactive Learning Research 10(2): 195-215.

Smith, D. C., A. Cypher, et al. (1994). "KidSim: Programming Agents Without a
Programming Language." Communications of the ACM 37(7): 54-67.

Squire, K. D. (2002). "Cultural Framing of Computer/Video Games." Game Studies 2(1).

Squire, K. D. (2003). Replaying History: Examining learning social studies through
playing Civilization III playing in urban learning environments. School of Education.
Bloomington, Indiana University. PhD.

Starr, P. (1994). Seductions of Sim: Policy as a Simulation Game. The American
Prospect. 5.

Strohecker, C. (1991). Why Knot? Media Arts and Science. Cambridge, Massachusetts
Institute of Technology. PhD: 554.

Suthers, D., J. Connelly, et al. (2001). Representational and Advisory Guidance for
Students Learning Scientific Inquiry. Smart Machines in Education. K. D. Forbus and P.
J. Feltovich. Menlo Park, American Association for Artificial Intelligence & The MIT
Press: 7-35.

Tilley, R. (1967). Playing Cards. London, Octopus Books Limited.

Turkle, S. (1995). Life on the Screen: Identity in the Age of the Internet. New York,
Simon & Schuster.

Wattenberg, M. and M. Walczak (2005). Thinking Machine 4.
http://www.turbulence.org/spotlight/thinking/

Weintraub, E. R., Ed. (1992). Toward a History of Game Theory. Durham, Duke
University Press.

Weisstein, E. W. "Minimax Theorem." From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/MinimaxTheorem.html

