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Abstract

Choosing features for the critic in actor-critic algorithms with function approximation is known to be a challenge.
Too few critic features can lead to degeneracy of the actor gradient, and too many features may lead to slower conver-
gence of the learner. In this paper, we show that a well-studied class of actor policies satisfy the known requirements
for convergence when the actor features are selected carefully. We demonstrate that two popular representations for
value methods - the barycentric interpolators and the graph Laplacian proto-value functions - can be used to repre-
sent the actor in order to satisfy these conditions. A consequence of this work is a generalization of the proto-value
function methods to the continuous action actor-critic domain. Finally, we analyze the performance of this approach
using a simulation of a torque-limited inverted pendulum.

1 Introduction

Actor-Critic (AC) algorithms, initially proposed by Barto et al. (1983), aim at combining the strong elements of the two
major classes of reinforcement learning algorithms – namely the value-based methods and the policy search methods.
As in value-based methods, the critic component maintains a value function, and as in policy search methods, the actor
component maintains a separate parameterized stochastic policy from which the actions are drawn. This combination
may offer the convergence guarantees which are characteristic of the policy gradient algorithms as well as an improved
convergence rate because the critic can be used to reduce the variance of the policy update(Konda and Tsitsiklis, 2003).

Recent AC algorithms use a function approximation architecture to maintain both the actor policy and the critic
(state-action) value function, relying on Temporal Difference (TD) learning methods to update the critic parameters.
Konda and Tsitsiklis (2000) and Sutton et al. (2000) showed that in order to compute the gradient of the performance
function (typically using the average cost criterion) with respect to the parameters of a stochastic policy µθ(x,u)
it suffices to compute the projection of the state-action value function onto a sub-space Ψ spanned by the vectors
ψi

θ(x, u) = ∂
∂θi

logµθ(x,u). Konda and Tsitsiklis (2003) also noted that for certain values of the policy parameters θ,
it is possible that the vectors ψi

θ are either close to zero, or almost linearly dependent. In these situations the projection
onto Ψ becomes ill-conditioned, providing no useful gradient information, and the algorithm can become unstable.
As a remedy for this problem the authors suggested the use of a richer, higher dimensional set of critic features which
contain the space Ψ as a proper subset.

In this paper, we attempt to design features which span Ψ and preserve linear independence without increasing the
dimensionality of the critic. In particular, we investigate stochastic actor policies represented by a family of Gaussian
distributions where the mean of the distribution is linearly parameterized using a set of a fixed basis functions. For
this parameterization, we show that if the basis functions in the actor are selected to be linearly independent, then
the minimal set of critic features which naturally satisfy the containment condition also form a linearly independent
basis set. Additionally, if the actor basis set is linearly independent of the function 1, then the critic features satisfy a
weak version of the non-zero projection condition specified by Konda and Tsitsiklis (2003). This suggests that feature
sets which have been proposed for representing value functions, such as the proto-value-functions (Mahadevan and
Maggioni, 2006), may also have promise as features for actor-critic algorithms. This extends the proto-value function
approach, which traditionally works by discretizing the action space, to a continuous action actor-critic domain.
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The rest of this paper is organized as follows: in Section 2 we provide a brief review of the AC algorithms with
function approximation. In Section 3 we present our main theoretical results by investigating a family of parameterized
Gaussian policies. In Section 4 we consider candidate features which satisfy these results. In Section 5 we describe an
empirical evaluation of our approach in a simulated control domain. Finally, we discuss some implications and future
directions in Section 6 and conclude in Section 7.

2 Preliminaries

In this section we present a brief overview of the AC algorithms with function approximation adapted from Konda and
Tsitsiklis (2003). Assume that the problem is modeled as a Markov decision process M = 〈X ,U ,P , C〉, where X is
the state space, U is the action space, P(x′|x, u) is the transition probability function, C : X × U → < is the one step
cost function, and µθ is a stochastic policy parameterized by θ ∈ <n where µθ(u|x) gives the probability of selecting
an action u in state x, parameterized by the vector θ ∈ <n. We also assume that for every θ ∈ <n, the Markov chains
{Xk} and {Xk, Uk} are irreducible and aperiodic, with stationary probabilities πθ(x) and ηθ(x, u) = πθ(x)µθ(u|x)
respectively.

The average cost function ᾱ(θ) : <n → < can be defined:

ᾱ(θ) =
∑

x∈X ,u∈U

c(x, u)ηθ(x, u)

For each θ ∈ <n, let Vθ : X → <, and Qθ : X × U be the differential state, and the differential state-action cost
functions that are solution to the corresponding Poisson equations in a standard average cost setting. Then, following
the results of Marbach and Tsitsiklis (1998), the gradient of the average cost function can be expressed as:

∇θᾱ(θ) =
∑

x,u

ηθ(x, u)Qθ(x, u)ψθ(x, u) (1)

where:
ψθ(x, u) = ∇θlnµθ(u|x) (2)

The ith component of ψθ, ψi
θ(x, u) is the one-step eligibility of parameter i in state-action pair x and u:

ψi
θ(x, u) =

∂

∂θi

lnµθ(u|x). (3)

Following Konda and Tsitsiklis (2003), we will assume that X and U are discrete, countably infinite sets. We will
therefore refer to ψi

θ as the actor eligibility vector, a vector in <|X ||U|. For any θ ∈ <n, the inner product 〈·, ·〉θ of two
real-valued functions Q1,Q2 on X × U , also viewed as vectors in <|X ||U|, can be defined by:

〈Q1,Q2〉θ =
∑

x,u

ηθ(x, u)Q1(x, u)Q2(x, u)

and let ‖ · ‖θ denote the norm induced by this inner product on <|X ||U|. Now, we can rewrite Equation 1 as:

∂

∂θi

ᾱ(θ) = 〈Qθ, ψ
i
θ〉θ, i = 1, . . . , n.

For each θ ∈ <n, let Ψθ denote the span of the vectors {ψi
θ; 1 ≤ i ≤ n} in <|X ||U|. An important observation is that

although the gradient of ᾱ depends on the function Qθ, which is a vector in a possibly very high-dimensional space
<|X ||U|, the dependence is only through its inner products with vectors in Ψθ. Thus, instead of “learning” the function
Qθ, it suffices to learn its projection on the low-dimensional sub-space Ψθ.
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Konda and Tsitsiklis (2003) consider actor-critic algorithms where the critic is a TD algorithm with a linearly
parameterized approximation architecture for the Q-value function that admits the linear-additive form:

Qr
θ(x, u) =

m
∑

j=1

rjφ
j
θ(x, u) (4)

where r = (r1, . . . , rm) ∈ <m is the parameter vector of the critic. The critic features φj
θ, j = 1, . . . ,m depend on the

actor parameter vector and are chosen so that the following assumptions are satisfied: (1) For every (x, u) ∈ X × U ,
the map θ → φθ(x, u) is bounded and differentiable; (2) The span of the vectors φj

θ (j = 1, . . . ,m) in <|X ||U| denoted
by Φθ, contains Ψθ.

As noted by Konda and Tsitsiklis (2003), one trivial choice for satisfying the second condition would be to set
Ψ = Φ, or in other words to set critic features as φi

θ = ψi
θ. However, it is possible that for some values of θ, the

features ψi
θ are either close to zero, or almost linearly dependent. In these situations the projection of Qr

θ onto Ψ

becomes ill-conditioned, providing no useful gradient information, and therefore the algorithm may become unstable.
Konda and Tsitsiklis (2003) suggest some ideas to remedy to this problem. In particular, the troublesome situations
are avoided if the following condition is satisfied: (3) There exists a > 0, such that for every r ∈ <m, and θ ∈ <n:

‖ r′ φ̂θ ‖2
θ ≥ a|r|2

where φ̂ = {φ̂i}m
i=1 are defined as:

φ̂i
θ(x, u) = φi

θ(x, u) −
∑

x̄,ū

ηθ(x̄, ū)φ
i
θ(x̄, ū) (5)

This condition can be roughly explained as follows: the new functions φ̂i
θ can be viewed as the original critic features

with their expected value (with respect to the distribution ηθ(x, u)) removed. In order to ensure that the projection of
Qr

θ onto Ψ contains some gradient information for the actor (and to avoid instability), the set φ̂θ must be uniformly
bounded away from zero. Given these conditions, Konda and Tsitsiklis (2003) prove convergence for of the most
common form for the actor-critic update (see Konda and Tsitsiklis (2003, p.1148) for the updates).

Konda and Tsitsiklis (2003) go on to propose adding additional features to the critic as a remedy, but satisfying
this condition is still a difficult problem. To the best of our knowledge there is no general systematic approach for
choosing a set of critic features that satisfies this third condition. In the next section, we will address this issue for one
commonly used policy class.

3 Our Approach

We consider the following popular Gaussian probabilistic policy structure parameterized by θ:

µθ(u|x) =
1

(2π)
n

2 |Σ|
1

2

exp{−
1

2
(u −mθ(x))T Σ−1 (u −mθ(x))} (6)

where u ∈ <k is a multi-dimensional action vector. The vector mθ(x) ∈ <k is the mean of the distribution that is
parameterized by θ:

m
i
θ(x) =

n
∑

j=1

θij ρj(x), i = 1, . . . , k

where in this setting θ ∈ <k×n. The functions ρj(x) are a set of actor features defined over the states. For simplicity,
in this paper we only investigate the case where Σ = σ2

0 I. In this case Equation 6 simplifies to:

µθ(u|x) =
1

(2π)
k

2 σk
0

exp{−
1

2σ2
0

(u −mθ(x))T (u −mθ(x))}
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Using Equation 3 we can compute the actor eligibility vectors as follows:

ψ
ij
θ (x,u) =

∂

∂θij
lnµθ(u|x)

=
∂

∂θij

[

−ln((2π)
k

2 σk
0 ) −

1

2σ2
0

(u−mθ(x))T (u −mθ(x))}

]

=
1

σ2
0

(u −mθ(x))T ∂

∂θij
mθ(x)

=
1

σ2
0

(ui −m
i
θ(x))ρj(x)

= κi
θ(x,u)ρj(x)

(7)

where κi
θ(x,u) =

(ui−m
i

θ
(x))

σ2

0

. In order to satisfy the condition (2) in the previous section (Φ should properly con-

tain Ψ), we apply the straightforward solution of setting φij = ψij for i = 1, . . . , k and j = 1, . . . , n. This selection
also guarantees that the mapping from θ to φθ is bounded and differentiable, from condition (1). In Proposition 1, we
show that for the particular choice of policy structure that we have chosen, if the actor features, ρj(x), are linearly
independent, then the critic features will also be linearly independent.

Proposition 1: If the functions ρ = {ρj}n
j=1 are linearly independent, then the set of critic feature functions φij

will form a linearly independent set of functions.

Proof: We prove by contradiction that if the above condition holds, then the set of actor eligibility functions ψ ij

(and therefore also φij ) are linearly independent. Assume that the functions ψij are linearly dependent. Then there
exists α = {αij ∈ <}k,n

i=1,j=1 such that

k,n
∑

i=1,j=1

αij ψ
ij(x,u) = 0, ∀x ∈ X , ∀u ∈ U ,

and ‖ α ‖2> 0. Substituting the right hand side of the Equation 7 for ψij(x,u) yields:

k,n
∑

i=1,j=1

αij κ
i
θ(x,u)ρj(x) = 0, ∀x ∈ X , ∀u ∈ U .

By regrouping terms we obtain:

n
∑

j=1

(

k
∑

i=1

αijκ
i
θ(x,u)

)

ρj(x) = 0, ∀x ∈ X , ∀u ∈ U .

Since according to the assumption the functions ρ = {ρj}n
j=1 are linearly independent, then the following condition

must hold:
k
∑

i=1

αijκ
i
θ(x,u) = 0, ∀j = 1, . . . , n, ∀x ∈ X , ∀u ∈ U (8)

But for every i, there exists an (x,u) such that κi
θ(x,u) 6= 0:

κi
θ(x,mθ(x) + εi1) =

εi

σ2
0

, (9)

where 1 is the k× 1 vector of ones, and εi 6= 0. Note that the above condition holds for all εi ∈ <−{0}. Now, define
a (k × 1) vector hl (for l = 1, . . . , k) as:

hl(j) = {
ε if j 6= l

2ε if j = l
(10)
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for some ε > 0. Based on Equation 9, if we choose u = mθ(x) + hl in Equation 8, we obtain:

1

σ2
0

hl
T ᾱij = 0, ∀l = 1, . . . , k

where ᾱij = [α1j , α2j , . . . , αkj ]
T . This gives us the following system of equations (for a fixed value of j):

A ᾱij = 0, i = 1, . . . , k (11)

where Ak×k = [h1h2 . . .hk]T . Note that for the particular choice of the vectors hl (Equation 10), the matrix A has
a full-rank (since the vectors hl are linearly independent), and thus the only solution to the Equation 11 is ᾱij = 0.
This means that αij = 0 (for all i,j), and thus ‖ α ‖2= 0. By contradiction, ψij (and therefore φij ) must be linearly
independent.

Proposition 1 provides a mechanism for ensuring that the θ-dependent critic features remain linearly independent
for all θ’s, thereby avoiding a major source of potential instabilities in the AC algorithm. However, to meet the strict
conditions from Konda and Tsitsiklis (2003), we should also demonstrate that the critic features are uniformly bounded
away from zero. Proposition 2 allows us to demonstrate that a set of actor features that is also linearly independent
with the function 1 satisfies the weak form of condition (3).

Proposition 2: If the functions 1 and ρ = {ρj}n
j=1, j = 1, . . . , n are linearly independent, then the set of critic

feature functions φij and the function 1, will also form a linearly independent set of functions.

Proof (sketch): We follow the proof of the proposition 1. Assume that the functions ψij are linearly dependent.
Then there exists α = {αij ∈ <}k,n

i=1,j=1 ∪ {α1 ∈ <} such that:

k,n
∑

i=1,j=1

αij ψ
ij(x,u) + α11 = 0, ∀x ∈ X , ∀u ∈ U ,

and ‖ α ‖2> 0. Following the same steps as in proof of proposition 1, we obtain:

n
∑

j=1

(

k
∑

i=1

αijκ
i
θ(x,u)

)

ρj(x) + α11 = 0, ∀x ∈ X , ∀u ∈ U . (12)

Since according to the assumption the functions ρ = {ρj}n
j=1 and 1 are linearly independent, then α1 = 0.

Following the rest of the steps in proof of the proposition 1, it can be also established that αij = 0 (for all i,j). This
completes the proof.

Konda and Tsitsiklis (2003) prove that if the functions 1 and the critic features φi
θ are linearly independent for

each θ, then there exists a positive function a(θ) such that:

‖ r′ φ̂θ ‖2
θ ≥ a(θ)|r|2 (13)

(refer to Section 2, Equation 5 for the definition of φ̂θ). This is the weak form of the non-zero projection property.
Finally, it should be noted that it is also possible to tune the standard-deviation of the policy distribution, σ0, as

a function of state using additional policy parameters, w. If we parameterize σ0(x) = [1 + exp(−
∑

i wiρ
i(x))]−1,

then the eligibility of this actor parameter takes the form:

∂

∂wi

lnµθ,w(x, u) =
(

(u−mθ(x))
2 − σ2

0(x)
)

(1 − σ0(x)) ρ
i(x) = κi

θ,w(x, u)ρj(x).

It can be shown that this set of vectors forms a linearly independent basis set, which is also independent of the bases
Ψ.
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4 Candidate Features

In this section we investigate two different approaches for choosing linearly independent actor features, ρj(x).

4.1 Barycentric Interpolation

Barycentric interpolants described in (Munos and Moore, 1998, 2002) are defined as an arbitrary set of (non-
overlapping) mesh points ξi distributed across the state space. We denote the vector-valued output of the function
approximator at each mesh point as m(ξi). For an arbitrary x, if we define a simplex S(x) ∈ {ξ1, ..., ξN} such that x
is in the interior of the simplex, then the output at x is given by interpolating the mesh points ξ ∈ S(x):

mθ(x) =
∑

ξi∈S(x)

m(ξi)λξi
(x).

Note that the interpolation is called barycentric if the positive coefficients λξi
(x) sum to one, and if x =

∑

i ξiλξi
(x)

(Munos and Moore, 1998). In addition, Munos and Moore (1998) denote the piecewise linear barycentric interpolation
functions as functions for which the interpolation uses exactly dim(x)+1 mesh points such that the simplex for state x

is the simplex which forms a triangulation of the state space and does not contain any interior mesh points. Barycentric
interpolators are a popular representation for value functions, because they provide a natural mechanism for variable
resolution discretization of the value function, and the barycentric co-ordinates allow the interpolators to be used
directly by value iteration algorithms.

These interpolators also represent a linear function approximation architecture; we confirm here that the feature
vectors are linearly independent. Let us consider the output at the mesh points as the parameters, θi = m(ξi), and the
interpolation function as the features ρi(x) = λξi

(x).

Proposition 3: The features ρi(x) formed by the piecewise linear barycentric interpolation of a non-overlapping
mesh (ξi 6= ξj , ∀i 6= j) form a linearly independent basis set.

Proof (sketch): For a non-overlapping mesh, consider the solution for the barycentric weights of a piecewise
linear barycentric interpolation evaluated at x = ξi. There are multiple simplices S(x) that contain x, but for each
such simplex, x is a vertex of that simplex. By definition of a simplex, x is linearly independent of all other vertices
of each simplex. As a result, the unique solution for the barycentric weights is ρi(x) = 1, ρj(x) = 0, ∀j 6= i. Since
for each feature we can find an x which is non-zero for only that feature, the basis set must be linearly independent.

Note that the traditional barycentric interpolators are not constrained to be linearly independent from the function
1.

4.2 Graph Laplacian

Proto-Value Functions (PVFs) (Mahadevan and Maggioni, 2006) have recently shown some success in automatic
learning of representations in the context of function approximation in MDPs. In this approach, the agents learn
global task-independent basis functions that reflect the large-scale geometry of the state-action space that all task-
specific value functions must adhere to. Such basis functions are learned based on the topological structure of graphs
representing the state (or state-action) space manifold. PVFs are essentially a subset of eigenfunctions of the graph
Laplacian computed from a random walk graph generated by the agent. We show here that if the proto-value functions
are used instead to represent features of the actor, instead of the critic, then this representation satisfies our Proposition
2.

Proposition 4: If the functions {ρj}n
j=1 are the proto-value functions computed from the graph generated by a

random walk in state space, then the set of critic features and the function 1 will form a linearly independent basis set,
and will satisfy the weak form of the non-zero projection property presented in Equation 13.
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Figure 1: Performance comparison between MCPG and AC algorithm. These results are averaged over 5 trials. Note
that this is an infinite-horizon average cost setting; the entire x-axis represents 1000 seconds of simulated data.

Proof (sketch): Since the functions {ρj}n
j=1 are the eigen-functions of the graph Laplacian computed from the

graph generated by a random walk in state space, they are linearly independent. Note that the function 1 is always
the eigenfunction of any graph Laplacian associated with the eigenvalue 0. That implies the functions {ρj}n

j=1 are
also linearly independent of the function 1. Based on the results of the Proposition 2, the critic feature functions φij

are also linearly independent and also linearly independent of the function 1, and the features will satisfy the weak
non-zero projection property.

5 Experiments

We demonstrate the effectiveness of our feature selections by learning a control policy for the swing-up task on a
torque- limited inverted pendulum, governed by q̈ = 1

ml2
[τ − bq̇ −mgl cos q] , with m = 1, l = 1, b = 1, g =

9.8, |τ | < 3, and initial conditions q = −π
2 , q̇ = 0. We use an infinite-horizon, average reward formulation (no

resetting) with the instantaneous cost function g(q, q̇, τ) = 1
2 (q − π

2 )2 + 1
20 q̇

2 + 1
10τ

2. The policy is evaluated every
dt = 0.1 seconds; τ is held constant (zero-order hold) between evaluations.

Samples for our graph Laplacian are generated using rapidly-exploring randomized trees (LaValle and Kuffner,
2000) for coverage. Note that this is in place of the traditional “behavioral policy” used to identify the proto-value
functions; it provides a fast and efficient coverage of our continuous state space.

For comparison, we also implemented the Markov Chain Policy Gradient algorithm (MCPG) (Algorithm 1 in
(Baxter and Bartlett, 2001)). For both methods the policy is parametrized as in Equation 6 using PVFs as the basis
set in the actor (i.e., the functions ρj). Figure 1 shows the moving mean of the average cost of the AC and MCPG
algorithms, each averaged over five trials. Each trial starts the pendulum from the initial condition, with the parameters
of the actor and critic initialized to small random values. We use a continuous setting in the AC experiment that consists
of 10, 000 steps (updates). In the MCPG experiment, each trial consists of 100 episodes of length 100 steps. At the
beginning of each episode the pendulum is reset to the initial condition and accumulates the updates until the end
of the episode where the policy parameters are adjusted using the updates collected throughout an episode. The key
observation in this figure is that the AC method, using the policy structure that we described in Equation 6 together with
PVFs, converges smoothly to a local minimum. The comparison with MCPG supports the promise of AC algorithms
to outperform pure policy gradient methods. We also conducted an experiment where we used a polynomial basis set
(instead of PVFs) which quickly led to a degenerate case.
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6 Discussion

Our goal in this work has been to provide a mechanism for designing a minimal set of critic features which satisfy the
conditions required for the convergence proof provided by Konda and Tsitsiklis (2003). It should be noted that meeting
these conditions in a strict sense may not be necessary for obtaining stable and efficient actor-critic algorithms—these
conditions were used to facilitate the convergence proofs. Independent of the convergence proof, a linearly independent
basis set should generally permit faster learning than a linearly dependent basis set. Additionally, linear independence
from the function 1 takes advantage of the well-known property that value functions can be offset by a constant value
and retain the same gradient information for the policy; there is no policy gradient information in the value function
along the direction of 1. Therefore, the qualities we have investigated appear to have general merit for representations
used in value learning.

One could imagine other metrics which describe good critic features for actor-critic algorithms. For example, the
graph Laplacians attempt to capture some of the geometry of the problem in a sparse representation. One could also
investigate the qualities that are most desirable for the actor representation (besides permitting a good critic feature
set). Although omitting 1 from the graph Laplacian bases is attractive because the remaining bases satisfy the non-zero
projection property, when we choose to do this, we are certainly restricting the policy class. The inability to express
a constant bias in the policy may be an undesirable penalty for some problems. It is also worth noting that there are
other forms of the actor-critic algorithm which do not depend on a well-formed gradient spanning the the full value
function to guarantee convergence (e.g., Kimura and Kobayashi (1998)).

7 Conclusions

In this paper, we provide some insights for designing features for actor-critic algorithms with function approximation.
For a limited policy class, we demonstrate that a linearly independent feature set in the actor permits a linearly inde-
pendent feature set in the critic. This condition is satisfied by the piecewise linear barycentric interpolators, and by
the features based on a graph Laplacian. When combined with an additional linear independence with the function
1, the critic features for any particular θ are uniformly bounded away from zero. This condition is satisfied by the
graph Laplacian features. Finally, our experimental results demonstrate that our proposed representation smoothly and
efficiently converges to a local minimum for a simulated inverted pendulum control task.
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