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Collusion-Resilient Revenue In Combinatorial Auctions∗

Silvio Micali and Paul Valiant

November 2, 2007

Abstract

In auctions of a single good, the second-price mechanism achieves, in dominant strategies, a revenue
benchmark that is naturally high and resilient to any possible collusion.

We show how to achieve, to the maximum extent possible, the same properties in combinatorial auctions.

∗This Technical Memo improves on material submitted to FOCS 2007, SODA 2008, and the Library of Congress.



1 The Problem of Guaranteeing Revenue in Combinatorial Auctions

1.1 Combinatorial Auctions and Their Basic Revenue Problem

A (non-Bayesian, n × m) combinatorial-auction context is described as follows. There is a set of players
N = {1, . . . , n} and a set of m goods G. A valuation is a function from G’s subsets to R+, and each player i
has a secret valuation TVi, which we refer to as i’s true valuation. An outcome consists of (1) a profile (i.e.,
a vector indexed by the players) P = P1, . . . , Pn, where Pi ∈ R+ is the price to be paid by player i, and (2)
an allocation A = A0, A1, . . . , An, where Ai is the subset of goods allocated to player i, and A0 the set of
unallocated goods. For each outcome (A,P ), the utility of each player i is defined to be TVi(Ai) − Pi; that
is, i’s true value of the goods allocated to him minus the price he pays. Note that such a context is fully
described by just N , G, and the true-valuation profile TV , since these determine outcomes and utilities.

For such a context, a combinatorial-auction mechanism is a (possibly probabilistic) function M mapping a
profile of valuations V to an outcome (A,P ) such that Pi = 0 whenever Vi is the null valuation —the opt-out
condition. An n ×m context C = (N,G, TV ) and an n ×m mechanism M define a (n ×m) combinatorial
auction (C,M): namely, the game G envisaged to be played as follows. First, each player i (independently
of the others) chooses a valuation BIDi on inputs TVi, N , and G. Then, an outcome (A,P ) is obtained
by evaluating M on BID. We refer to the so chosen valuations as bids, to emphasize that they need not
coincide with the players’ true valuations. In such a game, a strategy is a (possibly probabilistic) way for a
player to choose his bid.

Since the players’ true valuation are not publicly known, generating high revenue requires a careful design
of the mechanism. As for any game, in a rational play of an auction the players end up selecting an equilibrium,
that is, a profile of strategies σ = (σ1, . . . , σn) such that no player i has an incentive to deviate from his
strategy σi if the other players stick to theirs. Accordingly, the basic revenue problem can be informally
stated as follows: find a mechanism M such that, for every context C, the resulting combinatorial auction
(C,M) yields high revenue for every equilibrium σ the players may reasonably select. Since computational
efficiency is not a traditional concern of game theory, we shall not be concerned about M ’s efficiency either.

1.2 The Worst Natural Setting and Natural Solution-Pairs

The basic revenue problem for combinatorial auctions is already difficult. Yet, we wish to investigate and
provide solutions to a more adversarial version of it: namely, the problem of generating revenue in the worst
natural setting.

We characterize such a setting by the following three assumptions.

• Total Equilibrium Uncertainty. An auction having an equilibrium (or several equilibria) σ yielding high
revenue may not “guarantee” high revenue at all. Indeed, as for any other game, an auction typically
has plenty of equilibria, and rational players may ultimately select one other than σ. In the worst
(rational) setting, we assume that the equilibrium ultimately selected will be the one generating least
revenue among those equilibria τ having a “modicum of rationality,” that is, those composed by weakly
non-dominated strategies.1

• Total Bayesian Ignorance. In a Bayesian setting, the players’ true valuations are assumed to be drawn
from a distribution D. Clearly, knowledge of such a distribution can be very helpful for designing
high-revenue mechanisms, particularly when D is of a suitable form.2 In the worst setting, however, no
Bayesian information is available.

1Informally, a strategy τi is weakly dominated for player i if i has another strategy ψi that is always at least as good as τi
and sometimes strictly better.

2For single-good auctions, Myerson [18] has put forward mechanisms that generate optimal revenue essentially whenever the
players have independent valuations of the good, a quite general condition. For such a case, he is able to optimally set “minimum
winning bids” without undue risk of pricing out players. By contrast, in combinatorial auctions no general distributions for the
players’ true valuations are known for which optimal revenue mechanisms exist.
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• Devilish Collusion. Nash equilibria are defined in terms of “individual-player deviations,” and offer no
guarantees when multiple players deviate from their prescribed strategies. This is already true when
such players act independently, but even more so when they collude, that is, when they coordinate their
deviation strategies. Unfortunately, this is not a theoretical possibility: collusion is endemic problem
in real auctions.3 The severity of this problem decreases when we can assume some restrictions on the
ability of collusive players to coordinate themselves. In the worst setting, however, there are no such
restrictions. In particular, collusive players can make side payments to one another, and enter any
secret and binding agreement of their choosing. More ominously, the worst natural setting envisages a
malicious external entity (the Devil) which, with the sole purpose of lowering the auction’s revenue and
with full knowledge of the players’ true valuations, is free to introduce any number of additional players
whose bids he freely chooses.4

We consider any revenue achievable in such an adversarial setting as guaranteed revenue, because it is a
fortiori achievable in any more realistic one. Accordingly, the problem addressed this paper can be rephrased
as follows: How much revenue can be guaranteed in combinatorial auctions?

Let us now argue that a natural solution to this problem consists of a revenue benchmark and a dominant-
strategy truthful (DST) auction mechanism satisfying some simple properties. Here, by a “revenue bench-
mark” we mean a function from sequences of valuations for the same set of goods to real numbers; and by
a “DST auction mechanism” we mean an auction mechanism for which, for any player, bidding his true
valuation is at least as good as any other strategy, no matter what bids the other players might choose.

Definition 1. Let B be a revenue benchmark, M a DST auction mechanism, and g(n,m) a real-valued
function. Then, we say that (B,M) is a natural solution with revenue guarantee g(n,m) if the following two
properties hold:

1. B is player monotone: For any valuation profile S and any sub-profile T of S, B(S) ≥ B(T ); and
2. M g(n,m)-achieves B: For any valuation profile V in a n ×m auction, the revenue of M(V1, . . . , Vn)

is ≥ g(n,m) ·B(V1, . . . , Vn).

If Condition 2 holds only for all n,m ≥ k, we say that (B,M) has revenue guarantee g(n,m) for n,m ≥ k.

Notice that, if (B,M) is a natural solution pair, then mechanism M is ideally suited to generate revenue
in the worst natural setting. In fact, M ’s dominant-strategy truthfulness essentially successfully handles
equilibrium uncertainty: when the auction mechanism is DST, no rational player player has reason to prefer
any other bid to his true valuation.5 Further, M does not rely on any Bayesian information: the only
inputs of M (and of benchmark B) solely consist of specific valuations, even if these were indeed drawn from
a suitable distribution D. Finally, Player monotonicity supports the fundamental economic principle that
increased competition among buyers is good for the seller. And a mechanism achieving a player-monotone
benchmark guarantees that the seller is always better off when additional players join the auction, even if
they are coordinated by the Devil himself. This is formally stated by the following, trivially proven lemma,
where the function D models the Devil and, being universally quantified, all possible ways to lower revenue.

Lemma 1. For any set of goods G of cardinality m, any sequence V1, . . . , Vs of G’s valuations, and any
function D whose range consists of tuples of G’s valuations, letting (Vs+1, . . . , Vn) = D(V1, . . . , Vs), the
revenue of M(V1, . . . , Vn) is ≥ g(n,m) ·B(V1, . . . , Vs).

In other words,
3

4I.e., the Devil has a totally different type of utility, and can force the collusive players to bid against their own interests in
the auction, by offering “external” compensation/punishment.

5From the perspective of an individual player i, DST mechanisms also remove any “strategy uncertainty” as well. In a general
equilibrium σ, σi is i’s best course of action only assuming that he believes that every other player j will chose to stick to his
prescribed strategy σj . Such beliefs, however, may be hard to justify and constitute an additional condition that weakens the
strength of the equilibrium. Quite differently, when σ is a dominant-strategy equilibrium, no reliance on such beliefs is necessary
to support σ: σi is i’s best response to any possible strategies of the other players.
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A player-monotone revenue benchmark guarantees that if a set of players, I, bids independently, then
the benchmark relative to the entire set of players N (possibly including collusive or irrational players)
will be at least as high as the benchmark relative to the set I.

Of course, the interest of a natural solution pair ultimately depends on the quality of its revenue guarantee.
Of course too, natural solution pairs are sufficient conditions to guarantee revenue in the worst natural
setting. As such, they might very well be unnecessarily demanding, but are certainly appealingly simple.

1.3 Natural Solution Pairs: Single-Good vs. Combinatorial Auctions

When there is a single good for sale, the true valuation of a player i is a non-negative real number TVi,
representing the “value to i” of the item for sale; an outcome specifies just the winning player w and a price
Pi for each player i; and the utility of each player i in an outcome (w,P1, . . . , Pn) consists of TVi−Pi if i = w,
and −Pi otherwise. For such auctions, denote by 2P the famous second-price mechanism (i.e., the mechanism
returning the player whose bid is highest as the winner, the second-highest bid as the winner’s price, and 0
as the price of every other player); and by 2V the Second-Valuation benchmark (i.e., the function returning
the second highest valuation).6 Now, the benchmark 2V is clearly player-monotone, and the mechanism 2P
is well known to be DST. Therefore, not only is (2V, 2P ) a natural solution pair with guarantee 1, but the
revenue benchmark 2V achieved by 2P is reasonably high.

The situation ceases to be so rosy in combinatorial auctions. To be sure, the 2P mechanism is a special
case of the famous VCG mechanism which indeed applies to combinatorial auctions. Let us quickly recall
the definition of this more general mechanism, starting with some familiar concepts.

In a combinatorial auction, the social welfare relative to a profile of valuations V and an allocation A
—denoted by V alue(V,A)— is the sum of the values actually accrued by the players. That is, V alue(V,A) =
V1(A1) + · · ·+ Vn(An). The best allocation relative to a valuation profile V , denoted by BestAlloc(V ), is the
allocation whose social welfare is maximum. The actual social welfare of this allocation is called the maximum
social welfare, and is denoted by MSW (V ). With this preamble, given a valuation profile V for the goods
for sale, the VCG mechanism returns an allocation A and a price profile P as follows: A = BestAlloc(V ) and
Pi = MSW (V−i) − V alue(V−i, BestAlloc(V )), that is the maximum social welfare relative to all valuations
in V except i’s one, minus the social welfare of all players except i in the best allocation relative to V . (Any
“tie” is broken arbitrarily.)

From its definition, it is clear that the primary objective of the VCG mechanism is efficiency in the
economic sense.7 However, although revenue and efficiency are not unrelated, and although it too is dominant-
strategy truthful, the VCG mechanism cannot be the second component of any natural solution pair with
non-trivial revenue guarantees. This is so because the revenue generated by the VCG mechanism suffers from
three (interrelated) deficiencies, illustrated below via three separate examples of auction contexts (or rather,
via the same context viewed from three different angles). In each example there are two goods for sale, a
and b, and two or three players, 1, 2 and, if necessary, 3. The true valuations of each context are represented
as a matrix, with as many rows as players and as many columns as subsets of the goods, whose entry (i, j)
entry represents the value to the ith player of the jth subset. Whenever this value is 0, for visual clarity
entry (i, j) is left empty.

• Revenue Unattainability. Consider the following profile of true valuations.

{a} {b} {a,b}
1 1000
2 1000
3 1000

Example A
6In either case, “ties are broken arbitrarily.”
7Indeed, best allocations appear to be computationally hard, but the amount of computation is orthogonal to the traditional

goals of game theory, and is not a concern of this paper either.
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On input the true valuations of Example A —which is the case at the envisaged DST equilibrium— the
VCG mechanism allocates a to player 1 for a price of 0, and b to player 2 for a price of 0. Thus the
revenue generated is 0. Perhaps not much can be deduced on the basis of a single “bad” example. But,
Example A can be trivially turned into an infinite sequence of examples by having all its non-zero entries
go to infinity, while remaining equal to each other. Now notice that the VCG mechanism continues to
return revenue 0 in each example in this sequence. This would not be a problem if no or minimal revenue
were obtainable for the so constructed examples, but this is far from being the case: there is plenty of
revenue to be obtained, and in dominant-strategies too.8

• Revenue Fragility. Consider the following profile of true valuations.

{a} {b} {a,b}
1 1000
2 1000

Example B
On input the true valuations of Example B —which is the case at the envisaged DST equilibrium— the
VCG mechanism returns revenue of 1000 (no matter how it break ties —i.e., no matter which of the
two best allocations it selects). Consider now adding a third player with the following valuation: 1000
for {b} and 0 for all other subsets. Then, one obtains Example A, and thus the revenue generated by
the VCG mechanism suddenly drops from 1000 to 0. Accordingly, in a combinatorial auction whose
mechanism is the VCG, if the seller knows that he is going to fetch good revenue from a group of players
(e.g., because he knows their valuations well enough), he should be wary of —and indeed prevent—
the participation of additional players. Indeed, the arrival of a single “unknown” player may cause
his revenue to decrease dramatically or vanish altogether. In other words, the revenue of the VCG
mechanism is not player-monotone.9

• Collusion Vulnerability. Consider the following profile of true valuations.

{a} {b} {a,b}
1 500
2 1000
3 500

Example C
On input the true valuations of Example C —which is the case at the envisaged DST equilibrium—
the VCG mechanism returns revenue of 1000. Such revenue is actually optimal here, but is also very
vulnerable to collusion, despite the fact that the VCG is DST. Indeed, the DST property solely guarantees
that an independent player has nothing better to do than bidding his true valuation. But it guarantees
nothing of the sort about two or more players! Letting the context be one whose true valuations are as
in Example C, assume that players 1 and 3 are collusive and know that player 2 values only the subset
{a, b}, and for 1000. Then, player 1 and 2 may coordinate their bids as follows: 1 bids 1000 for a, and
2 bids 1000 for b. With these two bids, each of the collusive players obtains his desired set while paying
0. In fact, together with player 2’s truthful bid, one gets exactly the valuations of Example A.

Note that player 1 and 2 need not know exactly how much player 2 values the subset {a, b}. It
suffices that they know an upper-bound for it. For instance, if they know that he values {a, b} for no
more than one hundred thousand, then if each of players 1 and 3 bids 1 million for his own valued set,
both get what they want for nothing! In sum,

8For instance, consider the following mechanism M : for each player i, compute the personal welfare to i of all goods (i.e.,
the maximum social welfare of just i’s valuation, that is MSW (Vi)); allocate all goods to the player, w, with the highest
personal welfare; let w pay the second highest personal welfare, and let every other player pay 0. It is easy to show that M is
dominant-strategy truthful, and that the revenue it generates along the above sequence of example tends to infinity.

9Indeed the revenue of the VCG mechanism is itself a benchmark, that is, a function from multi-sets of valuations to reals.
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For combinatorial auctions, not only no natural solutions with non-trivial revenue guarantees are
known, but not even general results about revenue are known, even in the Bayesian setting.

2 Our Results

We make various contributions to the guaranteed-revenue problem in combinatorial auctions. The easiest
to appreciate is our “positive” one. Namely, we explicitly put forward a natural solution pair (B,M) with a
reasonable revenue guarantee. This solution is attractive due to the conceptual simplicity of its probabilistic
mechanism M, and the fact that B is a very natural generalization of the second-valuation benchmark of
single-good auctions. Personally, however, we appreciate more our “negative” results. In particular, we
prove that no DST mechanism can significantly outperform M on our benchmark, and that an exponential
performance gap exists between M and any deterministic DST mechanism. Therefore, while our positive
result establishes reasonably attractive properties of a specific DST mechanism, our negatives ones establish
intrinsic limitations of all possible DST auction mechanisms, and advance our understanding of what revenue
can be guaranteed in combinatorial auctions. (The usefulness of such understanding is perhaps evidenced by
the fact that we have first proved our negative results, and that these have then guided us to discover our
positive one!)

2.1 Our Benchmark

What revenue benchmarks should we choose for natural solution pairs in combinatorial auctions? An obvious
temptation is to consider MSW . In fact, MSW is both player-monotone and the highest benchmark ratio-
nally achievable, since rational players will never collectively pay more than the goods are collectively worth
to them. To be sure, MSW cannot be achieved with guarantee 1 in a robust way,10 but natural solution pairs
are allowed to work with lower guarantees, and it is thus legitimate to ask whether solution pairs (MSW,M)
with less than 1 but positive revenue guarantees exist. We prove that the answer is no. That is,

Theorem 1. For any DST mechanism M and any positive function g(n,m), there exists a valuation profile
V for an n×m auction context such that the revenue of M(V1, . . . , Vn) < g(n,m) ·MSW (V1, . . . , Vn).

In other words, MSW is “too perfect:” aiming to approximate it in combinatorial auctions in a sufficiently
adversarial setting is tantamount to aiming for eternal life in a national health-care system. But in looking for
alternatives, we must resist another natural temptation: namely, choosing a benchmark so “next-to-perfect”
as to be achieved or reasonably approximated only in the rarest of auctions. It is in fact our goal to discover
revenue guarantees that apply to all combinatorial auctions. And it is with this goal in mind that we put
forward the following benchmark MSW−?.

Definition 2. Let V = (V1, . . . , Vn) be a sequence of valuations of a finite set of goods G, and let i and S be
such that Vi(S) ≥ Vj(T ) for all j ∈ [1, n] and all T ⊂ G. Then, we define MSW−?(V ) = MSW (V−?), where
V? = Vi and V−? = (V1, . . . , Vi−1, Vi+1, . . . , Vn).

We refer to such a player i as the star player, and denote him by the symbol ?, so as to capitalize on
standard game theoretic notation in our symbolic manipulations. (If two or more such players i exist, the
star player is the “smallest” one among them.)

Translating valuations into players, MSW−? first removes the star player, and then compute the maximum
social welfare for the rest of the players. It should then be obvious that MSW−? is player monotone, and
that it is a generalization of the second-valuation benchmark: that is, MSW−? = 2V in single-good auctions.
Indeed, in single-good auctions, removing the highest bid is tantamount to removing the star player, and the
social welfare of the rest is the highest of the remaining bids, and thus the second highest of the original bids.

10Indeed, if (MSW,M) were a solution pair with guarantee 1, then M could not, on input the valuations V = (V1, . . . , Vn),
but return the allocation BestAlloc(V ). Consequently, at the end, M should coincide with the VCG mechanism that, as per
Example B, is very fragile.
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A “Surprising” Example. Consider the following context, where each player i only values the ith good.

{a} {b} {c} {d} {e} {f} {g}
1 1001
2 1000
3 1000
4 1000
5 1000
6 1000
7 1000

Example D
(Subsets of two or more goods are not valued, and their corresponding columns not shown.)

Traditional general mechanisms would have hard time generating revenue given the valuations of Example D,
because no competition for any single subset of the goods exists. In particular, the VCG mechanism would
return revenue of 0. By contrast, for the valuations of Example D the value of MSW−? is 6000 and thus we
have the right to expect reasonably high revenue from a mechanism that, like our M, is always guaranteed to
approximate MSW−? reasonably. Indeed, as we shall become clear from its definition, the expected revenue
of M in such example is greater than 1250. This performance is perhaps surprising in view of the fact that
Example D is quite special and difficult, while our M is designed to perform in any combinatorial auction.

2.2 Our Mechanism

Our mechanism M is simple and probabilistic. In constructing it, some of our choices are dictated by our
desire for M to be DST; others by our desire for M to generate revenue approximating MSW−?.

At the highest level, the idea is that of trading efficiency for revenue. We obtain M by starting with an
underlying, deterministic, DST, and high-efficiency mechanismM, and then modifying it so as convert some
of its efficiency to revenue. The first approach to implement such a plan is that of running M on the profile
of bids provided by the players so as to obtain an allocation A′ and a profile of prices P ′, and then raise
the prices of the players who win goods. By doing so, efficiency may suffer, because when the raised price
exceed a winner’ bid, the player may refuse to pay, leaving the goods he wins unallocated. At the same time,
if the prices are raised judiciously, then this loss will be compensated by other players paying more so that
the total revenue generated will increase. But: How should prices be raised? And by how much?

As we shall argue later on, the revenue of any deterministic mechanism can only poorly approximate our
benchmark. Thus, we shall raise prices probabilistically. Further, in light of our benchmark, one easy way to
do this is to add to the prices produced by M in response to a given sequence of valuations BID a fraction
α of MSW−?(BID), where the scaling factor α is probabilistically chosen between 0 and 1. This approach,
however, needs to be refined. To begin with, to ensure that M is DST, we do not want that “a player’s price
depend on his bid,” and MSW−?(BID) may indeed depend on a player i’s bid. This problem is traversed
by increasing i’s bid by αMSW−i(BID) instead. Our analysis will support that this small change does not
alter our ability to achieve our benchmark. At the same time, such a modification of M is guaranteed to
remain DST.

Two choices now remain to be made: that of the mechanism M and that of scaling factor α. For M,
as we plan to turn efficiency into revenue, it is natural to choose the VCG mechanism, since it has optimal
efficiency. (However, any M whose efficiency is a “sufficiently high” fraction of MSW would work too,
leaving room for computationally more tractable auction mechanisms and other desiderata.) As for choosing
α, we are actually guided by one of our upper-bound results —discussed in the next subsection, and indeed
discovered before M. Informally, this result states that, in a n×m auction, no DST mechanism can guarantee
revenue greater than a logarithmic (in µ = min{n,m}) fraction of MSW−?(BID). With this limitation in
mind, as a first approximation, we start by choosing α uniformly among {0, 1, 1

2 ,
1
4 , . . . , 2

−blog µc}. (Discrete
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exponential distributions were used in simpler settings by [13] and [3].11) In expectation this distribution of
α will essentially 1

log µ -approximate the optimal revenue: let ᾱ be the scale factor which would induce a price
for player i of exactly his bid; the distribution of α just described has the property that with logarithmic
probability the α chosen either multiplicatively 2-approximates ᾱ, or additively 1

2µ -approximates ᾱ. Thus
a logarithmic fraction of the time, the distribution “guesses” almost exactly the right price to charge each
player.

In the mechanism M below, we refine this distribution so as to optimize the worst-case bound on its
revenue. Specifically, instead of the discrete exponential distribution above, we use a “continuous exponential”
distribution, and we adjust the relative probability of selecting α = 0. (Our specific selection of constants is
solely justified by our desire to optimize our solution.)

Definition 3. We denote by M the auction mechanism that on input BID, a profile of n bids for a set of
m goods, computes an outcome (A,P ) as follows:

1. Pick a scaling factor α ∈ [0, 1] as follows:

• Let µ = min{n,m} and cn,m be the constant > 2 that solves the equation ex−2 = xµ.
• Flip a coin whose probability of Heads is 1

cn,m−1 . If Heads, choose α = 0. If Tails, draw r uniformly
from [−(cn,m − 2), 0] and choose α = er.

2. Compute the provisional allocation A′ and the profile of provisional prices P ′ = V CGp(BID) — re-
spectively the allocation and the prices of the VCG mechanism for the bid profile BID— and then the
set of provisional winners W ′ consisting of all players that obtain a non-empty subset of goods in A′.

3. For each i ∈ W ′ compute i’s offer price P ′i + αMSW (BID−i). If i’s bid BIDi(A′i) exceeds i’s offer
price, set Ai = A′i and Pi = P ′i + αMSW (BID−i); otherwise set Ai = ∅ and Pi = 0.

Remarks

• We note that cn,m is uniquely defined since for µ ≥ 1 the function fn,m(x) = ex−2 − xµ is negative at
x = 2, goes to infinity as x increases, and has positive second derivative everywhere.
• Notice that although each price Pi is personalized, it is obtained via the same choice of scaling factor α.

Were we in a Bayesian setting, where different players have different distributions for their valuations,
then we would optimally choose a separate scaling factor αi for each player i.

For all combinatorial auctions, we prove the following about our mechanism and our benchmark.

Theorem 2. (MSW−?,M) is a natural solution pair with revenue guarantee 1/cn,m.

Concrete Revenue Consequences. As implied by cn,m’s very definition, 1/cn,m is a very slowly decreas-
ing function of n and m; namely: 1/cn,m = Θ(1/ logmin{n,m}). That is, disregarding constants, 1/cn,m
equals 1/ logmin{n,m}. Therefore, when either n or m is reasonably small, M’s revenue is expected to be a
reasonable portion of the “potential value” expressed by our MSW−? benchmark. For instance,

• In the case of Example D, n = 7 and 1/cn,m > 17%. Accordingly, because here the value of our
benchmark is 6000, Theorem 2 implies that M’s expected revenue in Example D must be greater than
1000. This performance is indeed guarantee for any n×m auction with a MSW−? benchmark of 6000
and min{n,m} = 7. But Example D specifies a very special case of such auctions, and M’s expected
revenue with Example D’s valuations is even better. Indeed, it can be separately shown to be greater
than 1250.

11For instance, the goal in [3] was to obtain high-revenue in the unlimited supply model. Recall that in this model there are
arbitrarily many copies of each good for sale, and thus competition among players for the same good is not an issue. Consequently,
in this simpler setting their mechanism is content with producing a single “global” price, paying which any player can obtain as
many copies of every good he wants. They call their pricing structure the amusement-park model, in analogy to what happens
in amusement parks where payment of the fixed entrance fee enables one to enjoy as many rides as he wants.
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• If there are fewer than 299 goods for sale (perhaps a plausible scenario), then it can be shown (see
Corollary 1) that, regardless of whether the number of players is in the tens, the thousands, or the
millions, that M always returns as revenue 10% of MSW−? “relative to all independent players,” no
matter how combinatorially complex the valuations may be, and no matter how collusively, irrationally,
or maliciously the other players may bid.

2.3 Optimality of Our Mechanism

We prove two results about M’s revenue performance, relative to our benchmark and any other possible DST
mechanism. Namely, (1) it is precisely optimal asymptotically and (2) it is optimal within a constant factor
in every auction. Crudely put, we prove there is no way, in dominant strategies, to extract significantly more
revenue than M for all combinatorial auctions. Let us now to express these properties more precisely.

Definition 4. Let opt(n,m) denote the greatest x ∈ R+ for which there exists a DST mechanism Mn,m

whose (expected) revenue is at least x ·MSW−?(BID) for any n×m bid profile BID.

Theorem 3.
lim

n,m→∞

cn,m
opt(n,m)

= 1.

Theorem 4. For all n and m,

cn,m ≥
1

5.5
· opt(n,m).

2.4 The Necessity of Probabilism

Our mechanism demonstrates once again the power of randomization. Indeed, we prove the following.

Theorem 5. For any deterministic auction mechanismM, (MSW−?,M) has revenue guarantee 1
min{n,m}−1

for n,m ≥ 2.

Thus an exponential gap exists between the revenue guaranteed by our M and that guaranteed by any
deterministic DST mechanism.

3 Conclusions

The simplicity of M was for us a pleasant surprise. We believe that such simplicity is not only due to M’s
crucial probabilism, but also to our choice of benchmark. That is, we interpret M’s simplicity as a possible
sign of the naturalness of the MSW−? benchmark.

Finally, we believe and hope that the robustness achieved by our natural solution pair (MSW−?,M) can
be exported to other mechanism-design settings. In particular, the traditional game-theoretic assumption of
the perfect rationality of all players strikes us as being often too risky in practice.12 We thus look forward to
some more thorough investigation of the degree of protection achievable against somewhat irrational players.

12For instance, consider the well known game of choosing an integer between 0 and 100 and rewarding the player whose integer
is closest to half of the average of chosen integers. Would you really choose 0 when playing it among strangers on the street?
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Appendix

A Preliminaries

A.1 Additional Notation

We consistently denote the set of players by N = {1, . . . , n} and the set of goods for sale by G = {g1, . . . , gm}.

Sub-profiles. Recall that a profile is a vector V indexed by N . If C ⊂ N , the sub-vector of V indexed by
C is denoted by VC , and is referred to as a sub-profile. If i ∈ N , we more simply write Vi rather than V{i};
V−i rather than VN−{i}; and, if C ⊂ N , V−C rather then VN−C . If S and T are disjoint subsets of G, then
by VS tVT be denote the sub-profile mapping each player i ∈ S ∪T to (VS)i if i ∈ S, and to (VT )i otherwise.

We extend to sub-profiles the functions V alue, BestAlloc and MSW as follows. For each valuation sub-
profile VC and allocation A: V alue(VC , A) =

∑
i∈C Vi(Ai); BestAlloc(VC) = argmaxA∈A(G)V alue(VC , A);

and MSW (VC) = V alue(VC , BestAlloc(VC)); where A(G) denotes the set of all possible allocations of G.
By convention, argmax’s ties are broken lexicographically. Also by convention, let BestAlloc(VC)i 6= X

whenever Vi(X) = 0, even if i ∈ C and X ⊂ G.

Mechanisms and Their Revenues. Recall that an auction mechanism is a probabilistic function mapping
a bid profile BID to pair (A,P ), where A is an allocation and P a price profile, satisfying the opt-out
condition: Pi = 0 whenever BIDi is the null valuation. We thus view each mechanism M as two separate
functions: an allocation functionMa and a price functionMp. That is, for all bid profiles BID: M(BID) =
(Ma(BID),Mp(BID)). The expected revenue of mechanismM on bid profile BID is E[

∑
i∈NMp(BID)i].

DST Equilibria. Let C = (N,G, TV ) be an auction context, and G = (C,M) an auction. Then, we say
that a profile of bids BID∗ is a dominant-strategy truthful (DST) equilibrium of G if (1) BID∗ = TV and
for all bid profiles BID′ and (2) players i ∈ N : and E[ui(TVi,M(TVi t BID′−i))] ≥ E[ui(TVi,M(BID′))].
We say that an n ×m mechanism M is dominant-strategy truthful if for all n ×m auction contexts C, the
auction G = (C,M) has a DST equilibrium.

Winners. We define the set of winners in an allocation A as follows: Wins(A) = {i ∈ N : Ai 6= ∅}.

A.2 The Opt-Out Condition and the DST-1 and DST-2 Properties

Note that the opt-out condition, recalled just above, is a model constraint —not a mechanism constraint.
Indeed, it captures the fact that participation in an auction is optional. To model this reality we have
two choices. The first is adding to any auction an initial round in which players choose whether or not to
participate. (Those who so choose will then bid in the following round, where they can be “charged” for their
participation whether or not they win any goods.) The second, adopted here, is assuming that “everyone
participates,” but letting those who do not submit any bids —or submit the null bid— be charged nothing.
This latter choice is clearly preferable in auctions —as eBay ones— where every Internet user is a potential
bidder, and a round of interaction involving all users is inconceivable.

Note that the opt-out condition is crucial for the first of the following two, clearly holding, properties.

DST-1: For all (probabilistic or not) DST mechanisms M, players i, and bid profile BID, we have:
0 ≤ E[Mp(BID)i] ≤ E[BIDi(Ma(BID)i)].

DST-2: For all deterministic DST mechanisms M, players i, and bid profiles BID and BID′ such that
BID−i = BID′−i, we have: Ma(BID)i =Ma(BID′)a implies Mp(BID)i =Mp(BID′)i.
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B Proof of Theorem 1

We actually prove a slightly stronger result; namely,

Theorem 1′: For any n ×m, probabilistic, DST mechanism M, any player i, any bid sub-profile BID−i,
and any positive constant c, there exists a bid BIDi such that, letting BID = BID−i tBIDi, we have

E

∑
j∈N
Mp(BID)j

 < MSW (BID)
c

.

Proof. Fix arbitrarily a bid profile BID−i and a subset S of the goods. Then, for any ε > 0, define

P = supx Pr[Ma(BID−i t (S, x))i = S].

That is, P is the “maximum probability with which player i can win set S, with a single-minded bid for
S, when all other players bid BID−i.”

xε to be a positive real number such that Pr[Ma(BID−i t (S, xε))i = S] ≥ P− ε.
That is, the probability that player i wins S single-mindedly bidding (S, xε) is greater than P(S)− ε.

x′ε = xε+MSW (BID−i)
ε .

The definition of DST states that, for any profiles TV and BID′, the following inequality holds:

E[ui(TVi,M(TVi tBID′−i))] ≥ E[ui(TVi,M(BID′))]. (1)

Letting TVi = (S, x′ε), BID
′
−i = BID−i, and BID′i = (S, xε), we can reexpress Inequality 1 as

[E[ui((S, x′ε),M((S, x′ε) tBID−i))] ≥ E[ui((S, x′ε),M((S, xε) tBID−i))]. (2)

Again assuming that all players but i bid BID−i, let P′ε be the probability that player i wins S when he
bids (S, x′ε), and let p′ε be the corresponding expected price he pays. Similarly, let Pε be the probability that
i wins S when he bids (S, xε), and pε the expected price he pays. Then we may reexpress Inequality 2 as

x′εP′ε − p′ε ≥ x′εPε − pε. (3)

Because x′ε = xε+MSW (BID−i)
ε ; because P′ε ≤ P (since P is i’s “highest probability of winning S”); because

Pε > P− ε (by the definitions of xε and Pε); and because pε ≤ xε (by property DST-1); Inequality 3 becomes

xε +MSW (BID−i)
ε

P− p′ε >
xε +MSW (BID−i)

ε
(P− ε)− xε. (4)

Simplifying Inequality 4 yields
p′ε < 2xε +MSW (BID−i). (5)

Now notice that the following Inequality also holds:

E

∑
j

Mp(BID)j

 < 2(x′ε +MSW (BID−i)). (6)

In fact, E
[∑

jMp(BID)j
]
≤MSW (BID) by Property DST-1; MSW (BID) ≤MSW (BID−i)+MSW (BIDi)

by the player monotonicity of MSW ; MSW (BID−i) ≤ p′ε by Property DST-1; and p′ε < 2xε+MSW (BID−i)
by Inequality 6.

At the same time, however, we have xε+MSW (BID−i)
ε = x′ε = MSW (BIDi) ≤ MSW (BID); that is,

xε +MSW (BID−i) ≤ εMSW (BID). Thus, combining this inequality with Inequality 6 yields

E[
∑
j

Mp(BID)j ] < 2εMSW (BID). (7)

Since ε can be chosen arbitrarily small, Equation 7 proves our thesis. Q.E.D.
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C Proof of Theorem 2

We break Theorem 2 into two separate theorems. Namely,

Theorem 2a: (MSW−?,M) is a natural solution pair.
and

Theorem 2b: (MSW−?,M) has revenue guarantee 1/cn,m.

C.1 Proof of Theorem 2a

Theorem 2a is quite straightforward. The key observation is that M is DST because it has been obtained
from the VCG mechanism by modifications that trivially preserve the dominant-strategy truthfulness. The
proof below is mostly given for completeness and self-containment sake.

Definition 5. A function f : N ×V(G)N → R+ is called stable if, for each i ∈ N , there exists a function gi
such that, for each BID ∈ V(G)N , f(i, BID) = gi(BID−i) —i.e., f is “independent” of BIDi.

Definition 6. Given a deterministic mechanismM and a stable function f defineM+f to be the mechanism
defined as follows: on input BID ∈ V(G)N ,

1. Compute the provisional allocation A′ = Ma(BID), the profile of provisional prices P ′ = Mp(BID),
and the set of provisional winners W ′ = Wins(A′).

2. For each i ∈ W ′, if BIDi(A′i) ≥ P ′i + f(i, BID) then let Pi = P ′i + f(i, BID) and Ai = A′i; otherwise
let Pi = 0 and Ai = ∅.

Lemma 2. If M is DST, so is M+f for any stable f .

Proof. Given an auction context C = (N,G, TV ), a bid profile BID ∈ V(G)N , and a player i ∈ N we have

ui(TVi,M+f (TVi tBID−i))
(1)
= TVi(M+f

a (TVi tBID−i)i)−M+f
p (TVi tBID−i)i

(2)
= max{0 , TVi(Ma(TVi tBID−i)i)−Mp(TVi tBID−i)i − f(i, BID−i)}
(3)
= max{0 , ui(TVi,M(TVi tBID−i))− f(i, BID−i)}
(4)

≥ max{0 , ui(TVi,M(BID))− f(i, BID−i)}
(5)

≥ ui(TVi,M+f (BID)),

where: e4quality (1) holds by the definition of the utility function u; equality (2) holds by the definition of
M+f , and can be easily checked in each of the two cases M+f

a (TVi t BID−i)i = Ma(TVi t BID−i)i and
M+f

a (TVi t BID−i)i = ∅; equality (3) holds by the definition of the utility function u; inequality (4) holds
becauseM is dominant-strategy truthful; and inequality (5) holds becauseM+f (BID) either yields i utility
0 or utility ui(TVi,M(BID))−f(i, BID−i), and thus at most the maximum of these two quantities. Q.E.D.

We now define a special class of probabilistic mechanisms.

Definition 7. Let D a distribution over a set of deterministic n×m auction mechanisms. Then we denote
by SD the the probabilistic n × m auction mechanism that, on input a profile of bids BID, first selects a
mechanism M according to D and then returns the outcome M(BID).

We refer to such a mechanism SD as above as a (n×m) sampler.

Lemma 3. If SD is a sampler and all mechanisms in D’s support are DST, then SD is DST.
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Proof. Let our SD actually be an n × m sampler, and let C = (N,G, TV ) be an n × m auction context,
BID ∈ V(G)n, and i ∈ N . Then we have

E[ui(TVi, SD(TVi tBID−i))]
(1)
=

E
M←D

[ui(TVi,M(TVi tBID−i))]
(2)

≥

E
M←D

[ui(TVi,M(BID))]
(3)
=

E[ui(TVi, SD(BID))]

where equality (1) holds because the definition of SD; inequality (2) because M is DST; and equality (3)
because of the definition of SD. This chain of inequality proves that SD is DST.

Q.E.D.

Theorem 2a: (MSW−?,M) is a natural solution pair.

Proof. The benchmark MSW−? is player-monotone, while mechanism M is a sampler satisfying the hypoth-
esis of Lemma 4.

Q.E.D.

C.2 Proof of Theorem 2b

Theorem 2b: (MSW−?,M) has revenue guarantee 1/cn,m.

Proof. In virtue of Definition 2, we need to prove that, whenever BID is a valuation profile for a n × m
auction, we have

E[
∑
i∈N

Mp(BID)i] ≥
MSW−?(BID)

cn,m
. (8)

For each player i, let Si be the (possibly empty) set player i provisionally wins, and let P ′i be the provisional
price V CGp(BID)i. We divide our proof into two cases: in the first the star player bids huge and the revenue
bound is derived from just the revenue M extracts from him. In the second case, no huge bidder exists, and
we must sum up the revenue that M extracts from each set-winning player.

Case 1: BID?(S?) > P ′? +MSW−?(BID).

Note that the right-hand side of the inequality of this case is always ≥ 0, thus BID?(S?) > 0 always.
This implies that S? 6= ∅; namely that ? is a provisional winner. As such, mechanism M “makes ? the offer”
P ′? + α ·MSW−?(BID) where α ≤ 1, the offer price will always be at most player ?’s bid for S?, and hence
player ? will always pay his offer price. Thus the expected revenue from player ? is just the expected offer
price, namely

13



E[Mp(BID)?] =
1

cn,m − 1
P ′? + (1− 1

cn,m − 1
)
∫ 0

−(cn,m−2)

1
cn,m − 2

(
P ′? + erMSW−?(BID)

)
dr

=
(

1
cn,m − 1

+ (1− 1
cn,m − 1

)
)
P ′? + (1− 1

cn,m − 1
)

1
cn,m − 2

MSW−?(BID)
∫ 0

−(cn,m−2)
erdr

= P ′? +
1

cn,m − 1
MSW−?(BID)

∫ 0

−(cn,m−2)
erdr

= P ′? +MSW−?(BID)
1− e−(cn,m−2)

cn,m − 1

≥MSW−?(BID)
1− µe−(cn,m−2)

cn,m − 1
= MSW−?(BID)

1− 1
cn,m

cn,m − 1
=
MSW−?(BID)

cn,m
,

where the inequality follows because P ′1 ≥ 0 and µ ≥ 1, and the second to last equality is by the definition
of cn,m, namely that µcn,me−(cn,m−2) = 1. Thus we have the desired result in this case.

Case 2: BID1(S1) < P ′1 +MSW (BID−1).

Consider a provisional winner i. We note that when α = 0 the offer price for player i is just P ′i , which
is less than or equal to BIDi(Si) since the V CG mechanism never charges players more than their bid; thus
when α = 0 player i will pay P ′i . We claim that the expected price paid by player i is at least

P ′1
cn,m − 1

+ (1− 1
cn,m − 1

)
∫ loge

BIDi(Si)−P
′
i

MSW (BID−i)

−(cn,m−2)

1
cn,m − 2

(
P ′i + erMSW (BID−i)

)
dr.

This expression is just the natural expression for the expected offer price when r is limited to be at most
loge

BIDi(Si)−P ′i
MSW (BID−i)

, namely the value of r for which the offer price of P ′i +erMSW (BID−i) equals player i’s bid

BIDi(Si). For the above integral to equal this expectation we require −(cn,m − 2) ≤ loge
BIDi(Si)−P ′i
MSW (BID−i)

≤ 0.
We prove the second inequality, which we restate as BIDi(Si) ≤ MSW (BID−i) + P ′i . We note that for
i = 1 this inequality is implied by the condition of this case. For i 6= 1 we have that MSW (BID−i) is at
least player 1’s highest bid since 1 ∈ N − {i}, which is at least BIDi(Si) since by assumption player 1 is the
highest bidder.

We note that the first inequality is not necessarily true, and in this case since the limits of integration are
in the “wrong order” the integral will be negative. Since the expected revenue when α > 0 is non-negative,
the integral is thus a lower bound for the expected revenue, as claimed. Thus we have

E[Mp(BID)i] ≥
P ′i

cn,m − 1
+ (1− 1

cn,m − 1
)
∫ loge

BIDi(Si)−P
′
i

MSW (BID−i)

−(cn,m−2)

1
cn,m − 2

(
P ′i + erMSW (BID−i)

)
dr

≥ P ′i
cn,m − 1

+ (1− 1
cn,m − 1

)
∫ loge

BIDi(Si)−P
′
i

MSW (BID−i)

−(cn,m−2)

1
cn,m − 2

(erMSW (BID−i)) dr

=
P ′i

cn,m − 1
+MSW (BID−i)

1
cn,m − 1

(
e

loge
BIDi(Si)−P

′
i

MSW (BID−i) − e−(cn,m−2)

)
=

1
cn,m − 1

(
BIDi(Si)− e−(cn,m−2)MSW (BID−i)

)
Summing up this inequality over all provisional winners i, we get

E[
∑
i∈W ′

Mp(BID)i] ≥
1

cn,m − 1

(∑
i∈W ′

BIDi(Si)− e−(cn,m−2)
∑
i∈W ′

MSW (BID−i)

)
.
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Now notice that
∑

i∈W ′ BIDi(Si) = MSW (BID). Further since |W ′| ≤ µ and MSW (BID−i) ≤
MSW (BID) we have

∑
i∈W ′MSW (BID−i) ≤ µ ·MSW (BID). Thus we have

E[
∑
i∈W ′

Mp(BID)i] ≥MSW (BID)
1− µe−(cn,m−2)

cn,m − 1
= MSW (BID)

1− 1
cn,m

cn,m − 1
=
MSW (BID)

cn,m
≥ MSW−?(BID)

cn,m
,

where we invoke the definition of cn,m to derive the first equality. Thus we have the desired conclusion.
Q.E.D.

Remarks.
• Notice that our mechanism M requires that its underlying DST mechanism be reasonably efficient.

Indeed, in the analysis of Case 2, we rely on the fact that the VCG algorithm is 100% efficient: namely,
we rely

∑
i∈W ′ BIDi(Si) = MSW (BID). If another DST mechanism is used, one should make sure

that, for its provisional allocation A,
∑
BIDi(Ai) is a sufficient fraction of MSW (BID).

• Notice that, when lower-bounding the revenue generated by M, the profile of prices returned by the
underlying DST mechanism are essentially ignored. However, were we to “simplify” the definition of M
by replacing the provisional prices with zeros, the resulting mechanism would not be DST.

Corollary 1. Given a constant c > 2, for every auction context where min{|N |, |G|} ≤ ec−2

c ,

E[
∑
i∈N

Mp(BID)i] ≥
MSW−?(BID)

c
.

Proof. This follows immediately from Theorem 2 after solving for µ in the definition of cn,m. Q.E.D.

We note that for the value c = 10 we have ec−2

c > 298 and thus this corollary says that for any auction
with either at most 298 players and unlimited goods, or at most 298 goods and unlimited players, we can
guarantee expected revenue of 10% of our benchmark.

Corollary 2. Given a constant c > 2, for every auction context (N,G, TV ), where min{|N |, |G|} ≤ ec−2

c ,

E[
∑
i∈N

Mp(BID)i] ≥
MSW−?(TV )

c
.

Proof. From Theorem ??, mechanism M has a dominant-strategy equilibrium where BID = TV , so the
corollary follows immediately from the previous corollary. Q.E.D.

C.3 Proof of Theorem 3

Let us start by recalling the notion of a “single-minded auction”.

Definition 8. A valuation x of a finite set of goods G is single-minded if there exists a single set of goods S
and v ∈ R+ such that x(T ) = v whenever S ⊂ T and 0 otherwise.

We compactly represent such a single-minded valuation x by the pair (S, v).

C.3.1 Harmonic Distributions and Harmonic Pricing

Let us introduce a simple distribution that we have found crucial for proving several impossibility results in
general auctions (this is just the first one).

Definition 9. (Bounded-Harmonic Distributions) For any subset of goods S and positive integer k, we denote
by hkS the distribution assigning, for each integer i ∈ [1, k], probability 1

k to the single-minded valuation (S, 1
i ).
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We now prove a property of DST mechanisms that may be of independent interest. It is well known that
the harmonic series,

∑∞
j=1 1/i, diverges, although “slowly.” By contrast, the series of the prices paid, in any

DST mechanism, by a given player who bids harmonically for a given set not only always converges, but is
actually upper-bounded by 1.

Lemma 4. (Harmonic-Pricing) For all probabilistic DST mechanisms M, all players i, all valuation sub-
profiles BID−i, and all subsets of goods S,

∞∑
j=1

E[Mp(BID−i t (S,
1
j

))i] ≤ 1.

Proof. We show that the sum of over any finite set j ∈ {1, . . . k} is at most 1, for any integer k. Define αj
as the expected price paid by player i, for each j ≤ k and let βj be the probability that player i receives
some set containing set S when M is evaluated on BID−i t (S, 1

j ); let αk+1 = βk+1 = 0. We show that∑
j≤k αj ≤ 1.
We note that since M is DST, we may apply the definition of DST with TVi = (S, 1

j ) and BID′ =
BID−i t (S, 1

j+1) to yield

E[ui((S,
1
j

),M((S,
1
j

) tBID−i))] ≥ E[ui((S,
1
j

),M((S,
1

j + 1
) tBID−i))].

Evaluating both sides by the definition of ui yields

1
j
βj − αj ≥

1
j
βj+1 − αj+1. (9)

Suppose for the sake of contradiction that
∑k

j=1 αj > 1. Thus 1 <
∑k

j=1 αj =
∑k

j=1 j(αj − αj+1) and
further since for each j, 0 ≤ βj ≤ 1, we have β1 =

∑k
j=1(βj − βj+1) ≤ 1. Comparing these two sums term

by term we note that there must exist a j such that the corresponding term from the first sum exceeds the
term from the second sum, namely j(αj − αj+1) > (βj − βj+1). Dividing by j and rearranging terms yields
1
jβj − αj <

1
jβj+1 − αj+1, which contradicts Equation 9. Thus

∑
αj ≤ 1, as desired. Q.E.D.

C.3.2 Our Specific Revenue Upper-Bound

Lemma 5. For any n×m, probabilistic, and DST mechanism M there exists a bid profile BID such that,
letting µ = min{n,m}, we have

E[
∑
i∈N
Mp(BID)i] ≤

MSW−?(BID)
loge µ− 2

√
loge µ− 2

.

Proof. We actually show that we can choose BID to consist of just single-minded bids. Our proof is non-
constructive. We endow the space of all possible bid profiles with a particular distribution, and show that,
under it, the probability of an “unprofitable” profile is > 0.

Denote by G the given set of m goods, consider a subset of the players, N ′ = {1, . . . , µ} and let G′ be a subset
of G of cardinality µ, indexed by integers in {1, ..., µ}. Define Si = {i}, and let BID be the distribution on
the set of all profiles of single-minded valuations of G where for each i ∈ N ′, BIDi = hµSi . We show

1. With probability < 1
loge µ

, MSW−?(BID) ≤ loge µ− π2

6

√
loge µ− 1;

2. With probability ≤ −1+loge µ
loge µ

, E[
∑

i∈NMp(BID)i] ≥ loge µ
−1+loge µ

.
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Proof of Property 1.
We note that the bid value of each player in N ′ has mean 1

µ

∑
i≤µ

1
i . Since the valued sets of the players

are disjoint, the expected “total value” of the µ players in N ′ is E[MSW (BID)] =
∑

i≤µ
1
i > loge µ. Recall

that the variance of a random variable is always at most the expected value of its square. Thus we may
bound the variance of the bid value of each player by 1

µ

∑
i≤µ

1
i2
< 1

µ

∑
i

1
i2

= π2

6µ . Thus, the variance of

MSW (BID) is less than π2

6 , and thus MSW (BID) has standard deviation less than π√
6
. By Chebyshev’s

inequality, the probability that MSW (BID) is more than
√

loge µ standard deviations below loge µ is less
than 1

loge µ
.

We note that since each bid is at most 1, MSW−?(BID) ≥MSW (BID)− 1, and thus with probability
< 1

loge µ
, we have MSW−?(BID) ≤ loge µ− π2

6

√
loge µ− 1.

Proof of Property 2. From Lemma 4, for any profile BID,
∑µ

j=1E[Mp(BID−it (Si, 1
j ))i] ≤ 1. Replacing the

sum with an expectation we have that µ ·Ej←{1,...,µ}[E[Mp(BID−it (Si, 1
j ))i]] ≤ 1. We take the expectation

of the left hand side over BID ← BID, and divide by µ to see that EBID←BID[Ej←{1,...,µ}[E[Mp(BID−i t
(Si, 1

j ))i]]] ≤ 1
µ . We note that the distribution of (Si, 1

j ) in the left hand side equals the distribution of BIDi

in BIDi, so we may simplify the left hand side to EBID←BID[E[Mp(BID)i]]. Thus the expected price paid
by player i is at most 1

µ . By symmetry (since BID is symmetric with respect to permutations π applied to
the player set and the good set) the expected price paid by each player is at most 1

µ , and thus the expected
total price paid by players in N ′ is at most 1. Since only the players in N ′ bid, no revenue can be collected
from players in N −N ′. Thus the total expected revenue is at most 1. By Markov’s inequality, the revenue
will exceed loge µ

−1+loge µ
with probability at most −1+loge µ

loge µ
.

Combining Properties 1 and 2 via the union bound, we conclude that there exists a profile BID such
that MSW−?(BID) ≥ loge µ− π2

6

√
loge µ− 1 and E[

∑
i∈NMp(BID)i] ≤ loge µ

−1+loge µ
. Thus we have

MSW−?(BID)
E[
∑

i∈NMp(BID)i]
≥ 1

loge µ

(
log2

e µ−
π2

6
log1.5

e µ− 2 loge µ+
π2

6
log.5e µ+ 1

)
≥ 1

loge µ

(
log2

e µ−
π2

6
log1.5

e µ− 2 loge µ
)
≥ loge µ− 2

√
loge µ− 2.

Q.E.D.

D Proof of Theorem 4

The proof of this theorem will be provided in the final paper.

E Proof of Theorem 5

We actually prove a slightly stronger version of Theorem 5: namely

Theorem 5′: For any deterministic n×m auction algorithm M and any ν < min{n,m} − 1, there exists a
single-minded bid profile BID such that∑

i

Mp(BID)i ≤
MSW−?(BID)

ν
.

Proof. Setting µ = min{n.m}, we construct the desired bid profile within three steps.
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Step 1. Define the single-minded bid profile BID0 as follows: BID0
i equals ({i}, 1) if player i ≤ µ, and the

null valuation otherwise. It is thus clear that MSW−?(BID0) = µ− 1 and, due to our choice of µ and ν,

1 <
MSW−?(BID0)

ν
. (10)

On the price side, we distinguish two cases: namely, (1) Mp(BID0)i > 0 for no i and (2) Mp(BID0)i > 0
for some i. In the first case, ∑

i

Mp(BID0)i = 0 (11)

so that Inequalities 10 and 11 imply that BID0 satisfies our thesis. Otherwise, we proceed to Step 2.

Step 2. Let j be a player such that Mp(BID0)j > 0, and define for each integer α ≥ 2 the bid profile
BIDα as follows: BIDα

i equals ({j}, µα) if i = j, and ({i}, 1) otherwise. It is thus evident that, for all α ≥ 2,
MSW−?(BIDα) = µ− 1 and, due to our choice of µ and ν,

1 <
MSW−?(BIDα)

ν
. (12)

Let us now analyze the price side. Notice three facts: by construction, BID0
−j = BIDα

−j ; by Property
DST-1, j is allocated {j} in BID0; and, for all α ≥ 2, j’s bid value for {j} is higher in BIDα than in BID0.
Thus, becauseM is deterministic, Property DST-2 implies that, for all α ≥ 2, j continues to win the set {j}
in BIDα and to pay the same price he pays in BID0, which at most 1 —because of Property DST-1 and
because BID0

j ({j}) = 1.
We now distinguish two cases: (a) there is some integer ᾱ ≥ 2 such that Mp(BIDα)i = 0 for all i 6= j,

and (b) for each integer α ≥ 2 there is a player kα, kα 6= j, such that Mp(BIDα)kα > 0. In the first case,∑
i

Mp(BIDᾱ) ≤ 1 (13)

and thus Inequalities 12 and 13 imply that BIDᾱ satisfies our thesis. Otherwise, we proceed to Step 3.

Step 3. By the opt-out condition, kα ∈ {1, µ} \ {j} for all α ≥ 2. Thus, the pigeonhole principle implies
the existence of β, γ ∈ {2, . . . , µ+ 1} such that kβ = kγ and β < γ. Define now

k = kβ(= kγ) and BID′ = BIDγ
−k t ({k}, µγ).

Since the star player in BID′ is either j of k, it is clear that MSW−?(BID′) = µγ + µ − 2 ≥ µγ . Further,
because γ and β are integers, γ > β, and β ≥ 2, we have µγ > (µβ + µ)(µ − 1) and, due to our choice of µ
and ν,

µβ + µ <
MSW−?(BID′)

ν
. (14)

Let us now analyze the price situation. We consider the following two mutually exclusive cases.
Case 1: Mp(BID′)j ≤ µβ.
The definition of BID′ and Property DST-1 clearly imply that

∑
i∈−{j,k}Mp(BID′)i ≤ µ − 1. As for

player k (= kγ), note the following four facts: Ma(BIDγ)k = {k} (becauseMp(BIDγ)k > 0);Mp(BID′)k ≤
1 (because BID′k = ({k}, 1)); BID′−k = BIDγ

−k; and k’s bid value for {k} is higher in BID′ than in BIDγ .
Thus, Mp(BID′)k =Mp(BIDγ) ≤ 1 so that, in the case under consideration,∑

i

Mp(BID′) ≤ µβ + µ1. (15)
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Thus Inequalities 14 and 15 imply that the bid profile BID′ satisfies our thesis.
Case 2: Mp(BID′)j > µβ.
Define

BID′′ = BIDβ
−k t ({k}, µγ).

As for BID′, it is clear that MSW−?(BID′′) = µγ + µ− 2 ≥ µγ and thus that

µβ + µ <
MSW−?(BID′′)

ν
. (16)

Turning our attention to prices, as for BID′, it is clear that
∑

i∈−{j,k}Mp(BID′′)i ≤ µ− 1.
Let us now analyze the price of player j. Notice that BID′ and BID′′ differ only in the bid of player

j, and that j bids higher for {j} in BID′ than in BID′′. Thus, if j won {j} in BID′′, then he would
win it too in BID′ would still pay Mp(BID′′)j . But since j’s bid value in BID′′ is µβ, we would have
Mp(BID′)j =Mp(BID′′)j ≤ µβ, that is a contradiction in the case under consideration. The contradiction
shows that Mp(BID

′′
)j = 0.

Finally, let us analyze the price of player k. Notice that BID′′ and BIDβ differ only on the bid of k; that
k wins his set {k} under BIDβ paying at most 1; and that k bids higher for {k} in BID′′ than in BIDβ.
Thus k continue to win {k} in BID′′ and Mp(BID′′)k ≤ 1, so that∑

i

Mp(BID′′)i ≤ µβ + µ− 1. (17)

Thus Inequalities 16 and 17 imply that the bid profile BID′′ satisfies our thesis. Q.E.D.
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