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ABSTRACT

Fugu is an evolution of the MIT Alewife Machine which adds multiuser support by

providing efficient translation and protection services in hardware. These services, as

well as a second data network, are packaged in the User Communication Unit (UCU).

The UCU is tightly integrated with the current Alewife chip set. This document details

the functional specification and the Field Programmable Gate Array (FPGA) implementation

of the UCU. Special attention is paid to the address translation, user protection, and

Alewife integration schemes. The functional specification of the secondary network is

described in [3].
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1 Introduction and Motivation

1.1 Background

Some recent parallel processors, such as the MIT Alewife Machine [1], achieve

high performance by supporting direct user access to the underlying mechanisms for two

paradigms of parallel computation and communication: globally shared memory and

internode message passing. Although considered a standard feature today, many of these

multiprocessors, including Alewife, neglect efficient multiuser support. In fact, they tend

to omit virtual memory, one of the basic foundations necessary for multiuser support.

These massively parallel multiprocessors (MPPs), such as Alewife, are purposely

designed without virtual memory. They are intended to run processes which require all

available hardware resources. For this reason, superior performance is paramount, and

multiuser support is unnecessary. Similarly, virtual memory is not worth the performance

penalty.

Interestingly, modem processor advances have made uniprocessors more attractive.

Processors have become so fast and cheap that it is sometimes hard to justify the purchase

of a typical MPP. In some cases, modern workstations can actually outperform MPPs at

a fraction of the cost. Furthermore, workstations are much more flexible. In addition to

some types of MPP jobs, they also run most other workloads efficiently. Still, there are

classes of jobs which simply require the performance of an MPP.

If scalable, low overhead multiuser support could be built, then the benefits of

uniprocessors could be combined with the benefits of MPPs. Even when scaled to

hundreds of processors, this overhead should not exceed the performance or price costs of

multiuser support on traditional workstations. Under this scenario, low cost workstations

could be expanded into computationally capable MPPs as necessary. Then both types of

workloads could be run simultaneously in a cost effective way. Fugu [5] is a multiuser



extension of Alewife which implements this solution.

1.2 Requirements for Fugu

A multiuser multiprocessor must provide user isolation, which requires translations

and protection checks on all hardware references. Translation and protection present a

convenient virtual machine to each user although they usually incur extra overhead. The

goal of Fugu, then, is to provide for these mechanisms while maintaining as much of the

scalable performance of Alewife as possible.

Fugu's virtual to physical address page tables are distributed throughout the nodes

of the system. For a complete description of Fugu's page tables, see [5]. Efficient

translation, therefore, requires the hardware support of Translation Lookaside Buffers

(TLBs), which are located inside each node's User Communication Unit (UCU). When

the desired translation is cached by the TLB, many potential layers of indirection through

the page tables are bypassed. The speed advantage is even greater if the cached addresses'

page tables are located on remote nodes. Of course, the TLBs and page tables must be

kept consistent. For a complete description of the TLB and page table coherence, see [5].

In addition to address translation, Fugu's TLB provides access restriction checks.

Memory may be marked as readable and writable, readable but not writable, "DMA-able,"

or invalid. These access qualifiers are independently specified for the supervisor and the

user. They are checked in parallel with translation. Incoming messages are protected by

a hardware Group Identification (GID) check, which enables both the prompt delivery of

messages and an efficient means of network isolation.

1.3 Goal

The goal of this thesis is to design and test the translation and protection schemes



discussed in Section 1.2. Additionally, they will be integrated with the secondary network

[31 in the UCU. Essentially, this thesis provides the hardware support necessary for

scalable multiuser operation.

2 Leveraging Alewife To Implement Fugu

2.1 Alewife's Node Architecture

The basic layout of an Alewife node is shown in Figure 1. The Sparcle, an

extension of the SPARC architecture [2], serves as the central processing unit. The

Communication and Memory Management Unit (CMMU) handles all memory accesses,

whether they be local or remote. Message passing and DMA are also handled by the

CMMU, which is accessed both explicitly, by memory mapped registers, and implicitly,

by loads and stores which the CMMU interprets as shared memory operations.

Figure 1: Alewife node architecture.



2.2 Adding Translation and Protection

Because the CMMU is currently designed to understand a globally shared, single

address space, upgrading Alewife to Fugu entails placing both the translation logic and

the protection logic between the Sparcle and the CMMU. This placement allows the

processor to utilize multiple protected virtual address spaces while the CMMU maintains

its view of the single coherent physical address space. Of course, if the CMMU maintains

coherent memory and caches, the multiple address spaces seen by the Sparcle will also

remain coherent.

Similarly, message protection is placed between the CMMU and the Sparcle.

Regardless of whether a message is currently deliverable, the CMMU should still receive

the message. Because Alewife's network is worm-hole routed, many potential links

could become tied up if the CMMU waited. Of course, it is possible that the destination

process is not currently running, causing the message to be undeliverable. The potential

problem is obvious if any node has two independent processes which are simultaneously

polling for messages from the network. The determination of a message's deliverability,

then, must be accomplished by logic placed between the CMMU and the Sparcle. Because

each group of processes is assigned a unique Group Identification (GID), this message

protection logic is called the GID check.

2.3 The Secondary Network

The upgrade to Fugu actually requires one more hardware addition to the Alewife

node: a second, system only network. Empirically, it was determined that the user could

fill up and deadlock the general system network. Both situations cause the supervisor

problems because it cannot send scheduling or other maintenance information between

nodes when the system network is full. To correct this problem, a proposed addition for



Fugu is a second network which is only accessible to the supervisor [3, 5]. Briefly, this

network has two intended uses: emergency scheduling and overflow paging.

Interestingly, the secondary network does not need to support a high bandwidth.

This observation is readily apparent from the intended use of the secondary network.

Scheduling information only needs to be sent through the secondary network when the

primary system network is busy. Similarly, overflow pages are sent through the secondary

network rarely [3].

The low bandwidth necessary will be exploited to make the secondary network

primitive as compared to the primary system network. This reduction in throughput

capacity will allow for a much simpler and smaller network controller. In fact, it will

allow the network controller to share space with the TLB and GID check in a single chip,

called the User Communication Unit (UCU).

2.4 The User Communication Unit (UCU)

Much like the TLB and the CMMU, the secondary network must be directly

accessible from the processor. As discussed, its purpose is to deliver important scheduling

information. Any extra layer between the network and the processor would only hamper

the prompt delivery of these messages by increasing latency. Similarly, the GID check

must be tightly integrated with the CMMU, the Sparcle, and the TLB.

Because of the similar proximity constraints of the TLB, the GID check, and the

secondary network, it would be convenient to package these units together in one chip.

In fact, they will be packaged in one processor accessible chip called the User

Communication Unit (UCU). The benefits of placing these three modules together can

also be seen from a more practical standpoint. This packaging reduces the amount of

effort needed to design and debug the Fugu node board.

It is important to realize, however, that the addition of the UCU is not the performance



optimized migration of Alewife to Fugu. If such an implementation of Fugu were made,

the TLB would be integrated with the Sparcle, and the secondary network and GID check

would be integrated with the CMMU. This difference in packaging would create a much

faster node overall as it bypasses the extra delay incurred by accessing an additional chip.

2.5 Fugu's Node Architecture

Figure 2 shows the architecture of the Fugu node. As described, the only difference

between the Alewife node and the Fugu node is the addition of the UCU, which includes

Fugu's TLB, GID check, and secondary network. The functional specifications of the

TLB and GID check are discussed in the sections that follow, and the implementation of

the secondary network is discussed in [3].

Figure 2: Fugu node architecture.

3 Functional Specification

Figure 3 shows a block diagram of the UCU, which consists of the TLB, the

secondary network, the GID check, and the bus interface. The most important peripheral



modules, the Sparcle and the CMMU, are also shown. Additionally, the secondary

network connections are depicted. As will be seen in the sections that follow, these

modules combine to provide the basis for a fast, flexible means of user isolation, thus

enabling scalable multiuser support.

Although the TLB, GID check, bus interface, and secondary network share many

common signals, their specifications will be discussed independently in the sections that

follow. This separation is reasonable because of the large differences in the underlying

goals of each module. Furthermore, the outputs of each module are conceptually and

electrically separate. Note, however, that the bus interface serves as the intermediary for

the other modules.

UCU

Figure 3: The blocks contained within the UCU.

3.1 The TLB

Simply put, the purpose of the TLB is to speed address translation and protection.



In this section, we examine some of the features necessary to meet this goal, such as the

translation modes and the programming interface. Special attention will be paid to the

translation path, the performance limiting path.

3.1.1 Translation Modes

For the kernel's virtual memory handler to function correctly, it must be continually

accessible. If the page handler was swapped out for any reason, a succeeding page fault

could never be resolved. One solution to this problem is to disallow swapping of the

page handlers. Special, unswappable pages could be marked as such upon their creation.

Fugu takes an alternative approach to implementing this functionality by providing three

TLB bypass mechanisms: total TLB disable, lower megabyte of address space bypass,

and supervisor requested bypass, which includes Alternate Space Identifier (ASI) aliasing.

(Section 3.1.4 discusses the purpose of the ASIs.)

When setting up the kernel space or for operating in a single address space, it may

be useful to turn off the TLB completely. The TLB supports this disabled mode, in

which it simply passes all address untranslated. Additionally, the TLB never translates

any address in any context in the bottom megabyte of address space. This feature allows

one megabyte of space for all kernel code which must always be accessible.

Finally, certain supervisor ASIs cause translation to be bypassed. The TLB aliases

these ASIs to otherwise normal ASIs, although some are treated specially by the CMMU.

The purpose of this operation is to bypass the TLB while maintaining normal CMMU

operation. It provides the supervisor a means of directly accessing physical memory

without needing to find, or even worse, to create, the virtual translation. Table 1 lists the

ASIs which are translated as well as the resulting ASI aliases. As can be seen, the aliased

ASIs are simply the inputted ASI with the fifth bit set to zero.



ASI range to translate Translated ASI range

0x20-0x3F Ox00-0x1F

0x60-0x7F 0x40-0x5F

Table 1: The ASIs which are translated and the ASIs they translate to.

3.1.2 CID Extension

For a TLB hit in a single address space architecture, it is only necessary that the

tag portion of the memory matches the virtual address presented. In a multiple address

space paradigm, however, it is also necessary that the address be associated with the

currently running group or context (see Section 4.1.5). Therefore, Fugu's TLB registers

the currently running Context Identification (CID). Every time a tag is written to a TLB

element, this CID is automatically appended. For a cache line to hit during translation,

the tags and the associated CIDs must be independently equal.

This procedure allows translations for multiple groups to coexist in the TLB. In

other words, TLB entries do not have to be invalidated when the context switches.

Because the TLB does not have access to the currently running CID, however, the

supervisor must update this register on every switch (see Appendix 1.1). Fortunately,

updating the CID register is much less expensive than invalidating all TLB entries,

especially if some TLB entries are utilized after their contexts have been swapped back

in.

3.1.3 Protection and Faults

In a multiuser machine, protections are a key part of system stability. For example,

some addresses should be marked as only assessable to the supervisor. For performance



optimization, the TLB actually performs these protection checks in parallel with translation.

The TLB maintains four protection bits for every entry. Collectively called DGPP,

they define the full access control for the address. The D bit actually has a second

purpose: it is the "DMA-able" bit and indicates whether DMA operations may be performed

on an address. The G bit is named the "Global" bit for historical reasons. The PP bits

form the Protection field, although all four bits really combine for this purpose. Table 2

lists all possible access combinations.

To make use of the information presented in Table 2, the TLB must know whether

the current operation is a read or write, at user or supervisor level, or for DMA. This

knowledge, combined with the four protection bits, combinationally produces a three bit

fault code. The possible input combinations are listed in Table 3 and the possible fault

codes are listed in Table 4. Note that the fault generation logic produces the three bit

Table 2: The access permitted for each combination of the

DGPP bits. RO means read only and R/W indicates both read

and write access. DMA transactions require the D bit to be set.

D=0 D=I

G P P user super user super

0 0 0 invalid - RO

0 0 1 RO RO RO RO

0 1 0 RO R/W RO R/W

0 1 1 R/W R/W R/W R/W

1 0 0 invalid - RO

1 0 1 - RO - RO

1 1 0 - R/W - R/W

1 1 1 RO R/W RO R/W



Key: access proceeds
invalid fault
user fault
write Fault
DMA write fault
IMA read fault

Table 3: The faults associated with specific accesses and protections.

The bits stored in the TLB are specified horizontally while the

bits derived from the current operation are specified vertically.

sequence 111 when no fault is present. This allows a simple three input and gate to

produce the "no protection fault" signal.

Maintaining protection violations isn't quite as straightforward as one might think.

Because the Sparcle is a pipelined processor, many different faults are possible from all

instructions currently being processed. For example, one instruction might be writing to

a read only page while the next instruction attempts to read from a page which is not

currently loaded in the TLB. To maintain consistency with the order of faults serviced,

EMA: D = 0 D= 1
Global: G=0 G= G=0 G = 1

PP= 0011 0011 0011 0011
0101 0101 0101 0101

s read: I--- I---
u write: IW-- IW-- WW-- WW--
p IMA-r: ICCC ICCC

IMA-w: IAAA IAAA AA-- AA--
u read: I--- IUU- U--- UUU-
s write: IWW- IUUU UWW- UUUU
e IEMA-r: ICCC IUUC U - - - UUU-
r EMA-w: IAAA IUUU UAA- UUUU



Table 4: The fault codes.

the TLB only maintains the first fault seen after the last probe for faults. Additionally,

whenever the TLB is probed for a fault code, it clears the stored fault code. This

procedure allows the kernel to more easily differentiate between TLB related faults and

other unrelated faults.

The TLB actually causes a trap by forcing the CMMU to cause a trap. The TLB

emits a physical address with the four high order bits set to the hexadecimal value Oxl,

which maps to shared memory on nonexistent processors. These addresses causes the

CMMU to trap the Sparcle. Kernel code can then probe for the cause of the trap (see

Appendix 1.6).

3.1.4 Interconnecting The TLB, The Sparcle, and The CMMU

The Sparcle instruction set provides an 8 bit Alternate Space Identifier (ASI) with

every address. In Fugu, these ASIs have many uses, such as distinguishing between

supervisor and user accesses. The TLB makes use of several ASI's for its own internal

operations. As presented in Section 3.1.1, the TLB also has the ability to change the ASI

on its way to the CMMU. From the above discussion, it follows that the TLB must

Code Fault

0 Refill

1 Invalid

2 Write Fault

3 User Fault

4 DMA Write Fault

5 DMA Read Fault

6 Undefined

7 No Fault



receive the virtual address and ASI buses from the Sparcle and provide the physical

address and ASI buses to the CMMU. For protection operations, the TLB also makes use

of two Sparcle signals: one which specifies a read operation and one which specifies a

supervisor operation.

UCU operations (discussed in Section 3.4) involve complex interplay between the

Sparcle, the UCU, and the CMMU. While the purpose of these signals is discussed in

Section 4.4, it is noted here that the UCU also makes use of the following signals: The

Sparcle's supervisor bit as an input, the CMMU's supervisor bit as an output, the CMMU's

sigoe signal as an input, the CMMU's regAck signal as an input, and the CMMU's

regHold signal as an output. Essentially, these signals combine to provide a sophisticated

handshaking scheme between the three chips.

3.2 The GID Check

3.2.1 Background

For complete user isolation, messages as well as memory references must be

protected. As one might expect, there are many ways to accomplish this goal. For

example, the kernel could be trusted to check the destination of all messages and then

ensure the correct distribution of these messages. Unfortunately, this method requires a

lot of overhead. Unless the supervisor is currently running, there are a minimum of two

context switches to implement this solution: one to load the kernel and then one to load

the receiving process. Furthermore, the kernel might have to buffer the message, which

requires copying the message at least twice before it is received.

Alewife was designed to avoid this overhead by allowing the user process direct

access to the network hardware. Although extra precautions must be taken to ensure

forward progress under this scheme, it is clear that this method will increase performance



dramatically under the optimal case, when the receiving process is running and ready to

receive. Fortunately, it has been determined that the optimal case is also the usual case

[5]. Therefore, this method increases performance dramatically.

Unfortunately, maintaining protection under this situation is difficult. The network

hardware must ensure that the proper process is running before beginning delivery.

Furthermore, unless sufficient network buffer space is preset, there must be some mechanism

for buffering the network data when the incorrect process is running. If the message is

allowed to stay in the network for too long, the network might fill up and block.

3.2.2 Operation of The GID Check

The GID check supports these two necessary mechanisms, delivery protection and

network saturation protection, by imitating the network hardware's message polling

protocols. In Alewife, polling for a message is accomplished by reading from a memory

mapped address. If a message is present, the CMMU will return the message header and

set Alewife's full bit. If no message is present, the data returned is undefined and the full

bit is cleared.

With this protocol in place, the GID check simply snoops for a load of this

memory mapped location. After a load of this location has been detected, the full bit is

checked. If the full bit is low, then the GID check passes all signals unaltered. Similarly,

the virtual supervisor bit is checked. If the Sparcle is currently in supervisor mode, then

all signals are passed unaltered. The remaining case, of course, is a message waiting

during a user load. In this case, the GID check verifies that the destination GID included

in the header matches the currently loaded GID in the UCU's GID register. If the GID

matches, then all signals are again passed unaltered; the protection check has passed.

However, if the GID does not match, the GID check forces the full bit clear, causing the

polling process to continue as if no message has arrived. Additionally, the GID check



interrupts the Sparcle and the CMMU via the external interrupt signal. This causes a

special kernel handler to be run which properly empties the message into a buffer.

The performance benefit of this procedure is clear if the destination GIDs are

usually running when their messages arrive. Fortunately, it has been determined that this

is the common case. The expensive kernel control described above is rare, and thus there

is a great performance benefit realized by adding the hardware GID check.

3.3 The Secondary Network

The secondary network provides a low bandwidth backup for the main system

network. The motivation and implementation of the secondary network are discussed in

[3]. Section 4.3 describes the programming interface for the secondary network.

3.4 The Unified Programming Interface

For proper UCU functionality, many registers must be updated. For example, the

virtual tags and physical translations must be written to the TLB's memory. Similarly,

when TLB related faults occur, the kernel must be able to find the cause by probing the

TLB. For these and other functions, the UCU has its own instruction set. All instructions

are specified by special ASIs, which are listed in Table 5. Note that the last four instructions

are for the secondary network. These instructions, as well as a couple listed instructions

which have side effects for the GID check, are fully described in Appendix 1.

Interestingly, the programming interface for all three UCU modules is unified.

All UCU operations are accessed via "colored" Sparcle loads and stores. A "colored"

load or store is one which has a special Alternate Space Identifier (ASI). These special

ASI's are recognized by the UCU bus interface and cause a special sequence of events

(see section 3.5).



Due to the unified nature of the programming interface, it is convenient to place

its logic in one module. Doing so makes sense from a design point of view because it

eliminates redundant logic. Furthermore, distributing control among all modules reduces

performance because multiplexers are required at the outputs. Because a relatively slow

technology is being used to implement the UCU, any extra performance gain is welcomed.

3.5 The Bus Interface: The XROM Space

The UCU bus interface is quite simple during a normal translation operation. The

virtual address bus is an input to the UCU, and the physical address translation is an

output. The offset bits are unchanged by the UCU, and as such, are bypassed on the

printed circuit board.

UCU loads and stores, however, are slightly more complicated. As mentioned- in

section 3.4, the UCU recognizes these operations by special ASIs, which are listed in

Table 5. When a special ASI is spotted, the UCU must make sure that only it and the

Sparcle have control of the address and data buses. If the CMMU or cache still had

control, for example, contention would result. Furthermore, to simplify the logic necessary

for the UCU's bus interface, it would be convenient if UCU operations progressed with

an uninterruptible sequence of cycles. Because of the possibility of cache misses and

remote message arrivals, this type of atomic sequence of cycles is extremely hard to

guarantee.

Fortunately, the CMMU has an interface for handling this type of situation. Namely,

an external memory (XROM) access causes the CMMU to finish all outstanding transactions

and then ready for an atomic sequence. Any other unexpected and possibly asynchronous

events are queued until the XROM access is over. The UCU makes extensive use of the

XROM space to greatly simplify its bus interface.

20



Table 5: The TLB instructions.

4 Implementation

Although all three main sections of the UCU have been developed separately,

there are a few underlying similarities. For example, the bus interface, which is discussed

in Sections 3.5 and 4.4, is unified. Additionally, all components of the UCU have been

written in Verilog. The Verilog code is merged together and compiled for a single FPGA

(see Section 5).

Specifically, the UCU is implemented with a Xilinx 4025 for a few reasons. 1)

The 4025 supports distributed placement of SRAM, which is important for the TLB. 2)

The 4025 is deemed to be one of few FPGAs currently on the market which is large

enough to fit the UCU. The 4025 has both sufficient gate count and sufficient SRAM

capacity. 3) Xilinx continues to evolve this series of FPGAs. Bigger and faster 4000

series chips will be available in the future, potentially enabling much larger and faster

TLBs and higher bandwidth secondary networks.

ASI Command Name Mode

0x50 TLB Control r/w

0x51 Element Data r/w

0x52 Element Tag r

0x53 Element Random w

OxD4 Probe r

OxD5 DMA Read r

OxD6 DMA Write r

0x58 Snet Output r/w

0x59 Snet Input r

Ox5A Snet Machine Info r/w

Ox5C Snet Status/Command r/w



4.1 The TLB

In this section, we examine the design of Fugu's TLB. Some design parameters,

such as the 32 bit virtual and physical address spaces, have been imposed by the Alewife

architecture. Other parameters have been tuned to meet the needs of Fugu.

Section 4.1.1 describes the overall organization of the TLB. Section 4.1.2 details

a generic translation path commonly used for a single column of a TLB while the

remaining sections examine the extensions and enhancements used for Fugu. The parameters

of the TLB are summarized in Table 6.

Table 6: The TLB column organization.

4.1.1 The Overall TLB Architecture

The overall architecture of the TLB is shown in Figure 4. During normal operating

modes, the translation path is active. It is purely combinational, which is necessary due

to the timing constraints of the Sparcle processor. Sparcle emits a valid virtual address

before the positive edge of the clock. The virtual to physical address translation must

also be complete before the same positive edge of the clock.

During translation, the memory cells are controlled by the inputs from the Sparcle.

However, when a special TLB operation is recognized (see Appendix 1) by the "Op

Logic" shown in Figure 4, a state machine assumes control of the memory cells. This

Virtual Address Size 32 bits

Physical Address Size 32 bits

Page Size 4 kilobytes

TLB Organization 4-Way, Set Associative

Entries Per Column 32

Total TLB Entries 128



state machine is depicted by the Read/Write logic in Figure 4, and it ensures correct

completion of the requested function, while maintaining the correct bus interface. The

UCU's unified bus interface overlaps with this block.

The TLB has been implemented in the Verilog hardware description language.

This code implements the functionality discussed previously and developed in the following

sections in a straight forward manner with one exception: the SRAM, which uses hard

macros. The macros are termed hard macros because they are defined in Xilinx's proprietary

XNF format and not in the Verilog language. The Xilinx program memgen is used to

generate these macros. It is believed that memgen generates efficient SRAM with respect

to both time and space.

Virt. Adc
From Sp,

Controls
From
Sparcle

Data To
and Fron
Sparcle

Figure 4: Overall TLB organization.

4.1.2 A Generic TLB Translation Architecture

Figure 5 shows a generic translation architecture for a single set of a basic multiple

set associative TLB. Although Fugu's TLB extends this architecture, it is presented first

for clarity. Fugu's enhancements are discussed in Sections 4.1.3 through 4.1.6.



The set shown in Figure 5 contains two equally deep sections of memory. One

section stores the tag, which is used to determine the contents of the TLB's entries. The

second memory section contains the physical address translation.

The low order bits of the Virtual Page Number (VPN) are used to index into both

sections of memory. The number of bits used is determined by the depth of the sections

of memory; in the current implementation of Fugu's TLB, the memories have 32 entries,

and thus the 5 low order bits of the VPN are used for the index. For the determination of

the depth of the memory cells, see Section 4.1.3.

A Single Column of a Basic TLB

VPN[4:0]

DDR Bus

Figure 5: A basic TLB organization. The memory cells

are equally deep and in this case equally wide.



The tag is formed by the high order bits of the virtual page number (see Section

4.1.4 for the determination of the page size, and thus the amount of bits remaining for the

VPN). Specifically, the tag bits must uniquely specify which virtual page number resides

in the TLB. Because the 5 low order bits of the VPN are already specified by which

memory locations the TLB accesses, only the remaining 15 high order bits of the virtual

page number must be stored in the tag section of the memory.

When a virtual address is presented to the TLB, the memories indexed by the low

order bits of the VPN are examined. The contents of the tag sections of each set are then

simultaneously compared to the top 15 bits of the supplied virtual page number. If the

contents of the tag memory from any of the sets equals the supplied VPN, that set has a

TLB hit. The translation stored in the Physical Page Number (PPN) memory of that set is

placed on the outgoing address bus. If no set hits, a TLB refill trap is placed on the

address bus (see section 3.1.3). It is up to the refill code of the supervisor to ensure that

identical tags are not placed in more than one set.

4.1.3 Depth of the Memory Sets

Xilinx SRAM cells are packed efficiently only when they store a multiple of 16

bits. Any other storage size will cause wasted Combinational Lookup Blocks (CLBs),

the basic logic generators in the Xilinx architecture. Because the CLBs are in limited

supply, they should not be wasted. Since the width of the memory cells of the TLB are

not multiples of 16 bits, the memories are made 32 entries deep. This depth allows

efficient memory packing no matter how wide the SRAM cells are. Of course, the sets

could just as easily be made 48 entries deep without any loss of CLB utilization. Section

4.1.5 will show that this depth is undesirable because the extra SRAM could be better

utilized in a more highly associative cache. Furthermore, a depth of 16 is undesirable

because of the extra bussing required for the extra sets of memory present.



4.1.4 Page Size

A virtual address actually contains two portions: a virtual page number and an

offset. To exploit the spacial locality of program references, thereby reducing the amount

of memory swapping necessary, virtual memory is actually swapped in contiguous chunks

of address space called a page. The offset portion of the virtual address specifies an

index into a virtual page, which is specified by the VPN.

When virtualizing memory, an important question is how large to make the pages.

A large page could reduce the amount of page swapping necessary. The larger the page,

however, the larger the penalty incurred upon swapping, especially if the page resides on

a remote node. A page size of 4k (12 bits) is chosen for Fugu because it is a nice balance

between these two constraints. Interestingly, it is on the small side of the page sizes

commonly used for distributed shared memory machines.

Because the TLB only needs to translate the virtual page numbers and not the

offsets within the page, the TLB is only concerned with translating the top 20 bits of the

32 bit virtual address. During ordinary translation operations, the bottom 12 bits simply

pass through the TLB. Alternatively, as implemented with Fugu, the offset bits could be

bypassed on the printed circuit board.

4.1.5 Associativity

Another important design consideration is the associativity of the TLB. For a

given amount of memory, the TLB could either be deeper (more entries per set) or more

associative (more sets). The deeper cache works well in a single context situation.

Unfortunately, when the context switches, most memory references will have to be reloaded

into the cache. It is important to remember that to simplify process launching, most of

the processes will be running in the same general ranges of virtual address space. Thus,



if every process needs to access the contents of their virtual memory location 100, every

context switch should cause a miss and reload of location 100. Very commonly, TLBs

invalidate every entry when switching contexts. This prevents the TLB from computing

improper translations. Fugu's TLB, on the other hand, keeps track of which context a

valid tag belongs to (see Section 3.1.2). This prevents the TLB from having to invalidate

every entry upon every context switch.

Even though Fugu's TLB entries need not be invalidated upon every context

switch, there is another problem. The general TLB translation architecture presented in

Section 4.1.1 only provides as many spots for any given virtual address as there are sets

in the TLB. These spots must be shared among all processes requiring the same and

other potentially overlapping addresses. (Addresses overlap spots in the TLB when the

bottom five bits of their VPNs are equal.) Thus, processes running in the same virtual

address ranges will tend to overwrite other processes' TLB entries. If this entry elimination

occurs at every context switch, performance is not much better than that seen if every

TLB entry is invalidated upon every context switch.

An approach around this second multiple context problem is to index the cache

not just by the lower bits of the VPN, but also by the context ID. In general, there are

many hashing functions which could be used to compute the index. In Fugu, the entries

are indexed by the lower 5 bits of the VPN logically XORed with the lower 5 bits of the

CID. The XOR function was chosen because of its simplicity and its effect of locating

the same VPN from adjacent groups on as many different cache lines as possible.

While indexing the cache as described does tend to move different processes'

addresses onto different cache lines, it still does not solve the cache line collision problem.

Quite simply, increasing the associativity of the cache reduces this problem. The other

problems presented in this section are also reduced as the associativity of the TLB rises.

Unfortunately, the Xilinx architecture limits the amount of associativity which can be

utilized efficiently. As discussed in section 4.1.3, it is undesirable to lower the depth of



the sets below 16 entries, which limits the amount of associativity available. In fact, the

degree of associativity chosen is equal to the number of sets which are believed to fit in

the Xilinx 4025 using 32 entry sets.

4.1.6 Putting It All Together: The TLB's Translation Path

Figure 6 shows the overall translation path of the Fugu TLB. While it shows only

a single set of the TLB, it depicts most of the functionality presented to this point,

including the CID section of the tag memory, the protection bits, and the fault generation

logic.

4.2 The GID Check

Section 3.2 describes the functionality of the GID check. This section clearly

defines the implementation of the GID and then shows an example of the GID check.

4.2.1 Definition of The GID

Before discussing the implementation of the GID check, a few key terms must be

clearly defined in terms of the UCU's implementation. The Context ID, or the CID, is an

ID for all processes local to a node. All unique virtual address spaces have a unique CID.

If local processes share the same CID, then they are operating in the same virtual address

space. The Group ID, or the GID, however, is assigned to distributed processes. In other

words, processes with an assigned GID are operating within the same virtual address

space on more than one node.

Fugu's CIDs are 8 bits wide, which permits 256 unique, local, virtual address

spaces. Due to message header constraints, however, Fugu's GIDs are limited to 7 bits,
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Figure 6: The overall translation path of the Fugu TLB.

This figure depicts one set of a multi-set TLB.

which allows for 128 unique, distributed processes. By definition, these distributed

processes should reside in their own virtual address spaces. Although it might be necessary

to allow for more than 128 global process IDs, it is hypothesized that 128 unique local



processes per node is sufficient for Fugu.

Therefore, to reduce complexity, both the CID and the GID actually share the

same register in the UCU. The GID is defined as the lower 7 bits of the CID register.

Further, a CID with the high order bit set is defined to be a local process while a CID

with the high order bit cleared is defined to be a GID whose GID is equal to the lower 7

bits of the CID register.

4.2.2 An Example of The GID Check

Figure 7 shows the GID check in action. It is the output of test vectors applied

from a Verilog test program. The first trace is the clock signal upon which all synchronous

logic is generated. The second trace is the state of the testing machine. The remaining

traces are, in order, the virtual address bus (aBusIn), the physical address bus (aBusOut),

the virtual ASI bus (asiln), the physical ASI bus (asiOut), bits 17 through 23 of the data

bus ([23:17]), the virtual supervisor bit (suln), the full bit from the CMMU (cccOin), the

full bit emitted to the Sparcle (cccOout), the GID (GID), and finally, the IRQ request

from the GID hardware (gidIrq). Bits 17 through 23 of the data bus contain the destination

GID when a message header is read. To reduce Figure 7 to the interesting parts of the

GID check, the reset states are not shown. Furthermore, the TLB is enabled and the CID

is set to 0x04, which is not shown.

A GID check begins in State 6. In this state, the special ASI OxcO is presented

with the special offset address of 0x080. The GID Check recognizes this address and will

be watching the data bus, the supervisor bit, and the full bit on the next cycle. If the full

bit is not set, then there is no message waiting, and the GID check does nothing. Similarly,

if the supervisor bit is high, then the kernel is currently running, and all messages are

deliverable. Hence, the GID alters nothing.

As can be seen in state 7, the supervisor bit is not set while the full bit is set.
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Therefore, a message is waiting during a user level probe. For this reason, the GID check

matches the GID in the destination field of the data bus (bits 17 through 23) with the

lower 7 bits of the CID register. In this case, the GID matches, and so the GID Check

passes all signals unchanged. This determination is done combinationally, which causes

the full bit that the GID Check outputs to the Sparcle to be undefined while the data bus

is undefined. This period of uncertainty poses no problems because the full bit from the

CMMU is also undefined at this time.

State 8 shows another message header probe. This operation looks identical to

that shown in state 6. However, in state 9, it can be seen that the GID returned by the

CMMU does not match the GID stored in the UCU. Because of the mismatch, the GID

check combinationally forces the full bit (cccOout) to 0. In order to meet the timing

model for the upcoming branch on full instruction, the UCU actually holds the full bit in

the empty state through an additional positive edge. With this procedure complete, it will

appear to the running process that no message is waiting in the network buffers.

Although the GID check has now successfully protected the message interface,

the kernel should be made aware of the waiting message so that it can free the network

resources. Therefore, at the positive edge following the realization of the mismatch, the

GID check asserts its IRQ request line. The IRQ will cause an external interrupt, which

will force a kernel handler to be run. Although the kernel should free the message from

the network hardware at this point, there are many other additional actions which the

kernel might take.

4.3 The Secondary Network

The implementation of the secondary network is described in [3]. However, in

this section, we make note of a few implementation details about the secondary network

bus interface.



As discussed in Section 3.4, the UCU interface has been unified into a single

module. Therefore, many of the secondary network registers are actually maintained

within the bus interface. These registers are read and written exactly as any other UCU

register would be.

However, there are some registers, such as the input and output buffers, which are

located in the secondary network module. With these registers, there is the unfortunate

possibility of usage contention between the UCU interface and the secondary network

itself. To avoid this problem, there is a handshaking scheme in which data read from the

secondary network is presented on the second positive edge following the request. In

order for this to work, the UCU must assert regHold to stall the XROM read operation

one cycle. For secondary network writes, however, the handshaking scheme does not

create any problems; these write operations proceed exactly as they would for the TLB's

registers.

4.4 The UCU Bus Interface: The XROM Space

As discussed in Section 3.5, the UCU makes extensive use of the CMMU's

XROM space in order to simplify bus operations. This section describes the implementation

of the XROM space. Section 4.5 will show examples of the usage of the XROM space.

Much like most other CMMU operations, the XROM space is a supervisor level,

memory mapped access. It is defined to be addresses with the 4 high order bits set to

0x6. To ensure that the XROM access occurs at supervisor level, the supervisor bit must

be set during the cycle following the positive edge that the address is valid. The Sparcle

defines this placement of the supervisor bit, which the CMMU and UCU must honor.

Furthermore, a supervisor ASI must be emitted along with the XROM address.

Although perhaps counterintuitive, setting the supervisor bit is not sufficient to define a

supervisor access because roughly half of the ASIs are defined at user level. Any of the



remaining ASIs, which, of course, are defined at supervisor level, should work. Therefore,

the UCU uses the supervisor ASI OxOb during bus operations.

To summarize this discussion, the UCU does three things when a special ASI is

detected. First, it combinationally emits a physical address with the 4 high order bits set

to 0x6. Second, it combinationally sets the ASI to OxOb. Third and finally, it ensures that

the supervisor bit is high during the next cycle.

Upon completion of this procedure, the CMMU will log the XROM request. An

indeterminate number of cycles later, the CMMU will grant the XROM request by raising

the regAck signal. In the common case, regAck will be raised during the same cycle as

the XROM request has been made. There are many situations, such as cache refills,

which could delay the start of the XROM operation any number of cycles.

Once regAck is raised, only one of two possible sequences of cycles is run next.

A read operation will result in one sequence of events while a write operation will result

in the other. Both of these sequences begin the first positive edge that regAck is high. It

is important to reiterate that nothing, including external interrupts, can stall either of these

sequences once they have begun.

If the operation is a write, then the data to be written to the UCU comes from the

Sparcle and will be valid surrounding the next positive edge of the clock. With no UCU

intervention, the next address to be translated will be presented before the next positive

edge following the appearance of the data.

Because of setup and hold time constraints, this brief presentation of the data may

not be long enough for proper handing within the UCU. Therefore, under certain

circumstances, the UCU raises another CMMU signal called regHold which will extend

the write cycle. RegHold is raised just following the positive edge in which the data is

presented and must be held high throughout the remainder of the cycle. After the UCU

lowers regHold, the data from the Sparcle will become invalid. Furthermore, the address

of the next operation will be emitted before the next positive edge. Of course, the UCU



must properly handle this address.

Read operations function similarly to writes. The UCU provides the requested

information on the positive edge following the positive edge in which regAck has gone

high. To ensure that the UCU meets the setup and hold times of the Sparcle, the UCU

actually emits the data from the previous negative edge until the following negative edge.

This procedure is allowable because the CMMU has ensured that there is no other bus

driver during either of these two cycles. They are reserved as the so called "bus turn

around" cycles.

As with writes, the UCU can stall the read process by asserting regHold. Again,

regHold must be asserted just past the positive edge in which the data was to be presented

to the Sparcle. Assertion of regHold must continue throughout the rest of the cycle. The

UCU then drops regHold just past the positive edge in which it has written the data. At

this point, the operation will complete as if regHold had not been raised. In other words,

before the arrival of the next positive edge, the Sparcle will emit the address of the next

operation.

4.5 An Example of The UCU Bus Interface

The UCU bus interface is similar for all UCU reads, as is the interface for all

UCU writes. This section discusses one such UCU read, one such UCU write, a typical

translation operation, and a TLB fault. The specifics of all UCU instructions are discussed

in Appendix 1. Furthermore, the XROM interface used for UCU reads and writes is

described in Section 4.4.

Figure 8 shows the signals used to interface between the Sparcle, CMMU, and

UCU. In these traces, the Sparcle and CMMU are simulated by a testing state machine

written in Verilog. The first trace is the clock whose edges are used to synthesize all

synchronous logic. The second trace shows the state of this simulator. The remaining



traces, in order, are the virtual address bus (aBusIn), the physical address bus (aBusOut),

the virtual ASI (asiln), the physical ASI (asiOut), regAck, regHold, readProc (high if the

current operation is a read), the virtual supervisor bit (suln), the physical supervisor bit

(suOut), and finally, the data bus (dBus).

In order to eliminate the uninteresting states of the simulation shown in Figure 8,

a few important cycles have been left out. Namely, the missing states reset the UCU,

enable the TLB, and set the current CID to 4. Clearly, these instructions are necessary

for the correct functionality of what follows.

An Element Data Write command begins in state 6. The UCU recognizes this

operation by it's special ASI, 0x51. Combinationally, the UCU emits a physical address

with the 4 high order bits set to 0x6 and an ASI of OxOb. Furthermore, the UCU ensures

that the supervisor bit (suOut) is high during the next cycle. This procedure imitates the

external memory (XROM) space of the CMMU, which is discussed in Section 4.4.

Shortly after the CMMU latches the XROM request at the positive edge of the clock, the

CMMU marks the beginning of the XROM access by raising the regAck signal. The

UCU notes this information at the first positive edge of the clock in which regAck is

high.

The UCU expects the store data to be valid at the following positive edge. Because

this data is being written into Xilinx memory cells, the Xilinx setup and hold times must

be met. In order to meet these requirements, the UCU asserts regHold for three cycles,

which will keep the data valid for the same three cycles. The first cycle is used to meet

the setup time while the second cycle is used to write the data. Finally, the third cycle is

used to ensure that the hold time is met. As can bee seen in Appendix 1.2, the data

written is a physical page number translation of OxI lIa for virtual page number Ox100.

Furthermore, the protection bits (DGPP) are set to Oxb.

Next, at state 8, the correct translation of virtual page number Ox 100 is seen. The

physical page number Oxl 1 la is sent to the CMMU via the physical address bus aBusOut.



Figure 8: A TLB write, translate, and read operation. The waves shown are those

used to interface between the Sparcle, CMMU, and TLB.
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The offset bits, in this case 0x120, are passed unchanged.

Beginning at state 9, the test code probes for the previously written translation via

a Probe Read command (see Appendix 1.6). As can be seen in Figure 8, the XROM

interface is imitated exactly as before. Again, the UCU waits for the next positive edge

during which regAck is raised. Once this condition is met, the UCU must provide the

necessary data bus data on the following positive edge. To ensure that the data is valid

long enough surrounding the edge to meet all setup and hold times, the UCU actually

provides the data all the way from the previous negative edge to the following negative

edge. Because this procedure is extremely conservative, it guarantees that the setup and

hold times are met.

Interestingly, the Sparcle presents the virtual address of the next operation during

the same positive edge that the UCU places data on the data bus. Although it may seem

that this sequence forces the TLB to be translating while presenting data bus data, the

address is actually nullified by the Sparcle. Therefore, it does not matter what physical

address is emitted during this cycle.

State 12 presents the final type of "normal" UCU operation, a fault. During this

cycle, the virtual page number 0x200 is presented to the TLB. This VPN has not been

loaded in the UCU and therefore causes a TLB Refill Fault. The UCU causes all faults

by combinationally supplying a physical address with the 4 high order bits set to Oxl.

The CMMU will then cause a kernel handler to be run. This handler probes the UCU to

learn cause of the fault (see Appendix 1.1).

5 Methodology

Figure 9 shows the design methodology used for the UCU. Various representations

of the UCU are boxed while the tools necessary to generate these representations are

circled. As can be seen in the right hand column of Figure 9, the design flow begins with



Design Flow

Figure 9: The design methodology used for the UCU. Representations of the UCU are

shown boxed while tools used to generate these representations are shown encircled.

the Verilog description of the UCU and ends with the Xilinx implementation.

Unfortunately, the only way to test the Xilinx implementation is to run it on a

Fugu node board. No simulator is capable of testing all of Fugu's chips in their intended



technology representations. This desired but unavailable simulator is called the "Ideal

simulator" in Figure 9.

Because Fugu node boards have not yet been built, the UCU has been tested in

two alternative representations: the original Verilog representation and an LSI gate level

representation. These tests form the remainder of Figure 9 and will be discussed in the

sections that follow. However, the design flow for the intended Xilinx representation is

described first.

5.1 Compiling the UCU for Xilinx

The design flow for the Xilinx implementation of the UCU is shown in the right

hand column of Figure 9. First, the Verilog code is compiled to Xilinx gates with

Synopsys. The output of Synopsys is run through XACT, which includes Xilinx's automatic

place and route tool, called ppr. Before ppr can be run, however, the design is floor

planned. Specifically, the memory cells in the TLB are placed in a logical structure so

that ppr will properly recognize and implement buses. The output of XACT is a bit

stream which can be downloaded directly onto the 4025 via the XChecker cable, another

Xilinx tool.

5.2 Verilog Testing

An obvious method to debug the UCU is to simulate the source file. Therefore,

the UCU has been tested for functionality at the Verilog level. Test vectors were created

to verify all functional operations of the UCU. Figure 7 and Figure 8 are examples of

such test vectors. Through this testing process, all known behavioral bugs have been

eliminated.

The Verilog testing actually implements slightly more of the UCU with Verilog



than will actually be used. To efficiently pack memory onto the Xilinx array, Xilinx hard

macros are utilized. These hard macros have no Verilog model, and therefore cannot be

simulated. Thus, a Verilog model of these hard macros has been created. Care was taken

to match the data book description of the macros as closely as possible. For this reason,

substituting the models should not cause any problems.

5.3 Node Level Testing

The Verilog simulation discussed in Section 5.2 essentially tests the UCU in

isolation. No accurate Verilog models exist for the UCU or for the Sparcle. Hence, they

have been approximated in these tests. The next logical step, of course, is simulation

with better models for all surrounding chips. To accomplish this goal, there are a few

options. The most obvious choices are to write better Verilog models for the rest of the

node or to utilize the gate level simulator already present for Alewife.

Neither of these options is straightforward to implement. It would be a complicated

task to rewrite the CMMU and Sparcle in Verilog. This process is prone to errors and

therefore would have marginal success, at best. For this reason, it is desirable to utilize

the existing gate level simulator of Alewife. If the UCU could be plugged in somehow, a

reliable simulation should result.

Unfortunately, the Alewife simulator, called NWO, has no facility for adding

Verilog modules. It can only utilize Behavioral Syntax Language (BSL) modules or LSI

100k gate level modules. Rewriting the UCU in BSL has the same problems as rewriting

the CMMU in Verilog; this process would be error prone because it is not automatic.

However, Synopsys automates Verilog to LSI 100k translation, much as it automates

Verilog to Xilinx translation. Therefore, Synopsys is used to target the UCU to the LSI

100k series gate arrays. The only translation which cannot be automated is that of the

Xilinx memory macros. For simulation of these macros, BSL modules are written and



substituted. Clearly, testing the UCU at the gate level is desirable because it is a step

closer to testing the intended Xilinx implementation (see Figure 9).

Once the LSI translation has taken place, the UCU is plugged into NWO, and

Sparcle assembly test vectors are written. The Sparcle test code used is quite extensive

and tests as much of the functionality of the UCU as possible. Furthermore, the code is

self-checking and will display error messages when failures are detected.

Throughout this testing process, many more bugs were found. Most of these bugs

involved the specific timing constraints of the bus interface, which could not be tested

accurately in the Verilog simulation. Furthermore, there were a few bugs involving

instances during which the CMMU spontaneously takes control of the buses. These cases

could not be foreseen during the Verilog testing. Regardless of the nature of the bugs

found, all that are known have been eliminated.

5.4 Untestable Issues

Unfortunately, successful testing at the Verilog and NWO levels does not ensure

correct operation on the 4025. There are many reasons for this unfortunate consequence.

The primary concern is the Xilinx memory macro which could not be tested at either

level. While the functionality of these macros is specified by the Xilinx manual, it was

empirically found that the real world performance of a relative of the 4025, the 4005, was

not always equivalent to that predicted by the manual. Because we cannot yet test on a

4025, it is unknown how the SRAM macros will perform for Fugu.

Furthermore, timing is extremely variable on Xilinx FPGAs. There are significant

delays incurred by the CLBs and the routing mechanisms on the chip. Every time the

design is routed with ppr, it is routed differently. This uncertainty leads to unpredictable

timing, which usually poses little problem, except for the SRAM macros and for the

tri-state buses. Fugu attempts to fix the SRAM setup and hold time problem by being



extremely conservative during write operations. Additionally, to lessen the chances of

glitches on the write enable signals, they are taken directly from flip-flop outputs. Fugu

eases the tri-state bus problem by only enabling tri-state buses during the second half of

the clock. The tri-state enable signals are allowed to settle during the first half of the

clock, thereby lessening the chances of contention during the second half of the clock.

Of course, this process reduces performance because the second half of the clock is

mostly wasted. Due to the size of the buses involved, it is impractical to use multiplexors

instead.

6 Performance

Although the UCU cannot yet be tested on its intended target, the Xilinx 4025,

much effort has been spent on predicting its performance once downloaded onto a 4025.

Many smaller versions of the UCU were tested on a smaller relative of the 4025, the 4005

[6]. These studies predicted that the translation path propagation delay of the UCU

would be between 155.5 and 186.6 ns when running on a 4025 with Xilinx speed grade

-4. Shortly, it will be seen that this prediction was extremely accurate, even though direct

comparison is difficult.

6.1 Methodology of The Past Prediction

The performance prediction discussed in [61 was made by comparing the real

world performance of 4005 circuits with that predicted by XDelay, Xilinx's timing analysis

tool. These comparisons showed that XDelay was conservative in its estimates, and that

the real world performance was about two thirds of XDelay's predictions. To arrive at

the prediction for the UCU's propagation delay, this two thirds correction factor was

applied to XDelay's calculations of the UCU's delays when placed and routed on the



4025.

While this procedure seems like a reasonable approximation, there is a fundamental

problem with applying the same correction factor to the most recent routs of the UCU.

Namely, XDelay has gone through a major revision since these predictions were made. It

is no longer known whether the two thirds correction factor applies. In fact, it may be

that the only applicable correction factor is now 1. Because of this uncertainty, XDelay's

current measurements must be modified cautiously.

Another development which may invalidate the previous prediction is a basic

architecture change. Significant translation path modifications have been made since

those measurements were made. Although not directly related to the translation path

propagation delay, the bus interface and its underlying circuitry has also been changed.

In fact, the bus interface has been completely overhauled. Furthermore, the measurements

were made without the presence of the secondary network or the GID check. Although

these modules do not directly add to the logic delays in the translation path, they do add

to the routing delay by constraining the logic placement. As expected with most modern

CMOS processes, the routing delay is a considerable portion of the overall delay. Because

of these architectural differences, identical circuits are not being compared when the

performance numbers are analyzed.

6.2 The UCU's Translation Path Performance

With the caveats discussed in Section 6.1 in mind, we may now proceed to

compare the predicted performance results to the measurements of the UCU's performance.

XDelay reports that the UCU's translation path propagation delay is 174.4 ns when run

on a 4025 with a speed grade of -4. Without applying a correction factor, it is obvious

that the prediction was correct. Taking into account the two thirds correction factor, the

UCU's delay should be about 116.3 ns, which is well below the past prediction. Considering



the large architectural changes and the major revision that XDelay has undergone, the

accuracy of the prediction is surprising but extremely promising.

7 Conclusion

The UCU implementation discussed in this document is functional, and it will

meet the needs of Fugu. It provides reliable translation and protection and is easy for the

supervisor to manipulate. User isolation and thus multiuser support should follow easily

from the foundation built by the TLB and the GID check. Furthermore, the secondary

network's performance is adequate for its intended uses.

The propagation delay incurred is considered reasonable for an FPGA

implementation of this gate size. Additionally, the delay should suite the needs of Fugu.

It is expected to be roughly 175 nanoseconds, which could be dramatically lowered by

hand compiling and routing the design.
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Appendix 1
Programming Interface

For an overview of the UCU instructions specified here, see Section 3.4. Note

that during execution of all UCU instructions, the UCU is utilizing the CMMU's XROM

interface, thereby guaranteeing an atomic sequence of events. Additionally, for read

instructions, no assumptions should be made about the values returned in bit fields

specified as "don't care."

Appendix 1.1 TLB Control

The TLB Control instruction manipulates the TLB's control registers, which include

the enable, context, and fault registers. Figure 10 depicts the formatting for this readable

and writable command.

The enable field represents the current state of operation. When the enable bit is

clear, all addresses are untranslated. This field, which is readable and writable, is cleared

by the reset signal.

Addr bus data: ASI = 0x50
31 0

< Don't Care>

Data bus data:

31 12 11 4 3 2 0

VPN (20) CID (8)

Possible Faults:
None

Access Mode:
Supervisor
Read/Write

TLB Enable (1)

Fault Code (3)

Figure 10: TLB Control instruction formatting.



The Context ID field represents the current contents of the TLB's CID register.

The CID register is used as part of the tag for translation (see section 3.1.2). Additionally,

Group ID (GID) register is defined as the lower 7 bits of the CID register. This field is

both readable and writable.

The Fault Code and Virtual Page Number fields are read only and specify the

status of the last translation. After a TLB fault, they represent the resulting fault code and

the VPN which caused it. The fault codes are listed in Table 4. Assertion of the reset

signal causes the fault code to be set to all ones.

Appendix 1.2 Element Data

Addr bus data: ASI= 0x51
31 12 11 10 87 0

VPN (20) 1 IColumn (3)< Don't Car
Don't Care

Data bus data:

31 12 11 43 0

I PPN (20) <Unspecified> DGPP

Possible Faults:
None

Access Mode:
Supervisor
Read/Write

Figure 11: Element Data.

The Element Data command reads or writes a specific element in the TLB's

memory arrays. The format for the command is shown in Figure 11.

The column and VPN field combine to specify the TLB element to operate on.

Not surprisingly, the column field specifies the TLB column to read or write. The lower

five bits of the supplied VPN are logically XORed with the TLB's CID register. The

result specifies the row to operate on.



On a read, element data returns the PPN and access control bits stored in the

specified TLB element. On a write, the PPN, the access control bits, and the tag supplied

by the VPN are written to the specified TLB element. The CID associated with the

written element comes from the TLB's CID register.

Appendix 1.3 Element Tag

Element Tag reads the tag part of a specific element in the TLB. This read only

command is provided for completeness and testing only. Under normal operating conditions,

Element Data and Element Random are used to write to the TLB while the Probe command

is used to find a matching tag. Figure 12 depicts the formatting used for Element Tag.

The TLB column to operate on is specified by the column field of the virtual

address supplied. The row of the TLB to access is calculated by the logical XOR of the

lower five bits of the supplied VPN and the CID register. The VPN and CID associated

with the specified element are returned.

Addr bus data: ASI = 0x52
31 12 11 10 8 7 0

VPN (20) I Icolumn (3)< Don't Care
Don't Care 1

Data bus data:

31 12 11 43 0

I VPN (20) CID (8) I

Possible Faults:
None

Access Mode:
Supervisor Read

<Unspecified> I

Figure 12: Element Tag. The VPN on the Address bus is supplied

by the user while the TLB returns the VPN on the data bus.



Element Random

Element Random writes the VPN, PPN, and access control bits supplied to a

random column in the TLB. The formatting of this write only command is shown in

Figure 13.

The row written to is calculated by the logical XOR of the lower 5 bits of the

VPN supplied and the TLB's CID register. The contents of the CID register is written to

the CID portion of the tag.

Addr bus data: ASI = 0x53
31 1211 0

I VPN (20) < Don't Care>

Data bus data:

31 12 11 43 0

PPN (20) <Unspecified> I DGPP

Possible Faults:
None

Access Mode:
Supervisor Write

Figure 13: Element Random.

Appendix 1.5 Probe

The probe command looks up a VPN in the TLB. The formatting for this read

only command is shown in Figure 14.

The row examined is calculated by the logical XOR of the bottom five bits of the

VPN supplied and the TLB's CID register. If the supplied VPN results in no hit from any

column of the row specified, the hit field returns low and the remaining data returned is

unspecified. If there is a hit, the hit field returns high, and the PPN and protection bits

are returned. The column which contains the returned PPN is also returned.

Appendix 1.4



Addr bus data: ASI = OxD4
31 1211 0

I VPN (20) - < Don't Care>

Data bus data:

31 12 11 10 87 543 0

I PPN (20) 1I I IIDGPPI
<Unspecified>
Column(3)
<Unspecified>
Hit?

Possible Faults:
None

Access Mode:
Supervisor Read

Figure 14: Probe Command.

Appendix 1.6 DMA Read Probe

The DMA read probe allows the user to perform virtual to physical address

translations for addresses to be included as a DMA block in message send operations.

This command is provided as an optimization for the steps necessary to begin a DMA

read. The formatting of this read only command is shown in Figure 15.

The VPN is translated to the PPN and returned as shown. For convenience, the

offset bits of the address are copied back to the data portion. Thus, the returned data is

usable as a complete physical address. The bottom three bits of the physical address

returned are zeroed because all DMA operations are double-word aligned.

Appendix 1.7 DMA Write Probe

The DMA Write Probe performs exactly the same function as the DMA Read

Probe except that the potential faults are slightly different. Instead of a DMA Read fault,



the DMA Write Probe could return the DMA Write fault. See Appendix 1.6 and Figure 15

for a description of its purpose and functionality.

Addr bus data:

31 1211 32 0

VPN (20) Offset (9) 0001

Data bus data:

31 1211 32 0

VPN (20) Offset (9) 00ooo

ASI = OxD5

Possible Faults:
Refill, Invalid,
User Fault,
DMA Read Fault

Access Mode:
User Read

Figure 15: DMA Read Probe. DMA Write Probe is identical except that

the DMA Write Probe can generate a DMA Write fault instead of a DMA

Read Fault. Additionally, the ASI of the DMA Write Probe is OxD6.

Appendix 1.8 SNET Output

Addr bus data:

31 54 210

< Don't Care>

Output Buffer Address (3)

Don't care (2)

Data bus data:

31 0

I< Secondary Network Data >

ASI = 0x58

Possible Faults:
None

Access Mode:
User
Read/Write

Figure 16: SNET Output.

SNET Output reads from or writes to the secondary network's output buffers.

The format for this instruction is shown in Figure 16.



All 32 bits of the data bus are written to or read from the output buffer indexed by

the output buffer address field. The output buffer is eight entries deep.

Appendix 1.9 SNET Input

Addr bus data:

31 54 210

< Don't Care>

Input Buffer Address (3)

Don't care (2)

Data bus data:

31 0

I< Secondary Network Data >

ASI = 0x59

Possible Faults:
None

Access Mode:
User Read

Figure 17: SNET Input.

The SNET Input command reads from the secondary network input buffer. The

format of this read only command is specified in Figure 17.

The address of the 32 bit input buffer is specified in the input buffer address field.

The input buffer is eight entries deep.

Appendix 1.10 SNET Machine Info

SNET Machine Info is used to set the size and local node number of the operating

Fugu machine. The format for this readable and writable command is shown in Figure 18.

The machine size field specifies the size of the operating Fugu multiprocessor

while the node ID field specifies the local node ID. Note that the node ID should never

be greater than the machine size.



Addr bus data:

31 0

I < Don't Care>

Data bus data:

31 15 14 876 0

< Don't Care> Mach Size Node ID

Don't care

Possible Faults:
None

Access Mode:
Supervisor
Read/Write

Figure 18: SNET Machine Info.

Addr bus data:

31 0

1 < Don't Care>

Data bus data on a read:

ASI = Ox5C

Possible Faults:
None

Access Mode:
User &
Supervisor
Read/Write

GID IRQ

Data bus data on a write:

31 181716 543210

I <Don't Care> I I< Don't Care> I1111

Reset GID IRQ -1 SNET Reset
SNET Gen Token

SNET Disable Receive

SNET Enable Receive

SNET Send

Figure 19: SNET Status/Command.

ASI = 0x5A



SNET Status/Command

The SNET Status/Command instruction has three main uses: to determine the

status of the secondary network, to send commands to the secondary network, or to

determine the cause of an external interrupt. This readable and writable command is

shown in Figure 19.

As can be seen, the format of this command is considerably different for reads

and writes. On a read, the bottom 16 bits of the returned data contain the secondary

network status code. This bit vector is described in [3]. The remaining two bits specify

who has caused an external interrupt, the GID check (in the GID IRQ field) or the

secondary network (in the SNET IRQ field). These signals are both active high and may

be active simultaneously.

An SNET Status/Command write triggers certain operations. All bit fields are

active high trigger signals. If the operation's bit field is a zero, the operation will not take

place. Note that some operations can take place simultaneously by executing a single

SNET Status/Command write.

The SNET Send bit causes the secondary network to send the current contents of

the secondary network's output buffers. The SNET Enable Receive and SNET Disable

Receive bits enable and disable the secondary network's ability to receive messages.

Enabling the secondary network also causes the SNET IRQ field to be reset low. SNET

Generate Token (SNET Gen Token) causes a token to be injected into the secondary

network. SNET Reset resets the secondary network. Finally, Reset GID IRQ resets the

GID IRQ to zero.

Appendix 1. 11


