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ABSTRACT

This thesis explores the application of commercial best practices for new technology
development within the constraints of the defense contract funded research and
development (R&D) environment. Key elements of successful new product
development (NPD) are identified from the literature, including strategic fit,
organizational structure, financial considerations, and use of Stage-GateTM type
processes. Constraints, conflicts, and issues which arise in the defense contract funded
R&D world but not in the commercial world are explored, including a multiplicity of
funding sources, short funding cycles, and ambiguous ownership of go/kill decisions and
gating criteria. Existing defense industry Technology Readiness Level (TRL) and new
Engineering and Manufacturing Readiness Level (EMRL) and Manufacturing Readiness
Level (MRL) metrics are evaluated as potential gating mechanisms relevant to the
defense industry. We determine that the EMRL and MRL metrics meet many of the
criteria necessary for good NPD gates, but they must still be supplemented by
commercial best practices such as ensuring strategic fit, good organizational structure,
financial attractiveness and competitive evaluation. A resulting combined framework of
"soft" and "hard" criteria is applied to a case study of an optical component currently
under development with contract R&D dollars. The output of this study helped to shape
strategic decisions regarding this component and to identify next steps in the technology
maturation roadmap. Application of these frameworks in defense should ensure that
future successful technical performance is also supported by an appropriate business
strategy and by a process maturation plan for manufacturing consistent with the
upcoming Department of Defense (DOD) MRL requirements.
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Chapter 1: Introduction

The defense industry today is looking for ways to improve new product

development processes in order to deliver new technologies on schedule and within

budget. Recent studies have shown that use of commercial industry best practices for

new product development, especially addressing manufacturing concerns early in the

technology development timeline, correlates well with meeting cost and schedule

targets [1]. This has driven some changes in defense policy to build a knowledge-based

process for product development decisions into the defense acquisitions structure. On the

positive side, it is recognized that the policy itself has been updated to reflect the

recommendations of the Government Accountability Office (GAO) to incorporate more

commercial best practices into technology development requirements [2]. On the down

side, it is also recognized that "acquisition officials are not effectively implementing the

revised acquisition policy's knowledge-based process," so the desired improvements in

outcome are not yet being realized [2].

On the whole, the approach taken to date has been primarily a top-down

approach: it operates on the premise that to achieve use of commercial best practices in

technology development for the defense industry, mandates must flow from the

Department of Defense (DoD) through program offices to contractors performing the

work. This has resulted in "roughly 11 revisions to DoD's acquisition policy between

1971 and 2005" [2]. However, "despite these efforts, defense acquisition programs in the

past three decades continued to routinely experience cost overruns, schedule slips, and

performance shortfalls" [2].

This observation prompts one to question whether a top-down approach is the

most effective means towards implementing commercial best practices into new product

development for defense. Put another way, what could be the effect of independently

applying commercial best practices for new product development from the very early

stages of technology creation, on the part of the contractor, in a bottom up approach?

What steps can government contractors take on their own to emulate commercial best

practices to ensure optimal performance on the contracts they win? How should they

adapt commercial best practices to meet constraints of the contract-funded research and
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development environment? Finally, as DoD policies are slowly changed to mandate

more use of commercial best practices from top down, how can contractors best ready

themselves for upcoming changes?

In this thesis, we will explore these questions as they apply to early stage

technology development using defense contract research and development (R&D)

dollars. We will first outline in Chapter 2 key elements of successful commercial new

product development as studied in the literature. In Chapter 3 we will identify constraints

or conflicts which arise in the defense contract funded R&D world but not in the

commercial world, and their implications. We will also identify practices which are

directly addressed by some of the top-down changes being made in the defense world.

While commercial best practices recommend using technology gating mechanisms such

as Stage-GateTM processes [3], [4], in Chapter 4 we will consider several approximately

parallel mechanisms developed by various government funding agencies: existing

Technology Readiness Level (TRL, [5]) and new Engineering and Manufacturing

Readiness Level (EMRL, [6]) and Manufacturing Readiness Level (MRL, [7], [8])

frameworks will be compared in order to provide a recommendation of the most suitable

metric for a given program.

Finally, we will examine how the resulting best practices might be applied, using

a case study of a technology currently in early stage R&D. On the business side, in

Chapter 5 we will explore issues such as strategic fit, organizational leadership, and

financial attractiveness, and how these may shape future development paths. On the

technology development side in Chapter 6, we will evaluate elements of the technology

against MRL metrics to identify potential critical issues such as sole/foreign sourcing,

design maturity precedence requirements, and process control capabilities. It is

recognized that "up to 85% of costs are committed during design and development" [8]

so this is truly an opportunity to explore how early in the process recommendations could

be made to impact success at later stages.

Through this bottom up approach, we will seek to identify key issues which can

impact long term success of a technology development project. We will also try to

evaluate the longer term implications of the top-down approach being proposed through

14



the GAO and DoD. Specifically, if a product development team uses the manufacturing

readiness framework, will the contractor be better positioned in the long run? Is this

framework sufficient? If not, what other types of concerns should be addressed during

technology development? Learnings both specific to our case study and applicable to the

defense industry in general will be summarized in Chapter 7. We hope through this work

to provide a case for taking a pro-active approach to technology development and

manufacturing readiness in defense contract work, independent of the pace of official

DoD policy changes.
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Chapter 2: Commercial Best Practices for New Product Development

Commercial new product development (NPD) and how to do it well has been the

subject of extensive research for several decades, especially as globalization has

increased the number of competitors in the market and as the speed of technological

change has increased. Although the products developed within the defense industry may

not have as extensive a customer base or as broad a market appeal as products in the

commercial sector, it is quite reasonable to expect that using practices which lead to

successful commercial products will also lead to successful defense products (and firms).

Indeed, GAO studies have shown that DoD programs which most closely followed

commercial best practices "had better outcomes" in terms of schedule and cost [1]. Thus

it is well worthwhile to consider how a defense contractor might incorporate commercial

best practices into new technology development efforts in order to reap benefits both for

the contractor and for the DoD. What are the key elements to NPD success? What

modifications may be needed to adapt these to the defense environment? How do

commercial best practices compare to the best practices being recommended by the

GAO?

In this chapter we will review commercial best practices for new product

development. These can be separated into critical success factors from process and

product standpoints. On the process side, we will also review characteristics leading to

high quality execution of Stage-GateTM processes. Finally, we will review recommended

must-meet criteria for early phase milestone reviews. We will use our learning here as a

foundation for the next chapter, in which we will identify constraints which are likely to

affect implementation in the defense industry.

2.1 Critical success factors

To first order, success in new product development can be simplified to "doing

projects right" and "doing the right projects," according to Robert Cooper, author of

Winning at new products: Accelerating the process from idea to launch [3] and Product

leadership: Creating and launching superior new products [4], from which books the

bulk of this chapter is drawn. In these works, Cooper has synthesized extensive research

identifying how successful firms do new product development and how other companies

17



fail at similar efforts. "Doing the right projects" means selecting products for

development which meet key strategic and market criteria and which demonstrate

technical and financial feasibility. "Doing projects right" focuses on elements of

execution: these include issues such as organizational structure, leadership, and the use

of frameworks such as the widely adopted Stage-GateTM process for new product

development. Cooper uses these two broad groupings to separate critical NPD success

factors into elements of process and elements of product. Although it is tempting to

focus on elements of product first, a key learning is that firms which do well have an

appropriate NPD process in place, which allows them to identify which projects or

products are in fact the right ones to pursue.

2.1.1 Commercial NPD process success factors

Studies of successful firms have shown that their NPD processes share six

primary characteristics, summarized in Table 2-1. First, good NPD processes emphasize

early and ongoing evaluation of products and projects, both before work begins and as

the project proceeds. The main two causes of new product failure are "inadequate market

analysis" and "product problems or defects" [3]. Both of these causes can be mitigated

by making sure that the process includes detailed analysis of market and technical issues

before a project is given a green light and significant resources are spent. For this reason,

up-front market and technical homework, integration of the voice of the customer, and

clear product definition are the top three criteria for a good NPD process (see Table 2-1,

adapted from [4]). Markets can change, unforeseen technical hurdles may arise, and

uncertainties at project inception may be resolved either positively or negatively as time

goes on, though, so it is also important to have an ongoing evaluation of the firm's

project portfolio. Good NPD processes thus include specific decision points at which

projects are reviewed and at which projects are terminated: having and using "go/kill"

decision points is the fourth critical success factor. Studies show that for each successful

new product, there are 1.3 to 1.5 product launches, three to four products in development,

and seven to eleven new product ideas [3], so it is clear that there must be an appropriate

culling method to narrow the number of projects in the NPD funnel (see Figure 2-1).

Costs and resource requirements typically increase at each development stage, and down-
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selection between projects allows firms to concentrate their resources on projects with the

best probability of success [9].

1 "Management emphasizes doing up-front [market and technical] homework... before
projects enter the Development phase"

2 NPD process "emphasizes a strong market orientation" and "the voice of the
customer"

3 Product definition occurs "before Development work begins"

4 The process has clear go/kill decision points and projects are actually killed.

5 "Quality of execution" is emphasized

6 The NPD process is "complete or thorough ... but ... also flexible."

Table 2-1. Critical NPD process success factors, from [4].

IDEAS

.W DEVELOPMENT PRODUCT
4) PROGRAMS LAUNCHES

L

II-
0

Time

Figure 2-1. Schematic project down-selection funnel in top commercial firms.

All of the above point to the need to have a process and to stay with it, which

leads to the fifth and sixth critical success factors for good NPD processes: executing

19



projects and process well, while at the same time incorporating enough flexibility into the

NPD process so that the process itself does not become a barrier to success. These two

success factors go hand in hand. First, a focus on quality of execution, making sure that

corners are not cut even when time and resource pressures make cuts tempting, helps to

avoid the pitfall of accidentally skipping over key elements such as the up-front market

and technical investigation. Second, the emphasis on flexibility recognizes that there is

competition for time and resources and the NPD process should not consume these in a

non-value added manner or in an exclusive manner. Where resource competition does

require compromise, flexibility in the process may be allowed, for example in the timing

of a specific step, but decisions must be made consciously with recognition of the

associated risks, and a plan for subsequent recovery or accommodation. This last

element is in fact the natural evolution [4] after a firm has successfully met the first five

criteria, not a justification for skipping them as some might hope. Formal new product

development processes started as fairly rigid "checklist" type first-generation processes in

the 1960s which focused on ensuring task execution and completion within functional

domains. These evolved into second generation Stage-GateTM processes emphasizing

cross functionality and integration across the organization (e.g., marketing, engineering,

and manufacturing), up-front work, and best practices. Companies which have

successfully implemented second-generation processes have been able to learn from these

to make conscious decisions for streamlining or parallel processing in their current

programs, leading to what are now called third-generation processes. These firms'

proficiency comes, though, from the years of practice with the more formal approach, just

as the skill and proficiency of a performer or an athlete may come from hours of drilling

and practice. As cautioned in [4], companies should "strive first for a basic and effective

new product process" before advancing to a more flexible process. They must learn to

"walk before [they] run."

2.1.2 Commercial NPD project success factors

Once a firm has a good process in place to facilitate execution of NPD projects,

individual firms and individual projects may still succeed or fail. Across firms, there is

competition in the new product marketplace, while within firms the NPD process itself

will involve culling of projects. Studies have shown that successful technology
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development efforts also share several critical success factors, both internally with firms,

and externally facing the market. Cooper has synthesized these to seven critical success

factors of successful firms, reproduced in Table 2-2. Of the seven factors, four seem to

be primarily inwardly (1) focused or controlled: resource commitment, organizational

structure, design and climate, product synergies with firm core competencies, and speed

of execution. Three factors focus on the product relative to external (E) competition:

having a superior product, having a broad international focus, and being sold into an

attractive market.

1 Resource commitment to the NPD project from senior management I

2 Having a superior differentiated product that delivers unique benefits and better E
value to the customer

3 The right organizational structure, design, and climate

4 Look to the world product: an international orientation E

5 Leverage core competencies: Synergy with the base business and its strengths I
(vs. "step-out" projects)

6 Use market attractiveness for project selection and prioritization E

7 Speed, without sacrificing quality of execution

Table 2-2. Critical NPD project success factors, adapted from [4].

2.1.2.1 Inwardly controllable elements of success

The most important internal factor is having resource commitment from senior

management. Adequate staffing and budget must be provided for critical new product

projects. This means not only providing resources, but also ensuring that those resources

are available to support the project. On the people side, personnel must not be assigned

to too many projects such that they become overwhelmed and cannot support any of them

well. On the financing side, sufficient resources must be committed at each phase in the

NPD process to enable the team to reach the objectives of that phase.

The resources committed by senior management must then be fed into the

appropriate organizational structure, design, and climate. Here, key elements of success

include "having an assigned team of players" who form a "cross-functional team" with a
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"dedicated," "defined," "empowered" and "accountable" team leader. Better success

comes from having a leader who is "responsible for the project from beginning to end,"

not just during one project phase. Similarly, better success is correlated with this project

leader being "dedicated to [only] one project at a time." The team, however, must bring

together views from across the organization, including "multifunction (and outsider)

representation on development projects from the start" [10]. As an example, a team

might include representatives from R&D, engineering, marketing, finance, and

operations. The team can be organized in many different ways. These include (1)

functionally, or (2) in a functional matrix, in both of which cases authority remains with a

functional head, (3) in a balanced matrix (e.g., with authority shared between a project

manager and functional heads), or (4) in a project matrix or (5) a project team, in which

latter cases authority primarily rests with the project manager and functional managers

only provide personnel. Success rates are much higher for the three latter forms, while

the functional approaches tend to underperform in terms of schedule, cost, and technical

performance [3]. Finally, projects which are structured to have frequent

communications, formal and informal, do better. Formally, team members meet for

project updates and progress reviews and are kept apprised of the state of the project as it

goes through the NPD process. Informal communications are facilitated by co-location,

preferably setting up team members to work within 100 m of one another [4].

Successful firms also develop products that are synergistic with their core

competencies and strengths, and which support their base business. Synergy can come

from both technological and marketing arenas [4]. Technologically, the product should

build on existing skills, technology, and resources, including any existing manufacturing

or operations base. Market-wise, the product does better if it fits well into the existing

sales and distribution channels of the firm, and can utilize existing market resources.

Conversely, products which are "step-out" or new-to-the-firm products tend to do quite

poorly. Cooper reports failure rates as high as 77% when both marketing and

technological fit are poor, and failure rates of 67% and 59% when one of technology fit

and marketing fit are poor, respectively [4]. The highest success rates accompany

projects with at least moderate marketing fit and moderate to good technology fit.

22



Finally, the last internal factor correlated with product success is speed, provided

that quality of execution does not suffer. Here, speed is translated into an ability to be

one of the first movers in the market, ideally with the notion of capturing more value.

Research shows this to be true, but also shows that second and third movers in the market

may still retain high success rates and positive profitability [4]. Rather than emphasize

speed for its own sake, Cooper prefers to emphasize quality of execution which will

translate into faster speed to market. By doing things right the first time, building in up-

front homework, voice-of-the-customer, and cross-functional inputs, a team can avoid

having to repeat poorly executed steps later in the process. Speed is thus a result of a

well executed process, not a goal in and of itself.

2.1.2.2 Externally related elements of success

We have focused to this point on success elements which are at least in theory

somewhat controllable by the firm itself. We turn now to the external factors which

correlate with new product success. Here, the firm still has an internal choice to make, in

terms of whether or not to pursue a particular project or product, but external factors can

determine whether or not the product under consideration is likely to be successful.

The most critical external factor is, of course, having a product which is truly

superior and unique in the eyes of the customer. This means the product or technology

"meets customers' needs better than competing products," provides them with better

quality, gives them access to "unique benefits and features," and "solves problems with

competitive products." The product should "reduce the customer's total in-use costs"

and have at least some "highly visible benefits." Innovation and novelty do enter into

criteria for unique, superior products, but their importance falls behind the six factors

listed above. Note also that the relevant perspective in all evaluations is that of the

customer. Using a "technology push" approach, in which a firm invents a technology or

a device, deciding internally what it is the customer wants, is in fact one of the two most-

common causes of failure [4]. Convincing firms that technology push is a poor strategy,

however, is clearly a challenge: despite the fact that it delivers only "mediocre

performance," about one-fourth of businesses choose to pursue a technology push

approach [3]. Although payoffs in some cases can be high, neglecting market orientation
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leads to targeting unattractive markets, with "little fit, synergy, or focus in the types of

products and markets exploited" [3].

Market importance is also emphasized in the other two critical external factors:

having an international "look-to-the-world" product, and selecting products based on

market attractiveness. Although designing for a global market may be less relevant for a

defense contractor who typically designs only for one customer (the U. S. Government,

and perhaps sales to approved allies), it is worth noting at least one reason why having an

international focus is important: products which are designed for the world market "do

better abroad" and "also do better in the home market" [3]. Awareness of potential

international competition raises the "standard of excellence" and the project team

develops a product which is superior to those developed by firms with only a local focus.

Finally, actual market attractiveness is important in order to target products which will

yield returns for the firm. Growing markets with customer pull for the product are most

attractive, especially when the product life cycle is still in growth stages. However, even

products targeted at highly competitive markets are only marginally less successful than

products targeted at highly attractive markets: All of the other factors, especially product

superiority, quality of execution, and synergies with the business, are far more important

in determining product success.

2.1.3 Quality of execution

High quality of execution is called out explicitly in critical success factors for a

good NPD process and implicitly in the four internally focused critical success factors for

projects or products themselves. It is consequently important to spend a bit more time to

identify how firms can ensure high quality of execution in the projects they undertake.

Cooper suggests that high quality of execution can be obtained by making sure that six

criteria are met. First and foremost, quality is ensured by having quality control

checkpoints in a gated NPD process. Checkpoints are only as good as those controlling

them, however, so we must know who the gatekeepers are. The intent of gate reviews is

to give a green light to projects which meet the firm's criteria for moving forwards, while

making sure that projects which should not proceed are killed. Thus gatekeepers must

have the authority to approve resources for the next phase of a project and must be able to
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understand the impact of project approval across the firm. For this reason, gatekeepers

are usually members of the leadership team (criterion #2), preferably from multiple

functions in the organization. This leadership team should use clear and objective

metrics (criterion #3) at each gate against which all projects may be independently

assessed. The criteria should be defined such that they are universal to all projects,

eliminating a tendency to adapt criteria for individual projects. Likewise, specific

activities and tasks are built into the process at each stage, again independent of project or

product (criterion #4), to ensure that key deliverables are met for each stage (criterion

#5). If the above criteria are met, the firm should be able to exit the gate review with a

clear understanding of what was accomplished in the last phase, and a clear

understanding of what is needed in the next phase. This in turn should help the firm to

predict what resources are needed for the next phase and how these resources should be

allocated. The final criterion (#6) to ensure high quality of execution is that the resulting

resource allocation method at gate reviews must be effective, so that project teams may

continue on to the next phase as soon as approval is given. These criteria are summarized

in Table 2-3, reproduced from [4].

1 Implement quality control checkpoints (gates)

2 Designate leadership team as gatekeepers

3 Use clear and consistent metrics at the gates (objective & proficient)

4 Define activities, tasks, methods, and best practices built into the stages of the process

5 Specify visible deliverables to the gates

6 Have effective resource allocation method at gates

Table 2-3. Stage-GateTM process elements for high quality of execution, from [4].

2.1.4 Making quality go/kill decisions

Use of go/kill decision points is frequently the weakest element of firms' NPD

processes [3]. Poor evaluation criteria and prioritization processes and the momentum of

a project once it has been started all lead to firms having too many projects in the

pipeline, with inadequate resources to properly execute them all [9]. Ideally, using a

well-defined NPD process and ensuring that projects and products are closely aligned

with the success factors outlined above will produce good decisions at gate checkpoints.
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However, since we have not yet discussed what specific evaluation criteria at checkpoints

might be, it is worthwhile here to briefly look at some "clear and consistent metrics"

which can be used to evaluate projects.

Many firms use scoring methods on a portfolio of projects, in order to determine

which projects will pass to the next phase. Cooper suggests that the gatekeeping team

independently score projects against both "must-meet" and "should-meet" criteria. Must-

meet criteria are a series of "yes/no" criteria to which the gatekeepers must be able to

answer "yes" in order for the project to proceed to the next phase. Should-meet criteria

are criteria for which an answer may be given on a sliding evaluation scale, where certain

characteristics are desirable, but where the absence of a feature or characteristic will not

result in project failure. Thus should-meet criteria are useful for prioritization among a

list of projects, as they can help gatekeepers determine which projects may have the best

probability of future success, while must-meet criteria control whether a project even

makes it into the prioritization phase. As we will see later, prioritizing among projects

at the defense contractor firm level may appear less critical when the firm's own

resources are not being put into play (although prioritization should probably still be

incorporated into initial decisions on which contracts to pursue), but we do believe that

using must-meet criteria is still critical for the defense contractor.

Must-meet criteria are developed by each individual firm as part of their NPD

process, and are likely to be tailored to an individual firm or an industry. Still, it is

possible to identify a few key criteria which will be common to all firms. Cooper

suggests the seven must-meet criteria in Table 2-4 as a starting point for gate reviews in

the first three stages of the Stage-GateTM process. These parallel the success factors

discussed above, in the inclusion of criteria such as strategic alignment, market need,

product advantage, and positive return versus risk. They also add criteria such as an

assessment of technical feasibility and the absence of show-stopper variables. These

criteria become more important as the project moves to later stages, as work done in each

stage eliminates more and more of the uncertainty inherent in a project at inception.

According to one study, the top three criteria used at stage one are market potential,

strategic fit, and technical feasibility, while at stage two they are technical feasibility,

sales objectives, and product performance [9].
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1 Strategic alignment (fits the business strategy)

2 Existence of market need (minimum size)

3 Reasonable likelihood of technical feasibility

4 Product advantage (unique customer benefits)

5 Meets safety, health, environment, and legal policies

6 Positive return vs. risk

7 No show-stoppers (killer variables)

Table 2-4. Example must-meet gate decision criteria for down-selection, reproduced
from [4].

2.2 Summary

We have seen that critical success factors for successful new product development

can, in fact, be defined broadly such that they are applicable to the wide range of

commercial products developed by firms today. First and foremost, it is important to

have an actual process through which product development is managed and funded.

Projects must then be selected according to objective, measurable criteria, and their

progress through the different stages of development must be monitored. At each stage,

project teams should undertake specific activities using best practices. The outcome of

these tasks should be specific deliverables to the next gate review, at which resources

may then be approved and allocated only for projects which should truly move on to the

next stage.

So far, we have seen very few elements which appear directly in conflict with

models of defense funded programs, other than perhaps the idea of a "look-to-the-world"

product. Thus, we are led to believe that implementation of these types of practices in the

defense world should lead to improved new technology development outcomes.

However, implementation of some of these best practices is constrained by the specific

structure of defense contract funded development world. In the next chapter, we will

explore these constraints. We will then suggest adaptations of the commercial best

practices presented here, appropriate to the defense world, in order to come up with a set

of comprehensive defense-relevant best practices which we may use to benchmark

technology development in our case study.
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Chapter 3: Constraints on Use of Commercial Best Practices in a Defense
Contract Environment

Several constraints specific to the contract funded R&D world make

implementation of the commercial best practices reviewed in Chapter 2 challenging or at

least complicated. In this chapter we explore how issues such as disparate funding

sources, short funding cycles, financial incentives, and go/kill decision ambiguity can

constrain implementation of commercial best practices in the defense world.

3.1 Management responsibility for NPD process and product

Best practices identified in Chapter 2 emphasize significant responsibilities on the

part of management in the NPD process. Management is expected to support up front

market and technical work, provide committed resources, implement quality control

checkpoints, and designate members of the leadership team as gatekeepers. In the world

of defense contract funded R&D, this leads to the question of "who is management?" In

other words, who owns the responsibility for the NPD process and the product? Is it the

contract funding agency? Or is it the contractor? How is the defense world different from

the commercial world in this respect?

In the commercial world, Stage-GateTM type processes help commercial

companies to allocate scarce resources appropriately to the product development efforts

with the best probability for commercial success, and to exit from lower performing

opportunities when necessary. A key driver of this model is the fact that the entity

funding new product development is also the entity which will produce the product, and

which will ultimately sell (and profit from) the product. It is thus in the commercial

company's best interest to incorporate manufacturability, reliability, cost, and market

attractiveness assessments early into the new product development process. A firm

which spends time and money up front on investments in process improvements, and thus

in capability, will reap the benefits of these investments in the future [11]. As a single

entity, the commercial firm has a clear incentive to develop and follow a good NPD

process.

In contrast, in the defense contract funded R&D sector, the funding source

changes as a program develops. Funding sources for Basic Research (6.1), Applied
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Research (6.2) and Advanced Technology Development (6.3) may not be the same, and

the final procurement customer is usually different. For example, initial exploration may

be funded through an agency such as Defense Advanced Research Projects Agency

(DARPA), a later system demonstration may be funded through the Air Force Research

Laboratory (AFRL) and a final system might be procured by the Air Force. In the current

procurement structure, funding for manufacturing risk assessment, mitigation and

capability development are also explicitly left to the later stages of product development

and early stages of production. Cost and manufacturing technology are in general not

recognized to be part of the core program of the Science and Technology (S&T)

community [12].

Short funding cycles add to the challenges of funding source diversity. Funding is

allocated for periods on the order of one to a few years, so that each R&D phase must be

authorized individually. While this provides necessary oversight and gating capability in

one respect, it is also recognized by the GAO that "the acquisition environment

emphasizes delaying knowledge capture and problem identification since these events

can have a negative influence on obtaining annual program funding" [1]. A contractor

who identifies at an early stage an issue that might only surface later during

environmental testing is believed to be at a disadvantage relative to a contractor who has

not uncovered a future issue, and who thus may have a rosier outlook. This is in contrast

to the commercial world in which early identification of potential problems is more likely

to be rewarded than punished.

Overall, diversity in funding sources has the effect of breaking the end-to-end

connection between a positive final deployed system outcome and upfront work in the

early R&D stages. Each funding entity "owns" its own position in the development

chain, but does not tend to focus on deliverables to the next phase. Although external

organizations such as the GAO continue to call for an integrated end-to-end NPD

approach, in practice today all work is driven solely by the contract in hand. With

limited budget resources, each funding entity has an incentive to only focus on its area of

responsibility, and the defense contractor is legally bound by contract to do only the work

specified in the contract. This pushes firms to work hard to deliver short term results, but

means fewer resources are usually spent on developing capability necessary for long term
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success [11]. External "management" has effectively come to be temporary, associated

with the specific contract in hand. This also splits gates into two parts. Exiting a current

contract or phase successfully does not guarantee entry into the next phase, since a new

proposal must be submitted, often to a new agency.

In this challenging environment, it is even more critical that management internal

to the contracting firm still carry out the best practices of Chapter 2, emphasizing early

market and technical work, providing resources and instituting a quality NPD process.

This is because the contractor will (if successful) be involved in the product from early

R&D stages all the way through to production phases, unlike the funding agencies.

Improvements in performance in the early stages should yield more competitive bids in

the later stages of development, which should help these firms to win the later contracts.

The firm enters a positive reinforcing loop [11]. Conversely, skipping steps at the

beginning will result in overruns and schedule slips which ultimately will degrade the

contractor's reputation, rate structure, and ability to win new contracts. To a large extent,

at least until the defense industry mandates an integrated end-to-end NPD process

through the DoD 5000 series acquisition guidelines, there is an advantage to the

individual defense contracting firm that takes responsibility for making sure a good NPD

process is followed even in the absence of customer pull.

3.2 Organizational structure in the case ofprogram specific development

Having the right organization, structure, and climate for NPD, including an

empowered team with an accountable leader focused on delivering a well-defined

product, can also be a challenge in the defense environment. In a commercial

enterprise, a firm typically develops a product with appeal to a broad range of customers.

Marketing identifies attributes critical to the majority of customers and the product is

developed according to these criteria by a single development team. After the product is

introduced to the market, some customization for specific customers may occur, but the

overall form, fit and function of the product line is retained. By using a broad technology

development approach, the firm matures a technology platform from which several

customer needs may be met. In defense funded R&D, however, the contractor develops a

product for a specific program funded by a specific agency. The same technology may
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be developed in parallel for one or more different government customers, but with

different key criteria, usually with a discrete leadership structure, and sometimes with a

discrete team structure. This is akin to a commercial firm supporting multiple product

development teams each focused on a single customer. While it is still possible to have a

designated cross-functional team with a dedicated team leader for each funded program,

we can see that multiple simultaneous programs will likely stretch skilled resources thin.

It may be difficult to maintain clarity regarding technical leadership across multiple

programs and it may be difficult to maintain clear product definitions when different

customers emphasize different product attributes. Advancing development of a

technology platform within the confines of program-specific funding will clearly be

difficult.

3.3 Implicit market attractiveness and positive returns

The financial structure of defense contracts can also work against following some

NPD best practices. We saw in Chapter 2 that the NPD process should focus on market

orientation and that market attractiveness should be used for project selection and

prioritization. In the commercial world, this usually means that the firm verifies that the

market for a new product is or will be sufficient in size and in willingness to pay so that

the firm can recoup NPD investments and generate profits in the future. For the

commercial firm, the larger the difference between the product revenue and the cost of

goods sold, the larger the firm's profit, so the firm has an incentive to develop high

yielding production processes which efficiently use labor, materials, and capital.

Development program costs also directly hit the firm's bottom line: the more efficiently

R&D dollars are spent, the higher the firm's overall profits. The actions of the

commercial firm affect its profit margin.

In contrast, in the defense realm, profit margins are frequently decoupled from

actual activity or performance, especially within early stage R&D programs. These

programs are usually run on a cost reimbursement or "cost-plus" basis, not on a fixed-

price basis. A "cost-plus" contract reimburses the contractor for program expenses, such

as labor and materials, plus a percentage for overhead, plus a fee designated as profit.

The fee paid can be (1) fixed, irrespective of the final cost of performance, (2) incentive-
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based, paying somewhere between predetermined limits, based on actual results as

compared to initial contractual targets, or (3) determined by the customer based on

performance against pre-established criteria [13]. For all of these, the contractor does

have an incentive to develop processes and capabilities which will allow submission of a

competitive bid. However, once the contract is won, unless the contract is highly

incentivized, the contractor receives little to no benefit from yield improvements or cost

reductions and individual employees working on a contract may see no benefit or reward.

In fact, improving yields or reducing labor content can have the perverse effect of

reducing billable hours and thus reducing the potential value of the contract.

Paradoxically, if work is not completed on time and a contract extension is required, the

firm can even earn a profit on the extension. An overall result of cost-plus contracting is

that many programs are automatically profitable to the contractor, independent of process

or product improvements, and the hurdle of market attractiveness is effectively removed.'

An exception to this "automatic profitability" can occur, though, when a program

requires significant capital investment. In this case, the contractor has two options. In

one option, capital equipment required for the program may be rolled into the cost of the

program, but the equipment is then dedicated to that specific contract and may be

"claimed" by the funding agency at the end of the contract. Alternatively, capital

equipment may be purchased by the contractor, who then has the right to use the

equipment on any contract(s) it may choose, but the costs of the equipment are

depreciated over time by the firm, reducing the firm's net profits. This latter course is

followed when the equipment is used to support work on many different contracts. In

this case, if required capital expenditures are too high, a market may in fact be

unattractive even when operating profits (before depreciation) are guaranteed. Barring an

intentional decision to pursue an unprofitable market and then roll losses back into higher

rates (which will put the firm at a future competitive disadvantage), the firm may be

better off not pursuing the investment.2

It is even argued by some that this is the case for fixed-fee contracts as well, given the regulated nature of
the contracting. If the firm incurs losses on a program, these are rolled up into the next rate calculation
and are passed back to the customer in the form of higher rates on future contracts. Over the long term, in
the words of one defense executive "It's a beautiful business. We can never lose money."

2 It would seem that this would lead to very limited investment in capital intensive new technologies,
especially if payback periods are long, which could ultimately put the country at a disadvantage. To
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3.4 Weak ownership of go/kill decisions

An outcome of the disparate funding sources, short funding cycles, and built-in

profitability of cost-plus contracts discussed above is that execution of go/kill decisions

in the defense sector is also compromised. The industry structure effectively defers

responsibility for technology down-selection to the diverse funding agencies, which

choose one or more competing bidders at the different stages of development. This

deferral gives defense industry suppliers the incentive to develop a technology as long as

contract R&D funding is available to support it, sometimes without a strategic assessment

against other technologies in their portfolios. Although we would like to believe that

there are two independent potential down-selection funnels available in the defense

environment, in practice it seems that often only one funnel is imperfectly active.

The primary funnel evident in the defense world is at the government level, as the

number of contracts given for a specific program is reduced as the program moves to

more advanced development stages. For example, for a specific program, the

government may award several contracts in the concept development stage. Some of the

contractors participating in this stage will be selected for the next stage, technology

development. A small number, perhaps just one or two, will be selected for system

development and demonstration, and one may win an award for system production and

deployment. This is schematically illustrated in Figure 3-1. Note that in this model,

go/kill decisions involve selection between competing firms, not within firms, and there

is no filter on the program itself once it has been started. In contrast to the commercial

best practices model, DoD does not make "trade-off decisions as to which programs

should be pursued, and more importantly, not pursued" [15]. More programs are started

than are ultimately affordable, but programs are "rarely [prioritized] for funding

purposes" [16]. When budget cuts are required, "senior officials tend to make across-the-

board cuts to all programs rather than make the hard decisions as to which ones to keep

mitigate this, not-for-profit Federally Funded Research and Development Centers (FFRDC) such as MIT
Lincoln Laboratory are charged to "ensure that the government has advanced technologies for defense
systems." FFRDCs operate under the same cost accounting principles as universities, under which
capital expenditures are expensed. The goal of the FFRDC is to "do the most significant work [they] can
do" with an equipment base distributed over multiple programs. FFRDCs do not compete with the
private sector and do not respond to Broad Area Announcements (BAA), though, so once a program is in
the private sector, it remains there [14].
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and which ones to cancel or cut back" [17]. Also, the number of firms at the starting

point in the funnel has dropped. Consolidation in the defense industry has reduced the

number of prime contractors from more than twenty in the mid-1980s to only about six

today [15], so the funnel itself is narrower at the top than the ideal commercial funnel. In

some cases, there is only one contractor who can produce a component, and who can thus

"hold [a program] hostage" [16]. Finally, defense funding is also impacted by the

Congressional appropriations process which can add or strike programs outside of the

recommendations determined by the services, resulting in projects that "may or may not

serve the [DoD]'s interests well" [12]. Overall, these considerations lead to a conclusion

that go/kill decisions on the DoD side exist, but operate imperfectly.

System
Development &
Demonstration

L Concept Technology
0 velopment Development
. Contracts Programs

4.-

0

Production &

Time Deployment

Figure 3-1. Schematic down selection funnel in defense contracting.

The second funnel which could and should be operating in the defense R&D

world is the funnel internal to a defense contracting firm. It is the firm's responsibility to

decide which programs it should continue to pursue through each stage of development.

To a certain extent, by submitting a bid for a successive stage of a program, the defense

contractor claims to be able to deliver the project success factors discussed in Chapter 2

(see Table 2-2) to the funding agency. A bid for a program signals that management has

committed resources, believes in product superiority, has structured the organization

appropriately, and sees the project as consistent with its core competencies. This claim is

"certified" in many defense contractors through internal gating processes undertaken to
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review bid proposals before they are submitted to the customer, so in some respects, these

decision points are active. On the other hand, with limited program funds available, there

is a strong incentive for defense contractors to submit bids for any successive program

stage for which they are eligible, without significant re-evaluation of the product and

market at each stage. The contractor also wants to maintain workforce continuity, which

again provides an incentive to bid for as many programs as possible, since maintaining

the workforce requires funded contracts. Finally, contracts themselves may also include

"options" for follow-on work to be completed, provided that performance is

demonstrated in early stages. The intent of options is to provide the funding agencies

with better visibility into future costs without commitment while technical performance is

uncertain. Interviews with defense contractor leaders indicate mixed views on the

obligations inherent in options: some claim that options "tie the hands" of the contractor

so that they are not free to decide to discontinue work in an area while others maintain

that the contractor still has this freedom. Options do seem, however, to break part of the

feedback loop which should be present in the NPD process: the intent of a gated process

is to use the output from each step to make sure that product feasibility and market

attractiveness still hold. If progress to the next step can be triggered by activation of an

externally controlled option, this check is inactive.

Overall, the existence of the DoD-side funnel seems to serve to discourage active

project down-selection on the part of the contractor. It is well recognized across all

industries that it is very difficult to kill projects [9]. If there is another organization

outside which may take responsibility, it is tempting for individual firms to promote all

projects and allow the funding agencies to make the go/kill decisions between firms

instead.

3.5 Metrics and gating criteria

We can tell from the conflicts identified above that there are not in fact clear,

objective, and consistent metrics which are used to gate development of new technologies

in the defense sector. We can also see that such metrics should probably come from the

DoD side, to be consistent with funding ownership and down-selection processes.

36



To improve performance to cost and schedule milestones, the DoD, the Services,

and other government agencies have in fact recently developed and begun to introduce

gating metrics designed to provide an objective assessment of new product maturity.

These metrics include Technology Readiness Levels (TRL) introduced by the National

Aeronautics and Space Administration (NASA) in 1995, and Engineering and

Manufacturing Readiness Levels (EMRL) developed by the Missile Defense Agency

(MDA) in 2001. Most recently, the DoD and specifically the Manufacturing Technology

(ManTech) program developed Manufacturing Readiness Levels (MRL) in 2005 as a

uniform metric to use across the Services. Both EMRLs and MRLs are designed to

provide objective metrics against which technology maturity and manufacturing

readiness may be assessed, in parallel with the technical performance metrics provided by

the TRL framework. The simultaneous existence of TRLs, EMRLs, and MRLs

complicates the picture for the defense contractor, though. Which metrics should the

contractor follow? We will explore the three metrics in detail in Chapter 4 to understand

which might be most suitable for a good NPD process and how well they meet the criteria

outlined by Cooper.

3.6 Summary of constraints

We have seen above that many factors work against implementation of a quality

NPD process in the defense sector. NPD process continuity is disrupted by the presence

of multiple funding entities and short funding cycles. Overall technology platform

development is diverted to instead develop features specific to individual programs,

which can degrade clarity around product features and dilute the effectiveness of

development teams and their leaders. Cost-plus financing of early R&D reduces the

"market attractiveness" hurdle and increases the temptation to defer go/kill decisions to

the funding agencies. Competing maturation frameworks have been proposed which may

or may not be sufficient to ensure a quality NPD process. While it is still in the best

interest of the defense contractor to follow a good NPD process in order to ensure quality

product delivery at the end of the development cycle, this is a challenging task. The

defense contractor may be able to align its interests with those of the customer by using

some of the new readiness levels under development, which may serve as appropriate

gating mechanisms, but we expect from our analysis here that certain best practices will

37



need to be maintained by the defense contractor in addition to the practices which may

become mandated by the DoD.
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Chapter 4: Government Gating Methods: Readiness Level Metrics

We saw in Chapter 2 that good NPD processes include decision gates through

which projects must pass in successive stages of development. Individual commercial

firms frequently develop their own gate criteria specific to their industry or product. In

other cases, industry groups develop criteria which are used across multiple firms to

certify performance criteria to particular levels. Within the defense industry, a need was

recognized in recent decades for standardized process improvement approaches in order

to address issues of escalating costs and quality issues in several areas; several different

programs have been developed to address this. For example, for systems engineering and

software development, the DoD sponsored the development of the Capability Maturity

Model® Integration (CMMI) framework. For technology hardware development, the

National Aeronautics and Space Administration (NASA) formalized the Technology

Readiness Level (TRL) framework in 1995 and this was subsequently adopted for DoD

programs. Finding that TRLs did not adequately address design for manufacturability,

design to cost, yield, supply chain, and other production concerns, though, the DoD

revised its own acquisition policy and also gave authority to the Missile Defense Agency

(MDA) to develop independent guidance for missile defense systems [18]. The MDA

developed Engineering Manufacturing Readiness Levels (EMRL) in 2001. In only the

past few years, the DoD and specifically the ManTech program have also developed

Manufacturing Readiness Levels (MRL) as a uniform metric to use across the Services.

In this chapter, we examine the three hardware-specific metrics, TRLs, EMRLs,

and MRLs to see how well these meet the criteria for good process gates outlined by

Cooper. We use this analysis to see whether any given readiness level metric (generally

xRL) can be used as a surrogate for a good NPD process gate in the defense industry.

Are criteria for the readiness levels clear, consistent, and objective? Do they define

activities, tasks, methods and best practices for the various stages of the process? Do

they specify visible deliverables at each milestone? Finally, do they incorporate general

must-meet requirements common to successful products?

We find from our analysis that EMRL and MRL metrics both incorporate many,

albeit not all, of the features of good gating processes in the commercial world. In
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general, the EMRL and MRL frameworks provide clear objective criteria which can be

used to judge technical progress, while the TRL framework is in general insufficient to

guarantee good product outcomes, as had been noted by the DoD. Using the EMRL or

MRL framework for technology development programs is therefore recommended over

simply using TRLs, with the choice of metric based on the end customer until the two

metrics are consolidated. We do also find, though, that the xRL metrics are in general

incomplete according to the criteria of Cooper. They fit the mold of the checklist-type

first generation NPD processes followed by commercial firms in the 1960s but do not yet

incorporate many of the "softer" criteria also deemed critical for good NPD processes.

Thus for our case-study analysis of hardware component development, we will

recommend evaluation based both on the MRL metrics and the inwardly controlled

success elements such as organizational structure, strategic fit, and leveraging of core

competencies discussed in Chapter 2.

4.1 Technology Readiness Levels (TRLs) - NASA

Technology Readiness Levels were formalized by NASA in 1995 to provide "a

systematic metric/measurement system that supports assessments of the maturity of a

particular technology and the consistent comparison of maturity between different types

of technology" [5]. Technology readiness was divided into nine levels, starting with

observation of basic principles and ending with "flight proof' of a system in a successful

mission operation. A summary of TRL definitions, excerpted from [5], is provided in

Table 4-1. Although TRLs were not directly developed for the defense environment,

they have in fact been commonly used as a metric to measure technical capability on

defense programs. Since 2001, TRLs were the "preferred approach for all new DoD

programs" [6]. We will see below, though, that TRLs are focused primarily on

performance of a single technology or system, and do not address many issues needed to

produce a product in quantities larger than one.
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TRL 1 Basic principles observed and reported
TRL 2 Technology concept and/or application formulated
TRL 3 Analytical and experimental critical function and/or characteristic proof-of-

concept
TRL 4 Component and/or breadboard validation in laboratory environment
TRL 5 Component and/or breadboard validation in relevant environment
TRL 6 System/subsystem model or prototype demonstration in a relevant environment

(ground or space)
TRL 7 System prototype demonstration in a space environment
TRL 8 Actual system completed and "flight qualified" through test and demonstration

I (ground or space)
TRL 9 Actual system "flight proven" through successful mission operations

Table 4-1. Technology Readiness Levels, excerpted from [5].

Overall, TRLs are very generally defined by the level of complexity of the

hardware (component, subsystem, or system) and the environment in which it is operated

(laboratory, relevant environment, or space). They do not, however, specify clear

criteria, tasks, or metrics. For example, TRL 5 is met when a component and/or a

breadboard is "validated in a relevant environment" but it is not readily apparent what

either validation or relevant environment mean. The more detailed explanation of TRL5

(see Table 4-2) provides a descriptive example of testing, but again does not specify

deliverables which could automatically be applied to another product.

TRL 5: Component and/or breadboard validation in relevant environment

"At this, the fidelity of the component and/or breadboard being tested has to increase
significantly. The basic technological elements must be integrated with reasonably
realistic supporting elements so that the total applications (component-level, sub-system
level, or system-level) can be tested in a 'simulated' or somewhat realistic environment.
From one to several new technologies might be involved in the demonstration. For
example, a new type of solar photovoltaic material promising higher efficiencies would at
this level be used in an actual fabricated solar array 'blanket' that would be integrated
with power supplies, supporting structure, etc., and tested in a thermal vacuum chamber
with solar simulation capability."

Table 4-2. Definition of TRL 5, excerpted from [5].

TRL metrics are also very limited in terms of how far out they look from

technical performance of a single device. The metrics do not include any assessment of

how the technology compares to competing products (is it superior and differentiated?),

41



whether it can be produced by the supplier (does it leverage core competencies?), or

whether it can be produced in a cost-effective manner (what is the cost and is there a

positive return?). Thus while TRL metrics may serve to evaluate performance of a

technology, they cannot be used to sufficiently evaluate a product based on the

technology nor how well such a product can be transitioned into production. Finally,

TRL metrics do not identify the gatekeepers, so it is unclear who controls progress

through the levels. What entity certifies that a component has reached TRL5?

These and other limitations of TRLs as gating mechanisms for product

development were key drivers for the development of both EMRLs and MRLs. The TRL

metrics by themselves are insufficient to ensure that contractors follow commercial best

practices in developing defense products.

4.2 Engineering and Manufacturing Readiness Levels (EMRLs) - MDA

The MDA supported development of Engineering and Manufacturing Readiness

Levels in 2001 to address "Production Readiness" of a technology, to supplement the

"Technology Readiness" assessment of the TRL metrics [6]. Specifically, EMRLs were

designed to address the problem that "there is nothing in the description of [any TRL] ...

that requires that the technology be producible, reliable, and affordable". EMRLs were

intended to be integrated with TRL assessments, in particular with later stage

development programs. Five EMRL stages were defined (EMRL 1 through EMRL 5),

starting after a technology has met TRL 4 or TRL 5, component or breadboard validation

in a laboratory or relevant environment. Programs enter EMRL 1 at the point designated

in the Defense Acquisition System (DAS) framework as Capability Knowledge Point

(CKP) 1, or Milestone B. Figure 4-1 shows how EMRL stages fit into the DAS

framework.
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Figure 4-1. Integration of EMRLs into the Defense Acquisition Systems framework,
from [20].

The EMRL methodology has evolved since 2001 to include highly quantitative

metrics for design readiness and manufacturing readiness for each step in the EMRL

process. For example, at EMRL 1 at least 50% of the physical and functional interfaces

must be defined and at least 75% of the major subsystems representing about 80% of cost

must meet the requirements of CKP 2 (Design Readiness Review) (see Table 4-3 for the

complete definition of EMRL 1). Similar criteria are defined for the more advanced

EMRLs. These criteria can be considered clear, consistent, and objective and to a large

extent they do define activities, tasks, and methods for the process, so they meet many of

the criteria of good NPD gates. A Missile Defense Agency EMRL implementation guide

also indicates that gatekeepers have been at least considered within the EMRL process:

although certification authorities are not identified for the EMRL assessments, they are

specified for the TRL hardware assessments included in the EMRL assessments (see

Table 4-4) [19]. Finally, the EMRL process introduces the key concept of precedence

relationships in the work breakdown structure. Drilling down through the layers of

system, sub-system, and component, each entity is required to be at an EMRL that

exceeds the EMRL of the layer of the system in which it resides. These precedence

relationships are designed to avoid the problems of technology development occurring

concurrent with product development. If a new system is in development, the subsystems

are expected to already be in low rate initial production (LRIP) and components are
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expected to be in full rate production (FRP), so that the new system is not held hostage to

an unproven component technology. Effective precedence relations are illustrated

schematically in Figure 4-2. The implications of including an immature core component

in a system are also shown.

EMRL 1: "System, component or item validation in laboratory environment or initial

relevant engineering application/breadboard, brassboard development."

"System, component or item validation in initial relevant engineering application and
ready to enter Development Phase. Technologies must have matured to at least
Technology Readiness Level (TRL) 4 or 5. Satisfying exit criteria metrics for Capability
Knowledge Point (CKP) 1 (Milestone B) and successful completion of system
Preliminary Design Review (PDR) indicates readiness for the Product Development
Phase.

This is the initial level of engineering and manufacturing readiness. Technologies must
have matured to at least TRL 4 or 5. At this point all system engineering/design
requirements defined and 50% validated. Component physical and functional interfaces
50% defined at system level. Manufacturing processes and system level integration
demonstrated. 75% of major subsystems representing approximately 80% of cost meet
requirements of CKP2. Overall quality and reliability levels and key characteristics
identified and established for 50% of the system. Failure modes effects and criticality
analysis required for all levels. Safety assessment plan initiated. Design to Cost goals
established."

Table 4-3. EMRL 1 Definition, excerpted from [20].

Level Certification Authority

TRL 1 Principal Investigator (PI)

TRL 2 - 3 PI+ Funding Agency Project Sponsor

TRL 4 - 6 Deputy(ies) external to the Project

TRL 7 - 9 Cognizant Development Deputy in conjunction with SE

Table 4-4. TRL certification authorities defined within the MRL framework.
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Figure 4-2. Illustration of maturity precedence relations, adapted from [20].

We can see from these characteristics that the EMRL framework is fairly well

designed as a set of NPD gates, when compared with Cooper's criteria, and EMRL

assessments are in fact being implemented by the MDA. We do note, however, a few

limitations to the EMRL model, which are of concern. Our first reservation is that

EMRL 1 is reached in parallel with Milestone B, the end of Technology Development, so

it does not truly integrate manufacturing readiness with the early product R&D design

phase during which most product costs are determined. Second, although the EMRL

framework does provide much more objective criteria than the TRL framework, it runs a

risk of going too far in the direction of checklists more representative of early NPD

processes. By 2006, the EMRL evaluation criteria had grown to include 61 Program

Maturity factors, and 353 Criteria and Metrics [20] and a web-based software tool was

being developed for EMRLs. The developer clarified that criteria may be shortened or

tailored for particular applications and that the detailed criteria are "intended for people

with less experience" [21], but the risk remains that project teams may see the extensive

list of criteria as bureaucratic without adding value. In the view of one senior defense

scientist, such processes operate on "the fundamental tenet that people are not smart

enough to do the design" and they "slow productivity to a trickle." Although this is

surely not the intent of the detailed criteria, it is important to recognize that the EMRL
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requirements may be perceived as demonstrating a lack of respect for the people counted

on to execute the EMRL process, and this perception may undermine EMRL efficacy.

4.3 Manufacturing Readiness Levels (MRLs) - DoD

Manufacturing Readiness Levels provide an alternative DoD metric which is also

designed to assess hardware maturity. MRLs were developed and introduced after

EMRLs but build significantly on the material introduced by the EMRL framework. As

of mid-2006 the MRL framework was about 90-95% complete, and was being strongly

supported within the DoD and in particular within the Man Tech division. Directives

were issued in 2005 to carry out Manufacturing Readiness Assessments (MRAs) within

programs overseen by the AFRL [22]. Similar assessments are being carried out within

the Army Research Laboratory (ARL). The Defense Science Board Task Force on the

Manufacturing Technology Program also recommended in 2006 that MRLs be

incorporated into the DoD 5000 series acquisition regulations as a program evaluation

requirement [12]. This proposal reportedly has Congressional support [7] and it is

expected that this change to the 5000 series regulations will occur.

MRLs are designed to evaluate the "manufacturing readiness" of a product,

supplementing the existing TRL framework [7]. The primary goal is to enable rapid,

affordable technology transitions to acquisition programs. MRLs seek to answer

underlying questions not addressed by the TRL framework, such as reproducibility of

technical performance, product cost, and materials availability. Recognizing that most

technologies are developed by highly skilled scientists, MRLs raise the issue "Can

[devices] be made in a production environment by someone without a Ph.D.?" In

answer to the question of many developers as to whether "production" and

"reproducibility" are really relevant in often low-volume defense products, MRLs also

specifically target performance reproducibility "in items 2 - 1000." By the time the

I0001h item is produced, the cumulative volume produced has doubled almost 10 times.

There is in fact the most opportunity for moving down the learning curve in the early

stages of production.

To ensure cost effective technology transitions, MRLs establish a structure which

directly parallels the nine-level TRL structure, from as early as TRL 3. Figure 4-3 shows
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the alignment of MRLs with TRLs and with the DAS milestones. MRL evaluations start

much earlier than EMRL assessments, including four assessments prior to Milestone B

(EMRL 1). MRL proponents emphasize that early intervention is critical, since about

85% of costs can be locked in by Milestone B [7]. For this reason, in fact, pilot MRL

programs today are all Advanced Technology Demonstrators (ATDs), which the AFRL

hopes to take from MRL 3 through MRL 5 or ideally MRL 6 [24].

Relationship to System Acquisition Milestones

MRL 1-3 TRL4 RL5 TRL6 TRL8 TRL9
Mf lg Mg Mg MeMfg Mfg

Concepts Processes Poess Poess Poee rcse rcse
Identified In L ab I aPo auig i lc nf~

Enirt n vim niom

TRL I TRL 2 TRL 3 TRL 4 TRL 5 TRL, 6 TRL 7 TRL 8 TRL 9
Basic Concept Proof Breadboard Breadboard Prototype Prototype System Mission

Principles Formulation of in in Rep in Rep in Ops Qual Proven
Observed Concept Lab Environmt Environmt Environmt

Relationship to Technology Readiness Levels

Figure 4-3. MRL relationships, reproduced from [7].

4.3.1 MRL definitions

The MRL framework is actively evolving today as pilot programs are run, so one

challenge is finding specific MRL definitions. The best available sources appear to be an

electronic document repository actively maintained and updated within the Defense

Acquisition University (DAU) web site (acc.dau.mil) and various presentations from

members of the AFRL Man Tech Division. We review the overview of the MRL metrics

from the DAU website below. We then provide detailed criteria for the first few MRL

gates, which are most relevant to our goal of identifying appropriate gating criteria for

early stage defense contract funded R&D programs, using fairly straightforward lists

covering MRL 3 through MRL 6 from the AFRL Man Tech program. 3

3 Much more extensive electronic checklists are also available through the acc.dau.mil website. Like the 61
Program Maturity factors and 353 Criteria and Metrics of the EMRL software tool, though, these detailed
checklists may have too many "boxes to check" in them. There is a risk that the fundamental intent (and
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The DAU website includes a detailed matrix of MRL requirements outlining nine

primary threads with specific criteria at each MRL. Threads include Technology &

Industrial Base, Design, Materials, Cost & Funding, Process Capability & Control,

Quality Management, Manufacturing Personnel, Facilities, and Manufacturing

Management. Each thread is then broken down into more detailed areas. For example,

the Design thread addresses Producibility, Form, Fit, & Function, Unique Components,

and Key Characteristics. The Materials thread addresses Maturity, Availability, Sources,

and Special Handling (including safety and hazardous materials issues). The Process

Capability & Control thread addresses Production Line Modeling & Simulation,

Manufacturing Process Maturity, Manufacturing Technology Initiatives, and Process

Yields and Rates. Each sub-thread then has specific requirements which become

progressively more rigorous as MRLs advance. For example, within Design: Key

Characteristics, Key Performance Parameters (KPPs) are identified at MRL 4, allocated

at the component level at MRL 5, and tolerances are established at MRL 6. In parallel,

the Process Capability and Control: Process Yields and Rates thread requires yield

assessments on similar processes at MRL 4, identification of yield/rate issues and plans

for improvement at MRL 5, and evaluation of yields in a production representative

environment at MRL 6. On the supply chain side, the Materials: Sources thread requires

identification of sole/single/foreign source vendors at MRL 4, planning to minimize

sole/single/foreign source vendors at MRL 5, and justification for any remaining

sole/single/foreign sources at MRL 6; sourcing stability is assessed and monitored from

MRL 7 through MRL 10.4 More details within each level are explored below.

4.3.1.1 MRL 3 - Identification of Manufacturing Concepts

Table 4-5 lists three fundamental requirements for certification at MRL 3, the

simplest gate. The primary requirements are identification and documentation, all of

which should be fairly straightforward to achieve, provided that the program also meets

TRL 3. MRL 3 also starts to identify, though, areas which may contribute to difficulty or

benefits) of the MRL framework may be obscured by the extensive detail in these documents, so we have
instead focused here on the more general questionnaires being actively used today.

4 A takeaway from the Materials section is also the reminder that prime contractors are responsible for
ensuring that their suppliers also meet MRL criteria. The prime contractor is responsible for its own
materials and anything it sources externally.
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cost later, by highlighting areas which will need "new or significantly different

resources."

MANUFACTURING READINESS LEVEL 3
TRL 3 - Analytical and experimental critical function and/or characteristic proof of
concept.
Applied Research - Demonstration of technology functionality for potential applications.
MRL 3 - Manufacturing Concepts Identified

1. Identify the high-level manufacturing flow for producing new technology
2. Identify materials / resources needed
3. Highlight key areas which will require new or significantly different

manufacturing capability or resources

Table 4-5. Criteria for MRL 3, reproduced from [23].

4.3.1.2 MRL 4 - Identification of Manufacturing Processes

MRL 4 should occur with TRL 4, when performance has been validated in a

laboratory environment. At this point, more detail on the processing side is required,

including planning for process integration, resources, requirements, and costs. Table 4-6

provides a set of detailed questions to be answered in six primary areas. At MRL 4

planning is begun for future work, including a roadmap and cost projections, as it

becomes more likely that the technology will be successful.
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MANUFACTURING READINESS LEVEL 4
TRL 4 - Component and/or breadboard validation in laboratory environment
Applied Research - Demonstration and/or breadboard validation in laboratory
environment
MRL 4 - Identify the key manufacturing processes

1. Manufacturing flow concept detailed:
a. What are the processing steps?
b. Any processing steps new, different, or specialized?
c. What are the manufacturing capabilities requirements?
d. Capture detailed flow of new processing
e. Identify manufacturing runs for critical processes

2. Process integration planning
a. Identify interactions between independent processes

3. Resources required: capabilities, facilities, expertise, materials?
a. Are there new resources required beyond current industrial base?

i. Identify new processing resources
ii. Identify new materials required

iii. What are the requirements for new / different resources?
4. Identify key design requirements / key design characteristics
5. Identify the high-level manufacturing flow of the system level or major sub-

system (integration of the new technology)
a. Identify who could potentially produce a system that integrates the new

technology
6. Roadmap

a. Develop plan showing progression from MRL 4 through MRL 6
b. Identify critical milestone decision points for insertion systems
c. Show planned MRL maturity in relationship to insertion system

milestones
d. Cost targets / drivers identified

Table 4-6. Criteria for MRL 4, reproduced from [23].

4.3.1.3 MRL 5 - Manufacturing Process Development

MRL 5 begins the focus on manufacturing process development, once the

technology has been demonstrated to meet performance requirements in a relevant

environment (see Table 4-7). The intent of MRL 5 is to start process development so that

future production of the device or system will be successful. MRL 5 thus introduces the

concepts of process capability and control, and requires a test plan for manufacturing

runs. MRL 5 also introduces some of the less technical issues in Cooper's criteria, such

as requiring a viable preliminary business plan and a make versus buy (make/buy)

analysis.
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MANUFACTURING READINESS LEVEL 5
TRL 5 - Component and/or Breadboard validation in relevant environment
Advanced Technology Demonstration - Demonstration in a high-fidelity hardware-in-the-
loop facility
MRL 5 - Manufacturing processes development

1. Technology prime planning
a. Process capability

i. Establish process capability requirements
ii. Document definition of the control subject

1. Select measurement units
2. Identify key process input variables

iii. Define boundary values
b. Process control

i. Identify factors contributing to process variation
c. Update plans for manufacturing runs of critical processes
d. Update plans for manufacturing runs to demonstrate process interaction
e. Review of technology manufacturing concepts and key processes
f. Value stream map
g. Make / buy trade-offs
h. Preliminary Business plan / viability

i. Facilities
ii. Personnel

iii. Tooling
iv. Materials
v. Cost and schedule projections

i. Demonstrate technology capability to produce prototype item
2. Roadmap update

a. Process capability and control goals documented
b. Add cost projections for technology to MRL milestones
c. Update key design requirements / key design characteristics

Table 4-7. Criteria for MRL 5, reproduced from [23].

4.3.1.4 MRL 6 - Demonstration of critical manufacturing processes

MRL 6 requires demonstration of critical manufacturing processes and

demonstration of baseline process control by the time the system or subsystem

performance is validated in a relevant environment (see Table 4-8). With this

information, yield goals can be established and the business plan can be updated to

include appropriate cost and schedule projections.

51



MANUFACTURING READINESS LEVEL 6
TRL 6 - System / subsystem model or prototype demonstrated in a relevant environment
Advanced Technology Demonstration - Demonstration of actualflight ready hardware
set in a high-fidelity hardware in the loop facility under expected levels of shock,
vibration, altitude, and temperature
MRL 6 - Critical Manufacturing Processes Demonstrated

1. Process capability and control baselined for critical steps
a. Manufacturing runs of critical processes executed

i. Analyze process
1. Failure modes and effects analysis

ii. Improve and control
iii. Yield goals reconciled with business plan costs and schedules

2. Plans for manufacturing process integration executed
a. Critical process interactions run / demonstrated

3. Production line development
a. Implementation planning completed

i. Lean production plan developed
ii. Investment requirements identified

4. Reconciled with business plan costs and schedules
5. Roadmap update

a. Process capability and control goals confirmed
b. Cost projections for technology updated
c. Key design requirements / key design characteristics updated
d. Business plans updates

Table 4-8. Criteria for MRL 6, reproduced from [23].

4.3.2 MRL evaluation

We can see from the specifications for MRL 3 - 6 that the MRL framework does

in general meet many of the criteria required for good NPD gates. Criteria for each MRL

are clear, consistent, and objective, and visible deliverables are specified at each level.

Metrics are not quite as directly quantified as the EMRL metrics, in that MRLs do not

specify a percentage of drawings to be complete, but key issues such as process

capability and control are addressed. MRLs also emphasize costs and viable business

plans much earlier in the process than for EMRLs. EMRL 1 occurs at the same point,

Milestone B, as MRL 6. By incorporating four gating points up to and including MRL 6,

the MRL framework gives visibility into possible future issues before EMRL 1. Finally,

of the three frameworks, the MRL framework appears to have the broadest view of a

program, looking at how the program fits within the industrial base, requiring a make/buy

evaluation, and considering issues such as sole/foreign/single sourcing. By including not
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only the two dimensions of product and process, but supply chain as well, the MRL

framework starts to approximate a three-dimensional concurrent engineering (3-DCE)

approach, the use of which can provide firms with significant competitive advantage [25].

Effectively the MRL framework seeks to require that firms develop capability in multiple

dimensions, so that over the long run they may "work smarter" [11].

Comparing the MRL criteria to the best practices decision criteria identified by

Cooper, we see that the MRL framework does address many of the must-meet criteria.

Technical feasibility is verified through the parallel TRL requirements. Market need and

positive returns are somewhat covered by the business plan requirements at MRL 5

(although this may not be early enough in the process for the contractor). Safety, health,

environment, and legal requirements are covered through much of the materials and

manufacturing planning. Show stoppers and potential killer variables are explored

through identification of critical processes, interactions between processes, and sourcing

verification. Leveraging of core competencies could possibly be said to be indirectly

treated through investigation of the industrial base. On the other hand, MRLs do not

explicitly address strategic alignment, product advantage, or organizational structure, all

of which are also required for success. MRL proponents themselves clarify that "MRLs

are not designed to be go/no-go gates, but rather to assist leaders in making informed risk

decisions at Milestone reviews" [7]. It will thus likely still be in the contractor's best

interest to evaluate capabilities against other metrics in addition to MRL criteria.

4.4 Choosing a readiness level metric

Our review of the three hardware-specific DoD readiness level metrics has shown

that either EMRL or MRL metrics, but not TRL metrics alone, could likely be used as

partial gating criteria for NPD in the defense industry. In order to choose which one of

these is preferable, for our purposes, we consider a few more criteria, notably the voice of

the customer and the stage of technology development.

We saw in Chapter 2 that good NPD processes emphasize market orientation and

"the voice of the customer." We saw in Chapter 3 that many of the gating decisions in

the defense industry, particularly go/kill decisions, are also made by the customer, not the

contracting firm. It follows from these two considerations that the contractor should
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prepare for gate reviews according to criteria which are set by the customer. Thus the

choice between EMRL and MRL metrics today to a large extent comes down to the

primary source of contract funding. For firms with significant investments from the

MDA, it will make most sense to follow development steps consistent with EMRL

metrics. Firms with significant DoD funding from AFRL or ARL will likely want to

follow MRL metrics. In both cases, firms have an incentive to pro-actively prepare for

EMRLs or MRLs becoming part of their contractual obligations. In fact, firms likely

have an incentive to prepare for a composite of the two metrics to be instituted. It is

expected that eventually the two programs will be reconciled into a single structure. This

ultimate integration is evidenced by frequent use of EMRL examples in some areas of the

MRL implementation guide, where the development of the equivalent MRL step (for

example subsystem/component roll-up charts) lags EMRL development [26]. The most

likely integration will merge the two processes where they are similar and will

incorporate benefits from each that do not have a parallel in the other. For example, since

the early stages of the MRL process (MRL 3 through MRL 6) are not as fully developed

in the EMRL process, these would be expected to be retained. Likewise, since the EMRL

framework has more explicit requirements for maturity precedence relations and has a

more developed visualization metric (rollup charting), these might be expected to survive

in the final system.

Our case study is focused on an optical component which has been developed on

contract R&D funds from both DARPA and AFRL. The AFRL is currently

implementing MRLs on ATD programs and has plans to implement these on an

additional 16 programs in the near future. In fact, the "AF ManTech office is

establishing the capability to conduct manufacturing readiness assessments for all

hardware-intensive AFRL ATDs" [7]. All of these programs will be at levels under

MRL 6. The 16 programs on the current list include two which could incorporate the

technology in our case study, which today is at approximately TRL 3. Thus for our

purposes, it is most appropriate to apply the MRL methodology, both for customer

satisfaction and due to the early stage technology maturity. As an added carrot, AFRL

Man Tech staff confirmed that ATD programs which undergo MRL evaluations become

candidates for Man Tech funding. Although DoD Man Tech programs represent less
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than 0.5% of DoD research, development, test and evaluation (RDT&E) budget, in a

competitive funding environment, more potential sources of funding are always desirable.

A typical small Man Tech program might provide $ 1M for one year, while a larger

program might provide $15M over four years. We will see in our case study that this

level of funding could help to establish market attractiveness.

4.5 Summary of defense readiness level metrics

We have seen that the defense acquisition environment appears to be changing

today to formally incorporate best practices for manufacturing readiness in addition to its

standard focus on technology capability. The older TRL metrics are insufficient by

themselves to serve as sufficient gating criteria. The EMRL and MRL metrics being

developed by the MDA and the DoD are much better aligned with commercial best

practices. They incorporate manufacturing design into the early stages of development

where costs can be impacted the most, and they do this through the use of clear objective

criteria. It is expected that one or both of these metrics will soon be incorporated

formally into defense acquisition regulations. Defense contractors who prepare for this

change are likely to come out ahead in development of upcoming DoD systems, and

those who do this, plus integrate other "softer" commercial best practices are likely to do

best.
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Chapter 5: Application of Best Practices: Case Study Analysis

With a set of best practices and gating metrics applicable to the defense industry

now in hand, we will now see how these practices and metrics might be applied to a

current R&D program funded by defense contracts at a major U. S. defense contractor. A

technology transition study of an optical component was carried out as part of an MIT

Leaders for Manufacturing (LFM) internship with an LFM partner company. The

internship spanned six and a half months, from June 2006 through December 2006. The

primary objective of the internship was to provide recommendations to the firm's

divisional management on how to bring up production capabilities for the device under

development. These recommendations were to address questions including if, how, when

and where the firm should make capital investments to support production capabilities,

and what best practices the firm should follow in order to ensure a successful new

product transition. The best practices frameworks presented in Chapters 2 to 4 were

studied to find a set of metrics appropriate to the defense industry, both for this program

and more generally for other technologies that the contractor might develop in the future.

In the next two chapters we use the frameworks developed in previous chapters to

both understand the state of the device development today and to provide the firm with

recommendations for the future. Background information is first provided to position the

technology and the development group within the organization and the changing defense

environment. In this chapter, we then explore non-technical ("soft") aspects of the NPD

project including strategic fit, organizational structure, financial options, and competitive

position. To understand the business and project environment, we review perceived

commitment levels from management and the government, and the current organizational

structure. To understand fit, we explore how the proposals for new capital expenditures

support the firm's strategy and how they fit with the firm's core competencies. For

finances, we summarize results from financial models for four proposed investment

scenarios, including best- and worst-case scenarios. Finally, we review the competitive

component landscape.

In the next chapter, technical Manufacturing Readiness Assessments (MRAs,

"hard" criteria) are presented for three elements of the component: one externally
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sourced material and two internally sourced processes. Because MRLs are new and

contracts do not yet require compliance with MRL requirements, it is not expected that

the component elements will be at a specific MRL. The MRAs serve broadly to identify

areas for focus in future contracts.

Taken together, the results of the "soft" and "hard" evaluations were used to

provide an ensemble recommendation for future steps in program development. Because

of the proprietary nature of the details of the study, much of the specific data in both

evaluations has been modified in this work to provide representative illustrations. Data

for the study was gathered through 6.5 months of on-site work for the contractor,

including interviews, surveys, site-visits, and review of existing company documentation

and processing records.

5.1 Background

The device under development is an optical component first conceived of by

scientists in the R&D division of the firm in the mid-1980s. The device can be used in

applications including free-space optical communications and high energy laser delivery,

all of which have been maturing in concurrent defense programs for a few decades. It

relies on a liquid crystal optical element which is controlled by complex electronic

circuits. As a liquid-crystal-based device, the component uses technology and processes

common to the flat-panel and liquid crystal display (LCD) industries. These include

fabrication methods and equipment common to the semiconductor business, such as

photolithography and thin film deposition technologies. Like both LCDs and

semiconductors, the devices require fabrication in a clean room.

Investments in the technology were funded in initial years through corporate

R&D dollars and in later years through various government contracts, including funding

from DARPA and AFRL. The development team achieved several "firsts" in technology

development under these contracts, including demonstrating record device size at one or

more times. The group or its members also received various internal and external

technology and publication awards.

Recent years brought several changes to the contractor and to the development

team which are relevant for our study. The most fundamental change was the dissolution
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of the corporate R&D division several years ago. This restructuring organizationally

realigned former R&D groups under specific business divisions and physically relocated

groups when the original corporate R&D site was closed. At this time, the technology

was identified as a potential enabler for laser communications, a new growth area being

driven by the Transformational Satellite (TSAT) Communications vision of the Under

Secretary of Defense. As funding opportunities opened up in the TSAT area, the

component group was realigned under a communications-focused business unit of the

firm and was relocated to available clean-room space rented from another business

division, about an hour's drive from the regional headquarters of the parent

communications business unit. For clarity below, this clean-room location is referred to

as Site A and the regional headquarters location for the communications business unit is

referred to as Site C. Most of the R&D group was physically located at Site A, while

business division management, program management, and systems integration staff were

located at Site C. The R&D group in Site A received government contracts sufficient to

make it nominally self-supporting in 2003 and 2004, excluding the capital outlays

required to transfer the clean room equipment. More recently, though, many factors

have made the funding environment more difficult. These include re-allocation (and

reduction) of government funds across the board due to the expenses of the ongoing war

in Iraq and an overall slippage of the TSAT program. The initial champion of the TSAT

program has also left the DoD, and proponents of existing satellite communications

programs (MilStar) are lobbying for alternate approaches which may further reduce the

size of available programs in the laser communications space. In 2006, the R&D team

was actively working on two contracts, and the next phase of a third expected contract

had been indefinitely postponed.

In this challenging environment, the firm needed to make some key decisions,

both for the long and short term. Looking out a few years, and assuming continued

success in device development, the firm wanted to decide at what location to enter into

production and where capital investments should be made. Complicating the issue was a

request for capital equipment expenditures at Site A in the short term to upgrade or

replace older equipment which the development team had been using for two decades.

At the outset of the internship, it had largely been assumed that expenditures could and
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would be made in two locations: the common view was that investments would be made

to grow and upgrade the capabilities of the existing R&D group at Site A, but that

investments for manufacturing at a product level would probably occur in a different

facility already dedicated to component manufacturing. This second facility is referred to

below as Site B. In this hypothesis, personnel at Site B would be responsible for

producing product while the R&D group at Site A would continue to develop next

generation devices. In the initial assumptions, it was also assumed that Site B, with a

stand-alone profit and loss statement, would foot the bill for any capital expenditures

required to give it all the technology capabilities needed for fabrication of this particular

component. One justification for transferring production to Site B was that Site B

already had some existing processing equipment for other products with some technical

capabilities that exceeded the capability of the existing equipment at Site A.

5.2 Commitment and organizational structure

New product development efforts work best when an assigned team of players

with a clearly accountable leader are supported in their NPD efforts by solid

commitments from management, as discussed in Chapter 2. To understand how well the

existing organizational structure for this component met these criteria, we surveyed

employees in Sites A, B, and C with connections to device development. On-line surveys

were completed by 24 of 36 invitees (67%) for a first survey and by 19 of 35 invitees

(54%) for a second survey run a few months later: these high response rates are
5indicative in and of themselves of a high level of commitment to the program.

Survey results did indeed confirm strong commitment and motivation among

employees. 87% of respondents agreed or strongly agreed with the statement "I am

motivated to do my best to support [device] development efforts." Motivation was

uniform across all locations, with only one employee dissenting. Respondents also

agreed or strongly agreed with the statement "I personally have a vested professional

interest in the success of the [device]" at a 79% rate. Thus the firm had in place a

committed team of players dedicated to making the product successful.

5 A rule of thumb is that typical survey response rates are around 30%, so both of these response rates are
considered quite successful.
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On the other hand, employees in general felt that commitment and support was

lacking both from firm management and from U. S. government programs. On a one to

five scale (1 = too little, 3 = the right amount, 5 = too much), device R&D support from

firm management was rated only 1.7 on average, and support from U. S. government

programs was rated 2.2 on average. Only a few respondents seemed to believe that

government support slightly exceeded management support, but all were worried about

funding. "Failure to invest" and "program uncertainty" were rated as the top two non-

technical risks to device success. The second survey followed up on the perceived lack

of government support by asking "how well does the firm publicize or advertise device

capabilities?" Only 21% of respondents believed publicity was sufficient, with the

majority (58%) responding "not enough" and an additional 21% responding "way too

little."

Despite these worries, though, there was significant optimism that program and

management support would still warrant a high level of device-related activity in multiple

locations. A series of questions asked staff to predict what level of device-related activity

would be present in a 5-10 year timeframe in seven different processing areas (device

fabrication through system level assembly), either at the current R&D site (Site A) or

elsewhere within the company. Allowed responses started at no activity (0) and moved

up through conceptual design (1), research (2), development (3), new product pilot line

(4), small volume production line (5), and manufacturing (6). The mean predicted

activity level was 4.0 at Site A and 4.3 elsewhere, with maximum expectations of 4.9 at

Site A and 5.8 elsewhere. Respondents thus strongly believed that the firm would be

supporting a pilot line in the current Site A location, as well as production line in either

low or high volume elsewhere in the firm.

These responses together highlight a contradiction between what staff believed

would be the case in the future and the level of support that they felt they had at present.

Best practice is to have a clearly defined project leader who communicates upwards and

downwards, so we wondered what message was being given by program leadership.

Since the component work spanned several different government programs, we needed to

first identify the person responsible for the overall maturation of the component

technology. Since the organization had both business and technical arms, in both
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surveys we asked respondents to name the individual who "owned" the device business

case and the individual who "owned" the device technology development.6 Respondents

were instructed to leave the response blank if they did not know. In the first survey, two

names were given for business ownership: 74% of respondents correctly named the

business unit manager in charge and others named the scientist who had invented the

technology, but who also now had some business development responsibilities. On the

technical development side, four different names were provided, and several respondents

independently filled in the equivalent of "no one is in charge." Of the four people

named, only one thought he was responsible for development, and this was not the same

person deemed responsible by management at Site C. In a detailed look, it was also

noted that 56% of self-identified technical contributors at Site A either left the technical

leader answer blank (an implicit "I don't know") or explicitly wrote in the equivalent of

"no one is in charge." A follow-up survey was run a few months later. Since a few

respondents had indicated that ownership and leadership meant different things to them,

the technical ownership question was split to ask separately "who owns technology

development?" and "who is leading technology development?" to see if this would

provide more consistent responses. Again however, four different names were put forth

for each question (six unique names in total) along with several "no one" and "I don't

know" answers. One person was named as both owning (42%) and leading (32%)

technical development, but again the person deemed responsible by management at

Site C was named only 21% of the time for both questions. Overall these results pointed

to an area in need of improvement, namely the clear designation of a project leader

responsible for maturing the component technology itself.

We concluded from our organizational and leadership analysis that many of the

key attributes needed for successful NPD were present, especially a committed team, but

that there was an opportunity for organizational improvement. Many of the discrepancies

between what was perceived at present and what was expected in the long term are very

6 In the best practices literature, the project leader should be dedicated to only one NPD project (in our case
component development) and should have formal authority to make day-to-day decisions. This means
the appropriate "leader" here is the technology development leader. However, since the culture of this
firm is to somewhat split responsibility between a business unit manager who oversees multiple
technologies, and program teams, we used two separate questions to differentiate between these roles.
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likely linked to the lack of clarity in technical leadership. Without a clearly responsible

technical leader in place, the team did not have a representative to air concerns regarding

funding and publicity to management. Likewise, no one had responsibility to challenge

the assumption that there would be significant investments in the component technology

over the next several years. The physical distance between management in the regional

headquarters at Site C and the satellite clean room at Site A likely also increased the

difficulty of effective communications. Finally, no one had the key responsibility for

ensuring that the technology was maturing as planned, and that the strategy and resource

requirements were consistent with the firm's goals and capabilities.

5.3 Strategic fit and core competencies

New products have a better chance of succeeding when they fit the business

strategy of the firm or business unit in a manner synergistic with the business unit's

strengths and core competencies. The proposed paths to production for this component

involved two related business units with slightly different charters. We therefore

compared the fit of the component and its production requirements to the goals and

strengths of these two units, to see which path might provide the most synergy in the

future. We started our evaluation by looking at the mission of the firm as a whole, and

then drilled down into the details of the two specific subsidiary units. We then made

qualitative assessments of the strategic fit and ability to leverage core competencies. We

emphasize that in practice, these assessments should be made by the designated

leadership team, against agreed-upon criteria with agreed-upon weights. The assessment

presented here is thus only intended to be illustrative of one possible view and was

primarily designed to spur the management team to increase discussions of strategic fit

and leverage in their own decision-making process.

From the top down, the corporate objective is to be the leading defense and

aerospace systems supplier. In defense, as in many industries, companies have come to

believe that more value can be captured by working "further up the food chain" in

systems integration activity instead of in component and device supply. Consistent with

this view, this firm's objective now emphasizes being known for "mission systems
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integration," a shift from previously being known more as a provider of components and

sub-systems.

Divisions within the corporate structure focus on providing mission systems

integration in specific areas. For example, the parent division in our study is responsible

for providing mission solutions for networked communications, including command and

control and battlespace communications. Other divisions are responsible for space- and

aero-space-based systems, missile systems, and integrated air-, land-, and sea-based

defense systems. Business operating units within each division have further defined

mandates, usually supporting the parent divisions and occasionally crossing several

divisions where broad support is needed.

In our study, the component R&D team (Site A) was aligned with a

communications systems business unit (Site C) whose objective is to provide military

communications solutions at the system level, with core competencies in systems

integration. We saw positives and negatives in this alignment for the component R&D

team. On the positive side, the systems integration development group was able to

leverage the component when preparing bids for next generation communications

systems. A key customer confirmed that the firm does today have "a competitive

advantage by having in-house component development" although he would like to see

multiple component suppliers. There is thus a match in strategic fit on the

communications side, and some leveraging of component competencies. On the other

hand, the component group itself is less able to leverage the core competencies of its

parent business, since component development requires different skill sets and expertise

than systems integration. A component developer must know how to manage and control

fabrication processes, qualify a component for space or airborne operation, and deliver a

completed device to the customer. However, interviews with systems integration

personnel at Site C confirmed that steps in component process control, qualification, and

manufacturing are foreign to them; once a system is specified by the systems integration

group, the design is typically transferred to another location for production, and already-

qualified components are obtained from vendors both internal and external to the firm.

The result of this is that the component group has no local strategic partner within its own

division to guide it in moving from R&D to production and it cannot leverage core
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manufacturing competencies in its own organization. Also, as a component fabrication

group reliant on high tech capital-intensive equipment, it is an anomaly in a systems

integration organization which is not used to its costs7 and cannot easily absorb its skilled

technical workers. Finally, one last drawback is that current programs for the component

extend beyond communications, for example to high energy laser delivery for laser-based

weapons. Weapons applications are not within the mandate of the parent

communications business unit, so these programs are considered "step-out" projects from

the perspective of this unit, even if they are consistent with the mandate of the firm as

whole.

We next checked to see whether a better fit would be obtained with the second

proposed organization at Site B. This second organization is an independent unit with

responsibility to support several major corporate divisions by developing and producing

electro-optic components for communications, missiles, and weapons systems. The unit

has a wide variety of product lines based on several primary technology areas and ships

tens of thousands of space- and military-qualified devices each year to internal and

external customers. Most products are made with high tech capital-intensive equipment

like semiconductor processing machines. As an exception to the general corporate

mission to focus on mission systems integration, Site B has an explicit mandate to

develop component technology. Understanding this mandate, we find a better strategic

fit for the optical component with Site B (component technology) than with Site A

(communications systems). As an active component supplier, Site B has core

competencies in component engineering, manufacturing, and qualification which could

be directly leveraged in maturing the optical component. These abilities should also

make leveraging the component in systems integration bids easier for the firm, since they

could demonstrate production experience to systems customers. With a mandate to

support several divisions, Site B also can readily support non-communications

applications such as high energy laser-based weapons and could potentially facilitate use

of the component by other divisions. Finally, the fact that Site B supports multiple

product lines means that it has less vulnerability to long term drops in demand. In the

7 In addition to capital equipment depreciation, rent on the clean-room space increases the rate structure of
the entire regional systems integration group significantly, according to the regional director.
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event of a drop in demand for one product, highly skilled workers may be transferred to

work on a different product, since multiple products rely on the semiconductor

processing equipment and associated skills.

One specific concern worth addressing was frequently raised whenever the

question of transferring technology from Site A to Site B was discussed: what about

employees, their expertise, and the firm's capacity for future innovation? In an expertise

evaluation, it is clear that the specific knowledge and the specific ability to produce the

component currently reside at Site A. Staff at Site B have comparable training and skill,

though, and can be expected to easily learn the required production techniques, if

processes are mature enough to transfer, or to appropriately re-engineer product design

for robustness and manufacturability where processes are not mature enough to transfer.

In this case, knowledge transfer should strengthen, not weaken, the firm. Again, this

comes down to a question of versatility and breadth of contribution. Cross-trained

employees and teams help firms to cope in downturns because they can be re-assigned to

other product lines. The absence of any other product development work on Site A

equipment and the absence of additional component-level innovations coming out of the

group in the years since the original device invention blocked us from concluding that the

firm would lose substantial device innovation capability if the component work were

ultimately transferred from Site A to Site B. Clearly knowledge transfer would require

cooperation and assistance of staff in Site A.8 Such cooperative knowledge transfer

occurs routinely in firms and between firms in all industries today. The division would,

however, also need to make sure that such a transfer would not jeopardize ongoing

systems-level innovations for uses of the component in subsystems and systems relevant

to the parent communications division at Site C.

5.4 Financial options

A third criterion for a successful new product introduction is financial

attractiveness, including market attractiveness, market need, and positive return versus

risk. Cooper emphasizes that firms should not make NPD decisions on financial

assessments alone, but financial criteria should still be included as part of a complete

8 It was estimated that the assistance of about four key staff members would be needed for about one year
in order to effectively transfer the product. These costs were included in financial analyses.
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assessment. The more robust the financial expectations from a new product even in the

event of adverse circumstances, the more confident a firm may be that it is a good

investment. We thus considered four financial scenarios, under a variety of best- and

worst-case conditions, to see which investments could make the most sense for this firm.

Scenarios evaluated included (I) investment and activity at Site A only, (II) a hybrid of

investment and activity at both Sites A and B (the assumed approach), (III) production

investments at Site B with no additional investments at Site A, and (IV) limited

investment at Site A with potential future investments for production at Site B delayed by

a few years. These scenarios are summarized in Table 5-1. Options I - III assume

immediate investment at the relevant site(s), while Option IV assumes delayed

investment. The outcome of Option I would be both R&D and production capability at

Site A. The outcome of Option II would be enhanced R&D capability at Site A with

production capability at Site B. Option III would result in full production capability at

Site B, but no enhancements to the R&D capability at Site A. Option IV would make no

immediate R&D-level investments and would delay production-level expenditures until a

make/buy decision at a later date, with an option to invest for production capability at

Site B in the event of a decision to make the component internally.

Option Captial investment description Resulting R&D Resulting
Capability Production

Capability

I Immediate investment at Site A Site A (production Site A
only equivalent)

II Immediate investment at both Site A (enhanced) Site B
Sites A and B

III Immediate investment at Site B Site A (limited Site B
only upgrades)

IV Delayed investment at Site B, if Site A (limited Delayed option to
make/buy decision is to make. upgrades) invest at Site B

Table 5-1. Summary of the four financial scenarios modeled.

Scenarios were evaluated on the basis of net present value (NPV) and internal rate

of return (IRR) from cash flow projections over a 10 year period. Key inputs to the

models included required capital expenditures and expected profits from expected future
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contracts. A financial model including all capital expenditures requested for Option I had

already been developed before the start of the internship. This model had an extremely

complete associated capital equipment list due to the expected obsolescence of older

Site A equipment and the inclusion of equipment for a proposed capacity expansion.

This Option I model was used as the foundation to develop Options II - IV. Capital

equipment lists and processing run sheets were reviewed line-by-line with staff from

Site B to identify specific capital investments which would be needed at Site B. Ongoing

capital expenditures for maintenance of the clean room infrastructure were included

based on the experience of the team at Site B. All capital investments were depreciated

using 150% declining balance converting to straight line depreciation over a 10 year life.

Best- and worst-case scenarios for capital needs were also developed for each option

based on the probability that certain equipment would or would not be required as a result

of ongoing technical work.

Some of the most important numbers in financial analyses are the projected sales

that a firm expects to get. Entrepreneurs notoriously overestimate projected revenues and

revenue growth rates. To mitigate the problem of overestimating returns, this firm uses a

system of "factored" and "unfactored" sales. Usually, unfactored sales represent the total

addressable market, while factored sales represent the fraction of the market contracts

that the firm realistically expects the government to fund and the firm to win. Factored

sales are the appropriate revenues to use in financial calculations, because they take risk

and market share into account. In the case of this particular component, though, a

slightly different definition was being used, perhaps since the total addressable market

was less well known. For this product, factored sales represented the full amount of

known optical system-level contracts within the firm's 5-year plan that the firm expected

to win and to which the business unit had committed in its 5-year plan. Sales in years 6-

10 followed a growth rate projected by a detailed analysis of the market conducted in

2004, with an allowance for some slippage observed in government funding since 2004.

Unfactored sales were then backed out of the given factored sales, using a confidential

internal factor. This approach is not in and of itself worrisome, except that in some cases

the unfactored numbers had been used to justify capital expenditures, as they provided a

more optimistic return on investment. To be consistent with the firm's past analyses
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and to be rigorous in the numbers presented to management, we ran models using both

sets of numbers, but we emphasize here our belief that the factored sales to which the

business unit leadership team had committed are the appropriate numbers to use.

All financial analyses were also done from the rolled up perspective of the firm,

with the perspective of the individual business units included only where appropriate.

This was critical to correctly understand the impact of investment options at Site B. As

noted in section 5.1, it had originally been assumed that Site B would foot the bill for any

capital investments made there to support the component, because it was assumed that

Site B would earn profit from making the device. In fact, however, as a wholly-owned

subsidiary of the firm, at the corporate level Site B was prohibited from taking any profit

from the divisions that it was designed to support. Consistent with standard corporate

financing practices to avoid double marginalization, product sold internal to the firm by

Site B is transferred at marginal cost, i.e., labor plus materials, while product sold

externally is sold at market or government contract pricing. Since Site B would only be

producing devices for internal consumption,9 Site B would only receive funding for

component-specific labor hours. Thus the critical question for Site B became whether

there was sufficient labor volume in future contracts to balance the additional capital

depreciation that it would have to take on. For this, we compared the ratio of annual

labor to annual depreciation against a confidential internal threshold. Since revenues in

the model were at the system level, we also made a very rough estimate of the fraction of

each system-level contract which was expected to go towards component production.

The relative internal rate of return from the four scenarios under study is shown in

Figure 5-1. All options appeared to have high IRR when unfactored (total potential) sales

were used, but only Options III and IV had IRR above the corporate hurdle rate (dashed

line) when factored (expected) sales were taken into account. NPV results were similar.

Note that Option IV also implicitly included a possibility of purchasing components

externally (not shown), rather than investing at Site B, in which case returns on Option

IV would be higher. Options I and II both yielded negative NPV values for factored

sales, indicative of undesirable investments. Option II is clearly the least desirable option

9 No external component sales were assumed, in order to maintain the perceived systems-level advantage of
having an in-house component supplier with a unique capability.
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from a financial standpoint, requiring almost 60% more capital expenditures than Option

III, on the same revenue base. Option I, investing heavily at Site A only, was also not

viable in the factored sales case. All net profits from systems-level contracts were

insufficient to justify the requested immediate component-level capital expenditures at

Site A.

Unflactored

on

Factored

Option

Figure 5-1. Internal rate of return ranges for the four financial options under study, for
both factored (solid) and unfactored (hatched) revenues.

Options III and IV appeared to be the most desirable from a pure NPV and IRR

standpoint, at the corporate level. Since these involve internal transfers, though, site

specific metrics for Site B must be checked. For Option III, we found that the amount of

component fabrication labor predicted in the factored sales cases was insufficient to

justify Site B taking on the associated capital expenditures. This was also true for the

first several years of the unfactored sales analysis. These results implied that unless

there was a corporate level change in the metrics by which Site B was evaluated, it would

not make sense for Site B to invest. Only Option IV appeared viable from both corporate

and individual business unit perspectives. By delaying purchase of capacity expanding

equipment for a few years and investing at Site B where some existing equipment was
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already in place, IRR and NPV were both maximized, and the risk to Site B was

minimized by starting Site B participation at a point when device volumes could justify

capital expenditures. An exemplary metric illustrating the ratio of new labor hours to

new capital depreciation for Site B is schematically shown in Figure 5-2. As volume

increases in later years, labor is sufficient to carry the associated capital depreciation

expenses.

IV, unfactored
4-A

IV, factored

4-Threshold

III, factored

Year

Figure 5-2. Schematic representation of financial metrics for Site B.

5.4.1 Potential additional revenue

The financial options above would all be more desirable if more revenue could be

brought in to offset the capital expenditures. However, only revenues which can directly

be accessed as a result of investments belong in a financial capital justification. A few

other revenue generating ideas were discussed within the firm, including intellectual

property (IP) sales, licensing and/or production of the component for non-defense

purposes, for example as part of a telecommunications switch, and sales to other defense

contractors. We briefly discuss these here, to acknowledge them and also to explain why

those revenues, with the exception of possible external sales for other defense purposes,

do not in fact belong in the financial models above.

The most prominently discussed "opportunity" was to generate several million

dollars in one-time sale or royalty fees by licensing IP for a non-defense application. In
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fact, an outside consulting firm had recently provided a very optimistic assessment of

potential IP-related revenues, and significant short term receipts had been included in

previous financial models. We excluded those revenues from our analysis not only

because of the uncertainty of these receipts, but also because whether or not the firm

receives these revenues is independent of whether the firm spends today on capital

equipment, so they do not belong in the capital justification.' 0

A similar argument holds for revenues which would be generated from non-

defense sales of the component. The idea was proposed, internally and also externally by

a primary customer, that it would be desirable for the firm to produce components for

example for a telecommunications application, in addition to producing them for defense.

This is similar to the "dual-use manufacturing" proposal for civilian and military

operations [12]. There are two problems with this idea. First, non-defense component

applications clearly do not fit within the business strategy of any of this firm's business

units. The firm lacks core competencies in producing for or selling to a non-defense

market and it would be extremely difficult to justify such a step outside of the norm for

this one small component. Second, even in the event that the firm chose to invest for a

non-defense production line, or convinced a non-defense partner to do so, competition in

commercial products, especially telecom devices, is so severe that there is little

probability that military and commercial devices would ever be made on the same line.

Today labor accounts for over 90% of the cost of a single device, which rate is untenable

in the commercial component market. For telecom, the device would require significant

re-engineering to reduce costs and would in all likelihood ultimately be fabricated in

Asia, a location which is out of bounds for defense work. The firm might be able to

benefit from the faster learning curve that the commercial group would see, if a deal were

structured to allow this knowledge capture, but investments would have entirely separate

financial justifications.

The last possible option for additional revenue generation is to sell devices to

other defense contractors to build volume and utilize equipment capacity. A key

JO If the firm wants to find its return on investment going all the way back to the 1980s and 1990s, these
revenues could be included as returns on the intellectual property developed at those times, and would
offset some of the earlier capital expenditures. Just as "sunk costs" are excluded from the financial
analysis for today's investment decisions, though, "sunk revenues" are also excluded.
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customer thought that in an ideal scenario, the firm could still "make the best device" and

integrate it with a slight advantage in-house, but still sell them outside to other defense

contractors. This option has not been discussed significantly in the past, but is worth

evaluation in the future. Here the application (and cost structure) would be consistent

with the firm's strategy and capabilities but the firm would give up some "uniqueness" on

the systems side. The initial goal of using the component to open the door to the business

unit for systems-level communications contracts has largely been fulfilled, though, so this

might be acceptable. The division is now a credible supplier in the systems space and has

additional contracts which use other technology approaches. In the future, when

expenditures under Option IV are to be authorized, the firm may want to evaluate in more

detail the trade-offs between facilitating competitors on the systems side and capturing

value on the component side.

5.5 Product uniqueness and advantage

A final key requirement for new product success is "Having a superior

differentiated product that delivers unique benefits and better value to the customer."

This means both that the product must be superior and differentiated, and that the firm

must be able to uniquely provide it. In this study, we took at face value the commitments

from existing customers and the results of previous market studies as confirmation that

the technology does indeed deliver unique customer benefits. The component technology

enables communications networks with no moving parts and has advantages in terms of

size, weight, and power handling capability over more conventional technology

approaches. As long as the promised technical performance can be delivered, this

advantage will be preserved." For our discussion here, we limit our analysis to whether

or not this firm has a unique superior product, relative to other potential component

providers. To assess the firm's competitive advantage in providing this technology we

considered the firm's IP position, "sole source" contract justifications, and published

reports of comparable devices provided by competitors. Here we found that the firm has

had a competitive advantage in the past, but that the relative advantage has decreased in

recent years, so the firm does need to be more wary of competition.

"Ongoing systems-level trade studies (internal to the firm and out of the scope of this study) will also
serve to validate or challenge this assumption.
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Intellectual property ownership is often cited to back up a claim that a company

has unique control of a product. For this to be the case, the firm must have a

comprehensive IP position and must be able to defend its ownership. This is difficult to

claim for this product for two reasons. First, it is fundamentally very difficult to defend

IP in the defense world: if a contractor believes that another supplier is infringing a

patent while providing product at the government's request, the wronged contractor can

only sue the government, not the other supplier. Since the government is the firm's

customer, there is a disincentive to sue. IP protection is thus not very strong for defense

components. Second, although the firm does own some of the original patents in this

technology space, its relative portion of the patent portfolio is decreasing and aging. To

qualitatively determine IP strength, we searched the U. S. Patent and Trademark Office

(USPTO) database to find IP relevant to the technology, starting first with the firm's own

patents and then conducting backwards and forwards citation searches. This generated

over 600 cross-citations referencing about 450 patents. From these we checked almost

200 specific patents to qualitatively assess relevance. From this search, we found that the

IP space was in fact fairly well populated. The firm holds the largest fraction, about one-

quarter, of the most relevant IP, primarily covering device design and applications. A

key competitor (Competitor A) holds about one-fifth of the relevant IP, with strengths in

particular processing elements such as thin film designs. This leads to the conclusion that

the firm has a strong, but not unique IP position. Its position is also weakening as the

patents from the early 1990s expire.

Without strong IP protection, the firm needs to justify uniqueness based on other

criteria, such as technical superiority. In fact, the team has received at least one contract

based on a "sole source" justification, as the only contractor capable of providing the

technology at the time the contract was awarded. To find out if this advantage still held,

we interviewed a key customer who had been involved in that award. He confirmed that

indeed at the time, the firm did have a unique capability. However, since the contract

award, Competitor A had also demonstrated comparable device performance, and in the

eyes of this customer, Competitor A would now be a credible supplier. A "sole source

award" would possibly not be made in the next contract award phase. Consistent with the

DoD goal to not be dependent on a single supplier, this customer was also very interested
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in developing other firms to produce comparable technology. Although work at

Competitor A was not being actively funded right now, he "would like to send them a

contract." Overall, the customer saw the firm in our study as being in first place in

technology development but identified two credible competitors and a few potential new

entrants.

Finally, we reviewed public information covering the two credible competitors to

develop an understanding of their technical capabilities. Competitor A only entered this

particular optical component space in the late 1990s but has been working on other liquid

crystal based devices for many years. Synergies with these other devices seem to have

made it somewhat easy for them to enter the optical component space. They published

record device performance in 2004. They utilize an extensive collaboration network

including many of the same people collaborating with the R&D group in our study, in

defense, industry, and academia. Competitor A is primarily focused on component

development and supply, not on systems. Published news reports indicate Competitor A

has invested in large new clean-room manufacturing facilities in recent years. Like

Site B of the partner firm, this competitor has a wide product line spanning many

technologies, so they are well positioned to survive fluctuations in market demand. The

optical component would only represent a small fraction of their sales. Competitor A

does not appear to be making a strong push into the optical component space at present,

but they have demonstrated competency that will likely make them a credible supplier

should they choose to enter. The firm has recently been acquired by another firm, so

there is some uncertainty regarding their future.

The second competitor (Competitor B) actively produces components based on

similar technology for both the commercial and the defense market. Competitor B has

been in the industry since the late 1980s, but is still quite small, with fewer than 20

employees. They focus primarily on component design and assembly, outsourcing much

of the capital-equipment-intensive portions of processing to an external foundry. The

firm's products in the OEM commercial market are fairly simple devices. Competitor B

can probably benefit from its manufacturing learning in these simpler products to bring

down its overall manufacturing costs for more complex products. In the defense world,

the firm is a small player, but has received on the order of $10.5M in DoD Small
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Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR)

funding over a 15 year period [27]. Again, they collaborate with many of the same

groups, including commercial and academic liquid crystal suppliers. They should be

considered a credible entrant into component supply if and when this becomes profitable.

Their reliance on an external foundry will likely help them to wait out delays in system

deployments since their lower capital investment structure means they are not overly

reliant on immediate returns. Competitor B holds two relevant recent patents but since

their issue has been content to put work into the public domain.

5.6 "Soft" conclusions

The review above indicates that the market for this particular component will

possibly be somewhat competitive in the future. The firm seems to be the strongest

competitor today, but should keep competition in mind as investment plans are made.

Much of the firm's original "first mover" advantage has been lost in the twenty plus years

since the original invention. The firm itself is actually now facing a capital-based

"barrier to entry" into component production, since it needs to expand or replace aging

equipment.

If the firm chooses to source components internally, our analysis of strategic fit

and core competencies indicates that an ultimate alignment of component production

with Site B would probably put the firm in the strongest competitive position. However,

comprehensive investments should not be made in the near term at any site, unless the

firm is prepared for financial losses. Because of the highly capital intensive nature of the

component fabrication processes, the firm is in a position where automatic profitability

through defense contract margins does not apply. Until volumes are sufficient and

sufficiently certain to justify large capital expenditures, the firm should focus on

optimizing processes in the current facility, to prepare for a technology transfer at a later

date. In the mean time, it was recommended that improvements could also be made in

the organizational structure by designating a clear technical leader responsible for

component technology development. This appointment has since been made and reports

are very positive regarding recent progress that the R&D team has made under this new

leadership.
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The firm should also continue to monitor potential alternative component

suppliers who have shown credible capabilities. These firms could either enter as

suppliers to competitor systems providers in the future, or a partnership could be formed

to source component supply from one of these firms at a later date. A make/buy decision

will need to be made in the future based on a comprehensive trade analysis of the costs

and benefits of an external supply against the costs and benefits of investing in a captive

in-house supply.
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Chapter 6: Case Study: Manufacturing Readiness Assessments

We now turn to the technical evaluation of the component to supplement the

organizational, strategic, financial and competitive analysis. In this part of the case

study, the objective was to build a picture of the manufacturing readiness of the

component. Fabrication of the component could be broken down into eight primary

areas, including thin film deposition processes, photolithography, liquid crystal alignment

layer preparation, fabrication of the liquid crystal itself, assembly, electronic controls,

packaging and test. A detailed investigation of all aspects of fabrication would not have

been feasible within the timeframe allotted to the internship, so we selected a few

exemplary processes to evaluate: the externally supplied liquid crystal, internally

supplied thin films, and various steps in the assembly and final test process. We

assessed capability in these areas using the DoD MRL criteria of Chapter 4, since AFRL

is the primary customer for the device today. As noted above, since no compliance with

MRLs has yet been required by contracts, the intent of the MRA is only to provide the

firm with a benchmark and to identify areas for focus in the future. The firm is not yet

expected to have completed any MRLs.

6.1 TRL baseline

Manufacturing Readiness Levels incorporate Technology Readiness Levels into

their metrics, so we started by trying to find consensus regarding the device TRL

capability. Unfortunately, as noted in Chapter 4, there are no explicit certification

authorities specified by the TRL metric, so we found a wide variety of opinions as to the

maturity of the device. In our first survey, we asked respondents familiar with TRL

metrics to indicate the TRL of the simplest form of the device, a component built on a

glass substrate with a specific liquid crystal. The nineteen responses ranged from TRL 1

to TRL 6, with a mean of 3.4. Many in the organization expressed surprise at the range

of responses, although others did not. One interpretation of the high variability of

opinion is that it is consistent with the uncertainty regarding technical leadership.

Another interpretation is that variability is attributable to a possible lack of training in this

area. Five respondents did indicate they were "not familiar" with TRL metrics and chose

not to respond to the question. Responses to the same question on the second survey,
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after some internal discussions regarding TRL metrics, showed more consensus: 79% of

respondents chose TRL 3 or TRL 4 and the remaining 21% selected TRL 5. Only one

respondent to the second survey indicated insufficient familiarity with TRL metrics.

TRL 3 encompasses "Analytical and experimental critical function and/or

characteristic proof-of-concept" while TRL 4 requires "Component and/or breadboard

validation in laboratory environment." Consensus was ultimately reached in discussions

with the R&D team that the device today is in qualification for TRL 3. These discussions

led to the acknowledgment that precedence relations require that the component cannot

be at a higher TRL than the least mature of its subcomponents. Although past devices

using a commercially available liquid crystal and a different assembly process have met

TRL 4 criteria, a new specialty liquid crystal and a new assembly method are both being

developed on current contracts. The critical function of this new material and new

method was yet to be tested as of the end of the internship, so the maturity of the current

design reverts to below TRL3. Since devices with other materials and assembly

processes have indeed been validated in a laboratory environment, though, as long as the

new processes and materials under development are demonstrated successfully, the

program should move quickly from TRL 3 to TRL 4.

6.2 Externally supplied liquid crystal

The liquid crystal is the most fundamental enabling technology for the optical

component in our study, so it is appropriate to use it as a subject for an MRL assessment.

Further, the liquid crystal material and supply, along with the methods for filling and

sealing the liquid crystal cavity, were identified by survey respondents as the two highest

risk elements in device fabrication. To evaluate the liquid crystal, we applied the MRL

criteria of Chapter 4. Data was gathered from available data logs in the R&D laboratory

and also from discussions with firm and supplier personnel. At present, the liquid crystal

used in the devices is provided through a research subcontract with an academic

researcher at a U. S. university. As the prime contractor on communications systems

contracts using the component, the defense firm will be responsible for ensuring that its

liquid crystal supplier complies with MRL requirements.
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6.2.1 MRL 3: Identification of liquid crystal manufacturing concepts

The primary requirements of MRL 3 are identification of processes and materials.

In our study, we found very limited existing liquid crystal-related documentation aside

from sparse log book records. However, discussions with the university researchers

allowed us to fairly easily construct a first cut at identifying manufacturing concepts for

MRL 3. For example, the high level manufacturing flow for producing a new liquid

crystal consists of (1) designing molecules, (2) synthesizing or purchasing compounds,

(3) synthesizing mixtures, (4) testing formulations, and (5) testing devices. Steps (1), (3),

and (4) are usually carried out at the U. S. university. For step (2), one or more specialty

compounds are typically sourced externally from an Engineering, Chemistry, and Physics

Department at a foreign (usually European) university. Materials and resources needed

include these specialty molecules, approximately $40K of testing equipment, and

preferably a clean room environment for synthesis and mixture formulation. We also

found that the R&D team at Site A has not yet designated a point person in-house who is

responsible for understanding liquid crystal characterization, for tracking liquid crystal

performance, and for tracking incoming quality and consistency. We listed this person as

a required resource to be developed, since we believe this will be necessary to meet the

requirements of MRL 4.

MRL 3 also starts the process of highlighting areas which will require new or

different manufacturing capabilities or resources. Here we stress that all liquid crystal

work today is done in a university research laboratory with no formal manufacturing

capability and where many requirements are not met. For example, the university lab is

not in fact in a clean room. It also has limited testing capability. The current university

measurement capabilities include only a single wavelength laser source and a small

temperature range. The actual component operating temperature is expected to be quite

high, and at least two other different wavelengths will be used in defense applications.

Liquid crystal performance is highly sensitive to both wavelength and temperature and a

single point measurement is insufficient to predict performance. In order to meet MRL 4

requirements for identification of key design requirements and characteristics,

performance at operating wavelength and temperature will be needed, so we highlight the

need for future investments in test and measurement equipment. We also highlight the
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longer term need, which will reappear in MRL 4, for a commercial liquid crystal supply.

The firm has been in discussions with a few specialty chemical companies and believes

that a supplier can be found. The primary challenge will be making the work financially

attractive. The number of devices being made is in fact very small today. This fact,

coupled with the fact that over 500 devices can be filled with only 5 g of liquid crystal,

means that manufacturing the material will probably be unattractive to large liquid crystal

suppliers such as Merck or Sigma Aldrich and that a "boutique" supplier will be

necessary.

Overall, we do not expect significant hurdles to the firm in meeting MRL 3

metrics, provided that TRL 3 is met with the newly designed materials. Compliance with

MRL 3 will likely require more detailed documentation than what we have summarized

above, but this documentation should be straightforward for the firm to produce or to

request from the university research team as today's liquid crystal supplier.

6.2.2 MRL 4: Identification of the key liquid crystal manufacturing processes

MRL 4 presents more challenges to the liquid crystal than MRL 3. MRL 4

focuses on identification of manufacturing processes: flows, materials, and risks. It also

requires identification of key design characteristics as a precursor to demonstrating

performance against those requirements at MRL 5. For the liquid crystal, this will mean

identification of technical parameters such as optical birefringence and figure of merit

(FoM) requirements, operating temperature requirements, speed requirements, and

reliability needs (hermeticity, radiation, etc.). Building a database to monitor

performance and correlating device performance to key design characteristics (to validate

these requirements) will be necessary. In addition, more specific criteria will likely need

to be provided to the university research team. Today, the university team has only been

given the objective of developing a liquid crystal with the fastest possible response.

Additional requirements for performance against critical environmental criteria

(temperature, radiation) also need to be included in design requirements.

MRL 4 incorporates TRL 4 as a base requirement: "basic technological elements

must be integrated to establish that the 'pieces' will work together to achieve concept-

enabling levels of performance for a component and/or breadboard." In addition to this,
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MRL 4 also requires identification of interactions between processes. At present, a

chemical interaction between the tolane-based liquid crystal and something in the device

assembly process has been observed and has been under investigation for a few years.

The interaction causes undesirable degradation of the liquid crystal, i.e., the pieces do not

yet work together. To reach TRL 4 and MRL 4, this degradation will need to be

eliminated, and the solution will need to be documented for future program stages.

Similarly, the liquid crystal today is known to interact with ultra-violet (UV) light. Some

processing steps have been modified to eliminate UV exposure of the liquid crystal.

MRL 4 will require documentation of UV exposure risks so that future process

modifications do not reintroduce the problem. Note that achieving MRL 4 is not blocked

by these documentation notes, but awareness is raised regarding potential future risks.

MRL 4 also starts to build information for sourcing. Evaluation of the industrial

base will likely indicate that development of a non-university source will be required.

Similarly, when MRL 4 starts the process of identifying sole source, single source, and

foreign source vendors, foreign source concerns may be raised over the foreign supply of

key liquid crystal molecules. Foreign sourcing is in fact expected to be one of the

primary concerns for government adoption of the technology, independent of which

defense contractor provides it. The university research team is also the primary liquid

crystal source for competitors, and according to the U. S. university team, the European

university is the primary supplier of high tech specialty molecules to most liquid crystal

suppliers, including commercial firms such as Merck and Sigma Aldrich. It is thus

expected that most paths today will lead back to a single foreign source for key liquid

crystal elements. This state will need to be approved by the defense customer throughout

the manufacturing progression. Alternatively, the defense customer may choose to

support development of U.S.-based expertise equivalent to that at the foreign universities.

For the time being, the firm in our study should be able to meet MRL 4 requirements,

since these do not yet require mitigation of sole/foreign sourcing, and the customer today

is aware of off-shore sourcing for liquid crystal materials. Still, reaching future levels

may be challenging, depending on the customer's wishes.

Finally, MRL 4 starts requirements for planning and for funding commitments.

This includes both manufacturability of the component (here the liquid crystal) and of the
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system (here the optical device). Cost drivers must be assessed and a plan for maturation

from MRL 4 to MRL 6 is required. Funding sufficient to reach MRL 5 must be

available. A detailed assessment of the liquid crystal against MRL 4 metrics was

provided to the firm. Many steps in MRL 4 are not yet started, as would be expected for

an early stage technology development effort. Meeting these requirements will require

contributions from both the firm and from today's university source. As the prime

contractor, the firm will be responsible for ensuring that the university (or any other

liquid crystal supplier) meets the documentation requirements where appropriate.

6.2.3 MRL 5: Liquid crystal manufacturing process development

MRL 5 focuses on manufacturing process development. This includes

establishing process capability and control, value stream mapping, and make/buy

tradeoffs. A viable business plan is required, along with cost and schedule projections.

For the liquid crystal, this will mean identification of a viable supplier. At MRL 5, this

includes beginning planning to minimize sole/single/foreign sources. MRL 5 also

requires planning for maturation to MRL 7, and available finding to reach MRL 6.

On the technical performance side, MRL 5 also requires TRL 5: "Component

and/or Breadboard validation in relevant environment." The optical component will be

subject to harsh operating and non-operating conditions. Ambient operating temperature

ranges vary with application, but a rough study of several applications indicates that

operation from about 15 'C to 65 'C and storage from about -30 *C to + 70*C will be

required. Liquid crystals are characterized by phase transition temperatures at which they

transition from crystalline form to smectic phase, smectic to nematic phase, and nematic

to isotropic phase (clearing temperature). The optical device operates in the nematic

phase and heaters are included to control operating temperature. However, devices stored

at -30*C will clearly go into the crystalline state, passing through the smectic state.

Today, when crystallization occurs, devices are heated to above the clearing temperature

in order to realign liquid crystal molecules with the inner cell surface alignment layer. It

is an open question whether including a high temperature cycle at startup is a viable long-

term option from the customer standpoint, and what repeated high temperature cycles

will do to device reliability. Liquid crystal research goals today do include development
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of isomers that do not have a smectic phase, and that form a true eutectic mixture. Such

future liquid crystals could eliminate some of the issues above, but these liquid crystals

will need to be built into devices and validated on their own. To avoid limiting (by

maturity precedence requirements) the maturity of the component to the maturity of these

yet-to-be developed isomers, customers assume that success will be possible with liquid

crystals available today.

Work towards MRL 5 has not been started today at the liquid crystal level.

Achieving MRL 5 will require a significant increase in rigor, including data collection

and analysis, establishing a requirements flow-down from the optical device, and

modeling of interactions with component tolerances. It will also require significantly

more detail in business planning, both for a non-university source for the liquid crystal,

and for reducing dependence on the foreign source.

6.2.4 Liquid crystal summary

The liquid crystal is clearly a high risk element in the component, considering

technical and manufacturing concerns. Maturity today is limited by the introduction of a

new mixture, which keeps maturity below TRL 3 and MRL 3 until proof-of-concept is

demonstrated. On the technical side, the chemical interaction issue must be solved in

order for the device to meet TRL 4 (and MRL 4) requirements. More detailed technical

requirements must also be flowed down to the supplier to make sure that the liquid

crystal will meet all requirements. Adding more detailed specifications and verifying

performance against these criteria represents a shift in mindset for the R&D team, which

has focused more in the past on achieving "hero" performance along a single dimension.

On the manufacturing side, sourcing is the most serious issue, since the current source is

not commercial and relies on foreign-sourced components. Meeting MRL 5 criteria is

likely to be challenging.

6.3 Internal wafer processing

Manufacturing readiness of internal wafer processes was assessed to understand

the maturity of processing steps controlled by the R&D team and to identify areas which

would need to be improved to mature the device towards MRL 6 within the next few

years. Wafer processing includes several thin film deposition processes. Anti-reflective
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(AR) coatings, transparent electrodes, and isolating dielectric layers are all deposited on

optically transparent wafers as part of the fabrication process. Below we present a

general overview of the wafer processing maturity according to MRL 3, MRL 4 and

MRL 5 metrics. Select results from specific processes are also presented to illustrate

control charting and yield prediction techniques which will be useful for assessing yields

at MRL 4, and meeting process capability and control requirements at MRL 5 and

MRL 6.

6.3.1 MRL 3: Identification of wafer processing manufacturing concepts

MRL 3 requires technical performance at or above TRL3 supplemented by

identification of manufacturing flows, materials, and resource requirements. In thin film

processing, most criteria for MRL 3 are met today, with one reservation regarding TRL 3.

Starting with the TRL assessment, whether thin film processing meets TRL 3

hinges on a question of whether the final target performance must be demonstrated at

TRL 3 or if performance close to target is sufficient. Most early stage R&D contracts

require experimental critical function and characteristic proof of concept only on a "best-

effort" basis. The team has delivered devices which meet most optical performance

criteria, so TRL 3 has in general been believed to have been met. Our process control

analysis indicated one parameter of concern, though, which will be discussed in section

6.4. Once analytical modeling is done to demonstrate a thin film design which meets this

parameter requirement, TRL 3 should be considered complete.

On the manufacturing side, the team already has in place many of the

requirements called out by MRL 3. Manufacturing flows are detailed in process

documentation "run sheets" for all device builds. Material requirements and resources

are also called out in these run sheets, which specify the particular equipment used for

each step and the source materials for each thin film layer. Material requirements are all

standard semiconductor processing materials such as silicon dioxide, aluminum oxide,

and other thin film oxide materials. Base materials are usually glass substrates with tight

specifications for surface flatness and optical transparency. Regarding new or different

resources, the team has already identified through the capital equipment list reviewed

above the new or additional manufacturing resources which will be required.
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The primary issue which we identified in the manufacturing-specific criteria was

the frequency with which documenting run sheets were updated. Some process changes

were not recorded in updated run sheets resulting in discrepancies between reported and

actual target levels (to be discussed further in section 6.3.4). To fully meet the intent of

MRL 3, we recommend reconciling process documentation with actual device targets.

6.3.2 MRL 4: Identification of key thin film manufacturing processes

MRL 4 presents more challenges in thin film processing than MRL 3. MRL 4

focuses on identification of manufacturing processes: flows, integration, resources, key

design requirements and characteristics, and initial roadmapping to MRL 6. Yield

assessments are also completed on similar processes. Here the primary challenges are

expected to be in understanding the manufacturing capability requirements, critical

processing requirements, and key design characteristics. This challenge comes primarily

from the R&D nature of the work done to date, not from an intrinsic design limitation,

though, so this is an addressable problem. Overall, many of the steps towards MRL 4

have not yet been started.

The primary limitation found in our MRL 4 assessment was an overall shortage of

comprehensive data analysis. As noted above, most early programs had focused on

demonstrating "best effort" performance, typically on a small number of devices. In

general, no device-to-device performance analysis was carried out, nor was device

performance correlated back to processing parameters. Likewise, no uniformity studies

had been done within at least the past five years. Yields were not determined using

performance criteria, but instead only on whether a device made it through the assembly

process. Consistent with these trends, no database existed with current or past processing

data. Most processing records were only kept manually on the run sheets.

The manufacturing flow concept requirements of MRL 4 include a requirement to

assess yields and identify manufacturing capability needs, critical processes, and

interactions between processes. For thin films, this means identifying requirements for

optical transmission, thickness targets, sheet resistance, etc., with regards to uniformity

across the area of a wafer, wafer-to-wafer uniformity within a run, and run-to-run

uniformity. Requirements should include definitions of acceptable ranges as well as

87



target values. Processes such as annealing and subsequent deposition steps are also

known to change the performance of previously deposited films, so the interactions

between these processes must be documented and in-process shifts tracked through the

run sheets. Further, the net effects of all thin film deposition layers needs to be

considered together, for example by budgeting for optical losses between the AR coating

layer and the transparent electrodes. Building a database and correlating device

performance to processing characteristics will clearly be necessary.

Finally, MRL 4 also starts requirements for planning and for funding

commitments. Cost drivers must be assessed and a plan for maturation from MRL 4 to

MRL 6 is required, including funding sufficient to reach MRL 5. Again, data will be

critical, since cost-drivers imply an understanding of yield issues.

6.3.3 MRL 5: Thin film deposition manufacturing process development

MRL 5 focuses on manufacturing process development. This includes

establishing process capability and control, value stream mapping, and initiating

make/buy tradeoffs. A viable business plan is required, along with cost and schedule

projections. Considering the financial analysis from section 5.4, MRL 5 will be the

appropriate point for the firm to decide whether to invest in production capability at

Site B, or if devices should instead be sourced externally. On the technical side, MRL 5

will require an understanding of uniformity across wafers and devices, and impacts on

device yield, whether these are used as steps towards manufacturing within the firm, or as

steps towards qualifying an external provider. Yield/rate improvement studies are

initiated. MRL 5 also requires planning for maturation to MRL 7, and available funding

to reach MRL 6.

Thin film work towards MRL 5 has for the most part not been started today.

Achieving MRL 5 will require a significant increase in rigor, including data collection

and analysis, establishing a requirements flow-down from the component, and modeling

of interactions with component tolerances. It will require routine process monitoring,

such as in-process control charting. MRL 5 will also require that all specifications and

control limits be established.
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6.3.4 Wafer process control analysis

The manufacturing readiness assessment of wafer processing showed that a

shortage of data collection and analysis will probably become an issue at MRL 4 and

MRL 5. Specifically, the MRL analysis highlights the questions that the DoD and AFRL

wanted to promote, such as "can more than one device be made reproducibly?" Trying to

answer this question, and attempting to set the stage for the team in future device builds,

we analyzed existing data from previous builds to see what level of understanding we

could gain. One frequently heard refrain was "we do not do batch data analysis because

the volumes that we produce are too small for process control analysis to be useful."

Thus, we also sought to see if indeed data volumes were too small, or if useful

information could be obtained. In fact, our analysis did allow us to identify processes

which are likely to be critical for MRL 4 or MRL 5. It also highlighted ways in which

more controlled design-of-experiment (DOE) approaches may be taken in the future in

order to increase the value of the data that is available through low volume builds.

Finally, full analysis of the data indicated potential areas in which time (and cost) may be

saved by identifying non-conforming material at early processing stages. These savings

will be critical as volumes increase in the near future.

6.3.4.1 Test population and method

To provide a meaningful framework for future process control monitoring, we

needed to develop a model with a population of comparable devices. Specifically, we

needed to make sure we did not include devices for which the R&D team had

intentionally varied processing parameters. With the help of the R&D team, we

identified a set of devices for evaluation which had been built during a six month period

to nominally identical design specifications, as part of a final build for a previous

program. Specific thin films were then selected for analysis based on the R&D team's

expectations of processes that should be in control. A detailed report including the full

analysis of all films was provided to the firm. Here, we show only sample results

including behavior of an in-control film (Film A) and an out-of-control film (Film B), for

illustration purposes. We used the Film B data to look for trends across a wafer, and

show how a trend analysis might be used to remove at least one out-of-control wafer. We

also identify correlations between measurements of Film B early in the fabrication
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process and performance at the end of processing, and show how this could be used to

yield wafers early in the process before additional fabrication expenses are incurred. As

with other data, potentially proprietary numerical values have been omitted.

The test population consisted of 14 discrete substrate wafers and 12 unique

superstrate runs used to assemble 23 devices of three different sizes and two different

types. Up to five discrete thin films are deposited on each substrate or superstrate in a

series of coating runs. In general for this device population, most series were unique to

one or two wafers. For example, two wafers might be processed together for Film A,

Film B, Film C, and Film D, and then another two wafers would be processed together

for Film A', Film B', Film C', and then might be split into two batches for Film D' and

Film D", where 'denotes a different deposition run. The 14 substrate wafers were

processed in 7 unique series. Each superstrate was processed in a single unique series.

These unique series unfortunately prevent meaningful analysis of the full film stackup,

but controlled builds using a DOE process were identified as a potential next step for

future builds. We limit our analysis below to only single films with equivalent

processing targets.

For each selected process or parameter, we set up sample control chart analyses to

identify natural control limits and to compare these limits to nominal specifications. Two

commercially available software packages were used for data analysis: SPC Excel 2 and

JMP.' 3

6.3.4.2 Film A results

We first illustrate behavior of an in-control process using data from one type of

deposition run (Film A). Figure 6-1 shows the individual (a) and associated 2-point

moving range (b) control charts generated by measurement of Film A as deposited.

Individual measurements are shown as points. Natural control limits, shown as heavy

dashed lines, are computed based on the mean (heavy solid line) and the sum of the

moving range data. The 95% confidence interval for the mean is also shown (thin dotted

lines).

12 SPC Excel is a Microsoft Excel add-in with SPC (Statistical Process Control) capabilities.
http://www.sigmazone.com/spcxl.htm

13 http://www.jmp.com/
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Figure 6-1. Film A control charts including (a) an individuals control chart, and (b) a 2-
point moving range chart.

The data indicate that the process for Film A is under control, within the natural

control limits shown, and the 95% confidence limit for the mean contained the target

value, which is good, although this interval is wide due to the small number of data

points. Processing documents did not contain upper and lower specification limits for

Film A, so we could not evaluate whether the process was also within specifications, but

this can in the future be done in a straightforward manner by the development team.

The primary unknowns for this process are now the within-wafer uniformity and

within-run uniformity, since we only have one measurement per run, taken on a witness

coupon placed in the chamber with the wafers. Historically, non-uniformity is reported

to be less than a percent. In the future, this non-uniformity should be confirmed. This

value, together with the few percent variation observed run-to-run in Figure 6-1, could be
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used to construct the boundaries of the process capability required for MRL 5

compliance. These serve as a start towards baselining process capability and control for

Film A at MRL 6.

6.3.4.3 Film B results

Other films were not in as good control as Film A. Figure 6-2 shows the

individual (a) and 2-point moving range (b) control charts generated by measurement of a

witness coupon from Film B deposition. Again individual measurements are shown as

points, and natural control limits are included as heavy dashed lines. Two data points

show up as "out-of-control," above the upper control limit. These points indicate that this

process should probably be monitored more closely to determine what may be triggering

these events.
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Figure 6-2. Individuals (a) and 2-point moving range (b) control charts for Film B.
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Two other concerns were raised from the analysis of Film B. First, the natural

control limits computed, even with the two outlying data points removed, were more than

a factor of two wider than the nominal specification limits listed on the wafer processing

run sheets. Second, although the run sheets contained specification limits, these limits

were not used to yield wafers during fabrication. Only about 60% of the data in Figure

6-2 met specifications and yet all wafers were processed and used to build devices.

Together, these observations lead to the conclusion that the existing documentation does

not accurately reflect design requirements or processing rules today. If, on the one hand,

specification limits are incorrectly too narrow, they should be widened to avoid

unnecessary scrap in the manufacturing process and unnecessarily tight equipment

requirements. If, on the other hand, specification limits are actually correct, and final

device performance will be impacted, then the process needs to be improved.

Reconciliation between documentation and actual practice should be done to truly

comply with MRL 3 requirements.

6.3.4.4 Within-wafer uniformity and within-run uniformity

Thus far we have only looked at single point measurements on witness coupons

included in the deposition chamber. We now examine process control data measured at

several different points on a wafer, to understand issues associated with within-wafer

uniformity. We will also briefly investigate within-run uniformity here. For this

purpose, we used another set of measurements of a parameter determined by Film B, but

measured at the end of the process (EOP).

Characterization of within-wafer uniformity requires measurements at multiple

locations on the wafer. Wafers for our device are circular. Nominally square optical

apertures are distributed across a wafer, in a configuration determined by the size of the

aperture and the available size of the wafer. Test structures are included in the

photolithography mask pattern at specific locations across the wafer so that a "map" of

the film uniformity can be constructed. For process monitoring, it is in general desirable

to map as much of the wafer surface as possible, by placing test structures at

representative locations across the wafer, both close to the center and close to the outer

edges. The number of data points along a particular axis determines what order of fit
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may be applied to the data. For example, to get a measure of curvature in film thickness,

measurements would typically be taken at center, and at least two other points ± r along

the x- and y- axes, where r is a radial distance from the center (x, y) = (0, 0). For our

optical devices, test points were unfortunately less than ideal, but some measure of across

wafer uniformity can still be obtained. Three different photolithography mask sets were

used for the three different aperture sizes. Of these, two masks had four test structures at

coordinates approximately equivalent to {(x, y)} = {( xo,yo), (xi, yo), (xi, yj), (xo, yi)}

where xo and yo were approximately in the center, and x, and yi were towards the

periphery. These locations probe less than half the wafer since they are only effectively

in a single quadrant. The third mask, however, had five test structures at coordinates

approximately equivalent to {(x, y)} = {(xo,yo), (xi, yi), (-x2 , yI), (-x2 , -y2), (xI, -y2)},

where x0 and yo were as before, and xi, x2, yi, and y2 were about 1/3 to 1/2 the distance

from center to edge. Together, this ensemble of measurements allows us to look at some

film variability across a wafer. The third mask also allows us to estimate some measure

of curvature across the wafer, even though test structures were not balanced evenly from

the center and a single axis cannot be drawn through any three points. Overall, the

mappings were unfortunately insufficient to allow 1:1 assignment of specific values to

specific devices within a wafer. Designing future masks with more comprehensive test

locations was suggested as a future improvement.

An X-bar chart of the EOP measurements across each wafer is shown in Figure

6-3. In this plot, each wafer is represented by a point showing the mean value of the four

or five measurements. The box plots around each point show the maximum, minimum,

75th percentile, 25th percentile, and median for each wafer. Every pair of points with the

same symbol represents a pair of wafers processed in the same deposition run. The solid

lines represent the computed upper control limit (UCL), mean, and lower control limit

(LCL) computed from the data.
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Figure 6-3. X-bar chart of Film B, EOP across several wafers.

The data in Figure 6-3 prompt several observations. First, we see that the overall

process was not in control during the entire build, consistent with the results already

reported for Film B. Second, the first four pairs of wafers still appear to perform very

similarly within each pair. Although the data indicate that the process is not in control

and varies significantly from run-to-run, the mean values for the paired wafers in groups

1 (square dots), 3 (x's), and 4 (squares) are fairly close to each other. This might indicate

that the process had been running in control at an earlier date, but that there was slippage

at an early point in this build. The mean values for nine of the wafers fall outside of what

should be the control limits. Third, wafer-to-wafer variation within a run appears to

increase during the build. Finally, for this parameter, actual performance again did not

agree with nominal specification limits in the documentation. Overall, this data indicates

that in-process control charting and monitoring should probably be implemented on

future builds, so that appropriate changes can be made when process control degrades.

The high level of variability within each wafer leads to the question of whether

there are observable trends in film characteristics across a wafer or within the testing

chamber. To explore this, we examined the four wafers for which five data points were
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available. These were the first and last pairs of data from Figure 6-3. We estimated the

x- and y-coordinates of the test points from wafer maps in the documentation and plotted

the measurement results as a function of these coordinates. We then checked for

quadratic trends in the data, since wafer rotation during deposition will often produce

radially varying film thickness. These results are shown in Figure 6-4. The first two

wafers (A and B) do show some quadratic behavior. R2 values for the 2nd order fits (solid

curves) are 0.87 in x and 0.96 in y for Wafer A (dots), and 0.66 and 0.69 for Wafer B

(+'s), indicating that about 90% of the variation in Wafer A and slightly less than 70% of

the variation in Wafer B might be explained by radial variation. Within the second pair

of wafers (dashed curves), we find similar quadratic behavior in Wafer C (x's), although

with less convincing fitting parameters (R2 was only 0.30 in x, but 0.55 in y). More

importantly, though, we see very anomalous behavior in Wafer D (squares). Behavior for

Wafer D diverges significantly from the previous trends and the total variation across the

wafer is much greater. This is important not so much to determine the form of the actual

variation for Wafer D,14 but to point out that in a manufacturing setting Wafer D would

probably be eliminated from the processing group based on this anomalous behavior.

-......... x X 0

(a) Film B, EOP by x-coordinate (b) Film B, EOP by y-coordinate

Figure 6-4. Film B, Msmt #2 results as a function of test coordinates x (a) and y (b).

14 The quadratic fit in pure x-y coordinates for Wafer D is admittedly not particularly appropriate but is
retained in the figure for illustration. In fact, the measurement values increase monotonically along a
nominal southwest/northeast axis from (-x 2, -y2) through (xo,yo) to (xi, ye), but rise and fall along a
nominal northwest/southeast axis from (-x 2, Yi) through (xo,yo) to (xi, -y2). Since no three measurement
locations lie on a straight line, though, we did not do an axis transformation to make the fit to the
nominally rotated axes.
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Finally, the ensemble of the Film B results from the witness coupon

measurements (Figure 6-2) and from the actual wafer data at end-of-process (Figure 6-3

and Figure 6-4) indicate the witness coupon measurements are not particularly reliable

when there is significant variability within a deposition run, between wafers or across a

wafer, because the coupon only samples one location in the chamber. If we do want to

scrap wafers during a manufacturing process in order to avoid processing non-

conforming material, a wafer-specific measurement is likely to be most appropriate.

6.3.4.5 Correlations through the process

In order to reduce costs and avoid unnecessary effort, it is preferable to remove

non-conforming material from the processing queue as soon as it can be identified. In

our analysis above, we identified non-conforming material at the end of processing. We

demonstrate here how this material could in fact be identified at an earlier point in

fabrication.

Measurements equivalent to the EOP data of Figure 6-3 and Figure 6-4 are in fact

taken at four separate times during processing, once after the initial patterning at the

beginning of process (BOP), and then after each additional thin film is deposited. We

compared the data from each set of measurements to the data and found that the data at

EOP can be well predicted from the data at the previous steps, allowing for process

induced shifts. As an example, Figure 6-5 shows the correlation between BOP and EOP

measurements for wafers of Type I (in (a)), to which four additional thin films are added,

and for wafers of Type II (in (b)), to which two additional thin films are added. In both

cases the EOP data can be predicted well by a simple linear fit (solid line). The slope of

the line for the Type I devices is steeper, indicating a larger relative in-process shift, due

to the additional thin film applied to the Type I devices. Both fits are quite good and the

95% individual confidence curves (short dashed lines) contain all but one or two extreme

values. The R2 value for the Type I fit is 0.94, and the R2 value for the Type II fit is 0.68.

The slightly lower R2 value for the Type II fit probably comes from the presence of two

groups of wafers with slightly different patterns, grouped together here to ensure a large

sample size.
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Figure 6-5. Correlation between beginning of process and end of process measurements
for Film B, for (a) Type I wafers and (b) Type II wafers.

These data show that the thin film performance at the end of the process can in-

fact be predicted from the first set of measurements taken after the wafer is patterned.

This means that out-of-specification wafers could in the future be pulled from processing

almost immediately, without the expense of applying the three remaining thin films.

One final piece of information is required before wafers could be yielded at the

initial patterning step. We need to know the correct specification limits for the step at

which wafers are down selected. The horizontal dashed lines in Figure 6-5 show the

specification limits for Film B as documented in the process run sheets. However, as

mentioned above, these specification limits are entered with the same values for the as-

deposited witness coupon, the as-patterned film (BOP), the two intermediate test steps,

and the EOP film. They are also entered with the same value for Type I devices as for

Type II devices. For these specification limits to be useful, they need to take into account

the shifts induced at each step and the differences in device type. Designed experiments

need to be performed to validate the correct specification limits by correlating final

device performance with in-process performance. Hopefully these experiments will also

be able to demonstrate that a wider specification range will be acceptable. As shown in

Figure 6-5, yields to the current narrow specification limit will be extremely low.
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6.3.5 Thin film process summary

The manufacturing readiness analysis and in-process data analysis of

representative thin film deposition processes show that while some steps towards

manufacturing readiness have been taken, many more remain to be done. On the positive

side, existing process documentation will help the team to meet the documentation

portion of the MRL requirements, in particular for MRL 3. On the negative side, a lack

of a database infrastructure and missing batch data analysis was identified as a possible

hindrance to reaching MRL 4 and beyond. A retrospective analysis of previous data

showed that processes were not as well controlled as had initially been believed, and that

many specification limits in the documentation needed to be updated and/or corrected.

However, this analysis also showed that statistically significant data can be obtained from

even small processing runs. As a consequence, the R&D team at Site A has since

implemented real-time on-site control charting and is developing a database for

monitoring process parameters. Processing documentation is also being updated. Initial

reports indicate very positive results from these efforts. As more devices are built on

current and future contracts, the team will have the opportunity to implement meaningful

pro-active SPC controls to improve processes and yields on the way to MRL 5 and

MRL 6. This type of effort should improve performance and reduce costs, making the

component more competitive overall.

6.4 Assembly and final test

To supplement the liquid crystal and thin film analyses, we also completed one

more review in the area of assembly and final test. Many of our findings were similar to

those from the first two studies, so rather than present a detailed analysis of compliance

with MRL criteria, we summarize key learnings here.

First, the assembly process today is highly manual and non-standard. In some

cases it requires artisan-like skills known today by only one employee. In other cases,

qualitative assessments determine when a process is "complete." A comparison of

processes used in the firm with the industrial base also shows many steps for which the

processing technique used by the firm is different from the industry standard process.

Proprietary techniques may be warranted in cases where they provide superior technical
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performance at an acceptable cost, but the cost-benefit analysis needs to be completed.

The customer expects the firm to use as many industry-standard techniques as possible, to

benefit from existing knowledge, so proprietary or unique techniques will undergo

special scrutiny. Overall, from a manufacturing standpoint, although the assembly flow

can be identified today, the actual device design will need to be significantly re-

engineered in order to produce a robust and manufacturable device. In our first survey,

respondents thought on average that the device would need from 45% to 70% redesign or

reengineering in order to meet manufacturability requirements. In the second survey,

69% of respondents also thought the current plan to meet these redesign needs was

insufficient, and only 21% thought the plan was sufficient. The team may be able to

meet MRL 3 by documenting the need for this redesign, but an actual redesign should be

started before MRL 4.

Second, on the assembly side, we found some existing documentation, but we

also found a need for updates and reconciliation of nominal requirements with actual

process capability, as in the case of thin films. For example, Figure 6-6 shows process

control data for an assembly related parameter (X). The process is in control, but the

nominal specification limits fall inside the control limits. A capable process, e.g., one

with Cpk > 2, has specification limits that are much wider than the control limits. In this

case, as in the thin film data analysis, it turns out that the nominal specification limits are

merely quoted, but are not acted upon. In other words, devices outside of specification

are routinely processed. For these devices, the team also reports no apparent adverse

performance from devices outside of the nominal specifications. For parameter X, the

appropriate action is probably to confirm that wider specification limits would be

acceptable, and to update documentation accordingly. If wider limits are not acceptable,

process improvements will be needed. In this case, the team should probably look more

closely at process settings for the first several devices, which seem to follow a tighter

distribution (with smaller moving range values, open diamonds) than the later devices.

The process may indeed have been under better control at an earlier date.
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Figure 6-6. Sample assembly-related process control data, including natural control
limits and nominal specification limits.

In the final test area, we also found trends similar to those identified for the liquid

crystal and the thin films. Again, a comprehensive database was lacking, even where test

systems had been fully automated. Individual test results were stored in individual

electronic formats (some numeric, some images), but device-by-device test results had to

be extracted manually from the individual files. We also had trouble finding

documentation on particular tests, especially where fitting routines had been modified

multiple times over the years. Databases and documentation will both need to be

improved, or called out as required new capabilities, to meet MRL requirements.

Developmrent of an appropriate database will be critical for the studies needed to establish

appropriate parameter control limits for fabrication processes.
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Finally, we used the available final test data as a last check on both liquid crystal

and thin film processes. We did not previously have sufficient multiple measurements of

a single liquid crystal to estimate liquid crystal uniformity, for example for birefringence.

Using final test data, we identified a surrogate parameter (Y) which provides an

alternative way to characterize the liquid crystal uniformity, by looking at device-to-

device consistency. A control chart for parameter Y is shown in Figure 6-7. The

parameter is well controlled and the mean is quite predictable. Variation from lower to

upper control limits is on the order of a few percent. Since this parameter depends on the

liquid crystal and on specific assembly steps, variability comes from both sources. This

gives us confidence that the liquid crystal uniformity is at least better than a few percent.

This estimate could be further refined by additional physical measurements of devices

during assembly, to get an independent estimate of the assembly-related variability. This

data can also be used to benchmark uniformity of future liquid crystals. If the assembly

process does not change, but a new liquid crystal is introduced, changes in parameter Y

can be attributed to variations in the new liquid crystal.

upper mean, 95%CI

lower mean, 95%CI

Device #

Figure 6-7. Final test results for a surrogate liquid crystal monitoring parameter, Y.

For thin film processing, we also did not have an in-process method to monitor

the performance of the final stack of thin films. Final test data allows us to check

whether the ensemble of thin film processing steps produces devices with acceptable

performance. Figure 6-8 illustrates device capability against one parameter (Z) which is

driven by the performance of the ensemble of films together. All but one data point falls

between the control limits. The process thus appears controllable, and control limits may
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even be able to be tightened if the trend in tighter performance of the later devices (open

diamonds). This looks positive, but Figure 6-8 also highlights a major risk. Although

parameter Z may be controllable, it is not centered on the actual performance target,

shown by the dash-dotted line. This is in fact a performance threshold which no device

has yet reached. This is what prompts the concern above regarding TRL compliance for

the device and ultimately for the system. As noted before, all previous builds, this one

included, are contracted on a best-effort basis. Thus the performance in Figure 6-8 is

contractually acceptable for these earlier contracts, and may in fact represent state-of-the

art achievement. It is, however, non-conforming with future deployed system needs.

Target- -

.: Theoretical mean
A.

E
a

Device #

(a) Individuals control chart for parameter Z. The target is shown as a dash-dotted line.

N

Device #

(b) 2-point moving range control chart for parameter Z.

Figure 6-8. Thin film-driven final test performance.
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The primary concern is that the systems being designed today to use the

component assume that the target specification will be achieved, but there is not a clear

path towards meeting this goal. The expected performance (theoretical mean, dotted line)

of the design today falls below the target. Several devices are close to the theoretical

value, but the design itself must be changed in order to reach the target. Analysis of

parameter Z on a previous set of devices from a few years earlier shows equivalent

performance (the two populations are statistically similar). There have not yet been

sufficient design changes from one build to another.

6.5 Manufacturing readiness assessment summary

The review of component manufacturing readiness against MRL metrics to a

large extent reinforces the strength of the reasoning that is prompting MRL

implementation. Unless manufacturing-specific requirements are made clear early in the

product design process, there is a high risk that manufacturing concerns will be left

outside the process. This is not because of an intent to ignore them. Instead, it is an

outgrowth of the R&D search for a "hero" technical result and a focus on finding the

single device which can demonstrate superior performance. We see this in the liquid

crystal sourcing, in which the best research is at the university level and the best

molecular synthesis is available in Europe, so this supply route is used. We see this in

the thin film processing arena, in which batch-to-batch data is not gathered or analyzed

and process documentation does not match actual processing, frequently because it is

time consuming or cumbersome to perform these task for small volume runs. And we see

this in assembly and final test where again it is more advantageous for early stage R&D

teams to develop craft-like skills and test protocols geared towards individual devices

than to spend time and resources developing robust manufacturable designs.

We hope, however, to have shown through SPC analysis of even small data sets,

that there is indeed much to be gained from analysis of process control and capability in

the early stage R&D environment. Results from a small number of devices can identify

which processes are in control and which are not. Patterns across devices can be used to

identify material which may have seen abnormal processing conditions. Correlations

from beginning to end of process may be used to identify material to pull to the side to
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make room for more promising material to be processed. On the design side, it is as

important to know which processes are in control as on the manufacturing side. If a

process is not in control, then there is no way to conduct controlled designed experiments

with intentional changes in the design space.

It is hard to argue that starting many of the best practices called out by the MRL

metrics will be detrimental to R&D progress. In fact, one could argue that following

many of these practices could ultimately be advantageous to the team. In a competitive

funding world where contracts and future investments are uncertain, the team which is

more prepared to turn technology into a product will be advantaged. Documenting

process capability can be beneficial both when processes are in control, where it

demonstrates capability, and when problems may be present, where it may serve as a

justification for retaining process improvement funding. The intent of the MRL process

is to move funding forwards to address manufacturability concerns, and as long as a

credible plan to improve processes is present, it should be more beneficial to spend these

dollars early rather than late. Finally, in an environment in which make/buy evaluations

are on the horizon, process control data on in-house processing provides a benchmark by

which to assess potential competing suppliers, and, in the event that superior performance

can ultimately be demonstrated in-house, to potentially retain technology responsibility.
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Chapter 7: Conclusions

To conclude, we return to several of the questions posed at the outset of our study.

What could be the effect of independently applying commercial best practices for new

product development from the very early stages of technology creation, on the part of the

defense contractor, in a bottom up approach? If a product development team uses the

MRL framework, will the contractor be better positioned in the long run? Is this

framework sufficient? If not, what other types of concerns should be addressed during

technology development? We review first how these questions are answered for new

product development in defense in general, and then how the answers are validated by the

learnings from our case study.

7.1 Learnings for New Product Development in Defense

We have seen in this work that commercial best practices coupled with relevant

defense industry metrics can indeed be integrated to provide a set of NPD metrics for

defense contractors, even in early stage R&D programs. Metrics such as Manufacturing

Readiness Levels can provide defense-relevant criteria against which to evaluate new

technology programs. These evaluations successfully allow identification of key issues

critical to delivering a quality product in a cost-effective and time-effective manner. By

reviewing relevant issues early in the design cycle, firms should be able to avoid costly

work-around fixes later in system deployment stages.

Contractors who use MRL criteria can expect to gain a competitive advantage by

understanding product and processes at an early stage, and by identifying areas for

improvement. Using a pro-active general approach with simple criteria may be

preferable, in fact, to following a full-blown top-down mandated approach. We saw in

our case study that much can be learned from simple manufacturing readiness

assessments and process evaluations, without using the detailed web-based checklists

being developed for the formal EMRL and MRL roll-outs. NPD processes in defense

today lag behind commercial NPD processes by about two generations, as the extensive

checklists being developed for the EMRL and MRL frameworks parallel first-generation

Stage-GateTM processes, rather than the more flexible third-generation processes. There

is a risk that the higher level of detail and structure in the more extensive checklist
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formats will slow down learning by making contractors focus more on the evaluation

process itself and less on the learning from the evaluation. This risk will need to be

monitored closely by the DoD and the GAO as the EMRL and MRL assessment

methodologies are formally incorporated into defense acquisition regulations. More

gains might be obtained by the DoD by providing additional funds for the Man Tech

program or by requiring that its own funding agencies incorporate MRL metrics into

contracts, than by further developing extensive methods to monitor MRL compliance.

We do find that the xRL metrics should also be supplemented with additional

commercial best practices in order to facilitate project and firm success. As first-

generation processes, primarily focused on measuring quality of execution at the contract

level for an external customer, the xRLs do not address critical success factors internal to

the firm. Firms should thus also conduct independent assessments of programs, to make

sure they fit strategically with the firm's business goals, that they are financially viable,

and that the firm itself will have a competitive advantage. To a large extent, this implies

that firms need to take back some of the responsibility which they have deferred to the

contract funding agencies, re-activating their own responsibility for project down-

selection. Finally, firms also have responsibility for structuring programs

organizationally for success. Teams must have clear accountable leaders, clear technical

objectives to meet, and sufficient support from management to meet them. In cases

where a technology is being developed for multiple defense purposes, this may mean that

the firm takes it upon itself to define a team responsible for maturing the technology

platform as a whole. Such a firm-specific development team may be the best way to

avoid the pitfall of focusing too much on detailed changes for individual contracts and of

focusing too little on fundamental technology development. This type of approach

should help the firm to constantly move forward technically, even in uncertain funding

environments, but will need to be carefully balanced with customer desires for individual

dedicated teams.

7.2 Learnings for the Firm

We have demonstrated through a case study of an optical component being

developed on defense R&D dollars that when best practices are actively applied, the firm
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can find opportunities to gain a competitive edge in the long run. Specific results from

the internship study were incorporated into organizational and contract changes related to

the optical component development at the host firm. Organizationally, a key point person

has now been designated who is responsible for technical maturation of the optical

component itself to support all contract platforms. At a financial level, the leadership

team has committed to one specific capital investment path for the next three years and

has moved from an "opportunistic" approach to one of measured decisions. At the

technical level, in-situ process control monitoring is being implemented within the device

fabrication facility, a database is being developed, and process documentation is being

updated. All reports to date indicate that the R&D team has made significant progress on

existing contracts since these changes were made. Finally, for a key contract, a

technology development roadmap incorporating both TRL and MRL milestones and

go/no-go decisions for additional capital has now been identified. A pro-active approach

is also being taken with this customer to pursue a formal MRL assessment on the contract

in 2007.

Overall, the division learned several key lessons from the case study analysis. At

a technical level, both the systems engineering group and the R&D group had been

unaware of some of the requirements in component manufacturing, such as certification

of suppliers. Identification of sole/foreign sourcing issues in the liquid crystal was

deemed particularly useful, as was the reminder that the firm is ultimately responsible.

The precedence relations highlighted by the EMRL structure clarified that new

technology elements cannot be "on-ramped" at a later stage without pulling the entire

system back in maturity. Most comprehensively, the analysis tools introduced for

strategic, financial, and technical evaluation provided a new framework which the

division plans to incorporate into future new technology development plans at the

component and system level. The firm sees that it has independent choices to make as it

executes on existing and future contracts.

The theme which seemed to resurface over and over in our MRL assessment is

that in order to ensure a high level of readiness for future production, there must be a

change in mindset from the search for "hero" results to the development of a

manufacturable product which meets or will meet key performance metrics. Key to this
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is a shift from the performance of one to the performance of many. This shift must take

place both at the contractor and at the customer level, where the customer must decide on

the performance level required. With their early introduction of yield and process control

analysis, the MRL metrics can hopefully serve as a tool to start this change. From the

firm's standpoint, this shift has to occur. Perpetual returns on low volume early stage

R&D contracts are insufficient to justify large capital expenditures needed to support the

technology. The firm has to reach the higher volume systems deployment and

demonstration contracts at MRL 7 and above in order for it to reap the benefit of

investment in the technology. Effectively, while delivery of "best effort" is compatible

with early R&D contractual requirements, the firm must make sure that internally it has a

clear path to meeting performance targets at later stages.

One finding from our case study is that the firm is in fact further towards the

beginning of the product development cycle than originally thought. Although this could

be seen as a setback, it also can be seen as an opportunity. Armed now with a better set

of tools with which to evaluate technology progress the firm can make more informed

decisions as to what paths are in fact the best to follow. Using the best practices

reviewed here, the final product should have a better long term probability of success.
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