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Abstract

Prevailing Parallel Linear Algebra software block cyclically distributes data across its processors

for good load balancing and communication between its nodes. The block cyclic distribution

schema characterized by cyclic order allocation of row and column data blocks followed by con-
secutive elimination is widely used in scientific computing and is the default approach in ScaLA-

PACK. The fact that we are not familiar with any software outside of linear algebra that has con-

sidered cyclic distributions for their execution presents incompatibility. This calls for possible

change in approach as advanced computing platforms like Star-P are emerging allowing for inte-

roperability of algorithms.

This work demonstrates a data parallel column block cyclic elimination technique for LU and QR

factorization. This technique yields good load balance and communication between nodes, and

also eliminates superfluous overheads. The algorithms are implemented with consecutive alloca-

tion and cyclic elimination using the high level platform, Star-P. Block update tenders extensive

performance enhancement making use of Basic Linear Algebra Subroutine-3 for delivering tre-
mendous speedup.

This project also provides an overview of threading in parallel systems through implementation

of important task parallel algorithms: prefix, hexadecimal Pi digits and Monte-Carlo simulation.

Thesis Supervisor: Alan Edelman
Title: Professor, Department of Mathematics
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Chapter 1

Introduction

Parallel and high end computing [12] have been motivated by complex simulations taking se-

verely long execution times. It is the natural evolution of serial computing that attempts concur-

rent computation of interrelated events within a sequence. Parallel computing draws upon addi-

tional resources to optimize time as a commodity.
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1.1 Understanding a Parallel Computer

Interpreted physically, a parallel computer [12] is the synchronized use of multiple compute

nodes to achieve faster solution to a problem. A serial program is broken into discrete parts that

are solved concurrently or parallel on different CPU's. Each processor is assigned data and a set

of instructions at the same time, so that they all execute simultaneously without substantial de-

lay by any single processor. This task is performed by the master processor and is achieved in

part by adhering to good standards of load balancing of data across all the processors.

Parallel Computing thus has its advantages:

1. speedup based ideally on the number of compute nodes with a goal of highly efficient

mode of scalability.

2. often there is additional space available on a parallel computer eliminating memory con-

straints.

1.1.1 Memory Management in a Parallel Computer

Memory and CPU speed are the two most important physical attributes of computer. Whilst

processor speed is of utmost significance in computation, memory is exploited for handling large

magnitudes of data. Shared and distributed memory architectures are the two types of parallel

computer memory architectures. Shared memory parallel computers have a global addressed

space. Multiple computers can operate independently and share the same memory being in-

formed of all changes being made in the memory by other machines. This concept of global ad-

dress space provides a user-friendly programming environment to memory. Data sharing be-

tween processors is fast and efficient. The most significant disadvantage of this mode has often

been the lack of scalability between memory and CPU's.
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Distributed memory systems need a communication system to connect inter-processor memory.

Each processor in the network has its' own memory and there is no concept of global address-

ing. The processor along with its memory operates independently and thus needs detailed in-

structions from the user on how to access information on the memory of another processor.

Like shared memory, the distributed memory system also has its own advantages and disadvan-

tages. The memory increases with the number of processors added to the network, hence

memory is scalable. Each processor's memory acts like a cache without any interference from

any other node. The main disadvantage of this system is that it holds the programmer responsi-

ble for communication and distribution of data and instructions - synchronization is the duty of

the programmer and also the unavailability of a global address structure makes mapping of data

between processors quite difficult.

1.1.2 Thread Configurations in a Parallel Computer -
Understanding Task/Data Parallelism

It is very important to understand the nature of the algorithm the user is trying to program with

a parallel computer. There are inherently two types of parallel models that can fit the algorithm:

1.1.2.1 Data Parallelism

Data parallelism implies that the same independent operation is applied repeatedly to different

data. It has been generalized perhaps incorrectly to convey the notion of global array processing.

Image processing algorithms that apply a filter to each pixel are a common example of data par-

allelism. It involves spreading matrix data over all compute nodes in the machine and having

each processor manipulate a portion of the data. Each processor usually executes a small num-

ber of instructions between communication cycles and then communicates the results to the

other processors before the next operation.
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1.1.2.2 Task Parallelism

The task-parallel model is chosen when independent threads can readily service separate func-

tions. Task-level concurrency calls for independent work encapsulated in functions to be

mapped to individual threads, which can execute asynchronously. This model can perform long-

er, non-communicating computations on independent nodes. Task parallel operations can ex-

ecute on separate threads on a serial computer.

One must consider the following as a "rule of thumb" to decide whether the problem is da-

ta/task parallel based on the matrix size used:

1. If the matrix size is less than 100kB parallel computing need not be used.

2. If the matrix size is between 100kB and 100MB either data parallel or task parallel can be

used depending on the characteristic nature of the algorithm.

3. If the matrix size is over 100MB data parallel would be the best way to do it.

1.2 Motivation for the current problem

Each processor in a distributed memory parallel computer is pre-allocated with data and a set of

instructions at the same time for simultaneous execution and delivery of results. This is possible

only if all the processors are distributed with equivalent and balanced data load. Thus, data dis-

tribution with good load balancing schemas is a core attribute in parallel computing systems.

This distribution plays a key role in determining the load on each processor, mapping algorithms,

blocking factor and communication between nodes.

Several ways have been identified in which data can be physically allocated across processors, of

which the blocked, cyclic and the block cyclic versions find extensive use in computing systems.

Some of the schemas are reviewed below.
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1.2.1 Data distribution in a Parallel Computer

The column block cyclic algorithm [4] allocates cyclically, column blocks to nodes followed by

consecutive column wise elimination to allow good load balance among the processors. This al-

leviates the problem confronted by various other data layouts described below.

The 1D block column distribution assigns a block of adjacent columns to consecutive processors,

thus each processor is allocated only a single block during the factorization of the matrix. Col-

umn k is stored on process [ ] where t = the maximum number of columns stored per

process. This layout performs badly for Gaussian Elimination because the idle time associated

with each processor is very high, resulting in bad load balance amongst the nodes.

The 1D cyclic column distribution allots a single column to each processor in a cyclic manner as-

signing column k to process (k-1) mod P if the processors are numbered starting with zero. This

method can realize good load balance, but since single columns are pivoted the performance of

BLAS (basic linear algebra subroutine) related speedup is affected terribly.

Figure 1-1: Column Blocked Data Layout Figure 1-2: Cyclic Column Data Layout

The 1D block cyclic column distribution is a combination of the advantages of the two methods

discussed above. Block of data from the array is distributed evenly over all nodes. A block of size

NB is picked, the columns are resized into groups of columns of size NB, and then the groups are

[k-11distributed in a cyclic manner. This means column k is stored in process rB mod P. Thus, in
L NB n

block cyclic allocation, matrix columns are consumed cyclically, uniformly and evenly and there-
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by relieving the problem of unbalanced load. Blocking permits the use of BLAS-3 operations to

achieve significant speed-up in computation.

For NB larger than 1, this has bad balance than the one-dimensional cyclic column distribution,

but can use higher levels of basic linear algebra subroutines for computations. For NB less than t,

it has a better load balance than the one-dimensional block column distribution.

In [2] Johnsson showed that the processor utilization increased by a factor of three in block cyc-

lic distribution than consecutive allocation and consecutive elimination. The block cyclic data

distribution used by ScaLAPACK is justified in part by the analysis of many algorithms intended

for linear algebra calculations and by the goal of achieving good load balancing. ScaLAPACK uses

the routine PDGETRF to perform the LU factorization and the DGEQRF to perform its QR factori-

zation. Coleman and Van De Geijn also used consecutive elimination and cyclic allocation for

their multiprocessor and LU factorization implementations respectively.

1.2.2 Problem Introduction

Today, it is widely viewed that parallel dense linear algebra is somehow synonymous with block

cyclic data distributions. The widely used ScaLAPACK software [4] has made this choice based in

part on analysis [5]-[7] and also in part by history [8]-[9]. However it is time to re-examine the

very importance of either pre-allocating or re-allocating dense matrices in block cyclic format.

This algorithm not only employs exhaustive mapping and remapping techniques to track data in

the processors and redistribution algorithms to adjust blocking factor, the fact that we are not

familiar with any software other than linear algebra software that has considered cyclic distribu-

tions for their execution presents uncertainty on the scalability of block cyclic distribution to

non-linear algebra. It also causes a situation of poor and rather complex communication ex-

change between nodes.

This question is also timely as high level general purpose high performance computing platforms

such as Star-P by Interactive Supercomputing [10], are maturing. Such systems provide solutions

14



to a vast space of parallel problems - yet only dense linear algebra has been screaming out for

block cyclic distributions - only dense linear algebra. One can then wonder if dense linear alge-

bra really needs block cyclic data distributions as well.

Lichtenstein and Johnsson [1] showed that block cyclic order elimination can be achieved for LU

and QR factorization on their Connection Machine System. They used a cyclic elimination

scheme as the Connection Machine compilers could by default only accept consecutive alloca-

tion or hypercube. This was shown to be an efficient and optimal alternative to cyclic allocation

and elimination, yielding good load balance for solution of linear systems with dense equations.

These authors implemented the cyclic elimination scheme using Levell and Level2 BLAS using

FORTRAN and also hinted that a BLAS-3 version is possible.

This work demonstrates block cyclic elimination for LU and QR factorization for two-dimensional

arrays using Star-P. A description of the cyclic elimination method is provided along with rele-

vant performance indices. Performance improvements with problem and machine size are also

illustrated. Blocking and BLAS-3 operations present a vast performance enhancement measure.

1.3 Hardware and Software Configurations

Parry Husbands, Alan Edelman and Charles Isbell [11] devised a novel architecture for a linear

algebra server that operates in parallel on extremely large matrices. In this implementation ma-

trices are created by the server and distributed across many machines, thereby ensuring that all

operations take place in parallel. Star-P is a high level language parallel simulation interface to

MATLAB® and Python developed by Interactive Supercomputing whose infrastructure is based

on the concept described above.

The Star-P computing platform allows desktop simulation software to operate on High Perfor-

mance Computers. The Star-P client acts as a conduit between MATLAB® and Python on the

desktop and server computer thereby providing the framework to operate with massive

amounts of data.
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Figure 1-3: STAR-P Functionality overview diagram

The functional overview diagram of STAR-P is illustrated above. The client connects the desktop

application to the parallel server, outsources to it the most computationally-intensive operations

and controls loading of large data sets from high-speed parallel disks directly into the servers'

distributed memory. The engine runs on top of the server operating system, and manages the

multiple interactive sessions in a multi-user environment, giving multiple client applications si-

multaneous interactive access to the server's processors, memory, and file system. The compu-

tation engine performs the three key operations - data parallel, task parallel computations and a

link to the Open Connect Library API.

The software was installed on an SGI Altix system at the Massachusetts Institute of Technology

consisting of six nodes, each with two 1.3GHz Itanium 2's and 2GB of RAM, for a total of 12 pro-

cessors and 12GB of RAM.
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Chapter 2

Description of the Method

Block cyclic elimination is a significantly advantageous alternative to the widely used block cyclic

data allocation technique. A brief summary of the original procedure is provided, followed by

the description of the technique. The disadvantage and advantage of using both methods is also

discussed.

2.1 Block Cyclic Distribution

The following conventions are used interchangeably in the chapters that follow. Block cyclic in

time refers to consecutive allocation of data followed by cyclic elimination and block cyclic in

space refers to cyclic allocation of data and consecutive elimination. The block cyclic distribution

algorithm is illustrated next in section 2.1.1.
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2.1.1 Block Cyclic Distribution for LU and QR Factorization

The LU factorization algorithm traverses through the diagonal of a matrix, subtracting a multiple

of a row, the pivot row, from the remaining rows. In QR, a normalized linear combination of col-

umns is subtracted from each of them to make them orthonormal to each other. In both the al-

gorithms a matrix A is factored such that A = LU in LU factorization and A = QR in QR factoriza-

tion.

When the matrix is factorized with a consecutive allocation and elimination scheme, after first

block of (N/p) columns (N is the dimension of the matrix and p is the number of nodes) have

been selected and factorized, the first node would have completed its assigned work for the

cycle before the other nodes and this will aggregate its idle time.

The cyclic data allocation scheme is well-designed for load balancing. In the cyclic data allocation

scheme the first column of the matrix is assigned to the first node, the second column of the

matrix to the second node, and so on until each matrix column has been allotted to a node for

processing. Then, the (p+ 1 )th column of the matrix is assigned to the first node. Thus the cyclic

distribution method ensures uniform and even load across processors minimizing to a great ex-

tent the idle time associated with each processor but its operations are not BLAS-3 vectorized.

The block cyclic in space algorithm proceeds through configuration and distributive statements

that illustrates the mapping between the matrix and the processors. The matrix is first assigned

to templates, and templates are distributed across the processors.

Consider a one dimensional matrix or array A of order 1 x N to be mapped across p processors

in a block cyclic convention. The elements in the array and the processors are numbered 0

through N, thus the element A(i) is assigned to processor [1 mod p where k is the block size

assigned to each processor, [] represents the greatest integer function and p is the number of

processes used.

18



Let Row(i), Proc(i) and Loc(i) [22] describe the location of matrix element A(i) in the processor.

Let Proc(i) denote the processor holding the element, Row(i) is the row of blocks within proces-

sor Proc(i) holding the element A(i) and Loc(i) is the location of A(i) within the row of block

Row(i). This layout is depicted by Figure 2-1. The functions are described below:

Proc(i) = mod p

Row(i) = [i mod pk]

Loc(i) = i mod k

Hence the mapping between the matrix element A(i) and processor functions Proc, Row and Loc

is given by

i = pk. Row(i) + k. Proc(i) + Loc(i)

The local location of elements within each processor is given by

M(i) = k.Row(i) + Loc(i)

Rows Processor 0 Processor 1 ... Processor p-1

0 0 ... k-i k ... 2k-1 ... (p-1)k ... pk-1

1 pk ... (p+i)k-1 (p+i)k ... (p+2)k-i ... (2p-1)k ... 2pk-i

Offset 0 ... k-1 0 ... k-1 ... k-i

Figure 2-1: Block cyclic data distribution.
is the array element it holds.

Each region is a memory cell and the number in the cell

19



This mapping procedure can be easily extended to multi-dimensional matrices. After selecting

the processors to be used, the user's data is mapped (block cyclic format) onto the processors,

the parallel algorithm is then executed, the data then has to be reverse mapped and then the

solution is returned to the user.

Thus for referencing each array element which has been mapped using block cyclic distribution

onto a processor, separate computations of the processor number Proc, row number Row and

local address M are required. Similar computations need to be performed for reverse mapping

also. These computations carry unacceptable floating point operation cost and exponentially in-

crease with size of data.

Processor 0 Processor1 Processor 2

0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34 35

Figure 2-2: Block cyclic mapping of data from array of order 36x1 to processors with p = 3, k = 3.

The positioning of an array to a template and the distribution of the template across the

processes determines the final mapping of the array. An algorithmic blocking factor is used to

align an array into a template (adjust granularity of the subtasks to maximize the efficiency of

the hardware resources) and a distribution blocking factor is used to distribute the template

across the processors. Most parallel linear algebra codes assume the factors to be identical but

the optimal values of the blocking factors are usually different. For this purpose redistribution

and scheduling algorithms are necessary. This is yet another overhead. Thus block cyclic in space

may come off as complex and as involving unnecessary computational overheads involving

mapping, remapping, scheduling and redistribution.
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2.1.2 Disadvantages of Block Cyclic Distribution

Block cyclic distribution can be categorized as an algorithm with disputable computational over-

heads. These demerits are summarized below.

1. Requires mapping and remapping between the processor and the matrix.

2. Associated mainly with Linear Algebra software; hence impact of interaction with non linear

algebra algorithms is not obvious.

3. Redistribution algorithms are necessary for good load balancing.

4. Poor communication between nodes.

Whilst the cyclic data distribution method actually permutes data itself across the processors the

cyclic elimination method uses smart indexing to access the data in-place. While it is factual that

the implementation of such a schema is complex and depends heavily on indexing (subsref) its

advantages certainly offset this shortcoming. Block cyclic elimination is elucidated in section 2.3.

2.2 Blocking and its impact on performance

Memory is one of the most important attributes in supercomputing platforms [1}. There are

numerous floating point computations in linear algebra and they mostly occur as add-multiply

configurations. The fact that BLAS is used to execute several operations in the solution of linear

systems of equations, Eigen analysis, optimization and the solution of partial differential equa-

tions is testimonial to this. These require large memory bandwidth for large computations;

hence BLAS-2 and BLAS-3 levels have gained prominence for better performance.

The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard building blocks

for performing basic vector and matrix operations. The BLAS functionality is divided into three

levels: 1, 2 and 3 based on their operations. The Level 1 BLAS [4] carries out scalar, vector and

vector-vector operations, the Level 2 BLAS does matrix-vector operations, and the Level 3 BLAS

perform matrix-matrix operations.
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The Level 3 BLAS are a highly optimized set of BLAS instructions used for executing matrix mul-

tiplication. This level contains matrix-matrix operations of the form C <- aAB + PC and allows

for a significant reduction in memory. Blocking helps to achieve matrix-matrix operations as a

consequence of which the calculations are performed at Level 3 BLAS. Level 3 BLAS results in

remarkable speedups in comparison to Level 1 and Level 2 and this is described later in this sec-

tion.

Level 1 and Level 2 BLAS are described with an example. In Gaussian Elimination, the column

elements below the diagonal are zeroed out to convert the original matrix into an upper triangu-

lar matrix by adding a multiple of the current pivot row 'I' to row 'j'. The obvious candidate for

the row update is BLAS-2 vector matrix multiplication as shown below.

for I= 1:n- 1

A(i + 1: n, i) = A( +1:n, i) .. m Update

AQ +1:nJi + 1:n) = AOL+ I:n,i + 1:n) - AG + I:n,i) * A(i,i +1:n)

Blas2 Update

Figure 2-3: An example describing Level 1 and Level 2 BLAS.

A Blas-1 vector update is performed to obtain the multipliers for each row corresponding to the

pivot row 'I'. The multiplier vector is then multiplied with elements of the pivot row 'I' before

subtracting them from subsequent rows 'j' to give zeros below the diagonal. This is a Blas-2 up-

date. Implementation procedure with Bias 3 update is discussed later.
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A simple matrix product test was used for the comparison of execution rate between the linear

algebra subroutines in MATLAB@. The number of floating point operations in the product of 2

matrices of order (n x n) is 2n 3 - n2 contributed by n3 floating point multiplications and

(n - 1)n 2 number of additions.

Figure 2-4 describes the execution rate of matrix multiplication in 108 Flops for Blas-3 and Blas-2

formulations. It is obvious that Blas-3 performs notably superior than Blas-2 and is at least 150

MFlops faster than Blas-2 for all orders of matrices. Hence there is an obvious need to try and

extend Gaussian Elimination to use Blas-3 matrix-matrix operations as much as possible.

Level 2 and Level 3 BLAS Comparison

I -- Leel 3 Bas

iLew[I2 Bias

------------ -- - - - --- - - - - - - ---

---------- 
------------ 

- - A-~~~~ ~ -m i - -m ----- I--- --------- - - - - - - -mrn i - -i m - -

200 400 600
Order of the Matrix

800 1000 1200

Figure 2-4: Blas 2 vs. Blas 3 performance comparison for Matrices of different Order
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The most important characteristic and necessity in Blas-3 operations is to find the appropriate

size of column blocks which would allow us to perform matrix-matrix operations optimally. The

block size is extremely critical as it must be small enough so that the active sub-matrix consisting

of a column block of the original matrix fits in the cache memory and at the same time be large

enough to make BLAS3 fast. This can be performed by delayed updating procedure. This involves

saving updates from several consecutive Blas-2 operations and applying the updates simulta-

neously in one Blas-3 operation. This procedure is described in section 2.3.2.

--- Order 36 X36
3 Order 512 X 512

35-----------L- - - ----- - - - - - - - - -

3 - - - - -O - - - - - -- - - - - - --

00s

2. [ - - - -- --------- ----------- I---

2 --I
J*7--------- -- - -

I I

-25------- - - -- --
- - - - - - --- I I~I II I

I, -I I -I

0 I I

05 10 15 20 25 30 35
Rank of Updates

Figure 2-5: Speedup of higher rank updates over rank I update for small and large order matrix

Figure 2-5 shows the speedup and performance gain of Higher Rank Updates relative to Rank I

updates. The speedups are shown for matrices of size 36 x 36 and 512 x 512. It can be seen that

blocking yields significantly better performance for smaller matrices when compared to larger

matrices. Higher the order of the update higher the execution rate achieved.
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2.3 Introduction to Block Cyclic Elimination

Until recently there was no really effective high level distributed computing platform in a high

level language. Distributed computing was by and large synonymous with low level languages

like C and FORTRAN combined with MPI. But, with increased and extensive use of high level lan-

guages like MATLAB@ or Python and STARP in academia, industry and research whose functio-

nalities are not restricted to dense linear algebra alone the use of a spatial block cyclic algorithm

needs to be rethought.

According to Johnson [3] the space (columns) and time (pivot selection) dimensions are inter-

changeable. This means that block cyclic elimination will achieve the exact same results as that

of block cyclic allocation and will offer enhanced performance in comparison to it. I have conse-

quently chosen this approach for implementation.

In the earlier section we saw that data was mapped to each of the processes in a block cyclic dis-

tributive method and eliminated continuously. The computational overheads originating from

block cyclic distribution were also studied. In this technique instead of distributing columns cyc-

lically over the nodal array, pivot columns can be selected cyclically by smart indexing in the fac-

torization code. Blocked columns are uniformly distributed across each of the processors and are

followed by cyclical elimination using an in-place factorization schema. The cyclic elimination is

also shown to yield good load balance for solution of systems with dense equations.

This work explores the implementation of the cyclic elimination algorithm in Star-P and presents

a very niche message to the high level language parallel computing world. The block cyclic elimi-

nation procedure is described next.
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2.3.1 Block Cyclic Elimination Procedure

Consider any matrix 'A' of the order (m X n) where 'm' represents the number of rows and 'n',

represents the number of columns of the matrix. Let Matrix 'A' be divided into 't=n/q' (q>t)

number of sub-matrices or bricks each with number of columns 'q' and rows 'i'. Let 'b', (b<q

and b, factor of q) represent the number of contiguous columns processed by a node at each

time. Thus (q/b) will represent the number of blocks 'h' in each sub-matrix or brick and n/q will

represent the number of bricks.

* * * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * *

Figure 2-6: Partitioning of the domain

of 2 and brick size 4

into blocks and bricks. A typical MxN matrix with block size
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If 'A' is a matrix of order 16 x 16 and if 'A' is split into 2 sub-matrices of order 16 x 8 or 4 sub-

matrices of order 16 x 4, then 'q' in each of the cases would be 8 and 4, 't' will be 2 and 4 respec-

tively. In block cyclic elimination order (Fig 2.7) by columns, a block of columns corresponding to

each brick is distributed in a consecutive manner to the nodes and then cyclically eliminated ac-

cording to block size i.e. block columns of size 'b' are pivoted and factorized. For block size 'b'

first eliminate columns 1...b then 'b' columns of the next brick and so on to ultimately obtain a

triangular matrix which is easy to solve.

In LU after a block of columns are pivoted, the multipliers for the corresponding rows need to be

calculated and stored below the diagonal entry of that row. An LU factorization is performed on

the sub-matrix with pivoted columns to obtain the multipliers for each row. Partial Pivoting is

performed to make the diagonal entry the largest entry in the column. After this step a level 3

BLAS update is performed on the matrix consisting of all the non-factorized diagonal entries to

the right and left of the pivoted block. BLAS 3 update is described in the next section.

In QR the original matrix A is factorized into an orthogonal matrix Q and an upper triangular ma-

trix R. A block of columns are pivoted and normalized. The dot product or the projection of the

normalized column along other columns in matrix A is calculated and stored in matrix R. The re-

mainder of the columns in matrix A are made orthogonal to the pivoted columns by means of

the Gram-Schmitt procedure and the algorithm proceeds until all orthogonal projections are cal-

culated and each column in the matrix Q is orthogonal to one another.

From Fig 2-7 it can be seen that the outcome of the factorization is a block-cyclic triangle which

can be easily restructured to obtain solution of dense linear system of equations. The demand-

ing development time and optimization of the block cyclic elimination order code is offset by its

recompense.
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Example 1: A =8 x 8 array p=q =4, b =2

Step 1 Step 2

1 :iii1 1 1 11 * * * * * * * *

1 1 11 1 1 11 0 * * * * * * *

1 1 * * * * * * 0 0 2 2 2 2 2 2

1 1 * * * * * * 0 0 2 2 2 2 2 2

1 i. * * * * * I 0 0 * * 2 2 * *

1 i.* * * * * * 0 0 * * 2 2 * *

1 1 * * * s * * 0 0 * * 2 2 * *

1 1 * * * * * * 0 0 * * 2 2 * *

Step 3 Step 4

* * * * * * * * * * * * * * * *

0 * * * * * * * 0 * * * * * * *

0 0 * * * * * * 0 0 * * * * * *

0 0 * * 0 * * * 0 0 * * 0 * * *

0 0 3 3 0 0 3 3 0 0 * * 00 * *

0 0 3 3 0 0 3 3 0 0 0 * 00 * *

0 033 0 ** 0 0 00 0 0 4 4

0 033 0 ** 0 0 00 0 0 4 4
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Step 5

* * * * * * * *

0 * * * * * * *

0 0 * * * * * *

0 0 * * 0 * * *

0 0 * * 00 * *

0 0 0 * 00 * *

0 0 0 0 00 * *

0 0 00 0 0 0*

Figure 2-7: Step by step column block cyclic LU elimination procedure of an 8x8 matrix
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2.3.2 Blas-3 Update Procedure

To allow for the use of level 3 BLAS, blocked columns are used on each node. In LU factorization

a blocking of the operations on b columns means that b rows are eliminated at a time from all

the other rows. Let the block size used be 'b' and pivot element beA(ij). Identify the pivot col-

umn block of size (n - i + 1) x b that is the block A(i: n,j:j + b - 1) and apply a three para-

meter LU factorization on the block such that [L,U,f] = LU(A(i: n,j:j + b - 1)) returns unit lower

triangular matrix L, upper triangular matrix U, and permutation matrix f so that f* A(i: n,j:j +

b - 1) = L*U. This operation helps to obtain the multipliers for the block column below the pivot

diagonals. This operation also performs the partial pivoting that is necessary to establish stability

to the algorithm by making the diagonal element the largest in the column. This is essential to

prevent divide by zero or by a very small number which may result in round off error.

Now obtain the strict lower triangular part 'I' of the block A(i: i + b - 1,j:j + b - 1) of

size(b x b). In Fig (2-8) shown below, the matrix has a block size of b = 2 and 'I' is the block

shown in region 1. Let 'LL' denote the matrix obtained by the following operation:

LL = 1 + I (I is an identity matrix of size b x b)

The sub-matrix in region 4 is multiplied with the inverse of LL before performing a Blas-3 update

on the block represented by region 2. To perform the Blas-3 update, subtract the product of

block A(i + b: n,j:j + b - 1) represented by region 3 and the block represented by region 4,

from each of the rows of the block represented by region 2. The updates must be applied for-

ward and backward of the pivot column block for those sub-matrices below region 4.
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Figure 2-8: Block Cyclic elimination procedure. Regions are described as 1 - blank space, 2 - all
sub-matrices represented with diagonal lines, 3 - all sub-matrices with vertical lines and 4-all
sub-matrices with mesh.

The block cyclic elimination algorithm requires no permutation of data and factorization can be

achieved by performing the above operations forward and backward of the pivot column block

by appropriate indexing in the code.
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Chapter 3

Results and Inference

Block cyclic order elimination algorithms for LU and QR factorization for rectangular matrices of

arbitrary shape are implemented. The execution time and performance characteristics for vari-

ous matrix order and block sizes are described in this chapter. The algorithm was validated

against MATLAB®'s regular backslash operator to check the accuracy and precision of the solu-

tion. Graphical interpretation of performance is also made in this section. These timings were

done on a preliminary version of STAR-P that was sometimes on a busy machine. Hence there is great-

er scope for performance with the future editions than what is presented in this project. As part

of future work we plan to redo these timings. We found the absolute performance numbers not

as valuable as the comparative trends.
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3.1 LU Factorization Performance Characteristics

The LU factorization algorithm factors matrix A in Ax = B using a block cyclic elimination order

with partial pivoting. Partial Pivoting, a technique used to ensure numerical stability of the algo-

rithm progresses through the diagonal elements making certain that the pivot element is the

largest element in that column and essentially non-zero. Partial pivoting is not necessary in di-

agonally dominant systems. A triangular solve is then performed to obtain the solution to the

dense set of linear equations. The algorithm can be used for all rectangular matrices of arbitrary

sizes but one must make sure that the block size is a factor of the brick size during elimination.

Several assessment runs were carried out for a range of blocking factors and matrix order. The

results are tabulated for single right-hand side. The BLAS algorithms used in LU factorization typ-

ically consist of multiplication and addition floating point operations. Typically the number of

floating point operations in LU factorization is equivalent to n3 and the execution speed is cal-
3

culated taking into account the number of floating point operations. The outcomes of the execu-

tion are summarized in Table 3-1 and graphically represented in Figure3-1. The block sizes used

in the tabulation are 1, 2, 4 and 8 for matrix sizes in the range of 64 and 1024.
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Execution Rate

Matrix Size Block Size (Mflops/s)

64 1 0.003

128 1 0.007

256 1 0.020

512 1 0.046

1024 1 0.120

64 2 0.006

128 2 0.021

256 2 0.072

512 2 0.173

1024 2 0.224

64 4 0.010

128 4 0.036

256 4 0.088

512 4 0.348

1024 4 0.599

64 8 0.021

128 8 0.088

256 8 0.171

512 8 0.643

1024 8 1.031

Table 3-1: Execution Rate for LU factorization as a function of block size and matrix order and

fixed number of Right hand side = 1.
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Higher order matrices offer significant speed-up than lower order matrices. The execution rate

increases by a factor of over 40 for an increase in matrix dimension N by a factor of 16 and block

size 1. For block size of 16 the execution rate increases by a factor of 50.

Performance characteristics of block cyclic LU Factorization

------- Block Factor 1
Block Factor 2

1 --------------- - -- ------- Block Factor4 -

Block Factor 8

8 . 0 8 - - - - ---- ---- - - - -- ---- ------

v) 0.6- ----

0
.')

0 op"

0 200 400 600 800 1000 1200
Order

Figure 3-1: Execution Rate vs. Order of matrix for different blocking factors.

Similarly blocking also plays a crucial role in performance improvement. This can be observed in

Fig 3-1. The execution rate increases by a factor of 7 for matrices of order 64 for increase in

blocking by a factor of 8. For matrix order of 1024 the execution increases by a factor of 11.
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3.2 QR factorization Performance Characteristics

In QR factorization, the matrix A is factored into Q and R matrices of the same order of A, R is an

upper triangular matrix and Q is an orthonormal matrix. As in LU factorization, partial pivoting

must be implemented for stability. QR involves a vector-matrix product followed by a BLAS-3

matrix update. The vector matrix product doubles the number of floating point operations com-

pared to that in LU to n3
3

Assessment runs were carried out for a range of blocking factors and matrix order. The results

are tabulated for dense linear equations with a single right hand side. Similar conclusions to that

of LU can be drawn based on these results. The outcomes of the test runs from QR factorization

are summarized in Table 3-2 and are graphically represented in Figure 3-2. The block sizes used

in the tabulation are 2, 4 and 8 for matrix sizes in the range of 64 and 4096.
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Table 3-2: Execution Rate table for QR factorization as a function of block size and matrix order

and fixed number of Right hand side = 1.
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Block Size Matrix Order n Execution Rate (Mflops)

2 64 0.03

2 128 0.12

2 256 0.48

2 512 1.74

2 1024 4.72

2 2048 6.23

2 4096 9.65

4 64 0.03

4 128 0.12

4 256 0.52

4 512 1.74

4 1024 4.83

4 2048 6.62

4 4096 9.98

8 64 0.04

8 128 0.13

8 256 0.53

8 512 1.77

8 1024 4.94

8 2048 6.97

8 4096 10.22



It is quite evident that QR factorization performs much better than the LU factorization. There is

a significant performance improvement with matrix order. The execution rate increases by a fac-

tor of over 320 for an increase in matrix dimension N by a factor of 64 and block size 2. The fac-

tor increased by 150 times for an increase in matrix order by a factor of 16. It performed even

better for block size 8. The execution rate increases by a factor of over 340 for an increase in

matrix dimension N by a factor of 64 and by a factor of 165 for a factor of 16.

Blocking is not as significant in QR as in LU. The execution rate increases by a factor of 1.1 for

each step increase in blocking by a factor of 2. Hence it is fair to comment that whilst LU is de-

pendent on both blocking and order, QR is highly reliant on matrix order for better performance.

Figure 3-2 depicts the performance characteristics of QR factorization for various blocking fac-

tors.

11
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8

7

6

5

4

3

2

1

n

Execution Rate vs Order

....------ b=2
- - - - - - - - -- - - - - - - - - - - b = 4

------ ------ b=8- --

I I I

0 500 1000 1500 2000
Order

2500 3000 3500 4000

Figure 3-2: Performance characteristics of QR factorization. Execution Rate vs. Order of matrix
for different blocking factors
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Figures 3-1 and 3-2 illustrate the performance characteristics of LU and QR algorithm respective-

ly as a function of block size and order for a -constant right-hand side size = 1. Both curves slope

upwards which demonstrates that the execution speed increases with increase in matrix order.

This can be addressed by the fact that the significance of the O(N 2 ) term reduces with increase

in matrix order.

3.3 Discussions and Inference

Block cyclic order LU and QR factorization algorithms are described for rectangular matrices of

arbitrary sizes. Results are tabulated for a single hand-side; also solutions can be generated for

numerous numbers of right-hand sides. The LU and QR algorithms are implemented with partial

pivoting for numerical stability. A brief description about the potential advantages and disadvan-

tages of using block cyclic elimination over block cyclic distribution was also presented. The im-

pact of blocking was also discussed.

Matrix order plays a momentous role in upgrading the performance characteristics of the algo-

rithm. The execution rate increased by a factor of around 45 for LU factorization and a factor of

150 for QR factorization with increase in order by a factor of 16. Level-3 BLAS Block update pro-

vided significant performance improvement in the order of 10 for LU and around 1.2 for QR fac-

torization. The block cyclic elimination algorithm is an analogous illustration of data parallelism.

The next chapter addresses task parallelism.
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Chapter 4

Task Parallel Algorithms

The block cyclic elimination algorithm described in the earlier chapter employs data parallel

threading. This chapter delves into the expressivity of task parallel algorithms. Task Parallelism is

extensively used when independent algorithms work on different data sets to produce a result

which is later combined. Thus there is almost no communication between the processors. The

algorithms discussed in this chapter are the parallel prefix, Monte-Carlo and an algorithm which

generates millions of digits of Pi.
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4.1 Parallel Prefix Algorithm

Parallel prefix [19]-[21] is an important data parallel algorithm with immense engineering appli-

cations especially in circuit design. The prefix algorithm takes an associated binary operator 0

and an ordered set [a,, a2 , ... an] of n elements and returns the ordered set,

[a,, (a1@a 2) ..... ., (a 1 ®a2® -.. an10an)]

The prefix algorithm has several important applications; the most important ones being the

segmented scan, Csanky's matrix inversion, Carry Look Ahead Addition and segmented scan

which is extensively used in VLSI circuit design. The serial prefix algorithm is of order 0(n) as it

requires (n - 1) serial ® operations on an n-element array each element being a 2-D array of

dimension m x m whilst the parallel prefix algorithm is of order O(log n) assuming n processors

exist for computation or of order O(n/p + log p) for p processors.

In this implementation we consider that each matrix resides in an individual processor and the

recursive algorithm to compute prefix is as follows:

Function prefix matmul(a)

1. Obtain matrix size along the third dimension.

2. Compute pair-wise product, communicating with adjacent processor. This can be done in

Star-P using the reshape command to get array 'w'.

wi = ai * ai_1  (i is even)

3. Recurse through the array obtained from Step 2 to compute even entries of the output.

w = prefixgmatmul(w)

4. Compute the odd entries with a pair-wise sum between the odd entries of matrix A and a

zero appended 'w' matrix.

y= ai + wi_1

yi =wi

(i is odd)

(i is even)

5. End
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The prefix algorithm forms a structure closely resembling a tree in which two actions need to be

performed to complete the prefix algorithm: Going up the tree and going down the tree.

Consider vector a = {1,2,3,4,5,6,7,8} for illustrating the tree structure in the recursive implemen-

tation of the algorithm. Whilst going up the tree (Figure 4-1) the algorithm simply performs pair-

wise addition and while coming down the corresponding odd positions are updated according to

steps 3 and 4. Thus for even positions the value of the parent node wi is used. For odd positions,

the value on the left of the parent node wgi-is added to the original matrix aj.

36

10 26

3 7 11 15

1 2 3 4 5 6 7 8

Figure 4-1: Going up the tree structure in the recursive parallel prefix implementation
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Figure 4-2: Going down the tree in the recursive framework.

4.1.1 Run time Calculation

Consider an array with n elements. Suppose we have enough processors to store each element

we can process all the elements in the same step. The number of items in the array is halved in

each step i.e. n -- n/2 - n/4 -* ... -* 1. Hence O(log n) steps are required for adding n num-

bers and the processor requirement is 0 (n). Thus if we started with eight elements it will take

three steps for termination of the algorithm and obviously computation in each of the steps is

being performed in a parallel manner.

Sometimes the data matrix is huge and the number of processors is very limited. Hence there

will be more than 1 element associated with each processor. Suppose we have n elements and p

processors, and define k = n/p. Then the procedure to compute the scan is:

1. At each processor i, compute a local scan serially, for n/p consecutive elements whose out-

come is [di, d,.,'dj.

2. Use the parallel prefix algorithm to compute

scan([dd, w2,
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3. At each processor i > 1, add wi- 1 to all elements d.P*

(time to add and store communication time up and
T = 2 -numbers serially) + 2(log p) down the tree, and a few adds)

p

In the limiting case of p<<n , the (log p) message passes are an insignificant portion of the com-

putational time, and the speedup is due solely to the availability of a number of processes each

doing the prefix operation serially.

4.1.2 Implementing Recursive Parallel Prefix in StarP

Star-P provides a very simple way to perform the prefix algorithm in a parallel manner. Consider

a 3-D matrix A of order nxnxI. The reshape function can be used to convert the 3-D to a 4-D ma-

trix. This matrix is then split across the last dimension and a pair-wise product is computed using

the ppeval command. The program is driven into a recursion exactly like the tree structure

shown above, each time applying the task parallel ppeval command for parallel product of the

matrices. Finally the odd entries are updated using ppeval.
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Performance Characteristics of Parallel Prefix Algorithm for constant length sequence
350 --

300 ----------- - ----- ---- ---- --- ---- ----

20--- ---------------------- -------- --------

>50 ----- ----------------- - - -,0

E

100 - - - - - - - - - - --- - l - - ---- - -- - - - -

50 -

0
500 1000 1500 2000

Matrix Order

Figure 4-3: Time elapsed vs. Order of matrix for length sequence's 16 and 32.
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Performance Characteristics of Parallel Prefix Algorithm for constant matrix size

600 ------- ------- -- --- -- ---- --------

200 -- - -- - - - - -- - --- -- -- -- I - - -500------- --- ---- - - -- - -

0
0 20 40 60 80 100 120 140

Length of Sequence

Figure 4-4: Time elapsed vs. length of sequence for constant matrix order of 1500.

4.1.3 Summary and Discussion

A recursive parallel prefix algorithm was implemented using Star-P and its performance was eva-

luated. The parallel prefix algorithm utilizes features of task parallelism to achieve speed up. Fig

4-3 characterizes the algorithm's performance for constant length sequences for varying matrix

order using 6 nodes. The algorithm time increases approximately quadratic with increase in ma-

trix order for all length sequences. Fig 4-4 analyses the algorithms performance for matrix of or-

der 1500 and variable length of sequence. Fig 4-4 utilizes 8 nodes. It can be seen that the scale-

up relationship is linear.
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4.2 Generating Millions of Digits of PI

Pi has always been a fantasy for every mathematician [17]-[18] and enumerating its billionth and

trillionth digits has always been associated with really fast parallel machines. Several algorithms

have thus been established to calculate the nth digit without the knowledge of the (n - 1)th di-

git. These algorithms when executed on a parallel machine are embarrassingly parallel allowing

wide scope in listing out a large number of these digits. The nature of these algorithms is purely

experimental and methods have been only established to obtain these digits in binary and hex-

adecimal forms.

22 333 355

The earliest decimal approximate fractions of n are ,- - and -. To calculate the nth digit with

each of these fractions it would require the calculation of all the (n - 1) digits prior to it and

empirical experiments to generate digits in base 10 never bore fruit.

4.2.1 Introduction

In 1996, Bailey, Borwein and Pluoffe [17] provided an empirical algorithm which produced the

hexadecimal equivalent of a digit at any arbitrary position without needing to compute digits

prior to it. The algorithm is as follows:

4 2 1 4 2 1
16 8i+1 8i+4 8i+5 8T+61

The embarrassingly parallel structure of the algorithm can be immediately observed from equa-

tion 1. This scheme can be easily reduced to a form which allows use of the binary algorithm for

exponentiation to prevent memory overflow.
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Equation 1 can be reduced to the following form

f16"r}= 4{16dSj} - 2{16dS 4} - {16dSs} - {16dS6}

where

= O j is represented by t16dSi}.

Now

dS d-k + 6d-k

1 6 dS= ..8k + k=d+1 8k+j

16 -k mod 8k+j 16d-k

k=0 8k+j k=d+1 8k+j

Here {.} is the fractional part of the quotient. 'mod k' has been inserted in the numerator be-

cause we require only the fractional part of the quotient and that piece can be calculated very

rapidly by means of the binary algorithm for exponentiation. Combining all the four parts we ob-

tain a fraction which when expressed in hexadecimal notation gives the hex digits of n in posi-

tion (d+1). The above algorithm was implemented by Bailey et al. in C and FORTRAN-90.

4.2.2 Implementation of the algorithm

This work presents a novel matrix implementation of the above algorithm to get millions of di-

gits of 7 in hexadecimal notation. Each row of the matrix represents the terms from the first part

of the equation and is updated from the previous row; hence there is no issue with memory

overflow.

The matrix is as described below with 'd' representing the rows and 'k' representing the col-

umns('d' and 'k' are terms from equation above). Suppose we would like to find the first 4 terms

of ir the corresponding matrix will resemble the following structure.
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d\k 0

0 160modl

1 161modl

2 16 2modl

3 163modl

0

16Pmod9

16 1mod9
162mod9

2 3

0 0 1

0 0 9
16 modV7 0 17

161mod17 169mod24 25

j=l

d\k o 1 2 3

o l6mod4 0 0 0

1 16 1mod4 lrimodl2 0 0

2 16 2 mod4 16'modJl2L6mod2O 0

3 163mod4 162 mod1216'mod20 L6 0rnod2E

j=4

d\k 0 1 2 3

o l6emod5 0 0 0

1 161mod5 160mod13 0 0

2 16 2mod5 16'mod1316mod21 0
3 163mod5 162 mod1,316'mod2116Pmod2

5

13
211

29

d\k 0 1 2 3

o 16mod6 0 0 0

1 16'mod6 160mod14 0 0

2 162mod6 16 mod1416 mod22 0

3 163mod6 162mod14161mod22169modc4

j=5 j=6

Figure 4-5: Matrix structure for j = 1, 4, 5 and 6 processed by different nodes.

The first part of the equation =0 16d-kmod 8k+j is represented as above in form of a matrix.

All the four matrices for j = {1, 4, 5, 6} are shown above. Since the calculations are independent

of each other, each matrix can be calculated with a single processor in an embarrassingly parallel

manner after which the results can be combined. The second part of the equation requires ut-

most 20 digits i.e. k = (d + 1)to (d + 20) to converge. The matrix method performs significant-

ly faster than the conventional implementation. This is a BLAS-2 implementation involving ma-

trix vector product.
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Figure 4-6: Performance characteristics of P1 algorithm describing Time elapsed vs. Number of

digits. In this experiment, a total of 4 processors were used.
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4.2.3 First 1000 Hexadecimal Digits of PI

1 E 6 A 4 5 1 9 3 F 3 A 0 6 D

Note: Read through the rows of the matrix, Column 1 contains the first 25 digits.
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4.2.4 Summary and Discussion

An empirical relationship which generates individual digits of PI was implemented with a unique

matrix construction to extract millions of digits. The method was described and the correctness

of the digits was also checked. The matrix becomes gigantic for generating a large number of

digits soliciting the necessity for use of large back end nodes to perform the role. From Fig 4-6, it

is evident that the Time-digits scaling is quadratic i.e. the running time increases quadratically

with increase in number of digits.
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4.3 Parallel Monte-Carlo Simulation for derivative

Pricing

Intense competition amongst various Investment Banks and highly complex quantitative strate-

gies in use has led to an enormous increase and necessity for incredible speed of computation.

The Monte Carlo algorithm is one of the most extensively used approaches to price derivatives

in the financial industry. The structure of the algorithm makes it a perfect candidate for the task

parallel feature in Star-P. In this project, optimal use of the task parallel Monte Carlo algorithm

structure is made to propose an efficient algorithm.

4.3.1 Derivative Pricing and Total Return Swaps

A derivative is a financial instrument [14] derived from some other asset where market partici-

pants enter into an agreement to exchange money, assets at some future date based on the per-

formance of the underlying asset. There are many types of financial instruments classified under

derivatives of which options, futures and swaps are most common.

In swaps [15] one party agrees to swap cash flows with another. The exchange of fixed-rate and

variable-rate loans between established businesses based on the preference for the other type

of loan falls under this category. Rather than cancelling their existing loans, the two businesses

can swap cash flows: the first pays the second based on floating rate and the second business

pays the first based on a fixed-rate loan.

Total return swap is a contract in which one party receives interest payments on a reference as-

set plus any capital gains and losses over the payment period, while the other receives a speci-

fied fixed or floating cash flow unrelated to the credit worthiness of the reference asset, espe-

cially where the payments are based on the same nominal amount. The reference asset may be

any asset, index or basket of assets.
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4.3.2 Problem Definition

In this example [13], a Total Return Swap agreement between SK securities and JP Morgan is

considered. The swap agreement was entered into in 1997 with a one year maturity. SK securi-

ties were obligated to return 53,000,000 [0.97 - Max (0, YTY) + Max (-1,s * BT B)]
YTT

for the $53,000,000 that they borrowed from JP Morgan. Here YT, BT denote Yen and Baht vs.

the Dollar respectively at the time of agreement. Y,B denote the Yen and Baht vs. the Dollar re-

spectively at the time of maturity. We solve this problem using the Black-Scholes Brownian mo-

tion assuming that the Yen, Baht vs. Dollar exchange rates follow a log-normal distribution with

volatilities ci, aBrespectively and correlation p. rD, ry, rB are the risk free interest rates in the US,

Japan and Thailand for 1year.

The log-normal distributions of the Dollar/Yen and Dollar/Baht is given below:

[(r-r- Tayv
7Tyj

Y = Ye

BT = Be-[(ID-B- T+GBSTB]

4.3.3 Implementation - Parallel Monte Carlo Algorithm

The Monte Carlo model includes any method of estimating a value by the random generation of

numbers and statistical principles. As an approach to pricing swaps, Monte Carlo option models

use a pseudo-random sequence that will be random enough to simulate a range of outcomes.
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The Monte-Carlo algorithm can be implemented in two pieces, one part to call the algorithm to

execute on the processor nodes and the other part, the algorithm itself. The algorithm is as fol-

lows:

Callmontecarlo.m

" Iteration = [1: n].

* Value = ppeval('montecarlo', Iteration).

* Compute Mean of Value.

Montecarlo.m

" Get parameters Y, B,rD, ry, rB. Uy UB-

e y, Bare random numbers from bivariate normal distribution with correlation p.

" Calculate YT, BT from eqn. (2)and (3).

" Calculate mean of YT, BT-

" Calculate Payment from (1)

" Calculate present value discounted by rD.

The callmontecarlo.m function executes the algorithm contained in montecarlo.m in a task pa-

rallel manner i.e. the same algorithm is distributed over different nodes to allow each processor

to return a unique solution for the random bivariate variable associated with it. The results of all

the N operations are returned to the main processor which then calculates the mean of all the

trials. Since the N operations are performed in parallel the time taken for execution is incredibly

fast. Often N>>p, where p is the number of processors, then N/p data is stored and processed by

each node.
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4.3.4 Summary and Discussion

In this project, a parallel Monte Carlo algorithm for financial derivatives pricing is shown. Expe-

rimental results show performance of the algorithm when up to 8 computing nodes are used.

The embarrassingly parallel structure of the Monte Carlo algorithm makes use of the task paral-

lel feature of STAR-P and performance gains approaching the number of parallel processors can

be achieved. They are graphically represented below.
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Figure 4-7: Present Value of the asset over several Monte-Carlo trials.
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100 -- -- - - -- -

V> 60 --- --- ----- - - ---- - - + - -- -- - --- ------- --
(3)

E
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20 ------ --- - - - - - --- -- -- -- - - --

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Iterations x 104

Figure 4-8: Task parallel speed up behavior for the problem defined in 4.4.2. In this experiment 4

nodes of computers are used. With increase in number of iterations the accuracy of the solution

increases and the relationship is also linear.
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Chapter 5

Scope and Future Direction

This project describes the implementation of a column block cyclic elimination algorithm. This

project can be extended for better performance by incorporating the 2-D block cyclic elimination

algorithm. It provides for superior load balance and communication between nodes when com-

pared to the 1-D column block cyclic elimination but consumes significant amount of develop-

ment time. Also, all programming codes have been written in Star-P and the results have been

compared to performance of serial MATLAB@. A better performance indicator would have been

to compare the results with MPI. Whilst it can be predicted that MPI would have performed

much better in terms of execution rate one would have gained tremendously in Star-P from de-

velopment time and ease of development.
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In the end, the best linear algebra is likely neither block cyclic in distribution or elimination. Both

are schemas to answer:

1. how does the data come in

2. where does the execution occur

With large high level inter-operable systems, the decision of how data comes in may no longer

be made in isolation, nonetheless where execution occurs is worthy of study. As parallel struc-

ture becomes more extensible, likely neither approach will prove optimal as automated tuning

software show the way.
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Appendix A

LU and QR decomposition

The QR decomposition is used to solve large dense linear systems. In QR decomposition, a ma-

trix A is factored into two matrices Q and R such that A = QR, Q being orthonormal and R an up-

per triangular matrix. Q is orthonormal and QTQ = I. There are several methods to compute the

QR decomposition of a matrix - Gram-Schmidt procedure, Householder transformation, rota-

tions. The new Gram-Schmidt algorithm is described below for a matrix A of order mxn with

each column vector denoted by a,, a2 , ... an-

Given an arbitrary basis {a,, a2, ... an} for an n-dimensional inner product space V, the Gram-

Schmidt algorithm constructs an orthogonal basis {v 1, v 2 , ... vn} for V:

Stepl: Let v, = a1

Step2: Let v2 = a2 - projwa 2

(a2, v1)
= a 2 - 2 VV here W is the space spanned by v 1, and projw1a2 is the orthogonal

projection of a2 on W1 .

Step3: Let v3  a3 - projwza3 =

(a3,Vl) (a 3 yV2)
a3 - IsV112 _1  

I aV2 )v 2 , where W2 is the space spanned by v1 and v 2

Continuing this process up to vn, the resulting vectors {v 1,v 2, --. vn}consists on n linearly inde-

pendent vectors forming an orthogonal basis. The Gram-Schmidt algorithm can be used to ob-

tain orthonormal Q matrix by dividing each column vector by its respective norm before projec-
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tion. The elements of R matrix are easy to obtain. The diagonal elements riican be obtained at

each pivot step as _ai.a1 and the off-diagonal elements are obtained as aj. vi for all j > i at

each pivot column i.

LU factorization is a computationally expensive method which produces very accurate results in

solving dense linear systems for a broad range of matrices. In LU factorization a matrix A is fac-

tored into two matrices L and U such that A = LU, L being a lower triangular and U an upper tri-

angular matrix. The idea behind the LU factorization is to zero out all the entries below the pivot

diagonal element by subtracting a multiple of the row containing the pivot from each of the

rows below the pivot. The multipliers calculated simply by dividing the target row elements

a(i + 1: m, i)by the pivot element a(i, i)is stored in the corresponding position in matrix L to

obtain the lower triangular matrix such that A = LU.

LU factorization applied to a strictly diagonally dominant matrix will never produce a zero pivot.

To ensure that the diagonal is the largest entry partial pivoting is performed. Partial pivoting en-

sures numerical stability provided the matrix is non-singular. Partial pivoting can be imple-

mented by swapping the diagonal row with the row which has an entry of maximum value in

that column. The Crout and Doolittle algorithms perform LU factorization.

Given a dense linear system of equations Ax = b, A is factorized such that LUx = b. Then, the

equation Ly = b is solved for y and finally Ux = y is solved for x.
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Appendix B - PI Code

function solution = main_call(d)

sumi =0; sum2 = zeros(d+1,4);
g = [1,4,5,6]; g = ppback(g);

z = ppeval('hexpi',split(g,2),bcast(d)); %%%% parallel call of function hexpi
for e = O:d

for k = d+1:d+20 %%%20 iterations enough for convergence
b = 16A(d-k)./(8*k+[1 4 5 6]);
sumi = sumi + (b-floor(b));

end
sum2(e+1,1:4) = sum1;

end
q = z + sum2; soln = 4*q(:,1)-2*q(:,2)-q(:,3)-q(:,4);

solution = floor(16*(soln - floor(soln))); %%%final solution

function u = hexpi(g,d)

A = eye(d+1,d+1); %%%% all matrices have ones on the diagonal
B = zeros(d+1,1); n = 1;

for m = g

if (m == 1)

A(1,1) =0; %%%for matrix 1 entry a(1,1) = 0, as mod(1,1)=0

end
for j = 0:d

B(j+1,1) = 1/(8*j+m);

for i = j+1:d
A(i+1,j+1) = mod(A(i, j+1)* 16, 8*j+m); %%each row is updated from the previous row

end
A(1:d +1, j+1) = A(1:d +1, j+1)*B(j+1,1); %%% vector update

end
for i = 1:d+1

f(i,n) = sum(A(i,:));

end
n = n+1; u = f-floor(f);

end
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Appendix C

Electrostatic interpretation of zeros of the Hermite poly-

nomial

Consider a system of n unit charges distributed at variable points in the interval [-00, +00]. The

potential of the system varies as the distance between the charges. Let D represent the discri-

minant of the distance matrix and is given by

D (xx2, - x.) = H11<isj<n 1xi - x1

If the potential is logarithmic as is the case in 1-D the equation

Z log Ixi-x 1I
1<isj<n

represents the potential of the system. Let the configuration

ment of inertia of the system such that it satisfies

of charges be bound by the mo-

where L is a positive number. This constraint is included to prevent the charges from moving to

infinity. It can also be interpreted as the energy exerted by the presence of an imaginary spring.

The electrostatic equilibrium of this system is obtained at the point of minimum energy of the

system and let x 1, x 2 , --- xn are the coordinates at which the charges will settle. The equilibrium

points of the system can be obtained from the solution to the optimization problem defined by

mint - [E1<i:5j<n 1oglxi-xj| - n- 1 (x + x2+. 4)] (1)

64

-logD(x 1 ,x 2 , ---xn) = -



The equilibrium positions can be obtained with a simple STAR-P program which enables use of

data parallelism for constructing large matrices and use of inbuilt vector minimization functions.

The simplest of minimization functions perturbs an element in vector x and calculates the ener-

gy of the system, repeating the process until the configuration with the lowest energy is ob-

tained. Improved techniques use gradient information for minimization.
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Figure C-1: Histogram of the Initial charge configuration.

3000 particles were distributed uniformly in linear space between [-1, +1]. Fig.1 shows the his-

togram of the initial position of the particles. Fig.2 describes the histogram of the equilibrium

position of the particles. The histogram of the final position of the charges follows the semi-

circle law. The semi-circle law was observed by Wigner for special cases of random matrices with

entries that are normally distributed and symmetric.
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Figure C-2: Histogram of the Equilibrium charge configurations - state of minimum energy.

Another important observation is that the new position of charges are the zeros of the Hermite

polynomial HN(c'x) where c' = (2L)-V/nT- 1. This observation has been [23] proved and is

revisited once again.

Consider a function g(x) with zeros at x1, x 2 , ... xn-,1 and let f(x) = (x - xo)g(x).

f'(x) = (x - xo)g'(x) + g(x)

f"(x) = (x - xo)g"(x) + 2g'(x)

Evaluating the equations at xO,

f'(xo) = g(xO) and f"(xO) = 2g'(xo)
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Hence,

g'(xO) f"(xO)
g(xo) 2f'(xo)

Hermite Polynomials solve the differential equation,

f"(x) - 2xf'(x) + 2nf(x) = 0

Evaluating the above equation at xO,

f"(xO) = 2xof'(xo)

Differentiating g(x) at xO after taking logarithms on both sides,

g'(xO) 1 1 1 f"(xO)
=+ +--- -x

9(xO) x0 - x 1  xO -xo - xn- 1  2f'(xO)

This equation can be interpreted as the equilibrium condition of a charge at position xO that is

attracted to the origin by a potential x2 and is repelled by other charges by a potential of

-jlog |xo - xj1. The equilibrium position can be determined by equating the derivative of

the potential with respect to xO and equating the result to zero. This coincides with the equation

above.

The roots of a Hermite Polynomial can be obtained from normalized eigenvalues of a symmetric

tri-diagonal matrix taking the diagonal as zero and the square root of 1:(n-1) on the super and

sub-diagonals and the histogram of the roots is a semicircle.
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