
DESIGN BY SEARCHING:

A SYSTEM FOR CREATING AND EVALUATING COMPLEX

ARCHITECTURAL ASSEMBLIES

by

Matthew Giles Phillips

Bachelor of Architecture

Virginia Polytechnic Institute and State University, 1999

SUBMITTED TO THE DEPARTMENT OF ARCHITECTURE IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN ARCHITECTURE STUDIES
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MAY 2007

Copyright (c) 2007 Matthew Giles Phillips. All Rights Reserved.

The author hereby grants to MIT permission to reproduce

and distribute publicly paper and electronic

copies of this thesis document in whole or in part.

Signature of Author:

Department of Architecture

May 23, 2007

Certified by: 0AOZ13 Zd
Kent Larson

Principal Research Scientist in Architecture

Thesis Supervisor

Accepted by:
' j Julian Beinart

MASSACHUSETTS INSITTE Professor of Architecture
OF TECHNOLOGY

Chairman, Committee for Graduate StudentsJUN 14 2007 ROTCH
LIBRARIES

Matthew Giles Phillips

Design By Searching
A System for Creating and Evaluating Complex

Architectural Assemblies

Copyright (c) 2007 Matthew Giles Phillips All Rights Reserved.

Readers:

Dr. Terry W. Knight

Dr. George Stiny

Dr. William J. Mitchell

Acknowledgements

To Kent Larson for providing both the opportunity to pursue this

work and for your tireless guidance along the way.

To Terry Knight for your tremendous assistance and support in

shaping this research, you have been a guide for me during my time at

MIT.

To George Stiny for your thoughtful and practical suggestions.

To Bill Mitchell for your valuable perspective on the issues at the heart

of this work.

To my participants for thier time and energy, and for contributing to

so much of what this research has to offer.

To Carla Farina for your assistance in preparing numerous materials.

To my family, for believing in me.

To the 32 students lost in Blacksburg, Virginia, April 16th, 2007, may

you rest in peace.

I would also like to thank:

Dr. Stephen Prince

Neeraj Bhatia

Lu Ai

Jennifer Beaudin

Kenneth C. Cheung

Christoforos Romanos

Michael Fadel

Contents

Design by Searching
A System for Creating and Evaluating Complex
Architectural Assemblies

1 Abstract 9

2 Introduction 10

3 Design by Searching 16

4 The Result Set: Component Based Representations 37

5 The Query: Conceptual, Constructive Interfaces 45
6 User Evaluations and Findings 74

7 Search System Prototype 96

8 Where Do We Go From Here? 125

APPENDICES

Appendix 1: User Exercises 133

Appexdix 2: System Details 153

References 168

Abstract

Design by Searching
A System for Creating and Evaluating Complex
Architectural Assemblies

This work investigates a prototypical Web-based search system designed to enable

architects and/or developers to engage and educate residential consumers in a

new way: as co-designers. The key motivation is to develop software tools that

support a feasible industrial process while providing home consumers with a way

to conceive of and design spaces, as an alternative to the standardized commodity

solutions that are currently available. The basic mode of operation for this work

is to combine the structure of the modern computational search with emerging

building modeling technologies as a foundation for Web-based participative design

tools.

Object-oriented component representations have been utilized to build a solution

space that can be searched directly, without indexing. Additionally, conceptual

query interfaces have been designed and evaluated through interviews with

volunteer users. The component-based solutions and conceptual queries were then

incorporated into a prototype of an architectural search tool which was analyzed to

measure its effectiveness.

Thesis Supervisor:

Kent Larson

Principal Research Scientist in Architecture

Readers:

Terry W. Knight

George Stiny

William J. Mitchell

1 Introduction

Architects don't have a meaningful role in the design of most

homes. They design the usual avant-garde houses that decorate

magazines, and the custom one-off designs that get built for rich

people, but these and the other projects that involve architects

comprise only a small number of the homes that get built in the

US. The rest of our houses do not involve architects in developing a

solution for individual homeowners, and certainly do not involve the

potential homeowners in the design - they are standardized in design

to target the center of the home market. This is, of course, a result of

the economics of the home market and the developer's production

methods: by building standardized, non-variant houses or living

units, developers reduce complexity and thus reduce cost. But these

homes do not have any direct relation to the potentially changing

needs of individuals; the idea is that the standard templates are good

enough. The process endures because the people have no vocal chords

for expression and thus no voice for complaint - houses are expensive

and the process of ownership is complicated and intimidating. Plus,

non-standard homes may be difficult to sell, being anomalies in the

housing market: wanted by a few people perhaps, if only those people

could find them. So the market is built upon our silent acceptance of

mass-standardization, because through our limited choice and limited

awareness of the market, we the people let it be so.

In the market-driven world of housing development, is there

any space for the dreams of humanity in the building process? Can

people engage with architects and design on a large scale? Perhaps

there is a way. In looking at current trends in the industry, advances

in technology may become a facilitator not only for new design

processes but for consumer-participative design processes. In

computers, the recent emergence of component-based representations

for architectural structure means that software can now know more

about the spaces upon which it operates. For example: Autodesk,

the market leader for CAD tools, has shifted from their traditional

AutoCAD software platform to Revit, which utilizes Building

Information Modeling (BIM), a component-based representation.

Their goal in making this shift was to better facilitate information

exchange between architects, builders, and engineers. And the new,

more detailed computational representations like BIM are already

showing the potential to transform the home production process,

essentially reducing economic barriers that worked architects

out of the loop in the first place, by making it easier to share and

communicate and by reducing field labor costs. Reconfigurable, pre-

fabricated assemblies, described as a hierarchy of components, can

be made and assembled affordably, and described computationally,

which may facilitate mass-custom designing on a higher level.

This work explores the potential of emergent technological

innovations to facilitate a democratization of the design process,

where interested home-buyers can interact with high-level tools

that are built on top of more descriptive representations like BIM -

representations which are in turn connected to fabrication processes,

thus realizing a new model for mass-customization. One of the key

challenges is to find high level representations that allow people to

understand and design spaces, according to their own needs and

values. Apart from a plethora of web-based, traditionally searchable

listings, there are two broad categories of home design tools that

are currently available to people. These are simplified narrative

"configurator" type tools, and tools that are based upon a 2D or 3D

modeling environment. The former is so constrained that truly rich

preference specification simply isn't possible, and the latter is very

unfamiliar to most users.

Figure 1.1 Different Apartment Layouts
in a component-based representation

K Larson, M G Phillips, C Farina
rendering by C Farina

Figure 1.2 Configurator System l dil: A.
An example from the automotive industry, CA C'At AR HO"W MRA NW 1, PRINT lewM,

the Maserati car configurator QUATTROPORTE DUOSELECT
http://www.maserati.com

t&A~t~TI WT 7 DIM MO hllI DPID4 M4ADUN. CAAPIIS

Configurator tools (Figure 1.2) are basically narrative scripts

that combine different types of representations like text and images

to describe the design product to people. As will be described, these

tools walk the user through the selection of specific options, using

strategies that are essentially simplified expert systems. But even the

more easily navigated of these systems give only specific and limited

options, creating a process that is not educational, and a product

that is only minimally configurable. Expert systems face significant

limitations because their abstract needs assessment processes do

not work well with an open-ended and unconstrained process like

designing. Lucy Suchman notes that "the structure of the interaction

is procedural, constituted by a sequence of actions whose order is

partially enforced." (Suchman 99) But tools should acknowledge that

people learn by observing themselves: "the sequences of operations

and procedures we execute; the clues we observe and the rules we

follow; or the values, strategies, and assumptions that make up our

'theories' of action." (Schon 25)

At the other end of the spectrum, there are numerous modeling

environments that allow everyday users to design a home. But

modeling software is not something that's inherently approachable

- most people do not know how to represent their ideas spatially, the

way an experienced designer does.

The fundamental issue with both configurators and modeling

environments is that of representation. Problems emerge because

these systems fail to describe relationships or pieces of information

that are not within the representation, but still shape the related

products or processes. Computational representations have this

limitation in common with other methods of description, like

architectural drawings or model-making; in fact, in working with any

representation, the complexity of the actual design product is stripped

away. But just as architects may move between sketches and models

to get a sense of the thing they are creating, and to develop their

expertise, this research aims to discover whether or not a computer-

based interface can accomplish the same thing through an interactive,

multi-representational approach. Towards this end, this research has

endeavored to both clarify the parameters of architectural decision-

making logic, and to provide constructive, iterative tasks that span

multiple distinct representations and facilitate a sort of "learning

by doing" for consumers.1 The fundamental argument is that the

establishment of a hands-on, educational design environment is a

critical aspect of consumer-based product design systems.

To engage people, this research proposes a direction that is quite

different: utilizing search algorithms to enable participative designing.

The concepts discussed herein are meant to address the specific and

significant problem of spiritless residential architecture, by proposing

and evaluating a system for the specification of choice, in the context

of residential architecture. The study is constrained to a simplified

context: a middle-income, US-based, multi-family residential

development. This context is particularly interesting because of the

diverse consumer profiles and the current demands being placed on

the industry. As spatial functions and user needs evolve, builders have

made increasing efforts to efficiently prefabricate flexible living spaces

that are in tune with social context and also adaptable. A decline

in the availability of skilled labor and the increased complexity

of housing systems has increased the expense of field labor and

provided further impetus within the industry to find a new way to

build. To promote this effort, the software guidelines developed

here are intended to support a new industrial process for architects,

developers, and consumers.

Ultimately, this study is founded on the notion that consumer-

oriented design systems must support the conceptual exploration

and discovery of places, and that they can do so by utilizing the

structure of search engines. But this new search must enable the

act of designing, without overly constraining it. To facilitate better

conceptualization than that supported by current tools, people need

to be able to learn what they want while finding it. Towards this

end, search engine tools that have traditionally been tied only to the

process of discovery within specific formats, have the potential for

expansion into the domain of educational design tools that can attach

to multiple representations. The search will be centered upon queries

that are spatial and/or diagrammatic, and that may be mapped into

a component-based modeling system like Autodesk Revit. Rather

than speculate about the effectiveness of any single type of search,

the work explores the potential of various types of interfaces for

constructive searches, and proposes a common index structure that

each of the interfaces could be built upon. The specific bases for the

conceptualization interfaces are: natural language, metaphorical role-

playing, diagrammatic languages, and flows/sequences.

The primary deliverable of this work is the evaluation of

prototypical tools intended to support the conceptualization

of spatial configurations. There are two types of tools studied:

conceptual querying interfaces and a component-based modeling

system.2 Evaluation is done through user studies with volunteers

involving constructive, paper-based exercises; the results of these

evaluations are used to design a system prototype that integrates the

different interfaces. Figure 1.3 shows various tags that were used in

the exercises. Additionally, the integration of this system's design

.....

Figure 1.3 Tags for User Exercises
Various paper word-tags. These were
incorporated in various design exercises

14

formats with other technologies is explored for both designers and

consumers, and speculation is made about the potential effectiveness

of these types of systems in improving the sustainability and efficiency

of private spaces, and in the opening of service channels between

designers, manufacturers, and home consumers.

Apart from describing the mechanics of the system, this work

endeavors to create a design context that can improve residential

home configurations, in important and diverse ways - primarily

through the generation of more generalized, but also individualized,

custom designs. But also, indirectly, by improving each consumer's

understanding of space and how they exist within it. As Kevin Lynch

notes, users derive benefits from a more rich understanding of their

environment.3 (Lynch, 111)

The work shown here represents only the first steps towards

the generation of a system for consumer-based residential design

- there are many details that still need to be worked out. As such,

the prototypes, evaluations, and implementations are of reduced

complexity. And ultimately, this work describes only one approach

in an area of inquiry where many others may be taken. But if we

can engineer search tools that work like those prototyped here, we

may provide the foundation for a more efficient industrial process,

by first involving consumers and designers in spatial layouts and

space definitions, and secondly by associating these layouts with

autonomous and relatable prefabricated parts.

1. The provision of these tasks is made in support of the idea that

constructive processes are inherently educational. I will look in more

detail at various sources for learning by doing: Seymour Papert -

Mindstorms, Donald Schon, and Piaget.

2. Component systems are directly searchable because they can describe each

of their parts inherently. Further, in the Society ofMind Marvin Minsky

has made assertions about how humans store and relate concepts about

functionally autonomous parts, detailed further in his forthcoming book

"The Emotion Machine". These various parts will therefore be the basis

for the conceptualization tools.

3. The schematic partitioning of space is certainly a much older concept,

but Lynch is notable for the specific characterizations made through field

observation.

2 Design by Searching

2.1 Design Tools

As a category of software, current non-expert design tools quickly

highlight the most fundamental constraint of any computational

system: the limited descriptiveness of the representations the system

uses. We arrive at this problem so quickly because non-expert design

tools, as a rule, must inject educational, or at a minimum, supportive

criticism into whatever representation of choice they happen to

be working with, to help guide the user through the process of

designing. The criticism structures are tied to and constrained

by those representations. There are two common problems that

rise from this: first, the tools cannot scale beyond the limits of the

representation. And secondly, the user's learning support systems are

tied to the specific representation of the tool they happen to be using,

rather than the conceptual design domain within which the tool is

attempting to facilitate the discovery.

Designing in a complicated domain like architecture requires

knowledge about forms, structure, lighting, materials, and so on.

Moreover, the process is a scalable one; often architects will ignore

some details of the problem to address other design concerns, and are

constantly shifting their area of focus. For example, an architect may

be very concerned with the organization of spaces around a central

hall, and may do some design sketches of the plan configuration

without trying to work out the details of what the walls and roof will

be made of. These other things would be "saved for later". At first

glance, the architect may appear to be simultaneously managing all

sorts of different design considerations, and selecting between them

with computer-like precision until a final design is resolved, complete

in every detail. But research has shown that the architect's process

is far less controlled, and involves the constant discovery, and re-

discovery of problems and solutions within the context of a design.'

The professional act of designing is far more of an improvisational

act, with some structure provided by project constraints but with tacit

knowledge, and reflective learning constantly at play.

The idea of constant discovery is an important one because it

highlights one of the most critical functions of an architect, and that

is to find and frame problems as a way to steer through the immense

potentiality of the physical solution space. Architectural design is like

a search for good solutions. But it's a search for the unknown, not a

search where you know everything ahead of time. It's like trying to

find your ideal mate, not like looking for a penny on the sidewalk.

You might know a few things that the person should be or have, but

your ideal mate is likely a complex fit - and probably not very easy to

describe completely.

The first efforts to make software tools for novice users attempted

to engineer professional knowledge that guided people through the

architectural design process. These solutions could be described as

basic expert systems, where a linear narrative of "value" questions led

to a design recommendation. An early example was the ARCHIT

expert architectural design system from the 70s (Figure 2.1), which

was criticized for its limitations. (Negroponte) The failure of these

systems quickly highlighted the problem with their approach:

improvisational, tacit designing, which all good architectural design

consists of, is not easy to encode as a script. First, the design process

is not linear; it may be circular, tangential, or even random. And

abstract realms of knowledge, like aesthetics, may be a source of

11 A 6S4K VITIROUl COMM~l gpa017
1) A $Ml vtim W N cu111SACE 011 Wf SIV OIY
31 A SINK VITH CIONTtme aC 0 01M1 51057?

00 YOU MAI'T 9C1I Of YOMl tMMLI TO PIAVE 5111101 LAVATORY FAclUTI11?

WAI 22110 0 or MKS be youl ant raf vole CWITVArr
1)5 uS3 VITVOMI CO0UNT"1 SPAM~
1) SINKS WIT"i COMMZ SPACE an cot slot MAI?
It 3211 W17H COU.45 SPA"E 011 1011 S105)1

-I Mar out"3 1.AVATMIC 9O0O Vi I!T

310 a WEST? AVATMY, WIAT 1100 Of $IN f OU AST!
1) TIM SIll VIPAUT COhINIER SPACE?
ft Tot1 TYPE WITR C00*M1) SPACE 40 0111 IM1 OsLy?
111 11H TIlT 1191M 004PTAN SPAE 441 1111 31011?

3100 151FROM
1) $Mow~

4) 10111
s) nitvia te me ftPnxio

0 4010,009" SPACE st"CASIO01
A 0 C 0 t

is 11513 Siml 1.33 1.40 1.1 all les .13 0=00
I 10- Ilto SBUS5 10" 0.00 Ali3 33 0.000
11 11100 S9p MW8 lo) .40 0.00 1.33 20.3 0400
is 4113? $lip . 1.40 0.00 123 11,04 0090

IPAT IRJI u

305* 312 1 5178 1 Figure 2.1 ARCHIT Screenshot
Example of an early, narrative expert

system interface for architectural design

> user
reacts to
criticisms mod

representati
A

bes any
isms mod

system<

Figure 2.2 Design Critic Cycle
The iterative cycle of an embed
sub-routine

18

decisions in the design realm. Flat, linear systems simply didn't allow

people to relate, in a rich way, their own knowledge to the problem,

or to discover their own solution within the problem space.

This incompatibility with abstract design sources points to an

important criticism of design engines: the flat-out inability to handle

or encourage metaphorical and associative thought. This is something

that people are really good at, and something that human designers

are constantly doing. For example, the architect may borrow ideas

or fragments of structure from other projects to arrive at their own

solution. Or the entire design process may be metaphorical: the

architect may, for example, try to evoke the nautical sense of a sail

with a sweeping roof design. These ideas are context, time and

space specific; they may even be discovered by accident. For non-

experts, this type of associative virtuosity should also be enabled

and supported, for it is the most basic of conceptual structures, and

organizes both the design inquiry and the designer's thinking. 2 In

the realm of associative thought, everyone is an expert simply by

being alive, aware and human.

More recent consumer design tools have emerged that associate

various design interfaces with software critics. (Figure 2.2) These

critics are programs that evaluate designs according to a specific,

encoded rule-set. 3 For example, R. Williams (MIT House n)

explored methods for training software programs how to criticize a

user's designs by comparing those designs to pre-evaluated examples.

(Williams) These tools represent a significant improvement over

linear scripts because they are iterative in nature and allow the user
makes a
ification to make (and learn from) mistakes, by highlighting those mistakes

V in some way. (Figure 2.3) This makes interactivity inherent in

)nl the process and allows for more self-direction, depending on the

representation used. An everyday user could conceivably create a
reviews

ification simple floor plan by placing pre-arranged room configurations, and

upon completion, a critic could be invoked to check out specific

properties of the design - for example, to make sure the rooms

all connect up, or that the toilet is connected to a water-wall. In

application, this works better for someone who is an expert already,

ded critic because having the critic discover more than a few of errors creates

a dizzying scene for a novice, where the logic behind the critic's

descri
critic

* Awtodetsk R-vi ftdinimn 9 lPsilrtl 1 oi Pln- I swrd I I Figure 2.3 Design Criticism In Revit
Here, the user has attempted to place a
door in the open floor. note the prompt

S U9 i a x I If J pe q c 0 1 Uialdw w l

'y fte M Z |g 03 03 [p (R li Deo.h Akin #Spit t Teim Offst [(

Tag Ceiling Plans
Door Levall
~ndsw tev.e12

~~ 9 Eleva. (sBuidng
East

Room Nofth

West
g*Legends

f&eed * Schedules/Quaie
LnS ED Sheets (all

01g0 F irie

repestaalJMatrepiate tHost Try sin edeg citeent Hsst Face of ietco

rereintatio and then ea teceuate these iinnfee rocess

Whoerwhelrepresenaton mayu tha alowe them tnoemrlet eel

exore poiteniasluisth criticiutifrfcsrm quikl splecdethems out of

discover correctness. The non-expert knows nothing about these

rules, which, of course, is why they were encoded in the first place.

But this is also their biggest problem: they represent a black-box of

hidden mechanisms where confusing outputs frustrate, complicate, or

terminate the design process.

For the everyday user, there's also a problem of distraction.

Where the representation may have allowed them to more freely

explore potential solutions, the criticism quickly pulled them out of

their conceptual problem space. At the lowest level, this is because

the criticism is tied directly to the system's representation, and cannot

scale to fit different conceptual representations the designer may

have been holding in their own mind. So quite simply, things may

be surprising or make no sense. As learners, adults are self-directed

(Lieb): they must be able to perceive the immediate or long-term

benefit of working through a problem, and they must be able to

relate the design to their own experiences on a conceptual level. This

relation must be allowed to persist throughout the act of designing,

because it's the fundamental mechanism for seeking out and selecting

solutions.

2.2 Search tools

Archie

Gopher

Excite

Yahoo! Directory
WebCrawler
Lycos
Infoseek
AltaVista

Open Directory Project
Google

Figure 2.4 Early Web Search Tools
Original tools like Archie and Gopher
were essentially list searches

For architectural design tools, the ability for self-directed

discovery within the problem domain is highly constrained by

the current standards for non-expert technology. The fact that

technology is a shaping factor upon the experience of humans is

an inevitable dimension of how people interface with their own

creations, and is not, inherently, a problem. But when a recognizable

need cannot be met, the technology must be either retooled, or we

must look elsewhere for a solution. And so, in looking elsewhere

for a solution to the integral flaws of expert systems and embedded

critics, this research explores that which is arguably most fundamental

to computing: the search itself.

Computing technology is structured around, and perhaps

informs, the popular conception that there is some sort of divide

between searching and learning - that you must first find some

resource, and then, only once you have found it, begin to learn from

it. But in everyday life we often observe the contrary: that the act of

searching, especially through reflective self-evaluation, is inherently

an educational process and the learning is related specifically to that

which is being searched for. Consider again the example of finding

an ideal mate; many people conceive of the process of dating as a way

"to find someone" during which people learn a lot about themselves

and what they value in a spouse. The same type of dynamic, reflective

searching is particularly true in the context of design.

The rise of the internet and the democratization of information

access into more horizontal network structures have naturally led

to a parallel rise of web-based search engines that allow people to

navigate the immense search space of the internet. (Figure 2.4) In

fact, as the primary window into cyberspace, these search tools are in

a position of fundamental, central importance: just as Vannevar Bush

speculated in the late 40s, it was managing the access and retrieval

of an unprecedented amount of information that was key. Prior

to the World Wide Web, early search tools like Archie and Gopher

allowed people to search file names but not contents. With the

1990

1991

1993

1994

1998

advent of the Web in 1993, search tools that could parse full page

contents were already emerging. With the bar raised to full content

searches, indexing systems were developed to manage the immense

and ever-expanding search space of the Web, and to make searches

more efficient in real-time. A pioneering researcher in this aspect of

searching was Gerard Salton, whose team developed many algorithms

for retrieving information more quickly, including the fundamental

concepts of document relevancy by word frequency (Figure 2.5), and

the automated indexing of documents to make them simpler to parse.

To accomplish this, various crawlers (also known as spider) programs

emerged, their purpose was to automatically navigate through sites,

following links and writing what they see into a central database.

This central database thus becomes the collective index. Of course,

the index is never complete and never up-to-date, in the context

of the Web it creates the illusion that the entire Web is searchable

when in fact it is not. The phenomena of unreachable, dynamically

generated content that escapes the notice of crawlers became known

as the Invisible Web. (Bergman) In fact, the improved search

functionality of sorting documents by popularity, which helped

Google emerge as the leading search tool from 2000 to present day

(2007), actually increases the tendency to overlook many resources.

(Bergman)

In discovering the Web, one quickly learns that there is a standard

format and methodology for searching, and for discovery: a text

box that you can put text in, with a button next to it. You type

something in, click the button, and up comes a listing of available

and matching resources: behind the scenes, the listing may be ranked,

cached, intricately sorted, maybe even paid for, but to the user the

listing is always conceptually the same: an ordered set of results. If

the results aren't quite right, you can use some different words and

try again, until you find what you're looking for. All of this is really

just a roundabout way of saying that most Web users know how to

search interactively, and most Web users have a mental model for

"query", "search submission", and "browse results". This process is

fundamental, inseparable from browsing, maybe frustrating at times,

maybe educational at others.

Therefore, if we conceive of a search operation as a new

o relevant document

x nonrelevant document

A average item

Figure 2.5 SMART Relevance Feedback
From Introduction to Modern Information

Retrieval by Gerard Salton, 1983

21

user arrives at

search
engine\

user clicks on link
to go to

result
user
qUE
inte

user views

results
listing
A

enters tei

ry
rface

xt

q
sub~

system performs
search of .

indexes

crawler runs
automatically

indexing
mechani

Figure 2.6 Web Search Engine
Typical structure of an indexed s
crawler runs on its own, asynchr

22

model for a software-based design process, we have the advantage

of a democratically accessible and standardized set of primitive

components, which we may then overload to support designing.

2.3 Overloading a search

If searching is a fundamental part of designing, then could the

computational search engine be utilized as a structural foundation for

a design system? This research supports the development of search

tools to help everyday people conceptualize and design physical

spaces, recognizing that design-based searching should be a more

constructive process, and that some new avenues will need to be

nto explored. 4 So, in what ways does the standard conception and

implementation of searches limit the learning of the human who is

searching? Could a search be expanded to allow for the user-defined

4j specification of non-textual, spatial-diagrammatic queries, and could

uery the construction of these queries become an inherently educational
uitted to

system process? Designers must be able to search for solutions by iteratively

working through a problem to construct a solution. By examining

current search technologies in terms of their constituent parts, we

may illuminate potential areas for further study, or for injection of

new constructive processes.

Search tools have three primary components: an indexing

mechanism that summarizes the search space (typically crawlers or

directories), the querying interface where users enter a search term,

and the results listing. (Figure 2.6) Web-based search tools are

generally indexed for manageability and performance. Most search

tools are text-based, such that the query, the results listing, and the

searching functions are dealing with natural language handling,

parsing, and matching. Some newer search tools integrate the

conceptual or semantic organization of textual terms in a map-

like image, but these are still fundamentally text searches. Recent

improvements in computer vision algorithms have lead to the

development of visual/image search functionality; for example,

e-commerce sites that allow consumers to search for products by

.arch, comparing items to a source image. The more advanced of these
3nously visual searches even allows users to rank what is most important to

match between the images, be it color, size, or shape. I For all types of

search, the results display will always be sorted: there is an expectation

among search users that the top results will be the best by some

measure; this measure may be relevance, popularity, influence, or

something else. (Fensel, et.al. 18) The query is generally submitted

through a simple dialog that then launches the results listing in a

discrete page or interface. This allows the search dialog to stay up,

and facilitates a smoothly interactive process of query refinement.

Because searching is fundamental, every computer user has some

sort of understanding of how a search works. And this is exactly the

reason why search functions are such a compelling source for building

more powerful design tools: they are fundamental, widespread,

and well-known to virtually all users. What better foundation for

enabling the exploration of designs, for a large community of diverse

users, than search engines? Everyone who uses a computer has a

conceptual model of what a search engine does, and what its basic

parts are.

2.3.1 The Query

On computers, the search term, or query, is almost without

exception a text string. Various rules may be encoded into it, like

quotes to match phrases or meta-rules like the "define:" directive

Google provides. 6 But knowledge of these advanced features isn't

necessary, and ultimately, the standard query is still flat, abstract text.

Newer interfaces have begun to integrate visual organization into

the query, in an effort to create a process that is more intuitive. For

example, some web sites use a semantic diagramming structure; the

idea behind this visual representation is that it helps people navigate

the search space by grouping concepts together and relating the

groups into a kind of primitive organizational structure. 7 The search

query is still plain text, even though the representation is more visual

in nature. But could the process of specifying the query be something

more constructive, something that allows users to assemble visual

information? Could it be something along the lines of drawing or

composing an image, and what would be the benefit of a visual query

as opposed to a textual one, in the context of architecture?

The motivation for moving towards constructive queries is to

improve the learning supported by the search process in general, and

to improve the mapping of search concepts to discovered architectural

solutions, in particular. Let's start with the learning part, and Jean

Piaget.

Over the course of his life-long research into the cognitive

development of children, Piaget closely related the mental

development of children to different types of interaction with the

environment. As children grow through various stages of knowing,

their understanding of the world evolves from simple conceptual

structures related to movement and objects, to the development of

motor skills, followed by logical thinking and ultimately abstract

reasoning. (Piaget) 'While there is no clear division between these

stages of development, they are all fundamentally about iterative

cycles of doing, and they indicate that knowledge is fundamentally

constructed internally by the child, through processes of reflection.

This new perspective lead Piaget to a set of theories about learning by

doing, known as Constructivism.

Others would pick up on this line of inquiry, as did Seymour

Papert, who had worked with Piaget in the 1960s. In 1980,

Papert published Mindstorms and formally described his concept

of Constructionism, which draws in part from Constructivism,

but further identifies the process of building things as an intensive

and primarily educational mechanism. From his observations,

Papert contrasts basic mathematical knowledge developed through

traditional methods with Constructionist methods of instruction,

finding that the latter lead to concepts that were more relatable to

various types of tasks, and also more significant to the children.

(Papert, 53) Further, he describes an important point: that the

knowledge built through making things can be developed just as

effectively by various types of learners, even kids that were previously

"mathophobic", because the process of construction enabled them to

relate things that were meaningful to them as individuals. (Papert,

63)

To help people learn about architecture, this work tests the
Figure 2.7 Children with Turtle
Learning with Logo, from Mindstorms viability and accessibility of spatial or conceptual images that are
by Seymour Papert constructed, iteratively, by the user and submitted as a search query.

The fundamental challenges with this are first creating a way to

construct searches that people are comfortable with, and secondly

determining the level of descriptive capacity that people really want

to have access to, and finally determining whether that level of

description can be matched effectively with various computational

representations of architecture.

This research is aimed at tools for the potential home owner, and

therefore, adults. Adults really aren't as efficient learners as children

are, because they're influenced by experiences and expectations.

(Minsky 1, 92) There are innumerable reasons this may be the case,

but experts in the field generally agree that it has something to do

with the following properties of adults. First, they have more de-

motivating roadblocks: they may be short on time, or may have other

responsibilities or concerns that prevent them from digging into

the task. And they are far more self-directed: adults want to be able

to pursue a problem in the way that is most comfortable to them.

(Lieb) Finally adults must be able to perceive the immediate benefit

of something before committing the time to learn about it: they will

have more resistance to learning new things at the onset if the interest

isn't there inherently. In the context of a more visual search, this

means that the task of image-making, which would probably be new

to most users, is potentially daunting. In fact, upon realizing that

almost all Web searches are text searches, one might speculate that the

general consensus among search developers is that people simply can't

or don't want to do searches by image-making.

To get a sense of what may or may not be doable, different types

of conceptual querying interfaces that related searchable concepts

differently were evaluated. Rather than speculate about what sort of

searching interface might be the best one for our purposes, this sort

of evaluation gives us a better foundation for future work and opens

up the possibility of using different query interfaces, or different

combinations of queries, for individual users. This research evaluates

the effectiveness of four querying interfaces: text-based, role-playing

metaphor, activity-based, and diagrammatic. Chapter 4 will provide

a detailed summary of each interface type.

Among those tested, diagrammatic representations are the most

difficult to search with, but they're attractive because they have

Figure 2.8 Lynch's Diagram of Boston
A problem map that summarizes urban
wayfinding information
From The Image of The City
by Kevin Lynch, 1960

26

enough constraint within them to be understood by a computer, and

they also make sense to people, as suggested by the work of Marvin

Minsky and Kevin Lynch. However, being able to make sense of

diagrams and being able to actually create diagrams are two different

things; the diagramming process must be approachable. (Lynch

11) Furthermore, because the diagrams are potentially much less

constrained than the parameters of the search space, there is greater

potential for the user developing unmet expectations in the act of

diagramming. In other words, they may think they are specifying

something meaningful as a search criterion, where in fact they are

not. This will be discussed in greater detail in the following sections.

In his research about how the human mind may structure and

retrieve information or knowledge, Minsky speculates that there are

likely many different types of structures at play, with different types

of functionality to facilitate different types of knowing. Among them

are semantic networks, which relate together the various parts of

entities or processes. These networks may be assembled into narrative

sequences, which might related to simple constructive processes, like

what happens when you move a chair, for example. (Minsky, 137)

The fundamental idea here is that people understand that which

they see in terms of their constituent parts or properties, and that

these parts might be relatable, or swappable, to facilitate low-level

associative thinking. Low-level associative thinking takes many forms

and is evidenced by metaphorical relations; for example, thinking of a

slice of pie to describe a pie chart.

In the specific context of spatial configurations, Kevin Lynch's

research on how people understand their environments pointed to

a common language of parts for these knowledge networks, at least

at a high level. Through evaluation, he discovered that people's

conception of space could be generalized into a few specific types:

paths, districts, edges, landmarks, and nodes - and that these types of

things could be related diagrammatically. (Figure 2.8) He extracted

these findings through the case study of specific cities, and conducting

interviews with inhabitants. The basic types that Lynch describes

are the foundation for the specific diagramming language evaluated

herein, where districts and edges taken together are simplified into the

cell(s) of a grid. Nodes and Landmarks are characterized as particular

functions or activities granted a specific location. And pathways

persist as a way to connect the other primitives together, to create

basic assemblies or systems.

Taken together, the work of Minsky and Lynch suggests that

simplified diagramming processes may map well to human thought,

and specifically human thought about spatial organization. The

potential area of difficulty in constructing the diagrams is that making

them forces one to think about thinking. Architects for example,

seem to love diagrams as a way to organize thoughts about things,

this is like a meta-process for them, and inherently reflective. But this

type of high-level analysis may be an endeavor that only the experts

have the knowledge to pursue. Would beginners even know where to

start?

Rather than focus upon just one strategy, this research is exploring

the different characteristics of four unique query interfaces. The

primary reason for this is to provide users with multiple options

for expressing themselves, particularly if one of the interfaces seems

difficult or unbeneficial. In addition to the diagramming interface,

this work examines an interface that allows users to list out each

activity in a routine that happens in their home. Another alternative

is tested as well, an interface that allows users to imagine packing up

their various possessions, as a way to think about their needs. And

finally, text-based checklists are provided as a more standard type of

interface. Each of the interfaces is described in detail in Chapter 4.

AS WE MAY THINK
A TO U.L %. SUET FOWUS A POSSLE FUTUE WORU
IN: WICH MAN.MADE MACHINES WILL START 10 THN

W U AZ WE MAY TESr 01- V

2.3.2 The Search

As long as there have been computers, people have been thinking

about methods for searching. In his influential 1945 article As

We May Think, (Figure 2.9) Vannevar Bush cited the need for

technological advances in searching: "The summation of human

experience is being expanded at a prodigious rate, and the means we

use for threading through the consequent maze to the momentarily

important item is the same as was used in the days of square-rigged

ships." (Bush) Bush was arguing both for the record of data, and for

associative, conceptual tools to help people navigate the data.

By 1965, electromagnetic data storage was more widespread.

Figure 2.9 As We May Think
By Vannevar Bush, published in

Altantic Monthly in 1945

27

attr iutes
define details - -

< tag attribiute="" >
tag defines

slua"* < child tag ,

- information

</ child tag
Lagsae.

hieramia

< child tag>

-. information

</ child tag >

</tag >

Figure 2.10 Hypertext
Example of HTML tagging structure

28

Gerard Salton, a researcher in the then-emerging field of computer

science, pioneered the era of modern retrieval algorithms with

the SMART information retrieval system. His system introduced

important indexing concepts like document frequency, term

frequency, term discrimination, and relevancy feedback for text-based

searches. (Salton)

Salton's work introduced concepts that are still very much in use

today. At around the same time, Ted Nelson began publishing about

his concept of "hypertext", or the embedded tagging of metadata

into informational resources to apply structure and accomplish

attribution. The World Wide Web would eventually be developed

using the idea of hypertext for its fundamental document structure,

and the tagging mechanism is what enabled the more efficient and

robust indexing mechanisms to be developed. (Figure 2.10)

The work of Salton and Nelson was on the leading edge of search

tools that were built to function through indexing. In the context of

searches, indexing refers to the retrieval, parsing, and storage of data

for improved efficiency. Particularly in the context of the internet it

emerged as a necessary element of search design simply because of the

size of the potential search space. When you do a search on Google,

for example, you're not searching the internet in a "live" fashion;

you're searching Google's index of Web resources. Google, like all

Web search engines developed from 1993 on, utilizes specialized

crawler software to automatically index the Web by navigating

through links and parsing the web pages that are encountered. These

parsed pages are then stored in Google's databases, which means that

the search can be faster and more reliable in terms of delivery, but

never completely up-to-date in terms of the content. And because

much of the Web is dynamically generated by server-side programs

that even the most advanced crawlers cannot parse, much of the Web

becomes un-searchable, invisible.

But of course, this is the reality of the immense problem of

searching the Web. Apart from global Web search engines, many

web sites have their own searches which read through the internal

information that drives the site itself as a way to deliver content. 8

These searches do not need to automatically generate indexes; the

internal information is queried directly.

This research explores functionality that is very much like a

Federated search, which searches for results from a specific group of

known resource providers. (Figure 2.11) In system described here,

the providers are builders or developers that want to offer searchable

homes. So the system is situated between the small, site-specific

solutions and the global, indexed solutions like Google, and will

highlight additional problems and complexities. In order to associate

the previously described conceptual query images with various types

of architectural representations, we must describe not only a common

indexing mechanism, but also a mapping process that translates the

conceptual to whatever literal representations we want to be able to

search for. The index which is proposed and evaluated is an XML-

based record of the conceptual structure. When an image query

is constructed and submitted by the user, the XML description is

automatically generated. In the search space, resources may have

their own XML description which can be compared directly, or

they may be mapped to the query in real-time by an intermediary

application. However, this system does not require any automated

crawlers to facilitate indexing functions, for several reasons.

First, as opposed to the incalculable size of the internet, our

search space is much more constrained. Under the Open Source

model and as detailed in the subsequent chapter, a centralized

conceptual search may be used to query finite, discrete resources

that are offered in various formats by specific developers, builders, or

conceptual query conceptual query

interface, item list interface, checklists

conceptual

query interface, - que
diagramming resource provider,

Search floorplan images

conceptual query interface,

activity sequence XM L
index

Figure 2.11 Proposed Search Structure

resource provider, resource provider, Different query building interfaces to search
different types of representations

component-based (BIM) web listing29

architects. Each of these resources is accessible to the search interface

through mapping functions, or by direct comparison of the resources

where the representation allows for this. As such, the XML indexes

represent more of a common specification, a meta-representation

to use between other representations, and the submission becomes

a more complex operation of, for example, mapping conceptual

searches to JPEGs.

Search submission is most often thought of as a one-way process,

but in truth it's far more interactive than that. Using Google as

an example: the search term is submitted, and processed against

a complex matching algorithm against available resources, where

the available resources are the entirely of the Web. Google's result

listing allows the user to both reflect upon their query (if the results

were unexpected) and to revise and re-submit. So the search process

provides criticism and guidance via the relevance measure of the

results. In the context of the proposed design tool, let's assume the

available resources would be designer-provided floor plans. Each

floor plan would further specify a mapping protocol to dictate how

the searches' primitive components should map into physical form.

It is here, within the submission process, that the essential design

criticism may be embedded by describing the relevancy score for each

available resource directly within the user's original search image.

This enables the relevancy information to provide criticism and

guidance to the user inherently, as part of the searching process. The

criticism logic is constrained neither to the conceptual nor the literal

representations; it exists between them. The criticism is emergent,

derived from the relationship between the query and the results

themselves.

In his discussion of the emergence of different and late-period

styles in music, Edward Said asserts that part of music's structure and

purpose is to remind the musician of the specific styles of the time.

He notes: "Were this reminder to be simply a repeated no or this will

not do, late style and philosophy would be totally uninteresting and

repetitive. There must be a constructive element above all, which

animates the procedure." (Said) In the context of the proposed design

search, this same sentiment is reflected by the criticism process, which

may serve not only as a stylistic guide, but as Said further describes, a

set of parameters within which styles can emerge through constructive

and iterative processes.

Structurally, the criticism components would be part of the

common XML specification. The act of search submission becomes

an important part of the iterative cycle of searching by designing,

because it allows the user to instantiate the criticism automatically

upon invocation. There are a few reasons that the two-way search

process, and thus the posting of criticism functions back into the

search dialog, may be challenged as unnecessary.

First, as shown in Figure 2.12, there is an inherent criticism

process in the standard search where the user may reflect upon the

correctness/effectiveness of their query simply by reviewing the result

set to see if it contains what they are looking for. But, the problem

with a design search is that the user, in general, will not know what

they want. So they won't have a good way to evaluate the utility

their search image without a little assistance. Secondly, common

text searches can do things like highlight words in the results listing,

to let people see what words matched up. But along those lines and

because the source query is a visual one, the relevance of the results

is best described visually as well, and in the conceptual context of the

query itself. And because of the wide potential for multiple target

representations accessible through the mapping functionality, the

query image becomes an important common thread that the user

may both construct in and evaluate through. The diagrammatic

representation can describe how the results are a good fit, and how

they are not, simply by highlighting the portions of the diagram that

match. This builds upon the inherent iterative cycle of the search but

incorporates new spatially organized relevance and scoring strategies,

as a way to help the user learn about design parameters.

.> user .
reacts to enters or
criticisms adjusts a query

V

conceptual query interface
A

relevancy info searchfinds
posted into best match
query for query

results <

2.3.3 The Results

Web Search results are of a common type - HTML. Powerful

search tools can automatically parse related formats, like Google does

with PDF, DOC, TXT, RTF files, seeking them out the same way

that Web content is searched for. But the search matching is still

text to text: even in special contexts like the Google image search,

Figure 2.12 Criticism as Part of Search
Relevancy information provides

design guidance to the user.

n0--
Index

manual or
automated
generation

6

Raster Image

Figure 2.13 Image with Auxiliary index
Different query building interfaces to search
different types of representations

32

text-based meta-data and text-to-image relational algorithms actually

"find" pictures by finding text. ' In the proposed system described

here, mapping functions will be explored as a way to relate the search

image to any different type of architectural representation: a tagged

image, a component-based model, an adjustable vector-based floor

plan. This mapping is managed through a common language which,

as detailed in the previous chapter, is the XML index. But how

would this index get related to various types of representations?

In this sort of scheme, raster images would need to have an XML

description generated, and that would be paired with the image as an

index for comparison. (Figure 2.13) While this process of indexing

could be either human-managed or automated, it's problematic either

way. The development of more advanced computer vision algorithms

makes more plausible the idea of using programs to automatically

scan and tag raster images, but the level of sophistication to reliably

analyze and tag floor plans has not been accomplished. The details of

this class of problem in computer vision are outside the scope of this

research. And vector compositions and 3D models are problematic

in the same way. People could tag these representations themselves

using an auxiliary tagging application, perhaps as the designs are

being created. However, depending on the complexity of the tags and

the number of images to be tagged, this process may or may not be

manageable or sustainable.

Component-based representations or models solve these basic

problems of searchability simply by allowing for the autonomy

of parts, but they also lead to new challenges. Because their

representation is made of autonomous entities, the computer-

based attribution process becomes straightforward. (Figure 2.14) In

the current (2007) world of professional tools, we're seeing a shift

towards design tools that facilitate the construction of component-

based reasons, primarily to build a standardized platform for

interoperability and smoother workflow. In a way, component-based

representations are more intelligent about the physical world simply

by virtue of being able to distinguish things. Let us consider, as a case

in point, the evolution of AutoDesk's product offerings.

Autodesk was an early developer of CAD systems, and has

continued to be an industry leader in their area of specialty, emerging

II

,component
name
typ e
manufacturer
etc...

type
manufacturer
etc...

component instances 'scomponent
location and connection name

information manufacturer
etc...

as the de facto standard of computer-based drafting tools through

their leading product: AutoCAD. While developed around specific

functions, processes and commands that are inherent to a computer

program, AutoCAD, at the lowest level, was designed in mimicry of

traditional pen and paper drafting processes. In AutoCAD you're

essentially drawing lines, which may be given simple attributes, in

terms of how they should be presented: weight, color, and style for

example.

In 2002, Autodesk embarked down a different road with the

purchase of Revit Technology Corporation and their new modeling

tool. Shortly thereafter, upon the release of Revit Building, Autodesk

began supporting drawing of an entirely different type: Building

Information Modeling (BIM). The main idea behind BIM is that the

drawings are no longer made out of lines or vectors, but autonomous

components that have specific labels, properties, and functions. The

primary motivation behind this type of tool is to streamline the

process both for communication between different companies and

organizations, and also to simplify the change and revision process.

A recent NIST report estimated conservatively that $15.8 billion

was lost annually by the US facilities industry, because of "the

highly fragmented nature of the industry, the industry's continued

paper-based business practices, a lack of standardization, and

inconsistent technology adoption among stakeholders". (Gallagher, 7)

Component-based Solutions like BIM, which structure and support

information exchange, are a promising solution. But with this

Figure 2.14 Component-Based Format
Object-oriented representations like BIM
relate objects with specific functions and

properties, rather than lines

autonomy of parts being inherent in the representation comes many

other qualities, one of which, I'll argue, is inherent search-ability;

thus, accessibility for consumers as well.

Referring back to the diagrammatic query language, BIM

systems would be able to map to searches directly: activities relate to

components, zones to containers of components, and connections

to the hierarchical relation of components within certain containers.

In fact, the conceptual search would prioritize these more expressive

component representations simply by finding more relevant results

there.

The problem inherent to all of these searches, of course, is how

querywell the information they describe or search out may be related to the
submited touser')s actual sense of what they want. Can the simplified relation of

activities in various spaces really give the user a way to describe their

architectural preferences? Because these tools are aimed at consumers

of all different types and with different motivations, one cannot

explore the search potential of BIM, for example, without considering

the differentiability of the BIM configurations and how likely the user

query added to would be to search them out.
in V However, as Figure 2.15 suggests, the query could be used forwiki user views

results more than just searching for available results. For example, searches

design ts w n st iki

designcauonomysof patsubten dinret in th reresnttion o m esoumany

request providers. This may be particularly useful if the initial search

query doesn't lead to any good results, because, as will be discussed,

criticism would be tied to the results and would not necessarily be

available or adequate. In this case, the user may choose to post their

search query to one of the providers, as a design request. This keeps

the user, and the user's understanding of their architectural needs

(however primitive they may be), at the center of the process, even

where the searchability of the representations in the search space is

inadequate to map to their search.

In the case of the architect as a resource-provider, this creates the

opportunity for a new service-based business channel, one that is

well the inforatio they descreboth accessible and self-selected by the user.

Fiue21u~frntQeyDsnto sersata es fwa hywn.Cntesmlfeeaino

Query artifacts could be used for more It is conceivable that the search tool could become a central,
than searching, they could serve as
design requests when posted to a wiki organizational structure for the homeowner's ideas about their home.
community, for examplesr poteni eample, wout consid

A oeonofstr, a ndr indivduaiedtsearey could be psedo
moeta ut erhn oraalbersut.Freamlsace

into a wiki-style resource full of spatial configurations, with associated

comments and other meta-data. Here the search query becomes

an artifact, an important node in a collaborative community. Over

time, these artifacts could potentially give designers and users insight

into the evolution of spatial use, or to improve user understanding of

space and space use for better affordability and sustainability.

1. In Educating the Reflective Practitioner, Donald Schon provides a detailed

analysis of the design process in a studio-based environment, uncovering a

highly reflective, iterative, and at times surprising design process nested in

a constant cycle of rediscovery.

2. Piaget's work with children and the development of knowledge suggests

that as all knowledge is constructed within the mind, the association of

concepts in new ways, or associative thought, is a powerful mechanism

for understanding the environment and making new discoveries. Many

theorists have built upon these ideas: for example, Marvin Minsky's

theories about the structure of the mind accounts for what he describes as

Panalogy, or the association of representations within or between domains

of knowledge

3. Software critics in this context are agent-based simulation systems, which

have generated interest over the years for their potential to analyze a

representation and to either adjust their behavior or make suggestions to

the user based upon this analysis. Agents acting as critics are reactive.

The effectiveness of the agent is constrained by both the representation

used, and by the programmability of the behavioral logic. In the case of

architectural design guidance, critics like this are an incomplete solution at

best, because they cannot follow the improvisational logic of the designer.

4. It seems reasonable to assert that even the well-known text search format

is an interactive and constructive one, an iterative process of refining the

query to get at what you're looking for. The relevance and size of the

result-set is what sustains continued exploration.

5. For an example of a commercial visual search, check out http://www.look.

com

6. A search for "define: word" on Google, where "word" is any word for

which the user wants to know the meaning, will return a list of definitions

rather than web pages.

7. One example of a semantically organized textual search is Kartoo, available

at: http://www.kartoo.com

8. Take for example any e-commerce site, like http://www.amazon.com

9. As of 2007, Google has implemented a version of the ESP game (http://

www.espgame.org) to improve their semantic tagging of images in a

game-like environment, essentially utilizing humans as a computational

resource.

3 The Result Set: Component-Based Representations

3.1 What do Component-Based Representations Describe?

With the emergence and rapid popularization of object oriented,

component-based systems comes a new potentiality not only for

the architecture, engineering, and construction industries, but for

participative design as well. The new potential derives from the fact

that the component-based representations are "smarter" than other

representations: i.e., they know more about that which they are

describing, and from the fact that they provide a standard for sharing

descriptions of things.

This work explores the inherent searchability of component-based

representations, in terms of their ability to be matched without prior

indexing, as a technological facilitator for new business channels and

processes. But what exactly do component-based representations

describe, and how are they going to help change the way homes get

built?

Component systems describe a collection of related objects, where

each object is represented by a shape, a specific location and spatial

relationship to other objects, and by additional properties like names

and product numbers. (Bernstein) When an object is placed and

scaled into a drawing, component systems describe the location in

terms of coordinates, like most any CAD system does. (Figure 3.1)

Objects commonly have an insertion point to which the location

coordinates point; rotation and other operations are then made about

this point and stored with the specific instance of the object. BIM

systems also have the potential to describe location globally and

connections at a higher level, between buildings for example.

The shapes are 3-dimensional and defined by closed polygons

with a specific number of sides. Certain types of shapes are

parametric, depending on the object. For example, a "Copy

Machine" object's definition would not be parametric or scalable; it

would simply be a volume enclosure of a specific shape. However, a

"Wall" object's definition would be freely resizable, its length, width,

and heights being variable and context-dependant. In addition,

component record
---- "chair"

object gets
added to drawing
as an "instance":

location
x,y,z

coordinate.

e

parent object
reference

connection

component properties
Name

Unique Item Number

Manufacturer

Category

Can be Resized?

Code Requirements

Clear Space Needed

Figure 3.1 Component Details
The Objects in BIM-like drawings are

specifically located instances of
prototype components

37

s

various wall segments could be joined together to create, for example,

a room enclosure; these objects would connect into a more complex

shape.

A key benefit of component systems is that the shape, however

flexible it may be, is automatically associated with other properties

that describe the object more completely. The representation is

therefore object-oriented, in that each part is conceived as an object

with specific properties and functions. The associated properties for

each component include categorical types, cost data, manufacturing

information, and specific physical requirements, such as what

can connect to it, among other things. These connected bits of

information make component systems smarter and more computable.

For example, automatic criticism functionality can be programmed

into the drawing interface, because conflicts between components can

be immediately recognized. Consider the placement of a door object

into an Autodesk Revit document: this placement is only allowed into

certain other objects, a wall in this case.

Thus another part of what makes component systems more

computable is that they describe how things should/can connect

together. (Bernstein) Just like doors can only go into walls, windows

can only go into walls, and so on. In truth, the connections between

all of the various parts are what make buildings so complicated;

and indeed, Revit's BIM representation becomes useful even as a

spreadsheet of what is in a building and what is connected to what.

Connections in general are not simple, and even in the door example,

code requirements and specific clearances (ADA compliance, as an

example) need to be enforced and accounted for. But the point is

that the representation is smart enough to allow these things to be

accounted for.

When various components are connected together in a BIM-

type representation, they create an assembly. Assemblies are simply

spatial arrangements of connected components. In the context

of architecture, assemblies may be made at many different levels,

to describe a furniture arrangement, or the connection between a

toilet fixture and the plumbing line, and so on. In our evaluations,

assemblies describe rooms, and therefore describe specific room

functions.

In the realm of buildings, there are all sorts of connections

that a component system has to describe. There are service-type

connections, as with electrical outlets, lighting, and HVAC, and

there are also plumbing connections that need to be made for specific

objects, like sinks, showers, and toilets. In addition to that, there are

object-level connections made between physical objects, for example

the placement of cabinets along a wall means the cabinets need to

connect to the wall, and the placement of a table in a room means

the table is connected to that room. Furthermore, connections

can be made between rooms, where rooms are assemblies of objects

that define a specific region. Between rooms, a doorway serves as a

connection from assembly to assembly, a relational structure that is

fundamentally the same as the object-level and service connections

previously described.

Service, object, and room connections comprise most of the

connections that need to happen in the typical floor plan, (Figure

3.2) but it is easy to see how the representation might need to scale,

to consider for example the connection of a building to its site or a

neighboring building. 1 We will return to the issue of connections in a

moment, in describing the specifics of our test implementation.

3.2 Component Systems versus Traditional CAD Representations

The autonomy and identity of parts within component systems

makes them more searchable than traditional drafting software

packages. Consider as an example, AutoCAD: a popular drafting

software published, like Revit, by Autodesk. This traditional package

was quite successful when released and is now widely implemented

and utilized. AutoCAD's success was quite natural, because it has

always functioned well with the technology of the time and improved

workflows when compared to paper drafting methods. (Bernstein,

8) AutoCAD was also successful because it preserved, even if only

on a conceptual level, the basic production process associated with

paper-based architectural drafting. The metaphorical foundation for

traditional CAD tools has always been manual drafting: they allow

people to construct things out of lines of one sort of another, just as

was done with a straightedge. But being an assemblage of lines, the

object into room
where room is a "container"
component

* room to room
connection is a threshold, and
associated with a door object

service
Plumbing connections made
tofixtures...

Electrical connections made
to outlets...

HVAC ducts, connections
made to systems and vents...

Figure 3.2 Common Connections
Connections are generally made for

things, rooms, or utilities

39

search
process

index

'flat" representation

Figure 3.3 Index of Flat Representation
Important aspects of the document are
re-represented into a computable index

40

resultant representation may be very meaningful to a person, but not

to a computer.

This is because there is nothing that can be differentiated about

the primitives - the system doesn't really know if a line represents a

wall or the edge of a counter. Component systems solve this problem

by making all primitive drawing elements into objects with names,

properties, and purposes. These objects in turn provide the system

with an indexing structure that enables it to find and analyze objects

directly.

An index, described generally, is something that guides, or points

out information for reference purposes. In terms of searching,

consider for a moment that indexes and representations are basically

the same thing: relative to any physical reality, all representations are

indexes, in that they highlight specific dimensions of that physical

reality, deemed important simply by the fact that they're represented.

If a representational index is too "dumb" to be computable by a

machine, automation processes will require that representational

index to be indexed, as well. So, indexes of indexes emerge as a sort

of fix for the limited dimensionality of a representation. (Figure 3.3)

The need for indexing has arguably been around for as long

as any information has been recorded at all, as a way to facilitate

information retrieval (IR). (Metcalfe 4) But the earliest definitive

indexes emerged with the advent of printing processes and the parallel

explosion of information in paper formats. Published documents

began to have preliminaries attached to the beginning and ending,

which summarized the information contained in the document via

contents pages and sometimes, an index that pointed out where

specific information could be found within (Metcalfe, 15) This had

become undoubtedly essential due simply to the staggering increase

in the volume of information within books but also between books,

as evidenced by the parallel emergence and standardization of library

indexing of volumes. So there are indexes ofbooks, and indexes

within books.

Of course, modern computation marked another explosion

of information, and of more than one type of index. Just as the

commoditization of personal computers and the growth of the

internet lead to a staggering increase in the number of documents

that would need to be traditionally indexed, so too did documents

upon which computer applications automatically operate need to be

indexed. One of the best examples of this is actually the programs

that people have created for compilation into executable code. (Figure

3.4) All programming languages have indexing inherent within

their structure, designed to enable a machine parser / compiler to

understand various sections of a program, and to differentiate data,

for example.

Where earlier programming languages were procedural or

instructional in structure, they have steadily fallen out of widespread

use in favor of object-oriented programming (OOP) languages,

because procedural languages like C became more cumbersome for

people to manage as coding projects became large and complicated.
2 The reason for this is quite simple, actually: while both procedural

and OOP languages are well-indexed for computers, the indexing

structure of OOP is more natural for people: OOP is rational to

both computers and humans. 3 This computer-and-human legibility

highlights an interesting dimension of making things that are actually

computable on computers: unlike a flat representation like a line

drawing where only the person needs to understand it, or machine

code where only computers need to understand it, computable

representations must be readable by both.

Component systems emerged from the application of OOP

principles into the process of describing buildings. Realizing

that drawings created in mimicry of drafting could not be truly

computable, engineers made the data structure for the drawings

object-oriented, which is an inherent index for the computer, just

like OOP languages. In terms of the architectural, engineering, and

construction industry, this helps each of the key players move towards

a singular, more descriptive representation for sharing all aspects of a

project, and ideally for making all aspects of a project searchable.

This actually marks a simplification in the realm of architectural

representation, because it eliminates the need for secondary indexing

of the representation and its contents. For example, a professional

draftsperson has to label all of the objects in a traditional CAD

document to make it readable for others: he starts with a basic

index. The index would be created manually, either within the CAD

search
process

Pubic vl

Query.Score, ,Cle- r ()

Qu ze ..y . Zo ne S.C lar I) ;

Quer y . om;.Gr aPh . Gr a ph 0
Ha~sls=false;

program code
a computable representation

Figure 3.4 Computable Representation
Machine readable representations like
the sample program code shown here

are their own index

Figure 3.5 BIM Versus T'aditional CAD
BIM is inherently computablewhereas
traditional CAD documents much be indexed

BIM*

Traditional

physical facts indexes computable facts
* computable

document or in another application altogether, by visually scanning

the drawing for all instances of all relevant objects, tagging them with

a number or symbol, and then translating that number or symbol

into a chart that describes the objects. (Figure 3.5) Then when the

drawings get printed up, people in the field can make sense of all of

the lines by referring to the prepared index or key. If you wanted to

program a similar but automated computer search of the drawing,

you would have to do the same thing, either by tagging it visually

using advanced computer vision functionality or by associating an

XML-based index. 4 Thus, in the traditional model of CAD, there

are, in fact, two indexes between the searcher and the physical

world: the physical objects are indexed into line drawings, and the

line drawings in turn are indexed by some sort of tagging. In the

object-oriented realm of component systems, a layer of abstraction

is removed because object properties are already described as soon

as the object is drawn, so that no secondary indexing is necessary.

(Figure 3.5) Component systems relate directly to the physical; their

representations are an index of the built world: descriptive, readable,

and just as importantly, searchable.

3.3 Component System Prototype

To test out the inherent legibility and searchability of component

representations as a search result, a simplified component system

was developed. 6 Additionally, a paper-based exercise was developed

to evaluate the effectiveness of the system through sessions with

volunteer subjects. The prototype system, detailed in Chapter 6 and

summarized here, is concerned with how components may be related

together into configurations.

The exercise, in turn, has been developed to analyze how these

components may be organized into searchable chunks that are

meaningful and approachable for everyday users. Component-based

representations may be inherently searchable and offer the promise of

streamlining the building industry; indeed, of democratizing design,

but the description of a building is still a very complex problem.

The exercise is one approach to simplifying things, the limitations of

which will be discussed shortly.

Figure 3.7 (following page) shows diagrammatically how the

component system will function as part of a larger design search.

3.3.1 System Overview

The component system for this study was built within a relational

database, further detailed in Chapter 6. On the structural level, each

of the components, and thus the assemblies themselves are connected

together via an edge-based connection specification. (Figure 3.6) The

connection is made between faces of rectilinear objects, where a sub-

region of the edge is designated as the connectible portion, and each

component can specify not only what types of other components

it can connect to, but also how far away it can be (range) and how

much of its interface needs to overlap with the connecting interface

(fit). Both range and fit can be set as zero: a range of zero indicates

that the component must be adjacent, and a fit of zero means that

the connection can be made to a point on the face of the component.

Predictably, the interface between rooms, being doors in walls, have

Interfaces range fit

Figure 3.6 Connection Details
A simplified model for relating the

components together

43

Complete System Overview

Manufacturers Provide
Library of Building Components

an object-oriented specification that describes name, function, and
properties for each item is
provided directly by _
manufacturers

the components, which may be
specified even at the granularity
of fixtures, are
connected hierarchically

the individual components are -- ----
related together into assemblies,
via subregions of
their shape that are
interfaces

each of the components would
further allow for
different finishes
and styles

Vsual Query Interfaces

-W W, imp[.-

hands-on, constructive
query interfaces allow user to

discover needs and
values while searching

iteratively

~11

SEARCHABLE
DATABASE OF

COMPONENT-BASED
CONFIGURATIONS seeks out the best match

configuration as a starting
point

Search Results Posted
into Query Interface

Component Assemblies to define Rooms ------------------------ '-
Component-Based
Configuration
Adjustment Interface

P" Final Configuration
includes specs, cost inforniation,

maintenance information, and
selection details

I

C-
e

Figure 3.7
Complete System Overview

Diagram of the component-based
participative system including search

functionality and key players

a range of zero; while the placement of a table in a room container

would have a fit of zero, allowing it to be rotated and/or moved freely.

The prototype system database was loaded with pre-defined

assemblies of components that represent specific room layouts. 145

specific assemblies were designed by a team of architects, making

thousands of different layouts possible within the system. 7 Within

the collection of assemblies, each type of room has multiple layout

options available; these layouts were constrained to the context

of a multi-family apartment interior to simplify the scope of the

analysis. 8 Because the search space for the component system is

thus constrained, there are important design parameters that go

unrepresented, particularly in terms of site information, and solar

orientation of the unit. By focusing on interior fit-out, these

significant architectural problems are not addressed. But it goes

without saying that any true implementation would need to consider

these aspects of designing.

The assemblies for this prototype encapsulate expert knowledge

about how individual rooms should be defined, and through both

the alignment of doorway connections, and the alignment of zones,

knowledge about how the entire plan can be defined as well. As such,

much of the architectural decision-making is already done. This

raises important questions about how much designing is actually

possible with so many decisions already made.

And beyond that, how much choice do people demonstrate the

ability to manage? In terms of the user's specific decision-making

process, the following exercise hopes to tease out, through the

multi-representational library of assemblies, what types of specific

representations are most helpful for users making selections within a

Component system.

3.4 Paper-based Component Assembly Exercise

The exercise shown in Figure 3.8 (pages 48 & 49) is a paper-based

activity that emulates the functionality of the component system

prototype. Specifically, the exercise was developed to engage users

in the participative design of the interior configuration for a single-

level condominium floor plan. 8 Our goal is to find the appropriate

limitations in scale, scope, and complexity of the component system

in the context of participative design. This exercise explores what

types of constraints are necessary within the interface to make more

accessible the complex representational structure of the components.

Again, components are the most atomic parts that make up a space.

These would be things like lights, tables, chairs, doors, windows,

sinks, etc. But to support a more simplified design process, the

exercise allows the user to manage assemblies, rather than single

components.

In the exercise, users select room layouts from a library of paper

cutouts. The library has a variety of different options for each room

function, and each cutout describes a unique room arrangement.

Selected cutouts can then be placed onto a schematic floor plan that

is divided by colors into separate zones. The zones correspond to

the different types of rooms in the library: the Master Bedroom, the

Master Bathroom, the Kitchen, the Living/Dining area, a Second

Room, and a Second Bathroom. Each zone has a sleeve into which

the cutout may be placed, to keep the composition organized.

Not all of the paper cutouts can connect to each other, because

doorways and sizes do not always line up. The individual rooms were

designed to combine in specific ways, yielding a more constrained

solution space that allows for multiple output configurations for each

of the following basic floor plan types: Loft, 1 Bedroom, 2 Bedroom,

and 3 Bedroom.

Therefore, the primary elements of the exercise are the schematic

floor plan that functions as a workspace for construction, and a

library of assemblies that can be placed into the floor plan to make

designs (Figure 3.8). To make the exercise more approachable, the

library of assemblies is organized into separate sheets, one sheet per

zone, color-coded to match up intuitively with the colors of the zones

themselves. Within each sheet of the library, each assembly is shown

in multiple representations: a plan view, a simplified diagram in plan

view, a 3D axonometric view, a brief textual description, and a photo-

like rendering. I The plan view is actually a cutout, and it may be

detached, and placed into the schematic floor plan to create a design.

In each of the provided library sheets, eight to ten different

options for each room, with each option shown in the five views

Following Page:
Figure 3.8 Component Assembly Exercise

Utilized in user studies

47

Component Based Representation
exercise developedfor user study

I

Doing the Exercise
Here's a series photos showing
a user working through
the placement of rooms into the
schematic plan

Schematic Workspace
From the standard plan above, this schematic
plan is where the users place their room
selections. color code matches library cards

1. Master Bathroom
2. Master Bedroom
3. Kitchen / Entry
4. Living / Dining
5. Bathroom
6. Bedroom / Study

go go , no

Detail of Library Card
This is Living Room #1
Showing the multiple
representations: 6
1

0

7his exercise was designed by Kent Larson, M Giles Phillips, and Carla Farina
All materials and layouts were created by Carla Farina

Getting Started: Constrained Design Context
The exercise was limited to the interior configuration
of an apartment unit (left). For each type of room, a
collection of layout options was made available.

Component Library
Each type of room was given a

color coded Library Card within
which each of the options was shown.

Each option was shown in the following
five views: floor plan, diagram, text

description, axonometric, and rendering

1MF

N~fl

I

H [11 1

1 4

F.

IT

P! 1 PAA

M"!

I'
8I

777T'

7777y

.N4

F*N U--

to,.

0"" 0

a

U

F
r

_ n!r

-OI
I-

- rp~

U
7Th Ii.

~1j~

I I

01 ~

r-

described above, yield a total of 40 or 50 distinct representations. Is

that too much, or can users effectively scan through the options made

available to them? How many choices do users want access to, when

it comes to specific rooms? Or should users be given a choice of

granularity in the final implementation?

In the exercise we have explored in particular the notion of

assemblies as user-manageable groupings of components to form a

basis for a practical search comparison. '0 This means that the only

type of connection that users can designate through our exercise is

that made between rooms. The fundamental question this approach

raises is: what level of granularity do people want access to or find

approachable in the context of architecture? Is it easier for people to

compare between plans, or to compare between rooms, or objects, or

is there some less defined zone comparison that takes place between

these scales of representation? In other words, is our exercise too

limiting, too flexible, or just right?

The detailed manipulation by the user of the components within

the predefined assemblies is taken to be a second stage of the user's

interaction within the component system itself. It is a process that

is outside the scope of this work and not explored by this exercise.

" So, while the underlying system prototype would allow users to

further configure their selections, this exercise focuses only upon the

inherent searchability of the default assemblies themselves. But this

separation is not, in reality, such a clear one. One potential issue with

the use of pre-organized assemblies is that during the basic selection

stages, objects that are included in the assembly and that would be

easy to move around may be perceived by the user as inflexible. For

example a room assembly may include a chair at an angle that annoys

the user. In application, it would be easy for the user to adjust the

chair's position after selecting the assembly, but would the chair being

there prevent the selection of the assembly in the first place? Perhaps

this type of issue begins to disappear as the user gains more familiarity

with the system, but it should not be assumed that the distraction is

insignificant within the process of selecting rooms.

The incorporation of schematic zones as a part of the exercise's

workspace represents, in a sense, an overloading of the component

system with a secondary schematic representation. The zones, as

an interface component, are not necessary within the underlying

component system but are non-trivial in terms of the user's design

process using the exercise; because the zones essentially tell the user

what types of assemblies can go where. Even though the component

specific limits of each assembly would automatically tease out any

constructability issues, this is essentially an attempt to capture expert

knowledge about what types of schemas work best, so that the users

do not have to figure it out for themselves.

3.5 Linking to Conceptual Interfaces

However, the implementation of successful conceptual search

functionality might eliminate the need for schematic guidelines

altogether. As was demonstrated in the previous chapter, the search

query itself can endeavor to describe the schematic relationship

between rooms, and in searching against pre-assembled component

plans, rather than schematic plans, allow people to seek out viable

configurations directly. Additionally, the presence of schematic

information doesn't affect the viability of the search tools or the

searchability of the components. 12

Through the coupling of this exercise with a variety of more

conceptual exercises, the user evaluations detailed in the next chapter

helped us determine how well a component-based exercise, engaged

within the highly constrained language of room-level assemblies,

can represent the architectural needs and values of the designer.

Certainly, the decisions made are reduced in number and influenced

by the specific details of the assemblies themselves. But how does this

constraint alter the processes of discovery and of designing, for better

or worse? Does the Component system allow people to discover

their preferences; to figure out what they're looking for? Or are the

conceptual query interfaces better for that? And do the conceptual

exercises really facilitate any self-reflective learning, or are needs and

values lost still in the complexity of the representations? 13

In the context of connections between things, the scope of this research

is limited to the connections inherent to an apartment interior. In terms

of future work, the final chapter will speculate about how the connection

definitions herein may or may not scale into considerations of site,

neighboring structures, and solar orientation.

2. In many contexts, OOP is more of a methodology choice, and not

necessarily constrained by the language itself. While purely object-

oriented languages like Java and .NET have emerged and become quite

popular, other programming languages exist that allow for both procedural

and object-oriented programming techniques, and are popular as well.

3. The structure of OOP maps well to human thought, primarily by taking

advantage of the same underlying object / physical metaphors. Speaking

to human thought, Michael Reddy asserts the inherently low-level

physical metaphors of natural language form a basis for the structure of

ideas (Reddy), and Winston speculates that people's actual knowledge

structure involves relatable, autonomous parts. (Winston) So it seems to

make sense that virtual structures, organized together into an assembly of

objects, would be easier for people to think about.

4. XML, being a structured document format that allows items to be both

identified with properties and related, has proven to be both popular and

useful, though it's a simple hierarchical structure and doesn't describe data

types inherently.

5. If we believe that any representation is actually an index, then the

elements which each representation describes are deemed important by

inclusion alone.

6. The component system prototype was designed by Kent Larson, M. Giles

Phillips, and Carla Farina. The system itself, as detailed in chapter 6, was

developed by M. Giles Phillips.

7. Kent Larson, Carla Farina, M Giles Phillips, MIT House_n

8. The evaluated apartment floor plan context also constrains the problem

to a single level. While the staircase connection between levels would

naturally be drawn between points of entry to each level, this work makes

no assumption that the addition of multi-level functionality would be

straightforward. However, our inquiry is aimed at the most fundamental

aspects of composing plans and as such, one level is complicated enough.

9. The assemblies are intended to be configurable, in that the components

within them could be moved around as long as connections and clearances

weren't violated. But alas, the specifics of the interface to support this next

step of designing are outside the scope of this work.

10. As will be touched upon when the more conceptual interfaces are

described, the schematic representation here really represents an alternate

conceptual search, albeit one that relates closely to a diagrammatic

conceptualization tool that is evaluated. The direct searchability of the

conceptual representation is analyzed in Chapter 6.

11. The assemblies are intended to simplify the design process, basically by

having some of the architectural decisions pre-made. However, not all

assemblies are created equal: rooms like bathrooms and kitchens tend to

be both more complex in terms of the immovable fixtures and also less

configurable. We did preliminary evaluations to help organize the various

parts of the component exercise and also helped us to identify where the

assemblies were too granular. We had for example initially separated the

kitchen into two different zones, each of which needed to be selected

individually, and in so doing managed to confuse even ourselves. This was

revised to be one zone in the user studies.

12. Each of the representations is provided to begin to sort out, through user

evaluations, what type of information is useful for the various decisions

made in designing. More complicated rooms may for example benefit

from associated diagrammatic views. Another dimension of this inquiry

is the potential problems with some of the representations, like the colors

and detail of renderings adversely affecting decisions or confusing the user.

13. Donald Schon describes self-reflection as a critical part of the learning

process when trying to solve a problem that is new or has unexpected

dimensions or complications.

Figure 4.1 Moore House, Orinda by
Charles Moore, 1961

4 The Query: Conceptual, Constructive Interfaces

4.1 Why utilize Conceptual Interfaces?

Addressing homeowners, Charles Moore notes: "our task, now,

is to clarify choices, to focus your energy so that it will not all be

spent trying to find a way through the muddle of building decisions,

but instead can be used to bring your own personal concerns to

bear." (Moore, viii) That motivation is what this chapter is all about,

because the numerous and complex options that a homeowner must

search through certainly create a muddle of building decisions. Are

there clearer, more conceptual interfaces that would allow people to

better describe their concerns, and which could also be implemented

as a query interface for our design search? This chapter describes, in

detail, four different query interfaces which utilize unique conceptual

structures to frame design problems. The output generated by each

of these interfaces would be a search query, which can then seek

out either component system configurations or pre-indexed "flat"

representations like floor plan images.

The queries are intended to be diverse and to provide more than

one type of representation to search with; further, the queries are

intended not only to find valid design solutions, but to help users

learn about and frame their own architectural needs and values.

Our preliminary research showed that several problematic situations

emerged when users were asked to begin designing a space without

first thinking about design requirements. 1 First, there was difficulty

with problem separation. In situations where the user could identify

a specific need, they were often not able to find a floor plan or

assembly that adequately meets their needs, because the selection

process is clouded by other non-related issues with parts of the

configuration, like the presence of additional, unwanted components,

relative sizes, or organizational variances. And more fundamentally,

people had difficulty discovering specific needs when only looking

at the component representations. The primary reason for this

seems to be that the more literal representational structure does not

necessarily encourage associative thinking that relates ideas from other

conceptual domains. So, the design process becomes one of option

selection; there is greatly reduced potential for the expression of

concerns, or the emergent concerns that were not yet thought about.

Many people benefit, for example, from thinking about narrative

sequences of actions to reflect upon how they might actually exist

within various spaces. 2 This allows them to think about the space

in different ways, and to remember and organize their needs. But

when working with the complex and pre-designed assemblies, the

user becomes absorbed in the literal dimensions of the pre-arranged

configurations, just as Moore describes, making it hard for them to

focus on what is actually important.

Another issue in working with a modeling environment, or even

component-based representations like BIM, is that specific trade-

offs are created between spaces in a highly contextualized way. For

example, a larger bathroom might mean that the kitchen will have

to be smaller. This then becomes a trade-off that the user has to

think about, basically to decide which room is more important in

the specific context considered. These targeted tradeoffs instigate

an iterative process that helps make the process more interesting,

but they represent context-specific and non-generalized decisions

that might not make immediate sense to or be important to the

user, particularly in terms of their own needs and values. And even

more problematic, in terms of a search algorithm, is the fact that the

context-specific trade-offs cannot be generalized to other potentially

searchable contexts, or other content providers: the trade-offs simply

would not be the same. Furthermore, the more literal representations

force users to think about space according to already designed and

probably standardized configurations, thus potentially limiting the

ability of the system to encourage the discovery of new, emergent

configurations. All of these limitations suggest that an interface to

enable search by designing must allow for the more fundamental;

indeed, the more conceptual exploration of space.

4.2 Four Conceptual Interfaces

This is where the search process becomes useful, in allowing

people to frame problems and seek out solutions simultaneously,

free from the distractions in the structure of the more literal

representations they are seeking out. Therefore, as queries, the

conceptual tools described here are intended to do two critical things:

encourage associative thinking to help frame spatial problems, and

to create output that is able to be generalized and therefore useful

for searches. While the viability of each conceptual interface is

evaluated separately, they have been designed to represent conceptual

information in terms of a common underlying structure. I Each

conceptual interface was designed to be viable for certain types of

problem framing, so that different types of representations could

be selected by users based upon personal preference, or users could

specify search criteria within multiple representations to generate a

more complete, layered query.

Four distinct querying interfaces have been designed and

evaluated for this study, to offer users with more than one option for

expressing themselves. The interfaces are detailed in the following

sections.

4.2.1 Text-Based Checklists

The text-based interface is provided to evaluate the effectiveness

of natural language descriptions in helping conceive of spatial

arrangements. This interface was evaluated as an example of a

standard, contemporary "option selection" search interface, against

which the other interfaces could then be compared.

This interface tests the viability of a natural language description

as a way to frame spatial concepts. In this example, each functional

room/zone has a series of short, textual descriptions that are

selectable as search criteria; these options would correspond roughly

to the assemblies that exist within the system. Of all of the query

interfaces, this one is probably the most like a traditional search

engine, particularly in the context of home searches, but it is also

problematic. ' First, natural language representations have well-

documented semantic issues; suffice it to say that the context

dependency of spatially descriptive terms like "large", "near", or

"open" make them confusing to the user, particularly without some

sort of visual device or scale to quantify things. Also problematic

is the description of attributes that are more qualitative in nature:

identifying, for example, a stylistic preference using words alone,

can be a challenge. In developing an algorithm for mapping natural

language to relational database structures for IBM, John F Sowa

notes the semantic ambiguity in a text string and proposes that

intermediary representations may serve as a "semantic basis" for

extending written language, as a way to both manage and explain

inference. (Sowa 336) But this solution requires some sort of natural

language processor to translate the natural language into a graph-like

representation, (Sowa, 347) and might still require humans to be

involved in programming / data selection to actually work (Sowa 356)

And so it goes, that apart from the inherent semantic issues,

the text-based conceptual representation does not scale that well

either. For example, in the case of Component systems or BIM as

a target resource, available assemblies would have to be annotated

as they were defined, likely manually, with correctly summarized

descriptions of their functionality. Being highly semantic, it is not

plausible that a system, given today's technology, would be able to

automatically generate something like this from component tags. I

Each new description would need to be pushed to the query interface

somehow, to present the option. Two scalability problems thus exist.

The representation itself is not scalable, because potentially limitless

verbal descriptions must exist in the system for each space type to

be searchable: the user might have literally thousands of options.

And the descriptions themselves must be manually designated for

each assembly. These descriptions would be disconnected from the

structure of the representation itself, creating an exponential problem

of manageability. The descriptions are an ad-hoc attempt to find

representations that make sense to both people and machines, but it's

an obvious point that inherently, natural language descriptions make

more sense for people than they do for machines.

That said, text-based queries map most easily into the most

common conception of the way a search is structured, that of: enter

text, hit button, select result. This type of representation might also

become much more scalable, and thus viable, as technology and

language processing improves. And most people may simply be more

comfortable saying things in words than using any sort of visual or

abstract interface, regardless of how hard those words are to compute

with. If this is the case, then we would certainly be glad to know

it, and better served focusing our energy in areas other than a study

like this one, which evaluates the assertion that people can, and want

to do more than speak in words. For all of these reasons text-based

queries are important to evaluate, even for comparison purposes

alone, and are thus included.

4.2.2 Role-Playing Metaphor

The role-playing metaphor is a listing task that encourages users

to conceive of space in terms of their possessions by imagining they

are packing for a move. This task provides users with a listing step

and then a reflection step. The motivation for separating these steps

is to encourage reflection by having the person first describe certain

facts and then reflect upon that which was described.

This interface uses items, or more specifically, things that go in a

certain room, as a way to frame spatial concepts. The activity utilizes

a high-level metaphor as a way to engage the user into a situational

role: that of packing a box. The packing metaphor basically gives the

user a way to start thinking about what functional needs they have

of a place, by thinking about all of the stuff they would have to put

there. Items, regardless of size, shape, weight, and fragility, go in the

box. Room characteristics, or attributes, are associated with labels

that are drawn on the sides of the box. The interface thus organizes a

two-part process of listing and labeling around a simple metaphorical

concept. The labels given to designate room characteristics represent

the most important searchable criteria.

There is a technical challenge with this interface: making items

available to the user for the items list, simply because it is hard to

know ahead of time what specific types of items a user has in her

rooms. The room attributes are a more manageable set and are

predefined, so at a minimum these specifications would be searchable.

But the item list would be useful to have as well, even if it was only

partially searchable. 6 Within the prototyped interface, custom

labeling could be added by the user, with the caveat that the custom

labels might be meaningless in terms of the search comparison. But,

given that the user had thought about the item, and likely derived a

searchable room attribute from the conception of that item, it is quite

possible that custom items would be represented, at least in part, by

this query structure, via the associated room attributes for which they

illuminated the need.

The attributes are therefore not customizable, and would have

specific quantified criteria that would be meaningful to the search

operation. To be clear, each attribute option should include a

description of the quantified criteria that the system would infer

from that attribute. As will be seen, volunteer subjects referred to

these detailed descriptions relatively frequently during the exercises,

sometimes revising their selection of the attribute based upon those

descriptions. This is an important point to make because, at the

highest level, an attribute like "spacious" has the same semantic

issues as those described in the Checklist interface. But through the

associated and human-readable description, the meaning is clarified:

these descriptions serve as a semantic definition, and make the term

explicit. So, while it is the attribute word that attracts the user to

make the initial selection, the semantic definition tells the user what

the word means to the computer, ahead of time. These semantic

definitions are plausible because in the context of the study they are

all spatial in nature, and there are a relatively small number of words.

And as will be shown, the user evaluations highlight where the

semantic definitions are either confusing or inadequate.

4.2.3 Activity Sequencer

The activity-based interface is similar to the metaphorical

interface but instead focuses upon a sequencing task that allows users

to explore how they flow through a space and identify architectural

values through that exploration. The motivation for this interface

was to help homeowners identify needs by organizing concepts

around tangible flows through space. To help users discover needs,

this interface allows the user to first describe and subsequently reflect

upon a sequence of activities.

People are very good at thinking about things in terms of

sequences; many psychologists suggest that low-level mental

structures directly correspond to narrative or sequential structures. 7

The Activity Sequencer explores the particular effectiveness of

activities as a way to frame spatial concepts. In The Place ofHouses,

Charles Moore presents to the potential homeowner a list of options

designed to encourage their conception of people or things as they

flow through a home. 8 These flows relate to activities, groceries,

papers, trash, water, electricity, and so on. What's interesting

about this approach is that the conception of space is organized

into a narrative sequence of steps; this organizes serially the various

interactions that happen within the home. This interface was

developed with a very similar idea in mind: to organize home

preferences around a sequenced activity.

Users first list out each of the activities, then locate those activities

within specific rooms in their current living space. Once the activities

are located, users can identify the transitions they make from activity

to activity. Then, users reference this complete activity description

to identify important room qualities, in terms of that activity. Once

those qualities are identified, the user may go back and revise the

activity sequence to better meet their needs.

Like the packing interface, this interface really involves two

phases: first listing, which is followed by reflection. While the

separation of the task into discrete steps as described in the step-

by-step summary makes the activity sound a bit overwhelming, it

actually helps to make the process manageable because each step is

very clear and specific. The intention in both this and the metaphor

interface is to give the user a chance to start conceiving of space and

functional needs in terms of things or routines that are well-known to

them.

4.2.4 Floor Plan Diagram

The diagramming task allows users to conceive of space in terms

of an abstract spatial description. In was inspired in part by Kevin

Lynch's work which suggests that people understand space in terms

of basic elements that can be represented diagrammatically. A further

motivation was to provide and evaluate a more constructive interface

where the user has more control over the "shape" of the design

artifact.

This interface relies upon the effectiveness of an abstract floor

plan representation as a way to frame spatial concepts. An important

precedent for this particular exercise is the well-known research of

Kevin Lynch, which illuminates a common descriptive language

for people's conception of space as they interact with(in) it. Lynch

identified five terms for this descriptive language: districts, edges,

nodes, landmarks, and paths. (Lynch) This interface presents the

user with a diagramming activity, with specific types of elements

that can be placed in or between the cells of a grid. The grid cells

correlate with Lynch's notion of districts, which are, in this case,

rooms that the user can associate with one or more functions. In the

space between the rooms, which is closed by default, specific edge

conditions or connections can be specified: the user can place either

doorways or complete openings. These specific connections allow for

the emergence of paths and nodes, both fundamental spatial concepts

identified by Lynch.

Because of the grid, the diagram is highly constrained: the zones

that are used for rooms are rigidly defined as cells. Pilot studies

done with more flexible diagrammatic representations indicated

that users tended to get flustered or confused if they weren't given a

bit more constraint. I So the constraints in this interface have two

specific functions: to make the generated query be something that

is plausible to search with and to make the diagramming something

that is manageable for everyday users. In other words, to make the

representation something that is meaningful to computers as well as

users, rather than one or the other.

The interface gives the user the option to first diagram their

current living situation, and then to make a few improvements

upon that diagram as a reflection of their preferences. Therefore, it

roughly follows the precedent established by the Packing and Activity

Sequencer interfaces, of first describing something, then reflecting

upon what was described to arrive at needs and values. In this

particular case, the purpose of the descriptive step is to give the user a

chance to get used to the diagramming language by thinking about a

space that is well known to them. However, for the user, describing

his or her current living situation might not be a good foundation

for describing what he or she really wants. While the revisions made

in the reflection stage could be very extensive, users may constrain

themselves to the descriptive diagram, being unclear on how they

might revise it without breaking something. The interface should

therefore allow the users to start from scratch, if they prefer to.

Additionally, this interface is unique when compared to the

others in terms of the flexibility of its descriptive workspace, and

for its ability to let users more directly construct things. Granted,

the representation is highly constrained by the fact that they are

working within a grid and can only place a few items, but even so, the

constructed query representation is much more of a sketch that the

other activities. This means the query itself becomes something like a

workspace, where various configurations may be thrown together over

successive iterations. This is something that is very much at the heart

of designing. The risk, which will be at the heart of this evaluation,

is that aspects of this workspace query might then go unrepresented

in the search algorithm, and therefore cause the search to fall short of

the user's expectation of what she will get. In terms of a search tool

in particular, this means there is a significant risk that the application

would not be effective

4.3 Conceptual Interface Considerations

There are a few general considerations related to these conceptual

interfaces apart from those touched upon in the detailed descriptions.

The first of these is one of expectation, in terms of what the user

thinks is important about their descriptions. Are the aspects of the

composition that are meaningful to them the same things that are

meaningful to the search? And does any sort of prioritization option

need to be provided to let the user highlight specific parts of their

query as more important?

Secondly, how approachable are the problems, both in terms of

the clarity of the interface and the nature of what the interfaces ask

people to think about? While efforts have been made to keep each

step simple and straightforward, overall clarity is a core concern of the

study. An analysis of the interface's approachability must be able to

tease out whether it is the fundamental nature of the task, or if it is

the specific details of the task as presented that makes emergent any

unforeseen issues.

4.4 Searching with Conceptual Queries

An important consideration to touch upon here (detailed in

Chapter 6) is how the queries generated by each of these conceptual

interfaces might be mapped to searchable formats. For example,

the items that were listed in any of the conceptual exercises could

be mapped directly to matching objects in an object-oriented

component system. In this case, the matching would be based upon

a categorical "type" structure that defines what the specific objects

are used for. The search would also need to consider the hierarchy

of what the object relates to, where possible. For example, being

within a particular room is important to consider as part of the

matching criteria. Transitions between spaces identified either by

the diagramming task or the Activity Sequencer would need to be

mapped to specific connections between rooms in the component

system, and possibly even specific object configurations within those

assemblies. As such, the standardized output must, at the very least,

describe container objects like rooms, autonomous objects like

furniture that are organized within those rooms, and the connections

between the rooms themselves.

For activities, mapping isn't quite as straightforward, but might

also match to specific items where possible or necessary. In some

cases it will be an obvious specification, not necessarily needing

representation, as in the case of the morning routine: it should be

fairly obvious that "showering", tagged by the user as something that

happened in the bathroom, will also happen, more specifically, in

the shower. But all of the bathroom assemblies and therefore any

potential match in the component system are going to have a shower

in it - the search doesn't have to be so explicit. Further, simply by the

fact that the object goes unrepresented in the room specification, it

is likely that the user will reflect upon the fixture used in the activity

and further specify its qualities if that specification is important. So if

there is something important about the shower, the user does get the

chance to say it.

4.5 Exercises Developed to Evaluate the Interfaces

This section details the design of paper-based exercises that were

prototyped to evaluate each of the four distinct querying interfaces

described above. One exercise was created for each interface. All of

these exercises are paper-based prototypes where paper cutouts and

tags can be arranged on a special worksheet. For each exercise, there

are paper tags (shown in Figure 4.2) that represent the following

things: activities done in a space, physical (bodily) transitions made

in space, objects, room names, and room attributes. These tags

are meant to correspond to drop-down options in an application

interface. The different exercises allow the users to organize these

various tags in different ways, on different worksheets, and in

different scopes. The first exercise presented, to evaluate the Text-

Based Checklist interface, is simply a checklist; therefore no tagging

takes place. And the final exercise, which evaluates the Floor Plan

Diagram interface, introduces additional diagramming cutouts, which

will be detailed in that section.

In terms of the exercises, there is an issue related to how much

the user's compositions are influenced by any examples that might

be given to them during the evaluations; given in an effort to clarify

the exercises. For example, in the diagramming exercise, the users are

shown an example diagram to help them see how all of the elements

can be placed. (Appendix 1, A1.4) In some of our initial studies

done during the prototyping of the exercises, the diagram that the

user composed immediately afterwards had significant similarities.

Were they working towards a mental image of the example diagram

without knowing it?

Conceptual Exercise

Tag Cut-Outsfor Exercises 2-4

Activities

Transitions for Activity Sequences

__L 1_l -I __Rooms

Room Attributes with Definitions

Notes
The room attribute tags included semantic definitions to clarify their meanings.
The room tags themselves simply designate functionality and can be grouped together to create multifunctional spaces
Users were permitted to write in additional items if necessary, using the blank Item tags.

Figure 4.2 The Tags Used for the Exercises

Items

4.5.1 Step by Step Exercise Summary: Text-Based Checklists

Ihe checklists are shown in Figure 4.3 (Page 68). Users were

asked the review a text-based checklist and for each type of room,

select the one option that best worked for them.

4.5.2 Step by Step Exercise Summary: Role-Playing Metaphors

The exercise board is shown in Figure 4.4 (Page 69). Users were

asked to imagine that theyd just bought a new home and were

packing up their things. For one important room, they were told to

first identify the room and then list all of their possessions for that

room using paper cutouts that had item names on them. For the

purposes of this paper-based exercise, blank tags were also provided so

that the users could write any item-label they wanted. Finally, they

were asked to reflect upon the list of items and identify important

room qualities using the red attribute tags shown in Figure 4.2.

4.5.3 Step by Step Exercise Summary: Activity Sequencer

The exercise board is shown in Figure 4.5 (Page 70). This exercise

has 5 distinct steps, each of which involves the placing of printed

labels shown in Figure 4.2 into the workspace shown. For each step,

a pre-selected list of keyword cutouts was made available to the user,

who can then insert them into the correct sleeve. The first step is to

place each of the activities of their current morning routine into the

top of the circles. The activity tags allow users to organize things like

"waking up", "showering", "drinking coffee", and so on. The second

step is to go back and tag, in the bottom part of the circles, the room

each activity happens within. Next, the user identifies the bodily

transition between steps, in the green bars between the circles. After

the transitions have been labeled, the fourth step of this exercise asks

the user to begin reflecting on the activities that are sequenced and

identify room attributes that are important or desired, in light of

these activities. The fifth and final step allows the user to go back and

revise either transitions or rooms, if they think they could improve

the sequence by doing so.

As a control, only one activity was made available to the users

who came in as volunteers, although in application this interface is

meant to be more general. The selected activity was "your morning

routine": users were asked to list out each step of their morning, in

chronological order. The morning routine itself was chosen because

it is something that everybody has to do and it is something with

fairly common activities but also a lot of individuality. Additionally,

the morning routine tends to have at least two or three rooms in

its scope, and therefore the user is far more likely to think about

different rooms, and as we will see, the transitions between them.

4.5.4 Step by Step Exercise Summary: Floor Plan Diagram

The exercise is shown in Figure 4.6 (Page 71). Users were shown

a set of diagramming pieces which they could use to make an abstract

floor plan within the cells of a grid that was drawn on the workspace.

Users were told that they could place openings or doorways between

cells. In addition, a "water wall" element, which represents a wall

that has plumbing connections, was provided, to be placed alongside

one edge of every kitchen or bathroom cell. The user was encouraged

to use as few water walls as possible, in an effort to inject a bit of

guidance into the diagramming task: minimizing the number of

water walls ought to make the layout more efficient. A main entry

could also be placed.

Users were told to first describe their current situation, and then

to make one to three improvements to the design. If they lived

in a space with more than one level, they were simply told to pick

a level. Users were told that they could start their diagram from

scratch if they felt like that would be easier. And as will be seen in the

summary of user evaluations in the next chapter, this task turned out

to be surprisingly approachable.

Conceptual Exercise 1

Text-Based Checklists

1. Master Bathroom
L A. Small, Simple configurallon

L B. Medium w/ Laundry and Larger Sink

L] C. Medium w/ Water Jet Bath

LI D. Medium w/ Water Jet Bath and Extra Closet

L E. Large w/ Sauna and Steam Room
L F. Large w/ Extra Closet

2. Master Closet
L A. Small, enough storage for one person or two people who don't have too many clothes

[i B. Medium, adequate storage for two people
Li C. Large, spacious closets with quite a bit of shelving, good for two people who have lofs of clothing

3. Master Bedroom
I A. Smaller, 12 x 14, with a simple configuration

. B. Medium, around 14x14
J C. Medium w/ some built-In, additional Closet space

L D. Medium w/ space for flat screen TV and equipment
Li E. Larger bedroom, around 16 x 14, w/ Additional Seating Area and open floor spce
[I F. Large w/ space for flat screen TV and equipment
_i G. Large, Loft Style: seating area, with open connection to living space, and open floors

4. Second Bathroom
L A. Smaller, basic bathroom w/Shower
L B. Medium bathroom with Shower and also a Washer and Dryer unitjust outside

C. Larger bathroom with either separate water closet, additional storage, or a Washer and Dryerjust outside

5. KItchen + Entry
0 A. Open, Loft Style: Ilinear and open to living space

f B. Open, Loft Style w/ Dining Table added
[C. Open, Loft Style w/ Dining Table and Separate Entry area

0 D. Open, Loft Style w/ Bar between Idtchen and lving

L1 E. Galley Style w/ Separale Study area
E F. L-Shaped, Small w/ Separate Dining Table area and Bar

C G. U-Shaped, Small w/ Separate Dining and Entry Closet Space

0 H. L-Shaped, Large w/ Bar and Dining Table
1. Closed (enter through door), Large, with Study space

6. Uving I Dining
l A. Large Living Space, Open to all Adjacent Spaces

E] B. Large Living Space, With Shelving Along Edges so Its more closed of

E- C. Medium-Large Living Space w/ Separated Offlce aree

i D. Medium Living Space and Medium Dining Space, Open to each other

El E. Smaller Living Space with Two Additional Bedrooms (3brtotai)

7. Study I Second Bedroom
0 A. Small Bedroom w/ Separate Medium-Sized Study Area

0 B. Medium Bedroom w/ Smaller Separated Study
L C. Large, single Room; multi-functional Bedroom/Study

L B. Large Bedroom that can also function as a study
L E. Two Medium Sized Bedrooms w/ Study Desks (req. 5E)

Instructions
For each of the rooms (1-7) review the options given and check the one that best meets your needs.

Figure 4.3 The Checklist Specification Exercise

Conceptual Exercise 2

Role Playing Metaphors

Room Name: Room Name:

lqP

Items in Room

Instructions
Imagine that you're packing up all of the important items in one of your rooms. List out each of the items you'd need to
pack. Reflect upon the list, then label the box with the characteristics the room would need to have to meet your needs

igMIT House-n / Changing Places
Open sourse Bu.ng Aisn' conoeptuasizaettn Tools

Example, created by volunteers during the interview sessions
Exorcise: Pack up your stuff. irs irme to move inI

Figure 4.4 Role-Playing Metaphor: The Packing Exercise
69

Items in Room

, 0

Conceptual Exercise 3

Activity Sequencer

1. Activites: List the specific activities for this sequence, In chronological order.
Example: If you were Rating out the activities of your morning rout ne, you might start with 'wake up"t blowed by "Wke shower" and so on

2 Room:
Here lit tha

roo in whioh
each activity
takes piece

position or
orientation
change between
the activities?

4 Reflecting on
the sequence
here, what
qualities,
styles, or Items
are Important
for you to hve
Included in this
room in a new
home?

I I I I

Instructions
Identify and place in chronological order the activities that comprise your morning routine.
Next, label the room that each of those activities takes place within. Next, identify the transition you make between
each of the activities. Now that the activities are sequenced, reflect upon the properties of each of the rooms
included and identify properties that are important to you. And finally, could any of the transitions be changed
to improve the sequence?

Figure 4.5 The Activity Sequencer

Conceptual Exercise 4

Floor Plan Diagram

Grid Board:

- - - -

- - - -

Diagram Pieces:

Opening

Doorway I

Main Entry

Water Wall j
Instructions
Using the provided grid, create a diagram that represents your current living space, and then make 1-3 changes
that would improve the space. For an idea of how the various cut-outs should be placed, refer to the example
diagram. When placing water walls, keep in mind that they are expensive, and should be used efficiently.

J~L

:i ~ .~. I

Above: the example
diagram that was

provided to the
volunteers.

See Appendix A1.4
for larger view

One of the volunteer's
diagrams

Figure 4.6 The Floor Plan Diagram Exercise

71

Our preliminary studies involved the arrangement of pre-designed

room cut-outs on a paper worksheet. The studies were done with 6

subjects; all of them were Housen affiliates. 4 of the 6 had educational

or professional experience in architectural design. In reflecting on the

exercise, each of the subjects noted that while some of the decisions they

made were because of some preference, they made many decisions that

were highly specific to the organizational logic in the options given, and

not directly related to any conceptual need or value of their own. There

was also no evidence that the literal room representations in the exercise

allowed anyone to think of any new needs or values - only those who had

identified preferences ahead of time were able to fulfill them in translation.

2. Perkins (1981) suggests that unconscious thinking is fundamental to all

conscious activities, including creative ones like designing, and that this

unconscious thinking is structured into sequential processes. Along these

lines, C. G. Jung describes his own design process: "I built the house

in sections, always following the concrete needs of the moment... Only

afterwards did I see how all the parts fitted together and that a meaningful

form had resulted." As Charles Moore observes, "[Jung] had been

compelled by his unconscious to build it as he did, guided by impulses

deeper than those of the conscious will." (Moore, 129)

3. Each of the querying interfaces described here will adhere to a common

XML structure and output data in an XML stream. The details of this

generation will be discussed in Chapter 6.

4. For example, as of 2007 the Toll Brothers site hosts a flat, simple, option

selection-based search called "Design Your Own Home": http://www.

designyourownhome.com

Lennar does is well: http://www.lennar.com/findhome/search.aspx

Pulte does the same: http://www.pulte.com/homefinder

Each of the searches is highly constrained, allowing the selection of

number of rooms, location, and overall size.

5. Here, the issue is that an automatic parser wouldn't really be able to

summarize the meaning of the assembly, beyond creating a simple list

of objects and attributes contained within. To be of any utility to users,

the option select listing needs to contain more qualitative words and

statements, something like: "includes large closets with plenty of space

for two people who have lots of clothes." Computers do not have the

common sense to create these kinds of descriptions, as Minsky notes: "We

tend to take commonsense thinking for granted, because we do not often

recognize how intricate those processes are. Many things that everyone

does are more complex than are many of those 'expert' skills that attract

more attention and respect." (Minsky 2)

6. See Chapter 6 for the technical details of each implementation. It covers

the custom tags within each of the search queries.

7. See Minsky's assertions in Society OfMind, specifically Chapter 25

5 User Evaluations and Findings

The evaluations described herein were used to test out the

viability of the component-based and conceptual exercises as tools

for everyday people. The viability of each exercise was measured in

terms of its ease of use, how enjoyable it was, and its ability to help

people think of and frame their particular architectural preferences.

Volunteers for the study were solicited from multiple sources; a total

of 12 volunteers participated in this study. ' The volunteers were not

designers or architects by profession. The respondents were 66%

female; all but two were born between 1965 and 1982, the two older

subjects were born in 1942 and in 1947. The study was conducted in

an MIT research office, and user sessions averaged about an hour in

overall length.

5.1.1 Protocol

The study had three parts. First, users completed a short 7-

item questionnaire to specify their familiarity with architectural

design (i.e., have they ever worked with an architect or looked at

floor plans), and also their level of proficiency with computers:

what types of programs they use, and how often they use those

programs. (Appendix 1, A1.2) Next, the users worked through

each of the five exercises: Component Assembly, Option Checklist,

Activity Sequencer, Packing Metaphor, and Diagramming. After

each exercise, the user had a chance to rate the exercise. Rating was

done using a common set of assertion statements with which the user

could either agree or disagree. 2 In addition to these ratings, the user

was given the opportunity to make general comments immediately

after each exercise. Upon completion of the exercises, the volunteer

finished up by answering a few general comparison questions about

the exercises and was given an opportunity to make any other

comments about each or any of them.

For each of the exercises, users were given standardized

instructions verbally. The order in which the exercises were presented

was varied. Users were given the opportunity to ask questions, of the

"Frame-Arrays" and Chapter 26 "Language-Frames". Also F.C. Bartlett,

Roger Schank

8. The final chapter of The Place ofHouses by Charles Moore, pp 241-266.

9. Our initial diagramming tool allowed zone overlapping and the flexible

sizing and placing of zones. Initial testing showed that people didn't really

know where to start, and that the overlaps were ambiguous. Also, people's

diagrams tended to focus on the more literal spatial organization of rooms

and not their abstract relationships. This was problematic because the

spatial organization of diagrams is not meaningful to the search algorithm

which focuses more generally on room-to-room connections and room

functions. To make the diagramming simpler and the diagrams more

meaningful, the prototyped exercise constrains all zones into a pre-drawn

grid. This simplifies the diagramming process because people do not

have to worry about where to put the zones, which in turn eliminates the

tendency for users to be overly concerned with literal organization. The

grid also makes it easier to start because it's no longer an empty page,

in addition to the fact that the user has fewer elements to worry about

placing.

author, about the exercises if any clarification was necessary. During

the exercises, users were permitted to ask for additional clarification

if necessary. Apart from answering these specific questions, I avoided

any verbal communication with the participant during the exercise.

As the interviewer, I was present throughout the exercises, seated

facing the users at the table upon which they worked. For each

session, audiovisual information was recorded for further analysis.

The volunteers came from a variety of backgrounds and

experiences. One was a retired head librarian, another worked for

IBM, and another was a student finishing up her Masters degree at

Emerson College. None of the volunteers had ever worked with an

architect to build or remodel a home. Seven of the 12 participants

identified themselves as being comfortable with floor plans; the others

were only vaguely familiar with them. All of the users described

themselves as either regular users (9) or power users (3) of computers.

In terms of the applications used, the 9 regular users tended to follow

a routine of computer use and the 3 power users tended to actively

seek out new programs or functionality. All of the users were familiar

with surfing the Web, using Google, using Google earth, checking

email, using Microsoft Word and using Microsoft PowerPoint. Only

a few users were experienced with computer programming software,

CAD software, or graphics software, and none were proficient or

expert users of those types of software.

Prior to the evaluations there was a concern that the users

would be influenced by visual examples given, particularly with the

diagramming task, but there was no observed evidence that this was

the case. To help circumvent the possibility of said influence, the

examples were not left in front of people during the actual interviews.

In the following sections, the salient findings of the studies will be

summarized, first with the component-based exercise and then with

the conceptual exercises.

5.1.2 Jeffrey

Jeffrey, one of the users who volunteered for the study, required

a somewhat different protocol because he was legally blind. Because

he was unable to see the exercise materials, each of the exercises

was done cooperatively, where the options and arrangements were

described verbally by the author. In addition, Jeffrey was unable to

go through the Component Assembly exercise because he couldn't

see the various images that were presented and there was no benefit

in trying to verbalize all of the meaning those images contained.

However, his perspective of the conceptual exercises was, as whole,

illuminating because of his unique relation to space. The most salient

room qualities for him were warmth and quietness; they were not

visual things. And he tended to focus more on the intricate details of

his movement through space. For example, in putting together the

Activity Sequence of his morning routine, and thinking about moving

through a doorway, he stated "I have thresholds in the doorways, I

hate them. I walk around and anything that's on the floor bothers

me." Conceptually, the pathways that he makes through space are

his most dominant concern. "I have a unique problem: I'm blind.

Wanna see me carry a bowl of soup from the kitchen to the living

room? I don't have an eat-in kitchen, it's a little galley kitchen. So

I'm looking for the shortest walking path between the kitchen and

the table." With that said, it was encouraging to observe how salient

the conceptual structure of each of the exercises was for him, even

without the visual cues from the workspaces and various pieces. In a

way his unique session was one of the more important ones because it

helped confirm that the underlying structure of the various tasks was

clear and approachable, even without the benefit of sight.

5.2 Component-based exercise, Findings

Overall, the volunteers found the Component Assembly

exercise detailed in Chapter 4 to be easy to understand and work

through. Even though several users did not consider themselves to

be comfortable with floor plans, the concept of a floor plan view was

very obvious for everyone, and only a few of the volunteers asked

for any clarification about the specific items shown (i.e. "is that the

fridge?") or how rooms connected together. Because efforts had been

made to describe the options in a number of ways, some of this clarity

may have come from the variety of different representations shown

in the library cards for each space. (Figure 3.8, Appendix 1, A1.3)

So, we asked people what representations were most useful to them

during the selection process. Most users said that the plan view, or

the plan view in combination with the 3D view or the rendering, was

most useful. And two users thought the floor plan diagrams were

most useful - only three users thought non-plan representations,

like the 3D view or the renderings, were more useful than the plans

themselves. Still, having the entire variety of options seemed to be

useful for people, even as some subset of those representations was

clearly more important for everyone. As one user, Megan, noted: "I

rarely looked at the photos but then when I had [options] that didn't

have the photos, I missed them a lot, I wanted them back." 3

In general, going through the component assembly process

room by room seemed to be an effective approach to simplifying

the selection process, because people could separate the rooms

conceptually. But, there were a few issues with this separation: mostly

with the "bigger picture" of the overall plan's design being something

that the users didn't give much thought to or engage in. Instead,

they tended to focus upon the rooms in isolation. Take for example,

Marisa, a volunteer who is preparing to relocate for medical school,

who noted: "the only thing I thought about between the rooms was

closet space... other than that I just thought about the rooms kind of

independently." Another user, Thea, preferred to look at the master

bedroom and master bathroom at the same time, because for her, they

were conceptually part of the same private zone and difficult to select

separately. Closets were a very popular consideration in private spaces

like the bedrooms and bathrooms, and several users verbalized that

they were important. In the more public spaces, a significant number

of users were trying to select rooms that had a sense of "openness".

But surprisingly, highly popular layouts did not emerge from the

options given for any of the rooms, with the exception of the living

room where one configuration was selected five times.

Key
4 Strongly Agree
3 Agree
2 Disagree
1 Strongly Disagree

Component
Assembly

4 3 2 1 4 3 2 1 4 3

Good Reflection
of Values

Figure 5.1 Component Assembly Ranks
Users were asked to rank each of the
exercises according to the criteria here.
These are the responses for the
component-based exercise

Clear and Easy to
Understand

Helped in
or Discove

2 1

Thinking of
ring Needs

4 3 2
Fun, Entertaining

Experience

Everyone liked the exercise, and all but one agreed that the plan

that they made was a reflection of their values. (Figure 5.1) But as

it turns out, and this is fundamentally important to this analysis,

the real question is which values were being represented by their

plan selections? Because even while the exercise was approachable

and gave the people a sense of accomplishment, there were several

potential problems observed, the first of which was a tendency to

avoid revisiting any of the spaces that had been selected.

Essentially, people tended to avoid going back and changing

a room once they had picked it. For example, if a user selected a

bedroom, and then selected a bathroom that wouldn't fit with that

bedroom either due to size or doorway alignment, they would tend to

assume the bedroom to be a given and go with another bathroom that

fit. This was true even though each user was encouraged to go back

and revise any selection at any time, if they so desired. Only one user,

Liv, went back to make significant changes, and two others made just

a single revision to one space that was already selected. Apart from

those three users, the rest of the group made no revisions at all to

their original selections. As Zahra, an MIT graduate, noted: "I guess

I made some choices later because I was constrained by earlier choices

where I didn't know what I was doing." This finding was a bit of a

surprise because it was expected that the iterative process of refining

selections would be one of the more entertaining and useful aspects of

this particular exercise.

There could be many reasons that revisions didn't tend to happen.

First and most obvious is the possibility that because people were

conceiving of rooms separately and not in terms of the overall plan,

14

there was no need to go back and revisit anything according so

some overlying concern because that concern simply didn't exist. So

instead most users seemed to use the question, "what fits with what I

have?" as additional criteria to help make their selections. Secondly,

the selection process for the rooms was highly comparative in nature

and took each of the users quite a bit of time to complete. ' So if

they had invested time in the choice, and already had a sense that it

was the best choice, why then should they revisit it? This issue hints

at the possibility of a more fundamental problem, for which other

evidence was observed, which is simply that the selections made were

highly context-specific.

Figure 5.1 shows that most users didn't think this exercise helped

them think of or discover their own needs. One possible reason

is that the selections that people made in this exercise were highly

contextualized by the design of the room arrangements and the

specifics of the representations. So, while people did feel that they

had picked the room they valued the most, this value judgment was

made based upon straightforward things like how the furniture was

depicted, or for example, how a table was shaped. Kevin, a 35 year

old, noted that he liked one of the living room options because of the

shape of the coffee table that it depicted. Apart from Kevin, some

users externalized their thoughts about the selection process while

working through the exercise, revealing a bit of their conceptual

speculation. The following are a few examples:

"I kind of like having no table. I don't sit at the table in the kitchen a lot.

I guess I could, I probably should but, well, that's a big table. I mean, do

I need to be that literal? I mean that is a big table. I would never need to

sit there, I would sit there all alone and that would just be terrible. There's

room for what 8 people there? I don't have 8 people that I want to talk to all

at once. No! Get out of my house!"

Brittany, who went on to choose a kitchen with no table

"I really don't want the TV at the end of my bed, but I kind of like the

layout"

Brittany (she ended up accepting the TV)

"I'm not a big Sofa person"

John, a retired librarian, reflecting on the living room furniture in his selection

In reflecting on her own design, Zahra described further her

selection process: "well, there were a few items that I knew for sure I

had to have ... like the closet in the bedroom ... but then there are

other features where I wasn't able to distinguish very clearly what my

needs were, so all of the choices seemed the same". When considered,

Zahra's comment illuminates two issues, first that her selection

process was based mostly on literal room features, and secondly that

the only decisions she could make easily were the ones for which

she'd identified a need ahead of time. This observation points to

the third fundamental problem that this evaluation uncovered: that

working with the more literal representations didn't support a varied

conceptualization of the space, or the identification of new needs or

values by the user while doing the exercise.

As Zahra's comments suggest, the people who had the easiest

time with this exercise were those who had spent more time reflecting

upon their spatial needs beforehand. A good example is Thea, who

is currently in the process of renovating a house in New Haven,

Connecticut, with her husband. Of her selection process, she

describes that "we've spent a lot of time thinking about the way we

like to live, and having this area (point to the living room) open, so

it wasn't that hard [to decide]." But everyone appeared to have at

least one or two high-level goals. So the pre-framed needs that made

this process doable came from some sort of earlier reflection process,

and were in all cases a reaction to an immediately observable problem.

It's not a surprise that for 12 users who live in the cities of Boston

and Cambridge, MA, closets and large open spaces were the most

sought out features, because most, if not all, of them have been living

in and adapting to units or houses that are small and/or old. But

really obvious problems should not be the only way spatial needs are

framed.

Ultimately, the room selection process, when made in the

context of the component exercise, was simply about choosing the

best from a number of available options, by using the information

that was provided; as previously noted, people were engaging in a

specific comparative analysis. With the information being literal and

configuration-specific, it is not really a surprise that the exercise did

not tend to cause any further conceptualization of the space, but it

is important to point out because it's the most critical shortcoming

of the exercise. Are people really arriving at the best, most livable

selections for their home, and what decisions are they actually

making? As our findings with the conceptual exercises suggest, far

more valuable preferences can be elicited through constructive tasks

that encourage reflection inveterately.

5.3 Conceptual Exercises, Findings

The conceptual exercises detailed in Chapter 3 were evaluated to

determine how well they help people frame new problems or needs

in terms of their home preferences, to get a sense of their educational

value, to see how easy they were to both understand and work

through, and to find out how entertaining they were. The findings

presented in this section are structured according to each of these

areas of inquiry, starting with problem framing. Within each area of

inquiry, findings specific to each of the exercises are described.

Exercise Summary:
- Text-Based Checklist: selecting one option from a checklist

of text descriptions, broken up room-by room

- Role-Playing Metaphor: users imagine they packing up

items for an upcoming move as a way to think about their

space needs

- Activity Sequencer: users list out the activities within their

morning routine as a way to think about their space needs

- Floor Plan Diagram: users construct an abstract diagram

that describes their space needs.

Users were given the opportunity to comparatively rank the

conceptual interfaces, the results are shown in Figure 5.2 on the

following page. The ability of the conceptual exercises to help people

think of and frame their individual needs is central to the system's

success in letting people conceptualize of their spatial preferences.

For this reason, problem framing was a central concern of these

Figure 5.2 Conceptual Exercises
Comparative Ranks
Users were asked to rank each of the
conceptual exercises from best to worst in
terms of ease of use, educational value, and
most liked overall.

Key A activity sequencer
D floor plan diagram
P packing metaphor
T Checklist Select

L0.3 pt(

S0.5 pt(

S1 point

3 way tie)

2 way tie)

evaluations. As will be shown, the difference between helping people

think of things and being educational is a fuzzy one, but in terms of

educational value, it's important to consider not only the learning

that may have been done about needs, but about the actual exercises

as well. Ease of use was analyzed to determine how well people could

understand and also do the exercises; the concern here was with

identifying any potential barriers to users getting started and working

through the exercises. In the context of a web-based implementation,

approachability is tremendously important because users aren't likely

to hang around if they can't figure things out. And along those same

lines, the entertainment value of the exercises was evaluated to get

a sense of just how fun they were. As will be discussed, being fun

is important for the conceptual interfaces because it helps provide

an immediately tangible benefit, and also encourages users to spend

more time conceptualizing.

Key
4 Strongly Agree
3 Agree
2 Disagree
1 Strongly Disagree

Checklist
Selection

Packing
Metaphor

4 3

5.3.1 Problem Framing (Figure 5.3)

Each of the conceptual exercises described herein incorporated

description and reflection stages to help users think about needs and

values. The goal behind this bipartite structure was to utilize the

process of first constructing a description of something as a way to

then reflect upon the implications of that specific something. There

is however, a notable exception to this, and that is the Checklist

Specification exercise, the process for which more closely mirrors

the component assembly exercise detailed in the previous section.

Here, it was observed that users were simply selecting the choice that

seemed best, in one step. Resultantly, the findings for the checklist

exercise tend to take a departure from those for the others. As Marisa

describes, the Activity Sequencer "makes you think about what

you need whereas [with the Checklist] you don't really think about

functionality that much, you just think about what you think would

be good." This contrast was expected; in fact, our primary intention

with the provision of a checklist task was to compare that task with

the other exercises, because text-based option selection is the de facto

standard for existing home search functions as of 2007. 6

Compared to the Component Assembly and to the Checklist

ActivitySequencer
4 3 2 1

Floor Plan
Diagram

4 3 2 1

Helped in Thinking of
or Discovering Needs

Figure 5.3 Conceptual Exercises
Ranked by Ability to Frame Problems

User rankings of how well each of the
exercises allow them to discover their needs

Specification, the other exercises allowed more significant and

more varied discovery of spatial needs. When asked if the three

more conceptual exercises helped them to think about their home

needs in ways that the Component Assembly and checklist did not,

all but one of the users agreed. As Marisa noted, "they made me

think of the bigger picture." Another user named Alison explained:

"the exercises made me consider what I really value in a space, and

made me think about how my current living situation differs from

my ideal situation." For each of the more conceptual tasks, the

aforementioned description stage focused on the user's current living

situation, followed by a speculative reflection stage where users then

identified their preferences. This allowed them to think about both

the good and the bad things about their current situation, as opposed

to the Component Assembly, which only seemed to be evocative of

the profoundly bad things if it was evocative at all.

For several of the users, the Activity Sequencer helped them

to recognize how much time was spent in certain rooms and what

they do those rooms, and also helped them discover inefficiencies

in their spatial configurations, given the activity being described.

After completing her morning's description, Thea described her

thoughts about spatial revisions that would help make her activities

more efficient: "[I could try] combining 'Waking Up' with 'Getting

Dressed' [into one room] so that I don't have to move through

doorways or hallways... you can just, you know, move through a

room". While working through her sequence, Brittany thought about

where "Eating" happens in the morning: "I'm at my office desk!

That's where I sit and eat. And I'm doing something at the computer

... which seems really weird under eating, I realize, but that's really

what I'm doing, working and eating are really kind of synonymous."

Building up these activity-based descriptions made it much simpler

for people to describe items that were important to have in the

room, or room qualities. As such, it was observed that for many

people, having lots of natural light was a particularly important room

attribute that emerged when they thought about waking up. But

the exercise also helped people reconnect with unique and important

things about themselves. When asked why he listed "Knick Knacks"

under his "Reading" activity, John noted: "I'm very much into

collectibles. And I have a lot, my house is just full of them and that's

part of my psyche. Without those, I could not go from showering to

reading because I always stop and look at them". Later, when

selecting his living room in the Component Assembly, he referred to

this specific discovery to help select a room layout.

Similarly, the Role-Playing Metaphor of packing up a room

encouraged people to think about the relative importance of the

various things they keep in that room, and also how items changed

the room. John, in working on the kitchen, noted that the packing

activity made him "think just how important the telephone is, and

[that] pictures are meaningful." While packing up his living room,

Jack, who works for IBM and participated in the exercises with his

wife Jane, said: "I never thought about how many seats and chairs

we have in the house." However, while the Activity Sequencer

was popular, not everybody thought the packing metaphor was

tremendously useful. Zahra noted: "the things that I take with me in

the room, for the bathroom at least, are not going to change really".

This may have been because the bathroom tends to have a more

constrictive and standard layout, but there were several other users

who felt like reflecting on their list of stuff was not very useful when

it came to identifying preferences. In these cases, the connection

between their description of items and their reflection on preferences

was a fuzzy one for users; they had to make a bit of a jump. Still, as

Thea noted: "it would be helpful to do that for every room".

For the diagramming task, users were asked to first diagram

one floor of their current living space, and then make one to three

improvements. So again, the process was one of description, followed

by reflection. TIhis did help users frame problem spots, by thinking

through how the space was structured. As an alternative, some users

were told they could start from scratch; all but one of the users who

were given this option did so. 7 This alternative was useful because for

some of the first few volunteers, their current living situation was very

restrictive and they would often either completely start over during

the reflection stage, or make only small adjustments, like changing

the function of a certain room.

Because the task was so constructive, there emerged much more

of what Schon described as Reflection-In-Action, and some users

Key
4 Strongly Agree
3 Agree
2 Disagree
I Strongly Disagree

Checklist
Selection

4 3 2

Packing
Metaphor

4 3 2

Activity
Sequencer

4 3 2

Floor Plan
Diagram

4 3 2

Educational Value

Figure 5.4 Conceptual Exercises
Ranked by Educational Value
User rankings of the educational value
each of the exercises

86

externalized that even while starting from scratch, they were thinking

of places they had known or lived in. For example, Brittany reflects:

"I'm also thinking about my childhood home. My parents had this

really great house so that's a good, a really good model, and when you

walked in ... it was just open." Additionally, in Brittany's case, there

were multiple sources reflected upon: "this is coming from the idea

I of my grandparent's old house; where there was a giant bathroom

between our bedrooms ... I thought that was really nice." Her

ultimate diagram was the combination of the two sources. Other

users like Jeffrey, who started with his current situation, were able to

highlight specific areas of need: "I have no second exit ... that bothers

me", in addition to more high level concepts: "the practical reason for

design change in my apartment is to minimize the walking path." In

1 each of these cases, the diagramming exercise elicited thoughts about

spatial preferences, simply by letting users build something.

5.3.2 Educational Value (Figure 5.4)

In addition to examining how well these exercises allowed people

to discover their needs, I was curious if people learned anything

new by working through the exercises. The ratings in Figure

5.4 are quite positive for all exercises but not particularly useful,

comparatively. The users were divided fairly evenly when asked if the

conceptual exercises allowed them to learn something new about their

preferences: only 55% agreed that this was the case. As it turned

out, it was very difficult to get a sense of whether the communicated

preferences were new concepts or simply ideas remembered.

Furthermore, it was probably difficult for the users to think of new

things that they had learned while doing the exercises, because this

knowledge may have been tacit or subtle. And there is also the case

of meta-knowledge, knowledge gained about the exercises themselves

and their purposes. Several people, like John and Jack, described that

the Activity Sequencer allowed them to think about their space use in

a way that they had never thought about before, which suggests that

they learned a new method for describing their needs, even if they

didn't necessary learn anything new about their needs.

Lastly, it is difficult to separate the process of learning from the

04

process of discovering. Again, all of the users felt like the exercises

allowed them to identify and describe their spatial needs. This

was not necessarily new knowledge, nor does it need to be, but

perhaps it was being organized in a new way. Perhaps discovery is an

educational phenomenon, even if it is rediscovery.

There was some evidence of tacit learning when people talked

about their experiences; for example, comparisons drawn between

the exercises themselves. Several users, when describing their efforts

to work through the Checklist, noted that the specification seemed

inappropriately flexible. Zahra notes: "it's hard to visualize [the

Checklist] because I'm not constrained on anything; here (with the

Component Assembly) you're completely focused on what you're

giving up." Another user, Alison, reflects similarly, "I thought I could

choose better with that one (pointing to the Components) because I

could see what it looked like. I'm not even sure if what I picked [on

the Checklist] is the same."

And in other sessions, users said or did some surprising things.

Consider this brief exchange with Liv, a recent college graduate, in

discussing her diagram:

Liv: "it was a little restrictive because I'm thinking to scale when I know

I shouldn't be"

Giles: "So how did you know you shouldn't be?"

Liv: "well, just because of the grid"

Here, Liv had inferred knowledge about what she should be

describing simply by observing the structure of the Diagram's

workspace. After pilot studies, the grid was incorporated into the

design of the exercise to help make the process more approachable,

but it is also intended to help the system prevent people from

representing space too literally to be of any use as a query. This

tension between constructing something and having it be searchable

is unique to the diagramming task, and Liv had discovered this. Also,

several of the users made observations about how the tasks themselves

could be related. Thea described that it would be useful to do the

packing metaphor for each of the rooms in her diagram; Marisa

noted that the exercises could be linked together to help complete

Key
4 Strongly Agree
3Agree
2 Disagree
1 Strongly Disagree

Checklist
Selection

4 3 2

Packing
Metaphor

4 3 2

Activity
Sequencer

4 3 2

Floor Plan
Diagram

4 3 2

Fun, Entertaining
Experience

Figure 5.5 Conceptual Exercises
Ranked by Entertainment Value
User rankings of how fun each of the
exercises was

88

her description. This sort of thinking, of applying ideas about how

the tasks can be organized and structured, implies that aspects of the

process were educational enough to engage people into the thoughtful

evaluation of that process.

5.3.3 Fun for people? (Figure 5.5)

1

The entertainment value of these conceptual interfaces is crucial,

for both practical and technical reasons. Speaking practically, it

is important that the conceptual query interfaces be enjoyable to

keep people engaged and interested in the task at hand. This is

particularly true for adults, who, as was previously described, require

the perception of some benefit associated with doing something to

T be willing to spend the time to do that something. For users where

the benefits of the constructive tasks are not immediately discernable,

the potential to havefun with the search is the immediate benefit

that keeps them engaged. Also, it seems probable that having an

entertaining interface is a good way to get people to spend more time

not only to complete their query but to work to refine it. This is a

technical reason to try and achieve interfaces that are actually fun,

because for the underlying search process, more complete and more

refined queries mean better search results, which leads to a better

1 system overall.

Though it's hard to evaluate in any quantifiable way, it seems

that with the exception of the Checklist exercise, all of the exercises

that were presented were quite enjoyable for people. Users ranked

the exercises as fun, and additionally, there was plenty of observed

evidence that everyone was, to put it simply, having a good time. For

example, 10 out of 12 people opted to finish up their exercises and

have the session take longer. So, while sessions were designed to last

30 minutes, most of them lasted an hour and some even more. In

several cases, the users were asked to stop working on an exercise that

they were immersed within, so that they could move on to the next

one; these users tended to be both surprised at the amount of time

that had passed and to want to finish up what they were doing. Some

comments that were made during the activities:

"I'd like to sit here for a couple of hours by myself and work on it"

- John, on the Diagramming Task

"It's like monopoly... this is fun!" - Jane, on the Activity Sequencer

"I just think it's so cool ... you guys should create a game" - Jane,

on the Diagramming Task

"This is great! This is so much fun. More people should have

things that are this fun to do, this makes me want to do all of this",

Brittany, on the Packing Metaphor

Overall, the Diagramming task was the most engaging and the

most fun for people. In general, users tended to favor one exercise

over the others, sometimes extremely. So from the group of users

there emerged people who were, for example, activity sequencers,

and people who were diagrammers. It seems likely that the different

exercises would be well suited to different problem solving abilities of

people. For example, Alison, who described herself as a very visual

thinker, favored the Diagramming over the more narrative Activity

Sequencer. But Zahra was the exact opposite. The Checklist, being

textual and straightforward, and also containing options that were

generally unclear, was found to be the least enjoyable, and some

people found the Role-Playing Metaphor to be smaller in scope and

not as engaging when compared to the other exercises.

Jack and Jane, who worked on the exercises together as a couple,

discovered within the structure of the exercises both an interesting

space for communication and a way to have fun with each other.

Here is an example, from their conversation during the construction

of the diagram:

Jane: "I'd like a chair right there..."

Jack: "You like chairs everywhere!"

Jane: (laughs) "Yea, why not, it's a nice sitting area, like in a hotel,

you know, they have the lobby area. It's a dream."

The exchanges that Jack and Jane made throughout the course

of their session point to an interesting dimension of the conceptual

interfaces: that they could be made to be interactive, and to allow

multiple people, of different relations, to build queries together at

the same time. The final chapter will discuss this possibility in more

Key
4 Strongly Agree
3 Agree
2 Disagree
1 Strongly Disagree

Checklist
Selection

Packing
Metaphor

4 3 |2

Activity
Sequencer

4

Floor Plan
Diagram II

4 3

Clear and Easy to|
Understand::

Figure 5.6 Conceptual Exercises
Ranked by Ease of Use
User rankings of how easy each of the
exercises was to understand and work through

90

detail. Beyond that, it seems likely at the exercises were deemed to

be enjoyable because they were clear and because they allowed people

to both work towards and sustain identified goals. Since the exercises

were constructive and engaging, game-like experiences simply

happened.

T 5.3.4 Ease of Use (Figure 5.6)

It goes without saying that these exercises needed to be easy to

use; so that people could quickly engage in a constructive process of

discovery without being frustrated by a complicated process. But it

became apparent through observation that there were really two types

of easy: the clarity of the instructions versus the approachability of the

1 choices the exercises forced people to make. The Checklist is a good

example, because the rules couldn't be simpler, but the task was still a

difficult one. This is because the options were difficult to distinguish

and to visualize. Interestingly, it was discovered that people who did

the Checklist as the first exercise actually had more trouble with it.

As it turns out, this is because the people who had done either the

Component Assembly or the other conceptual exercises ahead of time

were able to refer to those preceding exercises to help visualize the

Checklist options and to make their choices. ' Brittany, who did the

T Checklist first, exclaimed: "this is so complicated, let me know if I'm

putting too much thought into this!"

For all of the conceptual exercises that involved tagging, the

semantic definitions that were included on the attribute tags were

useful to the users in clarifying the meaning of those tags. This

finding supports the notion that by providing the definitions to the

user ahead of time, we may be able to clarify the functionality of the

search operation itself. Looking at the "Efficient" attribute tag during

the Activity Sequencer, Jane commented "oh and this, based upon the

description, seems like it makes sense." 14

For many, the Activity Sequencer was, while interesting, a little

difficult, but most people still seemed to find it engaging. Brittany

noted: "it's hard to qualify what I'm doing, I might be sitting on the

floor with the cat, and it may be a little out of order ... I might just

get up and work for a while, not even eat." And John described that

"it was hard because I had to think of what really means something to

me when I get up in the morning and I've never really thought about

it that way", but he was very happy with his discoveries.

Four of the users also found the grid in the Diagramming Task

to be a bit limiting to work with; but only because they wanted to

have a bit more freedom in defining room boundaries. For reasons

previously described, this had been disallowed. Still, all told,

the easiness of the Diagramming Task itself was one of the most

unexpected findings of these evaluations. Going into the evaluations,

the assumption was made that the task would be quite difficult, to the

extent that people may not even be able to do it. But observations

revealed quite the contrary result: that it was very approachable, quite

fun, and in many ways easier than trying to, for example, sequence

together a collection of activities because the diagram was more

directly representative of space. But of course, while the ease of the

diagramming task was a pleasant surprise, there are other, important

considerations that challenge the use of this exercise in particular.

5.3.5.1 Pros and Cons: Text-Based Checklists

As an exercise, the Checklists were easy to understand, but

difficult to work with. Without any visual information, users found

it difficult to differentiate the choices given, unless they referenced

other exercises or had strong convictions about particular features. As

described in section 4.2.1, the exercise would have scalability issues

if incorporated as a system interface. And there was no evidence that

people discovered any needs by working on this exercise. For these

reasons, the checklists were not incorporated into the prototype.

5.3.5.2 Pros and Cons: Role Playing Metaphors

For some users the packing metaphor was not particularly

enjoyable as an exercise. And a few users noted that the connection

between listing items and then identifying valued room attributes was

not meaningful. These findings suggest that this exercise might not

be good for everyone, or that it might be more useful only in specific

rooms.

However, for some users it was very useful to think about all of

their items as a way to begin thinking about what they'd need from

a space. Several users also found that making the list of items was

a good way to remember about all of their possessions and even to

prune out unnecessary or unwanted possessions

5.3.5.3 Pros and Cons: Activity Sequencer

The Activity Sequencer was, for several users, the most difficult

exercise and required more explanation than any of the other

exercises. Also, users found that the morning routine isn't always a

distinctly sequential set of activities, and that it may vary from day-

to-day, which suggests that even if thought-provoking, the specific

sequence given might not be wholly accurate. This isn't a significant

problem because the attribute list that the sequence generates is what's

significant to the search.

Also, it was found to be the most useful of all exercises in allowing

people to discover needs and values, and it was evident from the

sessions that even though the task was initially more difficult than

the others, it was very useful. Additionally, the activity sequencer

encourages people to think in detail about multiple rooms and the

way they flow together, in addition to how those individual rooms

are utilized. This means that more query information is generated by

this interface than the others, and therefore one of the more effective

interfaces at getting good results. A more detailed query gives the

system more to go on. This type of specificity will be explored further

in Chapter 6.

5.3.5.4 Pros and Cons: Floor Plan Diagrams

People found the diagramming to be the most enjoyable task.

And, the diagramming was unique among all of the exercises in the

amount of improvisation that took place. In many cases, users bent

or even broke the rules to reach their final designs. Rules can, of

course, be enforced more strictly in a computational implementation,

but the specific nature of the ways that people strayed is very

informative and should not be overlooked.

Earlier in this Chapter, is was briefly described how one user,

Liv, intuited that this exercise was not intended to allow people to

describe the relative sizes of rooms. But, three of the users did so

anyway, by using the "open connection" element to effectively merge

cells together. And fascinatingly, each of these users employed the

same convention to indicate that the cells that were now open to

each other were in fact the same space: they laid the room label over

top of the open connector to span the multiple zones. According

to the rules that were given to the users, this was not allowed; yet,

a significant number of them did it, just the same. For the query

interface itself, it would be simple enough to allow this merging of

cells to describe the relative size of rooms, but in terms of the search

operation, determining a match based on size is far more difficult;

the system would either have to rely on proportional comparisons or

standardized ranges. Another common improvisation was with the

"Hallway" tag, which was intended to be used as a room label and

therefore placed within a cell: multiple users placed it between cells,

just like a doorway connector. So, some people seemed to conceive

of Hallways as a connection, as a conduit, rather than an autonomous

space.

These improvisations highlight one of the fundamental issues

with the Diagramming task: the user's idea of what they are specifying

not matching up with the system's idea of what they are specifying.

From these evaluations, it was apparent that some users expected that

size would be meaningful, and also that specific orientations would be

meaningful. These criteria will be considered in the detailed system

overview of the final chapter.

The issue of unmet expectations is made further problematic

by the fact that people also tended to make mistakes during this

exercise. In making connections between rooms, a few users either

overlooked some rooms or made a strange chain of rooms. Zahra, for

example, connected rooms together into isolated pairs without tying

the overall plan together. And Brittany had a bedroom that could

only be entered through a bathroom. Because the underlying search

process allows for design criticism to be added to the construction

process, through detailed relevancy reporting, initial correctness

might not be critical. These user exercises only looked at the first

Figure 5.7 Improvised Bridging
Technique for Making Larger Rooms
Here, the user wants a larger Living room, so
they've placed the tag to "connect" the cells.

3 Users employed this technique.

step of the potentially iterative process of searching; only the initial

query building. Whether or not a fragmented or peculiar diagram

would be able to output an effective query remains to be seen, but it

is important to note that with the diagrams, the process was not only

more constructive than the other exercises, but also led to a higher

incidence of errors. "

1. Solicitation was done via the MIT Housen volunteers mailing list, the

Harvard Technology in Education mailing list, and a Web posting for

volunteers on craigslist (http://boston.craigslist.com)

2. See Appendix 1 for the complete questionnaire including the exercise

rating

3. Some of the rooms presented in the Component library were missing

renderings, simply because there wasn't time to get them all generated

prior to the study. This user was referring to those rooms with no

renderings, which she called photos.

4. From descriptions they'd given, 9 of the 12 users wanted a sense of

"openness" in their plans. The popular living room was option #9, with

4 chairs and one sofa around a large rectangular table alongside an open

study area separated by a shelving/wall unit.

5. From observations, the selection of a single room took about a minute.

The kitchen tended to take the longest; this may have been because most

people started there so it was the first one they'd looked at.

6. The "Design Your Home" application hosted by the Toll Brothers is

a good example of text-based search. The query options given in this

example are State (region), Number of Rooms, Square Footage, Number

of Bathrooms, and Garage, followed by a Style selection if any options

come back.

7. The ability for people to start working on the diagram from scratch was

discovered when the fifth user came in. This came as a bit of a surprise

because I'd anticipated people would have more trouble with the diagram.

For the user in question, Kevin, his current plan was bad enough that

he simply didn't want to start with it, so he did his own thing. Our

discussion afterwards uncovered that he felt like start with his current

situation would constrain him. Subsequent users were given the option to

start from scratch.

8. For me, the separation between discovery and learning is not a clear one;

I would argue that all discovery or remembrance is learning. In theory,

ideas are intransigent, perishing things... thinking of them in some new

context means that new information about the meaning of the idea itself,

however insignificant, has been recorded.

9. I first noticed this was happening with Megan, she was the first user that

didn't have the option selection first and she was clearly trying to find

the option that matched her Component Assembly design. Because the

text descriptions are so general and difficult to visualize, it seems natural

that the process would be a porous one, where people are conceptualizing

based upon immediate experiences and visual information.

10. Ihe session with Marisa uncovered an issue with the semantic attribute

tags that I was expecting to see more of, simply that the attributes

provided (see Figure 4.2) were not numerous enough. She wanted more

options. None of the other users had given this indication, so it seems

likely that even in the number of attribute tags needed to be expanded,

even doubled or tripled, we'd still be dealing with a manageable set.

11. In the case of unspecified connections, it seems likely that the result

would simply be a weaker search, because the query interface would not

be able to report relevancy limitations from broken connections, it has no

mechanism for inferring these details.

Figure 6.1 Search System Structure
Showing multiple interfaces and multiple
searchable representations

Query Interfaces
Packing Metaphor

Plan Que *
Diagram ' RDFformat

Search
Activity Sequencer Search

Results *
RDFformat

Link to Resource
Go to design environment

if resource is Component Based

Component Resources
Components, Assemblies,

and searchable plan

configurations (MySQL)

Index'6 -- Df ------Directory ofRDFformat Remote
Resources

Web Sites

Images

Standard CAD

Other flat formats

* RDFfor all transported data is in the same format

6 Search System Prototype

61 Overview

This chapter summarizes a proposal for a consumer-based design

search system. ' For the underlying component-based system, only

the data structure and not the interface was developed. While this

work is centered upon the search, some details are here provided

for a more complete and multifunctional system. This system is a

search tool that allows users to design queries, which are then used

to search for home solutions. When the search results come back to

the user, they may contain either component-based representations or

any number of flat representations that have been adequately tagged

with indexes. In this system, the process of searching allows for the

initial discovery and specification of preferences through conceptual

designs, and for the selection of a buildable design solution through

the matching algorithms. But further, as we will see in cases where

the search results are of a component-based structure, the system

allows for the more detailed adjustment of the design solution within

the limits of that component representation. So in the context of a

component-based solution, the process is divided into two distinct

stages where the search operation allows the user to arrive at a

preferable pre-designed configuration as a starting point, and then

to further tweak the design according to the rules of the component

Query Interface
consu
Users
theirg

consumers
Uers mnayfuerther refine t
f the results are componen

Lko -0-

Link to Resourci

manufacturers
Load component and assembly

s data direedy or with integrator Component Resources

mers
nter queries refine

reeences ihru search results architects
Create searchable pin
configurations using a

vpeial
inter/ice

heul Search ------- ---------- Directory of
Remote

--- ---- 'Resources
integrators
Service partner that indexes existing or
flat representations, or loads component

data f]r assemblies that their partners

builders and developers can build
Provide fat remote resources or component
based resources to gain access to participative market

Figure 6.2 User Roles within the System
The key players and how they interface

with the system detailed in Figure 6.1

system itself. In the case of other, non-configurable representations,

the designing ends when the search itself ends.

The front-end to the system is the collection of conceptual

search interfaces based upon those detailed in Chapter 4 and further

refined based upon the results of user evaluations. (Figure 6.1) The

Checklist interface was not included (see Chapter 5 for details).

The interfaces are web-based and can search various types of web-

accessible resources; the interfaces can function either individually

or collectively to allow for more refined searches. The back-end of

the system, to which the query interfaces submit their requests, is

a relational database that either points to or stores design solutions

from various content providers, depending on the type of content.

These design solutions are linked directly to the results listing of the

query interface. As far as the search is concerned, the resources could

be anything from flat, static images like Jpegs to complex Component

systems that are attached to pre-fabricated building assemblies. The

differences between the various searchable representations will be

detailed in the Results Listing section of this chapter.

62 Users

There are 3 basic classes of users within the system: consumers,

content providers, and integrators. (Figure 6.2) The consumers

are simply the users that come to the site to search for home

preferences and solutions. They can be expert, non-expert, or just

curious - no assumptions are made about their reasons for arriving

at the site, but it is assumed that they will engage in a search. The

consumers create, through interaction with the query interfaces,

search requests for the system. To gain access to searchable content,

the system utilizes industry partners as content providers that either

offer indexed, pre-designed solutions or contribute to a centralized

library of components and assemblies that support the provision

of component-based solutions. The manufacturers of appliances,

furniture, and architectural elements could provide the library with

all of the components that the BIM-likp solutions are made of: for

example, each of the things that go in the bathroom. Any number of

manufacturers would be able to provide components for the library,

in addition to assemblies of components. In fact, a manufacturer

could provide a complete room assembly along with all of the

necessary parts and this would be immediately searchable when added

to a floor plan.

For component solutions, the pre-designed floor plans stored

within the solution library are intended to function as searchable

starting point home configurations that the consumer can further

refine. The starting point designs themselves would also be provided

by developers and home builders, in addition to architects. The

designs would simply be a connected group of assemblies and

components; so companies can, for example, share assemblies, which

are then incorporated into hybrid design solutions that use objects

provided by numerous different manufacturers. In this scheme, one

can imagine that the developers might provide a base set of highly

configurable plans that the consumer then searches through, where

architects might create more stylized prototypical spaces that offer

solutions of different types.

For all types of representations, the content providers would

either use data management interfaces or work with professional

integrators to get their designs loaded into the system. In this

context, integrators are IT professionals that are familiar with the

system and can help companies put their information online, and

can further help these companies transition into newer technologies

or production processes. The technical and business processes for

loading data into the system are not addressed by this prototype, but

the complexity of these processes would, of course, vary depending on

the amount of data the provider wants to put into the system and the

format in which that data is stored. 2

Each of the various players may potentially have other roles in

the system, or take on multiple roles. For example architects might

actually collaborate with consumers to generate search requests in an

interactive, multi-user environment. And consumers themselves may

become the providers of search artifacts that help guide the design of

new, searchable configurations, simply by saving their queries. The

following chapter offers speculation about the various roles different

people could play, and the potential impact of these roles within the

design system.

63 The Query Interfaces

Collectively, the query interfaces will be straightforward and

lightweight to implement. The guidelines developed for this study

assume that the interfaces would be developed in Perl, but any web-

enabled scripting or programming technology would suffice. I Perl

is an all-purpose scripting language that performs well and also

supports OOP paradigms, in addition to being a widespread web

development technology. (Welsh) The Perl scripts attach to a MySQL

database, which in turn provides data for the various types of tags

that are available to each of the queries. This database also houses

information for accessing the resources from the various content

providers.

Each of the query interfaces will generate the same kind of

output; this means that query output can be shared between the

interfaces. This is important because it enables the system to support

sessions where the consumer utilizes more than one of the query

interfaces to construct the query output. The user evaluations

illuminated the fact that people found the interfaces to be useful for

Figure 6.3 (Right) Links Between Interfaces
Users can make multiple pathways through
the various interfaces to specify their query

Figure 6.4 (Below) Standard Query Format
The system uses this XML-based RDF
structure to pass query information between
interfaces and to the search algorithm:

<?xml version="1.0"?>
<RDF rdf=-http://www.w3.org/2/22-rdf-syntax-ns#"

dc="http://pur.org/dc/elements/1 .1/">
<Config ConfiglD="2" Score=10">
</Config>
<Config ConfiglD=7" Score="28">
</Config>
<Config ConfiglD="8" Score="30">
</Config>
<Description room="Bedroom" id="b01">

<activity>
Waking Up

</activity>
<multi>

Kitchen
</multi>
<attribute>

Small But Comfortable
</attribute>
<attribute>

Private
</attribute>
<item>

Bed
</item>

</Description>
<Description room="Kitchen" id=k01>

<activity>
Coffee

</activity>
<activity>

Eating
</activity>
<multi>

Bedroom
</multi>
<doorway>

Bathroom
</doorway>
<attribute>

Open Layout
</attribute>
<attribute>

Lots of Counterspace
</attribute>
<item>

Oven
</item>
<item>

Coffee Machine
</item>
<item>

Pots and Pans
</item>
<item>

Kitchen Pantry
</item>
<item>

Shelves
</item>

</Description>
</RDF>

100

Sequencer

Plan Diagram

Packing Metaphor

Queries O I
different types of things, and additionally that they tended to think

of the output from the various exercises collectively, as a whole.

For example, one user commented that it would be "good to go

through the [packing metaphor] for each room in the [diagram]",

suggesting one way that the exercises might be related. Based upon

the evaluations, Figure 6.3 shows the links between exercises are

proposed. '

The output itself, the search query, is structured as a Resource

Description Framework (RDF) XML document. (Figure 6.4) RDF is

"a standard for Web metadata developed by the W3C... suitable for

describing any Web resources, and as such provides interoperability

among applications that exchange machine-understandable

information on the Web." (Fensel, 9) Essentially, RDF describes the

semantic relation between concepts by means of a simple resource-

predicate-object syntactic structure, usually called an "arc". (Figure

6.5) An example arc in the context of our search tools might be:

"Kitchen-Doorway-Living", which describes a doorway connection

(predicate) between the resource (the Kitchen) and the object (the

Living room). However, the resource described in an RDF arc can

be any sort of concept. In most applications, the resource would

be a Web location or URI, because RDF is generally intended to

support more intuitive Web processing for the W3C's current (as of

2007) Semantic Web initiative. (W3C) An example of an RDF arc

for a Web location would be something like "http://www.google.

com-function-search tool" which describes that the Google resource

functions as a Search Engine. The general purpose of RDF is to

make Web resources more intuitively searchable for humans; and in

fact, several RDF search tools are already being developed that can

query RDF directly. I This means that the queries, stored as RDF

documents, become searchable artifacts themselves. As we will see,

there is potentially significant utility to preserving the queries, to get a

sense of what the system is being used by consumers to create.

RDF is generally described within an XML document, simply

due to the widespread standardization of the XML document

structure; however, RDF is not inherently an XML standard. This

system utilizes XML to structure RDF queries as they are transmitted

between querying interfaces and the search tools, but within the

various interfaces and tools the RDF data is structured relationally in

the MySQL database.

Our RDF data structure for query output describes a connected,

labeled semantic graph where nodes in the graph are room names and

rooms are connected together either by doorways, large openings,

or indirectly through multiple spaces. (Figure 6.6) Within the

room node, any number of attributes and items can be included,

in addition to what sorts of activities are expected to happen in the

room. This fundamental RDF structure is utilized by each of the

conceptual interfaces: the Activity Sequencer, the Packing Metaphor,

and the Diagramming tasks.

Due to the inherent scalability problems of the Checklist

Specification exercise and because of its relatively poor performance in

terms of ease of use and entertainment value, it is not recommended

that the Checklists be implemented into the system prototype. In

addition, based upon findings from the user studies, a few revisions

were made to the query interfaces.

63.1 Revisions to the Activity Sequencer Interface

The activity sequencer itself does not require significant revisions:

it was clear, approachable, and did not cause any users to make

mistakes. However, more attribute tags should be made available,

though this study didn't come to any conclusions about what those

additional tags ought to be. For most users, as summarized in

Predicate
color" -'~~~~~~~~~A .0

-- ' Object
"red"

O Resource
"apple"

Figure 6.5 RDF Arc Structure
RDF organizes information into arcs, which

are also called triples

identifer ,-- ~ o
"K01"

,name.---

"Kitchen"

contains saiu
Roo --------- "spacious"

om0- --

houses'*,
activity "coffe

%maker
% %%oPen 0"

*to eating

%%door
* to '

"Dining, DO]"

-0
"Bathroom, BthO1"

Figure 6.6 Arcs Used by This System
An example of the various attributes that

define a room, in RDF

101

Chapter 5, the attributes that have been provided were adequate. In

addition to the attributes, the transitions between activities area needs

to be more prominent to help signal to users that they can revise

those transitions to better describe their needs.

63.2 Revisions to the Role-Playing Metaphor Interface

To better support the Packing exercise, the RDF specification

for the queries was expanded to differentiate the items listed in the

initial things to bepacked portion of the exercise from any items

that may have been added to the subsequent desired room attributes

portion. It wasn't expected that users would want to put items in

the attribute list, but it makes sense for them to do so; thus being

able to differentiate the two classes of items is important. Also, the

separation of the things to bepacked items allows this interface to

better interoperate with the others, in terms of the underlying RDF.

63.3 Revisions made to the Floor Plan Diagram Interface

The Diagram exercise illuminated the need to add unique room

identifiers to the underlying RDF structure, to allow the system to

differentiate between multiple instances of the same room type. It's

a fairly obvious requirement, since many users created diagrams that

had multiple bedrooms and / or bathrooms.

The Web interface is more restrictive than the prototype and

therefore many of the improvisations that users made will not be

possible; for example, attempting to place a hallway room as a

connection between adjacent grid cells would not be permitted.

However, enough users attempted to specify larger room sizes by

opening up adjacent spaces that a "size" attribute was added to allow

for more refined matching where possible. To support this, a size

value was added to the RDF structure and the diagramming interface

will be designed to allow spaces with opening between them to be

considered as one room unless they are separately tagged.

63.4 Exclusion of the Checklist Interface

102

Because it was the least popular and least effective exercise, in

addition to the scalability issues highlighted in section 4.2.1, the Text-

Based Checklist interface is not recommended for inclusion in the

prototype.

64 Results Listing

While this study has given particular attention to Component-

based representations, the system can search for different types of

resources. This means that the query results might have different

types of file formats that come up in the results list. As was previously

described, there are two basic categories of representations: those that

must be indexed and those that are inherently searchable.

Though there is great flexibility in what types of things could be

indexed for the search, we assume that the indexed representations

would be one of the following types: Images (Jpg, other raster

formats), Vector drawings (AutoCAD's DWG format, SVGs 6), or a

Web resource that uses multiple formats. 7 The resources themselves

could show different types of content: they could be floor plans,

renderings, or photos, or even diagrammatic representations, the

system doesn't care. What the system does care about is the auxiliary

index that is related to each of the images.

To structure this auxiliary index, the prototype is actually

utilizing the same RDF format that is being used for the query.

This has a few benefits. First, the search algorithm becomes a bit

more straightforward: to search out indexed representations the

system is comparing identically structured RDF documents, and

simply looking for the best match. Also, the logic for determining

the best match would be derived from the search logic described

for Component systems in the next section. It also means that the

querying interfaces might potentially be retooled into interfaces that

allow the content providers to index their design solutions manually.'

Still, the processes to support the generation of indexes manually

or computationally are part of the content loading process and

not described herein; rather, this proposal suggests that searchable

representations be used to circumvent the problem of auxiliary

indexing altogether.
103

Figure 6.7 Mapping Queries to Component
Based Representations
The search algorithm in the proposed system
utilizes the relations shown here to map
queries into more literal descriptions

Co

M a'
0

Room I Component
type: Container

with matching type / name

Item Component
type: Object

with matching type / name

Attribute Assembly
room attributes matched

algorithmically to specific assemblies

nnection Connection
in the component system connections

tch Type are identified by type and
algorithm matched directly

*direct

Object-oriented Component-based representations are directly

searchable. In this case the searching process, as described in the

next section, utilizes a mapping program to parse an incoming RDF

query and search for the best matching configurations housed by the

Component system. Figure 6.7 shows how the system maps RDF to

Component-Based data.

6.4.1 Component System Structure

For the search procedure that was prototyped, the Component

system was structured into a relational database format in MySQL,

which defined the components and their assemblages. (Appendix

2, A2. 1) Twenty Five (25) basic design solutions were loaded into

the system; these solutions were designed for the same multi-family

housing context that the user studies were based upon. ' Components

have dimensions, type designations, and other manufacturer-provided

metadata. The assemblies contain a hierarchical listing of components

with specific locations that is related through labeled connection

types. Each type of component has at least one interface upon which

connections can be made; these interfaces describe type, range, and fit

requirements as described in Chapter 3. (Figure 3.6)

One complicating factor within the prototype is how to transition

the consumer from the searching interface into the Component

system interface. Our prototype, being developed within a fast and
104

accessible relational database, is meant to support the development

of a web-based component design system which roughly follows

the structure of the exercise detailed in Chapter 4, and which the

user could simply click into. If the Component representation was

something like Autodesk's Revit BIM, the BIM document might need

to be downloaded or delivered through some other type of interface

- this is a more complex delivery problem which we're not addressing.

65 The Search Algorithm for Component Systems

The prototypical search tool described in this section was

developed in C#. 10 The input into the tool is an RDF query as

described previously. As shown in Figure 6.8, the output is the same

RDF query with search results and relevance information embedded

directly within.

To find results, the search tool interfaces with a relational,

MySQL-based component system. " In truth, the MySQL

implementation represents an incomplete component system,

because while the core data structure is fully implemented, the

system doesn't have a completely functional prototype of the actual

modeling or drawing environment that would be built on top of it.

So the prototype is simplified and, therefore, it may not be possible

to generalize from the results achieved to other types of component

systems, like BIM, that store their data structure in proprietary,

binary documents. However, the object-oriented specification of

BIM and other component systems correlates with the database

structure that was developed, so rather than spend time trying to

figuring out the details of interfacing with any one specific solution,

we've considered our simplified and open-source database to be

representative of the general structure of component-based systems,

with the goal being that our findings would be thus able to be

generalized.

Figure 6.8 Search System Output
The search posts relevancy information

directly within the query itself

Input
RDF Query

Search System

I - Ouput
RDF Query with

Results Embedded

105

65.1 Searching and Sorting

Figure 6.9 Binary Search Tree

Figure 6.10 Binary Search Algorithm
Here, the algorithm is looking
for the letter "P"

106

Both the Component system and the RDF queries are complex,

structured data-sets. As such, the search algorithm is a high-level

search, a relational search that utilizes identifiers to group concepts

and find properties. 12 This is the same paradigm upon which SQL

search algorithms and thus SQL languages are built. In this case,

and because a SQL technology was used to organize the searchable

data, the search actually utilizes SQL queries to access the data; thus

the search is both SQL-like, and SQL-based. By incorporating the

ability to search through a discrete list of content providers, the

search process described herein functions as a Federated search,

where multiple, disparate data sources are searched and then merged

together.

Relational, structured databases are built out of a collection

of tables; these tables are like a flat listing and are not inherently

hierarchical like the RDF queries and component system's

specification require. Within SQL, the hierarchy is established

through the specific types of relationships drawn between the tables,

where for example one table called "component" might be a child to

another table called "assembly". Additionally, a simple hierarchical

structure can be created within a single SQL table through the use

of self-referencing structures, a well-known methodology which

was utilized in the SQL design to allow for the specification of an

increasingly granular type hierarchy. ' (Appendix 2, A2.1) Taken

together, these references allow the system to describe the hierarchical

structure of the components with little difficulty.

Within the search application itself, the RDF data is organized

into internal class structures that include basic data sets for the

various child elements and properties; for example, the objects a room

contains. In both the MySQL specification and the internal data

classes, the search algorithm takes advantage of current technologies

that utilize well-known methods for structuring and storing data

for easy access. In both cases, data that is stored on the hard disk is

organized into either Binary Search Trees (BSTs, Figure 6.9) or sorted

lists upon which extremely fast binary search operations (Figure 6.10)

may be run. 14

To enable the search algorithm to find partial matches to the

user's query, the query is broken up into individually searchable parts.

Partial matches are essential for making the search work because

they enable results to come back to the user when searches are not

completely matched. Allowing the user to learning what criteria

are not available from reviewing partial matches is one of the most

fundamentally educational aspects of the search cycle.

Following the structure of the RDF query, the searching is broken

up into the following stages: complete room graph, room pairs, single

rooms, and individually, each of the included activities, items, and

attributes. Each stage of the search, if successful, contributes points

to an overall score for the solution being queried. In application,

the complete room graph is searched for at the same time that the

room pairs are: if all pairs are found the room graph is considered

to be a complete and the solution is given an additional score

multiplier. Individual rooms are searched one-by-one and have a

relatively small impact on the final score. Within each of the rooms,

all of the properties (items, attributes, and activities) are searched for

individually; each type of property is given a different weight. The

item search is quite straightforward: the RDF item label is compared

to the component name and its complete, self-referencing type

designation. 15

The attributes are a little more complex: for each specific

attribute, the overall room assembly is analyzed according to the

semantic definition of that attribute. 16 Processing the attributes

1. Overall Room Layout 1
Match design's rooms & connections.

Complete match gets bonus.

2. Individual Rooms 0
Check design for rooms in the query

A match has a specific score
Room scores are aggregated

*3. Check rooms for items

0 4. Check room for attributes
Specific item layouts are analyzed

to match attribute specifications Figure 6.11 Search Algorithm Stages
The algorithms match the semantic The query is searched in sections, to

Return Results definitions given to the user allow for partial matches

107

Room Layout, Complete 12
Room-to-Room Connection 6

Room 1

Room Attribute 9
Room Item 6

Figure 6.12 Weights for Search Criteria
These weights are adjustable to allow for
further refinement. The weights shown
here are those used for the system
analysis

108

is problematic in a few ways. In the prototype, the attributes are

each programmed individually, which presents a scalability problem

because, as semantic definitions are added to the system, the search

code would need to be updated to support them. Also some

attributes are much harder to characterize quantitatively than others

are. The tag "Efficient" for example could mean many different

things - it is hard to think of a brief and general description. As a

rule, the definitions that the system provides are rooted in the facts

of physical objects and relationships. So, to the prototype, efficient

means "Surface/sitting objects connected or close to each other."

But future implementations may be better served by making the

attribution process more algorithmic, or perhaps room-specific, where

room components could be compared to ideal-case layouts as a more

empirical measure of true efficiency. 17 Still, the total number of

semantic definitions required may not be that large, and as the user

studies showed, only a few users felt that the base definitions were

inadequate. This is something that another round of evaluations,

done with web-based prototypes could help tease out.

The different search stages are given different weights and thus

influence the score differently. In the current system, the weights are

adjustable. Based upon evaluations, the weights shown in Figure 6.12

were used for the search algorithm. Using weights as shown leads to

a phenomenon where weaker queries, or queries with less criteria and

therefore less specificity, return on average lower relevancy scores than

stronger queries. This scoring methodology is a bit different from

common Web search tools that report relevancy as a percentage of the

search term, but it makes sense in terms of the design search, because

it offers a reflection of the specificity of the query. If the user has only

specified a few criteria, the search is not going to arrive at meaningful

results, so a lower potential scale for weaker searches allows the

system to recognize weaker searches by looking at the score alone.

The system might then engage the user in tutorials, or point him to

a different conceptual interface. Additionally, one of the nice things

about each of the conceptual interfaces is that they present exercises

that have a clear beginning and ending. Each of the volunteers had

a clear understanding of when the exercise was "done", and the vast

majority exhibited a desire to complete the exercises. " In terms of

the queries, completed exercises mean stronger searches.

65.2 Reporting Results

Matching resources are reported directly into the RDF query

structure, in two modes. The first and default mode is the summary

results listing which simply provides a ranked and ordered listing

of design solutions. This is how the search tool replies when a new

query is posted. But the tool allows for more detailed relevancy

reporting: if the user selected any one of the design solutions, the

search tool sends another RDF reply that omits the summary listing

but includes a detailed breakdown of the scoring for the query. These

more detailed replies allow relevancy and scoring information to be

shown directly within the conceptual querying interfaces, because

the search algorithm states exactly what parts matched and how

significant each of the matches were. This is inherent to the search

cycle and an important facilitator for design guidance because the

user can, for example, see quickly what parts of their query are not

getting any matches and therefore might need revisiting. In fact,

posting the relevancy visually, into the query composition, functions

the way that an adaptable and well-specified embedded critic ought

to, without requiring any additional, complex programming. 19

In addition to the problems associated with making sense of

<?xml version=1.0"?>
<RDF rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" dc="http://purl.org/dc/elements/1 .1/>

<Config ConfiglD='4" Score="43">
</Config>

<Description room="Bedroom" score="2">
<activity>Check Weather </activity>
<activity> Dressing </activity>
<multi> Kitchen </mufti>
<doorway>Bathroom </doorway>
<attribute score =5">Private </attribute>
<attribute score =,"5"> Spacious </attribute>
<attribute score="O" >Abundant Natural Light</attribute>
<item score="6">Shelves</item>
<item score="6">Closet</item>

</Description>
<Description room ="Kitchen" score="4">

<multi> Bedroom </multi>
<attribute>Lots of Counterspace</attribute>
<attribute score= "5"> Spacious </attribute>

<attribute score= "O">Abundant Natural Light</attribute>
<item score="4">lsland</item>

</Description>
</RDF>

Figure 6.13 Revelvancy Scoring
This is an example of the system's output

An RDF-based query has specific relevancy
scores for a specific solution embedded.

Both scores and solution identifier are
highlighted

109

attribute tags, there are potential scalability issues with the posting
of summarized results listings into the RDF structure: if the system
were to get large with hundreds or thousands of potential matches
being reported, the text-heavy RDF format would not really be an
efficient way to pass the information around. In this case, the search
algorithm, as prototyped, could simply stream a pre-formatted results
list directly to the query interfaces.

67 Visual Explanation of the Search

The following pages provide a visual series that shows how the search

works. The example is a simple query, built by the consumer using

only the diagramming interface.

110

How The Search Works

user builds query

LI

---- - - - - - - -

minim

user submits query

identifier identfier -
"01" "ETi

identifier name----- nae --

""Kitche""

name -

"Living' is Rntains
Room Room

Room "spacious" mi

Room 0 "Entry,EOJ entrance

Ai toopen to "door ,door

t"Living, LO"

'Pntry, EOJ" 'i
9

en, KOt"

Search System Reads RDF Format

111

identifier .-- o

names --------..

"Living

"Entry E01"

open to

identifier ,--' 'o
' "K01"

name --
"- O,

- "Ktchn

is
Room - ~~

"sp

door
k to

identifier -'' o

name ------

"Entry"

contains
Room

aciolis"

open
'to

door
.'to ----

"Livi

search connects to
crnmnnnant lihrinrv

Search System Connects to Component Database

identifier --- - -o identifier --- '~~~
S "K01" ,* "E"

identifier --- o
S "01"

name

"Living"

Room
"Entry, EOJ"

open to

is

"spacious

Xdoor
.\to

-Rntry E01"

Search Process Checks Configurations for Matching Rooms

112

Room"0
ma in

entrance"

0rig, LOI

"Ki tcen, K01

K101"

Eintry E01

identifer -- ' o identifier -' O
I'Ks01" ," "FO'

identifer -'
," "L1"

nam e .. ----

,- Living"

Room"
"Entry, E01"

op en to

names- -

"Kitchen"

is

'pacious"

E01"

Search Process Checks Configurations for Room Connections

identifier O
-S "L01"

name -- -

"Living"

"Entry, E01"

open to

identifier. - ''~~~O

'name ----- ~O I

"Kitchen"

is
Roo -

spacioc

door
a to

identifier -- o
," "E01"

name ---

"Entry

contains
Roomo,

.0.
us" main

entrance

open
% to

%door
k to ~~-- O

1 Living. L01"

£try E01" "Kitaen, K01"

Search Process Checks Configurations for Objects in Matching Rooms

113

Roo

identifier " '
"LOI"

name. ----

"Living"

Room
0 "Entry E0I"

open to

/

identifier -- ''' ''
,O "KOJ"

/ names -----.

"Kitchen"

is

Room"

"spacious"

door
4kto

stEOI"

identifier -''-'o
"EO I"

;'name ---

"Entry

contains
Room ~~~

'0.
main

entrance

open
'to

"door0
-to ''---O

"Living, LOI"

'tien, KOJ"

Search Process Checks Configurations for Attributes in Matching Rooms

For Matching Configurations the System Scores and Returns RDF sub-graph

114

FmT

-9

| i |
Search Again Add Activities Pack Your Stuff

Basic Two Bedroom Unit
by MIT house_n
All rooms found. Kitchen connects
to entry through doorway.

K
Query Interface Shows the Specific Relevancy Visually

Other Results
2l~ ZR 2 oy COImJy HSIm by lall bather.

Tea Bedmmm wth SudyArm. HAmeabmkerecm

1hbr bh*em wl aw Gag mip ad l or Swag -WeHomme.N

Two ebeaM Medem -Wkb Labes by Dhirds Hene

| Matching Configurations are sorted
by score into the results listing

Best Matching Configuration
is shown in more detail

Search Again Add Activities Pack Your Stuff

Basic LOFT Unit
by MIT house_n
All rooms found. Living Space
Open to Entry.

Other Results
2 8 12 Stmy Couty Howe by TlB bth.

1wo admbow wStu Wagt Game a Bog e

7Sh1WeeM, W1a Glh LWb6d S Iald. Mom 1eaend

TWO aea Moemw Wil V& mdo by Dvd. NOst.

User Can Click on Other Results to See How They Match Differently
115

% i

66 Evaluating the Effectiveness of the Search

Two sets of tests were run to determine how well the conceptual

queries map to the literal solutions and what level of granularity

the algorithm provides. The findings detailed here are encouraging

but it's very important to note that both the query and search space

were highly constrained in these tests. Searchable solutions were

limited in scope to one specific design context. This helped to

make more straightforward the fundamental comparisons in this

research, but it also means that each of the searchable resources has

many attributes in common. The search space was thus constrained.

A more complete and rigorous analysis would be requisite for

getting a true sense of how well this search actually performs in a

larger implementation. Constrained tests like those detailed here

are useful for determining basic functional effectiveness but they

do not adequately represent the variance and therefore the true

differentiability of a search space on the order of that in the proposed

system.

The first set of tests was designed to give a sense of how well the

component system mapped to the conceptual queries in the context

of a specific room. These tests used three different source queries

which were representative of the output from each of the three query

interfaces. The second series of tests examined the effectiveness of

the search with RDF-encoded queries that were generated from a

selection of the actual volunteer's exercises. Three different examples

were encoded for each of the conceptual interfaces for a total of nine.

These searches were then run against a slightly broader search space to

get a sense of the granularity of the search by comparing the best and

worst matches. The motivation was to discover how well the search

criteria were able to differentiate solutions in the search space.

661 Search Analysis Series 1: Mapping

To see how well the search prototype was mapping the conceptual

to the component based representations, a constrained search

space was utilized: 10 design configurations were loaded into the

component system. These configurations were identical with the
116

exception of the kitchen, for which a range of solutions was made

available. Thus, the only variance in the search scores for the

configurations was in the specific relevancy of each kitchen. For each

conceptual interface, a standardized query was created, manually,

to test out how well the search tool mapped to components (see

Appendix 2, A2.3 for the RDF of these queries).

Table 6.14 shows the range of scores generated by each of the

conceptual exercises for the 10 different kitchen layouts. The Activity

Sequencer scores are higher because that exercise's queries specify

additional searchable information about the other rooms in the

search space. Likewise, the diagrams generated lower overall scores

when queried independently, because only the room connections

are specified within them, not attributes or items. Overall each of

the exercises has a fairly small deviation which was expected from

running such a constrained sample: 2.95 for the Activity Sequencer,

4.08 for the Packing Metaphor, and 3.44 for the Diagram. In terms

of a search operation, these numbers represent a field where a few

items are good matches, and a few items are weaker matches, with the

rest being fairly average. But there are a few other, very interesting

things to discover in this data.

Examing the Activity Sequencer results more closely, we see a

compelling example of the way that this search system can provide

design criticism and guidance inherently through the relevance

numbers. In this query we see from the mapping details that the user

is searching for a kitchen that is spacious, has an island, and has a

ScoreRank 1 2 3 4 5 6 7 8 9 10

Activity 63 63 66 66 66 66 66 66 72 72
Sequencer table table spacious: spacious spacious: spacious spacious spacious: spacious,; spacious

island island

Packing 22 22 22 22 28 28 28 28 31 34
Metaphor spacious spacious spacious spacious spacious counter counter spacious spacious spacious

oven oven oven oven oven space space oven private island
fridge fridge fridge fridge table oven oven island oven shelves

fridg table table fridge fridge oven
fridge fridge fridge

Floor Plan 4 10 10 10 10 10 10 10 16 16 Table 6.14 Analysis Series 1: Mapping
Diagram - door to door to door to door to door to door to door to door to door to 10 Different Kitchen layouts were searched

living living living living living living living living living using manually-coded RDF queries
island island

117

table. The system returns three different relevance scores, where 63 =

table, 66 = spacious, and 72 = spacious & island. Simply by analyzing

the designs during the search process, the system has shown clearly

that you can't have a spacious kitchen if you also fill it with a table!

However, you can have an island and a kitchen that is still spacious.

Because they are the more complete match, results that offer both

spaciousness and an island come back with the highest scores. Thus,

the system has effectively utilized the expertise captured within the

design of the component assemblies themselves to determine what

tradeoffs the user needs to make. This type of functionality would

have been far more difficult if not impossible to try and make a

machine smart enough to reason through. By using the search space

as a criticism source, the system lets computers do what they are good

at doing (search comparisons), and lets the designers who create the

search space provide the expert criticism simply by designing livable,

functional spaces.

The Packing Metaphor example, on the other hand, highlights

some challenges. Here we see, in the solutions that scored 28, four

different types of matches that came back with the same relevancy

ranking. This seems to indicate that the search didn't make enough

separation between solutions that were not equivalent, and may not

have been of equal importance to the user. One way to address this

issue would be to allow the user to specify, in the query, if something

is more important. The system could then use this importance score

to further differentiate the results.

The Diagram query functioned as expected. The lowest scoring

result didn't match the kitchen space at all, while the highest scoring

results both connected the kitchen correctly to the living space, as

was specified in the diagram, and also matched the island within the

room.

66.2 Search Analysis Series 2: Granularity

The second series of tests (results in Figure 6.15, Page 120)

were intended to get a sense of the overall granularity of the search

algorithm, by using the queries that users designed during the

interface evaluations. Apart from being a nice way to tie the user
118

and search analyses together, it allows us to test out the search with

the types of queries that actual users make. For each exercise, three

user compositions were selected and encoded into RDF queries; these

queries were then used to perform searches (Appendix 2, A2.4) for

queries). The search space for this series of tests was different from

the initial test: here 10 different design solutions were loaded that

have the same basic layout but varied room selections for all types of

rooms. For each query, the best (highest) and worst (lowest) scoring

results were listed. Figure 6.15 summarizes the results.

Again the Activity Sequencer performs well, because it encourages

the detailed specification of multiple rooms where the Packing

Metaphor focuses on one rooms, and the Diagrams the users made

only dealt with room connections. But a quick examination of the

data further suggests that the effectiveness of each of the interfaces

varies with the user. Still, with the exception of the Packing

Metaphor, all of the queries generated a reasonable best match and a

proportionately typical worst match. In other words, even in cases

where the best matches were weak matches, they were still highly

differentiated from the worst matches, with few exceptions.

The notable exception was Jeffrey's Packing Metaphor query,

which scored even 1 Os across the board. This was because his

only searchable criteria were: "abundant natural light", "spacious",

and "closed layout". The solutions for this evaluation didn't have

window components included, so as it turns out, natural light wasn't

searchable (See Appendix 2 for system details). And while all of the

bedrooms were evaluated to be spacious; none were designed with a

closed layout. The other two Packing Metaphor queries generated a

highly bipolar result set where the best scores were 16 and 19 and the

worst score was 1. Taken together, these three queries suggest that the

Packing Metaphor is a bit weak on its own, and as was observed by a

few of the users themselves, would function better when coupled with

the other interfaces.

The Floor Plan Diagram queries generated a moderate variance

and functioned as expected, but did suffer a bit with the highly

constrained search space. This is because the layout of the user's

diagrams was not constrained, but within the evaluated search space,

the layout of rooms did not vary; only the connections between the
119

Key: Scale

Score (Solution#)
score breakdown, line by line

Activity
Sequencer

Alison
100 -

.5 2 __(8)__ ----- ------
I bedroom

9 small but comfortable
6 closets
1 kitchen
1 bathroom

9private
6 bathtub
1 living

18 sofa

100~

79 (6) I
I bedroom

9 small but comfortable
18 closets

1 kitchen
9 open layout
6 oven

1 bathroom
9private
6 bathtub

1 living
18 sofa

100 --

3 -(7)_
1 bedroom
1 kitchen
1 bathroom

Thea
100~ ~

18(4)
1 bedroom
7 kitchen

9 open layout
1 bathroom

Megan
100 - 100~

21(3-- 72(1)
1 bedroom 1 bedroom

9 spacious 9 spacious
1 kitchen 9private
1 bathroom 18 shelves

9private 24 closets
1 kitchen
1 bathroom

9private

Marisa25-j 25-- 25~

7 (10) 4 _ ----------------- 21 (10o)_I -----

1 bedroom 1 bedroom I bedroom.01
1 bedroom 1 living 1 bedroom.02
1 entry 1 kitchen 1 bathroom.01
1 dining 1 bathroom 1 bathroom.02
1 living 1 study
1 kitchen 1 dining
1 bathroom I ining

1 living
1 entry

7 kitchen

Zahra
25-

16 (81i
1 bathroom

9private
6shower

25 ~

I kitchen

John
25-

19.(9) 1
1 kitchen

18 public

25--

107) i
1 bedroom

9 spacious

Jeffrey
25~

10_(4)
I bedroom

9 spacious

Highest Lowest Highest

Packing
Metaphor

Floor Plan
Diagram

Zahra
25-~

-----------4 _--(6) - _.. i ----
1 bedroom
1 kitchen
1 bathroom
1 living

25~

10(4)i
1 bedroom
1 kitchen
1 bathroom
1 living
7 dining

25 --

4--(4)_ --t
1 bedroom
1 kitchen
1 bathroom
1 living

25

1-- --- --- (9)-- _-

I bathroom

Lowest HighestSolution's Score: Lowest

rooms varied. The results show this clearly, where the best scores Figure 6.15 Analysis Series(Facing Page)

are those where the system was able to match a part of the diagram's User queries were encoded to search
against a constrained solution space

organization. This doesn't reflect negatively on the potential of this

highly popular interface; however, it does confirm that more detailed

testing of the search algorithm is required.

663 Search Analysis Summary

With the revisions that were made subsequent to the user

evaluations, this basic analysis of the search algorithm led to positive

results. The search algorithm demonstrated the ability to map from

the conceptual to the literal representations effectively. In addition,

the results that the search tool generated were well-differentiated.

Even more promising was the ability of the searches' relevancy

information to communicate, to the user, the tradeoffs inherent in

the search space. This is an positive result that confirms the thesis of

this work: that a search tool can support design discovery. With the

addition of tuning mechanisms to allow users to further describe the

importance of specific criteria, these initial tests were positive enough

that further, more elaborate analysis is a worthwhile venture. A

simple web-based implementation of the interfaces that additionally

supports the links between the various conceptual exercises, as

described in Figure 6.4, would be a great place to start.

Again, these evaluations were simplified tests of the system using

a highly constrained solution space that didn't have a tremendous

amount of variety. This was useful in that it allowed the analysis to

highlight and evaluate the more fundamental aspects of the search

process. But the findings detailed here beg for a deeper inquiry;

it would be fascinating to see how well the diagramming exercise

functions in a solution space that includes different building layouts

and different building contexts. From what was learned, it goes

without saying that more complete testing is necessary, but also worth

doing.

121

I For more specific technical information regarding the various components

of the search system, refer to Appendix 2.

2. The problem of helping developers, builders, and manufacturers to load

the library is significant. To actually happen, it would require the buy-in

of each of these players into a new service channel, so the problem is not

necessarily a technical one as much as a business one. Manufacturers

would have a natural incentive to gain access to the untapped market

demand for customnizable homes. In theory, developers would like to

gain access to that same market as well. In application, the process of

companies incorporating solutions into a centralized system of this type

would probably be an incremental one, where integrators help companies

to slowly add more and more resources into the system as both the system

and their own production technologies mature.

3. Perl was selected because it is flexible, robust, and also because it's the

author's preference. In truth, the conceptual interfaces would be quite

simple to program in other platforms like PHP or ASP.NET, or Flash.

4. Establishing links between the conceptual interfaces would help the user

to see how the information is related, but people could still go through the

exercises selectively, and of their own accord.

5. An example of an RDF query tool is SPARQL. (W3C 2007) It's

designed for straightforward textual searches and is not as robust as

fully a relational SQL implementation, so it isn't of utility to our search

algorithms. SPARQL design is constrained to RDF arcs where our data

is more complex, but it could possibly be useful in making comparisons

between RDF queries and indexes in our case.

6. From the W3C specification: "Scalable Vector Graphics (SVG) is

a language for describing two-dimensional graphics in XML. SVG

allows for three types of graphic objects: vector graphic shapes (e.g.,

paths consisting of straight lines and curves), images and text." (W3C

1/14/2003). It could be useful for providing web-based visualizations

of database-stored Component information. However, while SVG is

interactive and can be animated, it does not support 3D information

and therefore isn't a great candidate for component visualization. Even

so, it's becoming increasingly popular, and can be made to emulate 3D

functionality, though not easily.

7. We expect that commonly, Web based resources would be something

like a Web page that provides a design concept summary in addition to a

textual description, as well as a few floor plan images, and a sample photo.

This is similar to the home concept summary pages that many builders

currently provide online - the search tools here simply provide a better

way to find these summary pages.

8. The assertion that the query interfaces might be adapted for use as

indexing tools for content providers is speculative; none of our evaluations

tested that out. Still, it seems plausible, and just as the interfaces promote

122

better searches by providing exercises with clear goals which encourage a

certain amount of interaction, so too could they promote better indexing.

9. By utilizing the same context for the prototype implementation we can

use the volunteer's actual compositions to test out the effectiveness of the

search tools.

10. C# was chosen because it's a well-structured and high-performance

language; other languages like Java are certainly an option.

11. The choice of MySQL was made for several reasons. First, the prototypes

being developed herein are part of MIT House_n's Open Source Building

Alliance and as such, the tools are intended to be open source. So it

makes sense that the database be open source as well. MySQL is also

increasingly popular and robust choice, not to mention a free one.

12. SQL searches are high-level because they operate upon highly structured

data. But of course, the database access functions have built-in low-

level searching functionality to help make the databases more high

performance. In the example of a relational database, table records are

indexed and stored on disk in pre-sorted data structures; these pre-sorted

structures allow for logarithmically fast binary search algorithms which are

generally much more efficient than simple, linear searches.

13. Self-referencing indexes are a well-known and fundamental methodology

for allowing relational lists to represent hierarchical data. The

methodology is simple: one column in the listing, let's call it "ItemID", is

a unique identifier for the record. Another column "ParentID" stores the

ItemID of that record's parent record. Thus a hierarchy is established.

14. Binary search algorithms reduce the search time by splitting the list or

tree to be searched in half (hence binary) recursively until the solution is

found. This only works on lists that are pre-sorted and in the case of trees,

it works more consistently when the tree is balanced. (Sedgewick)

15. The Component Type specification as detailed in Appendix 2 is self-

referencing which enables hierarchies to emerge through a simple parent-

child relationship. So a Queen-Sized bed could be stored by the system as

Object>Laying Surface>Bed>Queen-Sized. In the context of the search,

this helps numerous individual components match up with more general,

type-based search terms. Also, it should enable more complex search

analysis because types can branch hierarchically as well.

16. As detailed in Chapter 4, the room attribute tags contained semantic

definitions that explained what the qualitative tag meant in quantitative

terms. For example, the tag for "Open Layout" contained the following

description: "Opening to adjacent spaces without doors." See Figure 4.2

for the tags and definitions that were provided.

17. Only a certain amount of time was given to the users for each exercise, to

keep the sessions from running too long. Still, 10 out of 12 users opted

to finish up their designs before moving on to the next task, even though

they were advised it would cause the entire session to take a little extra

123

time.

18. For an example of a design standards methodology in universal kitchen

design, see Xiaoyi Ma's Thesis (Ma).

19. I argue that the process of mapping relevancy information back into

the source query is actually an ideal scenario for managing design

criticism as part of the typical search results evaluation process that all

users are familiar with. And showing visually what specific elements of

the consumers design were well-matched and which elements were not

helps the user to determine exactly where their own specification is not

functional or is just off. Additionally, the criticism itself is embedded

within the metadata and as such can be described or represented by any

number of different interfaces, and the criticism source is the evolving,

growing, and expert designed collection of solutions that are being

provided. This allows the criticism to adapt and grow with intelligence.

124

7 Where Do We Go From Here?

7.1 Summary

This work has demonstrated that the well-known structure

of a computational search engine can be overloaded to facilitate

designing by users who are not experienced designers in the domain

of the search space. The specific context of this research was in

the development of a participative architectural design system that

enables consumers to make certain design decisions about their

home. In this context, the search engine functions as a first stage

of designing and allows for different types of needs assessment and

conceptualization through a collection of unique query interfaces.

The search was evaluated through user studies, which confirmed that

the interface's conceptual structures not only made the exercises fun

and easy to learn, but effective in framing design needs as well.

This research further investigated the potential of new object-

oriented building representations as a more intelligent and

computable format for storing design solutions. The analysis

explored the ability of these component-based representations to

describe physical realities with enough specificity that searches

could be conducted effectively and without additional and complex

indexing processes. The preliminary evaluations described in this

work show that the information in component-based representations

does map well to the proposed conceptual query structure and also

that the search space, even when highly constrained as was the case in

our analysis, yields effectively differentiated results.

Additionally, the retooled search process was demonstrated to

have the ability to provide design guidance and criticism inherently

through a rich and highly specific relevancy reporting mechanism.

This finding suggests that complicated, expert, machine reasoning

algorithms are not always necessary in this context, because the

search process allows the system to directly describe the intelligence

embedded within the searchable solutions and to use that description

to provide criticism to the user. Given that the searchable solutions

would be created by architects and other designers, this means

125

that the search system incorporates people into its algorithm, and

lets people do something they are good at doing (designing and

evaluating layouts), all while letting computers do something they are

good at doing, namely, searching through structured data.

In a sense, this research is predicated upon the notion that the

development of software to support design processes, in any context,

ought to be done thoughtfully and with a critical sensibility about

the fundamental methodologies and technologies utilized. In the

context of non-expert home consumers, the most essential aspect of

designing, particularly in the early stages, is the discovery of needs,

values and preferences to help make decisions later on. It is difficult

to understand why commercially developed tools incorporate only

flat, simplified narrative interfaces or highly complex modeling

environments to support the early stages of a design process where

other, more computationally mature technologies like the search can

be utilized for the same functionality with far better results. Rather

than rush into the development of tools with the latest and greatest

functionality or flashy representations, one should take the time

to examine how well the computational structure of the proposed

solution maps to the conceptual structure of the task. This work has

made strides to confirm the thesis that computational searching maps

well to human designing.

7.2 The Query as Artifact

An interesting extension of the work described here would be

to explore the different things you can actually do with the queries,

other than directly searching with them. Preserving the queries

as the residual artifact of a search operation creates many exciting

possibilities, and has several immediate uses. First of all, the query

could be posted as a design request into an online community of

architects or designers who wish to make their services available to

users. Consider the following example: a user specifies an elaborate

search diagram with several activity sequences also described. But the

system only returns a few results, none of which the user finds to be

favorable. Rather than leave frustrated, the user posts the query as a

design request that gets picked up by a local architect. TIhe architect
126

then works to develop a solution that meets the user's needs more

directly than those that were previously available. This actually opens

up a new service channel for architects to directly engage with home

consumers, and also helps to keep the solutions in the search space

evolving.

Being recorded into permanence, outside of the immediate

context of the search cycle, means that the query itself becomes

an informative and computable artifact. Why call it an artifact?

Because such queries, when preserved and made accessible, are a

cultural, personal, and anthropologically meaningful fragment; they

are a piece of history. And being structured in RDF, these queries

would be easy to search for, not just to search with. After some time,

collections of queries could become highly informative repositories

of design intelligence that track the evolution of space use, or for

example, the way design preferences change over time in response

to new technologies and thus different lifestyles. When used as a

design guide for professional architects or other designers, this sort of

repository has immense potential to help keep living spaces efficient,

relevant, and well-adapted.

Another potential use of the preserved queries is as an

organizational workspace for the users themselves. One could

imagine that even for users who aren't trying to buy a home in the

near future, having a profile within which their queries are stored

might provide a place for them to organize their needs and values

over a longer period of time. This resonates with the research that

was recently done by Jennifer Beaudin (MIT HouseN), which

examined the non-expert homebuyer's design goals over different time

frames and in different contexts. Saved information could help the

user make a home purchase at some later date, or outside the system

itself. This point also came up in the user studies, because Thea, who

is renovating a house in Connecticut, noted:

"we drive down and look at [the house] and take all these

measurements and draw everything out then we go home and we

think about it, and look through magazines, and then we have

all these great ideas, and then we go back and look at the actual

space again and we think 'well this isn't going to work'. The time

127

difference in thinking about all of this stuff ... I don't know, we

change our minds all the time."

The nice thing about using these queries as a conceptualization space

over a longer time frame is that even if the purchase is made at some

later date or offline, the users still benefited and learned from the

guidance that the search provided through the intelligence of the

online solutions.

7.3 Competing Solutions

Of course, the online solutions need not necessarily get along.

A fundamental assertion of this research has been that the smarter,

component-based representations eliminate the need for indexing

processes that aren't scalable (see Chapter 3 for more details). Flat

representations like Jpegs, DWGs, or Web documents would not

have this advantage; they would require an auxiliary RDF index to

be generated to make them searchable. This means that maintaining

the indexes would not only be time-consuming, but given the current

limitations in computer vision, would be something that people

would have to do manually. This makes the index generation error-

prone and inconsistent, and would probably make them less detailed

as well.

When sharing the search space with smarter component systems,

these flat solutions would probably get out-competed: they simply

wouldn't stay as up-to-date or score as well. But if we take a step

back and look at the AEC industry, we might conclude that this

actually puts healthy pressure on companies to move away from the

traditional representations they've been using for too long. NIST

Research has shown that operational inefficiencies, many of which

stem from using older representations that are difficult to maintain

and share, are the primary reason that the industry has lagged behind

most other industries. (Gallagher) The promise of a potentially

lucrative service channel for participative design solutions could put

positive pressure on builders, developers and manufacturers to move

to the new component-based standards that are already taking hold.

128

7.4 Adding Game-Like Interaction to the Interfaces

As was discussed in the user evaluations in Chapter 5, a very

interesting area of inquiry into the conceptual interfaces as a design

source would be the incorporation of interactive, multiplayer

functionality to make the experience of query-building even

more game-like than it already is. The benefit of making things

entertaining has already been discussed: we get more detailed queries

and better search results from fun interfaces. In observing the

couple that came in for this study, it was fascinating to see how the

two interacted via the interfaces. The wife would revise some of her

husband's tags, and throughout the session they would chat about

their selections. In some cases there were disagreements that had to

be negotiated, as in "no, the kitchen needs to be open", and in other

cases they would cooperate to work through a more difficult decision

together. It was also interesting to see how one of them would

begin to guide an exercise if they were the more comfortable of the

two, particularly in starting out. For example, the husband made

the initial Floor Plan Diagram arrangement but when the two were

presented with the Activity Sequencer, his wife immediately took the

lead. The interfaces are experienced uniquely by different types of

problem solvers - interactive interface designs could build upon that.

Designing different mechanisms within the interfaces to enable

this sort of interactivity might make the process of searching within

the system even more educational than it is. Different game-like

modes could be explored; for example, an option could be to have a

cooperative design game where the first user tries to guess the second

user's preferences, after which the second user gets a chance to make

revisions to those guesses. In this scenario, the first user might get

a score increase based upon the number of revisions that were (or

weren't) made by the other. This type of game-like interactivity may

help people get more immersed in the exercises and reflect upon

things. Additionally, other types of teams than couples could be

supported. For example, a user might be paired with a professional

designer to work through the exercises; this type of cooperative

scenario could certainly be educational for both parties.

129

7.5 Next steps

This research has shown positive results; as such, the most logical

next steps would be to proceed with Web-based implementations that

allow for more complete evaluation of the search algorithms. These

implementations should also be used for additional user studies,

this time with a large number of anonymous Web users, to get a

better sense of how the tools function after implementation. This

continued development and evaluation would be useful in addressing

the limitations of, and problems encountered in the pilot studies

discussed here.

While our search analysis had some interesting and positive

results, additional and more thorough analysis is needed. A much

larger search space needs to be created to give the search algorithm

more resources to search through. This is important not only for

measuring the system's performance and scalability but also in

determining how well the search functions when the search space

includes completely different design contexts; in other words,

solutions that have much more variance than the ones that were

tested thus far.

Additionally, more work needs to be done on the implementation

of an actual component system interface, or on the integration with

industry component specifications like BIM or IFC. This exploration

of BIM systems was outside of the focus of this work but is critical

to the success of a consumer-oriented home design system like the

one detailed in Chapter 6. There is some existing work that may

be followed in this area. T.J. McLeish (MIT Housen) examined

the potential of a tangible, tactile interface that allowed for the

manipulation of actual 3D objects that were mapped to component

system definitions. And Xiayou Ma (MIT House-n) performed an

initial analysis of kitchen design typologies that might be useful in a

component-based interface aimed at non-expert consumers, for more

precise selection algorithms. Additionally, research should be done

into the data structure of industry component-based standards to

see how well they map to the component system that was developed

here (Appendix 2, A2. 1). As was previously noted, the analysis here

was based upon a SQL-based component specification; this ought
130

to generalize well to other formats, but this assertion needs to be

evaluated.

Additionally, alternative query interfaces could be developed,

taking advantage of the standardized RDF query structure as a

strategy for providing consumers with different ways to approach

architecture. This might be an avenue that architects could explore

themselves, investigating for example, innovative search interfaces

that allow for the exploration of their own inventory of designs.

7.6 The Future Architect

The complexion of architecture is changing, and the role of the

architect will continue to evolve. These days, architects don't have

much to do with home design in the United States; they are a non-

essential player in a process generally driven by developers. In a

process like the one described here, one that is driven by consumers,

architects have a new and vital purpose. By providing designs in a

component system like the one we've examined, it is the architect that

gives the system its most critical element: the logical source for the

design guidance that is given to the user. Ironically, many architects

seem to be resistant to ideas like the ones behind this work, ideas

that, if realized, would provided them with new service channels and

therefore new business and design opportunities. Maybe this is due

to a tendency to focus upon academic or theoretical in-fighting. Or

maybe they feel like working in this sort of system would limit their

expressiveness, or maybe they are intimidated by it. But to survive,

the architect needs to evolve. Probably, once a system like this begins

to take hold and proves to be effective, architects will have a bit

more interest in exploring the potentiality of computation to change

and improve upon their profession, beyond the narrow confines of

seductive representations or the intransigent support of speculative

design philosophies. In its purest and most noble form, architecture

endeavors to improve, through sense and sensibility the process and

form of buildings. And that is what this work is all about.

131

Appendices

132
Apni

Appendix 1

Appendix 1

Appendix 1 User Exercises

Appendix 1 133

A1.1 Summary of Volunteer Users

Appendix 1

Name Gender DOB Background Date Source
1 Thea F 1969 N/A 4/26/07 Mailing List

2 Jane F 1965 Affordable Housing Development 4/20/07 Advertisement

3 Jack M 1965 Information Technology 4/20/07 Advertisement

4 Zahra F 1979 Student 4/20/07 Mailing List

5 Jeffrey M 1947 Retired, Software Tester 4/23/07 Advertisement

6 Alison F 1976 Student 4/23/07 Advertisement

7 Kevin M 1972 N/A 4/25/07 Advertisement

8 Megan F 1980 Student 4/25/07 Advertisement

9 Marissa F 1981 Student, Engineering 5/1/07 Advertisement

10 Liv F 1974 Student 5/2/07 Mailing List

11 John M 1942 Retired Librarian 5/2/07 Advertisement

12 Brittany F 1982 Student, Communications 5/4/07 Advertisement

134

Appendix 1

A1.2 Questionairre Given to Volunteer Users

MIT House n Consortium I home design study I questionnaire

Name:

Date:

A. Questionnaire about aptitude with computers and application familiarity.

Please answer a few questions about yourself and your familiarity with various types of

computer interfaces. You may skip any question you don't want to answer or feel unable

to answer. If you would like any additional details about the subject matter, please don't

hesitate to ask.

1. What is your year of birth?

2. Have you ever worked with an architect to build or remodel a home?

3. How comfortable are you with reading an architectural floor plan?

4. How comfortable are you with using a computer
a. I'm a power user; I use one several hours a day, at least
b. I'm a regular user, I work with computers daily
c. I am comfortable with computers but don't use them at work
d. I am not very comfortable with computers, or I'm a novice user
e. I rarely use computers, if at all.
f. I don't know

5. What best describes your level of comfort with trying out new programs or
utilities on your computer

a. I actively try out new programs or utilities to increase my productivity or learn new skills

b. I tend to follow a routine, and use the same applications, but I'm open to new applications or

routines when I stumble onto them
c. I tend to follow a routine, I'll generally only change my usage pattern if I'm forced to, like

with upgrades or through training at work
d. I know how to do a few specific tasks but don't have a lot of confidence when it comes to

learning new things, so I tend to avoid change
e. I am not comfortable with unfamiliar programs or unclear prompts from a computer, these

things tend to make me nervous.
f. I don't know

Appendix 1 135

A1.2 Questionairre Given to Volunteer Users

6. What motivates you to learn new applications? For each motivation, please rank
from 0-3 where 0 = not a motivation, 1 = weak motivation,
2 = average motivation, and 3 = strong motivation.

a. _ Gaining access to new functionality that I haven't had access to
b. _ Increasing my productivity
c. _ Staying up-to-date with the latest trends or developments
d.

e.

f. _

g. _

Entertainment value, leisure
Someone at work tells me to
The perception of other benefits
Other:

What applications do you use regularly?
(a listing of common applications is providedfor the subject to check of])

For each of the applications listed in this chart, please Level of Familiarity
indicate your level offamiliarity, if any. If you're 1 = not familiar, never used
uncertain about one of the types listed below, you 2= vaguely familiar

may check "N/A " and/or ask the interviewer for more 4= proficient
S5= expert, power user

with4e=aprofici

ornformatin

Web browsing: using search engines like google or ahoo
Using visual searches like Google Earth, or marquest.
Email applications to send and sort emails
Text editors like Word to create/edit documents
Presentation software like Powerpoint to create documents
with graphic content
Professional Document management tools like Adobe
Illustrator or InDesin
Graphics editing software like Adobe Photoshop or Paint
Shop Pro to manipulate image files: adjusting contrast, size,
or format
Graphics editing software like Photoshop or Paint Shop
Pro to draw new images.
Development environments like Dreamweaver or Flash
Development environments like .NET, Visual Studio, Java
CAD tools like AutoCAD, Rhino
Professional Rendering or animation tools like
3dStudioMax, Maya, or Lightscape
3D Video Games, either on PC or Console systems, like
Halo or Counterstrike
Massive Multiplayer Video Games like Everquest, or World
of Warcraft
Online, Social Games like Second Life
Constructive Video Games like Sim City
Other:

Appendix 1136

_________ 4

A1.2 Questionairre Given to Volunteer Users

General Questions

1. The conceptual exercises helped me think about my home needs in ways that the first two
exercises didn't.

True / False

Details:

2. The conceptual exercises allowed me to discover or think of home needs more so than the
other exercises.

True / False

3. In the assembly exercise, what was the most useful representation for you as you selected
options?

4. In the second exercise, where checklists were given, were the descriptions ambiguous or
hard to compare?

Yes / No

5. Rank the Exercises.
Under each heading, please rank the exercises as far as you can, from best to worst by
giving each exercise a specific number from 1 to 5.

Ranking:

1 = Best
5 = Worst

Component Assembly
Option Lists

Activity Sequencer
Diagramming 1111 1 _____

Appendix 1

Packing Metaphor I I _

138

Appendix 1

A1.3 Library Cards For Component Assembly Exercise
Exercise designed by K Larson, M G Phillips, and C Farina, card layouts by C Farina & M G Phillips

a
jill

j *i~

7

Li

.anfls v9 woodiaa

, r --

ei

Mie M

i-0

"

124 -i
fill

S4JU

AanlLs v9 woo~dias

4 N7

-~I

E
LbJ LU

Appendix I

lii.'

11F

139

A1.3 Library Cards For Component Assembly Exercise

Appendix 1140

Appendix 1

A1.3 Library Cards For Component Assembly Exercise

Appendix 1 141

I xipu;)ddV~T~

7W
- I

I I

L4 1U

RUES

'III
iii

1,

-7'
eflS

.~ .

~I 'NJ; I
ii

/

LIVING & DINING

I-

I ~'IJ~
I;~~ j

,~vy

flI

U

41--4

LIVING & DINING

I IS,

U
U

U

liii I
- I 'iii ~

as.7.dxj /lqwadssViuauortuoD doj[sp479 Ctviq!7 C'IV

Z l

Appendix 1

A1.3 Library Cards For Component Assembly Exercise

-v

L--4

-tid3.LSV _

1Tm T

H

Jai

7F~

I ft

FiT
~ii~

/1

Appendix I

V4,

143

Fir F9

A1.3 Library Cards For Component Assembly Exercise

D"1 A

W00'dH±LV9 Ud31SVL,

Jil l

HtIM '~~'

I tlli-

Krrn
s~1 ~

7rrv

iHfl ZL~
I iIIih ~

Ai

Appendix 1144

A1.4 Example Given for Floor Plan Diagram Exercise

t-- t

WLJ

hH a

i

------ --- --------- - -- ---

- - - -
1--

I *

--1

r

Appendix 1

Appendix 1

=4

- - - - -- - - -1

- -

145

A1.5 Photographs of User Exercises
Activity Sequencer

MIT House_n / Changing Places
Open oucaw BudiAng Aftm ConcepW4tUSdOn Toobs

.EMgrainy

t. Acifoifle: Let ft ap~cf -OW o 0 c. r mOO"'Ng 0(dew

EmrOW ity Vw~ 001e "fA M acwrrs of anMmrnn rijOb you m sttar m wke p foowed by "take shower and so on

Waking Up 14 s et

Exercise: Acivity Sequencer

146 Appendix 1

Appendix 1

Al.5 Photographs of User Exercises
Activity Sequencer

147
Appendix I

A1.5 Photographs of User Exercises
Role-Playing Metaphor (Packing)

Appendix 114N

Appendix 1

A1.5 Photographs of User Exercises
Role-Playing Metaphor (Packing)

149
Appendix I

,- - 1 - - - -. 6-ANNE61- - - -

A1.5 Photographs of User Exercises
Floor Plan Diagram

xi

xU

I- If

Appendix I

mm
I

If
150

IMIRM-C

t

so
LA

A1.5 Photographs of User Exercises
Floor Plan Diagram

ouse-n / Changing Places
rmf uWmme Coreafton Tole

Concepluma D agnmmin

ging Places

TO*

0f

0e0 se

Appendix 1

Appendix 1

151

Appendix 2 System Details

Appendix 2152

A2.1 Database Structure: Component System

Relational Database Schema
0 Primary Key

COMPONENT
-Ocompid

name
desc
typeid
dimx
dimy
dimz

COMPTYPES
-otypeid 0-- --

parentid---
name
lightgiving

INTERFACE
Ointerfaceid

compid
- relationid

rangemax
fitmax
originx
originy
originz
dimx
dimy
dimz
fit-min
range _min
name

int(10) unsigned
varchar(75)
text
int(1 0) unsigned
int(10) unsigned
int(10) unsigned
int(1 0) unsigned

int(1 0) unsigned
int(10) unsigned
varchar(45)
int(10) unsigned

int(10) unsigned
int(10) unsigned
int(10) unsigned
int(1 1)
int(11)
int(10) unsigned
int(10) unsigned
int(10) unsigned
int(10) unsigned
int(10) unsigned
varchar(45)
int(10) unsigned
int(10) unsigned
varchar(45)

Primary Key (auto) 0-

default(0)
default(O)
default(O)
default(0)

Primary Key (auto)
default(0)

default(0)

Primary Key (auto) 0 - -
default(0)
default(0)
default(0)
default(0)
default(0)
default(O)
default(0)
default(0)
default(O)

default(0)
default(0)

Notes

Components = Furniture, Fixtures, Items, etc.
Assemblies = Rooms
Configuration = Complete Layouts

The compid value in the Assembly record is the root, container
- - - - -uipirs swi------ comonent o w

The component is
The interface defir
Origin (origin x,y,

The components a
location is stored

Within the config
that are made bet

ASSEMBLY
- -- oassemblyid

name
desc
imageplan

--- --------- --- compid
imageaxon
imageraster
zone
assid

ASSTYPES
O assid

name
desc

INSTANCE
instanceid 0- -
parentid

- ---------------- compid
---- - --- parentinterfaceid

----- -------- --- --- -interfaceid
- --- assemblyid

originx
originy
originz

ich all included instances are children

defined by a rectilinear block (dimx, dimy, dimz)
nes a sub-block that is connectible via the
z) and Dimensions (dim x,yz)

re added to assemblies as instances and their
is the Origin (origin x,yz)

uration, Arrangements define the connections
ween rooms.

int(10) unsigned
varchar(45)
text
varchar(75)
int(1 0) unsigned
varchar(75)
varchar(75)
varchar(45)
int(10) unsigned

int(10) unsigned
varchar(45)
text

int(10) unsigned
int(1 0) unsigned
int(1 0) unsigned
int(10) unsigned
int(10) unsigned
int(10) unsigned
double
double
double

Primary Key (auto) 0 --

default(0)

default(0)

Primary Key (auto)

Primary Key (auto)
default(0)
default(0)
default(0)
default(0)
default(0)
default(0)
default(0)
default(0)

CONFIGURATION
-0 configid int(10) unsigned Primary Key (auto)

name varchar(45)
desc text

ARRANGEMENTS
0 arrid int(10) unsigned Primary Key (auto)
- configid int(1 0) unsigned

assemblyid int(1O) unsigned
targetassemblyid int(1O) unsigned

- relationid int(10) unsigned

RELATIONS
int(10) unsigned Primary Key (auto)

name varchar(45)
desc text

Appendix 2 153

f h

A2.2 Program Structure: Search Algorithm

Search Application Schema

SearchDesignerCore contains the core search algorithm:
1. Connects to Component Database
2. Invokes calls to read and write RDF
3. Performs search (each stage)
4. Assigns Scores and Sorts

SearchDataArc ------------
Methods
SearchDataArc.SearchDataArco

Properties
SearchDataArc.Predicate
SearchDataArc.Resource
SearchDataArc.ResourceUid
SearchDataArc.RObject
SearchDataArc.RobjectUid

SearchDesignerCore
Methods
SearchDesignerCore.Addindexo
SearchDesignerCore.AddScoreo
SearchDesignerCore.CheckForAssemblyo
SearchDesignerCore.CheckScoreo
SearchDesignerCore.Clearo
SearchDesignerCore.DbConnecto
SearchDesignerCore.DbDisconnecto
SearchDesignerCore.GetResults0
SearchDesignerCore.MySqlExecQueryo
SearchDesignerCore.retumresultso
SearchDesignerCore.Search0
SearchDesignerCore.SearchCheckAttributes0
SearchDesignerCore.SearchCheckRooms0
SearchDesignerCore.SearchDesignerCoreo
SearchDesignerCore.SearchForConfig0
SearchDesignerCore.SortAndSummaryo

Properties
SearchDesignerCore.ErrorString
SearchDesignerCore.FileName
SearchDesignerCore.HasResults
SearchDesignerCore.Graph---------------
SearchDesignerCore.Query ---
SearchDesignerCore.RDFParser

The below classes allow the system to
associate specific relevance scores
with each of the values it reads

from the incoming query:

Sdclnt
SdcInt.Value
SdcInt.Score

SdcString --------------
SdcString.Uid
SdcString.Value
SdcString.Score -------

SdcScore -----------
SdcScore.CompareTo(object)
SdcScore.AssemblylD
SdcScore.ConfiglD
SdcScore.Score

7he Graph Stores RDF
data in raw arc (triple)

format ---------------- SearchDataGraph
Methods
SearchOataGraph.AddArco
SearchDataGraph.NormalizeGrapho
SearchDataGraph.SearchDataGrapho

Properties
SearchDataGraph.Graph
(List) Arcs

Stores the query
values forprocessin

Reads the incoming
query RDF and writes the
output query (with score details)

Stores allproperties

for each room
SearchDataZone -- ------------ ------
Methods
SearchDataZone.SearchDataZoneo

Properties
SearchDataZone.Comments
SearchDataZone.Name
SearchDataZone.Size
SearchDataZone.Uid
(List) Attributes
(List) Items
(List) Connections
(List) Activities

SearchDesignerQuery
Methods
SearchDesignerQuery.FindAssemblyo
SearchDesignerQuery.FindConfigo
SearchDesignerQuery.FindConfigComp10
SearchDesignerQuery.FindValueo
SearchDesignerQuery.SearchDesignerQueryO

Properties
SearchDesignerQuery.Comments
SearchDesignerQuery.Name
SearchDesignerQuery. Predicatelnt
SearchDesignerQuery.PredicateintComp
SearchDesignerQuery.PredicateStr
(List) Zones -------------------------

SearchDesignerRDF
Methods
SearchDesignerRDF.ParseQueryo
SearchDesignerRDF.ReplyQueryO

Appendix 2

|-- - - -

154

A2.3 The RDF Queries Used for Analysis 1

Activity Sequencer Source Query

<?xml version="1 .0"?>
<RDF rdf= "http://www.w3.org/1 999/02/22-rdf-syntax-ns#"

dc= "http://purl.org/dc/elements/l .1/">
<Description room= "Bedroom">

<activity> Waking Up<lactivity>
<activity>Check Weather</activity>
<activity> Dressing </activity>
<multi> Kitchen </multi>
<doorway> Bathroom</doorway>
<attribute> Private </attribute>
<attribute> Spacious </attribute>
<attribute>Abundant Natural Light</attribute>
<item>Shelves</item>
<item>Closet</item>

</Description>
<Description room= "Kitchen">

<activity> Eating </activity>
<multi> Bedroom</multi>
<attribute>Lots of Counterspace </attribute>
<attribute> Spacious </attribute>
<attribute>Abundant Natural Light</attribute>
<item> Island </item>
<item >Table </item>

</Description>
<Description room= "Bathroom">

<activity> Grooming </activity>
<activity> Showering </activity>
<multi> Kitchen </multi>
<doorway> Bedroom </doorway>
<attribute> Private </attribute>
<attribute >Abundant Natural Light</attribute>
<attribute>Lots of Counterspace</attribute>
<item>Shelves</item>

</Description>
</RDF>

Appendix 2 155

A2.3 The RDF Queries Used for Analysis 1

Role-Playing Metaphor (Packing) Source Query

<?xml version ="1 .0"?>
<RDF rdf= "http://www.w3.org/l 999/02/22-rdf-syntax-ns#"

dc= "http://purl.org/dc/elements/l.1/">
<Description room= "Kitchen">

<attribute> Contemporary</attribute>
<attribute >Abundant Natural Light</attribute>
<attribute> Spacious</attribute>
<attribute>Accessible </attribute>
<attribute> Efficient</attribute>
<attribute>Lots of Counterspace </attribute>
<attribute> Private </attribute>
<item> Island</item>
<item>Pots and Pans</item>
<item> Shelves</item>
<item> Refrigerator</item>
<item> Microwave</item>
<item> Oven </item>
<item> Stove</item>
<item >Table</item>

</Description>
</RDF>

Appendix 2156

A2.3 The RDF Queries Used for Analysis 1

Floor Plan Diagram Query

<?xml version =1 .0"?>
<RDF rdf= "http://www.w3.org/1 999/02/22-rdf-syntax-ns#"

dc= "http://purl.org/dc/elements/1.1/">
<Description room= "Living">

<function> Closets </function>
<open> Kitchen </open>
<open> Study</open>
<item>Flat Screen TV</item>
<item>Front Door</item>
<item>Digital Media</item>

</Description>
<Description room="Study">

<doorway> Kitchen </doorway>
<open> Living</open>
<item> Pictures </item>
<item>Small Coffee Table</item>
<item>Love Seat</item>

</Description>
<Description room= "Kitchen">

<open> Living </open>
<doorway> Study</doorway>

<function> Dining </function>
<item> Island </item>

</Description>
<Description room= "Bedroom">

<function> Closets </function>
</Description>

</RDF>

Appendix 2 157

A2.4 The User Exercises Encoded into RDF Queries for Analysis 2

Activity Sequencer 01, by Thea

<?xml version="1.0"?>
<RDF rdf= "http://www.w3.org/1 999/02/22-rdf-syntax-ns#"

dc= "http://purl.org/dc/elements/1.1/">
<Description room="Bedroom">
<activity>Waking Up</activity>

<activity> Dressing </activity>
<activity> Snoozing</activity>
<doorway> Kitchen</doorway>
<doorway> Bathroom </doorway>
<attribute>Traditional</attribute>
<attribute>Abundant Natural Light</attribute>
<item> Equipment</item>

</Description>
<Description room="Kitchen">
<activity> Leaving </activity>

<doorway> Bedroom </doorway>
<attribute>Abundant Natural Light</attribute>
<attribute>Open Layout</attribute>
<attribute>Lots of Counterspace</attribute>
<item>Coffee Machine</item>

</Description>
<Description room="Bathroom">
<activity>Showering</activity>

<activity> Brush Teeth</activity>
<doorway> Bedroom </doorway>
<attribute>Traditional</attribute>
<attribute>Abundant Natural Light</attribute>
<attribute>Efficient</attribute>
<item>Sink</item>

</Description>
</RDF>

Thea's completed exercise:

E091 tr - wy~m SSW9O &A aMO Eyw Ad1 1CAV nffm* ra"OfU, oght glai With -*ek UP- 10lwu by MIAS Owe ad So on-

Appendix 2

- M

158

A2.4 The User Exercises Encoded into RDF Queries for Analysis 2

Activity Sequence 2, by Alison
<?xml version= "1.0"?>
<RDF rdf="http://www.w3.org/1 999/02/22-rdf-syntax-ns#"

dc="http://purl.org/dc/elements/1.1/">
<Description room="Bedroom">
<activity>Waking Up</activity>

<multi>Kitchen</multi>
<attribute>Small But Comfortable</attribute>
<attribute>Private</attribute>
<item>Bed</item> <item>Closet</item>

</Description>
<Description room="Kitchen">
<activity> Coffee </activity>

<activity>Eating </activity>
<multi> Bedroom </multi>
<multi>Uving</multi>
<doorway> Bathroom</doorway>
<attribute>Open Layout</attribute>
<attribute>Lots of Counterspace</attribute>
<item>Oven </item> <item>Coffee Machine</item>
<item>Pots and Pans</item> <item>Kitchen Pantry</item> <item >Shelves</item>

</Description>
<Description room="Bathroom">

<activity>Showering</activity> <activity>Brush Teeth</activity>
<doorway> Kitchen </doorway>
<attribute>Private</attribute>
<attribute >Abundant Artificial Light</attribute>
<item>Sink</item> <item>Bathtub</item>
<item >Toilet</item> <item> Shelves </item> <item>Linens</item>

</Description>
<Description room="Living">

<activity>Computer Use</activity>
<multi>Kitchen</multi>
<attribute>Contemporary </attribute>
<item>Sofa</item>
<item> Coffee Table </item>
<item >Television </item>

</Description>
</RDF>

Alison's completed exercise:

Appendix 2

A2.4 The User Exercises Encoded into RDF Queries for Analysis 2

Activity Sequence 3, by Megan
<?xml version="1.0"?>
<RDF rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

dc="http://purl.org/dc/elements/1.1/">
<Description room="Bedroom">
<activity>Waking Up</activity>

<activity>Check Weather</activity>
<activity> Dressing</activity>
<multi> Kitchen </multi>
<doorway>Bathroom</doorway>
<attribute>Private</attribute>
<attribute>Spacious</attribute>
<attribute>Abundant Natural Light</attribute>
<item>Shelves</item>
<item>Closet</item>

</Description>
<Description room="Kitchen">
<activity> Eating</activity>

<multi> Bedroom</multi>
<attribute>Lots of Counterspace</attribute>
<attribute>Spacious</attribute>
<attribute>Abundant Natural Light</attribute>
<item> Island </item>

</Description>
<Description room="Bathroom">
<activity>Grooming</activity>

<activity>Showering </activity>
<multi> Kitchen</multi>
<doorway> Bedroom</doorway>
<attribute>Private</attribute>
<attribute>Abundant Natural Light</attribute>
<attribute>Lots of Counterspace</attribute>
<item>Shelves</item>

</Description>
</RDF>

Megan's completed exercise:

I At& v IO U 00'O4 --- *wetonwn-a*v AWW k h - O6 l

Appendix 2160

A2.4 The User Exercises Encoded into RDF Queriesfor Analysis 2

Floor Plan Diagram 1, by Liv

<?xml version="1 .0"?>
<RDF rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

dc="http://purl.org/dc/elements/1.1/">
<Description room= "Living">

<function> Entry</function>
<open>Dining </open>
<item>Front Door</item>

</Description>
<Description room="Dining">

<doorway> Bathroom </doorway>
<open> Living</open>
<open> Kitchen </open>

</Description>
<Description room= "Kitchen">

<open> Dining </open>
<doorway> Bedroom </doorway>

</Description>
<Description room= "Bathroom">

<doorway> Dining</doorway>
</Description>
<Description room ="Bedroom">

<function>Closets</function>
<doorway> Kitchen</doorway>

</Description>
</RDF>

Liv's completed exercise:

Appendix 2 161

A2.4 The User Exercises Encoded into RDF Queries for Analysis 2

Floor Plan Diagram 2, by Zahra

<?xml version="1.0"?>
<RDF rdf= "http://www.w3.org/1 999/02/22-rdf-syntax-ns#"

dc="http://purl.org/dc/elements/l .1/">
<Description room="Entry">

<function> Entry</function>
</Description>
<Description room ="Bedroom">
</Description>
<Description room ="Bedroom" id="02">

<function> Closets</function>
<doorway> Bathroom </doorway>

</Description>
<Description room= "Bathroom">

<doorway id = "02">Bedroom </doorway>
</Description>
<Description room= "Bedroom" id="03">

<doorway id="03">Hallway</doorway>
</Description>
<Description room="Dining">

<doorway> Living </doorway>
</Description>
<Description room= "Living">

<doorway> Dining </doorway>
</Description>

<Description room= "Kitchen">
<doorway> </doorway>

</Description>
</RDF>

Zahra's completed exercise:

U.

* , .4

-I

1

~1 -'I

162I Appendix 2

A2.4 The User Exercises Encoded into RDF Queries for Analysis 2

Floor Plan Diagram 3, by Marisa
<?xml version="1.0"?>
<RDF rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" dc="http://purl.org/dc/elements/1.1/">

<Description room="Entry">
<function> Entry</function> <open> Kitchen </open> <open> Living </open>

</Description>
<Description room="Living">

<open>Dining</open> <open>Entry</open>
</Description>
<Description room="Kitchen">

<doorway> Hallway </doorway> <open> Entry</open>
<open> Dining </open> <open >Family</open>

</Description>
<Description room="Dining">

<doorway>Study</doorway> <open> Living </open> <open> Kitchen </open>
</Description>
<Description room="Study">

<doorway> Dining </doorway> <function> Media </function>
</Description>
<Description room="Family">

<open>Study</open><open>Kitchen</open>
</Description>
<Description room="Hallway">

<doorway id ="01"> Bedroom </doorway> <doorway id="02"> Bedroom </doorway>
<doorway id = "02"> Bathroom </doorway> <doorway> Kitchen </doorway>

</Description>
<Description room="Bedroom" id="01">

<open id ="01"> Bathroom </open><doorway> Hallway</doorway>
</Description>
<Description room="Bathroom" id="01">

<open id="01"> Bedroom </open><item>Closets</item>
</Description>
<Description room="Bathroom" id="02">

<doorway> Hallway </doorway><doorway id ="03"> Bedroom </doorway>
</Description>
<Description room="Bedroom" id="02">

<doorway> Hallway</doorway>
</Description>
<Description room="Bedroom" id="03">

<doorway> Bathroom </doorway>
</Description>

</RDF>

Marisa's completed exercise:

Appendix 2 163

A2.4 The User Exercises Encoded into RDF Queries for Analysis 2

Role-Playing Metaphor (Packing) '1, by Jeffrey

<?xml version="1.0"?>
<RDF rdf= "http://www.w3.org/l 999/02/22-rdf-syntax-ns#"

dc= "http://purl.org/dc/elements/1 .1 /">
<Description room= "Bedroom">

<finditem>Bed</finditem>
<finditem> Flat Screen TV</finditem>
<finditem >Electronic Devices </finditem>
<finditem >Linens</finditem>
<finditem >Office Desk e/finditem>
<finditem >Bookcase</finditem>
<finditem >Telephone </finditem>
<finditem>Small Coffee Table</finditem>
<finditem >Lamp</finditem>
<attribute>Abundant Natural Light</attribute>

<attribute>Closed Layout</attribute>
<attribute> Spacious</attribute>

<attribute>Warm</attribute>
<attribute> Soundproof </attribute>

<item count= "4">Electrical Outlet</item>
</Description>

</RDF>

Jeffrey's completed exercise:

Room Name: Room Name:

Appendix 2164

A2.4 The User Exercises Encoded into RDF Queriesfor Analysis 2

Role-Playing Metaphor (Packing) 2, by John

<?xml version="1.0"?>
<RDF rdf= "http://www.w3.org/l 999/02/22-rdf-syntax-ns#"

dc= "http://puri.org/dc/elements/1.1 /">
<Description room= "Kitchen">

<finditem>Oven and Stove </find item>
<finditem>Kitchen Sink</finditem>
<finditem>Pots and Pans</finditem>
<finditem>Pantry</finditem>
<finditem>Dish Rack</finditem>
<finditem>Misc. Equipment</finditem>
<finditem >Telephone</finditem>
<finditem>Dry Food</finditem>
<attribute>Abundant Natural Light</attribute>

<attribute> Public</attribute>
<attribute>Accessible</attribute>

<item >Telephone</item>
<item> Pictures </item>

</Description>
</RDF>

John's completed exercise:

Name Room Nawr

I0

Appendix 2

"4r- - - I 'I-- __.fMW_ -

10')

A2.4 The User Exercises Encoded into RDF Queries for Analysis 2

Role-Playing Metaphor (Packing) 3, by Jack

<?xml version="1.0"?>
<RDF rdf= "http://www.w3.org/1 999/02/22-rdf-syntax-ns#"

dc= "http://puri.org/dc/elements/1.1/">
<Description room= "Living">

<finditem>Love Seat</finditem>
<finditem>Home Theater</finditem>
<finditem >Chair</finditem>
<finditem >Bookcase</finditem>
<finditem > Sofa</finditem>
<finditem>Small Coffee Table</finditem>
<finditem > Pictures</finditem>
<finditem > Books</finditem>
<attribute> Contemporary</attribute>
<attribute> Spacious</attribute>

<attribute>Open Layout</attribute>
<attribute> Efficient</attribute>

</Description>
</RDF>

Jack's completed exercise (right):

Room Name: Room Name:

Appendix 2

11111111111MIL

166

167

References

1. Baird, George. (2003). The Space ofAppearance. Cambridge, MA:

The MIT Press.

2. Beaudin, Jennifer S. (2003). From Personal Experience to Design:

Externalizing the Homeowner's Needs Assessment Process. M.S.

Thesis Media Arts and Sciences, Massachusetts Institute of

Technology.

3. Bergman, Michael K. (2001). "The Deep Web: Surfacing Hidden

Value". The Journal of Electronic Publishing 7 (1). Retrieved

April 15, 2007, from: http://www.press.umich.edu/jep/07-0 1/

bergman.html

4. Bush, Vannevar. (1945). "As We May Think", Atlantic Monthly,

July 1945. Retrieved May 1, 2007, from: http://www.theatlantic.

com/doc/194507/bush

5. Castells, Manuel. (2004). (Ralph Miliband Memorial Lecture:

Mar 14, 2004) Power and Politics in the Network Society.

Delivered at the London School of Economics and Political

Science.

6. Hillyer, Mike (n.d.). "Managing Hierarchical Data in MySQL"

Retrieved May 1, 2007, from: http://dev.mysql.com/tech-

resources/articles/hierarchical-data.html

7. Lieb, Stephen. (1991). "Principles ofAdult Learning". VISION,

Fall 1991. Retrieved March 22, 2007, from: http://honolulu.

hawaii.edu/intranet/committees/FacDevCom/guidebk/teachtip/

adults-2.htm

8. Lynch, Kevin. (1960). The Image ofthe City. Cambridge, MA:

Technology Press.

9. Fensel, Dieter, James Hendler, Henry Lieberman, Wolfgang

Wahlster. (2003). Spinning the Semantic Web. Cambridge, MA:

The MIT Press.

10. Fischer, Gerhard, et.al. (1993). "Embedding Computer-Based

Critics in the Contexts ofDesign". Interchi '93, April 2 4 th - 29th

1993.

11. Gallagher, Michael P., Alan C. O'Connor, John L. Dettbarn,

Jr. and Linda T. Gilday. (2004). Cost Analysis ofInadequate

168

Interoperability in the US Capital Facilities Industry. US

Department of Commerce: National Institute of Standards and

Technology. (Report NIST GCR 04-867).

12. Giarratano, Joseph C., Gary Riley. (2005). Expert Systems,

Principles and Programming. Boston, MA: Thomson Course

Technology.

13. Habraken, N.J. and M.D. Gross. (1998). "Concepts design

games." Design Studies 9(3): 150-158.

14. Harth, Andreas, Stefan Decker. (n.d.). Optimized Index Structures

for Querying RDFfrom the Web. Digital Enterprise Research

Institute (DERI), University of Galway, Ireland.

15. Harth, Andreas, Aidan Hogan, Jurgen Umbrich, Stefan Decker.

(2007). YARS2: A Federated Repository For Searching And Querying

Graph Structured Data. Digital Enterprise Research Institute

(DERI), University of Galway, Ireland

16. Hendriks-Jansen, Horst. (1996). Catching Ourselves in the Act:

Situated Activity, Interactive Emergence, Evolution, and Human

Thought. Cambridge, MA: The MIT Press.

17. index. (n.d.). The American Heritage Dictionary of the English

Language, Fourth Edition. Retrieved April 16, 2007, from: http://

dictionary.reference.com/browse/index

18. Imparato, Ivo, Diagonal Urbana and Jeff Ruster. (1999).

Participation in Upgrading and Services for the Urban Poor: Lessons

from Latin America. The World Bank.

19. Jonker, Frederick. (1964). Indexing Theory, Indexing Methods and

Search Devices. New York, NY The Scarecrow Press, Inc.

20. Koile, K. (2001). The architect's collaborator: toward intelligent

toolsfor conceptual design. PhD Thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of

Technology.

21. Ma, Xiaoyi. (2002). A Web-Based User-Oriented Toolfor Universal

Kitchen Design. S.M.ArchS Thesis, Department of Architecture,

Massachusetts Institute of Technology.

22. McLeish, T.J. (2003). A Platform for Consumer Driven

Participative Design of Open (Source) Buildings. M.S. Thesis Media

Arts and Sciences, Massachusetts Institute of Technology.

23. Metcalfe, John. (1976). Information Retrieval, British &6American,
169

1876- 1976 Metuchen, NJ: The Scarecrow Press.

24. Minsky, Marvin. (1985). The Society ofMind. New York, NY:

Simon & Schuster, Inc.

25. Minsky, Marvin. (2006). The Emotion Machine: Commensense

Thinking, Artificial Intelligence, and the Future of the Human

Mind. New York, NY: Simon & Schuster, Inc.

26. Mitchell, William J. (2003). Me++. Cambridge, MA: The MIT

Press.

27. Moore, Charles, Gerald Allen, Donlyn Lyndon. (1974). The Place

ofHouses. New York, NY: Holt, Rinehart and Winston.

28. Mostafa, Javed (2005). "Seeking Better Web Searches" Scientific

American, February, 2005. Retrieved May 13, 2007, from: http://

www.sciam.com/article.cfm?articleID=0006304A-37F4-11E8-

B7F483414B7F0000

29. Negroponte, Nicholas. (1975). Soft Architecture Machines.

Cambridge, MA: The MIT Press.

30. Papert, Seymour. (1980). Mindstorms: children, computers, and

powerful ideas. New York, NY: Basic Books.

31. Perkins, D N. (1981). The Mind's Best Work. Cambridge, MA:

Harvard University Press.

32. Piaget, Jean. (1963). The Origin ofIntelligence in Children. New

York, NY: WW. Norton and Company.

33. Rao, Satyajit. (1998). Visual Routines andAttention. PhD thesis,

Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology.

34. Reddy, Michael J. (1993). "The conduit metaphor: A case of

frame conflict in our language about language", in Metaphor and

Thought, Andrew Ortony (ed.) Cambridge, England: Cambridge

University Press.

35. Said, Edward W. (2006). On Late Style: Musica and Literature

Against the Grain. New York, NY: Pantheon Books.

36. Schon, Donald A. (1983). The reflectivepractitioner: how

professionals think in action. New York, NY: Basic Books.

37. Schuster, J. Mark Davidson, Roger Simmonds, Dennis

Frenchman. (1988). Housing Design & Regional Character: A

Primer For New England Towns. Cambridge, MA: School of

Architecture and Planning, Massachusetts Institute of Technology.
170

38. Said, Edward W (2006). On Late Style: Music and Literature

against the Grain. New York, NY: Pantheon Books.

39. Sedgewick, Robert. (1998). Algorithms in C, Third Edition: Parts

1-4. Boston, MA: Addison-Wesley Publishing Company, Inc.

40. Salton, Gerard. (1975). A Theory oflndexing. Philadelphia, PA:

Society for Industrial and Applied Mathematics.

41. Solomon, Michael R. (2003). Conquering Consumerspace:

Marketing Strategies for a Branded World. New York, NY:

AMACOM.

42. Sowa, John F (1976). "Conceptual graphs for a data base interface".

IBM Journal of Research and Development 20:4, pp. 336-357.

43. Sowa, John F. (1992). Semantic Networks, from "Encyclopedia of

Artificial Intelligence", edited by Stuart C. Shapiro. New York,

NY: Wiley.

44. Stiny, George. (2006). Shape. Cambridge: The MIT Press.

45. Suchman, Lucille Alice. (1987). Plans and SituatedActions: The

Problem of Human-Machine Communication. Cambridge,

England: Cambridge University Press.

46. Sullivan, Louis H. (1918). Kindergarten Chats. New York: Dover

Publications, Inc.

47. Tufte, Edward R. (2001). The Visual Display of Quantitative

Information. Cheshire, CN: Graphics Press.

48. Tufte, Edward R. (1990). Envisioning Information. Cheshire, CN:

Graphics Press.

49. Ullman, Shimon. Visual routines. Cognition 18:97-159, 1984.

50. Virvou, M., Katsionis, G., & Manos, K. (2005). "Combining

Software Games with Education: Evaluation of its Educational

Effectiveness." Educational Technology & Society, 8 (2), 54-65.

51. Weinberg, Bella Hass, editor. (1989) "Indexing: The State of Our

Knowledge and the State of Our Ignorance" Medford, NJ: Learned

Information, Inc.

52. Welsh, Matt, Matthias Kalle Dalheimer & Lar Kaufman. (1999).

Running Linux, Third Edition. Sebastopol, CA: O'Reilly &

Associates, Inc.

53. Williams, Reid E. (2003). Training Architectural Computational

Critics by Example. M.Eng. Thesis Electrical Engineering and

Computer Science, Massachusetts Institute of Technology.
171

53. Winston, Patrick Henry. (1975). "Learning structural descriptions

from examples". in P. H. Winston, ed., The Psychology of Computer

Vision, McGraw-Hill, New York, 157-209.

54. Wittgenstein, Ludwig. (1922). Tractatus Logico-Philosophicus.

Mineola, NY: Dover Publications.

55. World Wide Web Consortium. (2003). Scalable Vector Graphics

(SVG) 1.1 Specification. Retrieved May 2, 2007, from http://

www.w3.org/TR/SVG11/

56. World Wide Web Consortium. (2007). Semantic Web Activity

Statement. Retrieved May 1, 2007, from http://www.

w3.org/2001 /sw/Activity

172

