DESIGN BY SEARCHING:
A SYSTEM FOR CREATING AND EVALUATING COMPLEX
ARCHITECTURAL ASSEMBLIES

by

Matthew Giles Phillips
Bachelor of Architecture
Virginia Polytechnic Institute and State University, 1999

SUBMITTED TO THE DEPARTMENT OF ARCHITECTURE IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN ARCHITECTURE STUDIES
AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
MAY 2007
Copyright (c) 2007 Matthew Giles Phillips. All Rights Reserved.
The author hereby grants to MIT permission to reproduce

and distribute publicly paper and electronic
copies of this thesis document in whole or in part.

7 A
Signature of Author:
. S —
/// Department of Architecture

! N A

May 23, 2007

Certified by: | | oy 7 3. de74/

Kent Larson

Principal Research Scientist in Architecture

Thesis Supervisor

Accepted by: -)
! \j Julian Beinart
MASSACHUSETTS INSTITUTE] Profx i
OF TECHNOLOGY essor of Architecture

Chairman, Committee for Graduate Students

JUN 14 2007 ROTCH

LIBRARIES

Matthew Giles Phillips

Design By Searching

A System for Creating and Evaluating Complex
Architectural Assemblies

Copyright (c) 2007 Matthew Giles Phillips All Rights Reserved.

Readers:

Dr. Terry W. Knight
Dr. George Stiny

Dr. William J. Mitchell

Acknowledgements

To Kent Larson for providing both the opportunity to pursue this

work and for your tireless guidance along the way.

To Terry Knight for your tremendous assistance and support in

shaping this research, you have been a guide for me during my time at
MIT.

To George Stiny for your thoughtful and practical suggestions.

To Bill Mitchell for your valuable perspective on the issues at the heart

of this work.

To my participants for thier time and energy, and for contributing to

so much of what this research has to offer.
To Carla Farina for your assistance in preparing numerous materials.
To my family, for believing in me.

To the 32 students lost in Blacksburg, Virginia, April 16th, 2007, may

you rest in peace.

I would also like to thank:
Dr. Stephen Prince
Neeraj Bhatia

Lu Ai

Jennifer Beaudin

Kenneth C. Cheung
Christoforos Romanos

Michael Fadel

Contents

Design by Searching
A System for Creating and Evaluating Complex
Architectural Assemblies

1 Abstract 9

2 Introduction 10

3 Design by Searching 16

4 The Result Set: Component Based Representations 37
5 The Query: Conceptual, Constructive Interfaces 45
6 User Evaluations and Findings 74

7 Search System Prototype 96

8 Where Do We Go From Here? 125

APPENDICES

Appendix 1: User Exercises 133
Appexdix 2: System Details 153

References 168

Abstract

Design by Searching
A System for Creating and Evaluating Complex
Architectural Assemblies

This work investigates a prototypical Web-based search system designed to enable
architects and/or developers to engage and educate residential consumers in a

new way: as co-designers. The key motivation is to develop software tools that
support a feasible industrial process while providing home consumers with a way
to conceive of and design spaces, as an alternative to the standardized commodity
solutions that are currently available. The basic mode of operation for this work

is to combine the structure of the modern computational search with emerging
building modeling technologies as a foundation for Web-based participative design

tools.

Object-oriented component representations have been utilized to build a solution
space that can be searched directly, without indexing. Additionally, conceptual
query interfaces have been designed and evaluated through interviews with
volunteer users. The component-based solutions and conceptual queries were then
incorporated into a prototype of an architectural search tool which was analyzed to

measure its effectiveness.

Thesis Supervisor:
Kent Larson

Principal Research Scientist in Architecture

Readers:

Terry W. Knight
George Stiny
William J. Mitchell

10

1 Introduction

Architects don't have a meaningful role in the design of most
homes. They design the usual avant-garde houses that decorate
magazines, and the custom one-off designs that get built for rich
people, but these and the other projects that involve architects
comprise only a small number of the homes that get built in the
US. The rest of our houses do not involve architects in developing a
solution for individual homeowners, and certainly do not involve the
potential homeowners in the design — they are standardized in design
to target the center of the home market. This is, of course, a result of
the economics of the home market and the developer’s production
methods: by building standardized, non-variant houses or living
units, developers reduce complexity and thus reduce cost. But these
homes do not have any direct relation to the potentially changing
needs of individuals; the idea is that the standard templates are good
enough. The process endures because the people have no vocal chords
for expression and thus no voice for complaint — houses are expensive
and the process of ownership is complicated and intimidating. Plus,
non-standard homes may be difficult to sell, being anomalies in the
housing market: wanted by a few people perhaps, if only those people
could find them. So the market is built upon our silent acceptance of
mass-standardization, because through our limited choice and limited
awareness of the market, we the people let it be so.

In the market-driven world of housing development, is there
any space for the dreams of humanity in the building process? Can
people engage with architects and design on a large scale? Perhaps
there is a way. In looking at current trends in the industry, advances
in technology may become a facilitator not only for new design
processes but for consumer-participative design processes. In
computers, the recent emergence of component-based representations
for architectural structure means that software can now know more
about the spaces upon which it operates. For example: Autodesk,
the market leader for CAD tools, has shifted from their traditional
AutoCAD software platform to Revit, which utilizes Building

Information Modeling (BIM), a component-based representation.

Their goal in making this shift was to better facilitate information
exchange between architects, builders, and engineers. And the new,
more detailed computational representations like BIM are already
showing the potential to transform the home production process,
essentially reducing economic barriers that worked architects

out of the loop in the first place, by making it easier to share and
communicate and by reducing field labor costs. Reconfigurable, pre-
fabricated assemblies, described as a hierarchy of components, can
be made and assembled affordably, and described computationally,
which may facilitate mass-custom designing on a higher level.

This work explores the potential of emergent technological
innovations to facilitate a democratization of the design process,
where interested home-buyers can interact with high-level tools
that are built on top of more descriptive representations like BIM —
representations which are in turn connected to fabrication processes,
thus realizing a new model for mass-customization. One of the key
challenges is to find high level representations that allow people to
understand and design spaces, according to their own needs and
values. Apart from a plethora of web-based, traditionally searchable
listings, there are two broad categories of home design tools that
are currently available to people. These are simplified narrative
“configurator” type tools, and tools that are based upon a 2D or 3D
modeling environment. The former is so constrained that truly rich
preference specification simply isn’t possible, and the latter is very

unfamiliar to most users.

Figure 1.1 Different Apartment Layouts
in a component-based representation

K Larson, M G Phillips, C Farina
rendering by C Farina

11

Figure 1.2 Configurator System

An example from the automotive industry,
the Maserati car configurator
http://www.maserati.com

12

RBATOR SHOME ™ MY GARAGE G MEW iiSAVE B PRINT 05 GEWO

CAR .
QUATTROPORTE DUOSELECT e veeic WERSHERR 55 R 7 Dihaics LINTER IR Fintstes [TRaiet Leumsary cvser

MASERAT] SEATS TRIM DASHBOARD STEFRING PIEING © BEADLIGNG CARPITS %
IS .- o m
GUATTROPORTE

from & new point of view L

i BN EE N N e . e

Configurator tools (Figure 1.2) are basically narrative scripts
that combine different types of representations like text and images
to describe the design product to people. As will be described, these
tools walk the user through the selection of specific options, using
strategies that are essentially simplified expert systems. But even the
more easily navigated of these systems give only specific and limited
options, creating a process that is not educational, and a product
that is only minimally configurable. Expert systems face significant
limitations because their abstract needs assessment processes do
not work well with an open-ended and unconstrained process like
designing. Lucy Suchman notes that “the structure of the interaction
is procedural, constituted by a sequence of actions whose order is
partially enforced.” (Suchman 99) But tools should acknowledge that
people learn by observing themselves: “the sequences of operations
and procedures we execute; the clues we observe and the rules we
follow; or the values, strategies, and assumptions that make up our
‘theories’ of action.” (Schon 25)

At the other end of the spectrum, there are numerous modeling
environments that allow everyday users to design a home. But
modeling software is not something that’s inherently approachable
- most people do not know how to represent their ideas spatially, the
way an experienced designer does.

The fundamental issue with both configurators and modeling
environments is that of representation. Problems emerge because
these systems fail to describe relationships or pieces of information

that are not within the representation, but still shape the related

products or processes. Computational representations have this
limitation in common with other methods of description, like
architectural drawings or model-making; in fact, in working with any
representation, the complexity of the actual design product is stripped
away. But just as architects may move between sketches and models
to get a sense of the thing they are creating, and to develop their
expertise, this research aims to discover whether or not a computer-
based interface can accomplish the same thing through an interactive,
multi-representational approach. Towards this end, this research has
endeavored to both clarify the parameters of architectural decision-
making logic, and to provide constructive, iterative tasks that span
multiple distinct representations and facilitate a sort of “learning

by doing” for consumers.! The fundamental argument is that the
establishment of a hands-on, educational design environment is a
critical aspect of consumer-based product design systems.

To engage people, this research proposes a direction that is quite
different: utilizing search algorithms to enable participative designing.
The concepts discussed herein are meant to address the specific and
significant problem of spiritless residential architecture, by proposing
and evaluating a system for the specification of choice, in the context
of residential architecture. The study is constrained to a simplified
context: a middle-income, US-based, multi-family residential
development. This context is particularly interesting because of the
diverse consumer profiles and the current demands being placed on
the industry. As spatial functions and user needs evolve, builders have
made increasing efforts to efficiently prefabricate flexible living spaces
that are in tune with social context and also adaptable. A decline
in the availability of skilled labor and the increased complexity
of housing systems has increased the expense of field labor and
provided further impetus within the industry to find a new way to
build. To promote this effort, the software guidelines developed
here are intended to support a new industrial process for architects,
developers, and consumers.

Ultimately, this study is founded on the notion that consumer-
oriented design systems must support the conceptual exploration
and discovery of places, and that they can do so by utilizing the

structure of search engines. But this new search must enable the

13

Figure 1.3 Tags for User Exercises
Various paper word-tags. These were
incorporated in various design exercises

14

act of designing, without overly constraining it. To facilitate better
conceptualization than that supported by current tools, people need
to be able to learn what they want while finding it. Towards this
end, search engine tools that have traditionally been tied only to the
process of discovery within specific formats, have the potential for
expansion into the domain of educational design tools that can attach
to multiple representations. The search will be centered upon queries
that are spatial and/or diagrammatic, and that may be mapped into
a component-based modeling system like Autodesk Revit. Rather
than speculate about the effectiveness of any single type of search,
the work explores the potential of various types of interfaces for
constructive searches, and proposes a common index structure that
each of the interfaces could be built upon. The specific bases for the
conceptualization interfaces are: natural language, metaphorical role-
playing, diagrammatic languages, and flows/sequences.

The primary deliverable of this work is the evaluation of
prototypical tools intended to support the conceptualization
of spatial configurations. There are two types of tools studied:
conceptual querying interfaces and a component-based modeling
system.? Evaluation is done through user studies with volunteers
involving constructive, paper-based exercises; the results of these
evaluations are used to design a system prototype that integrates the
different interfaces. Figure 1.3 shows various tags that were used in

the exercises. Additionally, the integration of this system’s design

ool

| pRocBsse®.

formats with other technologies is explored for both designers and
consumers, and speculation is made about the potential effectiveness
of these types of systems in improving the sustainability and efhiciency
of private spaces, and in the opening of service channels between
designers, manufacturers, and home consumers.

Apart from describing the mechanics of the system, this work
endeavors to create a design context that can improve residential
home configurations, in important and diverse ways - primarily
through the generation of more generalized, but also individualized,
custom designs. But also, indirectly, by improving each consumer’s
understanding of space and how they exist within it. As Kevin Lynch
notes, users derive benefits from a more rich understanding of their
environment.® (Lynch, 111)

The work shown here represents only the first steps towards
the generation of a system for consumer-based residential design
- there are many details that still need to be worked out. As such,
the prototypes, evaluations, and implementations are of reduced
complexity. And ultimately, this work describes only one approach
in an area of inquiry where many others may be taken. But if we
can engineer search tools that work like those prototyped here, we
may provide the foundation for a more efficient industrial process,
by first involving consumers and designers in spatial layouts and
space definitions, and secondly by associating these layouts with

autonomous and relatable prefabricated parts.

1. The provision of these tasks is made in support of the idea that
constructive processes are inherently educational. I will look in more
detail at various sources for learning by doing: Seymour Papert -
Mindstorms, Donald Schon, and Piaget.

2. Component systems are directly searchable because they can describe each
of their parts inherently. Further, in the Society of Mind Marvin Minsky
has made assertions about how humans store and relate concepts about
functionally autonomous parts, detailed further in his forthcoming book
“The Emotion Machine”. These various parts will therefore be the basis
for the conceptualization tools.

3. The schematic partitioning of space is certainly a much older concept,
but Lynch is notable for the specific characterizations made through field

observation.

15

16

2 Design by Searching
2.1 Design Tools

As a category of software, current non-expert design tools quickly
highlight the most fundamental constraint of any computational
system: the limited descriptiveness of the representations the system
uses. We arrive at this problem so quickly because non-expert design
tools, as a rule, must inject educational, or at a minimum, supportive
criticism into whatever representation of choice they happen to
be working with, to help guide the user through the process of
designing. The criticism structures are tied to and constrained
by those representations. There are two common problems that
rise from this: first, the tools cannot scale beyond the limits of the
representation. And secondly, the user’s learning support systems are
tied to the specific representation of the tool they happen to be using,
rather than the conceptual design domain within which the tool is
attempting to facilitate the discovery.

Designing in a complicated domain like architecture requires
knowledge about forms, structure, lighting, materials, and so on.
Moreover, the process is a scalable one; often architects will ignore
some details of the problem to address other design concerns, and are
constantly shifting their area of focus. For example, an architect may
be very concerned with the organization of spaces around a central
hall, and may do some design sketches of the plan configuration
without trying to work out the details of what the walls and roof will
be made of. These other things would be “saved for later”. At first
glance, the architect may appear to be simultaneously managing all
sorts of different design considerations, and selecting between them
with computer-like precision until a final design is resolved, complete
in every detail. But research has shown that the architect’s process
is far less controlled, and involves the constant discovery, and re-
discovery of problems and solutions within the context of a design.!
The professional act of designing is far more of an improvisational
act, with some structure provided by project constraints but with tacit

knowledge, and reflective learning constantly at play.

The idea of constant discovery is an important one because it
highlights one of the most critical functions of an architect, and that
is to find and frame problems as a way to steer through the immense
potentiality of the physical solution space. Architectural design is like
a search for good solutions. But it’s a search for the unknown, not a
search where you know everything ahead of time. It’s like trying to
find your ideal mate, not like looking for a penny on the sidewalk.
You might know a few things that the person should be or have, but
your ideal mate is likely a complex fit - and probably not very easy to
describe completely.

The first efforts to make software tools for novice users attempted
to engineer professional knowledge that guided people through the
architectural design process. These solutions could be described as
basic expert systems, where a linear narrative of “value” questions led
to a design recommendation. An early example was the ARCHIT
expert architectural design system from the 70s (Figure 2.1), which
was criticized for its limitations. (Negroponte) The failure of these
systems quickly highlighted the problem with their approach:
improvisational, tacit designing, which all good architectural design
consists of, is not easy to encode as a script. First, the design process
is not linear; it may be circular, tangential, or even random. And

abstract realms of knowledge, like aesthetics, may be a source of

¥ OF SIN VOILD YOU PREFER:

VITHOUT COIMTIR %P H

VITH COUNTER SPACE ON OBE S137 OMLYY
WITR COUNTER mt OI POTH SIDFS?T

YOU WART EACH DF YOUR ENILDREN YO MAVE SEPARATE LAVATORY FACILITIES?

T X1wD OF Srexs Do you “ﬂ FOR YO CHILERENY
vmmm Cﬁull’ﬂ SPAC

X1
Nt
WS WITH COURIRR SPacE Dl out S1bE om)
wns
mar

vos
4.4

WiTH COULIER SPACE ON BOTH SWI&I

AT GUEST LAVATORIES DO YOU WANTY

Ly

g3
ARy

UVA!IW. WHAT K1HD OF STAK DO YOU WARTY
ViTHOOY COUNTER SV l?

VITH COUIT'R smr N OE S19E oMYy
VITH COUNTTR SPACE O® BOTH S1DES?

33 Rrele.
=§¥§

5 og
g

THER OR WO PREFERINCE

COMPONERT SPACE llllmlgﬂ
€

MSIN st
£10n TSt
xior S100
GuEsYT

£
1485 1,23 2,33 0.00
1.40 0,00 .23 $.33 0.00
0,00 o2 2,803 .0
140 0.00 123 2.3 00

SIS sjued
b 4
w
3

Y
8

tA 1318t

| RO T T PO ——"

IENTR ST 1 CHTRE B "

feesastucocntoranes o Figure 2.1 ARCHIT Screenshot
ateesgEes weew i
reerashCCESSarnere £ Example of an early, narrative expert
T . system interface for architectural design

17

reacts to
criticisms

makes a
modification

v

representation

\

reviews

describes any Tevie
modification

criticisms

——system<

Figure 2.2 Design Critic Cycle
The iterative cycle of an embedded critic
sub-routine

18

decisions in the design realm. Flat, linear systems simply didn’t allow
people to relate, in a rich way, their own knowledge to the problem,
or to discover their own solution within the problem space.

This incompatibility with abstract design sources points to an
important criticism of design engines: the flat-out inability to handle
or encourage metaphorical and associative thought. This is something
that people are really good at, and something that human designers
are constantly doing. For example, the architect may borrow ideas
or fragments of structure from other projects to arrive at their own
solution. Or the entire design process may be metaphorical: the
architect may, for example, try to evoke the nautical sense of a sail
with a sweeping roof design. These ideas are context, time and
space specific; they may even be discovered by accident. For non-
experts, this type of associative virtuosity should also be enabled
and supported, for it is the most basic of conceptual structures, and
organizes both the design inquiry and the designer’s thinking. > In
the realm of associative thought, everyone is an expert simply by
being alive, aware and human.

More recent consumer design tools have emerged that associate
various design interfaces with software critics. (Figure 2.2) These
critics are programs that evaluate designs according to a specific,
encoded rule-set. 3 For example, R. Williams (MIT House_n)
explored methods for training software programs how to criticize a
user’s designs by comparing those designs to pre-evaluated examples.
(Williams) These tools represent a significant improvement over
linear scripts because they are iterative in nature and allow the user
to make (and learn from) mistakes, by highlighting those mistakes
in some way. (Figure 2.3) This makes interactivity inherent in
the process and allows for more self-direction, depending on the
representation used. An everyday user could conceivably create a
simple floor plan by placing pre-arranged room configurations, and
upon completion, a critic could be invoked to check out specific
properties of the design - for example, to make sure the rooms
all connect up, or that the toilet is connected to a water-wall. In
application, this works better for someone who is an expert already,
because having the critic discover more than a few of errors creates

a dizzying scene for a novice, where the logic behind the critic’s

I Auito desk Revit Buitding 9 - [Project] - Floot Plan’ Level 1] =] X
&2 rie Edk Yew odeling Orafting Ske Tor o' Settings Window Halp i

B % otot|me | HQLE®E® | i il
| {8 Plane l]ﬁ’iﬂ/@ﬂ:ﬂ:&@ﬂ_lﬁm\'r:m#sﬂ#r-m ﬂm|'@@;@

.Ism&mh,as e _@H npiace..] (Load..] | (4] Tag on Flacement |L~. orzortal |se| [Tags..] []Lesdel

B | et wapee ¥ n
[Modfy = @ Views (al)
@ Floor Plans =
, | = CeiingPlans
 poor I Level 1
@ wndow | Level 2
= Elevations (Buidng
i Culponare Eon
[room 4 Notth =
@ Roof » ‘5‘::')
|Eﬁ°‘l Legends !
PP Grid B Schedules/Quantiie =
1\ e Ol Shees (ol - E
@ 08 Famibes o
[T Ref Plane la Groups
1 Dimension
4 Section | T —
& Lovel ! Euﬂw\lrﬁ:ﬁme Tiy selecting a different Host Face or switch
View i
Modeling |
Drafting]
Ste S [|were O@ 0 BA3g] () @]

|Click on Wl to place Door (Space Bar to fip the instance leftjight) o

suggestions may not be clear, or simply where the number of issues

is overwhelming. Another issue is that of the encoded rule-set used
for criticism: critics must infer facts from the specific details of a
representation and then evaluate these inferences against rules to
discover correctness. The non-expert knows nothing about these
rules, which, of course, is why they were encoded in the first place.
But this is also their biggest problem: they represent a black-box of
hidden mechanisms where confusing outputs frustrate, complicate, or
terminate the design process.

For the everyday user, there’s also a problem of distraction.
Where the representation may have allowed them to more freely
explore potential solutions, the criticism quickly pulled them out of
their conceptual problem space. At the lowest level, this is because
the criticism is tied directly to the system’s representation, and cannot
scale to fit different conceptual representations the designer may
have been holding in their own mind. So quite simply, things may
be surprising or make no sense. As learners, adults are self-directed
(Lieb): they must be able to perceive the immediate or long-term
benefit of working through a problem, and they must be able to
relate the design to their own experiences on a conceptual level. This
relation must be allowed to persist throughout the act of designing,

because it's the fundamental mechanism for seeking out and selecting

Figure 2.3 Design Criticism in Revit
Here, the user has attempted to place a
door in the open floor. note the prompt

19

1990
1991
1993
1994

1998

Archie
Gopher
Excite

Yahoo! Directory
WebCrawler
Lycos

Infoseck
AltaVista

Open Directory Project
Google

Figure 2.4 Early Web Search Tools
Original tools like Archie and Gopher
were essentially list searches

20

solutions.
2.2 Search tools

For architectural design tools, the ability for self-directed
discovery within the problem domain is highly constrained by
the current standards for non-expert technology. The fact that
technology is a shaping factor upon the experience of humans is
an inevitable dimension of how people interface with their own
creations, and is not, inherently, a problem. But when a recognizable
need cannot be met, the technology must be either retooled, or we
must look elsewhere for a solution. And so, in looking elsewhere
for a solution to the integral flaws of expert systems and embedded
critics, this research explores that which is arguably most fundamental
to computing: the search itself.

Computing technology is structured around, and perhaps
informs, the popular conception that there is some sort of divide
between searching and learning — that you must first find some
resource, and then, only once you have found it, begin to learn from
it. But in everyday life we often observe the contrary: that the act of
searching, especially through reflective self-evaluation, is inherently
an educational process and the learning is related specifically to that
which is being searched for. Consider again the example of finding
an ideal mate; many people conceive of the process of dating as a way
“to find someone” during which people learn a lot about themselves
and what they value in a spouse. The same type of dynamic, reflective
searching is particularly true in the context of design.

The rise of the internet and the democratization of information
access into more horizontal network structures have naturally led
to a parallel rise of web-based search engines that allow people to
navigate the immense search space of the internet. (Figure 2.4) In
fact, as the primary window into cyberspace, these search tools are in
a position of fundamental, central importance: just as Vannevar Bush
speculated in the late 40s, it was managing the access and retrieval
of an unprecedented amount of information that was key. Prior
to the World Wide Web, early search tools like Archie and Gopher

allowed people to search file names but not contents. With the

advent of the Web in 1993, search tools that could parse full page
contents were already emerging. With the bar raised to full content
searches, indexing systems were developed to manage the immense
and ever-expanding search space of the Web, and to make searches
more efficient in real-time. A pioneering researcher in this aspect of

searching was Gerard Salton, whose team developed many algorithms

for retrieving information more quickly, including the fundamental
concepts of document relevancy by word frequency (Figure 2.5), and
the automated indexing of documents to make them simpler to parse.
To accomplish this, various crawlers (also known as spider) programs

emerged, their purpose was to automatically navigate through sites,

following links and writing what they see into a central database. .
This central database thus becomes the collective index. Of course,
the index is never complete and never up-to-date, in the context
of the Web it creates the illusion that the entire Web is searchable

when in fact it is not. ‘The phenomena of unreachable, dynamically

generated content that escapes the notice of crawlers became known
as the Invisible Web. (Bergman) In fact, the improved search @
functionality of sorting documents by popularity, which helped o retevant document
Google emerge as the leading search tool from 2000 to present day x noncetevant document
(2007), actually increases the tendency to overlook many resources. oo o
(Bergman)
In discovering the Web, one quickly learns that there is a standard
format and methodology for searching, and for discovery: a text
box that you can put text in, with a button next to it. You type
something in, click the button, and up comes a listing of available
and matching resources: behind the scenes, the listing may be ranked,
cached, intricately sorted, maybe even paid for, but to the user the
listing is always conceptually the same: an ordered set of results. If
the results aren’t quite right, you can use some different words and
try again, until you find what you're looking for. All of this is really
just a roundabout way of saying that most Web users know how to
search interactively, and most Web users have a mental model for
“query”, “search submission”, and “browse results”. This process is
fundamental, inseparable from browsing, maybe frustrating at times,

A Figure 2.5 SMART Relevance Feedback
maybe educational at others. From Introduction to Modern Information

Retrieval by Gerard Salton, 1983

21

Therefore, if we conceive of a search operation as a new

user arrives at
sear_ch
engine

user clicks on link
to go to
result

4

user enters text into

query
_7interface

usc;f views

results
listing
A

N|
query
submitted to
system

system performs
.fearc/ﬂ of &
“indexes

[]

frzlzwler runs

automatically

indexing

mechanism
]

Figure 2.6 Web Search Engine
Typical structure of an indexed search,
crawler runs on its own, asynchronously

22

model for a software-based design process, we have the advantage
of a democratically accessible and standardized set of primitive

components, which we may then overload to support designing.
2.3 Overloading a search

If searching is a fundamental part of designing, then could the
computational search engine be utilized as a structural foundation for
a design system? This research supports the development of search
tools to help everyday people conceptualize and design physical
spaces, recognizing that design-based searching should be a more
constructive process, and that some new avenues will need to be
explored. * So, in what ways does the standard conception and
implementation of searches limit the learning of the human who is
searching? Could a search be expanded to allow for the user-defined
specification of non-textual, spatial-diagrammatic queries, and could
the construction of these queries become an inherently educational
process? Designers must be able to search for solutions by iteratively
working through a problem to construct a solution. By examining
current search technologies in terms of their constituent parts, we
may illuminate potential areas for further study, or for injection of
new constructive processes.

Search tools have three primary components: an indexing
mechanism that summarizes the search space (typically crawlers or
directories), the querying interface where users enter a search term,
and the results listing. (Figure 2.6) Web-based search tools are
generally indexed for manageability and performance. Most search
tools are text-based, such that the query, the results listing, and the
searching functions are dealing with natural language handling,
parsing, and matching. Some newer search tools integrate the
conceptual or semantic organization of textual terms in a map-
like image, but these are still fundamentally text secarches. Recent
improvements in computer vision algorithms have lead to the
development of visual/image search functionality; for example,
e-commerce sites that allow consumers to search for products by
comparing items to a source image. The more advanced of these

visual searches even allows users to rank what is most important to

match between the images, be it color, size, or shape. * For all types of
search, the results display will always be sorted: there is an expectation
among search users that the top results will be the best by some
measure; this measure may be relevance, popularity, influence, or
something else. (Fensel, et.al. 18) The query is generally submitted
through a simple dialog that then launches the results listing in a
discrete page or interface. This allows the search dialog to stay up,
and facilitates a smoothly interactive process of query refinement.
Because searching is fundamental, every computer user has some
sort of understanding of how a search works. And this is exactly the
reason why search functions are such a compelling source for building
more powerful design tools: they are fundamental, widespread,
and well-known to virtually all users. What better foundation for
enabling the exploration of designs, for a large community of diverse
users, than search engines? Everyone who uses a computer has a
conceptual model of what a search engine does, and what its basic

parts are.
2.3.1 The Query

On computers, the search term, or query, is almost without
exception a text string. Various rules may be encoded into it, like
quotes to match phrases or meta-rules like the “define:” directive
Google provides. ¢ But knowledge of these advanced features isn’t
necessary, and ultimately, the standard query is still flat, abstract text.
Newer interfaces have begun to integrate visual organization into
the query, in an effort to create a process that is more intuitive. For
example, some web sites use a semantic diagramming structure; the
idea behind this visual representation is that it helps people navigate
the search space by grouping concepts together and relating the
groups into a kind of primitive organizational structure. 7 The search
query is still plain text, even though the representation is more visual
in nature. But could the process of specifying the query be something
more constructive, something that allows users to assemble visual
information? Could it be something along the lines of drawing or
composing an image, and what would be the benefit of a visual query

as opposed to a textual one, in the context of architecture?

23

Figure 2.7 Children with Turtle
Learning with Logo, from Mindstorms
by Seymour Papert

24

The motivation for moving towards constructive queries is to
improve the learning supported by the search process in general, and
to improve the mapping of search concepts to discovered architectural
solutions, in particular. Let’s start with the learning part, and Jean
Piaget.

Over the course of his life-long research into the cognitive
development of children, Piaget closely related the mental
development of children to different types of interaction with the
environment. As children grow through various stages of knowing,
their understanding of the world evolves from simple conceptual
structures related to movement and objects, to the development of
motor skills, followed by logical thinking and ultimately abstract
reasoning. (Piaget) While there is no clear division between these
stages of development, they are all fundamentally about iterative
cycles of doing, and they indicate that knowledge is fundamentally
constructed internally by the child, through processes of reflection.
This new perspective lead Piaget to a set of theories about learning by
doing, known as Constructivism.

Others would pick up on this line of inquiry, as did Seymour
Papert, who had worked with Piaget in the 1960s. In 1980,

Papert published Mindstorms and formally described his concept

of Constructionism, which draws in part from Constructivism,

but further identifies the process of building things as an intensive
and primarily educational mechanism. From his observations,
Papert contrasts basic mathematical knowledge developed through
traditional methods with Constructionist methods of instruction,
finding that the latter lead to concepts that were more relatable to
various types of tasks, and also more significant to the children.
(Papert, 53) Further, he describes an important point: that the
knowledge built through making things can be developed just as
effectively by various types of learners, even kids that were previously
“mathophobic”, because the process of construction enabled them to
relate things that were meaningful to them as individuals. (Papert,
63)

To help people learn about architecture, this work tests the
viability and accessibility of spatial or conceptual images that are

constructed, iteratively, by the user and submitted as a search query.

The fundamental challenges with this are first creating a way to
construct searches that people are comfortable with, and secondly
determining the level of descriptive capacity that people really want
to have access to, and finally determining whether that level of
description can be matched effectively with various computational
representations of architecture.

This research is aimed at tools for the potential home owner, and
therefore, adults. Adults really aren’t as efficient learners as children
are, because they're influenced by experiences and expectations.
(Minsky 1, 92) There are innumerable reasons this may be the case,
but experts in the field generally agree that it has something to do
with the following properties of adults. First, they have more de-
motivating roadblocks: they may be short on time, or may have other
responsibilities or concerns that prevent them from digging into
the task. And they are far more self-directed: adults want to be able
to pursue a problem in the way that is most comfortable to them.
(Lieb) Finally adults must be able to perceive the immediate benefit
of something before committing the time to learn about it: they will
have more resistance to learning new things at the onset if the interest
isn’t there inherently. In the context of a more visual search, this
means that the task of image-making, which would probably be new
to most users, is potentially daunting. In fact, upon realizing that
almost all Web searches are text searches, one might speculate that the
general consensus among search developers is that people simply can’t
or don’t want to do searches by image-making.

To get a sense of what may or may not be doable, different types
of conceptual querying interfaces that related searchable concepts
differently were evaluated. Rather than speculate about what sort of
searching interface might be the best one for our purposes, this sort
of evaluation gives us a better foundation for future work and opens
up the possibility of using different query interfaces, or different
combinations of queries, for individual users. This research evaluates
the effectiveness of four querying interfaces: text-based, role-playing
metaphor, activity-based, and diagrammatic. Chapter 4 will provide
a detailed summary of each interface type.

Among those tested, diagrammatic representations are the most

difficult to search with, but they’re attractive because they have ’s

Figure 2.8 Lynch’s Diagram of Boston
A problem map that summarizes urban
wayfinding information

From The Image of The City

by Kevin Lynch, 1960

26

enough constraint within them to be understood by a computer, and
they also make sense to people, as suggested by the work of Marvin
Minsky and Kevin Lynch. However, being able to make sense of
diagrams and being able to actually create diagrams are two different
things; the diagramming process must be approachable. (Lynch
11) Furthermore, because the diagrams are potentially much less
constrained than the parameters of the search space, there is greater
potential for the user developing unmet expectations in the act of
diagramming. In other words, they may think they are specifying
something meaningful as a search criterion, where in fact they are
not. This will be discussed in greater detail in the following sections.

In his research about how the human mind may structure and
retrieve information or knowledge, Minsky speculates that there are
likely many different types of structures at play, with different types
of functionality to facilitate different types of knowing. Among them
are semantic networks, which relate together the various parts of
entities or processes. These networks may be assembled into narrative
sequences, which might related to simple constructive processes, like
what happens when you move a chair, for example. (Minsky, 137)
The fundamental idea here is that people understand that which
they see in terms of their constituent parts or properties, and that
these parts might be relatable, or swappable, to facilitate low-level
associative thinking. Low-level associative thinking takes many forms
and is evidenced by metaphorical relations; for example, thinking of a
slice of pie to describe a pie chart.

In the specific context of spatial configurations, Kevin Lynch’s
research on how people understand their environments pointed to
a common language of parts for these knowledge networks, at least
at a high level. Through evaluation, he discovered that people’s
conception of space could be generalized into a few specific types:
paths, districts, edges, landmarks, and nodes — and that these types of
things could be related diagrammatically. (Figure 2.8) He extracted
these findings through the case study of specific cities, and conducting
interviews with inhabitants. The basic types that Lynch describes
are the foundation for the specific diagramming language evaluated
herein, where districts and edges taken together are simplified into the

cell(s) of a grid. Nodes and Landmarks are characterized as particular

functions or activities granted a specific location. And pathways
persist as a way to connect the other primitives together, to create
basic assemblies or systems.

Taken together, the work of Minsky and Lynch suggests that
simplified diagramming processes may map well to human thought, Ll 8
and specifically human thought about spatial organization. The AS WE MAY THINK

A TOP U. 5. SCIENTIST FORESEES A POSSIBLE FUTURE WORL
IN WHICH MAN-MADE MACHINES WILL START TO THIN!

potential area of difficulty in constructing the diagrams is that making ot

them forces one to think about thinking. Architects for example,

seem to love diagrams as a way to organize thoughts about things,

this is like a meta-process for them, and inherently reflective. But this

s
—
-

type of high-level analysis may be an endeavor that only the experts emsmmens w v o s
have the knowledge to pursue. Would beginners even know where to
start?

Rather than focus upon just one strategy, this research is exploring
the different characteristics of four unique query interfaces. The
primary reason for this is to provide users with multiple options
for expressing themselves, particularly if one of the interfaces seems
difficult or unbeneficial. In addition to the diagramming interface,
this work examines an interface that allows users to list out each
activity in a routine that happens in their home. Another alternative
is tested as well, an interface that allows users to imagine packing up
their various possessions, as a way to think about their needs. And
finally, text-based checklists are provided as a more standard type of

interface. Each of the interfaces is described in detail in Chapter 4.
2.3.2 The Search

As long as there have been computers, people have been thinking
about methods for searching. In his influential 1945 article As
We May Think, (Figure 2.9) Vannevar Bush cited the need for
technological advances in searching: “The summation of human
experience is being expanded at a prodigious rate, and the means we
use for threading through the consequent maze to the momentarily
important item is the same as was used in the days of square-rigged
ships.” (Bush) Bush was arguing both for the record of data, and for

Figure 2.9 As We May Think

associative, conceptual tools to help people navigate the data. B \rwieve Busti, publishedin
Altantic Monthly in 1945

27

By 1965, electromagnetic data storage was more widespread.

atributes
define details - - -~ -

1
L]
< tag amribuse="y" >
- .
tag definas 1

documant — — - J
structure

< child tag >

---» information

</ child tag >

tags are
higrarchical

< child tgg >

|

- -» information

</ child tag >

?riformja?.ion is < / tag >

Figure 2.10 Hypertext
Example of HTML tagging structure

28

Gerard Salton, a researcher in the then-emerging field of computer
science, pioneered the era of modern retrieval algorithms with

the SMART information retrieval system. His system introduced
important indexing concepts like document frequency, term
frequency, term discrimination, and relevancy feedback for text-based
searches. (Salton)

Salton’s work introduced concepts that are still very much in use
today. At around the same time, Ted Nelson began publishing about
his concept of “hypertext”, or the embedded tagging of metadata
into informational resources to apply structure and accomplish
attribution. The World Wide Web would eventually be developed
using the idea of hypertext for its fundamental document structure,
and the tagging mechanism is what enabled the more efficient and
robust indexing mechanisms to be developed. (Figure 2.10)

The work of Salton and Nelson was on the leading edge of search
tools that were built to function through indexing. In the context of
searches, indexing refers to the retrieval, parsing, and storage of data
for improved efficiency. Particularly in the context of the internet it
emerged as a necessary element of search design simply because of the
size of the potential search space. When you do a search on Google,
for example, you're not searching the internet in a “live” fashion;
you're searching Google’s index of Web resources. Google, like all
Web search engines developed from 1993 on, utilizes specialized
crawler software to automatically index the Web by navigating
through links and parsing the web pages that are encountered. These
parsed pages are then stored in Google’s databases, which means that
the search can be faster and more reliable in terms of delivery, but
never completely up-to-date in terms of the content. And because
much of the Web is dynamically generated by server-side programs
that even the most advanced crawlers cannot parse, much of the Web
becomes un-searchable, invisible.

But of course, this is the reality of the immense problem of
searching the Web. Apart from global Web search engines, many
web sites have their own searches which read through the internal
information that drives the site itself as a way to deliver content. ®
These searches do not need to automatically generate indexes; the

internal information is queried directly.

This research explores functionality that is very much like a
Federated search, which searches for results from a specific group of
known resource providers. (Figure 2.11) In system described here,
the providers are builders or developers that want to offer searchable
homes. So the system is situated between the small, site-specific
solutions and the global, indexed solutions like Google, and will
highlight additional problems and complexities. In order to associate
the previously described conceptual query images with various types
of architectural representations, we must describe not only a common
indexing mechanism, but also a mapping process that translates the
conceptual to whatever literal representations we want to be able to
search for. The index which is proposed and evaluated is an XML-
based record of the conceptual structure. When an image query
is constructed and submitted by the user, the XML description is
automatically generated. In the search space, resources may have
their own XML description which can be compared directly, or
they may be mapped to the query in real-time by an intermediary
application. However, this system does not require any automated
crawlers to facilitate indexing functions, for several reasons.

First, as opposed to the incalculable size of the internet, our
search space is much more constrained. Under the Open Source
model and as detailed in the subsequent chapter, a centralized
conceptual search may be used to query finite, discrete resources

that are offered in various formats by specific developers, builders, or

conceptual query conceptual query

interface, item list interface, checklists

i

conceptual . XML
query interface, ----w—
e - GQUErY™N
diagramming resource provider,
E Search - floor plan images
conceptual query interface, -r
activity sequence XM L
index "
S
resource provider, " resource provider,
component-based (BIM) web listing

Figure 2.11 Proposed Search Structure
Different query building interfaces to search
different types of representations

29

30

architects. Each of these resources is accessible to the search interface
through mapping functions, or by direct comparison of the resources
where the representation allows for this. As such, the XML indexes
represent more of a common specification, a meta-representation

to use between other representations, and the submission becomes

a more complex operation of, for example, mapping conceptual
searches to JPEGs.

Search submission is most often thought of as a one-way process,
but in truth it’s far more interactive than that. Using Google as
an example: the search term is submitted, and processed against
a complex matching algorithm against available resources, where
the available resources are the entirely of the Web. Google’s result
listing allows the user to both reflect upon their query (if the results
were unexpected) and to revise and re-submit. So the search process
provides criticism and guidance via the relevance measure of the
results. In the context of the proposed design tool, let’s assume the
available resources would be designer-provided floor plans. Each
floor plan would further specify a mapping protocol to dictate how
the searches’ primitive components should map into physical form.
It is here, within the submission process, that the essential design
criticism may be embedded by describing the relevancy score for each
available resource directly within the user’s original search image.
This enables the relevancy information to provide criticism and
guidance to the user inherently, as part of the searching process. The
criticism logic is constrained neither to the conceptual nor the literal
representations; it exists between them. The criticism is emergent,
derived from the relationship between the query and the results
themselves.

In his discussion of the emergence of different and late-period
styles in music, Edward Said asserts that part of music’s structure and
purpose is to remind the musician of the specific styles of the time.
He notes: “Were this reminder to be simply a repeated 7o or this will
not do, late style and philosophy would be totally uninteresting and
repetitive. There must be a constructive element above all, which
animates the procedure.” (Said) In the context of the proposed design
search, this same sentiment is reflected by the criticism process, which

may serve not only as a stylistic guide, but as Said further describes, a

set of parameters within which styles can emerge through constructive
and iterative processes.

Structurally, the criticism components would be part of the
common XML specification. The act of search submission becomes
an important part of the iterative cycle of searching by designing,
because it allows the user to instantiate the criticism automatically
upon invocation. There are a few reasons that the two-way search
process, and thus the posting of criticism functions back into the
search dialog, may be challenged as unnecessary.

First, as shown in Figure 2.12, there is an inherent criticism
process in the standard search where the user may reflect upon the
correctness/effectiveness of their query simply by reviewing the result
set to see if it contains what they are looking for. But, the problem
with a design search is that the user, in general, will not know what
they want. So they won’t have a good way to evaluate the utility
their search image without a little assistance. Secondly, common
text searches can do things like highlight words in the results listing,
to let people see what words matched up. But along those lines and
because the source query is a visual one, the relevance of the results
is best described visually as well, and in the conceptual context of the
query itself. And because of the wide potential for multiple target
representations accessible through the mapping functionality, the
query image becomes an important common thread that the user
may both construct in and evaluate through. The diagrammatic
representation can describe how the results are a good fit, and how
they are not, simply by highlighting the portions of the diagram that
match. This builds upon the inherent iterative cycle of the search but
incorporates new spatially organized relevance and scoring strategies,

as a way to help the user learn about design parameters.
2.3.3 The Results

Web Search results are of a common type - HTML. Powerful
search tools can automatically parse related formats, like Google does
with PDE DOC, TXT, RTF files, seeking them out the same way
that Web content is searched for. But the search matching is still

text to text: even in special contexts like the Google image search,

reacts to enters or

criticisms adjusts a query
conceptual query interface
A
relevancy info search finds
posted into best match
query Jor query

results <—

Figure 2.12 Criticism as Part of Search
Relevancy information provides
design guidance to the user.

31

text-based meta-data and text-to-image relational algorithms actually

E “find” pictures by finding text. ? In the proposed system described
: manual or P X prop Y
o..... uiomated here, mapping functions will be explored as a way to relate the search
ge?lfrd!ﬂ]”
Index !

image to any different type of architectural representation: a ragged
' image, a component-based model, an adjustable vector-based floor
plan. This mapping is managed through a common language which,
as detailed in the previous chapter, is the XML index. But how
would chis index get related to various types of representations?
- In this sort of scheme, raster images would need to have an XML
i description generated, and that would be paired with the image as an
index for comparison. (Figure 2.13) While this process of indexing
could be either human-managed or automated, it’s problematic either
way. The development of more advanced computer vision algorithms
makes more plausible the idea of using programs to automatically
scan and tag raster images, but the level of sophistication to reliably
analyze and tag floor plans has not been accomplished. The details of
this class of problem in computer vision are outside the scope of this
research. And vector compositions and 3D models are problemartic
in the same way. People could tag these representations themselves
using an auxiliary tagging application, perhaps as the designs are
being created. However, depending on the complexity of the tags and
the number of images to be tagged, this process may or may not be
manageable or sustainable.

Component-based representations or models solve these basic
problems of searchability simply by allowing for the autonomy
of parts, but they also lead to new challenges. Because their
representation is made of autonomous entities, the computer-
based attribution process becomes straightforward. (Figure 2.14) In
the current (2007) world of professional tools, we're seeing a shift
towards design tools that facilitate the construction of component-
based reasons, primarily to build a standardized platform for
interoperability and smoother workflow. In a way, component-based
representations are more intelligent about the physical world simply
by virtue of being able to distinguish things. Let us consider, as a case
in point, the evolution of AutoDesk’s product offerings.

Figure 2.13 Image with Auxiliary Index
Different query building interfaces to search Autodesk was an early developer of CAD systems, and has

different types of representations

32

continued to be an industry leader in their area of specialty, emerging

component
name

type
manufacturer
(]

component
name
bpe
manufacturer
etc...

component instances z:nr:lponent

location and connection .
information op
manufacturer

erc...

as the de facto standard of computer-based drafting tools through
their leading product: AutoCAD. While developed around specific
functions, processes and commands that are inherent to a computer
program, AutoCAD, at the lowest level, was designed in mimicry of
traditional pen and paper drafting processes. In AutoCAD you're
essentially drawing lines, which may be given simple attributes, in
terms of how they should be presented: weight, color, and style for
example.

In 2002, Autodesk embarked down a different road with the
purchase of Revit Technology Corporation and their new modeling
tool. Shortly thereafter, upon the release of Revit Building, Autodesk
began supporting drawing of an entirely different type: Building
Information Modeling (BIM). The main idea behind BIM is that the
drawings are no longer made out of lines or vectors, but autonomous
components that have specific labels, properties, and functions. The
primary motivation behind this type of tool is to streamline the
process both for communication between different companies and
organizations, and also to simplify the change and revision process.
A recent NIST report estimated conservatively that $15.8 billion
was lost annually by the US facilities industry, because of “the
highly fragmented nature of the industry, the industry’s continued
paper-based business practices, a lack of standardization, and
inconsistent technology adoption among stakeholders™. (Gallagher, 7)
Component-based Solutions like BIM, which structure and support

information exchange, are a promising solution. But with this

Figure 2.14 Component-Based Format
Object-oriented representations like BIM
relate objects with specific functions and

properties, rather than lines

33

autonomy of parts being inherent in the representation comes many
other qualities, one of which, I'll argue, is inherent search-ability;
thus, accessibility for consumers as well.

Referring back to the diagrammatic query language, BIM
systems would be able to map to searches directly: activities relate to
components, zones to containers of components, and connections
to the hierarchical relation of components within certain containers.
In fact, the conceptual search would prioritize these more expressive
component representations simply by finding more relevant results
there.

The problem inherent to all of these searches, of course, is how

query well the information they describe or search out may be related to the

submisted 1o user’s actual sense of what they want. Can the simplified relation of

system

activities in various spaces really give the user a way to describe their

architectural preferences? Because these tools are aimed at consumers

of all different types and with different motivations, one cannot
explore the search potential of BIM, for example, without considering

the differentiability of the BIM configurations and how likely the user

Yuery added 10 would be to search them out.
design .
wiki ooy However, as Figure 2.15 suggests, the query could be used for
r?stlrllts more than just searching for available results. For example, searches
user posts Isting . .
design could also be submitted directly as a request to one of the resource-
request

providers. This may be particularly useful if the initial search
query doesn’t lead to any good results, because, as will be discussed,
criticism would be tied to the results and would not necessarily be
available or adequate. In this case, the user may choose to post their
search query to one of the providers, as a design request. This keeps
the user, and the user’s understanding of their architectural needs
(however primitive they may be), at the center of the process, even
where the searchability of the representations in the search space is
inadequate to map to their search.

In the case of the architect as a resource-provider, this creates the
opportunity for a new service-based business channel, one that is

both accessible and self-selected by the user.
Figure 2.15 Different Query Desinations

Query artitacts could be used for more It is conceivable that the search tool could become a central,
than searching, they could serve as . . s . .
design requests when posted to a wiki organizational structure for the homeowner’s ideas about their home.

community, for example

34

A collection of stored and individualized searches could be parsed

into a wiki-style resource full of spatial configurations, with associated
comments and other meta-data. Here the search query becomes

an artifact, an important node in a collaborative community. Over
time, these artifacts could potentially give designers and users insight
into the evolution of spatial use, or to improve user understanding of

space and space use for better affordability and sustainability.

1. In Educating the Reflective Practitioner, Donald Schon provides a derailed

35

36

analysis of the design process in a studio-based environment, uncovering a
highly reflective, iterative, and at times surprising design process nested in
a constant cycle of rediscovery.

Piaget’s work with children and the development of knowledge suggests
that as all knowledge is constructed within the mind, the association of
concepts in new ways, or associative thought, is a powerful mechanism
for understanding the environment and making new discoveries. Many
theorists have built upon these ideas: for example, Marvin Minsky’s
theories about the structure of the mind accounts for what he describes as
Panalogy, or the association of representations within or between domains
of knowledge

Software critics in this context are agent-based simulation systems, which
have generated interest over the years for their potential to analyze a
representation and to either adjust their behavior or make suggestions to
the user based upon this analysis. Agents acting as critics are reactive.
The effectiveness of the agent is constrained by both the representation
used, and by the programmability of the behavioral logic. In the case of
architectural design guidance, critics like this are an incomplete solution at
best, because they cannot follow the improvisational logic of the designer.
It seems reasonable to assert that even the well-known text search format
is an interactive and constructive one, an iterative process of refining the
query to get at what you're looking for. The relevance and size of the
result-set is what sustains continued exploration.

For an example of a commercial visual search, check out http://www.look.
com

A scarch for “define: word” on Google, where “word” is any word for
which the user wants to know the meaning, will return a list of definitions
racher than web pages.

One example of a semantically organized textual search is Kartoo, available
at: http://www.kartoo.com

Take for example any e-commerce site, like http://www.amazon.com

As of 2007, Google has implemented a version of the ESP game (http://
www.espgame.org) to improve their semantic tagging of images in a
game-like environment, essentially utilizing humans as a computational

resource.

3 The Result Set: Component-Based Representations
3.1 What do Component-Based Representations Describe?

With the emergence and rapid popularization of object oriented,
component-based systems comes a new potentiality not only for
the architecture, engineering, and construction industries, but for
participative design as well. The new potential derives from the fact
that the component-based representations are “smarter” than other
representations: i.e., they know more about that which they are
describing, and from the fact that they provide a standard for sharing
descriptions of things.

This work explores the inherent searchability of component-based
representations, in terms of their ability to be matched without prior
indexing, as a technological facilitator for new business channels and
processes. But what exactly do component-based representations
describe, and how are they going to help change the way homes get
buile?

Component systems describe a collection of related objects, where
each object is represented by a shape, a specific location and spatial
relationship to other objects, and by additional properties like names
and product numbers. (Bernstein) When an object is placed and
scaled into a drawing, component systems describe the location in
terms of coordinates, like most any CAD system does. (Figure 3.1)
Objects commonly have an insertion point to which the location
coordinates point; rotation and other operations are then made about
this point and stored with the specific instance of the object. BIM
systems also have the potential to describe location globally and
connections at a higher level, between buildings for example.

The shapes are 3-dimensional and defined by closed polygons
with a specific number of sides. Certain types of shapes are
parametric, depending on the object. For example, a “Copy
Machine” object’s definition would not be parametric or scalable; it
would simply be a volume enclosure of a specific shape. However, a
“Wall” object’s definition would be freely resizable, its length, width,

and heights being variable and context-dependant. In addition,

component record

----“chair”

object gm . >
added to drawing

as an “instance™

3 "+ |ocation
: xpz
coordinates

L

parent object
| rq‘i:rence
connection

c:)mponent properties
Name

Unique Item Number
Manufacturer

Category

Can be Resized?

Code Requirements

Clear Space Needed

Figure 3.1 Component Details

The Objects in BIM-like drawings are
specifically located instances of
prototype components

37

38

various wall segments could be joined together to create, for example,
a room enclosure; these objects would connect into a more complex
shape.

A key benefit of component systems is that the shape, however
flexible it may be, is automatically associated with other properties
that describe the object more completely. The representation is
therefore object-oriented, in that each part is conceived as an object
with specific properties and functions. The associated properties for
each component include categorical types, cost data, manufacturing
information, and specific physical requirements, such as what
can connect to it, among other things. These connected bits of
information make component systems smarter and more computable.
For example, automatic criticism functionality can be programmed
into the drawing interface, because conflicts between components can
be immediately recognized. Consider the placement of a door object
into an Autodesk Revit document: this placement is only allowed into
certain other objects, a wall in this case.

Thus another part of what makes component systems more
computable is that they describe how things should/can connect
together. (Bernstein) Just like doors can only go into walls, windows
can only go into walls, and so on. In truth, the connections between
all of the various parts are what make buildings so complicated;
and indeed, Revit’s BIM representation becomes useful even as a
spreadsheet of what is iz a building and what is connected to what.
Connections in general are not simple, and even in the door example,
code requirements and specific clearances (ADA compliance, as an
example) need to be enforced and accounted for. But the point is
that the representation is smart enough to allow these things to be
accounted for.

When various components are connected together in a BIM-
type representation, they create an assembly. Assemblies are simply
spatial arrangements of connected components. In the context
of architecture, assemblies may be made at many different levels,
to describe a furniture arrangement, or the connection between a
toilet fixture and the plumbing line, and so on. In our evaluations,
assemblies describe rooms, and therefore describe specific room

functions.

In the realm of buildings, there are all sorts of connections
that a component system has to describe. There are service-type
connections, as with electrical outlets, lighting, and HVAC, and
there are also plumbing connections that need to be made for specific
objects, like sinks, showers, and toilets. In addition to that, there are
object-level connections made between physical objects, for example
the placement of cabinets along a wall means the cabinets need to
connect to the wall, and the placement of a table in a room means
the table is connected to that room. Furthermore, connections
can be made between rooms, where rooms are assemblies of objects
that define a specific region. Between rooms, a doorway serves as a
connection from assembly to assembly, a relational structure that is
fundamentally the same as the object-level and service connections
previously described.

Service, object, and room connections comprise most of the
connections that need to happen in the typical floor plan, (Figure
3.2) but it is easy to see how the representation might need to scale,

to consider for example the connection of a building to its site or a

neighboring building. ! We will return to the issue of connections in a

moment, in describing the specifics of our test implementation.
3.2 Component Systems versus Traditional CAD Representations

The autonomy and identity of parts within component systems
makes them more searchable than traditional drafting software
packages. Consider as an example, AutoCAD: a popular drafting
software published, like Revit, by Autodesk. This traditional package
was quite successful when released and is now widely implemented
and utilized. AutoCAD’s success was quite natural, because it has
always functioned well with the technology of the time and improved
workflows when compared to paper drafting methods. (Bernstein,

8) AutoCAD was also successful because it preserved, even if only
on a conceptual level, the basic production process associated with
paper-based architectural drafting. The metaphorical foundation for
traditional CAD tools has always been manual drafting: they allow
people to construct things out of lines of one sort of another, just as

was done with a straightedge. But being an assemblage of lines, the

« Object into room
i where room is a “container”

i component

s room to room

| connection is a threshold, and
! associated with a door object

» service
! Plumbing connections made

! to fixtures..

Electrical connections made
to outlets...

HVAC ducts, connections
made to systems and vents...

Figure 3.2 Common Connections
Connections are generally made for
things, rooms, or utilities

39

search -
prm:m/

index

subtitle

“flat” representation

Figure 3.3 Index of Flat Representation
Important aspects of the document are
re-represented into a computable index

40

resultant representation may be very meaningful to a person, but not
to a computer.

This is because there is nothing that can be differentiated about
the primitives — the system doesn’t really know if a line represents a
wall or the edge of a counter. Component systems solve this problem
by making all primitive drawing elements into objects with names,
properties, and purposes. These objects in turn provide the system
with an indexing structure that enables it to find and analyze objects
directly.

An index, described generally, is something that guides, or points
out information for reference purposes. In terms of searching,
consider for a moment that indexes and representations are basically
the same thing: relative to any physical reality, all representations are
indexes, in that they highlight specific dimensions of that physical
reality, deemed important simply by the fact that they’re represented.
If a representational index is too “dumb” to be computable by a
machine, automation processes will require that representational
index to be indexed, as well. So, indexes of indexes emerge as a sort
of fix for the limited dimensionality of a representation. (Figure 3.3)

The need for indexing has arguably been around for as long
as any information has been recorded at all, as a way to facilitate
information retrieval (IR). (Metcalfe 4) Bur the earliest definitive
indexes emerged with the advent of printing processes and the parallel
explosion of information in paper formats. Published documents
began to have preliminaries attached to the beginning and ending,
which summarized the information contained in the document via
contents pages and sometimes, an index that pointed out where
specific information could be found within (Metcalfe, 15) This had
become undoubtedly essential due simply to the staggering increase
in the volume of information within books but also between books,
as evidenced by the parallel emergence and standardization of library
indexing of volumes. So there are indexes of books, and indexes
within books.

Of course, modern computation marked another explosion
of information, and of more than one type of index. Just as the
commoditization of personal computers and the growth of the

internet lead to a staggering increase in the number of documents

that would need to be traditionally indexed, so too did documents
upon which computer applications automatically operate need to be
indexed. One of the best examples of this is actually the programs
that people have created for compilation into executable code. (Figure
3.4) All programming languages have indexing inherent within

their structure, designed to enable a machine parser / compiler to
understand various sections of a program, and to differentiate data,
for example.

Where earlier programming languages were procedural or
instructional in structure, they have steadily fallen out of widespread
use in favor of object-oriented programming (OOP) languages,
because procedural languages like C became more cumbersome for
people to manage as coding projects became large and complicated.
2 The reason for this is quite simple, actually: while both procedural
and OOP languages are well-indexed for computers, the indexing
structure of OOP is more natural for people: OOP is rational to
both computers and humans. ? This computer-and-human legibility
highlights an interesting dimension of making things that are actually
computable on computers: unlike a flat representation like a line
drawing where only the person needs to understand it, or machine
code where only computers need to understand it, computable
representations must be readable by both.

Component systems emerged from the application of OOP
principles into the process of describing buildings. Realizing
that drawings created in mimicry of drafting could not be truly
computable, engineers made the data structure for the drawings
object-oriented, which is an inherent index for the computer, just
like OOP languages. In terms of the architectural, engineering, and
construction industry, this helps each of the key players move towards
a singular, more descriptive representation for sharing all aspects of a
project, and ideally for making all aspects of a project searchable.

This actually marks a simplification in the realm of architectural
representation, because it eliminates the need for secondary indexing
of the representation and its contents. For example, a professional
draftsperson has to label all of the objects in a traditional CAD
document to make it readable for others: he starts with a basic

index. The index would be created manually, either within the CAD

search -
pror,%

statements

program code
a computable representation

Figure 3.4 Computable Representation
Machine readable representations like
the sample program code shown here

are their own index

41

Figure 3.5 BIM Versus Traditional CAD

BIM is inherently computable,whereas F
traditional CAD documents much be indexed a

Traditional
CAD

physical facts indexes computable facts
* computable i

document or in another application altogether, by visually scanning
the drawing for all instances of all relevant objects, tagging them with
a number or symbol, and then translating that number or symbol
into a chart that describes the objects. (Figure 3.5) Then when the
drawings get printed up, people in the field can make sense of all of
the lines by referring to the prepared index or key. If you wanted to
program a similar but automated computer search of the drawing,
you would have to do the same thing, either by tagging it visually
using advanced computer vision functionality or by associating an
XML-based index. 4 Thus, in the traditional model of CAD, there
are, in fact, two indexes between the searcher and the physical
world: the physical objects are indexed into line drawings, and the
line drawings in turn are indexed by some sort of tagging. In the
object-oriented realm of component systems, a layer of abstraction
is removed because object properties are already described as soon

as the object is drawn, so that no secondary indexing is necessary. >
(Figure 3.5) Component systems relate directly to the physical; their
representations are an index of the built world: descriptive, readable,

and just as importantly, searchable.
3.3 Component System Prototype

To test out the inherent legibility and searchability of component
representations as a search result, a simplified component system
was developed. ¢ Additionally, a paper-based exercise was developed

to evaluate the effectiveness of the system through sessions with

42

volunteer subjects. The prototype system, detailed in Chapter 6 and
summarized here, is concerned with how components may be related
together into configurations.

The exercise, in turn, has been developed to analyze how these
components may be organized into searchable chunks that are
meaningful and approachable for everyday users. Component-based
representations may be inherently searchable and offer the promise of
streamlining the building industry; indeed, of democratizing design,
but the description of a building is still a very complex problem.

The exercise is one approach to simplifying things, the limitations of
which will be discussed shortly.

Figure 3.7 (following page) shows diagrammatically how the

component system will function as part of a larger design search.

3.3.1 System Overview

The component system for this study was built within a relational
database, further detailed in Chapter 6. On the structural level, each
of the components, and thus the assemblies themselves are connected
together via an edge-based connection specification. (Figure 3.6) The
connection is made between faces of rectilinear objects, where a sub-
region of the edge is designated as the connectible portion, and each
component can specify not only what types of other components
it can connect to, but also how far away it can be (range) and how
much of its interface needs to overlap with the connecting interface
(fit). Both range and fit can be set as zero: a range of zero indicates
that the component must be adjacent, and a fit of zero means that
the connection can be made to a point on the face of the component.

Predictably, the interface between rooms, being doors in walls, have

interfaces range

Figure 3.6 Connection Detalls
A simplified model for relating the
components together

43

R Complete System Overview

& Manufacturers Provide B e

¥ Library of Building Components _Hb\

an objecr-oriented specificarion that describes name, funcrion, and ! hands-on, constructive
properties for each item is : query interfaces allow user ro

provided directlyby _______________ . > ; discover needs and
manufacturers = i

values while searching - -
iteratively

the components, which may be
specified even at the granularicy

¥ e |
of fixtures, are Al
connecred hierarchically H
ot
the individual components are _________ N
related together into assemblies, So\“
via subregions of 9 o
their shape thac are
interfaces
SEARCHABLE 056‘;»‘-"”6
DATABASE OF ® oad
each of the components would _ [e}
furcherallow for | COMPONENT-BASED SEARCH ENGINE
different finishes CONFIGURATIONS seeks out the best march
and styles [—— configuration as a starting

point

B Search Results Posted
0,;2!‘ <° ‘,5300 into Query Interface
¢ &
00

Component-Based
Component Assemblies to define Rooms - ssssseeas : Configuration
Adjustment Interface
& ¢ g
F & & Final Configuration
Searchable oeg & includes specs, cost information,
<0 maintenance informarion, and

Conﬁgumtiom selection derails

Figure 3.7

Complete System Overview
Diagram of the component-based
participative system including search
functionality and key players

45

46

a range of zero; while the placement of a table in a room container
would have a fit of zero, allowing it to be rotated and/or moved freely.

The prototype system database was loaded with pre-defined
assemblies of components that represent specific room layouts. 145
specific assemblies were designed by a team of architects, making
thousands of different layouts possible within the system. 7 Within
the collection of assemblies, each type of room has multiple layout
options available; these layouts were constrained to the context
of a multi-family apartment interior to simplify the scope of the
analysis. ® Because the search space for the component system is
thus constrained, there are important design parameters that go
unrepresented, particularly in terms of site information, and solar
orientation of the unit. By focusing on interior fit-out, these
significant architectural problems are not addressed. But it goes
without saying that any true implementation would need to consider
these aspects of designing.

The assemblies for this prototype encapsulate expert knowledge
about how individual rooms should be defined, and through both
the alignment of doorway connections, and the alignment of zones,
knowledge about how the entire plan can be defined as well. As such,
much of the architectural decision-making is already done. This
raises important questions about how much designing is actually
possible with so many decisions already made.

And beyond that, how much choice do people demonstrate the
ability to manage? In terms of the user’s specific decision-making
process, the following exercise hopes to tease out, through the
multi-representational library of assemblies, what types of specific
representations are most helpful for users making selections within a

Component system.
3.4 Paper-based Component Assembly Exercise

The exercise shown in Figure 3.8 (pages 48 & 49) is a paper-based
activity that emulates the functionality of the component system
prototype. Specifically, the exercise was developed to engage users
in the participative design of the interior configuration for a single-

level condominium floor plan. ® Our goal is to find the appropriate

limitations in scale, scope, and complexity of the component system
in the context of participative design. This exercise explores what
types of constraints are necessary within the interface to make more
accessible the complex representational structure of the components.
Again, components are the most atomic parts that make up a space.
These would be things like lights, tables, chairs, doors, windows,
sinks, etc. But to support a more simplified design process, the
exercise allows the user to manage assemblies, rather than single
components.

In the exercise, users select room layouts from a library of paper
cutouts. The library has a variety of different options for each room
function, and each cutout describes a unique room arrangement.
Selected cutouts can then be placed onto a schematic floor plan that
is divided by colors into separate zones. The zones correspond to
the different types of rooms in the library: the Master Bedroom, the
Master Bathroom, the Kitchen, the Living/Dining area, a Second
Room, and a Second Bathroom. Each zone has a sleeve into which
the cutout may be placed, to keep the composition organized.

Not all of the paper cutouts can connect to each other, because
doorways and sizes do not always line up. The individual rooms were
designed to combine in specific ways, yielding a more constrained
solution space that allows for multiple output configurations for each
of the following basic floor plan types: Loft, 1 Bedroom, 2 Bedroom,
and 3 Bedroom.

Therefore, the primary elements of the exercise are the schematic
floor plan that functions as a workspace for construction, and a
library of assemblies that can be placed into the floor plan to make
designs (Figure 3.8). To make the exercise more approachable, the
library of assemblies is organized into separate sheets, one sheet per
zone, color-coded to match up intuitively with the colors of the zones
themselves. Within each sheet of the library, each assembly is shown
in multiple representations: a plan view, a simplified diagram in plan
view, a 3D axonometric view, a brief textual description, and a photo-
like rendering. ® The plan view is actually a cutout, and it may be
detached, and placed into the schematic floor plan to create a design.

Following Page:

In each of the provided library sheets, eight to ten different Figure 3.8 Component Assembly Exercise
Utilized in user studies

47

options for each room, with each option shown in the five views

Component Based Representation

exercise developed for user study

= gal - _ T clf :

af i

e

Doing the Exercise

Here’s a series photos showing
a user working through

the placement of rooms into the
schematic plan

Schematic Workspace

From the standard plan above, this schematic
plan is where the users place their room
selections. color code matches library cards

1. Master Bathroom \

2. Master Bedroom .
3. Kitchen / Entry R
4. Living / Dining i R
5. Bathroom ==
6. Bedroom / Study
' - - -

Detail of Library Card Ps
This is Living Room #1
Showing the multiple

representations:

This exercise was designed by Kent Larson, M Giles Phillips, and Carla Farina
All materials and layouts were created by Carla Farina

Getting Started: Constrained Design Context Component Library

The exercise was limited to the interior configuration Each type of room was given a
of an apartment unit (left). For each type of room, a color coded Library Card within
collection of layout options was made available. which each of the options was shown.

Each option was shown in the following
five views: floor plan, diagram, text
description, axonometric, and rendering

=l
? | =
1 t

I

gt

|
R
/]
|]
O
do

(AASTERBEDROOM & MASTERCLOSET
e
\
TERBEOROOM B MASTERC!
=
Lo il Im 1 i
| - i TR 53 it
T T T e .
1 | Tl

L. P
SER | T

I‘TW ht. I - r—
‘ S
5 |5 4
T B It B

S| illu |
[ai = ek

l = "-—-—_m- II Wm
- T _ 2 |
% ; : I : E o = ,’LI
i = G ——
™ =l l : 8 3 rl-;—:_: k|
§ 1— :,. I il é = ¥ i}ﬁ
‘1 : ﬁ I _“—k_—-
L o o = Tk

50

described above, yield a total of 40 or 50 distinct representations. Is
that too much, or can users effectively scan through the options made
available to them? How many choices do users want access to, when
it comes to specific rooms? Or should users be given a choice of
granularity in the final implementation?

In the exercise we have explored in particular the notion of
assemblies as user-manageable groupings of components to form a
basis for a practical search comparison. ' This means that the only
type of connection that users can designate through our exercise is
that made between rooms. The fundamental question this approach
raises is: what level of granularity do people want access to or find
approachable in the context of architecture? Is it easier for people to
compare between plans, or to compare between rooms, or objects, or
is there some less defined zone comparison that takes place between
these scales of representation? In other words, is our exercise too
limiting, too flexible, or just right?

The detailed manipulation by the user of the components within
the predefined assemblies is taken to be a second stage of the user’s
interaction within the component system itself. It is a process that
is outside the scope of this work and not explored by this exercise.

11 So, while the underlying system prototype would allow users to
further configure their selections, this exercise focuses only upon the
inherent searchability of the default assemblies themselves. But this
separation is not, in reality, such a clear one. One potential issue with
the use of pre-organized assemblies is that during the basic selection
stages, objects that are included in the assembly and that would be
easy to move around may be perceived by the user as inflexible. For
example a room assembly may include a chair at an angle that annoys
the user. In application, it would be easy for the user to adjust the
chair’s position after selecting the assembly, but would the chair being
there prevent the selection of the assembly in the first place? Perhaps
this type of issue begins to disappear as the user gains more familiarity
with the system, but it should not be assumed that the distraction is
insignificant within the process of selecting rooms.

The incorporation of schematic zones as a part of the exercise’s
workspace represents, in a sense, an overloading of the component

system with a secondary schematic representation. The zones, as

an interface component, are not necessary within the underlying
component system but are non-trivial in terms of the user’s design
process using the exercise; because the zones essentially tell the user
what types of assemblies can go where. Even though the component
specific limits of each assembly would automatically tease out any
constructability issues, this is essentially an attempt to capture expert
knowledge about what types of schemas work best, so that the users

do not have to figure it out for themselves.
3.5 Linking to Conceptual Interfaces

However, the implementation of successful conceptual search
functionality might eliminate the need for schematic guidelines
altogether. As was demonstrated in the previous chapter, the search
query itself can endeavor to describe the schematic relationship
between rooms, and in searching against pre-assembled component
plans, rather than schematic plans, allow people to seek out viable
configurations directly. Additionally, the presence of schematic
information doesn’t affect the viability of the search tools or the
searchability of the components. 2

Through the coupling of this exercise with a variety of more
conceptual exercises, the user evaluations detailed in the next chapter
helped us determine how well a component-based exercise, engaged
within the highly constrained language of room-level assemblies,
can represent the architectural needs and values of the designer.
Certainly, the decisions made are reduced in number and influenced
by the specific details of the assemblies themselves. But how does this
constraint alter the processes of discovery and of designing, for better
or worse? Does the Component system allow people to discover
their preferences; to figure out what they’re looking for? Or are the
conceptual query interfaces better for that? And do the conceptual
exercises really facilitate any self-reflective learning, or are needs and

values lost still in the complexity of the representations? '?

51

52

10.

In the context of connections between things, the scope of this research

is limited to the connections inherent to an apartment interior. In terms
of future work, the final chapter will speculate about how the connection
definitions herein may or may not scale into considerations of site,
neighboring structures, and solar orientation.

In many contexts, OOP is more of a methodology choice, and not
necessarily constrained by the language itself. While purely object-
oriented languages like Java and .NET have emerged and become quite
popular, other programming languages exist that allow for both procedural
and object-oriented programming techniques, and are popular as well.
The structure of OOP maps well to human thought, primarily by taking
advantage of the same underlying object / physical metaphors. Speaking
to human thought, Michael Reddy asserts the inherently low-level
physical metaphors of natural language form a basis for the structure of
ideas (Reddy), and Winston speculates that people’s actual knowledge
structure involves relatable, autonomous parts. (Winston) So it seems to
make sense that virtual structures, organized together into an assembly of
objects, would be easier for people to think about.

XML, being a structured document format that allows items to be both
identified with properties and related, has proven to be both popular and
useful, though it’s a simple hierarchical structure and doesn’t describe data
types inherently.

If we believe that any representation is actually an index, then the
elements which each representation describes are deemed important by
inclusion alone.

The component system prototype was designed by Kent Larson, M. Giles
Phillips, and Carla Farina. The system itself, as detailed in chapter 6, was
developed by M. Giles Phillips.

Kent Larson, Carla Farina, M Giles Phillips, MIT House_n

The evaluated apartment floor plan context also constrains the problem
to asingle level. While the staircase connection between levels would
naturally be drawn between points of entry to each level, this work makes
no assumption that the addition of multi-level functionality would be
straightforward. However, our inquiry is aimed at the most fundamental
aspects of composing plans and as such, one level is complicated enough.
The assemblies are intended to be configurable, in that the components
within them could be moved around as long as connections and clearances
weren't violated. Bur alas, the specifics of the interface to support this next
step of designing are outside the scope of this work.

As will be touched upon when the more conceptual interfaces are
described, the schematic representation here really represents an alternate

conceptual search, albeit one that relates closely to a diagrammatic

11.

12.

13.

conceptualization tool that is evaluated. The direct searchability of the
conceptual representation is analyzed in Chapter 6.

The assemblies are intended to simplify the design process, basically by
having some of the architectural decisions pre-made. However, not all
assemblies are created equal: rooms like bathrooms and kitchens tend to
be both more complex in terms of the immovable fixtures and also less
configurable. We did preliminary evaluations to help organize the various
parts of the component exercise and also helped us to identify where the
assemblies were too granular. We had for example initially separated the
kitchen into two different zones, each of which needed to be selected
individually, and in so doing managed to confuse even ourselves. This was
revised to be one zone in the user studies.

Each of the representations is provided to begin to sort out, through user
evaluations, what type of information is useful for the various decisions
made in designing. More complicated rooms may for example benefit
from associated diagrammatic views. Another dimension of this inquiry
is the potential problems with some of the representations, like the colors
and detail of renderings adversely affecting decisions or confusing the user.
Donald Schon describes self-reflection as a critical part of the learning
process when trying to solve a problem that is new or has unexpected

dimensions or complications.

53

Figure 4.1 Moore House, Orinda by
Charles Moore, 1961

54

4 The Query: Conceptual, Constructive Interfaces
4.1 Why utilize Conceptual Interfaces?

Addressing homeowners, Charles Moore notes: “our task, now,
is to clarify choices, to focus your energy so that it will not all be
spent trying to find a way through the muddle of building decisions,
but instead can be used to bring your own personal concerns to
bear.” (Moore, viii) That motivation is what this chapter is all abour,
because the numerous and complex options that a homeowner must
search through certainly create a muddle of building decisions. Are
there clearer, more conceptual interfaces that would allow people to
better describe their concerns, and which could also be implemented
as a query interface for our design search? This chapter describes, in
detail, four different query interfaces which utilize unique conceptual
structures to frame design problems. The output generated by each
of these interfaces would be a search query, which can then seck
out either component system configurations or pre-indexed “flat”
representations like floor plan images.

The queries are intended to be diverse and to provide more than
one type of representation to search with; further, the queries are
intended not only to find valid design solutions, but to help users
learn about and frame their own architectural needs and values.

Our preliminary research showed that several problematic situations
emerged when users were asked to begin designing a space without
first thinking about design requirements. ! First, there was difficulty
with problem separation. In situations where the user could identify
a specific need, they were often not able to find a floor plan or
assembly that adequately meets their needs, because the selection
process is clouded by other non-related issues with parts of the
configuration, like the presence of additional, unwanted components,
relative sizes, or organizational variances. And more fundamentally,
people had difficulty discovering specific needs when only looking

at the component representations. The primary reason for this
seems to be that the more literal representational structure does not

necessarily encourage associative thinking that relates ideas from other

conceptual domains. So, the design process becomes one of option
selection; there is greatly reduced potential for the expression of
concerns, or the emergent concerns that were not yet thought about.
Many people benefit, for example, from thinking about narrative
sequences of actions to reflect upon how they might actually exist
within various spaces. 2 This allows them to think about the space
in different ways, and to remember and organize their needs. But
when working with the complex and pre-designed assemblies, the
user becomes absorbed in the literal dimensions of the pre-arranged
configurations, just as Moore describes, making it hard for them to
focus on what is actually important.

Another issue in working with a modeling environment, or even
component-based representations like BIM, is that specific trade-
offs are created between spaces in a highly contextualized way. For
example, a larger bathroom might mean that the kitchen will have
to be smaller. This then becomes a trade-off that the user has to
think about, basically to decide which room is more important in
the specific context considered. These targeted tradeoffs instigate
an iterative process that helps make the process more interesting,
but they represent context-specific and non-generalized decisions
that might not make immediate sense to or be important to the
user, particularly in terms of their own needs and values. And even
more problematic, in terms of a search algorithm, is the fact that the
context-specific trade-offs cannot be generalized to other potentially
searchable contexts, or other content providers: the trade-offs simply
would not be the same. Furthermore, the more literal representations
force users to think about space according to already designed and
probably standardized configurations, thus potentially limiting the
ability of the system to encourage the discovery of new, emergent
configurations. All of these limitations suggest that an interface to
enable search by designing must allow for the more fundamental;

indeed, the more conceptual exploration of space.

55

56

4.2 Four Conceptual Interfaces

This is where the search process becomes useful, in allowing
people to frame problems and seek out solutions simultaneously,
free from the distractions in the structure of the more literal
representations they are seeking out. Therefore, as queries, the
conceptual tools described here are intended to do two critical things:
encourage associative thinking to help frame spatial problems, and
to create output that is able to be generalized and therefore useful
for searches. While the viability of each conceptual interface is
evaluated separately, they have been designed to represent conceptual
information in terms of a common underlying structure. ? Each
conceptual interface was designed to be viable for certain types of
problem framing, so that different types of representations could
be selected by users based upon personal preference, or users could
specify search criteria within multiple representations to generate a
more complete, layered query.

Four distinct querying interfaces have been designed and
evaluated for this study, to offer users with more than one option for
expressing themselves. The interfaces are detailed in the following

sections.
4.2.1 Text-Based Checklists

The text-based interface is provided to evaluate the effectiveness
of natural language descriptions in helping conceive of spatial
arrangements. This interface was evaluated as an example of a
standard, contemporary “option selection” search interface, against
which the other interfaces could then be compared.

This interface tests the viability of a natural language description
as a way to frame spatial concepts. In this example, each functional
room/zone has a series of short, textual descriptions that are
selectable as search criteria; these options would correspond roughly
to the assemblies that exist within the system. Of all of the query
interfaces, this one is probably the most like a traditional search

engine, particularly in the context of home searches, but it is also

problematic. 4 First, natural language representations have well-
documented semantic issues; suffice it to say that the context
dependency of spatially descriptive terms like “large”, “near”, or
“open” make them confusing to the user, particularly without some
sort of visual device or scale to quantify things. Also problematic
is the description of attributes that are more qualitative in nature:
identifying, for example, a stylistic preference using words alone,
can be a challenge. In developing an algorithm for mapping natural
language to relational database structures for IBM, John E Sowa
notes the semantic ambiguity in a text string and proposes that
intermediary representations may serve as a “semantic basis” for
extending written language, as a way to both manage and explain
inference. (Sowa 336) But this solution requires some sort of natural
language processor to translate the natural language into a graph-like
representation, (Sowa, 347) and might still require humans to be
involved in programming / data selection to actually work (Sowa 356)
And so it goes, that apart from the inherent semantic issues,
the text-based conceptual representation does not scale that well
either. For example, in the case of Component systems or BIM as
a target resource, available assemblies would have to be annotated
as they were defined, likely manually, with correctly summarized
descriptions of their functionality. Being highly semantic, it is not
plausible that a system, given today’s technology, would be able to
automatically generate something like this from component tags. °
Each new description would need to be pushed to the query interface
somehow, to present the option. Two scalability problems thus exist.
The representation itself is not scalable, because potentially limitless
verbal descriptions must exist in the system for each space type to
be searchable: the user might have literally thousands of options.
And the descriptions themselves must be manually designated for
each assembly. These descriptions would be disconnected from the
structure of the representation itself, creating an exponential problem
of manageability. The descriptions are an ad-hoc attempt to find
representations that make sense to both people and machines, but it’s
an obvious point that inherently, natural language descriptions make

more sense for people than they do for machines.

57

58

That said, text-based queries map most easily into the most
common conception of the way a search is structured, that of: enter
text, hit button, select result. This type of representation might also
become much more scalable, and thus viable, as technology and
language processing improves. And most people may simply be more
comfortable saying things in words than using any sort of visual or
abstract interface, regardless of how hard those words are to compute
with. If this is the case, then we would certainly be glad to know
it, and better served focusing our energy in areas other than a study
like this one, which evaluates the assertion that people can, and want
to do more than speak in words. For all of these reasons text-based
queries are important to evaluate, even for comparison purposes

alone, and are thus included.
4.2.2 Role-Playing Metaphor

The role-playing metaphor is a listing task that encourages users
to conceive of space in terms of their possessions by imagining they
are packing for a move. This task provides users with a listing step
and then a reflection step. The motivation for separating these steps
is to encourage reflection by having the person first describe certain
facts and then reflect upon that which was described.

This interface uses items, or more specifically, things that go in a
certain room, as a way to frame spatial concepts. The activity utilizes
a high-level metaphor as a way to engage the user into a situational
role: that of packing a box. The packing metaphor basically gives the
user a way to start thinking about what functional needs they have
of a place, by thinking about all of the stuff they would have to put
there. Items, regardless of size, shape, weight, and fragility, go in the
box. Room characteristics, or attributes, are associated with labels
that are drawn on the sides of the box. The interface thus organizes a
two-part process of listing and labeling around a simple metaphorical
concept. The labels given to desighate room characteristics represent
the most important searchable criteria.

There is a technical challenge with this interface: making items
available to the user for the items list, simply because it is hard to

know ahead of time what specific types of items a user has in her

rooms. The room attributes are a more manageable set and are
predefined, so at a minimum these specifications would be searchable.
But the item list would be useful to have as well, even if it was only
partially searchable. ¢ Within the prototyped interface, custom
labeling could be added by the user, with the caveat that the custom
labels might be meaningless in terms of the search comparison. But,
given that the user had thought about the item, and likely derived a
searchable room attribute from the conception of that item, it is quite
possible that custom items would be represented, at least in part, by
this query structure, via the associated room attributes for which they
illuminated the need.

The attributes are therefore not customizable, and would have
specific quantified criteria that would be meaningful to the search
operation. To be clear, each attribute option should include a
description of the quantified criteria that the system would infer
from that attribute. As will be seen, volunteer subjects referred to
these detailed descriptions relatively frequently during the exercises,
sometimes revising their selection of the attribute based upon those
descriptions. This is an important point to make because, at the
highest level, an attribute like “spacious” has the same semantic
issues as those described in the Checklist interface. But through the
associated and human-readable description, the meaning is clarified:
these descriptions serve as a semantic definition, and make the term
explicit. So, while it is the attribute word that attracts the user to
make the initial selection, the semantic definition tells the user what
the word means to the computer, ahead of time. These semantic
definitions are plausible because in the context of the study they are
all spatial in nature, and there are a relatively small number of words.
And as will be shown, the user evaluations highlight where the

semantic definitions are either confusing or inadequate.
4.2.3 Activity Sequencer

The activity-based interface is similar to the metaphorical
interface but instead focuses upon a sequencing task that allows users
to explore how they flow through a space and identify architectural

values through that exploration. The motivation for this interface

59

60

was to help homeowners identify needs by organizing concepts
around tangible flows through space. To help users discover needs,
this interface allows the user to first describe and subsequently reflect
upon a sequence of activities.

People are very good at thinking about things in terms of
sequences; many psychologists suggest that low-level mental
structures directly correspond to narrative or sequential structures.”
The Activity Sequencer explores the particular effectiveness of
activities as a way to frame spatial concepts. In The Place of Houses,
Charles Moore presents to the potential homeowner a list of options
designed to encourage their conception of people or things as they
flow through a home. ® These flows relate to activities, groceries,
papers, trash, water, electricity, and so on. What's interesting
about this approach is that the conception of space is organized
into a narrative sequence of steps; this organizes serially the various
interactions that happen within the home. This interface was
developed with a very similar idea in mind: to organize home
preferences around a sequenced activity.

Users first list out each of the activities, then locate those activities
within specific rooms in their current living space. Once the activities
are located, users can identify the transitions they make from activity
to activity. Then, users reference this complete activity description
to identify important room qualities, in terms of that activity. Once
those qualities are identified, the user may go back and revise the
activity sequence to better meet their needs.

Like the packing interface, this interface really involves two
phases: first listing, which is followed by reflection. While the
separation of the task into discrete steps as described in the step-
by-step summary makes the activity sound a bit overwhelming, it
actually helps to make the process manageable because each step is
very clear and specific. The intention in both this and the metaphor
interface is to give the user a chance to start conceiving of space and
functional needs in terms of things or routines that are well-known to

them.

4.2.4 Floor Plan Diagram

The diagramming task allows users to conceive of space in terms
of an abstract spatial description. In was inspired in part by Kevin
Lynch’s work which suggests that people understand space in terms
of basic elements that can be represented diagrammatically. A further
motivation was to provide and evaluate a more constructive interface
where the user has more control over the “shape” of the design
artiface.

This interface relies upon the effectiveness of an abstract floor
plan representation as a way to frame spatial concepts. An important
precedent for this particular exercise is the well-known research of
Kevin Lynch, which illuminates a common descriptive language
for people’s conception of space as they interact with(in) it. Lynch
identified five terms for this descriptive language: districts, edges,
nodes, landmarks, and paths. (Lynch) This interface presents the
user with a diagramming activity, with specific types of elements
that can be placed in or between the cells of a grid. The grid cells
correlate with Lynch’s notion of districts, which are, in this case,
rooms that the user can associate with one or more functions. In the
space between the rooms, which is closed by default, specific edge
conditions or connections can be specified: the user can place either
doorways or complete openings. These specific connections allow for
the emergence of paths and nodes, both fundamental spatial concepts
identified by Lynch.

Because of the grid, the diagram is highly constrained: the zones
that are used for rooms are rigidly defined as cells. Pilot studies
done with more flexible diagrammatic representations indicated
that users tended to get flustered or confused if they weren’t given a
bit more constraint. ? So the constraints in this interface have two
specific functions: to make the generated query be something that
is plausible to search with and to make the diagramming something
that is manageable for everyday users. In other words, to make the
representation something that is meaningful to computers as well as
users, rather than one or the other.

The interface gives the user the option to first diagram their
current living situation, and then to make a few improvements
upon that diagram as a reflection of their preferences. Therefore, it

roughly follows the precedent established by the Packing and Activity

61

62

Sequencer interfaces, of first describing something, then reflecting
upon what was described to arrive at needs and values. In this
particular case, the purpose of the descriptive step is to give the user a
chance to get used to the diagramming language by thinking about a
space that is well known to them. However, for the user, describing
his or her current living situation might not be a good foundation
for describing what he or she really wants. While the revisions made
in the reflection stage could be very extensive, users may constrain
themselves to the descriptive diagram, being unclear on how they
might revise it without breaking something. The interface should
therefore allow the users to start from scratch, if they prefer to.
Additionally, this interface is unique when compared to the
others in terms of the flexibility of its descriptive workspace, and
for its ability to let users more directly construct things. Granted,
the representation is highly constrained by the fact that they are
working within a grid and can only place a few items, but even so, the
constructed query representation is much more of a sketch that the
other activities. This means the query itself becomes something like a
workspace, where various configurations may be thrown together over
successive iterations. This is something that is very much at the heart
of designing. 'The risk, which will be at the heart of this evaluation,
is that aspects of this workspace query might then go unrepresented
in the search algorithm, and therefore cause the search to fall short of
the user’s expectation of what she will get. In terms of a search tool
in particular, this means there is a significant risk that the application

would not be effective
4.3 Conceptual Interface Considerations

There are a few general considerations related to these conceptual
interfaces apart from those touched upon in the detailed descriptions.
The first of these is one of expectation, in terms of what the user
thinks is important about their descriptions. Are the aspects of the
composition that are meaningful to them the same things that are
meaningful to the search? And does any sort of prioritization option
need to be provided to let the user highlight specific parts of their

query as more important?

Secondly, how approachable are the problems, both in terms of
the clarity of the interface and the nature of what the interfaces ask
people to think about? While efforts have been made to keep each
step simple and straightforward, overall clarity is a core concern of the
study. An analysis of the interface’s approachability must be able to
tease out whether it is the fundamental nature of the task, or if it is
the specific details of the task as presented that makes emergent any

unforeseen issues.
4.4 Searching with Conceptual Queries

An important consideration to touch upon here (detailed in
Chapter 6) is how the queries generated by each of these conceptual
interfaces might be mapped to searchable formats. For example,
the items that were listed in any of the conceptual exercises could
be mapped directly to matching objects in an object-oriented
component system. In this case, the matching would be based upon
a categorical “type” structure that defines what the specific objects
are used for. The search would also need to consider the hierarchy
of what the object relates to, where possible. For example, being
within a particular room is important to consider as part of the
matching criteria. Transitions between spaces identified either by
the diagramming task or the Activity Sequencer would need to be
mapped to specific connections between rooms in the component
system, and possibly even specific object configurations within those
assemblies. As such, the standardized output must, at the very least,
describe container objects like rooms, autonomous objects like
furniture that are organized within those rooms, and the connections
between the rooms themselves.

For activities, mapping isn’t quite as straightforward, but might
also match to specific items where possible or necessary. In some
cases it will be an obvious specification, not necessarily needing
representation, as in the case of the morning routine: it should be
fairly obvious that “showering”, tagged by the user as something that
happened in the bathroom, will also happen, more specifically, in
the shower. But all of the bathroom assemblies and therefore any

potential match in the component system are going to have a shower

64

in it — the search doesn’t have to be so explicit. Further, simply by the
fact that the object goes unrepresented in the room specification, it

is likely that the user will reflect upon the fixture used in the activity
and further specify its qualities if that specification is important. So if
there is something important about the shower, the user does get the

chance to say it.
4.5 Exercises Developed to Evaluate the Interfaces

This section details the design of paper-based exercises that were
prototyped to evaluate each of the four distinct querying interfaces
described above. One exercise was created for each interface. All of
these exercises are paper-based prototypes where paper cutouts and
tags can be arranged on a special worksheet. For each exercise, there
are paper tags (shown in Figure 4.2) that represent the following
things: activities done in a space, physical (bodily) transitions made
in space, objects, room names, and room attributes. These tags
are meant to correspond to drop-down options in an application
interface. 'The different exercises allow the users to organize these
various tags in different ways, on different worksheets, and in
different scopes. The first exercise presented, to evaluate the Text-
Based Checklist interface, is simply a checklist; therefore no tagging
takes place. And the final exercise, which evaluates the Floor Plan
Diagram interface, introduces additional diagramming cutouts, which
will be detailed in that section.

In terms of the exercises, there is an issue related to how much
the user’s compositions are influenced by any examples that might
be given to them during the evaluations; given in an effort to clarify
the exercises. For example, in the diagramming exercise, the users are
shown an example diagram to help them see how all of the elements
can be placed. (Appendix 1, A1.4) In some of our initial studies
done during the prototyping of the exercises, the diagram that the
user composed immediately afterwards had significant similarities.
Were they working towards a mental image of the example diagram

without knowing it?

Conceptual Exercise

Tag Cut-Outs for Exercises 2-4

Activities

Tiansitions for Activity Sequences
R I D
=EI=EIFE] ..
Room Attribzftes with Dcﬁm’tz'?m
[t [t | [|

Notes

The room attribute tags included semantic definitions to clarify their meanings.
The room tags themselves simply designate functionality and can be grouped together to create multifunctional spaces

Users were permitted to write in additional items if necessary, using the blank Item tags.

Figure 4.2 The Tags Used for the Exercises

65

66

4.5.1 Step by Step Exercise Summary: Text-Based Checklists

The checklists are shown in Figure 4.3 (Page 68). Users were
asked the review a text-based checklist and for each type of room,

select the one option that best worked for them.
4.5.2 Step by Step Exercise Summary: Role-Playing Metaphors

The exercise board is shown in Figure 4.4 (Page 69). Users were
asked to imagine that they'd just bought a new home and were
packing up their things. For one important room, they were told to
first identify the room and then list all of their possessions for that
room using paper cutouts that had item names on them. For the
purposes of this paper-based exercise, blank tags were also provided so
that the users could write any item-label they wanted. Finally, they
were asked to reflect upon the list of items and identify important

room qualities using the red attribute tags shown in Figure 4.2.
4.5.3 Step by Step Exercise Summary: Activity Sequencer

The exercise board is shown in Figure 4.5 (Page 70). This exercise
has 5 distinct steps, each of which involves the placing of printed
labels shown in Figure 4.2 into the workspace shown. For each step,
a pre-selected list of keyword cutouts was made available to the user,
who can then insert them into the correct sleeve. The first step is to
place each of the activities of their current morning routine into the
top of the circles. The activity tags allow users to organize things like
“waking up”, “showering”, “drinking coffee”, and so on. The second
step is to go back and tag, in the bottom part of the circles, the room
each activity happens within. Next, the user identifies the bodily
transition between steps, in the green bars between the circles. After
the transitions have been labeled, the fourth step of this exercise asks
the user to begin reflecting on the activities that are sequenced and
identify room attributes that are important or desired, in light of
these activities. The fifth and final step allows the user to go back and
revise either transitions or rooms, if they think they could improve

the sequence by doing so.

As a control, only one activity was made available to the users
who came in as volunteers, although in application this interface is
meant to be more general. The selected activity was “your morning
routine”: users were asked to list out each step of their morning, in
chronological order. The morning routine itself was chosen because
it is something that everybody has to do and it is something with
fairly common activities but also a lot of individuality. Additionally,
the morning routine tends to have at least two or three rooms in
its scope, and therefore the user is far more likely to think about

different rooms, and as we will see, the transitions between them.
4.5.4 Step by Step Fxercise Summary: Floor Plan Diagram

The exercise is shown in Figure 4.6 (Page 71). Users were shown
a set of diagramming pieces which they could use to make an abstract
floor plan within the cells of a grid that was drawn on the workspace.
Users were told that they could place openings or doorways between
cells. In addition, a “water wall” element, which represents a wall
that has plumbing connections, was provided, to be placed alongside
one edge of every kitchen or bathroom cell. The user was encouraged
to use as few water walls as possible, in an effort to inject a bit of
guidance into the diagramming task: minimizing the number of
water walls ought to make the layout more efficient. A main entry
could also be placed.

Users were told to first describe their current situation, and then
to make one to three improvements to the design. If they lived
in a space with more than one level, they were simply told to pick
alevel. Users were told that they could start their diagram from
scratch if they felt like that would be easier. And as will be seen in the
summary of user evaluations in the next chapter, this task turned out

to be surprisingly approachable.

67

Conceptual Exercise 1

Texct-Based Checklists

1. Master Bathroom

1 A. Small, Simple configuration

1 B. Medium w/ Laundry and Larger Sink

7 C. Medium w/ Water Jet Bath

1 D. Medium w/ Water Jet Bath and Extra Closet
] E. Large w/ Sauna and Steam Room

{7 F. Large w/ Extra Closet

2, Master Closet

1 A. Small, enough storage for one person or two people who don't have too many clothes

] B. Medium, adequate storage for two people

] C. Large, spacious closets with quite a bit of shelving, good for two people who have lots of clothing

3. Master Bedroom

1 A. Smaller, 12 x 14, with a simple configuration

| B. Medium, around 14x14

1 C. Medium w/ some built-in, additional Closet space

. Medium w/ space for flat screen TV and equipment

1 E. Larger bedroom, around 16 x 14, w/ Additional Seating Area and open floor space
{1 F. Large w/ space for flat screen TV and equipment

G. Large, Loft Style: seating area, with open connection to living space, and open floors

4. Second Bathroom
A. Smaller, basic bathroom w/ Shower

. Medium bathroom with Shower and also a Washer and Dryer unit just outside
C. Larger bath with either

Instructions

te water closet, additional storage, or a Washer and Dryer just outside

5. Kitchen + Entry

{"1 A. Open, Loft Style: linear and open fo living space

{"} B. Open, Loft Style w/ Dining Table added

7} C. Open, Loft Style w/ Dining Table and Separate Entry area

"} D. Open, Loft Style w/ Bar between kitchen and living

[} E. Galley Style w/ Separate Study area

[_] F. L-Shaped, Small w/ Separate Dining Table area and Bar

[’} G. U-Shaped, Small w/ Separate Dining and Entry Closet Space
[_} H. L-Shaped, Large w/ Bar and Dining Table

~} | Closed (enter through door), Large, with Study space

Living / Dining

T A. Large Living Space, Open to all Adjacent Spaces

B. Large Living Space, With Shelving Along Edges so it's more closed of
{7} €. Medium-Large Living Space w/ Separated Office area

" D. Medium Living Space and Medium Dining Space, Open to each other
"} E. Smaller Living Space with Two Additional Bedrooms (3br fotal)

7. Study / Second Bedroom

I A. Small Bed| wi Sep. Sized Study Area
"} B. Medium Bed wi Study

[} C.Large, single Room; multi-functional Bedroom/Study

| B. Large Bedroom that can also function as a study

{1 E. Two Medium Sized Bedrooms w/ Study Desks (req. 5E)

For each of the rooms (1-7) review the options given and check the one that best meets your needs.

i L e

Figure 4.3 The Checklist Specification Exercise

Conceptual Exercise 2

Role Playing Metaphors |

Room Name: = Room Name: o

|
1
'
i
i
]
'
]
1
i
|
1
]
1
1
1
1
I
|
I
P
i
]
i
i
'
]
]

1
i
1
'
'
i
'
|
1
|
|
i
|
1
]
1
i
i
i
1
i
1
'
1
'
I
I
'
i
i

G
vs‘,\“a‘ik P&@D@g —
o o°
o « _
Items in Room Items in Room
Instructions N

Imagine that you're packing up all of the important items in one of your rooms. List out each of the items you'd need to
pack. Reflect upon the list, then label the box with the characteristics the room would need to have to meet your needs

CEAMIT 'n / Changing Places
KJMIT House n/ Changing Flaces

Example, created by volunteers during the inferview sessiobs :
Exercise: Pack up your stuff, it's time 1o mave inl 1

Figure 4.4 Role-Playing Metaphor: The Packing Exercise

69

Conceptual Exercise 3

Activity Sequencer

1. Activities: List the specific actvities for this sequence, in chronological order. .
Example: If you wers listing out the activities of your merning routine, you might start with “wake up” followsd by “take shower" and so on.
|

2. Room;
Here, list the

room in which
each activity

takes place

4. Reflecting on

the sequence
here, what

qulllﬂ-. RIS =y ™ et R SO t o] T L e |
styles, oritems
are Important
foryoutohave |———— — S E T — s Py, arleg
Included In this
room in a new
home? e 32 g n il

Instructions

Identify and place in chronological order the activities that comprise your morning routine.

Next, label the room that each of those activities takes place within. Next, identify the transition you make between
each of the activities. Now that the activities are sequenced, reflect upon the properties of each of the rooms
included and identify properties that are important to you. And finally, could any of the transitions be changed

to improve the sequence?

Figure 4.5 The Activity Sequencer

70

Conceptual Exercise 4

Floor Plan Diagram

Grid Board: Diagram Pieces:

Opening

Doorway l l

Main Entry %

Water Wall

Instructions

Using the provided grid, create a diagram that represents your current living space, and then make 1-3 changes
that would improve the space. For an idea of how the various cut-outs should be placed, refer to the example
diagram. When placing water walls, keep in mind that they are expensive, and should be used efficiently.

Above: the example
diagram that was
provided to the
volunteers.

See Appendix A1.4
for larger view

One of the volunteer's
diagrams

Figure 4.6 The Floor Plan Diagram Exercise

71

72

Our preliminary studies involved the arrangement of pre-designed

room cut-outs on a paper worksheet. The studies were done with 6
subjects; all of them were House_n affiliates. 4 of the 6 had educational
or professional experience in architectural design. In reflecting on the
exercise, each of the subjects noted that while some of the decisions they
made were because of some preference, they made many decisions that
were highly specific to the organizational logic in the options given, and
not directly related to any conceptual need or value of their own. There
was also no evidence that the literal room representations in the exercise
allowed anyone to think of any new needs or values — only those who had
identified preferences ahead of time were able to fulfill them in translation.
Perkins (1981) suggests that unconscious thinking is fundamental to all
conscious activities, including creative ones like designing, and that this
unconscious thinking is structured into sequential processes. Along these
lines, C. G. Jung describes his own design process: “I built the house

in sections, always following the concrete needs of the moment... Only
afterwards did I see how all the parts fitted together and that a meaningful
form had resulted.” As Charles Moore observes, “[Jung] had been
compelled by his unconscious to build it as he did, guided by impulses
deeper than those of the conscious will.” (Moore, 129)

Each of the querying interfaces described here will adhere to a common
XML structure and output data in an XML stream. The details of this
generation will be discussed in Chapter 6.

For example, as of 2007 the Toll Brothers site hosts a flat, simple, option
selection-based search called “Design Your Own Home”: http://www.
designyourownhome.com

Lennar does is well: http://www.lennar.com/findhome/search.aspx

Pulte does the same: htep://www.pulte.com/homefinder

Each of the searches is highly constrained, allowing the selection of
number of rooms, location, and overall size.

Here, the issue is that an automatic parser wouldn’t really be able to
summarize the meaning of the assembly, beyond creating a simple list

of objects and attributes contained within. To be of any utility to users,
the option select listing needs to contain more qualitative words and
statements, something like: “includes large closets with plenty of space
for two people who have lots of clothes.” Computers do not have the
common sense to create these kinds of descriptions, as Minsky notes: “We
tend to take commonsense thinking for granted, because we do not often
recognize how intricate those processes are. Many things that everyone
does are more complex than are many of those ‘expert’ skills that attract
more attention and respect.” (Minsky 2)

See Chapter 6 for the technical details of each implementation. It covers
the custom tags within each of the search queries.

See Minsky’s assertions in Society Of Mind, specifically Chapter 25

74

5 User Evaluations and Findings

The evaluations described herein were used to test out the
viability of the component-based and conceptual exercises as tools
for everyday people. The viability of each exercise was measured in
terms of its ease of use, how enjoyable it was, and its ability to help
people think of and frame their particular architectural preferences.
Volunteers for the study were solicited from multiple sources; a total
of 12 volunteers participated in this study. ! The volunteers were not
designers or architects by profession. The respondents were 66%
female; all but two were born between 1965 and 1982, the two older
subjects were born in 1942 and in 1947. 'The study was conducted in
an MIT research office, and user sessions averaged about an hour in

overall length.
5.1.1 Protocol

The study had three parts. First, users completed a short 7-
item questionnaire to specify their familiarity with architectural
design (i.e., have they ever worked with an architect or looked at
floor plans), and also their level of proficiency with computers:
what types of programs they use, and how often they use those
programs. (Appendix 1, A1.2) Next, the users worked through
each of the five exercises: Component Assembly, Option Checklist,
Activity Sequencer, Packing Metaphor, and Diagramming. After
each exercise, the user had a chance to rate the exercise. Rating was
done using a common set of assertion statements with which the user
could either agree or disagree. > In addition to these ratings, the user
was given the opportunity to make general comments immediately
after each exercise. Upon completion of the exercises, the volunteer
finished up by answering a few general comparison questions about
the exercises and was given an opportunity to make any other
comments about each or any of them.

For each of the exercises, users were given standardized
instructions verbally. The order in which the exercises were presented

was varied. Users were given the opportunity to ask questions, of the

“Frame-Arrays” and Chapter 26 “Language-Frames”. Also EC. Bartlett,
Roger Schank

The final chapter of 7he Place of Houses by Charles Moore, pp 241-266.
Our initial diagramming tool allowed zone overlapping and the flexible
sizing and placing of zones. Initial testing showed that people didn’t really
know where to start, and that the overlaps were ambiguous. Also, people’s
diagrams tended to focus on the more literal spatial organization of rooms
and not their abstract relationships. This was problematic because the
spatial organization of diagrams is not meaningful to the search algorithm
which focuses more generally on room-to-room connections and room
functions. To make the diagramming simpler and the diagrams more
meaningful, the prototyped exercise constrains all zones into a pre-drawn
grid. This simplifies the diagramming process because people do not

have to worry about where to put the zones, which in turn eliminates the
tendency for users to be overly concerned with literal organization. The
grid also makes it easier to start because it’s no longer an empty page,

in addition to the fact that the user has fewer elements to worry about

placing.

73

author, about the exercises if any clarification was necessary. During
the exercises, users were permitted to ask for additional clarification
if necessary. Apart from answering these specific questions, I avoided
any verbal communication with the participant during the exercise.
As the interviewer, I was present throughout the exercises, seated
facing the users at the table upon which they worked. For each
session, audiovisual information was recorded for further analysis.

The volunteers came from a variety of backgrounds and
experiences. One was a retired head librarian, another worked for
IBM, and another was a student finishing up her Masters degree at
Emerson College. None of the volunteers had ever worked with an
architect to build or remodel 2 home. Seven of the 12 participants
identified themselves as being comfortable with floor plans; the others
were only vaguely familiar with them. All of the users described
themselves as either regular users (9) or power users (3) of computers.
In terms of the applications used, the 9 regular users tended to follow
a routine of computer use and the 3 power users tended to actively
seek out new programs or functionality. All of the users were familiar
with surfing the Web, using Google, using Google earth, checking
email, using Microsoft Word and using Microsoft PowerPoint. Only
a few users were experienced with computer programming software,
CAD software, or graphics software, and none were proficient or
expert users of those types of software.

Prior to the evaluations there was a concern that the users
would be influenced by visual examples given, particularly with the
diagramming task, but there was no observed evidence that this was
the case. To help circumvent the possibility of said influence, the
examples were not left in front of people during the actual interviews.
In the following sections, the salient findings of the studies will be
summarized, first with the component-based exercise and then with

the conceptual exercises.

5.1.2 Jeffrey

Jeffrey, one of the users who volunteered for the study, required
a somewhat different protocol because he was legally blind. Because

he was unable to see the exercise materials, each of the exercises

75

76

was done cooperatively, where the options and arrangements were
described verbally by the author. In addition, Jeffrey was unable to
go through the Component Assembly exercise because he couldn’t
see the various images that were presented and there was no benefit
in trying to verbalize all of the meaning those images contained.
However, his perspective of the conceptual exercises was, as whole,
illuminating because of his unique relation to space. The most salient
room qualities for him were warmth and quietness; they were not
visual things. And he tended to focus more on the intricate details of
his movement through space. For example, in putting together the
Activity Sequence of his morning routine, and thinking about moving
through a doorway, he stated “I have thresholds in the doorways, I
hate them. I walk around and anything that’s on the floor bothers
me.” Conceptually, the pathways that he makes through space are

his most dominant concern. “I have a unique problem: I'm blind.
Wanna see me carry a bowl of soup from the kitchen to the living
room? I don’t have an eat-in kitchen, it’s a little galley kitchen. So
I’'m looking for the shortest walking path between the kitchen and
the table.” With that said, it was encouraging to observe how salient
the conceptual structure of each of the exercises was for him, even
without the visual cues from the workspaces and various pieces. Ina
way his unique session was one of the more important ones because it
helped confirm that the underlying structure of the various tasks was

clear and approachable, even without the benefit of sight.
5.2 Component-based exercise, Findings

Opverall, the volunteers found the Component Assembly
exercise detailed in Chapter 4 to be easy to understand and work
through. Even though several users did not consider themselves to
be comfortable with floor plans, the concept of a floor plan view was
very obvious for everyone, and only a few of the volunteers asked
for any clarification about the specific items shown (i.e. “is that the
fridge?”) or how rooms connected together. Because efforts had been
made to describe the options in a number of ways, some of this clarity
may have come from the variety of different representations shown

in the library cards for each space. (Figure 3.8, Appendix 1, Al.3)

So, we asked people what representations were most useful to them
during the selection process. Most users said that the plan view, or
the plan view in combination with the 3D view or the rendering, was
most useful. And two users thought the floor plan diagrams were
most useful — only three users thought non-plan representations,
like the 3D view or the renderings, were more useful than the plans
themselves. Still, having the entire variety of options seemed to be
useful for people, even as some subset of those representations was
clearly more important for everyone. As one user, Megan, noted: “I
rarely looked at the photos but then when I had [options] that didnt
have the photos, I missed them a lot, I wanted them back.” ?

In general, going through the component assembly process
room by room seemed to be an effective approach to simplifying
the selection process, because people could separate the rooms
conceptually. But, there were a few issues with this separation: mostly
with the “bigger picture” of the overall plan’s design being something
that the users didn’t give much thought to or engage in. Instead,
they tended to focus upon the rooms in isolation. Take for example,
Marisa, a volunteer who is preparing to relocate for medical school,
who noted: “the only thing I thought about between the rooms was
closet space... other than that I just thought about the rooms kind of
independently.” Another user, Thea, preferred to look at the master
bedroom and master bathroom at the same time, because for her, they
were conceptually part of the same private zone and difficult to select
separately. Closets were a very popular consideration in private spaces
like the bedrooms and bathrooms, and several users verbalized that
they were important. In the more public spaces, a significant number
of users were trying to select rooms that had a sense of “openness”.
But surprisingly, highly popular layouts did not emerge from the
options given for any of the rooms, with the exception of the living

room where one configuration was selected five times. *

77

4 Strongly Agree

3 Agree

2 Disagree

1 Strongly Disagree

Component I |
Assembly
4 3

Good Reflection
of Values

Figure 5.1 Component Assembly Ranks
Users were asked to rank each of the
exercises according to the criteria here.
These are the responses for the
component-based exercise

78

1 2 1 3

T a4 3 2 1

2 1

4 3 2 1 4
Clear and Easy to Helped in Thinking of Fun, Entertaining
Understand or Discovering Needs Experience

Everyone liked the exercise, and all but one agreed that the plan
that they made was a reflection of their values. (Figure 5.1) But as
it turns out, and this is fundamentally important to this analysis,
the real question is which values were being represented by their
plan selections? Because even while the exercise was approachable
and gave the people a sense of accomplishment, there were several
potential problems observed, the first of which was a tendency to
avoid revisiting any of the spaces that had been selected.

Essentially, people tended to avoid going back and changing
a room once they had picked it. For example, if a user selected a
bedroom, and then selected a bathroom that wouldn’ fit with that
bedroom either due to size or doorway alignment, they would tend to
assume the bedroom to be a given and go with another bathroom that
fit. This was true even though each user was encouraged to go back
and revise any selection at any time, if they so desired. Only one user,
Liv, went back to make significant changes, and two others made just
a single revision to one space that was already selected. Apart from
those three users, the rest of the group made no revisions at all to
their original selections. As Zahra, an MIT graduate, noted: “I guess
I made some choices later because I was constrained by earlier choices
where I didn’t know what I was doing.” This finding was a bit of a
surprise because it was expected that the iterative process of refining
selections would be one of the more entertaining and useful aspects of
this particular exercise.

There could be many reasons that revisions didn't tend to happen.
First and most obvious is the possibility that because people were

conceiving of rooms separately and not in terms of the overall plan,

there was no need to go back and revisit anything according so
some overlying concern because that concern simply didn’t exist. So
instead most users seemed to use the question, “what fits with what I
have?” as additional criteria to help make their selections. Secondly,
the selection process for the rooms was highly comparative in nature
and took each of the users quite a bit of time to complete. > So if
they had invested time in the choice, and already had a sense that it
was the best choice, why then should they revisit it? This issue hints
at the possibility of a more fundamental problem, for which other
evidence was observed, which is simply that the selections made were
highly context-specific.

Figure 5.1 shows that most users didn’t think this exercise helped
them think of or discover their own needs. One possible reason
is that the selections that people made in this exercise were highly
contextualized by the design of the room arrangements and the
specifics of the representations. So, while people did feel that they
had picked the room they valued the most, this value judgment was
made based upon straightforward things like how the furniture was
depicted, or for example, how a table was shaped. Kevin, a 35 year
old, noted that he liked one of the living room options because of the
shape of the coffee table that it depicted. Apart from Kevin, some
users externalized their thoughts about the selection process while
working through the exercise, revealing a bit of their conceptual

speculation. The following are a few examples:

“I kind of like having no table. I don't sit at the table in the kitchen a lot.

I guess I could, I probably should but, well, that’s a big table. I mean, do

I need to be that literal? I mean that is a big table. I would never need to

sit there, I would sit there all alone and that would just be terrible. There’s
room for what 8 people there? I don’t have 8 people that I want to talk to all
at once. No! Get out of my house!”

Brittany, who went on to choose a kitchen with no table

“I really don’t want the TV at the end of my bed, but I kind of like the
layout”

Brittany (she ended up accepting the TV)

79

80

“I'm not a big Sofa person”

John, a retired librarian, reflecting on the living room furniture in his selection

In reflecting on her own design, Zahra described further her
selection process: “well, there were a few items that I knew for sure I
had to have ... like the closet in the bedroom ... but then there are
other features where I wasn't able to distinguish very clearly what my
needs were, so all of the choices seemed the same”. When considered,
Zahra’s comment illuminates two issues, first that her selection
process was based mostly on literal room features, and secondly that
the only decisions she could make easily were the ones for which
she'd identified a need ahead of time. This observation points to
the third fundamental problem that this evaluation uncovered: that
working with the more literal representations didn’t support a varied
conceptualization of the space, or the identification of new needs or
values by the user while doing the exercise.

As Zahra’s comments suggest, the people who had the easiest
time with this exercise were those who had spent more time reflecting
upon their spatial needs beforehand. A good example is Thea, who
is currently in the process of renovating a house in New Haven,
Connecticut, with her husband. Of her selection process, she
describes that “we’ve spent a lot of time thinking about the way we
like to live, and having this area (point to the living room) open, so
it wasn't that hard [to decide].” But everyone appeared to have at
least one or two high-level goals. So the pre-framed needs that made
this process doable came from some sort of earlier reflection process,
and were in all cases a reaction to an immediately observable problem.
It’s not a surprise that for 12 users who live in the cities of Boston
and Cambridge, MA, closets and large open spaces were the most
sought out features, because most, if not all, of them have been living
in and adapting to units or houses that are small and/or old. But
really obvious problems should not be the only way spatial needs are
framed.

Ultimately, the room selection process, when made in the
context of the component exercise, was simply about choosing the
best from a number of available options, by using the information

that was provided; as previously noted, people were engaging in a

specific comparative analysis. With the information being literal and
configuration-specific, it is not really a surprise that the exercise did
not tend to cause any further conceptualization of the space, but it

is important to point out because it’s the most critical shortcoming
of the exercise. Are people really arriving at the best, most livable
selections for their home, and what decisions are they actually
making? As our findings with the conceptual exercises suggest, far
more valuable preferences can be elicited through constructive tasks

that encourage reflection inveterately.
5.3 Conceptual Exercises, Findings

The conceptual exercises detailed in Chapter 3 were evaluated to
determine how well they help people frame new problems or needs
in terms of their home preferences, to get a sense of their educational
value, to see how easy they were to both understand and work
through, and to find out how entertaining they were. The findings
presented in this section are structured according to each of these
areas of inquiry, starting with problem framing. Within each area of

inquiry, findings specific to each of the exercises are described.

Exercise Summary:

o Text-Based Checklist: selecting one option from a checklist
of text descriptions, broken up room-by room

* Role-Playing Metaphor: users imagine they packing up
items for an upcoming move as a way to think about their
space needs

o Activity Sequencer: users list out the activities within their
morning routine as a way to think about their space needs

Floor Plan Diagram: users construct an abstract diagram

that describes their space needs.

Users were given the opportunity to comparatively rank the
conceptual interfaces, the results are shown in Figure 5.2 on the
following page. The ability of the conceptual exercises to help people
think of and frame their individual needs is central to the system’s
success in letting people conceptualize of their spatial preferences.
For this reason, problem framing was a central concern of these

81

Figure 5.2 Conceptual Exercises
Comparative Ranks

Users were asked to rank each of the
conceptual exercises from best to worst in
terms of ease of use, educational value, and
most liked overall.

82

Key A activity sequencer
D floor plan diagram
P packing metaphor
T Checklist Select

ADPT

(1 0.3 pt (3 way tie)
& 0.5 pt (2 way tie)

I 1 point

A D PT

evaluations. As will be shown, the difference between helping people Key 77T

think of things and being educational is a fuzzy one, but in terms of gi},'iigz”"g”

2 Disagree
educational value, it’s important to consider not only the learning 1 Strongly Disagree
that may have been done about needs, but about the actual exercises
as well. Ease of use was analyzed to determine how well people could
understand and also 4o the exercises; the concern here was with Checklist
identifying any potential barriers to users getting started and working Selection 4 3
through the exercises. In the context of a web-based implementation,
approachability is tremendously important because users aren’t likely
to hang around if they can’t figure things out. And along those same
lines, the entertainment value of the exercises was evaluated to get
a sense of just how fun they were. As will be discussed, being fun
is important for the conceptual interfaces because it helps provide Packing

an immediately tangible benefit, and also encourages users to spend Mgtaphar

more time conceptualizing.
5.3.1 Problem Framing (Figure 5.3)

Each of the conceptual exercises described herein incorporated

description and reflection stages to help users think about needs and

values. The goal behind this bipartite structure was to utilize the

process of first constructing a description of something as a way to g::::‘t’lgcer
then reflect upon the implications of that specific something. There 2 B
is however, a notable exception to this, and that is the Checklist
Specification exercise, the process for which more closely mirrors
the component assembly exercise detailed in the previous section.
Here, it was observed that users were simply selecting the choice that
seemed best, in one step. Resultantly, the findings for the checklist
exercise tend to take a departure from those for the others. As Marisa
describes, the Activity Sequencer “makes you think about what
you need whereas [with the Checklist] you don't really think about gi:og: al’r:.an
functionality that much, you just think about what you think would . L
be good.” This contrast was expected; in fact, our primary intention o
Helped in Thinking of
with the provision of a checklist task was to compare that task with or Discovering Needs!
the other exercises, because text-based option selection is the de facto PG B S o pﬂ:” .
standard for existing home search functions as of 2007. "t,':;?‘:;if:;g:‘::;:’::}f Problems

exercises allow them to discover their needs

Compared to the Component Assembly and to the Checklist g3

84

Specification, the other exercises allowed more significant and
more varied discovery of spatial needs. When asked if the three
more conceptual exercises helped them to think about their home
needs in ways that the Component Assembly and checklist did not,
all but one of the users agreed. As Marisa noted, “they made me
think of the bigger picture.” Another user named Alison explained:
“the exercises made me consider what I really value in a space, and
made me think about how my current living situation differs from
my ideal situation.” For each of the more conceptual tasks, the
aforementioned description stage focused on the user’s current living
situation, followed by a speculative reflection stage where users then
identified their preferences. This allowed them to think about both
the good and the bad things about their current situation, as opposed
to the Component Assembly, which only seemed to be evocative of
the profoundly bad things if it was evocative at all.

For several of the users, the Activity Sequencer helped them
to recognize how much time was spent in certain rooms and what
they do those rooms, and also helped them discover inefficiencies
in their spatial configurations, given the activity being described.
After completing her morning’s description, Thea described her
thoughts about spatial revisions that would help make her activities
more efficient: “[I could try] combining “Waking Up’ with ‘Getting
Dressed’ [into one room] so that I don’t have to move through
doorways or hallways... you can just, you know, move through a
room”. While working through her sequence, Brittany thought about
where “Eating” happens in the morning: “I'm at my office desk!
That's where I sit and eat. And I'm doing something at the computer
... which seems really weird under eating, I realize, but that’s really
what I'm doing, working and eating are really kind of synonymous.”
Building up these activity-based descriptions made it much simpler
for people to describe items that were important to have in the
room, or room qualities. As such, it was observed that for many
people, having lots of natural light was a particularly important room
attribute that emerged when they thought about waking up. But
the exercise also helped people reconnect with unique and important
things about themselves. When asked why he listed “Knick Knacks”

under his “Reading” activity, John noted: “I'm very much into

collectibles. And I have a lot, my house is just full of them and that’s
part of my psyche. Without those, I could not go from showering to
reading because I always stop and look at them”. Later, when
selecting his living room in the Component Assembly, he referred to
this specific discovery to help select a room layout.

Similarly, the Role-Playing Metaphor of packing up a room
encouraged people to think about the relative importance of the
various things they keep in that room, and also how items changed
the room. John, in working on the kitchen, noted that the packing
activity made him “think just how important the telephone is, and
[that] pictures are meaningful.” While packing up his living room,
Jack, who works for IBM and participated in the exercises with his
wife Jane, said: “I never thought about how many seats and chairs
we have in the house.” However, while the Activity Sequencer
was popular, not everybody thought the packing metaphor was
tremendously useful. Zahra noted: “the things that I take with me in
the room, for the bathroom at least, are not going to change really”.
This may have been because the bathroom tends to have a more
constrictive and standard layout, but there were several other users
who felt like reflecting on their list of stuff was not very useful when
it came to identifying preferences. In these cases, the connection
between their description of items and their reflection on preferences
was a fuzzy one for users; they had to make a bit of a jump. Still, as
Thea noted: “it would be helpful to do that for every room”.

For the diagramming task, users were asked to first diagram
one floor of their current living space, and then make one to three
improvements. So again, the process was one of description, followed
by reflection. This did help users frame problem spots, by thinking
through how the space was structured. As an alternative, some users
were told they could start from scratch; all but one of the users who
were given this option did so. 7 This alternative was useful because for
some of the first few volunteers, their current living situation was very
restrictive and they would often either completely start over during
the reflection stage, or make only small adjustments, like changing
the function of a certain room.

Because the task was so constructive, there emerged much more

of what Schon described as Reflection-In-Action, and some users

Key
4 Strongly Agree
3 Agree
2 Disagree
1 Strongly Disagree

Checklist
Selection

Packing
Metaphor

Activity
Sequencer

4 3

Floor Plan ~
Diagram _
4 3

Educational Value

Figure 5.4 Conceptual Exercises
Ranked by Educational Value

User rankings of the educational value of
each of the exercises

86

-LI

-

externalized that even while starting from scratch, they were thinking
of places they had known or lived in. For example, Brittany reflects:
“I'm also thinking about my childhood home. My parents had this
really great house so that’s a good, a really good model, and when you
walked in ... it was just open.” Additionally, in Brittany’s case, there
were multiple sources reflected upon: “this is coming from the idea
of my grandparent’s old house; where there was a giant bathroom
between our bedrooms ... I thought that was really nice.” Her
ultimate diagram was the combination of the two sources. Other
users like Jeffrey, who started with his current situation, were able to
highlight specific areas of need: “I have no second exit ... that bothers
me”, in addition to more high level concepts: “the practical reason for
design change in my apartment is to minimize the walking path.” In
each of these cases, the diagramming exercise elicited thoughts about

spatial preferences, simply by letting users build something.
5.3.2 Educational Value (Figure 5.4)

In addition to examining how well these exercises allowed people
to discover their needs, I was curious if people learned anything
new by working through the exercises. The ratings in Figure
5.4 are quite positive for all exercises but not particularly useful,
comparatively. The users were divided fairly evenly when asked if the
conceptual exercises allowed them to learn something new about their
preferences: only 55% agreed that this was the case. As it turned
out, it was very difficult to get a sense of whether the communicated
preferences were new concepts or simply ideas remembered. 7
Furthermore, it was probably difficult for the users to think of new
things that they had learned while doing the exercises, because this
knowledge may have been tacit or subtle. And there is also the case
of meta-knowledge, knowledge gained about the exercises themselves
and their purposes. Several people, like John and Jack, described that
the Activity Sequencer allowed them to think about their space use in
a way that they had never thought about before, which suggests that
they learned a new method for describing their needs, even if they
didn't necessary learn anything new about their needs.

Lastly, it is difficult to separate the process of learning from the

process of discovering. Again, all of the users felt like the exercises
allowed them to identify and describe their spatial needs. This

was not necessarily new knowledge, nor does it need to be, but
perhaps it was being organized in a new way. Perhaps discovery is an
educational phenomenon, even if it is rediscovery.

There was some evidence of tacit learning when people talked
about their experiences; for example, comparisons drawn between
the exercises themselves. Several users, when describing their efforts
to work through the Checklist, noted that the specification seemed
inappropriately flexible. Zahra notes: “it’s hard to visualize [the
Checklist] because I'm not constrained on anything; here (with the
Component Assembly) you're completely focused on what you're
giving up.” Another user, Alison, reflects similarly, “I thought I could
choose better with that one (pointing to the Components) because I
could see what it looked like. I'm not even sure if what I picked [on
the Checklist] is the same.”

And in other sessions, users said or did some surprising things.
Consider this brief exchange with Liv, a recent college graduate, in

discussing her diagram:

Liv: “it was a little restrictive because 'm thinking to scale when I know

I shouldn’t be”
Giles: “So how did you know you shouldn’t be?”

Liv: “well, just because of the grid”

Here, Liv had inferred knowledge about what she should be
describing simply by observing the structure of the Diagram’s
workspace. After pilot studies, the grid was incorporated into the
design of the exercise to help make the process more approachable,
but it is also intended to help the system prevent people from
representing space too literally to be of any use as a query. This
tension between constructing something and having it be searchable
is unique to the diagramming task, and Liv had discovered this. Also,
several of the users made observations about how the tasks themselves
could be related. Thea described that it would be useful to do the
packing metaphor for each of the rooms in her diagram; Marisa

noted that the exercises could be linked together to help complete

87

4 Strongly Agree
3 Agree

2 Disagree
1 Strongly Disagree

Checklist
Selection

Packing
Metaphor

Activity
Sequencer

4 3

Floor Plan
Diagram

Fun, Entcrtainingi
Experience |

Figure 5.5 Conceptual Exercises
Ranked by Entertainment Value
User rankings of how fun each of the
exercises was

88

her description. This sort of thinking, of applying ideas about how
the tasks can be organized and structured, implies that aspects of the
process were educational enough to engage people into the thoughtful

evaluation of that process.
5.3.3 Fun for people? (Figure 5.5)

The entertainment value of these conceptual interfaces is crucial,
for both practical and technical reasons. Speaking practically, it
is important that the conceptual query interfaces be enjoyable to
keep people engaged and interested in the task at hand. This is
particularly true for adults, who, as was previously described, require
the perception of some benefit associated with doing something to
be willing to spend the time to do that something. For users where
the benefits of the constructive tasks are not immediately discernable,
the potential to have fun with the search is the immediate benefit
that keeps them engaged. Also, it seems probable that having an
entertaining interface is a good way to get people to spend more time
not only to complete their query but to work to refine it. This is a
technical reason to try and achieve interfaces that are actually fun,
because for the underlying search process, more complete and more
refined queries mean better search results, which leads to a better
system overall.

Though it’s hard to evaluate in any quantifiable way, it seems
that with the exception of the Checklist exercise, all of the exercises
that were presented were quite enjoyable for people. Users ranked
the exercises as fun, and additionally, there was plenty of observed
evidence that everyone was, to put it simply, having a good time. For
example, 10 out of 12 people opted to finish up their exercises and
have the session take longer. So, while sessions were designed to last
30 minutes, most of them lasted an hour and some even more. In
several cases, the users were asked to stop working on an exercise that
they were immersed within, so that they could move on to the next
one; these users tended to be both surprised at the amount of time
that had passed and to want to finish up what they were doing. Some

comments that were made during the activities:

“I'd like to sit here for a couple of hours by myself and work on it”
— John, on the Diagramming Task

“It’s like monopoly... this is fun!” — Jane, on the Activity Sequencer
“I just think it’s so cool ... you guys should create a game” — Jane,
on the Diagramming Task

“This is great! This is so much fun. More people should have
things that are this fun to do, this makes me want to do all of this”,

Brittany, on the Packing Metaphor

Overall, the Diagramming task was the most engaging and the
most fun for people. In general, users tended to favor one exercise
over the others, sometimes extremely. So from the group of users
there emerged people who were, for example, activity sequencers,
and people who were diagrammers. It seems likely that the different
exercises would be well suited to different problem solving abilities of
people. For example, Alison, who described herself as a very visual
thinker, favored the Diagramming over the more narrative Activity
Sequencer. But Zahra was the exact opposite. The Checklist, being
textual and straightforward, and also containing options that were
generally unclear, was found to be the least enjoyable, and some
people found the Role-Playing Metaphor to be smaller in scope and
not as engaging when compared to the other exercises.

Jack and Jane, who worked on the exercises together as a couple,
discovered within the structure of the exercises both an interesting
space for communication and a way to have fun with each other.
Here is an example, from their conversation during the construction

of the diagram:

Jane: “I'd like a chair right there...”
Jack: “You like chairs everywhere!”
Jane: (laughs) “Yea, why not, it’s a nice sitting area, like in a hotel,

you know, they have the lobby area. It’s a dream.”

The exchanges that Jack and Jane made throughout the course
of their session point to an interesting dimension of the conceptual
interfaces: that they could be made to be interactive, and to allow
multiple people, of different relations, to build queries together at

the same time. The final chapter will discuss this possibility in more

89

4 Strongly Agree

3 Agree

2 Disagree

1 Strongly Disagree

Checklist
Selection

Packing
Metaphor

Activity I
Sequencer
4

Floor Plan
Diagram

Clear and Easy to
Understand |

Figure 5.6 Conceptual Exercises
Ranked by Ease of Use

User rankings of how easy each of the
exercises was to understand and work through

90

detail. Beyond that, it seems likely at the exercises were deemed to
be enjoyable because they were clear and because they allowed people
to both work towards and sustain identified goals. Since the exercises
were constructive and engaging, game-like experiences simply

happened.
5.3.4 Ease of Use (Figure 5.6)

It goes without saying that these exercises needed to be easy to
use; so that people could quickly engage in a constructive process of
discovery without being frustrated by a complicated process. But it
became apparent through observation that there were really two types
of easy: the clarity of the instructions versus the approachability of the
choices the exercises forced people to make. The Checklist is a good
example, because the rules couldn’t be simpler, but the task was still a
difficult one. This is because the options were difficult to distinguish
and to visualize. Interestingly, it was discovered that people who did
the Checklist as the first exercise actually had more trouble with it.

As it turns out, this is because the people who had done either the
Component Assembly or the other conceptual exercises ahead of time
were able to refer to those preceding exercises to help visualize the
Checklist options and to make their choices. ? Brittany, who did the
Checklist first, exclaimed: “this is so complicated, let me know if I'm
putting too much thought into this!”

For all of the conceptual exercises that involved tagging, the
semantic definitions that were included on the attribute tags were
useful to the users in clarifying the meaning of those tags. This
finding supports the notion that by providing the definitions to the
user ahead of time, we may be able to clarify the functionality of the
search operation itself. Looking at the “Efficient” attribute tag during
the Activity Sequencer, Jane commented “oh and this, based upon the
description, seems like it makes sense.” *°

For many, the Activity Sequencer was, while interesting, a little
difficult, but most people still seemed to find it engaging. Brittany
noted: “it’s hard to qualify what I'm doing, I might be sitting on the
floor with the cat, and it may be a little out of order ... I might just

get up and work for a while, not even eat.” And John described that

“it was hard because I had to think of what really means something to
me when I get up in the morning and I've never really thought about
it that way”, but he was very happy with his discoveries.

Four of the users also found the grid in the Diagramming Task
to be a bit limiting to work with; but only because they wanted to
have a bit more freedom in defining room boundaries. For reasons
previously described, this had been disallowed. Still, all told,
the easiness of the Diagramming Task itself was one of the most
unexpected findings of these evaluations. Going into the evaluations,
the assumption was made that the task would be quite difhcult, to the
extent that people may not even be able to do it. But observations
revealed quite the contrary result: that it was very approachable, quite
fun, and in many ways easier than trying to, for example, sequence
together a collection of activities because the diagram was more
directly representative of space. But of course, while the ease of the
diagramming task was a pleasant surprise, there are other, important

considerations that challenge the use of this exercise in particular.
5.3.5.1 Pros and Cons: Text-Based Checklists

As an exercise, the Checklists were easy to understand, but
difficult to work with. Without any visual information, users found
it difficult to differentiate the choices given, unless they referenced
other exercises or had strong convictions about particular features. As
described in section 4.2.1, the exercise would have scalability issues
if incorporated as a system interface. And there was no evidence that
people discovered any needs by working on this exercise. For these

reasons, the checklists were not incorporated into the prototype.
5.3.5.2 Pros and Cons: Role Playing Metaphors

For some users the packing metaphor was not particularly
enjoyable as an exercise. And a few users noted that the connection
between listing items and then identifying valued room attributes was
not meaningful. These findings suggest that this exercise might not
be good for everyone, or that it might be more useful only in specific

rooms.

91

92

However, for some users it was very useful to think about all of
their items as a way to begin thinking about what theyd need from
a space. Several users also found that making the list of items was
a good way to remember about all of their possessions and even to

prune out unnecessary or unwanted possessions
5.3.5.3 Pros and Cons: Activity Sequencer

The Activity Sequencer was, for several users, the most difficult
exercise and required more explanation than any of the other
exercises. Also, users found that the morning routine isn’t always a
distinctly sequential set of activities, and that it may vary from day-
to-day, which suggests that even if thought-provoking, the specific
sequence given might not be wholly accurate. This isn't a significant
problem because the attribute list that the sequence generates is what’s
significant to the search.

Also, it was found to be the most useful of all exercises in allowing
people to discover needs and values, and it was evident from the
sessions that even though the task was initially more difficult than
the others, it was very useful. Additionally, the activity sequencer
encourages people to think in detail about multiple rooms and the
way they flow together, in addition to how those individual rooms
are utilized. This means that more query information is generated by
this interface than the others, and therefore one of the more effective
interfaces at getting good results. A more detailed query gives the
system more to go on. This type of specificity will be explored further
in Chapter 6.

5.3.5.4 Pros and Cons: Floor Plan Diagrams

People found the diagramming to be the most enjoyable task.
And, the diagramming was unique among all of the exercises in the
amount of improvisation that took place. In many cases, users bent
or even broke the rules to reach their final designs. Rules can, of
course, be enforced more strictly in a computational implementation,
but the specific nature of the ways that people strayed is very

informative and should not be overlooked.

Earlier in this Chapter, is was briefly described how one user,

Liv, intuited that this exercise was not intended to allow people to
describe the relative sizes of rooms. But, three of the users did so
anyway, by using the “open connection” element to effectively merge
cells together. And fascinatingly, each of these users employed the
same convention to indicate that the cells that were now open to
cach other were in fact the same space: they laid the room label over
top of the open connector to span the multiple zones. According

to the rules that were given to the users, this was not allowed; yet,

a significant number of them did it, just the same. For the query
interface itself, it would be simple enough to allow this merging of
cells to describe the relative size of rooms, but in terms of the search
operation, determining a match based on size is far more difficult;
the system would either have to rely on proportional comparisons or
standardized ranges. Another common improvisation was with the
“Hallway” tag, which was intended to be used as a room label and
therefore placed within a cell: multiple users placed it between cells,
just like a doorway connector. So, some people seemed to conceive
of Hallways as a connection, as a conduit, racther than an autonomous
space.

These improvisations highlight one of the fundamental issues
with the Diagramming task: the user’s idea of what they are specifying
not matching up with the system’s idea of what they are specifying.
From these evaluations, it was apparent that some users expected that
size would be meaningful, and also that specific orientations would be
meaningful. These criteria will be considered in the detailed system
overview of the final chapter.

The issue of unmet expectations is made further problematic
by the fact that people also tended to make mistakes during this
exercise. In making connections between rooms, a few users either
overlooked some rooms or made a strange chain of rooms. Zahra, for
example, connected rooms together into isolated pairs without tying
the overall plan together. And Brittany had a bedroom that could
only be entered through a bathroom. Because the underlying search
process allows for design criticism to be added to the construction
process, through detailed relevancy reporting, initial correctness

might not be critical. These user exercises only looked at the first

Figure 5.7 Improvised Bridging
Technique for Making Larger Rooms
Here, the user wants a larger Living room, so
they've placed the tag to “connect” the cells.

3 Users employed this technique.

93

step of the potentially iterative process of searching; only the initial
query building. Whether or not a fragmented or peculiar diagram
would be able to output an effective query remains to be seen, but it
is important to note that with the diagrams, the process was not only

more constructive than the other exercises, but also led to a higher

incidence of errors. !

1. Solicitation was done via the MIT House_n volunteers mailing list, the
Harvard Technology in Education mailing list, and a Web posting for
volunteers on craigslist (http://boston.craigslist.com)

2. See Appendix 1 for the complete questionnaire including the exercise
rating

3. Some of the rooms presented in the Component library were missing
renderings, simply because there wasn't time to get them all generated
prior to the study. This user was referring to those rooms with no
renderings, which she called photos.

4. From descriptions theyd given, 9 of the 12 users wanted a sense of
“openness” in their plans. The popular living room was option #9, with
4 chairs and one sofa around a large rectangular table alongside an open
study area separated by a shelving/wall unit.

5. From observations, the selection of a single room took about a minute.
The kitchen tended to take the longest; this may have been because most
people started there so it was the first one theyd looked at.

6. The “Design Your Home” application hosted by the Toll Brothers is
a good example of text-based search. The query options given in this
cxample are State (region), Number of Rooms, Square Footage, Number
of Bathrooms, and Garage, followed by a Style selection if any options
come back.

7. The ability for people to start working on the diagram from scratch was
discovered when the fifth user came in. This came as a bit of a surprise
because I'd anticipated people would have more trouble with the diagram.
For the user in question, Kevin, his current plan was bad enough that
he simply didn’t want to start with it, so he did his own thing. Our
discussion afterwards uncovered that he felt like start with his current
situation would constrain him. Subsequent users were given the option to
start from scratch.

8. For me, the separation between discovery and learning is not a clear one;
I would argue that all discovery or remembrance is learning. In theory,
ideas are intransigent, perishing things... thinking of them in some new
context means that new information about the meaning of the idea itself,

however insignificant, has been recorded.

10.

11.

I first noticed this was happening with Megan, she was the first user that
didn't have the option selection first and she was clearly trying to find

the option that matched her Component Assembly design. Because the
text descriptions are so general and difficult to visualize, it seems natural
that the process would be a porous one, where people are conceptualizing
based upon immediate experiences and visual information.

The session with Marisa uncovered an issue with the semantic attribute
tags that I was expecting to see more of, simply that the attributes
provided (see Figure 4.2) were not numerous enough. She wanted more
options. None of the other users had given this indication, so it seems
likely that even in the number of attribute tags needed to be expanded,
even doubled or tripled, wed still be dealing with a manageable set.

In the case of unspecified connections, it seems likely that the result
would simply be a weaker search, because the query interface would not
be able to report relevancy limitations from broken connections, it has no

mechanism for inferring these details.

95

Figure 6.1 Search System Structure
Showing multiple interfaces and multiple
searchable representations

96

Query Interfaces ,,xComponent Resources
Packing Metaphor Components, Assemblies,

i and searchable plan
Plan ‘ Qu ery * configurations (MySQL)

Diagram - RDF format \.
g

*
| Search 6--N98X " pirectory of

'
'
1
'
1
V
'
|
'
1
v

Activity Sequencer RDF formar
Results * Remote

RDF formar Resources

Web Sites

I

Link to Resource » dmﬂges
Go to design environment Standard CAD
if resource is Component Based Other flat formats

* RDF for all transported data is in the same format

6 Search System Prototype
6.1 Overview

This chapter summarizes a proposal for a consumer-based design
search system. ! For the underlying component-based system, only
the data structure and not the interface was developed. While this
work is centered upon the search, some details are here provided
for a more complete and multifunctional system. This system is a
search tool that allows users to design queries, which are then used
to search for home solutions. When the search results come back to
the user, they may contain either component-based representations or
any number of flat representations that have been adequately tagged
with indexes. In this system, the process of searching allows for the

initial discovery and specification of preferences through conceptual

 designs, and for the sclection of a buildable design solution through

the matching algorithms. But further, as we will see in cases where
the search results are of a component-based structure, the system
allows for the more detailed adjustment of the design solution within
the limits of that component representation. So in the context of a
component-based solution, the process is divided into two distinct
stages where the search operation allows the user to arrive at a
preferable pre-designed configuration as a starting point, and then

to further tweak the design according to the rules of the component

manufacturers
Load conponent and assembly

Query Interfaces data direcily or with mthmmr

--Component Resources

Figure 6.2 User Roles within the System
The key players and how they interface
with the system detailed in Figure 6.1

i CONSUMers ,-'
; Users enter queries refine J
S their preferences Hvu search results 4 architects
¥ (Create searchable plan
ToSEhenSEsnsanas=ts = F configurations using 4
» ' special interface

CONSUTNETS
Users may further wefine the results
if the results are component based

Search 0/ Directory of

Y Remote
B Resources
integrators
’ Sevvice pavtner that indexes existing or
fat representations, or lpads component
Link to Resource / data for assemblies that their pariners
can Ouild

builders and developers

Provide flat, remote resonirces or component
based resowrces to guin access to participative marker

system itself. In the case of other, non-configurable representations,
the designing ends when the search itself ends.

The front-end to the system is the collection of conceptual
search interfaces based upon those detailed in Chapter 4 and further
refined based upon the results of user evaluations. (Figure 6.1) The
Checklist interface was not included (see Chapter 5 for details).
The interfaces are web-based and can search various types of web-
accessible resources; the interfaces can function either individually
or collectively to allow for more refined searches. The back-end of
the system, to which the query interfaces submit their requests, is
a relational database that either points to or stores design solutions
from various content providers, depending on the type of content.
These design solutions are linked directly to the results listing of the
query interface. As far as the search is concerned, the resources could
be anything from flat, static images like Jpegs to complex Component
systems that are attached to pre-fabricated building assemblies. The
differences between the various searchable representations will be

detailed in the Results Listing section of this chapter.

6.2 Users

There are 3 basic classes of users within the system: consumers,
content providers, and integrators. (Figure 6.2) The consumers

are simply the users that come to the site to search for home

97

98

preferences and solutions. They can be expert, non-expert, or just
curious — no assumptions are made about their reasons for arriving

at the site, but it is assumed that they will engage in a search. The
consumers create, through interaction with the query interfaces,
search requests for the system. To gain access to searchable content,
the system utilizes industry partners as content providers that either
offer indexed, pre-designed solutions or contribute to a centralized
library of components and assemblies that support the provision

of component-based solutions. The manufacturers of appliances,
furniture, and architectural elements could provide the library with
all of the components that the BIM-likg solutions are made of: for
example, each of the things that go in the bathroom. Any number of
manufacturers would be able to provide components for the library,
in addition to assemblies of components. In fact, a manufacturer
could provide a complete room assembly along with all of the
necessary parts and this would be immediately searchable when added
to a floor plan.

For component solutions, the pre-designed floor plans stored
within the solution library are intended to function as searchable
starting point home configurations that the consumer can further
refine. The starting point designs themselves would also be provided
by developers and home builders, in addition to architects. The
designs would simply be a connected group of assemblies and
components; so companies can, for example, share assemblies, which
are then incorporated into hybrid design solutions that use objects
provided by numerous different manufacturers. In this scheme, one
can imagine that the developers might provide a base set of highly
configurable plans that the consumer then searches through, where
architects might create more stylized prototypical spaces that offer
solutions of different types.

For all types of representations, the content providers would
cither use data management interfaces or work with professional
integrators to get their designs loaded into the system. In this
context, integrators are IT professionals that are familiar with the

system and can help companies put their information online, and

can further help these companies transition into newer technologies
or production processes. The technical and business processes for
loading data into the system are not addressed by this prototype, but
the complexity of these processes would, of course, vary depending on
the amount of data the provider wants to put into the system and the
format in which that data is stored. ?

Each of the various players may potentially have other roles in
the system, or take on multiple roles. For example architects might
actually collaborate with consumers to generate search requests in an
interactive, multi-user environment. And consumers themselves may
become the providers of search artifacts that help guide the design of
new, searchable configurations, simply by saving their queries. The
following chapter offers speculation about the various roles different
people could play, and the potential impact of these roles within the

design system.
6.3 The Query Interfaces

Collectively, the query interfaces will be straightforward and
lightweight to implement. The guidelines developed for this study
assume that the interfaces would be developed in Perl, but any web-
enabled scripting or programming technology would suffice. > Perl
is an all-purpose scripting language that performs well and also
supports OOP paradigms, in addition to being a widespread web
development technology. (Welsh) The Perl scripts attach to a MySQL
database, which in turn provides data for the various types of tags
that are available to each of the queries. This database also houses
information for accessing the resources from the various content
providers.

Each of the query interfaces will generate the same kind of
output; this means that query output can be shared between the
interfaces. This is important because it enables the system to support
sessions where the consumer utilizes more than one of the query
interfaces to construct the query output. The user evaluations

illuminated the fact that people found the interfaces to be useful for

99

Figure 6.3 (Right) Links Between Interfaces
Users can make multiple pathways through
the various interfaces to specify their query

Figure 6.4 (Below) Standard Query Format
The system uses this XML-based RDF
structure to pass query information between
interfaces and to the search algorithm:

<?xml version="1.0"?>
<RDF rdf="http://www.w3.0rg/02/22-rdf-syntax-ns#"
dc="http://purl.org/dc/elements/1.1/" >
<Config ConfigiD="2" Score="10">
</Config>
<Config ConfiglD="7" Score="28">
</Config>
<Config ConfiglD="8" Score="30">
</Config>
<Description room="Bedroom" id="b01">
<activity>
Waking Up
</activity>
<multi>
Kitchen
</multi>
<attribute>
Small But Comfortable
</attribute>
<attribute>
Private
</attribute>
<item>
Bed
<[item>
</Description>
< Description room="Kitchen" id="k01">
<activity>
Coffee
</activity>
<activity>
Eating
</activity>
<multi>
Bedroom
</multi>
<doorway>
Bathroom
</doorway>
<attribute>
Open Layout
</attribute >
<attribute>
Lots of Counterspace
</attribute>
<item>
Oven
<fitem>
<item>
Coffee Machine
</[item>
<item>
Pots and Pans
<fitem>
<item>
Kitchen Pantry
</item>
<item>
Shelves
<fitem>
</Description>
</RDF>

100

Activity Sequencer

)
Plan Diagram

«
Packing Metaphor

'
|
'
'
'
'
'
'
'
1
0
l
1
'
'
|
'
'
|
)
'
'
1

Queries 6 o (o]
different types of things, and additionally that they tended to think

of the output from the various exercises collectively, as a whole.

For example, one user commented that it would be “good to go
through the [packing metaphor] for each room in the [diagram]”,
suggesting one way that the exercises might be related. Based upon
the evaluations, Figure 6.3 shows the links between exercises are
proposed. *

The output itself, the search query, is structured as a Resource
Description Framework (RDF) XML document. (Figure 6.4) RDF is
“a standard for Web metadata developed by the W3C... suitable for
describing any Web resources, and as such provides interoperability
among applications that exchange machine-understandable
information on the Web.” (Fensel, 9) Essentially, RDF describes the
semantic relation between concepts by means of a simple resource-
predicate-object syntactic structure, usually called an “arc”. (Figure
6.5) An example arc in the context of our search tools might be:
“Kitchen-Doorway-Living”, which describes a doorway connection
(predicate) between the resource (the Kitchen) and the object (the
Living room). However, the resource described in an RDF arc can
be any sort of concept. In most applications, the resource would
be a Web location or URI, because RDF is generally intended to
support more intuitive Web processing for the W3C'’s current (as of
2007) Semantic Web initiative. (W3C) An example of an RDF arc
for a Web location would be something like “http://www.google.

com-function-search tool” which describes that the Google resource

functions as a Search Engine. The general purpose of RDF is to
make Web resources more intuitively searchable for humans; and in
fact, several RDF search tools are already being developed that can
query RDF directly. > This means that the queries, stored as RDF
documents, become searchable artifacts themselves. As we will see,
there is potentially significant utility to preserving the queries, to get a
sense of what the system is being used by consumers to create.

RDF is generally described within an XML document, simply
due to the widespread standardization of the XML document
structure; however, RDF is not inherently an XML standard. This
system utilizes XML to structure RDF queries as they are transmitted
between querying interfaces and the search tools, but within the

various interfaces and tools the RDF data is structured relationally in

the MySQL database.

Our RDF data structure for query output describes a connected,
labeled semantic graph where nodes in the graph are room names and
rooms are connected together either by doorways, large openings,
or indirectly through multiple spaces. (Figure 6.6) Within the
room node, any number of attributes and items can be included,
in addition to what sorts of activities are expected to happen in the
room. This fundamental RDF structure is utilized by each of the

conceptual interfaces: the Activity Sequencer, the Packing Metaphor,

and the Diagramming tasks.

Due to the inherent scalability problems of the Checklist
Specification exercise and because of its relatively poor performance in
terms of ease of use and entertainment value, it is not recommended
that the Checklists be implemented into the system prototype. In
addition, based upon findings from the user studies, a few revisions

were made to the query interfaces.
6.3.1 Revisions to the Activity Sequencer Interface

The activity sequencer itself does not require significant revisions:
it was clear, approachable, and did not cause any users to make
mistakes. However, more attribute tags should be made available,
though this study didn’t come to any conclusions about what those

additional tags ought to be. For most users, as summarized in

Predicate ____
color’ P ‘O
Object
“red”
I’I
O Resource
‘apple”

Figure 6.5 RDF Arc Structure
RDF organizes information into arcs, which
are also called triples

P ‘K017

: houses™®, 0
\ actwity . “CQZQ,;

!

i

1
]
‘ \ »
T \ maker
1 A}

\

1

1

1

*\ open
‘\ ‘eating”
o o
N

~
~

“ door ~~
.\\ to « . O 2
. Dining, D01”

~
~

N
~

O
“Bathroom, Bth01”

~..

Figure 6.6 Arcs Used by This System
An example of the various attributes that
define a room, in RDF

101

102

Chapter 5, the attributes that have been provided were adequate. In
addition to the attributes, the transitions between activities area needs
to be more prominent to help signal to users that they can revise

those transitions to better describe their needs.
6.3.2 Revisions to the Role-Playing Metaphor Interface

To better support the Packing exercise, the RDF specification
for the queries was expanded to differentiate the items listed in the
initial things to be packed portion of the exercise from any items
that may have been added to the subsequent desired room attributes
portion. It wasn't expected that users would want to put items in
the attribute list, but it makes sense for them to do so; thus being
able to differentiate the two classes of items is important. Also, the
separation of the things to be packed items allows this interface to

better interoperate with the others, in terms of the underlying RDE
6.3.3 Revisions made to the Floor Plan Diagram Interface

The Diagram exercise illuminated the need to add unique room
identifiers to the underlying RDF structure, to allow the system to
differentiate between multiple instances of the same room type. It’s
a fairly obvious requirement, since many users created diagrams that
had multiple bedrooms and / or bathrooms.

The Web interface is more restrictive than the prototype and
therefore many of the improvisations that users made will not be
possible; for example, attempting to place a hallway room as a
connection between adjacent grid cells would not be permitted.
However, enough users attempted to specify larger room sizes by
opening up adjacent spaces that a “size” attribute was added to allow
for more refined matching where possible. To support this, a size
value was added to the RDF structure and the diagramming interface
will be designed to allow spaces with opening between them to be

considered as one room unless they are separately tagged.

6.3.4 Exclusion of the Checklist Interface

Because it was the least popular and least effective exercise, in
addition to the scalability issues highlighted in section 4.2.1, the Text-

Based Checklist interface is not recommended for inclusion in the

prototype.

6.4 Results Listing

While this study has given particular attention to Component-
based representations, the system can search for different types of
resources. This means that the query results might have different
types of file formats that come up in the results list. As was previously
described, there are two basic categories of representations: those that
must be indexed and those that are inherently searchable.

Though there is great flexibility in what types of things could be
indexed for the search, we assume that the indexed representations
would be one of the following types: Images (Jpg, other raster
formats), Vector drawings (AutoCAD’s DWG format, SVGs ©), or a
Web resource that uses multiple formats. 7 The resources themselves
could show different types of content: they could be floor plans,
renderings, or photos, or even diagrammatic representations, the
system doesn’t care. What the system does care about is the auxiliary
index that is related to each of the images.

To structure this auxiliary index, the prototype is actually
utilizing the same RDF format that is being used for the query.

This has a few benefits. First, the search algorithm becomes a bit
more straightforward: to search out indexed representations the
system is comparing identically structured RDF documents, and
simply looking for the best match. Also, the logic for determining
the best match would be derived from the search logic described

for Component systems in the next section. It also means that the
querying interfaces might potentially be retooled into interfaces that
allow the content providers to index their design solutions manually.®
Still, the processes to support the generation of indexes manually

or computationally are part of the content loading process and

not described herein; rather, this proposal suggests that searchable
representations be used to circumvent the problem of auxiliary

indexing altogether.

103

Figure 6.7 Mapping Queries to Component
Based Representations Room .-\ Component
The search algorithm in the proposed system type: Container

utilizes the relations shown here to map

queries into more literal descriptions with matc/ung bpe / name

Item 4 Component

| type: Object

with matching type / name

Attribute ,Q Assembly

room attributes matched
algorithmically to specific assemblies

Connection ® Connection

,,‘ in the component system connections
Match Type are identified by type and
Oalgorithm matched directly
@direct

Object-oriented Component-based representations are directly
searchable. In this case the searching process, as described in the
next section, utilizes a mapping program to parse an incoming RDF
query and search for the best matching configurations housed by the
Component system. Figure 6.7 shows how the system maps RDF to

Component-Based data.
6.4.1 Component System Structure

For the search procedure that was prototyped, the Component
system was structured into a relational database format in MySQL,
which defined the components and their assemblages. (Appendix
2, A2.1) Twenty Five (25) basic design solutions were loaded into
the system; these solutions were designed for the same multi-family
housing context that the user studies were based upon. * Components
have dimensions, type designations, and other manufacturer-provided
metadata. The assemblies contain a hierarchical listing of components
with specific locations that is related through labeled connection
types. Each type of component has at least one interface upon which
connections can be made; these interfaces describe type, range, and fit
requirements as described in Chapter 3. (Figure 3.6)

One complicating factor within the prototype is how to transition
the consumer from the searching interface into the Component

system interface. Our prototype, being developed within a fast and
104

accessible relational database, is meant to support the development
of a web-based component design system which roughly follows
the structure of the exercise detailed in Chapter 4, and which the

user could simply click into. If the Component representation was

something like Autodesk’s Revit BIM, the BIM document might need

to be downloaded or delivered through some other type of interface

— this is a more complex delivery problem which we’re not addressing.

6.5 The Search Algorithm for Component Systems

The prototypical search tool described in this section was
developed in C#. '° The input into the tool is an RDF query as
described previously. As shown in Figure 6.8, the output is the same
RDF query with search results and relevance information embedded
directly within.

To find results, the search tool interfaces with a relational,
MySQL-based component system. !* In truth, the MySQL
implementation represents an incomplete component system,
because while the core data structure is fully implemented, the
system doesn’t have a completely functional prototype of the actual
modeling or drawing environment that would be built on top of it.
So the prototype is simplified and, therefore, it may not be possible
to generalize from the results achieved to other types of component
systems, like BIM, that store their data structure in proprietary,
binary documents. However, the object-oriented specification of
BIM and other component systems correlates with the database
structure that was developed, so rather than spend time trying to
figuring out the details of interfacing with any one specific solution,
we've considered our simplified and open-source database to be
representative of the general structure of component-based systems,
with the goal being that our findings would be thus able to be
generalized.

Figure 6.8 Search System Output
The search posts relevancy information
directly within the query itself

Input

RDF Query with
Results Embedded

105

Figure 6.9 Binary Search Tree

Figure 6.10 Binary Search Algorithm
Here, the algorithm is looking
for the letter “P”

106

6.5.1 Searching and Sorting

Both the Component system and the RDF queries are complex,
structured data-sets. As such, the search algorithm is a high-level
search, a relational search that utilizes identifiers to group concepts
and find properties. ' This is the same paradigm upon which SQL
search algorithms and thus SQL languages are built. In this case,
and because a SQL technology was used to organize the searchable
data, the search actually utilizes SQL queries to access the data; thus
the search is both SQL-like, and SQL-based. By incorporating the
ability to search through a discrete list of content providers, the
search process described herein functions as a Federated search,
where multiple, disparate data sources are searched and then merged
together.

Relational, structured databases are built out of a collection
of tables; these tables are like a flat listing and are not inherently
hierarchical like the RDF queries and component system’s
specification require. Within SQL, the hierarchy is established
through the specific types of relationships drawn between the tables,
where for example one table called “component” might be a child to
another table called “assembly”. Additionally, a simple hierarchical
structure can be created within a single SQL table through the use
of self-referencing structures, a well-known methodology which
was utilized in the SQL design to allow for the specification of an
increasingly granular type hierarchy. ! (Appendix 2, A2.1) Taken
together, these references allow the system to describe the hierarchical
structure of the components with little difficulty.

Within the search application itself, the RDF data is organized
into internal class structures that include basic data sets for the
various child elements and properties; for example, the objects a room
contains. In both the MySQL specification and the internal data
classes, the search algorithm takes advantage of current technologies
that utilize well-known methods for structuring and storing data
for easy access. In both cases, data that is stored on the hard disk is
organized into either Binary Search Trees (BSTs, Figure 6.9) or sorted
lists upon which extremely fast binary search operations (Figure 6.10)

may be run. '

To enable the search algorithm to find partial matches to the
user’s query, the query is broken up into individually searchable parts.
Partial matches are essential for making the search work because
they enable results to come back to the user when searches are not
completely matched. Allowing the user to learning what criteria
are not available from reviewing partial matches is one of the most
fundamentally educational aspects of the search cycle.

Following the structure of the RDF query, the searching is broken
up into the following stages: complete room graph, room pairs, single
rooms, and individually, each of the included activities, items, and
attributes. Each stage of the search, if successful, contributes points
to an overall score for the solution being queried. In application,
the complete room graph is searched for at the same time that the
room pairs are: if all pairs are found the room graph is considered
to be a complete and the solution is given an additional score
multiplier. Individual rooms are searched one-by-one and have a
relatively small impact on the final score. Within each of the rooms,
all of the properties (items, attributes, and activities) are searched for
individually; each type of property is given a different weight. The
item search is quite straightforward: the RDF item label is compared
to the component name and its complete, self-referencing type
designation. '°

The attributes are a little more complex: for each specific
attribute, the overall room assembly is analyzed according to the

semantic definition of that attribute. '® Processing the attributes

1. Overall Room Layout ¢
Match design’s rooms & connections.
Complete match gets bonus.

2. Individual Rooms @

Check design for rooms in the query |
A match has a specific score
Room scores are aggregated

. 3. Check rooms for items

® 4. Check room for attributes
/ Specific item layouts are analyzed
to match attribute specifications

The algorithms match the semantic

Return Results n definitions given to the user

Figure 6.11 Search Algorithm Stages
The query is searched in sections, to
allow for partial matches

107

Room Layout, Complete 12
Room-to-Room Connection 6
Room 1

Room Attribute 9

Room ltem 6

Figure 6.12 Weights for Search Criteria
These weights are adjustable to allow for
further refinement. The weights shown
here are those used for the system
analysis

108

is problematic in a few ways. In the prototype, the attributes are
each programmed individually, which presents a scalability problem
because, as semantic definitions are added to the system, the search
code would need to be updated to support them. Also some
attributes are much harder to characterize quantitatively than others
are. The tag “Efficient” for example could mean many different
things - it is hard to think of a brief and general description. As a
rule, the definitions that the system provides are rooted in the facts
of physical objects and relationships. So, to the prototype, efficient
means “Surface/sitting objects connected or close to each other.”

But future implementations may be better served by making the
attribution process more algorithmic, or perhaps room-specific, where
room components could be compared to ideal-case layouts as a more
empirical measure of true efficiency. 17 Still, the total number of
semantic definitions required may not be that large, and as the user
studies showed, only a few users felt that the base definitions were
inadequate. This is something that another round of evaluations,
done with web-based prototypes could help tease out.

The different search stages are given different weights and thus
influence the score differently. In the current system, the weights are
adjustable. Based upon evaluations, the weights shown in Figure 6.12
were used for the search algorithm. Using weights as shown leads to
a phenomenon where weaker queries, or queries with less criteria and
therefore less specificity, return on average lower relevancy scores than
stronger queries. This scoring methodology is a bit different from
common Web search tools that report relevancy as a percentage of the
search term, but it makes sense in terms of the design search, because
it offers a reflection of the specificity of the query. If the user has only
specified a few criteria, the search is not going to arrive at meaningful
results, so a lower potential scale for weaker searches allows the
system to recognize weaker searches by looking at the score alone.
The system might then engage the user in tutorials, or point him to
a different conceptual interface. Additionally, one of the nice things
about each of the conceptual interfaces is that they present exercises
that have a clear beginning and ending. Each of the volunteers had
a clear understanding of when the exercise was “done”, and the vast

majority exhibited a desire to complete the exercises. '® In terms of

the queries, completed exercises mean stronger searches.
6.5.2 Reporting Results

Matching resources are reported directly into the RDF query
structure, in two modes. The first and default mode is the summary
results listing which simply provides a ranked and ordered listing
of design solutions. This is how the search tool replies when a new
query is posted. But the tool allows for more detailed relevancy
reporting; if the user selected any one of the design solutions, the
search tool sends another RDF reply that omits the summary listing
but includes a detailed breakdown of the scoring for the query. These
more detailed replies allow relevancy and scoring information to be
shown directly within the conceptual querying interfaces, because
the search algorithm states exactly what parts matched and how
significant each of the matches were. This is inherent to the search
cycle and an important facilitator for design guidance because the
user can, for example, see quickly what parts of their query are not
getting any matches and therefore might need revisiting. In fact,
posting the relevancy visually, into the query composition, functions
the way that an adaptable and well-specified embedded critic ought
to, without requiring any additional, complex programming. *

In addition to the problems associated with making sense of

<?xml version="1.0"?>

<RDF rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#" dc="http://purl.org/dc/elements/1.1/*>
<Config ConfiglD="4" Score="43">
</Config>

<Description room="Bedroom" score="2">
<activity>Check Weather </activity >
<activity>Dressing </activity >
<multi>Kitchen </multi>
<doorway >Bathroom</doorway >
<attribute score="5">Private </attribute>
<attribute score="5">Spacious </attribute>
<attribute score="0">Abundant Natural Light</attribute>
<item score="6">Shelves</item>
<item score="6">Closet</item>

</Description>

<Description room="Kitchen" score="4">
<multi>Bedroom</multi>
<attribute>Lots of Counterspace </attribute>
<attribute score="5">Spacious </attribute>
<attribute score="0">Abundant Natural Light</attribute>
<item score="4">Island </item>

</Description>

</RDF>

Figure 6.13 Revelvancy Scoring

This is an example of the system’s output
An RDF-based query has specific relevancy
scores for a specific solution embedded.
Both scores and solution identifier are
highlighted

109

110

attribute tags, there are potential scalability issues with the posting
of summarized results listings into the RDF structure: if the system
were to get large with hundreds or thousands of potential matches
being reported, the text-heavy RDF format would not really be an
efficient way to pass the information around. In this case, the search
algorithm, as prototyped, could simply stream a pre-formatted results
list directly to the query interfaces.

6.7 Visual Explanation of the Search

The following pages provide a visual series that shows how the search
works. The example is a simple query, built by the consumer using

only the diagramming interface.

user builds query

How The Search Works

':grr)g Eor”

user submits query
identifier .-~] identifier =" E
i . “KO1” . “£0I”
identifier .-~ i S namey o---=- . S onamey .-~ <
:d(fargﬁzir. “LO?’ f namey, o, ; e o
3 o ’ ‘Kitchen ! ‘Entry
£ nameg . -mn=e- " e L
Y “Living” I is, {0 comtaing
Lo Iy == TTTTTE Sy Room -~ e
P Ronmp N o} .
Room . i “Spacious” i s :";mn‘n"
Y “Entry, EOI ' PN entrance
kS 0 ' 5 s open
- L \ \ ‘w0
open to '\ door '\::"aor . w5
L o e
s e “Living, LOI”

“Kitchen, KO1”

Search System Reads RDF Format

111

identifier_ =" kel
o “Ko1
identifier .- " N 5 naniey o= === <
. « " & i Y
K Lol 5 “Kitchen”
i rszl_e._ —————— - :- i
s “Living” o is
[Room -7~ Beng
Room . / Spacious”
o “Entry, EOL” !
. —"o '
“*&--‘-v-"_’ \“
open to door
L
search connects to k- ’
component library 8’”’}5 £01

“Bol”
-
;o onamey o-coc- 5
; Lo £, 0,
; " niry
E & -
i
|
L) .
./ comtaing
Room L.~~~ ae
o
\
iy “main
Y entrance”
t N
Vo hapen
\ ‘w0

Sdoor Tee..
L

“Kitchen, K0O1”

“Living, LOI™

Search System Connects to Component Database

s

open to

] “ .
: main
. entrance”
oA
! . open
'.‘ \.‘!0

Sdoor el _

& 10 0

. Living, LOI

Seasch Process Checks Cdnfigurationé for Ma“n-:hm-g Rooms

112

identifier .- " L identifer_.--" i
e ko p “Eoi”
: /
o E e , /
identifier .-~ (o] S onameg .----- = Soname, -----s
fieg ‘ol o ¥ ! T O
K / Kitchen H # Entry
i .
S mameg . oeoe - i o i
f = P [. .
& “Living i is O containg
;o Roomg:-~" ey Roomge-—" N
£ I‘ S
i o O, .0
Room. Spacions main
“Entry, EO1” entrance”
door
to
“Living, LO!

open to

“Entry, EO1”

Search Process Checks Conﬁrations for Room Connections

“Kitchen, KOI"”

24

Searc|

identifier = " K identifier_-= [®]
P “Kor” P “E0I”
ia'mtiﬁtr. T “-Lﬁt;g S namey .------- .. S mameg ----==- .
/ i 4 -
& . .~ “Kitchen” ;o “Entry”
; ;L 5
S omamey o------ S i |.‘ o
+ o s gt ', i
oo Living S g 1/ contains
I Roomg -~ Sy, Room A
r! h Fay ~
0 ; i i
Room.% i ‘Spacious” I ‘main
v “Lntry, EOI’ : Vo entrance
' " \
el ! Lo N open
“-tt = Il‘ K s.‘I‘l.‘ﬁ
open 0 “ door “door v~
& 10 LW 2520
Y “Living, LOI"
“gatr)s EO1™ “Kitchen, KO1”

h Process Checks Configurations for Objects in Matching Rooms

identifier_.- .0
; ‘Koir”
4" l‘
identift ey Lt; S nameg _---==e~. . " nameg .------ =
‘Lot .- gy ; o
& ! Kitchen” L “Entry’
. { /
, L ; [
¥ g Living o is 1S containg
I Room & Roomg--"""""""" =-.
Vo (o] =3,
T ‘ 0
& ! i B i 29,
Room 1 spactous PN mamn
o “Entry, EO1" | (Y entrance
\ / N
0 ' N
e y | ‘w10
\ \ 5
open 1o “door “door .
& 10 o "
. Living, LOI

"By o1

system posts results
details into query

namey ---==- ~ e T X
P Kitchen ”," “Entry”
mzm'e._- ----- e ".’ ;
“Living” | containg
o Rm)mo' Roompu -~ T
4 ; Mo
; \ N
Room q 5 main
0 “Entry, E01” KN entrance”
i e . open
B W STk ‘a0
open 1o s
0
“Living, LOI"™

oratchingonﬁations the Stem Scores and Returns RDF sb—grap

114

Search Again

Add Activities

Pack Your Stuff

Basic Two Bedroom Unit
by MIT house_n
All rooms found. Kitchen connects

to entry through doorway. I\

Other Results

2BRI Country Home by Toll Brothers

e o b At 7 8 s

B

Query Interface Shows the Specific Relevancy Visually

| Matching Configurations are sorted
by score into the results listing

Best Matching Configuration
is shown in more detail

Search Again

Add Activities

Pack Your Stuff

Basic LOFT Unit

by MIT house_n

All rooms found. Living Space
Open to Entry.

Other Results

2BRI2 Country Home by Toll Brothers

Two Bedroom with Study Area . HomeSeeker.com

% g e

Three Bedroom wi and Boat

User Can Click on Other Results to See How They Match Differently

115

116

6.6 Evaluating the Effectiveness of the Search

Two sets of tests were run to determine how well the conceptual
queries map to the literal solutions and what level of granularity
the algorithm provides. The findings detailed here are encouraging
but it’s very important to note that both the query and search space
were highly constrained in these tests. Searchable solutions were
limited in scope to one specific design context. This helped to
make more straightforward the fundamental comparisons in this
research, but it also means that each of the searchable resources has
many attributes in common. The search space was thus constrained.
A more complete and rigorous analysis would be requisite for
getting a true sense of how well this search actually performs in a
larger implementation. Constrained tests like those detailed here
are useful for determining basic functional effectiveness but they
do not adequately represent the variance and therefore the true
differentiability of a search space on the order of that in the proposed
system.

The first set of tests was designed to give a sense of how well the
component system mapped to the conceptual queries in the context
of a specific room. These tests used three different source queries
which were representative of the output from each of the three query
interfaces. The second series of tests examined the effectiveness of
the search with RDF-encoded queries that were generated from a
selection of the actual volunteer’s exercises. Three different examples
were encoded for each of the conceptual interfaces for a total of nine.
These searches were then run against a slightly broader search space to
get a sense of the granularity of the search by comparing the best and
worst matches. The motivation was to discover how well the search

criteria were able to differentiate solutions in the search space.
6.6.1 Search Analysis Series 1: Mapping

To see how well the search prototype was mapping the conceptual
to the component based representations, a constrained search
space was utilized: 10 design configurations were loaded into the

component system. These configurations were identical with the

exception of the kitchen, for which a range of solutions was made
available. Thus, the only variance in the search scores for the
configurations was in the specific relevancy of each kitchen. For each
conceptual interface, a standardized query was created, manually,

to test out how well the search tool mapped to components (see
Appendix 2, A2.3 for the RDF of these queries).

Table 6.14 shows the range of scores generated by each of the
conceptual exercises for the 10 different kitchen layouts. The Activity
Sequencer scores are higher because that exercise’s queries specify
additional searchable information about the other rooms in the
search space. Likewise, the diagrams generated lower overall scores
when queried independently, because only the room connections
are specified within them, not attributes or items. Overall each of
the exercises has a fairly small deviation which was expected from
running such a constrained sample: 2.95 for the Activity Sequencer,
4.08 for the Packing Metaphor, and 3.44 for the Diagram. In terms
of a search operation, these numbers represent a field where a few
items are good matches, and a few items are weaker matches, with the
rest being fairly average. But there are a few other, very interesting
things to discover in this data.

Examing the Activity Sequencer results more closely, we see a
compelling example of the way that this search system can provide
design criticism and guidance inherently through the relevance
numbers. In this query we see from the mapping details that the user

is searching for a kitchen that is spacious, has an island, and has a

SoreRank | 1 | 2 | 3 i 41516 {7 ! 819110
Activity 63 | 63 | 66 i 66 | 66 : 66 I 66 I 66 1 72 i 72
Sequencer | iable | table | spacious) spacious | spacious | spacious | spacious spacious | spacious | spacs
! : ' : | : ' i island | island
Packin 22 : 22 22 E 22 E 28 i 28 E 28 E 28 E 31 :» 34
Metap OF | spacious | spacious | spacious) spacious | spacious , counter | counter | spacious | SPacious | spacious
i | :) | space | space P
oven | oven i ovem :\ oven i ovem . ' t oven 1 private | island
fridge E Jridge i Sridge i fridge i td.ble i Z}ZZ E :’:;Z E z'slfmd E oven E shelves
i ! i | fridge + TUF 0 OUC L fridge fridge 1 oven
T R R R P2 U Rl M
Floor Plan 4 f 10 E 10 1: 10 ; 10 E 10 E 10 E 10 E 16 f 16
Diagram -\ doorto | doorto | doorto | doorto | doorto | doorto | doorto | doorto | doorto
¢ living | living | living | living | living | living | living | living | living
E E E E i S i E island ‘} island

Table 6.14 Analysis Series 1: Mapping
10 Different Kitchen layouts were searched
using manually-coded RDF queries

117

118

table. The system returns three different relevance scores, where 63 =
table, 66 = spacious, and 72 = spacious & island. Simply by analyzing
the designs during the search process, the system has shown clearly
that you can’t have a spacious kitchen if you also fill it with a table!
However, you can have an island and a kitchen that is still spacious.
Because they are the more complete match, results that offer both
spaciousness and an island come back with the highest scores. Thus,
the system has effectively utilized the expertise captured within the
design of the component assemblies themselves to determine what
tradeoffs the user needs to make. This type of functionality would
have been far more difficult if not impossible to try and make a
machine smart enough to reason through. By using the search space
as a criticism source, the system lets computers do what they are good
at doing (search comparisons), and lets the designers who create the
search space provide the expert criticism simply by designing livable,
functional spaces.

The Packing Metaphor example, on the other hand, highlights
some challenges. Here we see, in the solutions that scored 28, four
different types of matches that came back with the same relevancy
ranking. This seems to indicate that the search didn’t make enough
separation between solutions that were not equivalent, and may not
have been of equal importance to the user. One way to address this
issue would be to allow the user to specify, in the query, if something
is more important. The system could then use this importance score
to further differentiate the results.

The Diagram query functioned as expected. The lowest scoring
result didn’t match the kitchen space at all, while the highest scoring
results both connected the kitchen correctly to the living space, as
was specified in the diagram, and also matched the island within the

room.
6.6.2 Search Analysis Series 2: Granularity

The second series of tests (results in Figure 6.15, Page 120)
were intended to get a sense of the overall granularity of the search
algorithm, by using the queries that users designed during the

interface evaluations. Apart from being a nice way to tie the user

and search analyses together, it allows us to test out the search with
the types of queries that actual users make. For each exercise, three
user compositions were selected and encoded into RDF queries; these
queries were then used to perform searches (Appendix 2, A2.4) for
queries). The search space for this series of tests was different from
the initial test: here 10 different design solutions were loaded that
have the same basic layout but varied room selections for all types of
rooms. For each query, the best (highest) and worst (lowest) scoring
results were listed. Figure 6.15 summarizes the results.

Again the Activity Sequencer performs well, because it encourages
the detailed specification of multiple rooms where the Packing
Metaphor focuses on one rooms, and the Diagrams the users made
only dealt with room connections. But a quick examination of the
data further suggests that the effectiveness of each of the interfaces
varies with the user. Still, with the exception of the Packing
Metaphor, all of the queries generated a reasonable best match and a
proportionately typical worst match. In other words, even in cases
where the best matches were weak matches, they were still highly
differentiated from the worst matches, with few exceptions.

The notable exception was Jeffrey’s Packing Metaphor query,
which scored even 10s across the board. This was because his
only searchable criteria were: “abundant natural light”, “spacious”,
and “closed layout”. The solutions for this evaluation didn’t have
window components included, so as it turns out, natural light wasn't
searchable (See Appendix 2 for system details). And while all of the
bedrooms were evaluated to be spacious; none were designed with a
closed layout. The other two Packing Metaphor queries generated a
highly bipolar result set where the best scores were 16 and 19 and the
worst score was 1. Taken together, these three queries suggest that the
Packing Metaphor is a bit weak on its own, and as was observed by a
few of the users themselves, would function better when coupled with
the other interfaces.

The Floor Plan Diagram queries generated a moderate variance
and functioned as expected, but did suffer a bit with the highly
constrained search space. This is because the layout of the user’s
diagrams was not constrained, but within the evaluated search space,

the layout of rooms did not vary; only the connections between the

119

0c1

Key: Scale -H
Score (Solution#) | Alison Thea Megan
score breakdown, line by line 100~ 100~ 100~ 100~ 100- 100~
Activity 52 3) 796 3.0 18 4. 21) 72.(1)
Sequencer 1 bedroom 1 bedroom 1 bedroom 1 bedroom 1 bedroom 1 bedroom
9 small but comfortable 9 small but comfortable 1 kitchen 7 kitchen 9 spacious 9 spacious
6 closets 18 closets 1 bathroom 9 open layour 1 kitchen 9 private
1 kitchen 1 kitchen 1 bathroom 1 bathroom 18 shelves
1 bathroom 9 open layout 9 private 24 closets
9 private G oven 1 kitchen
G bathtub 1 bathroom 1 bathroom
1 living 9 private 9 private
18 sofa 6 bathtub
1 living
18 sofa
Liv Zahra Marisa
25~ 25~ 25~ 25~ 25~ 257
Floor Plan 4 © 10) 4 @ 7 (10 4 21 (o)
Diag ram 1 bedroom 1 bedroom 1 bedroom 1 bedroom 1 bedroom 1 bedroom.01
1 kitchen 1 kitchen 1 kitchen 1 bedroom 1 living 1 bedroom.02
1 bathroom 1 bathroom 1 bathroom 1 entry 1 kitchen 1 bathroom.01
1 living 1 living 1 living 1 dining 1 bathroom 1 bathroom.02
7 dining 1 living Lstudy
1 kitchen smay
1 bathroom 1 dining
1 living
1 entry
7 kitchen
Zahra John Jeffrey
25~ 5 257 257 257 257
Packing 1 ¢ 16 (s) 1 19 ¢9) 10) 10 4
Metaphor 1 bathroom 1 bathroom 1 kitchen 1 kitchen 1 bedroom 1 bedroom
Zf l;:v’j:: 18 public 9 spacious 9 spacious
Solution’s Score: Lowest Highest Lowest Highest Lowest Highest

rooms varied. The results show this clearly, where the best scores

are those where the system was able to match a part of the diagram’s
organization. This doesn’t reflect negatively on the potential of this
highly popular interface; however, it does confirm that more detailed

testing of the search algorithm is required.
6.6.3 Search Analysis Summary

With the revisions that were made subsequent to the user
evaluations, this basic analysis of the search algorithm led to positive
results. The search algorithm demonstrated the ability to map from
the conceptual to the literal representations effectively. In addition,
the results that the search tool generated were well-differentiated.
Even more promising was the ability of the searches’ relevancy
information to communicate, to the user, the tradeoffs inherent in
the search space. This is an positive result that confirms the thesis of
this work: that a search tool can support design discovery. With the
addition of tuning mechanisms to allow users to further describe the
importance of specific criteria, these initial tests were positive enough
that further, more elaborate analysis is a worthwhile venture. A
simple web-based implementation of the interfaces that additionally
supports the links between the various conceptual exercises, as
described in Figure 6.4, would be a great place to start.

Again, these evaluations were simplified tests of the system using
a highly constrained solution space that didn’t have a tremendous
amount of variety. This was useful in that it allowed the analysis to
highlight and evaluate the more fundamental aspects of the search
process. But the findings detailed here beg for a deeper inquiry;
it would be fascinating to see how well the diagramming exercise
functions in a solution space that includes different building layouts
and different building contexts. From what was learned, it goes
without saying that more complete testing is necessary, but also worth

doing.

(Facing Page)

Figure 6.15 Analysis Series 2: Granularity

User queries were encoded to search
against a constrained solution space

121

122

For more specific technical information regarding the various components
of the search system, refer to Appendix 2.

The problem of helping developers, builders, and manufacturers to load
the library is significant. To actually happen, it would require the buy-in
of each of these players into a new service channel, so the problem is not
necessarily a technical one as much as a business one. Manufacturers
would have a natural incentive to gain access to the untapped market
demand for customizable homes. In theory, developers would like to
gain access to that same market as well. In application, the process of
companies incorporating solutions into a centralized system of this type
would probably be an incremental one, where integrators help companies
to slowly add more and more resources into the system as both the system
and their own production technologies mature.

Perl was selected because it is flexible, robust, and also because it’s the
author’s preference. In truth, the conceptual interfaces would be quite
simple to program in other platforms like PHP or ASPNET, or Flash.
Establishing links between the conceptual interfaces would help the user
to see how the information is related, but people could still go through the
exercises selectively, and of their own accord.

An example of an RDF query tool is SPARQL. (W3C 2007) It’s
designed for straightforward textual searches and is not as robust as

fully a relational SQL implementation, so it isn’t of utility to our search
algorithms. SPARQL design is constrained to RDF arcs where our data
is more complex, but it could possibly be useful in making comparisons
between RDF queries and indexes in our case.

From the W3C specification: “Scalable Vector Graphics (SVG) is

a language for describing two-dimensional graphics in XML. SVG

allows for three types of graphic objects: vector graphic shapes (e.g.,

paths consisting of straight lines and curves), images and text.” (W3C
1/14/2003). It could be useful for providing web-based visualizations

of database-stored Component information. However, while SVG is
interactive and can be animated, it does not support 3D information

and therefore isn't a great candidate for component visualization. Even
s0, it’s becoming increasingly popular, and can be made to emulate 3D
functionality, though not easily.

We expect that commonly, Web based resources would be something

like a Web page that provides a design concept summary in addition to a
textual description, as well as a few floor plan images, and a sample photo.
This is similar to the home concept summary pages that many builders
currently provide online — the search tools here simply provide a better
way to find these summary pages.

The assertion that the query interfaces might be adapted for use as
indexing tools for content providers is speculative; none of our evaluations

tested that out. Still, it seems plausible, and just as the interfaces promote

10.

11.

12.

13.

14.

15.

16.

17.

better searches by providing exercises with clear goals which encourage a
certain amount of interaction, so too could they promote better indexing.
By utilizing the same context for the prototype implementation we can
use the volunteer’s actual compositions to test out the effectiveness of the
search tools.

C# was chosen because it’s a well-structured and high-performance
language; other languages like Java are certainly an option.

'The choice of MySQL was made for several reasons. First, the prototypes
being developed herein are part of MIT House_n’s Open Source Building
Alliance and as such, the tools are intended to be open source. So it
makes sense that the database be open source as well. MySQL is also
increasingly popular and robust choice, not to mention a free one.

SQL searches are high-level because they operate upon highly structured
data. But of course, the database access functions have built-in low-

level searching functionality to help make the databases more high
performance. In the example of a relational database, table records are
indexed and stored on disk in pre-sorted data structures; these pre-sorted
structures allow for logarithmically fast binary search algorithms which are
generally much more efficient than simple, linear searches.
Self-referencing indexes are a well-known and fundamental methodology
for allowing relational lists to represent hierarchical data. The
methodology is simple: one column in the listing, let’s call it “ItemID”, is
a unique identifier for the record. Another column “ParentID” stores the
ItemID of that record’s parent record. Thus a hierarchy is established.
Binary search algorithms reduce the search time by splitting the list or
tree to be searched in half (hence binary) recursively until the solution is
found. This only works on lists that are pre-sorted and in the case of trees,
it works more consistently when the tree is balanced. (Sedgewick)

The Component Type specification as detailed in Appendix 2 is self-
referencing which enables hierarchies to emerge through a simple parent-
child relationship. So a Queen-Sized bed could be stored by the system as
Object>Laying Surface>Bed>Queen-Sized. In the context of the search,
this helps numerous individual components match up with more general,
type-based search terms. Also, it should enable more complex search
analysis because types can branch hierarchically as well.

As detailed in Chapter 4, the room attribute tags contained semantic
definitions that explained what the qualitative tag meant in quantitative
terms. For example, the tag for “Open Layout” contained the following
description: “Opening to adjacent spaces without doors.” See Figure 4.2
for the tags and definitions that were provided.

Only a certain amount of time was given to the users for each exercise, to
keep the sessions from running too long. Still, 10 out of 12 users opted
to finish up their designs before moving on to the next task, even though

they were advised it would cause the entire session to take a little extra

123

124

18.

19.

time.

For an example of a design standards methodology in universal kitchen
design, see Xiaoyi Ma’s Thesis (Ma).

I argue that the process of mapping relevancy information back into
the source query is actually an ideal scenario for managing design
criticism as part of the typical search results evaluation process that all
users are familiar with. And showing visually what specific elements of
the consumers design were well-matched and which elements were not
helps the user to determine exactly where their own specification is not
functional or is just off. Additionally, the criticism itself is embedded
within the metadata and as such can be described or represented by any
number of different interfaces, and the criticism source is the evolving,

growing, and expert designed collection of solutions that are being

provided. This allows the criticism to adapt and grow with intelligence.

7 Where Do We Go From Here?

7.1 Summary

This work has demonstrated that the well-known structure
of a computational search engine can be overloaded to facilitate
designing by users who are not experienced designers in the domain
of the search space. The specific context of this research was in
the development of a participative architectural design system that
enables consumers to make certain design decisions about their
home. In this context, the search engine functions as a first stage
of designing and allows for different types of needs assessment and
conceptualization through a collection of unique query interfaces.
The search was evaluated through user studies, which confirmed that
the interface’s conceptual structures not only made the exercises fun
and easy to learn, but effective in framing design needs as well.

This research further investigated the potential of new object-
oriented building representations as a more intelligent and
computable format for storing design solutions. The analysis
explored the ability of these component-based representations to
describe physical realities with enough specificity that searches
could be conducted effectively and without additional and complex
indexing processes. The preliminary evaluations described in this
work show that the information in component-based representations
does map well to the proposed conceptual query structure and also
that the search space, even when highly constrained as was the case in
our analysis, yields effectively differentiated results.

Additionally, the retooled search process was demonstrated to
have the ability to provide design guidance and criticism inherently
through a rich and highly specific relevancy reporting mechanism.
This finding suggests that complicated, expert, machine reasoning
algorithms are not always necessary in this context, because the
search process allows the system to directly describe the intelligence
embedded within the searchable solutions and to use that description
to provide criticism to the user. Given that the searchable solutions

would be created by architects and other designers, this means

125

126

that the search system incorporates people into its algorithm, and
lets people do something they are good at doing (designing and
evaluating layouts), all while letting computers do something #hey are
good at doing, namely, searching through structured data.

In a sense, this research is predicated upon the notion that the
development of software to support design processes, in any context,
ought to be done thoughtfully and with a critical sensibility about
the fundamental methodologies and technologies utilized. In the
context of non-expert home consumers, the most essential aspect of
designing, particularly in the eatly stages, is the discovery of needs,
values and preferences to help make decisions later on. It is difficult
to understand why commercially developed tools incorporate only
flat, simplified narrative interfaces or highly complex modeling
environments to support the early stages of a design process where
other, more computationally mature technologies like the search can
be utilized for the same functionality with far better results. Rather
than rush into the development of tools with the latest and greatest
functionality or flashy representations, one should take the time
to examine how well the computational structure of the proposed
solution maps to the conceptual structure of the task. This work has
made strides to confirm the thesis that computational searching maps

well to human designing.
7.2 The Query as Artifact

An interesting extension of the work described here would be
to explore the different things you can actually do with the queries,
other than directly searching with them. Preserving the queries
as the residual artifact of a search operation creates many exciting
possibilities, and has several immediate uses. First of all, the query
could be posted as a design request into an online community of
architects or designers who wish to make their services available to
users. Consider the following example: a user specifies an elaborate
search diagram with several activity sequences also described. But the
system only returns a few results, none of which the user finds to be
favorable. Rather than leave frustrated, the user posts the query as a

design request that gets picked up by a local architect. The architect

then works to develop a solution that meets the user’s needs more
directly than those that were previously available. This actually opens
up a new service channel for architects to directly engage with home
consumers, and also helps to keep the solutions in the search space
evolving.

Being recorded into permanence, outside of the immediate
context of the search cycle, means that the query itself becomes
an informative and computable artifact. Why call it an artiface?
Because such queries, when preserved and made accessible, are a
cultural, personal, and anthropologically meaningful fragment; they
are a piece of history. And being structured in RDE, these queries
would be easy to search for, not just to search with. After some time,
collections of queries could become highly informative repositories
of design intelligence that track the evolution of space use, or for
example, the way design preferences change over time in response
to new technologies and thus different lifestyles. When used as a
design guide for professional architects or other designers, this sort of
repository has immense potential to help keep living spaces efficient,
relevant, and well-adapted.

Another potential use of the preserved queries is as an
organizational workspace for the users themselves. One could
imagine that even for users who aren’t trying to buy a home in the
near future, having a profile within which their queries are stored
might provide a place for them to organize their needs and values
over a longer period of time. This resonates with the research that
was recently done by Jennifer Beaudin (MIT House_N), which
examined the non-expert homebuyer’s design goals over different time
frames and in different contexts. Saved information could help the
user make a home purchase at some later date, or outside the system
itself. This point also came up in the user studies, because Thea, who

is renovating a house in Connecticut, noted:

“we drive down and look at [the house] and take all these
measurements and draw everything out then we go home and we
think about it, and look through magazines, and then we have
all these great ideas, and then we go back and look at the actual

space again and we think ‘well this isn’t going to work’. The time

127

128

difference in thinking about all of this stuff ... I don’t know, we

change our minds all the time.”

The nice thing about using these queries as a conceptualization space
over a longer time frame is that even if the purchase is made at some
later date or offline, the users still benefited and learned from the
guidance that the search provided through the intelligence of the

online solutions.
7.3 Competing Solutions

Of course, the online solutions need not necessarily get along.

A fundamental assertion of this research has been that the smarter,
component-based representations eliminate the need for indexing
processes that aren't scalable (see Chapter 3 for more details). Flat
representations like Jpegs, DWGs, or Web documents would not
have this advantage; they would require an auxiliary RDF index to
be generated to make them searchable. This means that maintaining
the indexes would not only be time-consuming, but given the current
limitations in computer vision, would be something that people
would have to do manually. This makes the index generation error-
prone and inconsistent, and would probably make them less detailed
as well.

When sharing the search space with smarter component systems,
these flat solutions would probably get out-competed: they simply
wouldn’t stay as up-to-date or score as well. But if we take a step
back and look at the AEC industry, we might conclude that this
actually puts healthy pressure on companies to move away from the
traditional representations they've been using for too long. NIST
Research has shown that operational inefficiencies, many of which
stem from using older representations that are difficult to maintain
and share, are the primary reason that the industry has lagged behind
most other industries. (Gallagher) The promise of a potentially
lucrative service channel for participative design solutions could put
positive pressure on builders, developers and manufacturers to move

to the new component-based standards that are already taking hold.

7.4 Adding Game-Like Interaction to the Interfaces

As was discussed in the user evaluations in Chapter 5, a very
interesting area of inquiry into the conceptual interfaces as a design
source would be the incorporation of interactive, multiplayer
functionality to make the experience of query-building even
more game-like than it already is. The benefit of making things
entertaining has already been discussed: we get more detailed queries
and better search results from fun interfaces. In observing the
couple that came in for this study, it was fascinating to see how the
two interacted via the interfaces. The wife would revise some of her
husband’s tags, and throughout the session they would chat about
their selections. In some cases there were disagreements that had to
be negotiated, as in “no, the kitchen needs to be open”, and in other
cases they would cooperate to work through a more difficult decision
together. It was also interesting to see how one of them would
begin to guide an exercise if they were the more comfortable of the
two, particularly in starting out. For example, the husband made
the initial Floor Plan Diagram arrangement but when the two were
presented with the Activity Sequencer, his wife immediately took the
lead. The interfaces are experienced uniquely by different types of
problem solvers — interactive interface designs could build upon that.

Designing different mechanisms within the interfaces to enable
this sort of interactivity might make the process of searching within
the system even more educational than it is. Different game-like
modes could be explored; for example, an option could be to have a
cooperative design game where the first user tries to guess the second
user’s preferences, after which the second user gets a chance to make
revisions to those guesses. In this scenario, the first user might get
a score increase based upon the number of revisions that were (or
weren't) made by the other. This type of game-like interactivity may
help people get more immersed in the exercises and reflect upon
things. Additionally, other types of teams than couples could be
supported. For example, a user might be paired with a professional
designer to work through the exercises; this type of cooperative

scenario could certainly be educational for both parties.

129

130

7.5 Next steps

This research has shown positive results; as such, the most logical
next steps would be to proceed with Web-based implementations that
allow for more complete evaluation of the search algorithms. These
implementations should also be used for additional user studies,
this time with a large number of anonymous Web users, to get a
better sense of how the tools function after implementation. This
continued development and evaluation would be useful in addressing
the limitations of, and problems encountered in the pilot studies
discussed here.

While our search analysis had some interesting and positive
results, additional and more thorough analysis is needed. A much
larger search space needs to be created to give the search algorithm
more resources to search through. This is important not only for
measuring the system’s performance and scalability but also in
determining how well the search functions when the search space
includes completely different design contexts; in other words,
solutions that have much more variance than the ones that were
tested thus far.

Additionally, more work needs to be done on the implementation
of an actual component system interface, or on the integration with
industry component specifications like BIM or IFC. This exploration
of BIM systems was outside of the focus of this work but is critical
to the success of a consumer-oriented home design system like the
one detailed in Chapter 6. There is some existing work that may
be followed in this area. T.J. McLeish (MIT House_n) examined
the potential of a tangible, tactile interface that allowed for the
manipulation of actual 3D objects that were mapped to component
system definitions. And Xiayou Ma (MIT House_n) performed an
initial analysis of kitchen design typologies that might be useful in a
component-based interface aimed at non-expert consumers, for more
precise selection algorithms. Additionally, research should be done
into the data structure of industry component-based standards to
see how well they map to the component system that was developed
here (Appendix 2, A2.1). As was previously noted, the analysis here

was based upon a SQL-based component specification; this ought

to generalize well to other formats, but this assertion needs to be
evaluated.

Additionally, alternative query interfaces could be developed,
taking advantage of the standardized RDF query structure as a
strategy for providing consumers with different ways to approach
architecture. This might be an avenue that architects could explore
themselves, investigating for example, innovative search interfaces

that allow for the exploration of their own inventory of designs.
7.6 The Future Architect

The complexion of architecture is changing, and the role of the
architect will continue to evolve. These days, architects don’t have
much to do with home design in the United States; they are a non-
essential player in a process generally driven by developers. In a
process like the one described here, one that is driven by consumers,
architects have a new and vital purpose. By providing designs in a
component system like the one we've examined, it is the architect that
gives the system its most critical element: the logical source for the
design guidance that is given to the user. Ironically, many architects
seem to be resistant to ideas like the ones behind this work, ideas
that, if realized, would provided them with new service channels and
therefore new business and design opportunities. Maybe this is due
to a tendency to focus upon academic or theoretical in-fighting. Or
maybe they feel like working in this sort of system would limit their
expressiveness, or maybe they are intimidated by it. But to survive,
the architect needs to evolve. Probably, once a system like this begins
to take hold and proves to be effective, architects will have a bit
more interest in exploring the potentiality of computation to change
and improve upon their profession, beyond the narrow confines of
seductive representations or the intransigent support of speculative
design philosophies. In its purest and most noble form, architecture
endeavors to improve, through sense and sensibility the process and

form of buildings. And that is what this work is all about.

131

Appendices

132 Appendix 1

Appendix 1

Appendix 1 User Exercises

Appendix 1 133

Al.1 Summary of Volunteer Users

134

IName [Gender]| DOB | Background | Date | Source
1 Thea F 1969 N/A 4/26/07 Mailing List
2 Jane F 1965 Affordable Housing Development 4/20/07 Advertisement
3 Jack M 1965 Information Technology 4/20/07 Advertisement
4 Zahra F 1979 Student 4/20/07 Mailing List
5 Jeffrey M 1947 Retired, Software Tester 4/23/07 Advertisement
6 Alison F 1976 Student 4/23/07 Advertisement
7 Kevin M 1972 N/A 4/25/07 Advertisement
8 Megan F 1980 Student 4/25/07 Advertisement
9 Marissa F 1981 Student, Engineering 5/1/07 Advertisement
10 Liv F 1974 Student 5/2/07 Mailing List
11 John M 1942 Retired Librarian 5/2/07 Advertisement
12 Brittany F 1982 Student, Communications 5/4/07 Advertisement

Appendix 1

Appendix 1

A1.2 Questionairre Given to Volunteer Users

MIT House_n Consortium | home design study | questionnaire

Name:

Date:

A. Questionnaire about aptitude with computers and application familiarity.

Please answer a few questions about yourself and your familiarity with various types of
computer interfaces. You may skip any question you don’t want to answer or feel unable
to answer. If you would like any additional details about the subject matter, please don’t
hesitate to ask.

1. What is your year of birth?

2. Have you ever worked with an architect to build or remodel a home?

3. How comfortable are you with reading an architectural floor plan?

4. How comfortable are you with using a computer

mo Ao TR

I’m a power user; I use one several hours a day, at least

I’m a regular user, I work with computers daily

I am comfortable with computers but don’t use them at work

I am not very comfortable with computers, or I’m a novice user
1 rarely use computers, if at all.

I don’t know

5. What best describes your level of comfort with trying out new programs or
utilities on your computer

a.
b.

Appendix 1

I actively try out new programs or utilities to increase my productivity or learn new skills

I tend to follow a routine, and use the same applications, but I’m open to new applications or
routines when I stumble onto them

I tend to follow a routine, I’ll generally only change my usage pattern if I'm forced to, like
with upgrades or through training at work

I know how to do a few specific tasks but don’t have a lot of confidence when it comes to
learning new things, so I tend to avoid change

I am not comfortable with unfamiliar programs or unclear prompts from a computer, these
things tend to make me nervous.

I don’t know

135

A1.2 Questionairre Given to Volunteer Users

6. What motivates you to learn new applications? For each motivation, please rank
from 0-3 where 0 = not a motivation, 1 = weak motivation,

2 = average motivation, and 3 = strong motivation.
a. __ Gaining access to new functionality that I haven’t had access to
b. _ Increasing my productivity
c. ___ Staying up-to-date with the latest trends or developments
d. _ Entertainment value, leisure
e. ___ Someone at work tells me to
f. __ The perception of other benefits
g. __ Other:

What applications do you use regularly?
(a listing of common applications is provided for the subject to check off)

For each of the applications listed in this chart, please | Level of Familiarity

indicate your level of familiarity, if any. If you're ; = not faT“;am'Z\:er used
. . = vaguely tamili
uncertain about one of the types listed below, you 3= fargﬁliaz can get around
may check “N/A” and/or ask the interviewer for more 4 = proficient
: 3 5 = expert, power user

Using tools like iTunes to view, search for, and manage files
Using a web browser like Internet Explorer to access web

sites

Web browsing: using search engines like google or yahoo

Using visual searches like Google Earth, or mapquest.
Email applications to send and sort emails

Text editors like Word to create/edit documents

Presentation software like Powerpoint to create documents

with graphic content

Professional Document management tools like Adobe

lllustrator or InDesign

Graphics editing software like Adobe Photoshop or Paint

Shop Pro to manipulate image files: adjusting contrast, size,

or format

Graphics editing software like Photoshop or Paint Shop
Pro to draw new images.

Development environments like Dreamweaver or Flash
Development environments like .NET, Visual Studio, Java
CAD tools like AutoCAD, Rhino

Professional Rendering or animation tools like
3dStudioMax, Maya, or Lightscape

3D Video Games, either on PC or Console systems, like
Halo or Counterstrike

Massive Multiplayer Video Games like Everquest, or World
of Warcraft

Online, Social Games like Second Life

Constructive Video Games like Sim City

Other:

136 Appendix 1

Appendix 1

A1.2 Questionairre Given to Volunteer Users

Appendix 1

A1.2 Questionairre Given to Volunteer Users

General Questions

1

The conceptual exercises helped me think about my home needs in ways that the first two
exercises didn 1.

True / False

Details:

The conceptual exercises allowed me to discover or think of home needs more so than the
other exercises.

True / False

In the assembly exercise, what was the most useful representation for you as you selected
options?

In the second exercise, where checklists were given, were the descriptions ambiguous or
hard to compare?

Yes / No

Rank the Exercises.
Under each heading, please rank the exercises as far as you can, from best to worst by
giving each exercise a specific number from I to 5.

Ranking:
1 = Best
5= Worst

Component Assembly

Option Lists

Activity Sequencer

Diagramming

Packing Metaphor

138

Appendix 1

Appendix 1

Exercise designed by K Larson, M G Phillips, and C Farina, card layouts by C Farina & M G Phillips

AL.3 Library Cards For Component Assembly Exercise

(J__I__

e
C I

~ AQNLS B WOoOdWa3g

T g || === -

prag § woneey

139

Appendix 1

A1.3 Library Cards For Component Assembly Exercise

WOOdHLvd

Appendix 1

140

Appendix 1

A1.3 Library Cards For Component Assembly Exercise

AMANZ '8 NIHOLI

R i e T T 5 S
AMANI B NIHDLI o o B S B

Appendix 1 141

(472!

1 xipuaddy

i
Em o
TmE

LIVING & DINING

 n
[

a51242X7] 1quiassyy mauédmog L0 SpAvT) MuviqlT €TV

Appendix 1

A1.3 Library Cards For Component Assembly Exercise

. E

.
-
1

.

- - 1
TITH g DT T T T
=L Wi=s FEN BN WS Y

-
.J.BSO'IDHEJ.SVN B WOOHWA3IgadaLSVIN

Appendix 1 143

A1.3 Library Cards For Component Assembly Exercise

. WOOYHLYE ¥ILSYIW

Appendix 1

144

Appendix 1

N, | OO SRTE T SIS AN |

R, (—.

Al.4 Example Given for Floor Plan Diagram Exercise

t
i
¥
§
i
3
'
]
4
¥
H

S o R

Apms

Aprey

C

EIPel

Ip R S ey e

R i

o . R A e S o

145

Appendix 1

A1.5 Photographs of User Exercises

Activity Sequencer
= i ¥

Yo g i “wake

 —

up® followed by "take showe:” and so on.
" | —

House_n / Changing Places

—— s =i B sl e i st A o L

1. Activities: List the specific activibies for this sequance, in order,
wammmmnmnummwmm,ywnth-mmmw‘mww-mm»m

Exercise: Activity Sequencer

146 Appendix 1

AL1.5 Photographs of User Exercises Appendit

Activity Sequencer

AL1.5 Photographs of User Exercises

Role-Playing Metaphor (Packing)

om Name: |

Appendix 1

Appendix 1

AL1.5 Photographs of User Exercises

Role-Playing Metaphor (Packing)

Appendix 1

A1.5 Photographs of User Exercises

Floor Plan Diagram

B

Appendix 1

Appendix 1

A1.5 Photographs of User Exercises

Floor Plan Diagram

5
2
&
¥
3
}
x
‘

Appendix 1

Appendix 2 System Details

152 Appendix 2

A2.1 Database Structure: Component System

Relational Database Schema Notes

O Primary Key) .
Components = Furniture, Fixtures, Items, etc.

Assemblies = Rooms
Configuration = Complete Layouts

COMPONENT The compid value in the Assembly record is the root, container
1----O compid int(10) unsigned Primary Key (auto) O-------~ component of which all included instances are children
! name varchar(75) 3
: desc text . J ‘The component is defined by a rectilinear block (dimx, dimy, dimz)
i 1~ typeid int(10) unsigned default(0) ; The interface defines a sub-block that is connectible via the
Vo dimx int(10) unsigned default(0) ; Origin (origi) and Di ions (di)
2 i dlmy lrlt(“ 0) unsigned default(O) : l'lgll'l ongm X,y,l an imensions 1m X,¥,Z,
11 dimz int(10) unsigned default(0) !
. ' The components are added to assemblies as instances and their
; E COMPTYPES ; location is stored as the Origin (origin x,y,z)
i “-Otypeid O---; int(10) unsigned Primary Key (auto) :
! parentid----' int(10) unsigned default(0)) Within the configuration, Arrangements define the connections
: name varchar(45) : that are made between rooms.
H lightgiving int(10) unsigned default(0) :
' INTERFACE |
| Ointerfaceid int(10) unsigned Primary Key (auto) 0--+ ‘
i---- compid int(10) unsigned default(0) ' ! ASSEMBLY
;=== relationid int(10) unsigned default(0) b \---Oassemblyid int(10) unsigned Primary Key (auto) O---
: range_max int(11) default(0) ' ' ' name varchar(45) !
v fit_max int(11) default(0) : ' ' desc text :
: originx int(10) unsigned default(0) ' ; ' imageplan varchar(75) :
i originy int(10) unsigned default(0) ' P L---- compid int(10) unsigned default(0) ;
' originz int(10) unsigned default(0) ' ; ' imageaxon varchar(75) ;
! dimx int(10) unsigned default(0) ' ! : imageraster varchar(75) H
: dimy int(10) unsigned default(0) : . ' zone varchar(45) :
¢ dimz varchar(45) o ! .- assid int(10) unsigned default(0) :
! fit_min int(10) unsigned default(0) H ' D '
| range_min int(10) unsigned defauit(0) ; i Lo :
; name varchar(45) ' i1 ASSTYPES :
' [' ! -Oassid int(10) unsigned Primary Key (auto) :
! | ! ; name varchar(45) j
; ' ‘ : desc text :
3 P i INSTANCE ;
: | ! ! instanceid ©---- int(10) unsigned Primary Key (auto) !
; : } : parentid ----- int(10) unsigned default(0) :
! . [+---- compid int(10) unsigned default(0) '
| ' L____parentinterfaceid int(10) unsigned default(0) 1
: . e interfaceid int(10) unsigned default(0) ;
' i-.-. assemblyid int(10) unsigned defauit(0) H
; originx double default(0) :
: originy double default(0) H
originz double default(0) ;
: CONFIGURATION !
-0 configid int(10) unsigned Primary Key (auto) H
! 1 name varchar(45)
i . desc text H
{ | ARRANGEMENTS E
! ! oarid int(10) unsigned Primary Key (auto) :
1 +- configid int(10) unsigned !
1 assemblyid int(10) unsigned]
: targetassemblyid int(10) unsigned
i (- relationid int(10) unsigned
' | RELATIONS
‘-~ Orelationid int(10) unsigned Primary Key (auto)

name varchar(45)

desc text

Appendix 2 153

A2.2 Program Structure: Search Algorithm

Search Application Schema

SearchDesignerCore contains the
1. Connects to Component Data

core search algorithm:
base

2. Invokes calls to read and write RDF

3. Performs search (each stage)
4. Assigns Scores and Sorts

SearchDesignerCore
Methods
SearchDesignerCore.Addindex()
SearchDesignerCore.AddScore()

SearchDesignerCore.CheckForAssembly()
SearchDesignerCore.CheckScore()

SearchDesignerCore.Clear()

SearchDesignerCore.DbConnect()
SearchDesignerCore.DbDisconnect()
SearchDesignerCore.GetResults()
SearchDesignerCore.MySqlExecQuery()

SearchDesignerCore.returmn_resul
SearchDesignerCore.Search()

ts()

SearchDesignerCore.SearchCheckAttributes()
SearchDesignerCore.SearchCheckRooms()
SearchDesignerCore.SearchDesignerCore()
SearchDesignerCore.SearchForConfig()
SearchDesignerCore.SortAndSummary ()

Properties
SearchDesignerCore.ErrorString
SearchDesignerCore.FileName
SearchDesignerCore.HasResults
SearchDesignerCore.Graph
SearchDesignerCore.Query
SearchDesignerCore.RDFParser

The below classes allow the system to
associave specific relevance scores
with each of the values it reads
[from the incoming query:

Sdelint
Sdcint.Value
Sdcint.Score

SACSriNG -~~~ --nnmeeenemenneeneaed

SdcString.Uid
SdcString.Value
SdcString.Score -------- '

SdcScore -----------
SdcScore.CompareTo(object)
SdcScore.AssemblylD
SdcScore.ConfigiD
SdcScore.Score

154

The Graph Stores RDF
data in raw arc (triple)
Sormay [T

Stores the query
values for processing

Reads the incoming
query RDF and writes the
output query (with score details,

SearchDataArc ---------------------——-

Methods
SearchDataArc.SearchDataArc()

Properties
SearchDataArc.Predicate
SearchDataArc.Resource
SearchDataArc.ResourceUid
SearchDataArc.RObject
SearchDataArc.RobjectUid

SearchDataGraph
Methods
SearchDataGraph.AddArc()

SearchDataGraph.NormalizeGraph()
SearchDataGraph.SearchDataGraph()

Properties
SearchDataGraph.Graph
(List) Arcs

Stores all properties

SearchDataZone..... 77"

Methods

SearchDataZone.SearchDataZone()

Properties
SearchDataZone.Comments
SearchDataZone.Name
SearchDataZone.Size
SearchDataZone.Uid

(List) Attributes

- (List) Items

(List) Connections

© (List) Activities

SearchDesignerQuery
Methods

SearchDesignerQuery.FindAssembly()

SearchDesignerQuery.FindConfig()

SearchDesignerQuery.FindConfigCompl()

SearchDesignerQuery.FindValue()

SearchDesignerQuery.SearchDesignerQuery ()

Properties
SearchDesignerQuery.Comments
SearchDesignerQuery.Name
SearchDesignerQuery.Predicatelnt

SearchDesignerQuery.PredicateintCompl

SearchDesignerQuery.PredicateStr

(List) Zones ---------------smmm-oo -

SearchDesignerRDF
Methods
SearchDesignerRDF.ParseQuery()
SearchDesignerRDF.ReplyQuery()

Appendix 2

A2.3 The RDF Queries Used for Analysis 1

Activity Sequencer Source Query

<?xml version="1.0"7>
<RDF rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#”
dc="http://purl.org/dc/elements/1.1/">
<Description room="Bedroom”>
<activity>Waking Up </activity >
<activity>Check Weather </activity >
<activity>Dressing </activity >
<multi>Kitchen </multi>
<doorway>Bathroom</doorway >
<attribute> Private </attribute >
<attribute > Spacious </attribute >
<attribute>Abundant Natural Light</attribute >
<item>Shelves</item>
<item>Closet</item>
</Description>
<Description room="Kitchen”>
<activity>Eating </activity>
<multi>Bedroom</multi>
<attribute>Lots of Counterspace </attribute >
< attribute>Spacious </attribute>
<attribute >Abundant Natural Light </attribute >
<item>lsland </item>
<item>Table</item>
</Description>
<Description room="Bathroom” >
<activity>Grooming</activity >
<activity>Showering </activity >
<multi>Kitchen </multi>
<doorway>Bedroom</doorway >
<attribute > Private </attribute >
<attribute>Abundant Natural Light</attribute>
<attribute>Lots of Counterspace </attribute>
<item>Shelves</item>
</Description>
</RDF>

Appendix 2

155

A2.3 The RDF Queries Used for Analysis 1

Role-Playing Metaphor (Packing) Source Query

<?xml version="1.0"7>
<RDF rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#”
dc="http://purl.org/dc/elements/1.1/">
<Description room="Kitchen” >

<attribute >Contemporary </attribute >

<attribute>Abundant Natural Light</attribute >
<attribute>Spacious </attribute>
<attribute>Accessible </attribute>
<attribute> Efficient</attribute >
<attribute>Lots of Counterspace </attribute >
<attribute> Private </attribute>
<item>Island</item>

<item>Pots and Pans</item>
<item>Shelves</item>
<item>Refrigerator </item>
<item>Microwave</item>
<ijtem>Oven</item>

<item>Stove</item>

<item>Table</item>

</Description>

</RDF>

156

Appendix 2

A2.3 The RDF Queries Used for Analysis 1

Floor Plan Diagram Query

<?7xml version="1.0"?>

<RDF rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#”

dc="http://purl.org/dc/elements/1.1/">

<Description room="Living” >
<function>Closets </function>
<open>Kitchen</open>
<open> Study</open>
<item>Flat Screen TV</item>
<item>Front Door</item>
<item>Digital Media</item>
</Description>
<Description room="Study” >
<doorway>Kitchen</doorway>
<open>Living</open>
<item>Pictures</item>
<item>Smali Coffee Table </item>
<item>Love Seat</item>

</Description>
<Description room="Kitchen” >
<open>Living</open>

<doorway > Study </doorway>
<function>Dining < /function>
<item>Island</item>
</Description>
<Description room="Bedroom”>
<function>Closets </function>
</Description>

</RDF>

Appendix 2

157

A2.4 The User Exercises Encoded into RDF Queries for Analysis 2

Activity Sequencer 01, by Thea

<?xml version="1.0"?>
<RDF rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#”
dc="http://purl.org/dc/elements/1.1/">
<Description room="Bedroom"” >
<activity>Waking Up</activity>
<activity>Dressing </activity >
<activity > Snoozing </activity >
<doorway >Kitchen</doorway >
<doorway >Bathroom </doorway>
<attribute>Traditional </attribute >
<attribute>Abundant Natural Light</attribute >
<item>Equipment</item>
</Description>
<Description room="Kitchen” >
<activity >Leaving </activity>
<doorway>Bedroom</doorway >
<attribute>Abundant Natural Light</attribute>
<attribute>0Open Layout</attribute>
<attribute>Lots of Counterspace</attribute>
<item>Coffee Machine</item>
</Description>
<Description room="Bathroom”>
<activity>Showering </activity >
<activity>Brush Teeth</activity>
<doorway>Bedroom </doorway >
<attribute >Traditional </attribute >
<attribute >Abundant Natural Light</attribute>
<attribute >Efficient</attribute>
<item>Sink</item>
</Description>
</RDF>

Thea's completed exercise:

. Activities: List the specific activities fof this
'E-._'”“mmummdwmmm you might start with “wake up” foliowed by “lake shower™ and so on.

f o,

order

—————

158 ’ Appendin 2

A2.4 The User Exercises Encoded into RDF Queries for Analysis 2

Activity Sequence 2, by Alison
<?xml version="1.0"7>
<RDF rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
dc="http://purl.org/dc/elements/1.1/">
<Description room="Bedroom”>
<activity>Waking Up</activity>

<multi=>Kitchen</multi>

<attribute>Small But Comfortable </attribute>
<attribute >Private </attribute>
<item>Bed </item> <item>Closet </item>

</Description>
<Description room="Kitchen">
<activity>Coffee </activity >

<activity >Eating </activity>

<multi>Bedroom</multi>

<multi>Living </multi>

<doorway>Bathroom</doorway >

<attribute>Open Layout</attribute>

<attribute>Lots of Counterspace</attribute>

<item>0Oven</item> <item>Coffee Machine</item=>

<item>Pots and Pans</item> <item>Kitchen Pantry</item> <item>Shelves</item>

</Description>
<Description room="Bathroom”>

<activity>Showering </activity> <activity>Brush Teeth</activity>
<doorway>Kitchen</doorway>

<attribute >Private </attribute>

<attribute>Abundant Artificial Light</attribute>

<item> Sink</item> <item>Bathtub</item>

<item> Toilet</item > <item> Shelves </item > <item >Linens </item>

</Description>
<Description room="Living">

<activity>Computer Use</activity>
<multi>Kitchen</multi>

<attribute >Contemporary </attribute>
<item>Sofa</item>

<jtem>Coffee Table</item>
<item>Television</item>

</Description>

</RDF>

Alison’s completed exercise:

ore]
change betwesn
the actrvities?

4 Refecting on
the seqmnce
e what
qualities
styles, of items
are impanant
for you 1o have
reiuded m thiy
100M in @ new
roTe?

Appendix 2

j

A2.4 The User Exercises Encoded into RDF Queries for Analysis 2

Activity Sequence 3, by Megan
<?xml version="1.0"?>
<RDF rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
dc="http://purl.org/dc/elements/1.1/">
<Description room="Bedroom”>
<activity>Waking Up </activity >
<activity>Check Weather </activity>
<activity > Dressing </activity >
<multi> Kitchen</multi>
<doorway >Bathroom</doorway >
<attribute > Private</attribute >
<attribute >Spacious </attribute >
<attribute>Abundant Natural Light</attribute>
<item>Shelves</item>
<item>Closet</item>

</Description>
<Description room="Kitchen" >
<activity >Eating </activity >

<multi>Bedroom</multi>
<attribute > Lots of Counterspace </attribute>
<attribute >Spacious </attribute>
<attribute >Abundant Natural Light</attribute >
<item>Island </item>

</Description>

<Description room="Bathroom”>

<activity >Grooming</activity >

<activity>Showering </activity >
<multi>Kitchen</multi>
<doorway>Bedroom</doorway>
<attribute>Private </attribute >
<attribute>Abundant Natural Light</attribute>
<attribute>Lots of Counterspace</attribute>
<item>Shelves </item>

</Description>

</RDF>

Megan’s completed exercise:

trus sequence, in chronalogical ol
of your marming oubine ywmahxm.nh‘-nhup'mwmnm-’wwm

O

Toma
S ®

1. Activities: List the specific acthvies. fof
Example. # you wers listing oul the acthibes

A2.4 The User Exercises Encoded into RDF Queries for Analysis 2

Floor Plan Diagram 1, by Liv

<?xml version="1.0"7>
<RDF rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
dc="http://purl.org/dc/elements/1.1/">
<Description room="Living"” >
<function>Entry </function>
<open>Dining</open>
<item>Front Door</item>
</Description>
<Description room="Dining" >
<doorway>Bathroom</doorway >
<open>Living</open>
<open>Kitchen</open>
</Description>
<Description room="Kitchen”>
<open>Dining</open>
<doorway>Bedroom</doorway>
</Description>
<Description room="Bathroom” >
<doorway>Dining</doorway >
</Description>
<Description room="Bedroom”>
<function>Closets </function>
<doorway > Kitchen</doorway >

</Description>
</RDF>

Liv’s completed exercise:

! Dvgraving -l

Appendix 2

161

A2.4 The User Exercises Encoded into RDF Queries for Analysis 2

Floor Plan Diagram 2, by Zahra

<?xml version="1.0"7?>
<RDF rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#”
dc="http://purl.org/dc/elements/1.1/">
<Description room="Entry" >

<function>Entry</function>

</Description>

<Description room="Bedroom”>

</Description>

<Description room="Bedroom” id="02">
<function>Closets </function>
<doorway>Bathroom</doorway >

</Description>

<Description room="Bathroom” >
<doorway id="02">Bedroom </doorway >

</Description>

<Description room="Bedroom" id="03">
<doorway id="03">Hallway</doorway >

</Description>

<Description room="Dining” >

<doorway>Living</doorway >

</Description>

<Description room="Living" >
<doorway>Dining</doorway >

</Description>

<Description room="Kitchen" >
<doorway> </doorway >

</Description>
</RDF>

Zahra's completed exercise:

162

Appendix 2

A2.4 The User Exercises Encoded into RDF Queries for Analysis 2

Floor Plan Diagram 3, by Marisa

<?xml version="1.0"7>
<RDF rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#" dc="http://purl.org/dc/elements/1.1/">

</RDF>

<Description room="Entry” >
<function>Entry </function> <open>Kitchen</open> <open>Living</open>
</Description>
<Description room="Living">
<open>Dining</open> <open>Entry</open>
</Description>
<Description room="Kitchen”>
<doorway > Hallway </doorway > <open>Entry</open>
<open>Dining</open> <open>Family </open>
</Description>
<Description room="Dining” >
<doorway>Study </doorway > <open:>Living </open> <open>Kitchen</open>
</Description>
<Description room="Study" >
<doorway>Dining </doorway > <function>Media </function>
</Description>
<Description room="Family">
<open>Study </open> <open>Kitchen</open>
</Description>
<Description room="Hallway” >
<doorway id="01">Bedroom</doorway > <doorway id="02">Bedroom</doorway >
<doorway id="02">Bathroom</doorway> <doorway >Kitchen </doorway>
</Description>
<Description room="Bedroom” id="01">
<open id="01">Bathroom</open> <doorway >Hallway </doorway>
</Description>
<Description room="Bathroom” id="01">
<open id="01">Bedroom</open> <item>Closets </item>
</Description>
<Description room="Bathroom” id="02">
<doorway>Hallway </doorway > <doorway id="03">Bedroom </doorway >
</Description>
<Description room="Bedroom” id="02">
<doorway>Hallway </doorway >
</Description>
<Description room="Bedroom” id="03">
<doorway>Bathroom </doorway >
</Description>

Marisa’s completed exercise:

= L
e :

tual Diagramming

b

= el

Appendix 2

163

A2.4 The User Exercises Encoded into RDF Queries for Analysis 2

Role-Playing Metaphor (Packing)‘1, by Jeffrey

<?xml version="1.0"7>
<RDF rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"”
dc="http://purl.org/dc/elements/1.1/" >
<Description room="Bedroom” >
<finditem>Bed</finditem>
<finditem>Flat Screen TV </finditem>
<finditem>Electronic Devices </finditem>
<finditem>Linens </finditem>
<finditem> Office Desk </finditem >
<finditem>Bookcase </finditem>
<finditem>Telephone </finditem>
<finditem>Small Coffee Table</finditem>
<finditem>Lamp </finditem>
<attribute>Abundant Natural Light</attribute>
<attribute>Closed Layout </attribute >
<attribute>Spacious </attribute>
<attribute>Warm </attribute >
<attribute>Soundproof </attribute >
<item count="4">Electrical Outlet</item>
</Description>
</RDF>

Jeffrey’s completed exercise:

|
Room Name: _

Room Name: k

S
A
pa®

»
>
v
»-
-

rvvvrrry

A

ms in Room

z

Extmhm‘ﬁ.aﬁm Gt W
20 S TR S

164 -) . ' Appendix 2

A2.4 The User Exercises Encoded into RDF Queries for Analysis 2

Role-Playing Metaphor (Packing) 2, by John

<?xml version="1.0"7>
<RDF rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
dc="http://purl.org/dc/elements/1.1/">
<Description room="Kitchen">
<finditem>0Oven and Stove </finditem>
<finditem> Kitchen Sink</finditem>
<finditem>Pots and Pans</finditem>
<finditem> Pantry </finditem>
<finditem>Dish Rack </finditem>
<finditem>Misc. Equipment</finditem>
<finditem>Telephone </finditem>
<finditem>Dry Food </finditem>
<attribute>Abundant Natural Light</attribute>
<attribute>Public</attribute>
<attribute>Accessible </attribute>
<item>Telephone</item>
<item>Pictures </item>
</Description>
</RDF>

John’s completed exercise:

Room Name: k

-

-‘W.‘“]

\ g
i1 .
el 2
=‘f{= vvce.c,o“‘ h“"‘“&eg

Items in Room

ms in Room

165

Appendix 2

A2.4 The User Exercises Encoded into RDF Queries for Analysis 2

Role-Playing Metaphor (Packing) 3, by Jack

<?xml version="1.0"7>
<RDF rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
dc="http://purl.org/dc/elements/1.1/">
<Description room="Living">
<finditem>Love Seat</finditem>
<finditem>Home Theater </finditem>
<finditem > Chair < /finditem>
<finditem>Bookcase < /finditem>
<finditem>Sofa</finditem>
<finditem>Small Coffee Table</finditem>
<finditem > Pictures </finditem>
<finditem>Books</finditem>
<attribute>Contemporary </attribute >
<attribute>Spacious </attribute >
<attribute>Open Layout</attribute>
< attribute>Efficient</attribute >
</Description>
</RDF>

Jack’s completed exercise (right):

AP i
el

Room Name: Room Name: |

0

...gMT!M

il

.I
T

|

5
]
3
o
g

166

Appendix 2

167

References

1. Baird, George. (2003). The Space of Appearance. Cambridge, MA:
The MIT Press.

2. Beaudin, Jennifer S. (2003). From Personal Experience to Design:
Externalizing the Homeowner's Needs Assessment Process. ML.S.
Thesis Media Arts and Sciences, Massachusetts Institute of
Technology.

3. Bergman, Michael K. (2001). “The Deep Web: Surfacing Hidden
Value”. The Journal of Electronic Publishing 7 (1). Retrieved
April 15, 2007, from: http://www.press.umich.edu/jep/07-01/
bergman.html

4. Bush, Vannevar. (1945). “As We May Think”, Atlantic Monthly,
July 1945. Retrieved May 1, 2007, from: http://www.theatlantic.
com/doc/194507/bush

5. Castells, Manuel. (2004). (Ralph Miliband Memorial Lecture:
Mar 14, 2004) Power and Politics in the Network Society.
Delivered at the London School of Economics and Political
Science.

6. Hillyer, Mike (n.d.). “Managing Hierarchical Data in MySQL”
Retrieved May 1, 2007, from: http://dev.mysql.com/tech-
resources/articles/hierarchical-data.html

7. Lieb, Stephen. (1991). “Principles of Adult Learning”. VISION,
Fall 1991. Retrieved March 22, 2007, from: http://honolulu.
hawaii.edu/intranet/committees/FacDevCom/guidebk/teachtip/
adults-2.htm

8. Lynch, Kevin. (1960). 7he Image of the City. Cambridge, MA:
Technology Press.

9. Fensel, Dieter, James Hendler, Henry Lieberman, Wolfgang
Wahlster. (2003). Spinning the Semantic Web. Cambridge, MA:
The MIT Press.

10. Fischer, Gerhard, et.al. (1993). “Embedding Computer-Based
Critics in the Contexts of Design”. Interchi’93, April 24% — 29%
1993.

11. Gallagher, Michael P, Alan C. O’Connor, John L. Dettbarn,

Jr. and Linda T. Gilday. (2004). Cost Analysis of Inadequate

168

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Interoperability in the US Capital Facilities Industry. US
Department of Commerce: National Institute of Standards and
Technology. (Report NIST GCR 04-867).

Giarratano, Joseph C., Gary Riley. (2005). Expert Systems,
Principles and Programming. Boston, MA: Thomson Course
Technology.

Habraken, N.J. and M.D. Gross. (1998). “Concepts design
games.” Design Studies 9(3): 150-158.

Harth, Andreas, Stefan Decker. (n.d.). Optimized Index Structures
for Querying RDF from the Web. Digital Enterprise Research
Institute (DERI), University of Galway, Ireland.

Harth, Andreas, Aidan Hogan, Jurgen Umbrich, Stefan Decker.
(2007). YARS2: A Federated Repository For Searching And Querying
Graph Structured Data. Digital Enterprise Research Institute
(DERI), University of Galway, Ireland

Hendriks-Jansen, Horst. (1996). Catching Ourselves in the Act:
Situated Activity, Interactive Emergence, Evolution, and Human
Thought. Cambridge, MA: The MIT Press.

index. (n.d.). The American Heritage® Dictionary of the English
Language, Fourth Edition. Retrieved April 16, 2007, from: http://
dictionary.reference.com/browse/index

Imparato, Ivo, Diagonal Urbana and Jeff Ruster. (1999).
Participation in Upgrading and Services for the Urban Poor: Lessons

from Latin America. The World Bank.

Jonker, Frederick. (1964). Indexing Theory, Indexing Methods and
Search Devices. New York, NY: The Scarecrow Press, Inc.

Koile, K. (2001). 7he architects collaborator: toward intelligent
tools for conceptual design. PhD Thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of
Technology.

Ma, Xiaoyi. (2002). A Web-Based User-Oriented Tool for Universal
Kitchen Design. S.M.ArchS Thesis, Department of Architecture,
Massachusetts Institute of Technology.

McLeish, T.J. (2003). A Platform for Consumer Driven
Participative Design of Open (Source) Buildings. M.S. Thesis Media
Arts and Sciences, Massachusetts Institute of Technology.
Metcalfe, John. (1976). Information Retrieval, British & American,

169

170

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

1876 — 1976. Metuchen, NJ: The Scarecrow Press.

Minsky, Marvin. (1985). The Society of Mind. New York, NY:
Simon & Schuster, Inc.

Minsky, Marvin. (2006). The Emotion Machine: Commensense
Thinking, Artificial Intelligence, and the Future of the Human
Mind. New York, NY: Simon & Schuster, Inc.

Mitchell, William J. (2003). Me++. Cambridge, MA: The MIT
Press.

Moore, Charles, Gerald Allen, Donlyn Lyndon. (1974). 7he Place
of Houses. New York, NY: Holt, Rinehart and Winston.
Mostafa, Javed (2005). “Secking Better Web Searches” Scientific
American, February, 2005. Retrieved May 13, 2007, from: http://
www.sciam.com/article.cfm?articleID=0006304A-37F4-11E8-
B7F483414B7F0000

Negroponte, Nicholas. (1975). Soft Architecture Machines.
Cambridge, MA: The MIT Press.

Papert, Seymour. (1980). Mindstorms: children, computers, and
powerful ideas. New York, NY: Basic Books.

Perkins, D N. (1981). 7he Mind's Best Work. Cambridge, MA:
Harvard University Press.

Piaget, Jean. (1963). The Origin of Intelligence in Children. New
York, NY: W.W. Norton and Company.

Rao, Satyajit. (1998). Visual Routines and Attention. PhD thesis,
Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology.

Reddy, Michael J. (1993). “The conduit metaphor: A case of
frame conflict in our language about language”, in Metaphor and
Thought, Andrew Ortony (ed.) Cambridge, England: Cambridge
University Press.

Said, Edward W. (2006). On Late Style: Musica and Literature
Against the Grain. New York, NY: Pantheon Books.

Schon, Donald A. (1983). The reflective practitioner: how
professionals think in action. New York, NY: Basic Books.
Schuster, J. Mark Davidson, Roger Simmonds, Dennis
Frenchman. (1988). Housing Design & Regional Character: A
Primer For New England Towns. Cambridge, MA: School of

Architecture and Planning, Massachusetts Institute of Technology.

38. Said, Edward W. (2006). On Late Style: Music and Literature
against the Grain. New York, NY: Pantheon Books.

39. Sedgewick, Robert. (1998). Algorithms in C, Third Edition: Parts
1-4. Boston, MA: Addison-Wesley Publishing Company, Inc.

40. Salton, Gerard. (1975). A Theory of Indexing. Philadelphia, PA:
Society for Industrial and Applied Mathematics.

41. Solomon, Michael R. (2003). Conquering Consumerspace:
Marketing Strategies for a Branded World. New York, NY:
AMACOM.

42. Sowa, John E (1976). “Conceptual graphs for a data base interface’.
IBM Journal of Research and Development 20:4, pp. 336-357.

43. Sowa, John E (1992). Semantic Networks, from “Encyclopedia of
Artificial Intelligence”, edited by Stuart C. Shapiro. New York,
NY: Wiley.

44. Stiny, George. (20006). Shape. Cambridge: The MIT Press.

45. Suchman, Lucille Alice. (1987). Plans and Situated Actions: The
Problem of Human-Machine Communication. Cambridge,
England: Cambridge University Press.

46. Sullivan, Louis H. (1918). Kindergarten Chats. New York: Dover
Publications, Inc.

47. Tufte, Edward R. (2001). 7he Visual Display of Quantitative
Information. Cheshire, CN: Graphics Press.

48. Tufte, Edward R. (1990). Envisioning Information. Cheshire, CN:
Graphics Press.

49. Ullman, Shimon. Visual routines. Cognition 18:97-159, 1984.

50. Virvou, M., Katsionis, G., & Manos, K. (2005). “Combining
Software Games with Education: Evaluation of its Educational
Effectiveness.” Educational Technology & Society, 8 (2), 54-65.

51. Weinberg, Bella Hass, editor. (1989) “Indexing: The State of Our
Knowledge and the State of Our Ignorance”. Medford, NJ: Learned
Information, Inc.

52. Welsh, Matt, Matthias Kalle Dalheimer & Lar Kaufman. (1999).
Running Linux, Third Edition. Sebastopol, CA: O’Reilly &
Associates, Inc.

53. Williams, Reid E. (2003). Training Architectural Computational
Critics by Example. M.Eng. Thesis Electrical Engineering and

Computer Science, Massachusetts Institute of Technology.

171

172

53. Winston, Patrick Henry. (1975). “Learning structural descriptions
from examples”. in P. H. Winston, ed., The Psychology of Computer
Vision, McGraw-Hill, New York, 157-209.

54. Wittgenstein, Ludwig. (1922). Tractatus Logico-Philosophicus.
Mineola, NY: Dover Publications.

55. World Wide Web Consortium. (2003). Scalable Vector Graphics
(SVG) 1.1 Specification. Retrieved May 2, 2007, from http://
www.w3.org/ TR/SVG11/

56. World Wide Web Consortium. (2007). Semantic Web Activity
Statement. Retrieved May 1, 2007, from http://www.
w3.0rg/2001/sw/Activity

78— 70

