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Abstract
Gainful livestock farming requires selective breeding of animals with certain heritable desirable traits which gives 
profitability in terms of farm produce. Modern dairy animals are selected for traits which directly or indirectly contribute 
to high milk production. The concept of “feed conversion efficiency” in terms of milk production is now vigorously taken 
up by researchers and farm managers for recognizing and breeding efficient milk-producing animals. The whole concept 
of economic farming thus requires identification of “elite” animals, meeting above criteria as base population for the 
farm enterprise. Farmers and animal traders have been selecting best animals based on certain physical characters, which 
were also accepted by the breeding scientists as phenotypes. Data mining allows uncovering of hidden patterns in the 
data for better understanding of data relationship for developing suitable models for further improvements. Along with 
artificial intelligence techniques, data mining has opened new avenues for achieving high resource utilization efficiency and 
sustainable profitability in livestock production systems. The present review discusses and summarizes various data mining 
techniques and decision support systems for scientific dairy farming.

Keywords: dairy farming, data mining, decision support systems.

Introduction

The animal rearing has become highly compet-
itive with narrow profit margins and therefore, there 
is increased focus on research for improving the effi-
ciency of animal production. Proper selection of ani-
mals is the first and the most important step in dairy 
farming. Animal records, which can be utilized in data 
mining-based animal evaluation, form the basis of 
selection for breeding programs and/or a new dairy 
herd. For this, farmers need to be well informed about 
best practices in the selection of elite animals. It is 
not uncommon for the animal breeders to ask: Which 
is the best dairy animal? When an owner offers an 
animal for sale, he must be putting on animals that 
are being culled from the herd for undesirable traits. 
Therefore, the purchaser has to be well aware of the 
characters of a good animal.

For any dairy setup, most common criteria for 
the selection of dairy animals for breeding, production 
and sale/purchase include –
1. Milk production potential – High milk yield is

preferred because of higher economic returns it 
gives

2. Milk composition – In India, fat content is a key
factor in determining price of milk. However, 

in western countries, fat, protein, and solid not 
fat are considered. Buffaloes with high milk fat 
and protein content are preferred for Mozzarella 
cheese production

3. Fertility – Animals with a pedigree history of reg-
ular breeding are desired

4. Sex of the offspring – Female offspring is pre-
ferred for dairying while male is preferred for rais-
ing bulls for natural service or semen production

5. Performance of the breed in the local environment
– Better climate resilient breeds are preferred

6. Resistance against prevalent diseases – Disease
resistant animals incur lesser expenses on health-
care and hence preferred over vulnerable animals

7. Age of the animal – Age of the animal determines
the longevity of the animal in farm and hence its
production life. Therefore, younger animals are
preferred

8. Feed conversion efficiency – It is an indicator of
how efficiently the animal utilizes feed offered for
conversion into animal produce (for lactating ani-
mals, it is milk). Thus, animals with higher effi-
ciency will produce more with same amount of
feed offered and hence selected

9. True to breed characters – These are indicative of
good production potential and high resale value

10. Disposal of spent/unproductive animals – Cow
slaughtering is not allowed in India but buffalo
slaughtering is permissible, so spent/unproduc-
tive buffaloes realize higher price and therefore
preferred by many farmers for dairy.
A good farm animal is not universal and much 

depends on what you want and where you are. 
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Researchers have used data mining tools on recorded 
data for the development of intelligent decision sup-
port systems. The present review provides an insight 
into the progress made with regard to finding smart 
computer-based solutions to various problems related 
to commercial animal farming.
Quantifying Traits through Selection Indices

As elaborately above, for success of any dairy-
ing program, identification of the best animals is a 
prerequisite. Conventionally, farmers have developed 
certain assumptions with respect to good dairy char-
acters and this indigenous technical knowledge has 
been passed on from generation to generation. Animal 
breeders and dairy managers have added a lot of infor-
mation on scientific assessment of the animal for their 
selection. It has now been widely accepted that there 
is high level of correlation between physical charac-
ters (“phenotypes”) and the production potential of 
the animal. Farmers, animal lovers, researchers, and 
breeders have been following “Score Card” methods 
for various type of animals’ selection during judging 
in animal championships. Scientifically, animals are 
evaluated in terms of heritability of characters and 
genetic gain in subsequent generations [1]. Globally, 
animal breeding programs have identified and quanti-
fied heritability of different traits for improvements in 
production in subsequent generations. These traits are 
controlled by certain genes, which allow calculations 
of genetic correlation. These heritability scores have 
been used for classification of traits in Holstein and 
Jersey cows in USA [2]. Data collected on such traits 
along with genetic parameters have paved way for the 
development of indices, which can be applied at dairy 
farms for breed improvement programs, for example, 
“Net Merit Dollars” index used by the United States 
Department of Agriculture ranks dairy cows in eco-
nomic terms. Similarly, the selection indices Jersey 
Performance Index for Jersey and Total Performance 
Index for Holstein cattle were developed by the 
American Jersey Cattle Association and Holstein 
Association, USA, respectively. These breed-specific 
selection tools are updated periodically to include 
latest scientific knowledge and economic aspects of 
dairying.
Dairy Production Expert Systems Based on 
Artificial Neural Network (ANN) and Fuzzy 
Logic

Statistical analysis of the historical animal pro-
duction data and subsequently its data mining appli-
cations gave impetus to for developing smart dairy-
ing solutions including automation of operations. 
ANN and fuzzy logic are most important arithme-
tic tools that have been widely used in develop-
ing artificial intelligence (AI) for decision making 
machines. Introduced by Lotfi Asker Zadeh in 1965, 
fuzzy logic (or fuzzy rule) models are based on the 
principal of logic, which is similar to the human 

reasoning ability [3]. The earliest efforts for develop-
ing AI focused around comprehensive breeding plan 
for productivity improvement in livestock popula-
tion. Animal production systems are greatly affected 
by diseases, and this necessitated development of 
expert systems for disease diagnosis and surveillance. 
Animal nutrition management is another area where 
expert systems are in great demand as this particular 
activity accounts for the largest portion of recurring 
costs in livestock farming.

Many studies have indicated higher accuracy of 
ANN and fuzzy system models for calculating breed-
ing estimates: (1) First lactation 305-day milk yield 
[4-6], (2) first lactation 305 days or less milk yield 
(FL305DMY) from early body weights [7], (3) mul-
tiple traits – AFC, FL305DMY, first lactation length, 
first service period, first dry period, etc. [8], and (4) 
estimated breeding values [9]. Conventionally, the 
best linear unbiased prediction method has been used 
for estimating milk and fat yields in dairy cows. A 
multilayer program has been used to build ANN and 
neuro-fuzzy systems to predict breeding values in 
cows [9]. The model, although not user friendly, had 
higher degree of accuracy over conventional breeding 
evaluation methods.

Automation in milking at large-sized dairy farms 
facilitated accumulation of large volumes of accurate 
data and development of expert systems for its ear-
liest detection of mastitis. Mastitis, affecting dairy 
production globally, is one of the most extensively 
studied dairy animal diseases. Early detection of 
mastitis helps in checking its further spread and min-
imizing chances of permanent udder losses. A fuzzy 
logic model for classification and control of mastitis 
was developed using a data set of 403,537 milking’s 
from 478 cows [10]. Mastitis was determined accord-
ing to somatic cell counts (SCC) standards. Mastitis 
alerts were generated by a fuzzy logic model using 
MATLAB software with electrical conductivity, milk 
production rate and milk flow rate as input data. 
After evaluation on specific parameters, the model 
was proposed as a useful tool for the development of 
an intelligent mastitis detection method. In another 
study, ANN and adaptive neuro-fuzzy inference sys-
tem models were developed for raising mastitis alerts 
(subclinical stage) on the basis of SCC in Holstein 
cows [11]. A cost-effective neural network (NN) 
model using combination of variables – pH, electri-
cal conductivity, temperature (udder, milk and skin), 
milk somatic cells, milk yield, and dielectric constant, 
was developed to classify healthy and mastitis Murrah 
buffaloes [12]. A fuzzy logic based automated mon-
itoring system for sorting mastitis and estrus alerts 
in cows [13]. The output was in the form of “true” 
or “false,” for each alert. The number of false-posi-
tive alerts did not change the level of detected cases 
of mastitis and estrus. Lameness is another gray area 
in dairy production, which requires immediate animal 
replacements in the herd. A very basic fuzzy model 
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to predict lameness was developed for cows using 
correlation between claw length and dietary intake in 
cows [14]. Since the model was very basic, it was not 
of much use. More sophisticated, inclusive and accu-
rate lameness detection systems have now come up 
which can alert up to three days in advance of manual 
observation [15].

Data science is of enormous importance in poul-
try production. A neuro-fuzzy algorithm – combination 
of ANN and fuzzy logic, for poultry feed formulation 
is a useful tool wisely used in African poultry indus-
try [16]. The algorithm in this model was trained with 
African feed ingredients composition on MATLAB 
2009 platform. Outputs from the system were com-
pared with some available standards and the data 
analyzed on NCSS 2000. The system produced high 
accuracy of results and fulfills the objectives of reduc-
ing feed cost and supplementing all essential minerals 
and amino acids in poultry diet – Arginine, Histidine, 
Isoleucine, Leucine, Lysine, Phenylalanine, Tyrosine, 
Cystine, Methionine, Threonine, Tryptophan, Valine; 
Crude protein; Ether Extract; and Crude Fiber.
Decision Support Systems (DSS) in Livestock 
Production

The decision support systems help a setup 
(organization, individual, etc.) in decision making pro-
cesses by the use of computer-based models to iden-
tify and solve problems [17]. DSS essentially work on 
the principal of knowledge acquisition from current or 
historical data followed by creating appropriate algo-
rithm for logical decision-making for identifying and 
solving problems in the system. The decision support 
systems are being recognized as tools for improving 
resource utilization across businesses and other enter-
prises. For livestock, mostly “data-driven” or “knowl-
edge-driven” DSS are in use or developed, as these are 
based on analysis of large amounts of structured data/
information [18].

During the last decade of twentieth century, a 
very basic DSS was developed for pasture-based live-
stock production [19]. This model was a good effort 
in simulating biological processes (grass growth, pas-
ture-animal interface, and cow model), population 
dynamics (stochastic herd model), management prac-
tices, and economics for suggesting options on effi-
cient use of resources for optimum farm production.

With accumulation of scientific data over the 
years, better understanding of animal biology and 
recent developments in data mining applications, DSS 
for specific purposes are now in use in livestock pro-
duction. Most DSS have been developed from simu-
lation models using multiple computational methods.

Nevertheless, these systems offer great benefit 
to the dairy enterprises by assisting decision-making 
process in the management programs. Table-1 [20-27] 
lists some of the commercially available DSS which 
have been well adopted by farmers and frequently 
updated incorporating scientific breakthroughs.

Table-1: Some common commercially available DSS in 
dairy farming.

Name of 
DSS

Application DM/AI 
techniques

Reference

GrazPlan 
suite – 
GrazFeed, 
GrazGro and 
AusFarm

For farmers to make 
decisions about 
farm management 
principally in grazing 
enterprises

Simulation 
model

 [20]

EUEDE Assist rural business 
stakeholders in 
building their own 
target-relevant 
decision-making 
tools in Australia

Generic 
knowledge 
model

[21]

VetMet Surveillance and 
control of airborne 
animal diseases

Linearized 
flow model 

[22]

Farmax  
Dairy Pro

A pastoral grazing 
model of a dairy 
farm

Whole-farm 
system 
models

[23]

DairyMGT 
suite - 
UW-Dairy 
Repro$

A collection of tools 
for decision support 
systems in Dairy 
Farm Management

Matrix-based  [24]

ValorE Livestock manure 
management 

ANN  [25]

ADSDSS For assisting control 
of animal diseases – 
provide information 
about infected 
animals, infected 
places and diseases 
outbreaks

Apriori 
algorithm

 [26]

Sustainable 
Organic and 
Low-input 
Dairying 
(SOLID)

To optimize the 
management of 
feed resources and 
feed supply systems 
within organic and 
low input dairy 
systems in Europe to 
minimize the risk of 
feed shortages

Simulation 
model

[27]

ANN=Artificial neural network, EUEDE=End user enabled 
design environment, ADSDSS=Animal Diseases Spatial 
Decision Support System

Efforts to develop an expert system for replac-
ing human expert in dairy cattle judging (based on 
12 traits – chest width, fore udder attachment, loin, 
suspensory ligament, angularity, udder depth, rear leg 
side view, front teat placement, rear leg rear view, rear 
teat placement, foot angle, and body depth) by linear 
approach using data mining applications has been tried 
in Iran [28]. Judging rules were represented as knowl-
edge and fuzzy logic arithmetic was developed to over-
come uncertainty during automatic judging. A similar 
system was developed as a fuzzy logic-based decision 
support system using reproduction parameters and 
milk yield records of Holstein Friesians [29]  -  305-
day milk yield (305 DMY), service period (SP), calv-
ing interval (CI), artificial insemination (AI), and dry 
period (DP) as input parameters. Output parameter of 
the system is defined as classification decision. Kappa 
statistics were used to investigate the similarities 
between expert and decision system and fitting value 
was obtained as 92.6% (p<0.05).
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Computational intelligence techniques have 
also been used for development of a decision support 
system in dairy cattle health management [30]. Here, 
ANNs were used to classify health of cattle into three 
classes (regular, surveillance, and risk) based on the 
quality of milk produced. DSS has made way into the 
concept of precision farming. The Long Short-Term 
Memory (LSTM) NN based DSS [31] predict forage 
mass using historical pasture growth data collected 
directly and association with meteorological data. The 
results show that LSTM NNs are capable of making 
a reasonable estimate of the dry mass variation over 
time. A unique buffalo behavior decision support 
system, based on threshold value of various acoustic 
features of vocalization for estrus detection was devel-
oped using machine learning techniques J48 classifier 
along with C4.5 Algorithm to address the problem of 
silent estrus in buffaloes [32].
Conclusion

Sustainable dairy farming requires comprehen-
sive decisions in husbandry practices for efficient utili-
zation of resources, better health, and productivity. The 
software programming should enable us to manage a 
database consisting of every animal on the farm and 
utilize the database using data mining techniques and 
decision support systems. Advances in arithmetical 
systems have given rise to modeling farm situations 
close to real and therefore provide highly efficient DSS 
framework to the stakeholders. The tech-savvy dairy 
farmers are investing in computer-based tools and 
software products to improve farm economics through 
monitoring farm products quality and quantity, breed-
ing management, feed – fodder and pasture availabil-
ity, disease control, and prevention and environmental 
parameters in their surroundings. AI acquired through 
data mining techniques, decision support systems and 
algorithms are bound to make smart decisions for effi-
cient and sustainable dairy production systems.
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