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Abstract

In this thesis, several novel techniques are proposed and demonstrated for measur-
ing the coherent properties of materials and testing aspects of quantum information
processing using a single crystal neutron interferometer. In particular we introduce
methods for reciprocal space encoding of spatial information systematically in a neu-
tron interferometer. First, a proof of principle experiment is conducted for coherent
reciprocal space neutron imaging. This newly proposed technique overcomes the lim-
itation of spacial resolution of current two dimensional neutron detectors. Second,
an experiment to measure the vertical coherent length of a neutron interferometer is
reported, which extends the previously achieved path separation. Third, we propose
a new interferometry geometry that reduces the sensitivity of the neutron interferom-
eter to environmental vibrational disturbances. The method is based on a quantum
error compensating algorithm. Finally, a new method that is capable of measuring
the autocorrelation function of a sample is proposed. This new technique can extend
the capability of traditional neutron scattering experiments. All experiments are con-
ducted at the neutron interferometry facility at the National Institute of Standards
and Technology (NIST).
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Chapter 1

Introduction

1.1 Brief history of Neutron Interferomtry

The wave/particle duality of the neutron was discussed very shortly after Chad-

wick discovered the neutron in 1932 [1]. In 1936 Elsasser proposed that a neutron's

motion is governed by quantum mechanics [2] and in the same year his statement

that neutrons would be diffracted by crystalline matter was verified by Halban and

Preiswerk (3], and by Mitchell and Powers [4].

The field of neutron interferometry also has a long history. The first neutron

interferometer was built by Maier-Leibnitz and Springer in 1962 [5]. It consisted of

a single entrance slit and a biprism for beam recombination. Figure 1-1 shows a

schematic diagram of this first wave front division neutron interferometer along with

a sketch of the setup [5]. Biprism interferometers suffer from small beam separations

(on the order of only 60 1 m). Measurements with samples placed in only one of the

interfering paths are extremely difficult [6].

In 1972, Mezei published a paper [7] where he discussed a new spin-echo system. In

this system, the superposition of spin-up and spin-down states provides the basis for

Larmor and Ramsey type of interferometry. In such an interferometer, beam splitting

is not required. Here the total energy of the neutrons in the spin up and spin down

states are the same. Because neutrons with different spin states acquire different

potential energies in a magnetic field (Zeeman splitting), their kinetic energies depend
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Sketch of the

Biprism interferometer from Maier-Leibnitz and Springer paper [5]; b:
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on single-slit diffraction. (Beam separation of the order of 60 pm); c: Intensity of the
neutron on the detector due to vertical scan of the S2 slit.
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Figure 1-2: Sketch of the Larmor and Ramsey type of neutron interferometer (spin-
echo interferometer [7]).

of a neutron in the field free regions, and k± are the wave vectors of a neutron in spin

states parallel and anti-parallel (up and down) to the magnetic field B respectively.

For a neutron traveling a distance L the phase difference ¢(k, L) between the spin-up

and spin-down states is

O(k, L) = 2LAk _ 2LmlpLB/h 2k (1.2)

and the degree of polarization in the incoming neutron polarization direction behind

a field region of length L is

Po(B, L) = (A) cos (47m pIBLA/h 2)dA, (1.3)

where ý(A)dA = g(k)dk = (g+(k) + g_(k))dk and g± are the momentum distribution

function for spin up or down states of the neutron. The coherent behavior of a neutron

interferometer is clearly shown by echo formation in a spin echo interferometer. If

the spread of neutron momenta g(k) is large and the distance between the first 7/2

coil and the field reversal coil is sufficiently long (see figure 1-2), the oscillations of

neutron polarization disappear completely (1.3). However, the polarization can be

partially recovered using the spin echo technique. The field reversal coil reverses

the direction of the neutron spin precession. Thus BL in equation 1.3 denotes the

difference between two integrated field values BL = BL 1 - BL2. If the distances

Bg

J



of two precession regions with the same magnetic field are the same L 1 = L2 , then

BL1 = BL 2 and the initial neutron polarization can be recovered (refocused) after

the second -r/2 coil.

etector

Polarizer

Figure 1-3: A schematic diagram of the Stern-Gerlach type neutron interferometer.

Figure 1-3 reports on another type of spin interferometer with interfering beams

separated by strong magnetic field gradients produced by Stern-Gerlach magnets. A

polarized beam passes through a w/2 spin-flipper and splits into spin-up and spin-

down components due to the magnetic field gradient. After passing through a phase

shifter and a 7r spin-flipper, the beams are recombined and their interference can be

observed. Figure 1-4 shows the explicit neutron wave-functions at different points of

the interferometer.

In 1974, the first perfect-crystal interferometer was demonstrated by Rauch, Treimer,

Bauspiess and Bonse [8, 9]. Much of their experience with X-ray interferometers [10]

was applied to the neutron case. Figure 1-5 shows a sketch of the perfect crystal

neutron interferometer Laue-Laue-Laue-type (LLL), where a neutron scatters from

each crystal blade in a Laue geometry as shown in figure 1-11. In the Laue geometry

the scattered beams are on the opposite side of the blade with respect to an incoming

beam and the crystal planes the neutron scatters from are perpendicular to the in-

terferometer blade. Detailed descriptions of this type of interferometer can be found
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in Section 1.2.
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Fig. 1. Sketch of the perfect crystal neutron spectrometer.
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Figure 1-5: Sketch of the perfect crystal neutron interferometer (LLL-type) on the
left and the data obtained at the O and H beam detectors vs phase flag position on
the right [8]. This example shows a relatively low contrast of about 20%

There are other types of neutron interferometers that are based on single crystals,
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see review by W. Graeff in reference [111. We will mention here only a double crystal

neutron interferometer, that was proposed by S. Kikuta et al. [121 for Laue and Bragg

(scattering crystal planes are parallel to the blades of the interferometer) cases (shown

on the left of figure 1-6). The LL-type is discussed by Zeilinger, Shull, Home, and

Squires in the book "Neutron Interferometry" [11] and the interference of Bragg-

Bragg-case (BB) interferometer due to phase flag position is shown on the right of

figure 1-6. Here the beam is split by the first crystal (reflection from the front and

back of the crystal) and the two split beams recombine and interfere at the second

crystal. Interference is observed at the exit of the second crystal.

1400
E 150 0

N' 2005 ~00
55 60 65

Phase Plate Angular Position, 9 (deg)

(a) (b) FIG. 4. Interference fringes produced b. varying the. opical path
length thlough an Al phaoe-shifter plate.

Fig. ,0. Neutron interferometers having two
crystal components for the Laue case (a) and
the Bragg case (b).

Figure 1-6: Sketch of the double perfect crystal neutron interferometer on the left [12]
and the data, obtained for the Bragg case double crystal neutron interferometer [13].

The use of diffraction grating can extend the Mach-Zehnder interferometer to the

study of very slow neutrons. In 1985, loffe, Zabiyakin, and Drabkin presented a test

of a diffraction grating neutron interferometer [14]. The diagram of the experiment is

shown in figure 1-7. The incident beam here is diffracted by splitter BS 1 to the 0 and

+1 orders of diffraction, then the beams are recombined on the second grating BS2

by mirrors. The length of this interferometer is about 55 cm and the beam separation

is on the order of 1 rnm.

The last interferometer I will mention here is also for long wavelength neutrons. It

is based on multi-layer diffraction and was tested by Funahashi et al. in 1996 for 12.6 A

Phase
Ploat
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Figure 1-7: Diagram of diffraction
signs for diffraction orders (a) [14].

grating neutron interferometer (b), and rule of

neutrons [15]. The left graph of figure 1-8 shows the diagram of this interferometer

consisting of two pairs of two multi-layer mirrors separated by a distance D.
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FIG. I. Schematic diagram of the multilayer interferometer. The
glancing angles off the first and the second pairs are denoted by 91
and 0,. respectively.
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relative angle i0b= (02 - i)

FIG. 3. Effective distance D between the two multilayer mirrors
contained in a single pair is 3700 A and the unit bilayer thickness of
each nmultilayer miror d is 140 A. (a) Intensity of neutrons re-
flected off a single pair. (b) Interference fringes observed by
changing the relative angle between the first and second pairs.

Figure 1-8: On the left: the diagram of the multi-layer neutron interferometer; on
the right: rotation scan of the multi-layer mirrors [15].

The phase difference between the two neutron beam paths is

2DAQ e 27r2 60,A (1.4)
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where A is the neutron wavelength and 60 = 01 - 02 is the relative angle between the

pairs of mirrors. The right graph of figure 1-8 shows the intensity scan of 60.

.. ":..i • "

Detector
F

Figure 1-9: On the left: sketch of the magnetic multi-layer neutron interferometer;
on the right: rotation scan of multi-layer mirrors [15].

A sketch of a similar interferometer but using magnetic multi-layer mirrors is

shown in figure 1-9. Here each mirror reflects only one component of the neutron

spin. This interferometer is analogous to the Stern-Gerlach interferometer without

the use of gradient magnets.

Over the past 40 years there has been an evolution of neutron interferometer

where both the momentum and spin can be used to demonstrate the wave-properties.

For many studies a key parameter is the distance of the separation. Large, cm or

larger, path separations permit convenient use of neutron interferometers for high

resolution studies of materials properties and for studies of the interaction between

neutron and fields. In this case we can place a sample or create the field just in one of

the paths leaving the other path unchanged. The most versatile and robust neutron

interferometer with a large path separation is the LLL-type. In the next section, we

focus the discussion on the LLL-type single crystal interferometer which was used to

perform the experiments described in this thesis.



1.2 LLL Single Crystal Neutron Interferometer

For most applications, the standard Laue-Laue-Laue (LLL) interferometer is the best

configuration. This interferometer is functionally the equivalent of an optical Mach-

Zehnder (MZ) interferometer (figure 1-10). The MZ interferometer has two mirrors

and two beam splitters (half-mirrors). Light from a source is split by the first half-

mirror and refocused on the second beam splitter by mirrors. There are two detector

locations 1 and 2. When a light is incident on a surface and the material on the other

side of the surface has a higher index of refraction, then the reflected light phase is

shifted by 7r. There is no phase change because the light reflects from the surface

with lower index of refraction and then the light is refracted due to the medium

change. The index of refraction of a perfect mirror can be thought of as infinite,

thus shifting the reflected light by 7. Following the figure schematics for the "U"

path and detector 1 we accumulate the following phases: reflection (7r) from half-

mirror, reflection (7r) from mirror, transmission through the second half mirror (6 -

small phase shift due to the media of the beam splitter) and optical path between

the first and the second beam-splitters ((). For the path "D" and detector 2 we have

transmission through the first half mirror (6), reflection (ir) from mirror, reflection

(Tr) from half-mirror, and optical path between the first and the second beam-splitters

which is usually the same as for the "U"-path ((I). Than the total phase difference for

different paths is zero and we would observe constructive interference. For the same

paths but at detector 2 the total phase difference is -r, thus we observe destructive

interference. The LLL neutron interferometer is directly analog to the MZ except we

do not have convenient mirrors

The atomic planes of the blade act as a diffraction grating and coherently split or

reflect an incoming beam whose wavelength satisfies the Bragg condition (see figure 1-

11)

A = 2dsin OBragg, (1.5)

where d is the atomic plane spacing and OBragg is the angle between the incoming

beam and the atomic planes. The amplitudes of the transmitted and reflected beams



Mach-Zehnder Interferometer
Detector

Path "U":
1. Reflected by beam splitter (BS)
2. Reflected by mirror
3. Transmitted through BS to D1

Path "D":
1. Transmitted through BS
2. Reflected by mirror
3. Reflected by BS to D1

Half-silvered mirror

Total phase of photon on Dl:
Path "U" = i + 7 + 6 = 2iT + 6
Path "D" = 6 + n + n = 27 + 6
Phase difference = 0
Constructive Interference

Total phase of photon on D2:
Path "U" = 7 + n + 5 + 8 = 2n + 26
Path "D" = 6 + + 5 = + 26
Phase difference = n
Destructive Interference

Figure 1-10: Principle of optical Mach-Zehnder interferometer.

are defined by the coefficients t and r respectively. Both r and t are complex function

of ( k--kBragg ), where k is the wave vector of the neutron and kBragg is the wave vector

which exactly satisfies the Bragg condition. Coefficients r and t can be determined

from dynamical diffraction equations for each slab and arg (r) = arg (t) + 7r/2. In

other words, the Bragg-reflected and transmitted waves are 90' out of phase. A

detailed description of the theory could be found in references [16] and [17].

The top view of the neutron interferometer is shown in figure 1-12, where explicit

neutron wave-functions, at different stages of the interferometer, are also given. The

amplitude of the neutron wave packet that traverses along path I and reaches the

O-detector is rrt due to two reflections and one transmission.

Here we write the wave functions of the neutron in the two pathes as = I1) for

path I and == II) for path II, and treat the interference at the third blade and the

detection by the O or H detectors as an projection operator. Thus the wave function

Mirror
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Figure 1-11: Laue geometry. A neutron beam coherently splits at each blade due to
Bragg diffraction on the crystal atomic planes.

of the neutron inside the interferometer can be written as,

(1.6)

where 01 and 0 2 are the accumulated phases of the neutron along path I and path II

correspondingly. The amplitudes are C1 = rt and C2 = rr. We can rewrite this wave

function substituting in the coefficients,

IT) = rte'01|I) + rrei 2 J1).

~ = zn sin(8,)

~lg is the Bragg angle
~ti

~-9a,

S= Cle 0 1|1) + C2e •2 III),

(1.7)
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B = Io12[1t141r12+ lr16]

Figure 1-12: Diagram of neutron beam paths inside a single crystal interferometer.

The projection operator of the wave function onto the O-beam detector Po is,

Po = I (r|I) + t|II)) (r*(II + t*(II), (1.8)

while the projection operator onto the H-beam detector PH is

1
PH = (t I) + r|II)) (t*(I| + r*(II|).

2

Therefore, the intensities on the 0- and H-detectors are

Io = I( Po) = 1 4 rt2 [1 + COS (2 - 01)] ,

1H = I(4'PHIF)I = [t 41r2 + rI6]_ - 4 t2 COS(2 - 1).

(1.9)

(1.10)

From these equations, we see that in the case of an ideal single crystal interferometer

and a monoenergetic, non-divergent incoming beam, the contrast of the interferometer

C = max{I}inin{I} for the O-beam will be 100%, while for H-beam it depends on rniax {I}+rnin {III
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and t.

= max {Io} - min {Io)
max {Io} + min { Io)

max {IH} - min {IH} Ir 14t12

CH = = (1.11)max {IH} +min {IH } It 4Ir 2 +- r 6

Of course, in the non-ideal case or when environmental disturbances are present,

the contrast of the interferometer is reduced. Detailed discussions of the reduction

in contrasts can be found in Chapter 5 which discusses vibrational disturbances,

Chapter 4 which deals with temperature variations and the separation of beams, and

Chapter 3 which describes the effects of phase gradients along the beam.

When we explore the coherence length measurement and the use of neutron inter-

ferometer for scattering in the latter chapters it will be helpful to have an operator

picture of the action of the blades in a neutron interferometer. We develop this now.

1.3 Operator Picture of the Neutron Interferometer.

X

Figure 1-13: A schematic diagram of the 3-blade neutron interferometer. A neutron
beam comes from the left, splits by the first blade, gets diffracted on the second blade
and recombines at the third. After passing interferometer, the beam captured by O
and H detectors.

Figure 1-13 presents a schematic diagram of 3-blade (LLL-type) neutron interfer-

ometer. A neutron beam coming from the left is coherently split in two paths by the

first blade via Bragg scattering. These two paths are partially reflected by the second

blade, recombined on the third blade, and thus interfere before reaching the O or H

detectors.



We label the states according to the sign of kx, the neutron momentum in the x

direction (see figure 1-13). The incoming neutron is therefor in the 1+) state. For the

incoming beam

Pin= +)(+1. (1.12)

The operator describing Bragg scattering is

OB = t r (1.13)

where t+, r are the transmission and reflection coefficients for the neutron going

"up" and t_, r_ are the transmission and reflection coefficients for the neutron going

"down". This operator has to be a unitary operator, which implies in this case that

for complex r and t the relations t = t+ = t*, r = r, = -r* and Ir|2 + t1J2 = 1 hold.

Thus the blade operator is

t -r*
OB = . (1.14)

r t*

The operator for a phase-shifter in the I+) beam path is described by the operator

eto 0O = . (1.15)
0 1

The operator for the central blade is more complex. If for the moment we neglect the

loss of transmitted neutrons, then we can approximate the action as that of mirror.

The projection of the density operator on the paths is realized through the operators

P+ = |+)(+|= ( 1  (1.16)

and

P = | -(1.17) 0 1



So the overall action is

B 2 = [P+OB2 P- + P-OB2P±] (1.18)

An ensemble of neutrons starting in the I+) state propagate through the interferom-

eter to the outgoing state

Pout = OB3 BB2"B, Pin fnOB2OsI . (1.19)

By treating the second blade as a mirror we have renormalized the probabilities of

the neutron detection at O and H to neglect those neutrons lost by transmission. For

most experiments this corresponds to the desired information. If, however, the lost

neutron carries away information we must include this in the description.

1.3.1 Re-normalizing the second blade operator.

If we assume that the lost neutrons do not carry away any information from the

system, then we can re-normalize the system (i.e. assume that 2 nd blade act as a

perfect mirror). Using this assumption we can re-normalize the second blade operator

as

(1.20)

The O-detector will measure

- *0 -e -zarg (r)

0 ez arg (r) 0

the projection of pout on the J+) state.

Io = Tr(P+pout),

Using 1.20 we can find

S-r Irt(1 + ez0o)
A - OB B2nOB1, = t g ) r re ' _ Itl2eZ(o-arg(r)) + r-tr*

-Jrlt*(e'o ± 1) )

(1.21)

(1.22)

2 0 =
B2n =

r



and using 1.12 as incoming density

Pout = A 1pin At

21rt 2(1 + cos ¢0)
( -r 2 12 - t 2e-,to)(1 + euo°)rt*

(~r12 - It2ez•0o)(1 + e-"0o)tr*

It14 + Ir14 - 2|rt|2cos 00

And finally the intensities on the 0- and H-detectors (using 1.21) are (as expected)

Io = Tr(P+pout) = 2|rt|2 (1 + cos o),

IH = Tr(P-Pout) = (Irl + Itl4) - 21rt| 2 cos 0o.

(1.24)

(1.25)

1.3.2 Using the superoperator and Kraus-decomposition

An approach to include the non-unitary dynamics of the second blade operator is

to represent its action by means of a superoperator. The corresponding quantum

operator must of course be convex-liner and completely positive, as well as trace

non-increasing. Note that even though the action of the second blade is not trace-

preserving, we still fulfill the above condition.

We will construct the super-operator over the Hilbert space {j + rangle, I- (},

where the second blade operator acts as

+I ) | -)',

f-) -- -r*1+)' (1.26)

The form operators of the Hilbert space are transformed

second blade as

by the super-operator of the

r *21+)'(-'

Irl21+>'( 1'

(1.27)

(1.23)

|+)(+
|+)(-|$ :W
-)(+|
-)(-I



In a matrix form the super-operator is

0

0

0

0 0 1r|2

0 -r 2  0

-r* 2  0 0

0 0 0

We can also write it in the Pauli basis {1, UX, uTy, z } as

r 2d

Sp = Tt$T
o -%(r2 + r*2)

(2 * 2

(2
2 ( - r* 2 )

j(r2 + r*2)

0

where change of basis matrix between different basis T is

1
T = 2-,/2

0

0

0 0 1

1 0

1 -z 0

0 0 -1

Let's represent the superoperator $ as a Kraus sum. For that we write the Choi

matrix:

$( +)(+ ) $(+)(-))
$(-)(+ ) $(--) )

0 0 0

Ir2 -_r2 0

-r* 2 7r 2 0

0 0 O0

(1.31)

The eigenvalues of the Choi matrix can be found from the equation:

det(C - Al) = A2((A

(1.28)

0

-r 12

(1.29)

(1.30)

(1.32)S12_2 _ j4)



and are equal to:

{Aj} = {0, 0, 0, 2r 12}.

The corresponding eigenvectors of the Choi matrix are:

1

0

0

0

0

0

0

1

1

0

0/r*

1

0

1

The Kraus operators are then up to a global phase:

{C3 } = { Ajej(in the matrix form) = {
That one of the Kraus operators is zero naturally corresponds to a loss of neutron.

That the other is propotional to a perfect mirror completes the describtion.

output state of the interferometer is

Pout = a3OIj Bl Pin tB1 ,

/ur t12 ( COS 0•o)
Pout (1( -, r |2( t 2 _ rl2e'to)(1 + e-%0°)rt*

-Ir12(Itl2 -Irl12e-o) )(1 + e~)tr*
r 2(It 4 + 4lr - 2 rt|2 cos 0o) )

(1.37)

Finally, the intensity at the 0- and H-detectors (using 1.21) are

Io = Tr(P+pout) = 21r 2t 2 (1 + COS o) , (1.38)

(1.39)IH = Tr(P-Pout) = r12( 4 +I It 4) - 2|r2t12 COS 0o.

Notice that in this description there is an apparent decrease in the neutron intensity

at the detectors of r 2

(1.33)

(1.34)

0

-r/r*

1

0

0) ( r )
(1.35)

The

(1.36)

{e}= <



1.4 Coherent Neutron Interactions.
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Figure 1-14: Change of the wavelength of the neutron inside the sample.

The presence of a sample inside the interferometer will change the phase of the

neutron. In general, the phase of a neutron is proportional to its action S,

S= 
(1.40)

The accumulated phase of a neutron traversing path I is

1(s
fpath I

VS - dl). (1.41)

Since the neutron momentum is given by hK = VS, the above equation can also be

written as

01 = o0 + Ipath I K -dl. (1.42)

When a sample (or a phase flag) is present in the beam, it creates an optical potential

Vo, for neutrons. We introduce an index of refraction of the sample n for neutron optics.

Analogous to light optics, n is proportional to the ratio of the neutron momenta inside

0>
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and outside the sample.

When a neutron scatters on the potential Vo, by the conservation of energy, the

momentum of the neutron inside the potential q is,

2m (E- Vo)
q = 2 (1.43)

where rn, is the mass of the neutron and E = h2k2/2mn is the kinetic energy of the

neutron before scattering. Therefore, the index of refraction is

n = q/k = V (1.44)

The wave function of a scattered neutron will be the sum of plane wave (incoming)

and the spherical wave (due to scattering). Since the neutron wavelength in our

case is much larger than the size of the nuclei, the neutron scattering amplitude is

isotropic, and equals the neutron coherent scattering length be. Thus the potential of

neutron-nucleus interaction can be written as a delta function [17],

2irh 2
Vo(r) = b,6(r). (1.45)

mn

Consider now an ensemble of nuclei whose positions are given by Ri. We can express

its optical potential as a sum of interactions with each individual nucleus,

2irh2

Vo(r) = h b 6(r - Ri). (1.46)
Mn 

i

Defining b, as,

Nb = bJ6(r - Ri), (1.47)

we can rewrite the optical potential as,

27rh 2

Vo = Nbc, (1.48)
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and the index of refraction as,

47rNb
n = 1 k2 , (1.49)

where N is the number of atoms per unit volume.

The phase shift due to the sample can be now written using the refractive index

of the sample (eq. (1.49)),

€sample path nk dl. (1.50)

Thus the phase difference between two interferometer paths is

A = - 2 - 1 - ple (1 - n)k -dl -NbcAD, (1.51)

where D is the thickness of the sample (or the length of the neutron path through

the sample). Figure 1-14 gives a visual representation of the phase difference inside

the interferometer due to the sample. Measuring this phase shift gives a very precise

measurement of the coherent scattering length of the sample nuclei. In addition,

phase shifts can also be introduced by neutron interactions with a magnetic field and

gravitational field. Table 1.1 summarizes the optical potentials and phase shifts of

neutrons due to the various interactions.

Using the phase flag (figure 1-15) as a phase shifter, we can measure the interfer-

ence curve, which is the counting rate measured by the 3He detectors as a function

of the flag rotation. From these measurements, we can extract the contrast of the

interferometer.

Figure 1-16 shows one of these phase scans. It is a high-contrast interference

pattern obtained with a perfect silicon crystal interferometer by M. Arif and D.L.

Jacobson at NIST, in 1997.



Interaction Potential Phase Shift Reference

Nuclear 27h 2b,6(j) -Nb•AD Rauch et al. [8]

(1974)

Magnetic -. B(r) m  Rauch et al. 118]
(1975)

Gravitation mg mI mgAsin (a) Collela et al. [19]
(1975)

Coriolis -hw ' x ( ) ?" A Werner et al. [20]
(1979)

Aharonov-Cashire - v- (z x E) /c E D Cimmino et al. [21]
(Schwinger) (1989)

Scalar Aharonov-Bohm -i B (t) Allman et al. 1221
(1992)

Magnetic Josephson -/ 7 B(t) twt Badurec et al. [23]
(1981)

Fizeau N/A -NbcAD (~ ) Klein et al. 124]
(1981)

Geometry (Berry) N/A Q/2 Wagh et al. [25]
(1997)

Table 1.1: Table represents potentials and the associated phase shifts inside the
interferometer for different interactions.
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Figure 1-15: Phase flag rotation changes the phase difference between interferometer
paths.
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Figure 1-16: High-contrast interference pattern obtained with a perfect silicon crystal
interferometer where the top curve is for H-detector and the bottom one corresponds
to O-detector (courtesy of M. Arif and D.L. Jacobson, NIST, 1997 also 116]).





Chapter 2

Experimental Apparatus and

Facilities

The experiments reported in this thesis were performed using the neutron interferom-

eter setup at the Neutron Interferometry and Optics Facility (NIOF) at the National

Institute of Standards and Technology (NIST) in Gaithersburg, MD. Details of the

facility are described in Section 2.1. The alignment of the interferometer setup is a

crytical procedure, since the interferometer is very sensitive to the wavelength and the

direction of incoming neutrons. Proper alignment can dramatically increase the effec-

tive neutron flux, therefore decreasing statistical uncertainties of the measurements.

Procedures and results of the interferometer alignment are presented in Section 2.2.

2.1 Neutron Interferometry and Optics Facility at

the NIST Center for Neutron Research

2.1.1 The NIST Center for Neutron Research

The NIST center for Neutron Research (NIST) operates a 20 MW split-core research

reactor. Fast neutrons (~1 MeV) are released from the nuclear fission of 235U, and

then thermalized by heavy water (D20) in the moderator to room temperature (300 K,

26 meV). The peak thermal neutron flux is 4 x 1014 neutrons/cm2 at the reactor core.
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Figure 2-1: A cutaway view of the reactor core and cold source.

A cut-away view of the reactor core and cold source is shown in figure 2-1. The

main advantage of the split-core reactor (fuel elements are located below and above

the neutron ports) is the large reduction in gamma background without significant

reduction in the neutron flux. The reactor is operated on a seven week cycle, with

approximately 38 continuous days at full power (20 MW) operation followed by 11

days for refueling and maintenance.

There are eight thermal neutron ports (figure 2-2) available for development of

radiation detectors, material science studies and neutron imaging [26]. Because longer

wavelength ("cold", >1.8 A and <25 meV) neutrons are better suited for the study of

many condensed matter systems, a cold moderator 127] is installed next to the core.

Thermal neutrons scatter with hydrogen atoms in this 20 K liquid hydrogen moderator

to lower energies (see figure 2-1) and on the exit of the cold source, producing a
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Figure 2-2: The thermal neutron instruments at the NIST Center for Neutron Re-
search confinement building.

Maxwellian distribution with a characteristic temperature of 34 K.

Cold neutrons are transported to instruments throughout neutron guides. Fig-

ure 2-3 shows a schematic view of the NCNR guide hall. The neutron interferometer

facility is located on the NG7 guide, shown in the figure as "NG-7 INT." Each neu-

tron guide has a rectangularly shaped cross-section (15 cm tall and 6 cm wide) and

is produced by gluing together 1 m long sections of 5 8Ni coated (100 nm thick film)

optically-flat borated glass plates. Nickel-58 is chosen as the coating material because

it has one of the highest neutron reflective potentials

27rh2Nb
V =- 335 neV.

m
(2.1)

If the perpendicular component of the neutron energy is less than the potential of
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Figure 2-.3: Top View of the NIST Center for Neutron Research Guide Hall.

the guide wall Eq. 2.1, then this

angle of the guide is

neutron will be reflected from the wall. The critical

a0.002rad/
Ocritical ý AFL -, 0.002 rad/A.Y7T~

(2.2)

Thus neutrons with grazing angles smaller than or equal to the critical angle will

be reflected from the guide wall. To reduce the air scattering of neutrons, guides

are pumped out to a few mTorr. The losses in the guides are mainly due to neu-

tron absorption by the coating material, roughness of the guide surfaces, and guide

misalignment.

2.1.2 Neutron Interferometry and Optics Facility

Figure 2-4 shows a schematic view of The Neutron Interferometry and Optics Facility

(NIOF) located in the NCNR Guide Hall. NIOF is one of the world's premiere user

facilities for neutron interferometry and related neutron optical measurements. The

interferometer setup was designed in 1991 [28]. It is continuously being upgraded. It
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Figure 2-4: Neutron Interferometry and Optics Facility.

was designed to provide a wide range of neutron energies (from 4 meV to 20 meV).

Neutrons are extracted from a dual-crystal parallel-tracking monochromator sys-

tem (in figure 2-4, the first monochromator is located behind collimator/shutter (1)

inside the NG-7 guide and the second focusing monochromator is indicated by (2)).

Monochromators are made from pyrolytic graphite (002) (PG). The first monochro-

mator is 7.5 cm high and 5 cm wide. The second (focusing) monochromator is 9 cm

high and 5 cm wide and consists of nine (1 cm high and 5 cm wide) PG blades.

By rotating each blade around the horizontal axis, we can focus the neutron beam

onto the neutron interferometer and therefore increase the intensity of interferometer

signals. For the range of neutron energies in use, the PG crystals are about 80% to

'90% reflective.

In the area between the monochromators and the second monochromator and

the interfero'meter enclosure, the beam passes through helium-filled transport tubes

(which were recently replaced by vacuum beam transport tubes) to reduce neutron

scattering and attenuation due to the air.

The neutron interferometer is very susceptible to environmental disturbances such



as temperature gradients (even small temperature gradients such as 1 mK over 10 cm

distance due to the thermal expansion can shift blades with respect to each other

by A which is quite a big distance in comparison with the neutron wave length

2.71 A and result in a big phase change) and vibrations from surrounding environment

(we will discuss the effect of vibrations in the chapter 5). In order to perform high

resolution measurements, special care needs to be taken to reduce (or eliminate) such

environmental disturbances.

Measuring the temperature vs. time

24.01

24.005

24

23.995

23.99

1/21/2005 0:00 1/24/2005 0:00 1/27/2005 0:00

Figure 2-5: Time dependance of the temperature (in degrees of
interferometer enclosure.

1/30/2005 0:00

Celsius) inside the

The perfect crystal interferometer is placed in three enclosures nested inside each

other to maintain a very stable temperature and reduce temperature gradients. In

figure 2-4, the three enclosures are shown as (4) - Outer environmental enclose, (6)

- Acoustic and thermal isolation enclosure and (8) - Enclose for interferometer and



detectors. The outer enclosure is a large concrete block house with outer dimensions

of 23 x 17 x 10 feet. The acoustic and thermal isolation enclosure provides not only

thermal but also acoustic isolation, and has dimensions of 15 x 11 x 8.5 feet. The last

enclosure for interferometer and detectors is made of aluminum and has dimensions

of 2.25 x 2.25 x 2 feet. To stabilize and monitor the temperature, we installed, inside

aluminum box, a set of heaters and two Pt-100 thermometers. We used LakeShore

340 as a monitor and stabilizer with PID stabilization loop. The measurements of the

temperature over more than a week are shown in figure 2-5, with one thermometer

mounted on the stage where the interferometer is placed and the other mounted next

to the interferometer crystal to monitor air temperature. Temperatures are shown in

degrees of Celsius. The temperature fluctuation is approximately 5 mK.

The vibration isolation from the environment is maintained through three isola-

tion stages. The first stage is built into guide hall. The NIOF is built on its own

foundation, separate from the rest of the building and coupled to the guide hall by

compliant joints. The second stage (in figure 2-4 shown as (5)) consists of a reinforced

concrete slab (5 x 3.6 x 1.11 meters and about 40000 kg) mounted upon pneumatic

air-springs. The system of the slab and springs works as a low-pass filter, removing or

reducing high-frequency oscillations. In order to maintain the neutron interferometer

at the same position with high precision, the position of the concrete slab is main-

tained to high precision with a set of pushers and pullers by a computer-controlled

servo system. Typical stability in position is 5 prad for rotation and a few pm for

translation. The third stage (in figure 2-4 shown as (7)) is similar to the second vibra-

tion isolation stage but scaled down and positioned on top of the second. It is made

of a granite table, with mass about 3000 kg, and is mounted on smaller air-springs.

Because of the mass and the size difference of the concrete slab and granite table, the

frequencies of oscillation is different by an order of magnitude, hence the coupled mo-

tion between two resonators is small. The third stage could be a computer-controlled

by a servo system too. In our measurements, we did not used the secondary servo

system. Vibrations can also come from air pressure gradients. That is why the inner

and outer enclosures were designed to reduce acoustic noise. In addition, the inner



enclosure is lined with highly absorbing anechoic foam panels to reduce reverberation

times.

As a result of temperature stabilization and vibration isolation, the neutron in-

terferometer facility has exceptional phase stability and fringe visibility.

Top view of NIST Interferometry and Optics Facility
(all dimensions are in cm)

Neutron beam

100 cm

mnochromator

wall Inner wall
Interferometer

e

Aluminum box Neutron detectors

Figure 2-6: Principal diagram of the Neutron Interferometer Setup at NIST.

Figure 2-6 shows the diagram of Neutron Interferometer Setup at NIST with

dimensions in cm for a wavelength of A = 2.71 A.

2.1.3 Neutron Detectors

In our experiments, we used three different types of detectors: 3He detectors, a fission

chamber, and a position sensitive detector.

3He proportional detectors were located in the O and H beams behind interferome-

ter and were used to take most of the data and for alignment. They are Reuter-Stokes

detectors and have cylindrical shape with a 1/2 inch diameter. Thermal neutrons

-~·:



which hit the detector interact with 3He gas inside:

'He +' n -*3 H +' H + 764 keV. (2.3)

The energy released from the reaction is carried in the kinetic energies of the proton

and triton. These atoms ionize the 3He gas while traveling through the detector.

Ions are pushed towards the thin anode wire at the center of the detector by an

electrostatic potential (in our case 1260 V) and produce a pulse. These detectors

have approximately 99% total efficiency. In order to reduce the background, these

detectors are kept inside a Cd enclosure with Cd snouts for the neutron beam entrance.

To monitor the incoming neutron beam, we used a fission chamber which has a low

0.1% efficiency and operates at 500 V. This beam is too intense to use a 3He detector.

Note that even with double crystal monochromator the neutron interferometer accepts

very few neutrons. The interior surfaces of this detector are lined with uranium oxide

deposits. Neutrons interact with the 235U isotope in the uranium oxide. The reaction

releases 160 MeV of energy in the form of kinetic energies of fission particles, which

can be detected due to the ionization of gas inside the detector.

The two dimensional position sensitive detector has about 30% efficiency and

combines an in-beam 6Li-ZnS scintillator, microchannel plate (MCP) image inten-

sifier, and a mirror. The mirror reflects the light out of the neutron beam into a

charge-coupled device (CCD) camera and the signal from the camera is read out to a

computer. Electronic centroiding of images optimized the spatial resolution to 60 pm

[29].

2.2 Alignment

In order to obtain the best alignment, we started from the first PG monochroma-

tor (neutron entrance to our setup) and continued to align the components of the

interferometer setup along the neutron beam path step by step all the way to the

neutron detectors (figure 2-6). After the (February 2004) alignment, we increased the



counting rates at the detectors by a factor of 2.5.

As a first step, we aligned the monochromators, neutron interferometer, shielding

drums, slits, helium fly tubes and He3 detectors optically with theodolite. Using

marks on the neutron guides and the center mark of the first monochromator crystal

we aligned fly tubes , shutter/slit drum, the second monochromator, interferometer

crystal, and :He detectors with theodolite. For some parts of the setup (i.e. fly tubes),

it was sufficient to just optically align. For others (i.e. slits, monochromators, and

interferometer crystal), it was necessary to perform neutron alignments as well.

The next step was the alignment with neutrons.

2.2.1 1 st (PG) monochromator alignment

In order to align the first PG monochromator, we mounted the neutron fission cham-

ber in front of the 2 nd focusing monochromator with a 2 cm tall and 0.6 cm wide slit

and found the optimal Bragg and tilt angles for the 1s t PG monochromator. Figures

2-7 and 2-8 show the results of rotation and tilt scans for determining the optimal

orientation of the 1 st monochromator.
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Figure 2-7: Rotation rocking curve of the 1st monochromator.

After we placed the 1 t monochromator in the optimal position, we started to
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Figure 2-8: Tilt rocking curve of the 1st monochromator.

align the second monochromator.

To make sure that the setup was stable, we checked the alignment of the first

monochromator between measurements. Figure 2-9 shows the results of these mea-

surements. On the right axis of the plot, the intensity of the O and H beam detectors

are shown for comparison.

To align the first slit, we ran a drum translation scan (shown in figure 2-10) with

the drum at the open position. The drum in the close position acted as the beam

shutter for the beamline.

2.2.2 2 nd focusing (PG) monochromator alignment

The picture of the second monochromator is shown in figure 2-12.

The second monochromator is a focusing monochromator. It consists of 9 PG

crystals. In order to align it, we covered all crystals except the middle one with a

Cd-shield and repeated procedures similar to those used for aligning the 1 st monochro-

mator. except that this time we placed a 3He detector with a 2 mm diameter aperture

in front of the interferometer. The results are shown in figures 2-11 and 2-13. From

this procedure, we obtained the tilt angle of the middle crystal and the Bragg angle

• I I i i i i i i . | I
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Figure 2-9: Tilt rocking curve of the 1 st monochromator.

for all crystals of the 2 nd monochromator.

The tilt angles of the remaining crystals were adjusted one by one by shielding

every crystal except the one we were aligning and rocking its tilt angle to maximize

the detector counting rate. Figure 2-13 shows such scans for the 5 top blades including

the middle one in the upper graph and 5 bottom blades including the middle blade

in the lower graph. After completing these procedures (figure 2-14), the beam was

focused on the first blade of the neutron interferometer (remember that the aperture

of the 'He detector was only 2 mm in diameter).

2.2.3 Alignment of the single crystal interferometer

Figure 2-15 shows a picture of several (LLL) perfect crystal interferometers available

at NIST. The big crystal in the middle is the one used in our experiments. Each

interferometer is a single piece comprised of several prefect crystal blades and a thick



o 6000

o 4000

0

-0oE
u 2000

u

0
U,

0

40 4

0

30 R

2020

10

0

18.5 19.0 19.5 20.0 20.5
Drum Translation, [inch]

Figure 2-10: Drum translation of the 1st monochromator, which worked as both the
beam shutter and the entrance slit.

base machined out of single crystal Si-ingot.

After the beam was focused, we aligned the neutron interferometer crystal. We

tightly collimated the beam and put a 12 mmx3 mm slit on the interferometer front

crystal. We then set a 3He detector in the direct beam behind of the interferometer

crystal and scanned interferometer crystal vertically and horizontally. The results are

shown in figures 2-16 and 2-17.

After setting the interferometer in the optimal position, we changed the entrance

slit to 2 mmx8 mm and performed a rotation scan (rocking curve) to determine the

Bragg angle of the neutron interferometer crystal (see figure 2-18).

After the interferometer crystal was aligned, we could find the best contrast posi-

tion. Figure 2-19 shows the contrast scan of the empty interferometer. By shifting the

interferometer vertically and horizontally, and measuring contrast in each location,

we could find the best contrast position. In the case of 2 mm x8 mm slit we were able

to achieve 84% contrast.

Figures 2-20 and 2-21 show color plots of contrast and phase shift respectively at
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Figure 2-12: Photograph of the second monochromator. It consist of 9 PG blades
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Figure 2-15: Picture of various
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different interferometer crystal positions. The position of the interferometer crystal

was chosen to maximize the contrast.
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Figure 2-16: Vertical alignment of neutron interferometer crystal.
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Figure 2-17: Horizontal alignment of Interferometer.
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Figure 2-18: Rotation rocking curve of neutron interferometer crystal.
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Figure 2-19: The best contrast scan with 2 mmx8 mm slit.

fit parameters:

yO = 0.07 ± 0.4
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Figure 2-20: Contrast of the neutron interferometer with 2 mm x 8 mm slit at different
positions with respect to the neutron beam.
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Next, the single crystal neutron interferometer was aligned and we were ready to

proceed with measurements.

2.3 Wavelength measurements

Si-crystal

Figure 2-22: A schematic diagram for a wave-length measurement. Difference in the
peak angles for parallel and anti-parallel scans gives us 20Bragg.

The final piece of information we needed before we could start measuring was the

neutron wavelength. This measurement verifies the alignment was correct.

Figure 2-22 shows a schematic diagram of the wave-length measurement setup.

We used a pressed Si crystal to determine the wavelength of our neutron beam. The

measurement was done by rotating the crystal through parallel and anti-parallel Bragg

reflections and selecting the angles of the maximum (minimum) peak intensity on the

3He integrated area detector placed in ±28Bragg (direct) beam positions. Figure 2-

23 shows typical parallel and anti-parallel rocking curves at a fixed tile angle. The

difference in this two determined angles would be exactly 2 0Bragg if the axis of the

Si crystal rotation was exactly perpendicular to the incoming neutron beam. That



was why we repeated the same measurements for different tilt angles of the analyzing

crystal. Finding the Bragg angle, 0BSagg, and using the Bragg's law

A = 2d sin OBragg, (2.4)

we could determine the wavelength of the incoming neutrons.

Figure 2-24 shows a plot of the wavelength versus tilt angle of the analyzing

crystal. The minimum on this plot corresponds to the correct tilt, thus the correct

wavelength.
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Figure 2-23: Typical set of rocking curves for the analyzer crystal at the fixed tilt
angle (Tilt=-30 ). The difference in the peak angles for parallel and anti-parallel scans
gives us 2 0 Bragg.

We measured the wavelength of the neutrons in two different places. Figures

2-23 and 2-24 shows wavelength measurements in front of the interferometer and

figure 2-25 shows wavelength measurements right after second blade of the neutron

interferometer.



Polynomial Regression for Datal_E:
Y =A + BI*X + B2*X^2

Parameter Value Error

A 2.71289 1.18883E-4
B1 -2.08567E-4 2.48862E-5
B2 4.20117E-4 8.91068E-8

R-Square(COD) SD N P

0.99652 2.61008E-4 11 <0.0001

I * I * I * I * I * I

-6 -4 -2 0 2 4 6

Tilt angle, [deg.]

Figure 2-24: The wave length dependence on the tilt of the analyzer crystal. The
minimum of this curve determines the proper tilt angle, and thus the wavelength.
These measurements were taken in front of the neutron interferometer.
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Chapter 3

Reciprocal Space Neutron Imaging

3.1 Introduction

Here we introduce a Fourier based method for phase contrast neutron imaging, report

its experimental implementation, show results for a 1-D test phantom, and outline

the reconstruction methodology. This new approach makes use of neutron interfer-

ometry to achieve both phase contrast and to spatially code the phase of the neutron

with a linear phase grating. The spatial information is recovered from the coherent

interference of this phase grating and a spatial phase distribution due to the sample.

By moving neutron imaging from real to reciprocal space (in analogy to Fourier mag-

netic resonance imaging [30]) we avoid the need for position sensitive detectors and

improve the potential image resolution. The ultimate resolution will depend solely

on the beam characteristics: intensity, momentum spread, and divergence.

3.2 Neutron Imaging

Neutron imaging [31, 32, 33] is complementary to other non-invasive imaging meth-

ods, such as X-ray imaging and Magnetic Resonance Imaging [34]. Neutrons are

transparent to high Z-number materials, thus allowing tomographic study of prop-

erties in 3-D. Neutrons are scattered by light elements, primarily hydrogen atoms.

Therefore one can, for example, study density fluctuation due to inhomogeneities in-



troduced by hydrogen in metals, density of polymeric overlayers, formation of water

in hydrogen fuel cells and crystallography for structural biology. Another important

advantage of neutron imaging is its sensitivity to magnetic domains, which allows the

study phase tomography of the magnetic domain distribution in a sample. One of

the primary challenges of neutron imaging is to achieve high spatial resolution while

maintaining high contrast. This has not been achieved so far because of the typically

low flux of a neutron beam and the poor resolution of available 2-D neutron detectors.

The neutron interferometry technique may be used to develop high contrast imag-

ing based on phase differences induced by a sample inside the interferometer [351.

However, real space neutron-interferometric imaging is spatially incoherent and still

requires the use of position sensitive detectors to spatially resolve the imaged elements

[31, 32, 33, 35, 36]. Here we show that a neutron interferometer can be used as a

reciprocal space, spatially coherent imaging device to improve image resolution while

maintaining high contrast. In these studies the detector integrates over the entire

beam. The spatial distribution of the neutron scattering function for a sample placed

in path I of the interferometer is created internally in the interferometer via compar-

ison to a phase gradient placed in path II of the interferometer (Figure 3-1). This

method does not require a 2-D detector and thus has the potential to significantly

improve the spatial resolution compared to the current limit of tens of micrometers

[37].

3.3 Reciprocal Space Neutron Imaging

Here we describe the additional step of imposing a linear phase ramp on the neutron

wave-function to enable reciprocal space imaging. The imaging method is shown

schematically in figure 3-1. Here a well-collimated and monochromatic neutron beam

of finite spatial extent enters the perfect-crystal interferometer. At the first blade the

neutrons are Bragg scattered and split into two paths. The neutron wave-function is

Ipath, p), where a neutron with momentum p can choose path I or path II (figure 3-

1). The phase which the neutron accumulates over each path are experimentally
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Figure 3-1: Schematic diagram of the imaging experiment at NIST. A neutron beam,
coming from the left, is coherently divided via Bragg diffraction in the first blade of
the neutron interferometer, into two beams. These beams travel along paths I and
II. The phases which the neutron accumulates over each path are experimentally
controlled by rotating the phase flag, which changes the optical path length due to
the flag. After diffraction at the second blade, these beams are coherently recombined
at. the third blade and proceed to the 0- or H- detector.

controlled via phase flag rotation (figure 3-1).

The sample is placed in path II and introduces a spatially dependent phase shift

(•,(r)) into the wave-function, I = e•i' C1 path I, p)+eiCs(r)eis2C 2 (path II, p), where

cb and 02 are respectively the phases neutrons pick up by traveling through path I

and path II without the sample. The coefficients C1 and C2 are parameters of the

neutron interferometer which account for attenuation and scattering losses of the

..oCO



neutron beam.

The sample-dependent phase shift (0,(r)) forms the basis for phase contrast imag-

ing [31, 32, 35, 36]. In previously reported work 138, 35] this phase shift would be

converted into an observable variation in beam intensity when the two beams are

recombined at the third blade of the interferometer. The 0- and H-beams leaving the

interferometer would then have a spatially dependent intensity that could be recorded

with a position sensitive detector in the O-beam,

lo1(r, o1) = 1 (C + C22) + C1C2 cos (0(r) + 0o) (3.1)Io(r,0) 2 1=

where the coordinate r lies in a plane transverse to the beam, 4,(r) is the sample

phase function, and qo = 02 - 01.

To accomplish reciprocal space neutron imaging, we add a variable pitch wedge to

the upper path (path I) of the interferometer (figure 3-1). This wedge (k) introduces

an additional position dependent phase (k - r) into the neutron wave-function,

T = e-ikr ei"1 C, path I, p) + eiC9(r)ei c2 C 2 path II, p) . (3.2)

This is conveniently rewritten in terms of the wave-number of the neutron phase,

k,

lo(k, ¢0) = ((C + C2)/2 + C0C2 cos (k- r + 0,(r) + 0o)) dr. (3.3)

Notice that with this reciprocal space measurement approach we do not use a

position sensitive detector, instead a much more sensitive 3 He whole-beam integrating

detector is used and the 0- and H-beam intensities are recorded as a function of the

wave-number, k (pitch of the wedge).

3.4 Experiment

Prior to describing the image reconstruction analysis we will describe the actual ex-

perimental implementation and our preliminary results.



3.4.1 Imaging Setup
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Figure 3-2: Phase image on the position sensitive detector placed in the O-beam.
Here is the fused silica wedge with 30-wedge angle is placed in path I a) or path II
b). c) is the sum of path I and path II.

The measurements were made at the Neutron Interferometer and Optical Facility

at the National Institute of Standarts and Technology [28]. It consists of a perfect

Si-crystal neutron interferometer shown in figure 3-1 with high phase contrast (>

80%) and a long-term phase stability produced by temperature stabilization of the

interferometer enclosure (< 5 mK). The existing interferometer was machined from

a silicon single crystal ingot and operates on a cold neutron beam (E = 11.1 meV,

A = 0.271 nm, AA/A < 0.5%). A detailed description of the facility can be found in

previous chapters and Ref. 139, 16].

3.4.2 Implementation of the Phase Gradient

The phase gradient was produced by a system of two identical fused silica wedges with

a 60 wedge angle in the configuration as shown in figures 3-1 and 3-3. By arranging the

two wedges in this stacked configuration and by counter rotating them, we impose a

linear phase ramp along only the z-direction. Each wedge is positioned perpendicular

to the beam and produces gradients: kl,2 = zkocosal,2 + ykosinal,2 , where ko is the
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Figure 3-3: Each wedge is positioned perpendicular to the beam and produces gra-
dients: k1 ,2 .= zkOCOSC1,2 + ykosinalj,2 , where ko is the maximal gradient which each
wedge can produce in the vertical direction and a:, a 2 are the angles of rotation
of the wedge around the neutron beam path. To create only vertical gradients we
counter-rotate these two wedges: ktot - ki + k2 = 2zkocosc (a•l = -a 2 a= ), so the
realizable vertical gradients vary from -2ko to 2ko0.

maximal gradient which each wedge can produce in the vertical direction and ca, ac2
are the angles of rotation of the wedge around the neutron beam path. To create only

vertical gradients we counter-rotate these two wedges: ktot = kl + k2 = 2zkocosc

(al = -a2 =: a), so the realizable vertical gradients vary from -2k 0 to 2ko0.

For the two 6' wedges, the maximum phase gradient is 2. 104 rad-m - 1. When the

phase gradient is set to zero there is a spatially uniform length of 6.4 mm of fused

silica which corresponds to a uniform phase offset of 11 rad. We verified that the

phase gradient was properly created by recording the spatial variation of the contrast

with a position sensitive detector in the absence of a sample. Figure 3-4 shows on the

left the combination of two used wedges to create (next right) corresponding phase

wedge, thus phase gradient and on the right is show image from position sensitive

detector [291. Here we show 3 different combination (from top to bottom) of the

wedges' rotations and 3 different images for different phase gradients.



Maximal gradient
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---- Intermediate gradient

Figure 3-4: The figure shows the wedges used to create phase grating across the
neutron beam and the corresponding images from a position sensitive detector [29].
Each wedge is positioned perpendicular to the beam.

In the experiments described below, the phase gradient was created by a fused

silica wedge, placed in the path I of the neutron interferometer (Figure 3-1). Figure 3-

2a) shows the image obtained by placing one of these wedges in the path I. Here the

position sensitive detector is placed in the O-beam, the wedge is oriented to produce

a vertical phase gradient and there is no sample. The initial beam is 8 mm tall and

2 mm wide. When the beam arrives at the detector it has an horizontal divergence,

due to dynamical diffraction, and a small vertical divergence. The wedge produces a

vertical periodic intensity modulation resulting from interference of path I and path

II, and the modulation is then recorded by the position sensitive detector. From the

period of the modulation we can extract the magnitude of the phase wave-number

q. Intensity oscillations do not disappear when the wedge is moved from path I to

path II (Figure 3-2b)). We check that coherence is not lost by refocusing the phase

gradient by a second wedge (Figure 3-2c)).



3.4.3 Empty Interferometer Data
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Figure 3-5: The spatial extent and uniformity of the beam influence the image quality.
We characterize the beam by recording the O-detector intensity for the empty (no
sample) interferometer. The intensity scan was recorded where the phase gradient
was ramped by counter-rotating the fused silica wedges. Here open (red) circles and
closed circles (blue) correspond to a 7r/2 phase difference. The lines are fits to the
data assuming a uniform beam and the only fit-parameters are the height of the beam
and the phase.

A further test of the experimental setup is shown in figure 3-5 where we report

the k-dependence of the integrated contrast for the interferometer in the absence of

a sample. The plot reports the integrated O-beam intensity for an effective phase

difference of 0 and 7r/2 in the two paths. The variation in intensity results from the

finite spatial extent of the beam and any intensity fluctuations across the beam. For

this measurement we employed a well-collimated, rectangular beam (2 mmx8 mm)

which should ideally result in an integrated intensity proportional to a 1 + sinc func-

tion. The smooth curve is the best fit to a sinc function. The excellent quality of the



data shows the quality of the beam characteristics (profile, momentum spread and

divergence). We fit the data to a 1 + sinc function assuming a uniform beam, the fit

parameters were a height of 7.90 mm±0.05 mm, phase of -0.21 rad±0.09 rad for the

data with "0" phase shift (red curve), and phase of 1.31 rad±0.12 rad for the data

with "w/2" phase shift (blue curve).

3.4.4 Wedge as a Sample Data
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Figure 3-6: Measurement of a fused silica wedge-like sample. The figure represents
the data and Monte-Carlo simulations with and without the wedge sample.

We explored two 1-D samples to demonstrate the methodology and to have data

with which to implement the reconstruction algorithm: a wedge and a step sample.

The wedge sample shows that the linear phase gradient can be refocused and has a

very simple experimental signature (figure 3-6). Replacing the sample by a wedge

has the result of offsetting the intensity of the empty interferometer scan by the 3'



wedge angle. The expected shift is (5200±200) radm - 1 . The figure also shows a

Monte-Carlo simulation of the uniformly divergent beam (the angle of the neutron

momentum and the horizontal axis has a uniform distribution between -0.2o and

+0.20) with 3.20 wedge-sample. Since the wedge has a minimum nominal thickness of

6.4 mm, there is an additional phase shift of 4.69 rad (4.89 rad±0.17 rad measured).

For the wedge sample experiment, we used a vertically focused neutron beam in order

to increase the intensity on the position sensitive detector that has a 20% efficiency.

3.4.5 Step-like Sample Data
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Figure 3-7: Step-like sample data. The sample is a thin (25 prm) fused silica slab
which covers only part of the neutron beam and represents a step-like sample. This
sample does not create phase variation along the beam bigger than 7, which simplifies
the reconstruction. Here we show raw data with the sample (open red circles) and
data without the sample (filled blue circles).

Finally, we report in figures 3-7 and 3-8 the results from a step sample so that we



can observe the resolving power of the method. In this case the neutron beam is well

collimated (< 0.20 divergence). The sample is a 25 pm thick fused silica flat which

partially covers the top of the beam.
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Figure 3-8: Step-like sample reconstructed images. Open blue circles represent a
reconstructed image of the step-sample, the purple line is a I-D image of the sample
obtained using a position sensitive detector, and the green line is the the beam profile
on the position sensitive detector without a sample.

Figure 3-7 shows the raw data (open red circles) as integrated intensity versus

wave-number, k. We show data without the sample (filled blue circles) for compari-

son. The smooth lines are fits to the data assuming a uniform, non-divergent beam.

Figure 3-8 shows the reconstructed I-D image of the sample (open blue circles). We

also show the I-D images of the empty beam (green line) and the sample (purple

line) measured separately with a position sensitive detector. Data from the different

measurements are in very good agreement.



3.5 Reconstruction Method

Here we outline a simple reconstruction method. The intensity on the O-detector is

described by equation 3.3, where we want to recover ,s(r), the sample phase function.

From a scan without the sample we can extract the parameters A = (C2 + C2)/2,

B = C1C2 and ¢0. Define q(r) = 0,(r) + 0o and A = fAdr. In order to extract the

Fourier components we need to measure values of intensity for k and -k:

o(k) - o(-k) = -2 B sin(k - r)sin (r)dr (3.4)

Io(k) + Io(-k) = 2(A + / B cos(k - r) cos b(r)dr). (3.5)

Setting 0o to 0 and 7r/2 and defining the intensity with a sample inside the beam as

lin(q, 00), we get:

Fsi (k) = In(k,7r/2)+Iin(-k,7r/2)-2A + Iin(-k,O)-Iin(k,O)
2B 2B (3.6)

Fcos (k) = Ii,(k,O)+Iin(-k,O)-2A '-in(-k,7/2)-in(k,7r/2)(.
2B 2B

Fin(k) and Fco,(k) are the Fourier transforms of the sin(q,(r)) and cos(¢o(r)) func-

tion, respectively:

Fsin(k) = FT(sin(Os(r))) (3.7)

Fcos(k) = FT(cos(¢,(r))).

Applying the inverse Fourier transforms to Equation (3.6) and then the inverse sine

or cosine functions we obtain the sample phase function along the gradient direction:

s(r) = sin-1 [IFT(Fsin(k))] (3.8)

,(r) = cos-1 [IFT(Fcos(k))].

3.6 Conclusion and Analysis

From the Nyquist theorem, the image resolution depends on the maximum measured

wave-number,

rl = (3.9)

82



In order to have 1 jpm resolution, we need to use a maximum gradient of the order

3.14x106 rad -m-1. This corresponds to the gradient in the phase produced by a

fused silica wedge with an 88 0 -wedge angle. In our case, the maximum gradient (2.

104 rad-m- 1) produced by two 6' wedges corresponds to 160 pm of spatial resolution.

2-D images can be produced by several methods. One such method is to rotate

the sample around the neutron beam in incremental steps, repeating the experiment

for each step and reconstructing the image by back projection. Another method is

by adding a gradient perpendicular to the first one, whereby varying the gradients

independently (achieved by rotation of the wedges) we collect 2-D Fourier coefficients.

The image is thus obtained via a 2-D inverse Fourier transform.

Due to limited instrument time, this experiment is intended as a proof of principle.

We did not plan to achieve or surpass current available resolution. We see that the

method has the potential for high spatial resolution and is not limited by position

sensitive detectors. Also, the proposed method works well with small and very thin

samples that are difficult to study by radiographic techniques. Limitations here arise

from the quality of the beam, the quality of the phase gradient, and neutron statistics

(in order to resolve high k-values).





Chapter 4

Vertical Coherence Length

In this chapter we report the measurement of a 600 A vertical coherence length for

a single crystal neutron interferometer. The vertical coherence length describes the

loss of the contrast as one path of the interferometer is shifted relative to the other

in the vertical direction. We offset each path via a pair of prisms placed in the legs of

the interferometer and measure the loss in contrast as the relative offset is increased.

The measured coherence length is consistent with the experimental distribution of the

incoming neutron beam momentum in the vertical direction. Finally, we demonstrate

that the loss of contrast with the beam displacement in one leg of the interferometer

can be recovered by introducing a corresponding displacement in the second leg of

the interferometer. This reinforces the idea that the loss of the contrast is not due

to interferometer imperfections but due to the vertical momentum spectrum of the

incoming beam. As previously suggested by Rauch, the experimental technique for

vertical coherence measurement could be used to characterize the spectrum of kz such

as in Fourier Spectroscopy or Reflectometry 140].

4.1 Introduction

The coherence length describes the spatial extent over which coherent information

is preserved in interferometry [41]. In a neutron interferometer [16], the coherence

length is a function of the quality of the single crystal, the momentum distribution



of the incoming neutron beam, and a variety of environmental contributions such

as temperature gradients and vibrations. Generally three coherent lengths are iden-

tified [421: the transverse coherence length, the vertical, and the longitudinal (see

figure 4-1). Here we explore the vertical component in a system where the coher-

ence length is primarily limited by the incoming beam characteristics. Heisenberg's

uncertainty relation defines the coherence length I, - Jr = 1/(26k) which is longer

for smaller uncertainties in 6k. To understand this effect, we study the contrast

associated with a wave-packet composed of an incident distribution of plane waves

corresponding to the distribution of neutron momentum in the vertical direction. The

measurement of the coherent length is a direct measurement of the spatial extent of

this wave-packet.

In previous measurements of the coherence function [421 in the low coherence

regime, the coherence was partially recovered by postselection methods. For our

measurement we do not postselect. The coherence (,l) is revealed by a simple pro-

jective measurement. An interferometer with a long coherence length opens up the

possibilities of using interferometer for quantum information processing and provides

a new approach to extend coherent scattering to the pm length scale.

4.2 Theory

Neutron interferometry is a practical example of macroscopic quantum coherence [43].

A schematic picture of the coherence length experiment is shown in figure 4-1. We

will describe the experiment via the neutron wave-function over the Mach-Zehnder

interferometer. At the first blade, the neutrons are split by Bragg scattering into two

paths. In the absence of the prisms, the neutron wave-function is spanned by path I

and path II (figure 4-1)

I = eio'C 1 1path I) + ei 2C2 Ipath II), (4.1)
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Figure 4-1: A schematic diagram of the coherence length experiment. A neutron
beam, entering at left, is coherently divided into two paths (paths I and II) via
Bragg diffraction on the first blade of the neutron interferometer. The phases which
neutron accumulates over each path are experimentally controlled by rotating the
phase flag. Notice that the path lengths (11 and 12) due to the phase flag (in the
path I and path II) will depend on the angle (0) of the phase flag rotation, thus the
phase difference (0o = 1 - 02) between path I and path II. In one of the paths we
install two 45" prisms, which form a cube at 0 separation. By separating the prisms
we shift the neutron beams in path I and II vertically with respect to each other.
We observe a loss in contrast with displacement, which we measure with the help of
a phase shifter (shown on the figure) and neutron detectors, behind interferometer.

where (c) and 62 are the phases accumulated over path I and path II in the ab-

sence of the prisms. The coefficients C1 and C2 are parameters of the neutron in-
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terferometer that account for the attenuation and scattering losses of the neutron

beam. Thus the signal Io at the O-detector is proportional to the phase differ-

ence 6o = (01 - 02) that neutrons accumulate over path I and path II (Io cc

((C2 + C22)/2 + C C2 cos 0o) 116). The phase sensitivity arises from the interference

of the two paths. The phases which the neutron accumulates over each path is ex-

perimentally controlled via phase flag rotation. The difference between optical path

lengths (11 -12) of the neutron inside the phase flag depends on the phase flag rotation

angle (figure 4-1 - top view).

Figure 4-2: A schematic diagram of the neutron paths through the prisms for kz = 0.
The neutron beam enters from the left and, depending on the separation between the
prisms, is shifted vertically. If the separation of the prisms (L) is equal to zero, then
the neutron beam passing through the prisms is going through without any vertical
offset (dashed blue line). If the separation (L) is non-zero, then the neutron beam is
refracted and is not horizontal due to the index of refraction change on the exit of
the first prism. The second prism refracts the neutron beam back in the horizontal
position (straight red line). The beam offset (Az) due to the set of prisms is directly
proportional to the prism separation (L): Az = L(1 - n), where n is the index of
refraction of the prisms.

A pair of flused silica (900 angle, 15 mm side size) prisms forming a cube is placed in

each path of the interferometer. As the prisms in one path are separated, the neutron

beam in that path is shifted vertically in a well-controlled fashion by a distance Az

(see figure 4-2). The beam offset (Az) due to the set of prisms is directly proportional

to the prisms separation (L): Az = L(1 - n), where n is the index of refraction of



the prisms. In addition to being displaced, a phase shift is introduced into the wave-

function. This phase turns out to be quite small and its effects are not observed in

our measurements (the full derivation and small angle approximation are outlined in

the appendix A), so we will suppress it in the description that follows; however, our

simulations do include it. If kz = 0, the coherence length we would measure would be

a function of the interferometer. However for our experiments the coherence length

is limited by the spread in kz. Therefor we calculate the contrast for k, -# 0.

The vertical shift in the prisms can be seen by the index of refraction of the

neutron
Kinside ,_ X2Nbc

n- • 2 c 1- An, (4.2)ko 27r

where be is the coherent scattering length, N is the atomic density, Kinside is the wave

vector of neutron inside the prisms, and ko is the wave vector of the incident neutron.

We have ignored the reactive cross-section. The vertical beam shift due to the sets

of prisms is

Az = Azm(1 + tan yl) - L tan y, (4.3)

where Az,, = L cos 450 sin y2/ sin (450 - 72) = L tan Y2/(l+tan 72) is the vertical shift

of the neutron beam in between the prisms in path II (see figure 4-3). Using a small

angle approximation, the path separation is Az = LAn(1 - 2 y). Since tan y = kz/k

and tan y-1  k,/(nk), we can rewrite Az for small angles as

Az = LAn(1 - 2 Z). (4.4)

Thus even for kz • 0 in the first approximation the Az = LAn = L(1 - n).

Let's consider a neutron as a plane wave with a wave-vector k. If this vector k is

not perpendicular to the vertical coordinate of the interferometer, then upon passing

through the prisms, the vertical shift of the neutron beam will produce an additional

phase shift of kAl = k (Az!) l = kAz = kzAz (this is easy to see in figure 4-3

where at the edge of the prism the phases for the two beams are the same. In this

case, a non-zero kz will produce a phase shift.).
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Figure 4-3: A schematic diagram of the neutron paths through the prisms. The neu-
tron beam enters from the left and, depending on the separation between the prisms,
is shifted vertically. The angles shown on the figure correspond to the calculations
for path separation and phase shifts of the neutron described in the text.

Following the operator description introduced in Section 1.3 of Chapter 1, we can

write the actions of interferometer, phase flag and prisms in an operator form. As

before, we label the states according to the sign of k,, the neutron momentum in the

x direction. The incoming neutron is therefore in the 1+) state. In order to keep track

of neutron beam offsets in the future (after the prisms), we label the states 1+) and

I-) by beam offset (0 or Az) due to the prisms. The wave-function of the incoming

neutron could be written in terms of the beam offset Az, i.e. |+)o or I+)Az. Then

the incoming neutron state (which is analogous to the previous one) is

1

"'in) = 1. I+-o + 0 - -)o + 0 - I)A+ z + O - - z= 0 (4.5)

0

Let's note that to first order in the incoming angle -y, the effect of the prism on the

beam is simply to shift it vertically by Az = LAn. If |4) and I') are wave functions

of the neutron respectively before and after the prism, the quantum operation OAz

KC



performed by it is defined by

(z 14/-)=Kz OAz IV)=(z-AzIV)

Since the prism is present only in path "-", the beams are transformed according

to

I+) --+ I+)

Formally, we can write the effect of the prism on these particular beams as a matrix

acting on the space spanned by the states {|+) = I+)o, -) = -)o,6Oz +) =

I+)AZ ,IOAzH-) I -)A= I
1000

0000
OAz = (4.6)

0000

0100

This matrix is not unitary, but it is still a valid description of the prism's action as

far as the input states 1+) and I-) are concerned and is sufficient for bookkeeping

purposes.

The blade operator in the Az representation is

t -r* 0 0

B r t* 0 0
On = ,(4.7)

0 0 t -r*

0 0 r t*

and the phase shifter operator is

o 0 0 0

= 0(4.8)
0 0 e,0O 0

0 0 0 1



Due to the vertical shift Az and vertical momentum of the neutron kz, the neutron

on the third blade will account a phase difference, which for different paths is kzAz

10 0 0

0 1 0 0
1az 0 = Az 0 (4.9)

0 0 ezkz"t z 0

0 0 0 ekz. Az

The operator for the central blade is more complex. If for the moment we neglect

the loss of transmitted neutrons, then we can approximate the action as that of

a mirror. An approach to include the non-unitary dynamics of the second blade

operator is to represent its action by means of a superoperator. The corresponding

quantum operator must be convex-linear and completely positive, as well as trace

non-increasing. Note that even though the action of the second blade is not trace-

preserving, we still fulfill the above condition. We will represent the superoperator $

as a Kraus sum (see chapter 1). The Kraus operators (up to a global phase) are then:

0 0 0 0 0r 0 0

{Kj}= 0, (4.10)
0 0 0 0 0 0 0 -r*

0 000 0 0 r 0

That one of the Kraus operators is zero naturally corresponds to a loss of neutron,

that the other is propotional to a perfect mirror completes the description.

Then if we have an incoming density operator (using 4.5) as

1000

0000
Pin -= in)s in1- 0-0 , (4.11)

0 0 0 0



the output of the interferometer is

Pout = OB3 OIJCOazOPinO B1  z AzO B3.

Substituting all expressions, we have for Pout:

|tr2 2

-rt* rtj2

|tr2 2ez(kzAz+0o)

rt* Ir14ez(k, Az+o0)

-tT* tr12

1 rt2 1

-tr* 2tr 2e ' (kzA z+ °o)

_Itr 2 2ez(kz Az+o)

Itr 2 2e-z(kzAz+0o)

-rt* Irtl2e- (kzAz+o0)

rt*r 14

Our measurement is the projection on the state {l+)o + I+)Az},

as a measurement operator for the O-detector:

r* lr 4e -(kzAz+¢0o)

-Itr 212 e - (kzAz+•o)

1r16
(4.13)

which we can write

oo = {I+)o + I+)A o(+1 + Az(+I} = (4.14)

and the intensity on the O-detector is

Io = Tr(Oopout) = 21r 2t 2 (1 + cos (00 + kzAz)). (4.15)

We can look on the same problem with another prospective and extract a new

wave-function (or density matrix) for the O-beam detector. Here we consider now only

beam in O-detector direction and will take in mind, that the beam in H-detector di-

rection is removed by beam-blocker. Let's rearrange elements of the outgoing density

matrix (eq. 4.13) so the block-diagonal matrices represent O and H beams and off-

diagonal matrices correspond to interference between this beams. In the rearranged

(4.12)

t



basis {1+)0, I+)Az, -), I-)az} the density matrix p'o1 t is

tr2  t2 o)

|tr2j2,z(kzAz+O0)
r-t* Ir4e(k •

rt* Irj4e%(kAz+So)

Itr 2 2 e-z(k•Az+o0)

Itr212

-rt* IrtI2e-z(kzAz+ °o)

rt* r14

-tr* tr 12

-tr* tr j2ez(k ýAz+ °o)

Irt 212

-_ tr2j2ez(k zA z+Oo)

tr*lrj4e-z(kzAz+°o)

tr* * J4

_It r 2 2e- z(kzAz+Oo)

(4.16)

When we perform a measurement of the H-beam (or block the beam with beam-

blocker) we loose all information in the density matrix related to the H component

and interference between the H and O beams. In this case, either we perform a

measurements on the H-beam or remove it by beam-blocker, the elements of the

density matrix set to zero outside of the first sub-diagonal

1tr 2 12

Itr 2 I2e"(k, Az+o)

Itr2 2 e - z(kzAz+Oo)

Itr212

Notice that removing the H-beam corresponds to a loss of neutrons. In fact for some

phase setting all the neutrons can be lost. So we will extract the upper sub-diagonal

to keep the information about those neutrons in upper path and scale this by the

number of neutrons that remain.

Due to the removal H-beam and knowledge that sum intensity of O and H beam

should stay constant, we can insert normalization 21r 2t22 (1 + cos ( 0o + kzAz)) by

hand. Re-normalized density matrix is

p/o = 27 2tW4 (1 + cos (0o + kz Az))
1

ez(kzAz+¢o)

e-z(kz Az+°o)
.

(4.18)

Po - (4.17)~



In this case the measurements operator is

OM = +)o (+1o + [+)az (+IAZ 1 0 (4.19)

Thus intensity on the O-detector is

lo(o0) = Tr(Omp'o) = 2jr2tl4 (1 + cos (0o + kzAz)), (4.20)

For an incoherent sum of plane waves, the intensity on the detector is,

io(0) = p(kz)Tr(Aopout)dkz = p(kz)2 r 2t12 (1 + cos (o + kzAz))dkz, (4.21)

where p(kz) is the neutron vertical momentum probability distribution. The contrast

is contained in the second term of the integral and the loss of contrast is a result of

averaging over a momentum distribution.

4.3 Experiment

The measurements were made at the Neutron Interferometer and Optical Facility

(NIOF) at the National Institute of Standards and Technology [28]. It consists of a

perfect Si-crystal neutron interferometer shown in figure 4-1 with high phase contrast

(> 80%). The existing interferometer was machined from a silicon single crystal ingot

and operates on a cold neutron beam (E = 11.1 meV, A = 0.271 nm). A detailed

description of the facility can be found in Ref. 139, 16j.

Special care needs to be taken to observe a coherence length approaches Apm scales.

We need high phase stability and high intensity to observe a large enough signal-to-

noise ratio on the phase stability time scale. The phase stability can be influenced

by environmental noise such as vibrations, acoustics, and temperature fluctuations.

The NIOF at NIST is very well isolated from environmental noise [28]. In order to

increase the phase stability over long periods of time, special care was taken to con-



trol the temperature and to remove any temperature gradients in the interferometer

enclosure. We installed two PT-100 calibrated thermometers at a different locations

of enclosure (one of them in close vicinity of the neutron interferometer) and set of

heaters. Using the PID temperature controller, we were able to maintain the temper-

ature of the enclosure stable with ±5 mK precision. This dramatically improved the

phase stability of our system.

4 4 (^I

2>aMC:
CDj

kz/k o

Figure 4-4: The vertical momentum distribution for the incoming neutron beam. The
2 nd monochromator consists of 9 focusing blades in order to increase the intensity.
The solid curves in figure 4-5 were calculated from the distributions shown here. The
9-blade result was measured and the 5 and 1 blade distributions are just a simple
model consisting of displaced Gaussians.

In order to increase the intensity, we used the second monochromator as a focusing

device. This monochromator consists of 9 pyrolytic graphite (PG) blades. Each blade

was independently adjusted to focus the neutron beam vertically on the first blade

of the interferometer. While focusing the beam, we attempted to keep the beam

profile uniform in intensity. The focused beam provides a much higher intensity and

I

)2



reduces the measurement time. As expected, the focused beam (bigger 6kz vertical

momentum spread) produced a smaller coherent length (1, oc 1/6kz).

0.5

0
1

0.5

0 200 400 600 800 1000 1200
paths separation, [A]

1400

Figure 4-5: Contrast plots for three different vertical beam divergences. In each
subplot data are shown with closed circles. The lines are contrast curves derived as a
sum of plane waves using the vertical momentum distribution (kz) shown in figure 4-4.
The beam profiles data is very closely described by sum of plane waves with measured
and approximated vertical beam distributions.

Figure 4-4 shows the distribution of the vertical momentum for the incoming

beam. The beam break consists of a pyrolytic graphite monochromator followed by

a set of 9 PG crystals that focus the beam (A\ = 2.71 A) in the vertical direction

at the input of the interferometer. A measured distribution corresponds to a sum of

nine distributions that are offset from each other by the mean momentum from the

individual graphite blades of the focusing monochromator. A detailed description of

the vertical momentum distribution measurement is outlined in appendix B.

In figure 4-5 we report series of measurements of the contrast for the all 9 blades,

for the central 5 blades, and for the central-most blade. As expected, the contrast

1
I



length increases as we narrow the momentum distribution of the incoming neutron

beam. Notice that in the narrowest case, the contrast remains up to 1000 A in the

vertical separation of the paths. Here we also show, with straight lines, the contrast

curves obtained by approximating the wave-function of the neutrons as a plane wave

and integrating over the vertical momentum distribution. In these simulations we

used the vertical momentum distributions shown in figure 4-4. It is clearly seen that

the plane wave simulation approximates the measured contrast behavior well.

To convince ourselves that the observed loss of contrast is not due to single crys-

tal interferometer irregularities, we recover the contrast by shifting the path of the

neutron beam in path II in the same direction as in path I (figure 4-6). We see

that the two curves are the same (within experimental errors), simply shifted relative

to each other by 4 mm. Thus the loss of the contrast is not due to interferometer

imperfections, but due to the vertical momentum spectrum of the incoming beam.

4.4 Conclusion

We have measured the vertical coherence function of a single crystal neutron in-

terferometer via path separation and for different vertical beam distributions. We

extended this measurement to 1000 A. In one of the beam configurations (the single

blade monochromator), we observed a coherence length of about 1000 A.

In addition, we want to mention that the output neutron state (coherent superpo-

sition of the state with the same but shifted vertically state) which was created with

use of the separated prisms, can provide a basis for new experiments.

Thus, a single crystal neutron interferometer with a long coherence length pro-

vides new opportunities for experiments such as Fourier Spectroscopy [40] (proposed

experimental setup is shown on figure 4-7) and coherence scattering over scales that

are not easily accessible by other approaches.
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Figure 4-6: A contrast plot for two cases. The solid line is the contrast measured
when the prism separation in path II is 0 mm, and the dashed line is the contrast
measured when the prism separation in path I is set to 4 mm. We see that the two
curves are the same (within experimental errors) simply shifted relative to each other
by 4 mm. This shows that indeed the loss of the contrast can be recovered and is not
due to imperfections in the interferometer.
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5ko/k0  6kz/k

Sample

Neutron interferometer

Figure 4-7: Proposed Fourier spectroscopy experiment [40]. The sample will modify
kz spectrum input of the interferometer. Both spectra (with or without the sample)
are then measured using a coherence length measurement setup. The contrast of the
of the interferometer versus Az is proportional to the Fourier spectrum of the neutron
vertical momentum distribution.
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Chapter 5

New Interferometer Design insensitive

to the Low Frequency Vibrations

5.1 Introduction

Single crystal neutron interferometers are extremely sensitive to environmental noise,

including vibrations. Sensitivity is a result of 1) many wavelengths combined in

interferometer, 2) slow velocities of neutrons, 3) long measurements times. Most

neutron interferometers require vibration isolation, which is usually a big and massive

system (especially for low frequency vibrations). Here we propose a new geometry

of neutron interferometer design, which will be less sensitive to slow vibrations. Not

only will this design improve the interferometer contrast but it will also make it easier

to adopt the use of it in many systems.

5.2 Interferometer Schematic

Figure 5-1 A) shows a schematic diagram of a 3-blade (LLL-type) neutron interfer-

ometer. The neutron beam coming from the left is coherently split into two paths by

the first blade via Bragg scattering. After being reflected by the second blade, these

two paths are recombined at the third blade. The resultant interference is observed

at the 0 or H detectors. Note that we align the y coordinate parallel to the Bragg
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3-blade Single Crystal Interferometer

i. d
Pr

2L

4-blade Single Crystal Interferometer

Figure 5-1: A: A schematic diagram of the 3-blade neutron interferometer. A neutron
beam (with neutron velocity 1i) comes from the left, is split by the first blade, is
diffracted on the second blade, and recombines at the third. After passing through
the interferometer, the beam is captured by the O and H detectors. We model
vibrations as oscillations of/around the center of mass of the interferometer, as ((t) =
Co sin (wt + V), where ( could be y - transverse vibrations, x - longitudinal, and 0 -
rotation. In order to compare oscillations between 3 and 4 blades devices, the distance
between the blades is set equal to 2L. B: A schematic diagram of the proposed
interferometer with 4 blades. Instead of one diffracting blade here we have two,
which reverses neutron paths in order to compensate for vibrations. We use the same
vibration modes with the same amplitudes as in case of 3-blade interferometer.

planes and the x coordinate is perpendicular to the Bragg planes.

We consider vibrations as sinusoidal oscillations around the center of mass of the

single crystal which we write as

((t) = (o sin (wt + yo).
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As ( we could use any coordinates x, y, z, or any angles (such as 0 - rotation around

z axis). In order to motivate the discussion we adopt a simple model for the neu-

tron/blade interaction. The interaction is that of bouncing of the small particle

(neutron) from a moving heavy wall (the blade) if the particle reflected. When the

particle is transmitted there is no interaction (figure 5-2). We use conservation of

momentum and energy to calculate the neutron's change of velocity after bouncing.

We require a small enough amplitude and low enough oscillation frequency that the

modified momentum of the neutron still satisfies Bragg's conditions, and that the

scattered amplitude does not change significantly'. Vibrations modify the neutron

velocities and change the path length of the neutron inside the interferometer.

V /
0o

v=vx + (-v,+2u)y

Figure 5-2: A schematic diagram of the neutron scattering from the blade. Due
to the crystal movement, the reflected neutron will change its momentum. For the
transmitted case, the momentum remains unaltered.

Using these approximations, it is clear that vibrations along every axis except the
1i.e. all angles are inside crystal acceptance angle, the Darwin width, that is defined as the value

at which the reflected intensity as a function of the off-Bragg angle falls to half its maximum value and
which is calculated from dynamical diffraction theory as AODarwin -k 2Vc., sin sr,(2,g) < 1 arcsec,
where Fc is Bravais lattice structure factor and Ve, 11 is the volume of the unit cell.
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z coordinate will reduce the interferometer contrast. The z-component of neutron

velocity and the paths lengths are independent of crystal vibration along the z axis.

Considering vibrations along the y axis and looking back to figure 5-1, there is a

loss in the contrast because the variation in neutron momentum results in the 2 paths

being displaced from each other at the last blade. The loss in contrast is from the

asymmetry of the paths with respect to the vibrations. The 4-blade interferometer

makes the 2 paths symmetric and preserves the contrast. It is revealing to view the

recovery of contrast as an example of the quantum error correction. Consider the

5-blade interferometer setup shown in figure 5-3.

Vy

Figure 5-3: The outer two have the same sensitivity to vibrations as does the3-blade
interferometer and the inner two paths are insensitive to vibrations

Here we see that there are four paths: the outer two have the same sensitivity to

vibrations as the 3-blade interferometer, and the inner two paths are insensitive to

vibrations.

5.3 Vibrations along the y axis

We first consider vibrations along the y axis. The measure of the quality of the inter-

ferometer is it's contrast, so we plot the contrast versus the frequency of oscillations.

In order to compare results for the 3 and 4 blade interferometers, we take interfer-

ometers with similar path lengths: therefore we choose the length between the blades

of the 3-blade interferometer to be 2L.
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5.3.1 3-blade interferometer

Assume that the neutron hit the 1st blade of interferometer at the time t = 0. We

rewrite equation 5.1 for vibrations along y axis where q is a random phase between

the arriving neutron and the vibrating blade.

y(t) = Yo sin (wt + ýp). (5.2)

The velocity of the interferometer at the time t is

dy(t)
Uy(t) - dt - yow cos (wt + 0). (5.3)

At time t = 0, the velocity of the interferometer along the y-coordinate is uy(0) =

yow cos o, where ýp is random. Conservation of momentum and energy at the moment

t = 0 implies that the velocity of the transmitted neutron do not change, while the

reflected neutron is 'Vrefl(O+) = VZ:Kc - (vy - 2uy(0))kr.

The phase difference for the neutron between path I and path II is

AD = J(path II) - 1(path I) = - pds - - I pds, (5.4)
hp Jpath II h path I

where p is momentum of the neutron and s is the path-length vector along which the

neutron is moving.

For the neutron to travel between the first 2 blades takes time a t = 2L/v, = 2T.

Conservation at the second blade and our single model shows that the phase acquired

by the neutron traveling between the first and the second blade in the path I is

(path I: 1 -- 2) = -hv (2L)2 + (vy,2) 2 = h- U227 (5.5)h h h 2 (5.5)

and in path II is

D(path II: 1 -+ 2) = I- VV + (vy - 2uY(0))2/(2L)2 + ((vy - 2uy(0))2T) 2 , (5.6)
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where m,. is the mass of the neutron.

Following the neutron between the second and the third blades we have

(path I: 2 -3) = / v2 + (vy - 2uy(2-r))2/(2L)2 + ((vy - 2uy(2-))2T) 2 , (5.7)¢(path I" 2 -- 3)=

C(path II: 2 --+ 3) = 7 V + (vy - 2uy(0) + 2uy(27)) 2

V/(2L)2 + ((-vy + 2uy(0) - 2uy(2-))2T) 2 . (5.8)

The contrast depends on the total phase difference between the paths equation 5.4

is the sum of equations 5.6 and 5.8 minus equations 5.5 and 5.7:

A((p) = '(path II: 1 --4 2) + J(path II: 2 -- 3) -

(D(path I: 1 -+ 2) + A(path I : 2 -+ 3)). (5.9)

Notice that under these assumption the two paths cross the third blade at the same

spot and the travel time along these paths will remain 4T. So, the loss in contrast

seen in the presence of vibration is not due to the finite coherence length of the

interferometer but rather is due to the extra phase shifts introduced by the vibrations.

Substituting in 5.9 expressions 5.5 - 5.8 we find

A (Io) = 16 7n (vY - uy(0)) (u,(2T) - u (0)) . (5.10)

If we assume that uy(t) is slowly varying on the scale of 27 (or w-r < 1) we can

approximate expression (uy(27) - uy(O)) as a derivative of uy(t)

A(I() = 16-- T2 (v2 - uy(0)) 2 du (t) (5.11)
h dt

The intensity at the O-detector is

lo(0) = 1 + cos (A(DP) + q) (5.12)
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and depends on the random phase ý of vibration. We average this intensity over the

random phase:

() 27r
lo(0) = (1 + cos (A#ID(p) + 0)) dp (5.13)

The contrast C is usually defined as

max{I(q)} - min{I(O)}C =)} +
max{I(O)} + min{I(O)}

(5.14)

In figure 5-4, the dependance of the contrast C, on the frequency of vibrations

along the y-axis for the 3-blade interferometer is shown as a straight thin blue line.

The contrast was calculated for L = 5 cm, a neutron velocity of v = 2000 m/s, and

vibration amplitudes of yo = 0.1 pm. Here we observe that the contrast starts to

decrease near 100 Hz.

contrast due to y-vibrations with
(averaged over initial phase

1
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Figure 5-4: Contrast due to vibrations along the y-axis.

We repeat the calculation to see how these vibrations (along y axis) will affect the
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new proposed device.

5.3.2 4-blade interferometer

As in the previous case (3-blade interferometer), we derive experiment for the phases

the neutron acquires while traveling along the two interferometer paths. Here, the

time for the neutron to travel between the first two blades is 7 = L/vx.

Between the first blade and the second, the phases are identical to the 3-blade

interferometer except 2L changes to L:

4(path I: 1 -- 2) = rvL 2 + (vT")2,1

1(path II: I --+ 2 ) =mn v + (vy - 2u(0))2 L 2 + ((v -h 2u4y(0))T) 2

For the neutron traveling between the second and the third blades,

1(path I: 2 -+ 3) = -? V + (vy - 2uy(T))(2L) + ((v - 2 ))

(d(path II: 2 -+ 3) = Mn + (vy - 2uy(0) + 2uy(T)) 2 x

/(2L) 2 + ((-vy + 2uy(0) - 2uy(7))7) 2 .

Finally, for the paths between the third and the fourth blades:

(c(path I: 3 -- 4) = + (- + 2(0) - 2 ) + 2(3) 2

h/ +V (-v + 2uy(0) - 2uy(T) + 2uy(3-r))

(5.15)

(5.16)

(5.17)

(5.18)

J/L2 + ((-v + 2uy(0) - 2uy(7) + 2uy(3T))T) 2 , (5.19)

I((path II: 3 --4) = /v2 + (v, - 2u (T) + 2u(3-)) 2 X

VL2 + ((vp - 2u(T") + 2uy(3T))T) 2.
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Overall the phase difference between path II and path I is

AI(p) = #(path II: 1 -- 2) + 0(path II: 2 -+ 3) + N(path II: 3 -- 4) -

(J(path I: 1 2) + 1(path I: 2 - 3) + J(path I: 3 - 4)), (5.21)

or

A(I(p) = 8 T-r (uy(0) - vy) (2uy(0) - 3uy(T) + uy(37)). (5.22)

Again as for the case of 3-blade interferometer we assume that the function uy(t) is

slowly varying on the scale of 7 (or w- <K 1) and we rewrite the phase change in

terms of a derivative

_m1 duy(t) duy (t)
A)(ý) = 16 2 ( v y - u Y( 0 ) )  dt dt

h U) t dt t=2r

3 du2(t)
16- 3 (v' - un(0))3 duY(t) (5.23)

h 2 d2t t=
-4

Notice that the linear term drops out. The contrast comparison we make is the

O-beam of the 3-blades interferometer to the H-beam of the 4-blade interferometer.

In both cases the neutrons arrive at the detector after exactly 2 reflections. The

intensity at the H-detecto is

IH(0) = 1 + cos (A4(p) + ¢) (5.24)

and depends on the random phase p of vibration. Again we average the intensity

over this random phase:

IH( ) = (1 + COS (AQ(() + 0)) dp. (5.25)

Now we can obtain the contrast using equation 5.14. In figure 5-4 we plot the

frequency dependance of the contrast for the 4-blade interferometer. Also again notice

that paths I and II cross the fourth blade at the same spot. From figure 5-4 we

109



clearly see that the 4-blade interferometer is predicted to be much less sensitive for

y-vibrations. Let's now consider vibrations along the x-axis.

5.4 Vibrations along the x axis

In case of vibrations along the x axis the momentum of the neutron is not modified

(see figure 5-2). However the paths length changes depending on the phase p of the

oscillations at t = 0.

Ax dI

Figure 5-5: A schematic diagram of the neutron arriving to the third blade. Due to
the crystal movement, the paths of the neutron will not recombined at the ideal point
but at Ax away from the third blade.

The vibrations along the x-axis are

(5.26)

In this case the phase shift is due to the paths crossing at a point displaced from

ideal as shown in figure 5-5. Once we find Ax for each interferometer, then Al =

110

x(t) = xo sin (wt + p).



2 * Ax tan a sin a and the phase difference is

A((O) = TvAl. (5.27)

For the 3-blade interferometer, we have 7 = L/vx and

Azx - x(47) - 2x(27) + x(0), (5.28)

where we neglect distance x(2T) - x(0) (< 1lpm) in comparison with L (> lcm). For

the 4-blade interferometer

Ax = x(4T) - 4x(T) + 3x(0). (5.29)

Using these Ax we can get Ao, substitute these A( to find intensities, and average

intensity over different p to obtain the contrasts.

Figure 5-6 shows the contrast dependance on the frequency of vibrations along the

x-axis, where the blue straight line shows the 3-blade dependance and the thick green

line represents the 4-blade interferometer. In this case the vibrations are limited by

coherence length of 1Ak,

5.5 Rotation around the z axis

This effect is expected to be most limiting since the neutron interferometer has such a

small acceptance angle. In the case of rotational vibrations, we rewrite the oscillation

in terms of the angle 0 around the z-axis

O(t) = Bo sin (wt + o). (5.30)

For small angles, rotational vibrations can be considered as translational vibrations,

i.e. Ar = r * 0, where r is the distance from the blade to the center of rotation.
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contrast due to x-vibrations with constant amplitude
(averaged over initial phase of the vibrations)
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Figure 5-6: Contrast due to vibrations along the x-axis.

5.5.1 3-blade interferometer

In the 3-blade interferometer, the center of rotation is also the center of mass and

the center of the middle blade. For the point (see figure 5-1 A)) where the neutron

path crosses the blades, the rotational vibrations can be modeled as vibration along

the y-axis for the first and last blade and along the x-axis for the path crossing the

middle blade. In this case, the interaction with the middle blade does not change the

velocity of the neutron. At the first blade we have a change in the momentum of the

reflected beam and no change for transmitted

Vpath i(t = 0+) = Vx', + vysT , (5.31)

Vpath HI(t = 0+) = v~^ + (-vy + 2uly(0))k, (5.32)
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where uly(t) = 2L 0o sin (wt + ýp) velocity of the first blade in the ý direction.

The phase difference between the two paths is

A4(o) = #D(path II) - 4b(path I) = [Ipath 112 -_ path 4T =

S[(v + uv - 4ul,(0)vy + (2u1,(0)) 2 - v - vY] 4- =

8 LMow sin 'p [2LOow sin p - v,] 4T, (5.33)

where 7 = L/vx.

Substituting this difference in phase into equation 5.12 for the O-beam intensity

and averaging, we find the frequency dependance of the contrast equation 5.14. In

figure 5-7 this contrast for the 3-blade system is shown as a blue straight line. As an

amplitude of vibrations 0o we used 1 prad.

Let's see what happens in the 4-blade system.

5.5.2 4-blade interferometer

In the 4-blade interferometer the center of rotation and the center of mass coincide

between the blades. For points (see figure 5-1 B)) where the neutron path crosses

the blades, the rotational vibrations are modeled as vibrations along the y axis. As

in the 3-blade case the vx component of the neutron velocity does not change. The

velocities are modified as, Path I:

vy(I: 1 2) = vy, (5.34)

v,( : 2 -- 3) = -v + 2 L2 + (vr)2 0oW COS (WT + '), (5.35)
vy(I: 3 - 4) = v- 2 L2 + (v•T) 20ow [COS (wT +) + cos (w3T + ')] ,(5.36)

where r = L/vr and the sign of the last cosine term is positive because the oscillations

of the 2
"d and the 3rd blades have 7r phase shift difference.

Path II:

v(II: 1 --- 2) = vy + 20ow2Lcos, (5.37)
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contrast due to rotation with constant amplitude
(averaged over initial phase of the vibrations)
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Figure 5-7: Contrast due to rotational vibrations 0 around z-axis and the center of
mass.

vy (II: 2 -+ 3)

vI(II: 3 4)

= -vy(II : 1 -4 2) + 2 L 2 + (v-) 2Oow coS (WT + ý), (5.38)
= -v(II: 2 -> 3) - 2 L2 + (U T)20ow cos (w3- + ( ). (5.39)

The phases along each path are

Path I:

4 (I : 1 - 2)

J)(I: 2 -* 3)

J (I: 2 -+ 3)

= n 27,
mnh(v + vy(I: 2 --+ 3)2)2T,
m 2

= (V + vy(I: 3 -- 4)2)T.h x"
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Path II:

4D(II 1 2) = (v 2 + vy(II 1 * 2)2)T, (5.43)

I)(II: 2 - 3) = Mhf(v,2 + vy(II: 2 - 3) 2)2T, (5.44)

D(II: 2 -- 3) = M(v + v(II: 3 - 4) 2)7. (5.45)

The phase difference is

AnD(p) = N(II : 1 -- 2) + (II : 2 -- 3) + 4(II : 3 -* 4) -

(4D(I : 1 - 2) + (I : 2 --+ 3) + (I : 3 -- 4)). (5.46)

As before, we can find the IH intensity at the H-detector, average it over the

random phase o, and extract the contrast. This contrast dependance on the frequency

of rotational vibrations is plotted as a thick green line in figure 5-7. We see that for

these rotations the 4-blade interferometer design is significantly more robust then is

the 3-blade.

5.6 Conclusion

Vibrations we use in our simulations (with amplitude 10- 7 m in translation) produce

change in the incident angle of the neutron much less then the acceptance angle of the

crystal (< 5 x 10- 6rad) and of the similar order for 50Hz frequency range as measured

in ref. [28]. In order to exceed the acceptance angle the amplitude of vibrations should

be bigger then 50pm.

Let's note that the small angle vibrations around the x-axis will be similar to

the translational vibrations along the y-axis, and the small angle vibrations around

y will be similar to the translational vibrations along x. As we mentioned before, the

vibrations along the z-axis do not influence the contrast.

All together results of vibration consideration bring us to the new experimental

geometry for the neutron interferometer.
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Chapter 6

Future Prospectives for Neutron

Interferometry.

Here we have shown (Chapter 5) a new design geometry for neutron interferometry

that is less sensitive to vibrations. Given such a design we can now redesign the

entire neutron interferometer setup to remove the need for the extreme multi-stage

vibration isolation system and perhaps even extend the temperature stability. Such a

new design would allow greater access to neutron interferometry and permit the use

of neutron interferometer for new applications and fundamental experimental studies.

In particular, since the new design would be much more compact, it could be moved

closer to the beam break and thus have greater neutron intensities. Increasing the

neutron flux will increase the signal-to-noise ratio which allows for trade-offs to narrow

the momentum distribution (or to have a better collimated beam). One result of such

a trade-off is to increase the neutron coherence length, particularly in the vertical

direction. An additional advantage of moving the interferometer closer to the beam

break would be to reduce neutron losses and better maintain the monochromator-

selected neutron momentum distribution due to the decreased scattering in the shorter

beam paths.

Expanding the coherence length of the interferometer permits material study over

length-scales that are not easily accessible by other approaches. Such experiments

include Fourier Spectroscopy and Reflectometry [40] (proposed experimental setup
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is shown on figure 4-7). These experiments use the unique properties of a neutron

interferometer, where the contrast function due to the vertical path separation inside

the interferometer is the coherence function and proportional to the Fourier transform

of the vertical momentum distribution of the accepted neutron beam. For example,

a sample placed in front of the interferometer will modify the neutron momentum

distribution. When compared to the neutron momentum distribution without the

sample, the change in momentum is easily measured. This method does not require

complicated models in order to extract reflectivity curves.

In this thesis we introduced a complete and systematic description of the neu-

tron wave-function (density matrix) inside the neutron interferometer. Modeling this

system thoroughly provides new insights to new implementations and applications

of the neutron interferometer. One of such examples which we believe will lead is

a reciprocal space neutron imaging described in Chapter 3. Here we introduce spa-

tial coherence on the beam profile, encode the neutron beam with a phase gradient,

compare the encoded beam with the beam modified by a sample by interference, and

measure the Fourier components of the spatial phase distribution due to the sample

by result of interference. This new technique does not require the use of a position

sensitive neutron detector. This method has the potential to improve the spatial

resolution of existing imaging methods.

As a result of the coherent scattering length experiment we discovered that the

interferometer output neutron beam can be prepared as a coherent superposition of

two beams with the same momentum properties but separated in a well controlled

manner. Using this coherent neutron beam as the input state for a second interfer-

ometer we can develop new methods to measure the auto-correlation function of a

sample placed in one path of the second interferometer. The separation control device

would be replicated in the second path of the second interferometer permitting the

difference in the phase over the displaced beam to be coherently measured. In this

case the measured contrast will be proportional to the auto-correlation function of the

sample scattering function. This way we can move neutron scattering experiments

up to gm length-scales which are not easily accessible today.
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Appendix A

Calculation of the phase and the

vertical displacement of the neutron

beam due to the prisms

Figure A-1: A schematic diagram of the neutron paths through the prisms. The
neutron beam enters from the left and depending on the separation between the prisms
is shifted vertically. The angles shown on the figure corresponds to the calculations
for path separation and phase shifts of the neutron described in the text.

Let's calculate related phase shifts and vertical displacements. We are going to

consider two sets of prisms one set in each neutron interferometer path. Both sets in

the connected state (when the distance between prisms is equal to zero) form a cube.
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The index of refraction of the prisms is n and is very close to zero. Let's define it

n = 1- An. (A.1)

From the figure A-1 and the fact that the base of the prisms has a right angle we

have

450 = 72 + 0, (A.2)
(A.3)450 + 900 - 'i + 900 - / = 1800 = / = 45' - 'y.

Snell's law for our prisms

sin '7 = n sin 71,

n sin (450 - 71i)

(A.4)

(A.5)= sin(45' - 7 2 )

Using this we can easily find Azm (see figure A-1), the vertical displacement of the

beam in between prisms due to separation L

cos 450 tan 72Azm = L sin 72 = L
cos ¢ 1 + tan 7 2

(A.6)

Than Az total vertical displacement due to the both sets of the prisms is

AZ == Az 2 - AZ = (AZm + (d + Azm) tan yi) - (d tan 71 + L tan7) ,

Az = Azm(1 + tan yi) - L tan 7, (A.7)

where d is height of the prism, Azx and Az 2 are the displacement of the beam in

path I and path II.

And the phase shift due to the both sets of prisms is

1 •c• d + Azm cos 45¢
cos yl cos 0 )

d
- kon d

cos '7i
+ koL )

cos 7

where ko is the incident momentum of the neutron, (1 and [Phi2 are phases due to
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set of prisms in path I or path II correspondingly.

We can simplify equation (A.8)

Az m  ( cos 450
Ac = 1kon os (45+ -k)L

cos ,Yj cos (450 - Y2)

We can simplify the results considering small angle approximation. The angles

that we have in our system are smaller than 0.50 is a few 10- rad. Also neutrons are

weakly interacting with media and index or refraction is very close to 1 (An = 1 - n

is 10- 5 - 10-6 order of magnitude).

Using the Taylor expansion for equations (A.5) to the second order for y, the first

order for An and Any

7(1 + An) = 71, (A.10)

n (sin 450 cos yi - sin -y cos 450 )

(1 - An)(1 - 7_/2 - 7yi)

= sin 450 cos 72 - sin y2 cos 450,

= 1 - 2/2 - 2.

Substituting (A.10) into (A.11) and using method of consequent approximations we

have

Y72 = y+An - An, (A.12)

In the next step let's find Azm. Using equation (A.6) we have

AZm = LY2(1 - 72 + 72 /2) = L(7y2 - 722). (A.13)

Now applying (A.13) we get

Azm = L(7 + An - 3An - -y 2 ). (A.14)

Using this equation A.14 and equation A.7 we can find a approximate result for
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the displacement of the beam Az in the different paths of interferometer due to the

prisms.

Az

= L (1 +y+ +An)(7 + An- 3Any - 7]

= LAn(1 - 2-). (A.15)

In order to calculate the phase difference due to the prisms ALI for simplicity let's

split equation (A.9) into two parts:

(A.16)

where

A/Zm
A = kon -,

cos yi

B = koL ( cos 45 )

(cos (45 0 - 1/2

(A.17)

(A.18)
1os

cos 'y

Substituting values for Azm, n, 'yl, and -2 we find

koL

B

koL
1/ v/

1/ v cos ' 2 + 1 / sin y 2

After all substitution and simplification we have

A
k (- + An - 4Any - _ 2)(1 + y2/2) = y + An - 4Any

B 3/2_22 - Y2 - Y2/2 = Y2 + 4An-y - - An.
koL

Finally for the phase shift we have

A(1 = A + B = 0.
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(A.19)

(A.20)

_ y2, (A.21)

(A.22)

(A.23)

A
= (1 - An)(1 + y12/2)(y + An - 3Ann - 3'2),



Appendix B

Measurements of the Vertical

Momentum Distribution

All neutron beams naturally have divergence, thus momentum spread (distribution).

Here we describe how we measured vertical momentum distribution in our system.

zA ' Position Sensitive Detector (PSD)
I2k 4

image on PSD for
particular position
of the scanning slit

-z=O

-z

larrow scanning
entrance slit 0.1 mm

Figure B-1: A schematic diagram of the
distribution.

12 13 14 10 [ b
Y coordinate, [mm]

measurements of neutron vertical momentum

FigureB-1 reports the schematic diagram for measurements of the vertical mo-
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mentum distribution. It consists of entrance 8 mm slit on the left, followed by narrow

100 jpm scanning slit, and at some distance L, by a position sensitive detector (PSD)

[291. The narrow scanning slit could be moved vertically and at each position of this

slit we record the intensity distribution due to the neutron beam on the PSD. One of

such images is shown at the far right of the figure. In the image we clearly see nine

humps (or wide peaks). This is due to our second focusing monochromator, which

consists of nine pyrolytic graphite blades. The images obtained are converted to the

vertical intensity distribution.

Knowing the position of the scanning slit ( and the vertical intensity distribution

of the neutrons we can derive distribution of the neutron angles 7- with respect to the

horizontal axis. From the figure we can see that

S= tan-[z ]. (B.1)

Thus from vertical distribution of intensity we get angular distribution I(C, y) for

each position of the scanning slit (.

Measuring the angular distribution of the neutrons for each position ( of the scan-

ning slit and integrating over all the positions of the scanning slit (from ztop=-4 mm

to Zbottom=--4 mm , of the entrance slit) we will get the overall angular distribution:

= z ((, 7)d(. (B.2)
Zbottom

The angular distribution is very easy to convert to the vertical momentum distri-

bution kz:

kz = k sin y, (B.3)

where k is the length of the wave-vector of the neutron.
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