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Abstract

This thesis presents experiments in which a strongly interacting gas of fermions was
brought into the superfluid regime. The strong interactions are induced by a Feshbach
scattering resonance that allows to tune the interfermion scattering length via an
external magnetic field. When a Fermi mixture was cooled on the molecular side
of such a Feshbach resonance, Bose-Einstein condensation of up to 107 molecules
was observed. Subsequently, the crossover region interpolating between such a Bose-
Einstein condensate (BEC) of molecules and a Bardeen-Cooper-Schrieffer superfluid
of long-range Cooper pairs was studied. Condensates of fermion pairs were detected
in a regime where pairing is purely a many-body effect, the pairs being stabilized by
the presence of the surrounding particles. Superfluidity and phase coherence in these
systems was directly demonstrated throughout the crossover via the observation of
long-lived, ordered vortex lattices in a rotating Fermi mixture. Finally, superfluidity
in imbalanced Fermi mixtures was established, and its Clogston limit was observed
for high imbalance. The gas was found to separate into a region of equal densities,
surrounded by a shell at unequal densities.

Thesis Supervisor: Wolfgang Ketterle
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Chapter 1

Introduction

aiveroaasl N a-os xOaour oieTw priteauni xartd an7tothOpvav eX pT s7rieovU
7rnoAATs poaeta t aog roChla a 0n Xormaaoty Eig tiyan xeiVY, tiree jowsa insrc
Siv v vter aiaY4rcla rokdiav, xan ' e ie p eoOsot w Jo pov te (jAAor) xba

rrinavToianwg xuxAo6devCa braxeinveo-Sat Xneroe Ti t coran no og Tr rola.
ieo-oQbQT & Jd N aI& TO 4o' )X k98`1 aUazGOL'y 7reeqpiseso-at, Ti Asi e di'

Xweesv si TrO i40w xei'v, a6ynee earl ceva Tic &N Aonr7& o-vlAPLver xai
7reQrAhexoILya 1r vyxGaTar&Te8u AA& Aoir;a xai 'orro, ne6v T1ri aiMvlka

This is how the worlds are formed. In a given section many atoms of all
manner of shapes are carried from the unlimited into the vast empty space.
These collect together and form a single vortex, in which they jostle against
each other and, circling round in every possible way, separate off, by like atoms
joining like. And, the atoms being so numerous that they can no longer revolve
in equilibrium, the light ones pass into the empty space outside, as if they were
being winnowed; the remainder keep together and, becoming entangled, go on
their circuit together, and form a primary spherical system.

Diogenes Laertius, Lives of eminent Philosophers, IX 31
(LEUCIPPUS, fifth century B.C.)

Superfluidity, frictionless flow, is a most remarkable phenomenon that we come across

in many different areas of physics. The most prominent examples are superconduc-

tors, charged superfluids, in which electrical current flows without resistance. Liquid

helium forms a superfluid at low temperatures. Superfluid phenomena occur in nuclei

and inside a neutron star, whose core is even believed to contain a superfluid of quark

pairs, and particles are thought to owe their very mass to a process similar to a su-

perfluid phase transition: The formation of a Higgs condensate. It is indeed tempting

to identify the excitation spectrum of a superconductor, / 2 -TY (e, being the free



particle dispersion, and A the superfluid gap), with the relativistic expression for a

particle's energy, V/p2 + i 2 . This Higgs mechanism might be verified in the near

future in experiments at the new Large Hadron Collider (LHC).

Evidently, superconductors are of great relevance for technology and the transport

of energy. However, the record critical temperature below which materials would

become superconducting had for many decades been fixed at 23 K, well below any

easily accessible temperature. The discovery of high-temperature superconductors in

cuprates by Bednorz and Miiller [29] in 1986 started an entire new era of research.

The record critical temperature quickly rose above liquid nitrogen temperatures, and

is currently 138 K.

Clearly, the ultimate goal would be to find a room-temperature superconductor.

Rather than following a trial and error approach in the discovery of new materials, one

would like to fully understand the mechanism behind the phenomenon and predict

materials with higher critical temperature. Unfortunately, the mechanism leading

to High-Tc superconductivity is not fully understood. The superconducting state

comes about in an intricate compromise between several competing states. Strong

interactions between the electrons obscure our understanding of the normal state

above Tc, that cannot be described as a simple collection of (quasi-)particles [147].

The success of ultracold atomic gases over the past 11 years gives new hope that

some fundamental questions on superfluidity and strongly correlated systems might

find an answer in the near future. Bose-Einstein condensates (BECs) of atoms provide

the paradigm of the weakly-interacting Bose gas [67, 136]. Atomic gases confined in

optical lattices allow the simulation of condensed matter systems, such as the study

of the superfluid-to-Mott insulator transition [101]. The advent of superfluids of

fermionic atom pairs, the topic of this dissertation, brings us in direct contact with

the phenomenon of superconductivity. Fermi gases give us access to the crossover from

a Bose-Einstein condensate of tightly bound molecules to a superfluid consisting of

long-range Cooper pairs. The fermions are strongly interacting within this crossover.

This allows them to form a superfluid state already at a high critical temperature.

In fact, scaling the density of the atomic gas up to the density of electrons in

solids, the critical temperature for superfluidity lies far above room temperature.

In the future, ultracold fermionic gases, confined in optical lattices with tunable

interactions and variable spin imbalance, might provide us with a basic model system

for High-Tc superconductivity.

In this dissertation I will describe our work on the creation and direct observation

of fermionic superfluidity in strongly interacting atomic gases. In the following I will



briefly review the history of superfluids and superconductors, showing how ideas and

discoveries in one field have always brought fruitful insight into the understanding of

the other. Two seemingly distinct ideas, the condensation of point-like bosons and

the condensation of long-range Cooper pairs, leading to vastly different predictions for

the critical temperature, are found to be simply two extremes of the same underlying

phenomenon.

1.1 Discovery of superfluidity and superconduc-

tivity - from BEC to BCS

In a remarkable "accident of history", the first superfluid was produced (without

noticing its remarkable properties) by the same scientist who later used it as a coolant

to discover superconductivity. Kamerlingh Onnes liquefied helium-4 in 1908, and

lowered its temperature below the superfluid transition point (the A-point) at TA =

2.2 K. He remarked in his Nobel lecture 1913 "that the density of the helium, which at

first quickly drops with the temperature, reaches a maximum at 2.2 K approximately,
and if one goes down further even drops again. Such an extreme could possibly be

connected with the quantum theory" [177]. But he first focussed his studies on the

behavior of metals at low temperatures. In 1911, Onnes used helium-4 to cool down

mercury, finding that the resistivity of the metal suddenly dropped to non-measurable

values at Tc = 4.2 K, it became "superconducting". Tin (at Tc = 3.8 K) and lead

(at Tc = 6 K) showed the same remarkable phenomenon.

The special properties of helium-4 below TA went practically unnoticed until the

1930s, when Keesom and Clusius discovered the A-shaped peak in the specific heat

curve versus temperature at TN. In 1938, the vanishing viscosity of the substance was

independently discovered by Kapitza [132] and Allen & Misener [8], suggesting the

term "superfluid" in direct analogy with superconductivity. Obviously, the similar

phenomena of resistance-less currents in metals and frictionless flow in helium-4 hint

at a similar underlying mechanism. However, as we will see, the similarities in the

two critical temperatures TA and Tc turned out to be a complete accident of Nature.

1.1.1 Bose-Einstein condensation

F. London suggested in 1935 that superconductivity was a quantum mechanical phe-

nomenon occurring on a macroscopic scale, stemming from a certain rigidity of the

particles' wave functions against perturbations [155]. The lowest quantum state of the



system should be "separated by a finite distance from the excited ones" and therefore

be protected against the influence of a weak perturbation. This is the essence of what

we now call the superconducting gap. In 1938, he proposed that quantum statistics

might play an important part in the explanation of superfluid helium-4. He was the

first to make a connection to Bose-Einstein condensation [34, 86], at that time only a

theoretical concept, in which a collection of non-interacting, indistinguishable bosons

condenses into one and the same macroscopic wave function. This occurs when the

number of available quantum states becomes comparable to the number of particles N

(a condition called "degeneracy"), and bosons start to condense into a single quantum

state rather than being distributed over all possible states. As the extent of an aver-

age particle's wave function at temperature T is given by the de Broglie wavelength

A = V 2k (with m the particle mass), the number of available quantum states in

a volume Q is roughly equal to Q/A3 . Setting this equal to N we can deduce the

characteristic temperature for reaching degeneracy and Bose-Einstein condensation,

TBEC - 2h2 (N/Q)2/3 M 3 K. For this estimate, we have inserted the mass m4He of a

helium-4 atom and a typical density of n = 1022 cm-3 . The similarity of this value

to the observed critical temperature of 2.2K was intriguing. Furthermore, L. Tisza

pointed out that for the Bose gas below TBEC, one can make a natural distinction

between the condensed part of the gas and the thermal, or excited fraction [244].

Only particles in the thermal fraction take part in dissipative processes. This idea

of a two-fluid model is so fruitful that it applies quite generally to superfluids and

conventional superconductors [22].

Of course, Einstein had considered a non-interacting Bose gas, a condition that

should hardly be justified for the liquid helium-4. For this reason, L.D. Landau

rejected the concept of Bose-Einstein condensation, and rather approached the prob-

lem of superfluidity with a highly successful phenomenological two-fluid model [144].

The important issue of how to combine the idea of BEC with interactions was dealt

with at a later time starting with Bogoliubov's theory of the weakly-interacting Bose

gas [150]. The fact that quantum statistics was crucial to the understanding of su-

perfluid helium-4 was clarified beyond any doubt when liquid helium-3, a fermion,
became available and did not show superfluid properties at temperatures on the scale

of T\.



1.1.2 Fermionic superfluidity and Bardeen-Cooper-Schrieffer

theory

How can the idea of Bose-Einstein condensation, the two-fluid model etc. be carried

over to superconductors? What determines their critical temperature Tc? Clearly,
the superfluid current must somehow be carried by electrons, but the degeneracy

temperature of this Fermi gas lies a factor m4He/me > 7000 above the condensation

temperature for Helium-4 atoms, and cannot set the scale for Tc. Condensation of

the electrons themselves is in any case not allowed. Electrons being fermions, they

cannot occupy one and the same quantum state but instead must arrange themselves

in different states. At zero temperature, a gas of N fermions will fill all available

states one by one, starting with the ground state, up to the Nth state at the Fermi

energy EF. For an electron density n - several 1022 cm -3 , a similar counting as above

gives EF = 2(67r2 n2/3 - 50 000K. An obvious idea might be to form tightly bound

pairs of electrons, which can act as bosons and would form a condensate. Apart

from the problem that the condensation temperature would still be on the order of

EF/kB, there is no known interaction which could be sufficient to overcome the strong

Coulomb repulsion and form tightly bound electron pairs (Schafroth pairs [213]).

Considering these problems, one can understand why it took more than four decades

from the discovery to the explanation of the phenomenon of superconductivity. It

turned out that the general idea of electrons forming pairs was after all correct.

In 1950, it became clear that there was indeed an effective attractive interac-

tion between electrons, mediated by the crystal lattice vibrations (phonons), that

was responsible for superconductivity. The lattice vibrations left their mark in the

characteristic variation Tc oc 1/vl of the critical temperature Tc with the isotope

mass M of the crystal ions, the isotope effect [206, 165] that had been predicted

by H. Frohlich [93]. Vibrational energies in the lattice are a factor /me/M smaller

than the typical electronic energy' EF, on the order of kBg several 100 K (the De-

bye temperature TD of the metal). While the isotope effect strongly argues for Tc

being proportional to TD, the Debye temperature is still one or two orders of magni-

tude higher than the observed critical temperature. In addition, attempts to explain

superconductivity by including electron-phonon interactions in a perturbative way

failed.

'The average distance between electrons ro is on the order of atomic distances (several Bohr
radii ao), the Fermi energy EF _ h2/mer 2 is thus on the scale of typical Coulomb energies in an

atom. Vibrational energies of the lattice ions are then on the order hwD 82 h •r* m, ••/M
h VJEF /MrT2 _ m-e/MEF.



A breakthrough came in 1956, when L. Cooper realized that fermions interacting

via an arbitrarily weak attractive interaction on top of a filled Fermi sea can form a

bound pair [66]. In other words, the Fermi sea is unstable towards pair formation.

However, unlike the tightly bound pairs considered before, the "Cooper" pair is of a

very large extent, much larger than the interparticle spacing. That is, a collection

of these pairs necessarily needs to overlap very strongly in space. In this situation,
it was initially far from obvious whether interactions between different pairs could

be simply neglected. But this was what led to the final goal: Bardeen, Cooper and

Schrieffer (BCS) developed a full theory of superconductivity starting from a new,
stable ground state in which pair formation was included in a self-consistent way [23].

Using the effective electron-electron interaction V, attractive for energies smaller than

ksTD (and assumed constant in this regime), the pair binding energy was found to

be A = 2kBTD e - 1/ N(O)IVI , with N(O) = mekF/27r2 h2 the density of states at the

Fermi energy and N(O)IVI assumed small compared to 1. The bound state energy (or

pairing gap) depended in the non-analytic fashion e- 1/N(O)IV I on the electron-electron

interaction V, explaining why the earlier attempts using perturbation theory had to

fail. Also, this exponential factor can now account for the small critical temperatures

Tc - 5 K: Indeed, it is a result of BCS theory that ksBT is simply proportional to

A(0), the pair binding energy at zero temperature: kaBTc 0.57 A(0). Hence, the

critical temperature Tc N TD e- 1/N(O)IVI is proportional to the Debye temperature

TD, in accord with the isotope effect, but the exponential factor suppresses Tc by a

factor that can easily be 100.

A remarkable example for such a BCS-type fermionic superfluid is helium-3, for

which the superfluid transition had been observed in 1972 [183, 182] at Tc - 3

mK. Here the necessary attractive interaction between the helium-3 atoms occurs via

(p-wave) collisions2 . The low Tc can be compared to Tx = 2.2 K for the bosonic

counterpart 4He. Clearly, Cooper pairing is a fragile affair, strongly reducing Tc from

the degeneracy temperature scale.

1.1.3 The BEC-BCS crossover

As F. London had already suspected in 1950 [156], the BCS state can be understood as

a pair condensate in momentum space, in contrast to a BEC of tightly bound pairs in

real space. The former will occur for the slightest attraction between fermions, while

the latter appears to require a true two-body bound state to be available to a fermion
2Strong hard-core repulsion between the atoms renders s-wave pairing unfavorable.



BEC of Molecules Resonance Superfluid BCS state

Figure 1-1: The BEC-BCS crossover. By tuning the interaction strength between the
two fermionic spin states, one can smoothly cross over from a regime of tightly bound
molecules to a regime of long-range Cooper pairs, whose characteristic size is much
larger than the interparticle spacing. In between these two extremes, one encounters
an intermediate regime where the pair size is comparable to the interparticle spacing.
This strongly interacting "soup" of particles is a fascinating state of matter that might
provide a model for the interior of neutron stars or the Quark-Gluon plasma of the
early Universe.

pair. Eagles [85] noted in 1969 that, in the limit of very high density, the BCS state

smoothly evolves into a condensate of pairs that are smaller than the interparticle

distance (In the language of Fermi gases, he fixed the negative scattering length and

varied the interparticle spacing). Using a generic two-body potential, Leggett showed

in 1980 that the limits of tightly bound molecules and long-range Cooper pairs are

connected in a smooth crossover [149] (here it was the interparticle distance that was

fixed, while the scattering length was varied, which allowed the inclusion of a true

two-body bound state). The size of the fermion pairs changes smoothly from being

much larger than the interparticle spacing in the BCS-limit to the small size of a

molecular bound state (see Fig. 1-1). Accordingly, the pair binding energy varies

smoothly from its small BCS value (weak, fragile pairing) to the large binding energy

of a molecule in the BEC limit (stable molecular pairing). The presence of a paired

state is in sharp contrast to the case of two particles interacting in free (3D) space:

For too weak an attraction, there is no bound state available to the particles. Only at

a critical interaction strength does the molecular state become available and a bound

pair can form. Leggett's result shows that in the many-body system, the physics

changes smoothly with interaction strength, also at the point where the two-body

bound state disappears. Nozibres and Schmitt-Rink extended Leggett's model to

finite temperatures and verified that the critical temperature to attain superfluidity

I,,
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varies smoothly from the BCS limit, where it is exponentially small, to the BEC-

limit where one recovers the value for Bose-Einstein condensation of tightly bound

molecules [172]. These results are presented in chapter 2.

The importance of considering strongly interacting fermions became clear with the

discovery of novel materials. Up to 1986, BCS theory (or more involved variations

of it) was largely successful in explaining the properties of superconductors. The

record critical temperature increased only slightly from 6 K in 1911 to 23 K in 1985.

In 1986, however, Bednorz and Miiller [29] discovered superconductivity at 35 K in

the compound La 2-xBaxCuO 4, triggering a focussed search for even higher critical

temperatures. Soon after, materials with transition temperatures above 100 K were

found. Due to the strong interactions and quasi-2D structure, the exact mechanisms

leading to High-Tc superconductivity are still not fully understood.

The physics of the BEC-BCS crossover in a gas of interacting fermions does not di-

rectly relate to the complicated phenomena observed in High-Tc materials. However,
some features of the two problems are shared: In the crossover regime, the pair size is

comparable to the interparticle distance. One therefore deals with a strongly corre-

lated "soup" of particles, where interactions between different pairs can no longer be

neglected. Also the normal state above the phase transition temperature is a highly

non-trivial state. Even here, correlations are still large enough to form uncondensed

pairs at finite momentum. This region is sometimes called the "Pseudo-Gap".

1.1.4 Universal regime at unitarity

One point in the BEC-BCS crossover is of special interest: When the interparticle

potential is just about strong enough to bind two particles in free space, the bond

length of this molecule tends to infinity (unitarity regime). In the medium, this

bond length can thus not play any role anymore in the description of the many-body

state. The only length scale of importance is then the interparticle distance n- 1 /3 ,

the corresponding energy scale is the Fermi energy EF. In this case, physics is said

to be universal [119]. The average energy content of the gas, the binding energy of

a pair and (kB times) the critical temperature must be related to the Fermi energy

by universal numerical constants. The size of a fermion pair must be given by a

universal constant times the interparticle distance. This means that results obtained

with one system at unitarity will directly carry over to another system (sharing the

same symmetry), even if their densities are vastly different. Results obtained in an

ultracold gas at unitarity, at densities of 1012 cm - 3 , might thus have relevance for the



physics inside a neutron star3 at densities of 1038 cm -3 .

1.2 Ultracold atomic gases - model systems for

bosonic and fermionic superfluids

When our understanding of a physical system is obscured by too many competing

effects, it is a natural approach to consider simpler, well-defined problems and increase

complexity in a controlled way. Instead of dealing with dense, strongly interacting

liquids like for example helium-4, it would be of great advantage to have at one's

disposition a dilute gas, in which one can enhance interactions starting from the well-

understood limit of weak interactions - for bosons, Bogoliubov's weakly interacting

Bose gas. But what are the requirements to reach the regime of degeneracy in a gas?

They seem impossible to fulfill: Essentially all gases (helium being the exception)

solidify at low temperatures.

The only way out can be to work at ultralow densities: It turns out that forming

a solid takes a certain amount of time: Three atoms have to meet before a molecule

can form, as the released energy and momentum has to be carried away by a third

particle. At densities of 1015 cm - 3, one has a window of about 1 s before molecules and

larger clusters can form in the gas. If this is long compared to the timescale needed

to reach thermal equilibrium, one can hope to observe a gas in the degenerate regime

before it collapses into its true solid ground state. Thermal equilibrium requires only

two-body collisions, their rate is thus proportional to the density, whereas molecule

formation requires three-body collisions, at a rate proportional to the square of the

density. For low enough densities, the "good" collisions occur at a faster rate than

the "bad" ones.

There is one major road block: Ultralow densities mean, given the condition for

degeneracy we saw above, ultracold temperatures. For n , 1014 cm-3, the degeneracy

temperature is on the order of pK! This seems already unrealistically low. But it

appears completely hopeless to even think about observing a BCS-like superfluid in

a gas of fermions: The exponential suppression we have seen above would render this

phase transition unobservable.

Laser cooling and evaporative cooling were the key to achieve submicro-Kelvin

temperatures in dilute atomic gases. In addition, in the seemingly hopeless case of
3The physics inside neutron stars is very intricate. This simple comparison rests on the observa-

tion that the neutron-neutron scattering length of about -18.8 fm is large in absolute terms compared
to the distance between neutrons at these high densities, which is only a few fm.



fermions, a "magic knob" came to the rescue: Feshbach resonances.

1.2.1 Bosonic gases

The realization of Bose-Einstein condensation in ultracold atomic gases in 1995 has led

to a revolution in atomic physics which is still on-going [67, 136]. These condensates

represent the paradigm of Bogoliubov's weakly interacting Bose gas. As such, they are

very well described by one macroscopic wave function that is the solution to a non-

linear Schrodinger equation, the Gross-Pitaevskii-equation. Beautiful experiments

for example on interference, on solitons and on vortices have directly demonstrated

coherence, the wave-like nature of the gas and superfluid flow [133, 208, 15]. From

a condensed matter perspective, these weakly interacting condensates represent the

most fundamental, basic many-body wave functions.

The importance of interactions compared to the kinetic energy of the particles

can be increased in (at least) two ways: The first is to impose a lattice potential

via interfering laser beams and thereby localize particles onto lattice sites, quenching

their kinetic energy. A prominent example is given by the superfluid-to-Mott insulator

transition for bosons confined in a 3D lattice [101, 31]: As the repulsive interactions

start to dominate over the tunneling between adjacent lattice sites, atoms are pinned

to their respective site and long-range coherence and superfluidity is lost. This can be

observed as a loss of coherence peaks in momentum space, revealed after expansion

from the lattice, and more directly by measuring the insulator gap an atom needs to

overcome in order to hop to an already occupied lattice site.

A second way to increase the role of interactions is to directly modify the inter-

atomic scattering using a so-called Feshbach resonance [241, 243]. These resonances

occur when the energy of two colliding atoms coincides with the energy of a bound

molecular state in the interatomic potential, tunable via an applied magnetic field.

On resonance, the scattering length describing the interatomic interactions diverges.

Feshbach resonances were first observed in 1998 in a 23Na Bose-Einstein conden-

sate [126] and in a laser-cooled cloud of 85Rb [68]. However, while it was shown

in [126] that elastic scattering was indeed highly increased, unfortunately inelastic

scattering due to molecule formation was also resonantly enhanced, leading to strong

losses in the BEC. To the very fortunate surprise for the ultracold atom community,

gases of fermionic atoms were found not to decay close to a Feshbach resonance, but

instead to be very stable. This was the key fact that enabled all of the subsequent

studies on fermionic superfluids.



1.2.2 Fermionic gases

The first degenerate Fermi gas of atoms was created in 1999 by B. DeMarco and

D. Jin at JILA using fermionic 40K [76]. Until the end of 2003, six more groups had

succeeded in producing ultracold degenerate Fermi gases [247, 214, 100, 112, 207, 129],
one more using 40K (M. Inguscio's group in Florence, '02) and five using fermionic
6Li (R. Hulet's group at Rice, C. Salomon's group at the ENS in Paris, J. Thomas'

group at Duke, our group at MIT in 2001 and R. Grimm's group in Innsbruck in

2003). Already before the discovery of Feshbach resonances, the hopes to observe

fermionic superfluidity in lithium were high due to the unusually large and negative

triplet scattering length [3, 124]. Starting in 2002, experiments began to employ

Feshbach resonances to induce strong interactions between the fermions [78, 154,
175, 175, 130, 204, 106, 36]. As the energy of the Feshbach molecular state was tuned

below that of two free atoms (" molecular" or "BEC" side of the Feshbach resonance),
molecules could be produced [205] that were surprisingly long-lived [69, 128, 239, 202].

Petrov, Shlyapnikov and Salomon [192] pointed out that this remarkable stability of

the gas close to a Feshbach resonance is directly owed to the fermionic nature of the

atoms: Inelastic three-body collisions, resonantly enhanced in a gas of bosons, are

strongly Pauli suppressed for a two-state mixture of fermions, as the process would

involve at least two fermions of the same spin state to be in close proximity. The

surprising longevity of the (bosonic!) molecules spurred hopes of their Bose-Einstein

condensation. Indeed, in November 2003 three groups reported the realization of

Bose-Einstein condensation of molecules [102, 271, 129] (also see [26]). In retrospect,
one can say that the binding of these "molecules" already had a strong many-body

character, as their size was not very small compared to the interparticle spacing. Soon

after, fermion pair condensates were observed via a rapid ramp from the "BCS" side

of the Feshbach resonance, were no two-body bound state exists for isolated atom

pairs [203, 272]. Here, pairing was necessarily purely a many-body effect. Tuning the

magnetic field across the Feshbach resonance thus gave access to the physics of the

BEC-BCS crossover described above.

Over the past two years, the properties of this "tunable" fermionic superfluid

were studied in thermodynamic measurements [37, 139], experiments on collective

excitations [138, 25], RF spectroscopy revealing the formation of pairs [59], analysis of

the two-body part of the pair wave function [188], and finally, in April 2005, fermionic

superfluidity and phase coherence was directly demonstrated at MIT through the

observation of vortices [265] (chapter 6).



1.2.3 High critical temperature

This new type of fermionic superfluid differs from Helium-3, conventional and even

High-Tc superconductors in its high critical temperature Tc when compared to the

Fermi temperature TF. Indeed, while Tc/TF is about 10-1... 10-4 for conventional

superconductors, about 10-3 for Helium-3 and 10- 2 for High-Tc superconductors, the

strong interactions induced by the Feshbach resonance allow the fermionic gases to

enter the superfluid state already at4 Tc/TF ; 0.2. It is this large value which allows

us to call this phenomenon "high-temperature superfluidity". Scaled to the density of

electrons in a metal, this form of superfluidity would already occur far above room

temperature (actually, even above the melting temperature).
With gases of strongly interacting fermionic atoms we have a new "model mate-

rial" at our disposition, which can serve as a test-bed for many-body theories. All

the defining parameters of this material can be freely controlled, such as the density,
temperature, dimensionality and interaction strength. Already at the present time,
we are learning new facts about fermionic superfluidity in the presence of spin imbal-

ance, which challenge current theories. For the future, one can expect that fermions

confined in optical lattices will shed light on the workings of real materials, the most

important class of which being High-Tc superconductors.

1.3 Outline

In the following chapters, I summarize the work by my colleagues and me on the

observation of superfluidity in strongly interacting Fermi gases. This work was carried

out in the research group of Professor Wolfgang Ketterle at MIT.

I will focus the discussion on fermionic superfluidity. The production of degen-

erate Fermi gases [112, 111] and strongly interacting Fermi mixtures [106] has been

described in previous dissertations of our group (110, 104, 233] and will be briefly re-

viewed in chapter 4. The work on the absence of clock-shifts in an interacting Fermi

mixture [266], important for the interpretation of RF spectroscopy experiments on

fermionic superfluids [59], is included in appendix A. The observation of Feshbach

resonances between two different atomic species [234], that might allow us to produce

heteronuclear molecules in future experiments, is not included but may be found in

the PhD Thesis of Claudiu Stan [233] who led the effort.

In chapter 2, we will introduce some of the theoretical tools necessary to treat

4 Predictions for the homogeneous case vary between 0.15 and 0.25 [172, 74, 190, 231, 39, 42, 6].



strongly interacting Fermi gases with tunable interactions, namely the variational

BCS approach due to Leggett, Nozieres and Schmitt-Rink [149, 172]. Chapter 3

presents the phenomenon of Feshbach resonances, which has allowed to freely tune

the scattering length in ultracold atom gas experiments.

Chapter 4 describes the apparatus which was used for our work, a double-species

experiment that cools fermionic lithium atoms by sympathetic cooling with bosonic

sodium.

In chapter 5, I present our observation of Bose-Einstein condensates of fermion

pairs, both on the molecular side of the Feshbach resonance ([271], reproduced in

Appendix B) and on the "BCS-side" ([272], Appendix C), where pairing is purely

a many-body effect. It also discusses the relevant time scales for the growth of a

fermion pair condensate, subject of the publication [270] reproduced in Appendix E.

At the end of this chapter, I include unpublished data on the density profiles of an

equal mixture on resonance that show a clear, direct signature of the condensate.

Chapter 6 discusses in its first part the experimental technique developed for set-

ting optically trapped atomic gases into rotation. In its second part, the observation

of vortices and ordered vortex lattices in strongly interacting Fermi gases is described,
which provided the direct demonstration of superfluidity and phase coherence in these

systems [265]. This work is reproduced in Appendix F. Vortex lattices enabled us to

study the expansion of a rotating Fermi gas [216], Appendix G.

Finally, chapter 7 reviews our work on fermionic superfluidity with imbalanced

spin populations. This has been subject of three publications, on imbalanced su-

perfluidity and the Clogston limit [268] (Appendix H), the direct observation of the

phase transition [269] (Appendix I) and the observation of phase separation between a

superfluid core of equal densities and a shell of excess atoms at unequal densities [223].



Chapter 2

Superfluidity in bosonic and

fermionic gases

This chapter will present some of the theory of superfluidity in bosonic and fermionic

gases, relevant to our experiments on strongly interacting gases. We will first study

the physics of the two "extremes" of the BEC-BCS crossover, the weakly interacting

Bose gas on the one hand and the formation of Cooper pairs on the other. Finally,
we will see how the variational BCS Ansatz is able to smoothly connect these two

limits [85, 149, 172].

2.1 Quantum statistics at work - bosons vs fermi-

ons

We will start with a quick reminder of quantum statistics, second quantization nota-

tion and the grand canonical ensemble. For details we refer the reader to the many

excellent books on many-body theory, for example by Fetter and Walecka [90] and

by Abrikosov, Gorkov and Dzyaloshinski [5]. In section 2.1.1, we closely follow the

presentation in [90].

2.1.1 Quantum statistics and second quantization

We consider a collection of N indistinguishable particles in a system described by

single-particle states CEk (x), with x denoting the collection of spatial and spin co-

ordinates and Ek the appropriate set of quantum numbers. For example, for atoms

with spin confined in a box, Ek denotes the definite momentum k and z-component



of spin oa. Let A(Ei,..., EN) be the probability amplitude to find particle 1 in state

El, particle 2 in E2, etc. Since the particles are indistinguishable, the probability to

find the ath particle in state Ea and the bth particle in state Eb must equal the one

for which the particles a and b are exchanged:

IA(...Ea... Eb... )12 = JA(...Eb ... Ea.. )12  (2.1)

This leaves two possibilities for the probability amplitudes under exchange:

A(... Ea... Eb ... ) = +A(... Eb... Ea...) (2.2)

Thus, the concept of indistinguishability immediately leads to the grouping of all

particles into two fundamental classes: bosons (upper sign here and in the following)

and fermions (lower sign). Quantum field theory teaches us that particles with integer

spin are bosons, particles with half-integer spin are fermions (Pauli's spin-statistics

theorem [189, 238]).

Indistinguishability implies that we cannot decide which particle is in what quan-

tum state. The only information which we can hope to measure is how many particles

occupy a particular state. From Eq. 2.2 directly follows that two fermions can never

occupy the same quantum state (Pauli's exclusion principle),

A(...Ea...Ea...) = -A(...Ea...Ea...)

A( .. E . . .Ea . . .) = 0 for Fermions (2.3)

For bosons, no such restriction applies. We can then fully specify a collection of

N bosons by giving the particle numbers nk occupying each quantum state Ek (with

E• ni = N). For example, if we have two bosons, and we know that state E1 and
state E2 is each occupied, the total wavefunction of the system is

1
,, = (, X2)= 1)EI(X 1) E2 (2)+ -- E1 (X2) E 2 (x 1)) (2.4)

However, if we know that only state E1 is occupied (nl = 2), the wavefunction reads

D2,0(XX2) = 2 E1 (Xl)'OE1 (X2) (2.5)

Note that for correct normalization, there is no factor -- in front. For a general state

of N bosons, the basis states specifying state El occupied nl times, state E 2 occupied



n2 times, etc., is

nn2..oo (1, ,XN) nl!n2 .1 .n ) 1/2

E1...EN
(n1n2..n.o,)

(2.6)
where the sum is over all different distributions of N particles over the states, with nl

particles in state 1, n2 in state 2 etc. There are N!/nl!n2! ... noo! such arrangements,

which explains the normalization factor.

For fermions, the Pauli principle states we will never have more than 1 particle

occupying a given state, nk = 0 or 1. Two fermions in two distinct states El and E 2

are described by the fully antisymmetric wavefunction

1
I1 (OE1 (X1)E 2 (X2) - OE1(x 2 )V)E 2 (Xl))

For N fermions, the basis states can be conveniently written in terms of

determinant,

(2.7)

a Slater

VEE1(X1) (El1(X2)
1 E1/(x) 1IE((2)

fnln2.... (x,...,xN) = ) 2(X)

OEN(X01) EN(X2)

This ensures the required antisymmetry under exchange of

nates.

E... OI(XN)
... O (N)

-.. EN (N)

(2.8)

any two particle coordi-

Many-particle operators

Consider a typical operator ta(xa) in standard "first" quantization (for example the

kinetic energy or an external potential), that we constrain to act only on the coor-

dinate xa of the ath particle. The fully symmetric operator with respect to all N

particles is
N

T = Eta
a=1

(2.9)

It is not hard to see that this operator only allows transitions of the many-body state

for which the occupation numbers nk are either unchanged or those in which the

occupation of one state is reduced by one and that of another state is augmented

by one (one particle has changed its state). It is a simple exercise to show that for

•E1 (X1) E (X2)... 2 EN (xE N)



example for bosons, in the first case,

(Qnn2 ...nm IT IT , ..In2 ) = (kl t lk) nk (2.10)
k

For the second case, one finds

()ni... n...n•-1...I T ...n-1...nj) = (i t j) V/ (2.11)

One can imagine that keeping track of all the factors JVf etc. in calculations

can get extremely tedious, especially when two-particle operators are introduced that

act on two particle coordinates. Second quantization provides a very elegant way

of "book-keeping" for these combinatoric factors arising in calculations as well as

ensuring the correct full (anti-)symmetry of the many-body state.

Second quantization

For this, a natural set of basis states is defined:

Inln 2 ... n* ) =_ ) In2) ... In.) (2.12)

which describes nl particles in state 1, n2 in state 2 etc. For bosons, all occupation

numbers are allowed. One associates particle "creation" and "annihilation" operators

ak and ak to each mode Ink) that satisfy the commutation rules

[atI] = 0ký- - 0
[ak, aj] - 0

[ak, at = ] ij for bosons (2.13)

where [A, B]_ = AB - BA. These are the same commutation rules as for the creation

and annihilation operator of a harmonic oscillator. Thus, they act just in the same

way, namely by raising and lowering the number of particles in state Ek: a Ink) =

Vnk+ 1T Ink + 1), ak Ink) = V-k Ink - 1), and especially ak 10) = 0, where 10) is the

vacuum state. atak is the number operator.

For fermions, the occupation numbers are necessarily nk = 0 or 1. This is ensured

if the following anticommutation rules are imposed on the fermionic operators ct, Ck:



[ck, cj]+ = 0

[ck, C] = 6ij for fermions (2.14)

where [A, B], = AB + BA. We see that for fermions, ckct = 0, which is again

Pauli's exclusion principle. It also follows ct 10) = I1), c 1) 0, Ck I1) = |0) and

ck 10) = 0.
As an example, for N non-interacting (and spinless) bosons confined in a box, the

(unnormalized) ground state will simply be

IWbsons -= (ao) 10, 0, 0,...) c IN, 0, 0, ...) (2.15)

with ao the creation operator for the single-particle ground state with k = 0. That

is, all bosons occupy the same state: this is the Bose-Einstein condensate. Fermions,
on the other hand, cannot occupy one and the same single-particle state and need

to arrange themselves in different states. At zero temperature, N fermions will thus

occupy the N lowest single-particle states:

\T r'mions= -1 c 0,0,0,...) oc 11,0,0,... (2.16)
k<kF N times

with kF defined such that Ek<kF N.

Many-particle operators in second quantization

With these definitions, it turns out that we can now represent the operator T from

above by the second quantized operator

SE (ij tIj) altaj (2.17)
i,j

Indeed, the matrix elements of T in the states Inln2... n* ) are identical to the ones

of the first quantized operator T in Eqs. 2.10 and 2.11, as is easy to check. A many-

body hamiltonian involving the kinetic energy operator t(x) and a potential V(Xa, Xb)



can thus be written as

HI = (ij t jj) acaj + E ataj (ijj V Ikl) alak (2.18)
i,j i,j,k,l

where the ordering in the last term is important if we deal with fermions (replacing

the bosonic operators ak with the fermionic ones ck).
Introducing the field operators x1(x) = Ek 'k(x)ak and t (x) = Ek OPk(x)tat one

can rewrite H as'

H =J d3x( t(x)t(x)'(x) + ! d3xd3x't(x)1 t(x')V(x, x')'(x')'(x) (2.19)

In this form, the origin of the name "second quantization" is apparent: The

hamiltonian is "disguised" as the expectation value of operators t(x) and V(x, x') in a

state described by a wavefunction Q(x). However, here, Q(x) and iit(x) are operators,
not wave functions, and t(x) and V(x, x') are complex numbers, not operators.

2.1.2 Bose-Einstein versus Fermi-Dirac distribution

The postulate of statistical mechanics states that an isolated system in equilibrium

is equally likely to be found in any of its accessible states. Accessible states are those

that are consistent with the specified number N and total energy Etot of the system

(micro-canonical ensemble). However, it is often convenient to consider a system

in contact with a reservoir, with which it can exchange particles and energy (grand

canonical ensemble). The probability that the system is in any state with particle

number N and energy Etot is then given by the Boltzmann factor e - (Etot -iN)/kBT,

where the temperature T and the chemical potential Mi are imposed by the large

reservoir.

For non-interacting particles with single-particle spectrum Ei, Etot for the many-

particle state Inln 2 ... no) is thus simply given by E- naE 2 . The grand canonical
partition function Z is then

Z = E{ni} e-(I Ein-/n)/kBT (2.20)

= {ni} i e-ni(Ej-A)/kBT (2.21)

'To simplify the notation, we assume here that x denotes a spatial coordinate.



For bosons, all ni run from 0 to oo, so that

ZB = 1 - e - (E - )/kBT (2.22)

For fermions, the only possible values for ni are 0 and 1, so that

ZF = J(1 + e-(Ei-I)/kBT) (2.23)

The average occupation of state i is then

(n) = nZT 1 (2.24)
S= kT e(Ei -L)/kBT : 1(

again with the upper sign corresponding to bosons, the lower sign to fermions. These

are the Bose-Einstein and Fermi-Dirac distributions, respectively. Typically, the num-

ber of particles is fixed, which can be achieved by choosing p such that N = ji (ni).

2.1.3 Ideal Bose and Fermi gases in a harmonic trap

Let us now consider particles confined in a harmonic trap, with trapping potential

V(r) = -m(w x2 + w2y2 + w(z 2) (2.25)
2

Typical values in our experiment are w, = 27r 20 Hz and wx = wy = 2r. 100 Hz. The

single particle spectrum is

E wnx,n - n+ + + n,+ ) z] (2.26)

We will assume that the thermal energy kBT is much larger than the level spacings

hwx,y,z. In this case, sums over discrete states can be replaced by integrals over phase

space, which is divided in cells of size h. The occupation of phase space cell {r, p} is

then given by the semi-classical distribution

1
f(r,p) = (2.27)

e P+V(r)-A /kBT T 1



The density distribution of the gas (for bosons: not including the condensate) is

n(r) = (2irh)3 f(r, p)

= - PolyLog (3/2, fe( ' - V (r))/kBT) (2.28)
dB

where 2 is the de Broglie wavelength and PolyLog(n, A) is the nth-order Poly-

logarithm, defined as

1 d 1 o 1 d qn-1
PolyLog(n, A) d-- - --2 1 dqq (2.29)

7r er2/A- 1 F(n) 0  eq/A -

where the first integral is over 2n dimensions, r is the radius vector in 2n dimensions,
n is any positive half-integer or zero and F(n) is the Gamma-function 2. Note that

expression 2.28 is correct for any potential V(r). However, we still need to relate the

chemical potential to the given particle number

N = f d3r n(r) (2.31)

For a harmonic potential 2.25, we obtain using Eq. 2.30 (see footnote below):

N = (k )PolyLog(3, + e"/kBT) (2.32)

with ( = (W WxW )1 /3 the geometric mean of the trapping frequencies.

In the classical limit at high temperature, both density distributions go over to

the Maxwell-Boltzmann result, that is

N - E2•1(2 2 kBT
n1I (r) =e- (2 r)3 /2 /i with = (2.33)

(2-7r)3/2axg y zx7,y,z 2yW2,z

so density is given by the number of particles times the classical probability to find a
2Special cases: PolyLog(O, A) = -1,1' PolyLog(1,A) = -Ln(1 - x), PolyLog(2, A) = Li2(A),

the Dilogarithm. We see that f(r,p) can be written as +PolyLog(0, ±e(G-P--V(r))/kBT). A useful
formula for integrals over Polylogarithms is

L dr PolyLog(n, A e- 2 ) = V PolyLog(n + ) (2.30)

which can be quite directly seen from the definition Eq. 2.29. Limiting values: PolyLog(n, A) -•<x< A
and -PolyLog(n, -A) --x-oo r(~ n(A).



particle at point r, which is simply a gaussian for a harmonic potential.

However, as the temperature decreases, the central density grows to the point

where the de Broglie waves of different particles start to overlap and we enter the

regime of quantum degeneracy. For bosons, it is at this point that the ground

state becomes macroscopically occupied, the condensate forms. As the number of

condensed atoms No grows to be significantly larger than 1, from Eq. 2.24 we find the

relation between No and the chemical potential p = - . For No large, p will be

much closer to the ground state energy than even the first excited harmonic oscillator

state. We can thus set p = 0 in the expression for the non-condensed density nth and

number Nth and obtain

nth(r) =- PolyLog(3/2, e- V(r)/kBT) (2.34)

Nth = N(T/Tc) 3  (2.35)

with the critical temperature

Tc - h (N/((3))1/3 = 0.94 hiNg1/ 3  (2.36)

where ((3) ; 1.202. The maximum density of the thermal cloud is capped at the

critical value n = 2.612/A'B: The gas is a quantum saturated vapor. The density

profile of the thermal cloud is a bit more peaked than a gaussian, a direct effect of

bosonic stimulation at low momenta [232]. The condensate fraction is given by

No/N = 1 - (T/Tc)3  (2.37)

We note that for T/Tc = 0.5 the condensate fraction is already almost 90%. The

density profile of the condensate is simply given by the square of the ground state

wave function of the harmonic oscillator:

2
No - (2.38)

nc(r) = e / a (2.38)

where ao, = - are the harmonic oscillator lengths. The width of the conden-

sate profile is much smaller than that of the thermal cloud, a 1 /ai= - <  1,

and the central density of the condensate is much larger, nc(O)/nth(O) OC N oAd c

vN-(T )3/2(1- (T/Tc) 3). Condensation in a harmonic trap thus results in a dramatic

change in the density profile of the bosonic gas, the condensate is clearly visible as a



central dense feature in the cloud. We will see below that this qualitative signature

of condensation survives in the presence of weak interactions, but is no longer true in

the case of strongly interacting gases (see chapter 5).

For fermions, nothing dramatic happens around the degeneracy temperature.

The occupation of available phase space cells approaches 1 in a smooth fashion.

Accordingly, the density profile smoothly changes from its gaussian form at high

temperatures to its zero temperature shape given by

n = 1 k ( 1-E (2.39)

with the Thomas-Fermi radius R 2  = 2 , the Fermi wave vector kF = 2mEF/h2

and the Fermi energy defined by the number of fermions N,

N = d3r nF(r) - (F) (2.40)

or EF = hC(6N)1/ 3. All these equations can be directly obtained from n(r) =
rd k ( u e3 h2 kF(r)2

kk h)3 F -= kf(r) using the local Fermi energy at point r, eF(r)= 2m

EF - V(r).

2.2 Interacting gases

At low temperatures, the stable phase for practically all substances is the solid. The

only exception to that rule is helium, which remains a liquid even at zero temperature,
due to the large zero-point motion of the very light atoms. But even though the gas

phase is only metastable, at the ultralow densities we deal with in our experiments

it can take minutes until the gas solidifies. The reason is that three-body collisions

are needed to form molecules and larger clusters, and these collisions are extremely

rare at our densities3 of - 1012-15 cm- 3. However, two-body collisions are important

even at these low densities. Elastic collisions between atoms redistribute momenta,
allowing thermalization of the gas, and let particles experience attraction or repulsion

from the surrounding gas. Inelastic collisions between two particles lead to a change

in the internal state of one or both collision partners, leading to trap loss. These

collisions are unwanted but can be eliminated by working with the lowest internal
3This is only true away from scattering resonances. If a weakly bound molecular state is available

to the atoms, three-body collisions can populate this state efficiently, even at our low densities.



energy states of the atoms.

2.2.1 Elastic collisions

If we neglect the weak magnetic dipole interaction between the spins, the interatomic

interaction is described by a central potential V(r). At large distances from each

other, atoms interact with the van der Waals-potential -C 6/r6 as they experience

each other's fluctuating electric dipole4 . At short distances on the order of a few

Bohr radii ao, the two electron clouds strongly repel each other, leading to "hard-

core" repulsion. If the spins of the two valence electrons (we are considering alkali

atoms) are in a triplet configuration, there is an additional repulsion due Pauli's

exclusion principle. Hence, the triplet potential VT(r) is shallower than the singlet

one Vs(r).

The exact inclusion of the interatomic potential in the description of the gas would

be extremely complicated. However, the gases we are dealing with are ultradilute:

The range of the interatomic potential ro (on the order of the van der Waals length

ro "~ (pXC6/h 2) - 50 ao for 6Li) is much smaller than the interparticle distance n - 1/3

5 000-10 000 a0o. Also, our samples are ultracold, that is, typical collisions occur at low

relative momenta k < 1/ro with an associated de Broglie wavelength A = 27r/k > ro.

The scattering particles thus never explore the fine details of the short-range scattering

potential. The entire collision process can thus be described by a single quantity, the

scattering length.

What follows is a quick reminder on scattering theory including the definition of

the scattering length.

The scattering amplitude

The Schrodinger equation for the reduced one-particle problem in the center-of-mass

frame of the colliding atoms (with reduced mass m/2 and distance vector r) is

(V2 + k2) (r) = v(r)I(r) with k2  2  and v(r) = mV(r) (2.41)

Far away from the scattering potential, the wave function I(r) will be given by the

sum of the incident plane wave eik'r and an outgoing scattered wave, which satisfies
4 For distances on the order of or larger than the characteristic wavelength of radiation of the

atom, A > ro, retardation effects change the potential to a -1/r 7 law.



(V2 - k2)pout(r) = 0:
ikr

T(r) = eik'r + f(k, k')e (2.42)
r

f(k, k') is the scattering amplitude for scattering an incident plane wave with wave

vector k into the direction k' (energy conservation implies k' = k). The probability

per unit time for the scattered particle to traverse the surface element dS = r2dQ

is vlf2 /r 2dS = vI fl2 dQ (v is the incident - and final - velocity). Dividing by the

incident particle flux we arrive at the differential scattering cross section

da = If 2dQ (2.43)

Since we deal with a central potential, the scattered wave must be axially symmetric

with respect to the incident wave vector k, that we choose to lie in z-direction (no

azimuthal q-dependence). We can thus expand '(r) into the basis of free spherical

waves with angular momentum corresponding to quantum numbers 1 and zero z-

projection [145]:

T (r) = Z P(cosO)Rkl(r) (2.44)
1=0

The radial functions Rkl(r) verify a radial Schrodinger equation containing the po-

tential V(r) and the centrifugal potential h21(1 + 1)/mr 2 that depends on the angular

momentum quantum number 1. Far way from the potential, the Rkl(r) must behave

like
1 7r

Rk(r) oc -sin(r - 1- + ±6) (2.45)
r 2

The incident plane wave can also be expanded like 2.44, but here 56 = 0. The entire

effect of the potential V(r) on the incoming wave is thus to add a phase shift J, to

each spherical wave with angular momentum I. This quite remarkable result allows

us to write the scattering amplitude entirely in terms of the 6J:

00

f() = Z(21 + 1)(e2i6L 1)Pl(cos0) (2.46)
1=0

The total cross section is given by

47= 1(21 + 1)sin2 61  (2.47)
1=0

For our ultracold collisions, we are interested in describing the scattering process at



low momenta k < 1/ro, where ro is the range of the interatomic potential. That is, the

particles do not have enough energy to resolve the fine details of the potential (their

de Broglie wavelength L being much larger than the size of these fine details). Using

the radial Schrodinger equation one can show that for low momenta 6,1 k21+1 and

thus each partial wave f, = 1 (e2iSl - 1) appearing in 2.46 behaves like f' - k21.

In the absence of resonance phenomena for 1 : 0, s-wave scattering I = 0 is dominant

over all other partial waves:

f Pfo = (e2ib° - 1) (2.48)
2ik

We already know that at low momenta, 6o , k. It is thus useful to define the scattering

length
tan b0

a= lim (2.49)
k<«1/ro k

with which we can rewrite f as

f a (2.50)
1 + ika

In the limit ka < 1, f becomes independent on momentum and equals -a. For

ka > 1, the scattering amplitude is limited by f = - and the cross section o- =

This is the so-called unitarity limit.

Consequence of quantum statistics

If the colliding particles are identical, there are two scattering processes with the

same outcome: direct and exchange scattering. In the case of bosons, the two-particle

wave function needs to be symmetric and we have to add the corresponding scattering

amplitudes. For fermions, the wave function needs to be antisymmetric, so we have to

subtract the amplitudes. Partial waves of even angular momentum quantum number

are symmetric under exchange, those with odd 1 are antisymmetric. It follows that

the total scattering amplitude for bosons only contains (twice) the even terms in

the partial wave expansion, whereas for fermions it only contains (twice) the odd

terms. The total s-wave scattering cross section for two identical bosons is a = 87ra 2,

while for two identical fermions the s-wave scattering cross section is identically zero.

This means that a polarized Fermi gas at ultracold temperatures is essentially non-

interacting.



Pseudo-potentials

If the de Broglie wavelength 2 of the colliding particles is much larger than the

fine details of the interatomic potential, 1/k > ro, we can "cheat" a bit and modify

the potential in such a way that it is much easier to manipulate in the calculations,
but still reproduces the correct s-wave scattering. An obvious candidate for such a

"pseudo-potential" is a delta-potential 5(r). However, there is a subtlety involved

which we will address in the following. The goal is to find an expression for the

scattering amplitude f(k, k') in terms of the potential V(r) = h2 (r, so that we can

try out different pseudo-potentials, always ensuring that f -- -a in the s-wave limit.

For this, let us go back to the Schrodinger equation Eq. 2.41. If we knew the solution

to the following equation:

(V 2 + k2)G(r) = 6(r) (2.51)

we could write an integral equation for the wavefunction T(r) as follows:

(r) = eikr + / dr'G(r - r)v(r)1(r') (2.52)

This can be simply checked by inserting this implicit solution for ' into Eq. 2.41.

G(r) can be easily obtained from the Fourier transform of Eq. 2.51, defining G(p) =

f d3re-ip'r G(r):

(-p 2 + k2)G(p) = 1 (2.53)

The solution for G(r) is

I d3p eip 'r  1 eikr
G+(r) d 3  -• i - er (2.54)

(27)3 k2 - p2 + i 4 r

where we have chosen (by adding the infinitesimal constant i77, with 77 > 0 in the

denominator) the solution that corresponds to an outgoing spherical wave, which is

what we need. G+(r) is the Green's function of the scattering problem. Far away

from the origin, Ir - r'l - r - r' -u, with the unit vector u = r/r, and

ikr f

xek,+(r) eik 'r - d 3 r'e-ik'-r'V (r1)k,+(r') (2.55)
47rr J

Now using the definition of the scattering amplitude in Eq. 2.42, this gives us a

formula for f(k,k'):

f (k, k') = 1 d3 re-ikr' v(r' )k,+ (r) (2.56)4f(k, k')



The fourier transform of the product v(r') k,+(r') equals the convolution of the fourier

transforms of both factors, v(q) and Ik(q):

f (k, k') = - - J v(q)rk(k' - q) (2.57)

On the other hand, Ik(q) satisfies the integral equation Eq. 2.52 written in momen-

tum space:

Tk(P) = (2r)3 6(p - k) + k2 _ p2 + ij ý v(q)'k(k' - q) (2.58)

4xrf(k, k')= (2ir) 3 6(p - k) - k2 (2.59)P - p2 + i?7

Multiplying by v(q - p), integrating f d and relabelling yields

-4irf (pk) (-k)-/4 d3q v(p - q)f(q, k) (2.60)

S(2r)3  k2 - q2 +irq

This is an integral equation for f in terms of the potential v, useful to perform

perturbation expansion. If we only keep the first order in v, we obtain the scattering

amplitude in Born approximation:

f(p,k) = -- v(p - k) (2.61)
4r

which is simply given by the fourier transform of the potential, evaluated at the

transferred momentum vector p - k. For a delta-potential V(r) = Vo 6(r), we

obtain as f -- -a
4-,rh 2a

V0= 2(2.62)

However, already the second order term in the expansion of 2.60 would not converge,
as it involves the integral f d3 . The reason is of course that the 6-potential does

not fall off at large momenta (ultra-violet divergence). Any physical potential does

fall off at some large momentum, so this is not a "real" problem. We can formally

work with the fourier transform Vo of the delta-potential in the following, but if we

are to calculate physical quantities, we should replace it in favor of the observable

and meaningful quantity a using the formal prescription

1 m m d3 q 1
S4 2a 2  (2) 2 (2.63)Vo 47rh2a h2 (27)3 q2



(for this, use the limit k = p = 0 in Eq. 2.60 and replace f -- -a). We will always

find that the diverging integral is exactly balanced by another diverging integral in

the final expressions, so this is a "sane" procedure [74, 115].

2.2.2 The interacting Bose gas

We are now in the position to formulate the problem of an interacting Bose gas. The

second-quantized hamiltonian reads

/= d1r t(r)(- 2--- + Vext(r))W(r) + d'3r d3r't(r)t(r')V(r, r')(r') (r)
2 m 2

(2.64)

where Vext(r) is the external trapping potential of Eq. 2.25 and V(r', r) = V(r - r')

is the interatomic potential, for which we can choose the Pseudo-potential V(r) =

g6(r) of the preceding section. As long as we work in real space, we can safely set

g 4'A 2  We will limit our discussion to the case of repulsive interactions, relevant

to our experiment. Let us assume that even in the interacting system, there still

is a macroscopic occupation of a single-particle state 0(r). That is we set I(r)

V(r) + J5(r), with O(r) being the thermal average of xF(r) in the many-body state:

(r) = K (r)), and 65(r) represents the fluctuations around this "mean-field".
Neglecting these fluctuations leads to the time-dependent Gross-Pitaevskii equation

for V4(r, t):

ih 0(r, t) = -2 + Vext(r) + g |(r, t) 2  /(r, t) (2.65)

Its validity is limited to weakly interacting gases, for which na3 < 1. In typical exper-

iments on alkali BECs, this condition is very well fulfilled. For a sodium BEC with

n ; 1014 cm -3 and a = 3.3 nm, we have na3  4 10-6. However, for the molecular

condensates produced in our experiment, the scattering length can be tuned at will,
so this condition can be violated. We will see in section 2.3 how to approximately

describe this regime.

The ground state wave function can be obtained from Eq. 2.65 by setting 0(r, t) =

e-itt/h4'(r):
(h 2v 2  )

2m + Vext(r) + g IV(r)) 2 (r) = pb(r) (2.66)

In the Thomas-Fermi approximation, it is assumed that the condensate wave function

is only slowly varying in space such that one can neglect the kinetic energy term.

This is valid as long as interactions , gn dominate over the zero-point motion of

the particles - hw. Already for weakly interacting alkali gases, this condition is very



well fulfilled (not too close to the edge of the condensate), with typical interaction

energies in our experiment of gn - 150 nK and hw, u 4 nK. In this approximation

we obtain the condensate density n,(r) = 1i(r) 12:

n(r) = max ( V(r), 0  (2.67)

The chemical potential p is constrained by the normalization condition on n,(r):

N = f d3r nc(r). For the harmonic trapping potential of Eq. 2.25, we obtain (compare

with the expression for a Fermi gas, Eq. 2.39)

nc(r) = no0 1 - (2.68)

with the central density nco = •/g, the Thomas-Fermi radii Ri = and

1 15Na)
2/5

= ~ 5Nah.o. (2.69)

where ah.o. = (axaYaz)1/3 is the geometric mean of the harmonic oscillator lengths.

Interactions thus have a major effect on the shape of the Bose-Einstein condensate.

Instead of a gaussian, the density profile is now parabolic. The size of the condensate

is no longer given by the harmonic oscillator length but by the much larger Thomas-

Fermi radius R,,z = a,,z ( 15Na The parameter 1/ 6 for a typical

sodium BEC. However, such weakly interacting condensates are still considerably

smaller in size than a thermal cloud, as long as T > p1 /kB, and more dense: At T = 0,

the density of a typical sodium BEC is an order of magnitude higher than the density

of a thermal cloud at Tc. We conclude that the condensate in weakly interacting,

trapped Bose gases can still be detected as a dense, central feature emerging in the

midst of a large thermal cloud. In the case of strong interactions, when t1 becomes

comparable to (kB times) Tc, this direct signature will be considerably weaker (see

chapter 5).

At finite temperatures, the question arises whether interactions in the thermal

cloud, and between the thermal cloud and the condensate have to be taken into

account. In alkali BECs, gnth kBT(ntha3 )1/3 < kBT, so one can neglect

interactions in the thermal cloud. The condensate is also practically unaffected by

the thermal cloud. In turn, however, the condensate has quite a strong effect on

the thermal atoms, as gnc = -i can be on the order of kBT. The thermal cloud



thus experiences the "mexican hat" potential Vext(r) + 2gn,(r), it is repelled by the

condensate (the factor of two coming from the exchange term, see section 2.2.1). In

more strongly interacting gases, a self-consistent mean-field approximation could be

carried out by including the self-interaction of the thermal cloud and its effect on

the condensate. For very strong interactions, the mutual repulsion can lead to an

essentially complete separation of the thermal cloud and the condensate. Imbalanced

Fermi mixtures allow to clearly demonstrate such a dramatic repulsion, see chapter 7.

Bogoliubov transformation for the interacting Bose gas

We will now turn to another point of view of the interacting Bose gas at zero tem-

perature, given by Bogoliubov [32]. It allows the identification of the elementary

excitations of the system, thereby giving a natural explanation for superfluidity. It

also introduces the concept of quantum depletion, about which we will have more to

say in the following chapters. Lastly, it will be interesting to compare this description

to the BCS case in the following section.

The model hamiltonian considered by Bogoliubov describes a dilute Bose gas

confined in a box of volume 2:

8= kat ak • t mak+1-m (2.70)
k k,l,m

where Ek = 42 is the free particle spectrum and the notation Vo for the Fourier

transform of the pseudo-potential reminds us that we have to correctly renormalize

the interaction according to Eq. 2.63 when calculating physical properties.

As we did before, we assume a macroscopic occupation of the ground state k = 0

and can thus replace

ao, oat --+ /V o (2.71)

with No the ground state occupation number. It is supposed that No ; N, the total

number of particles. With that assumption, and keeping only terms of order N or N2,

the hamiltonian becomes quadratic in the operators ak, al. Bogoliubov showed that

this hamiltonian can be solved exactly by introducing a canonical transformation of

the operators ak, at:

ak = UkC~k - Vkk at = Uktk - Vk-k (2.72)

The new operators 0 k, ak also obey the bosonic commutation relations [k, ] =
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Figure 2-1: Excitation spectrum of the weakly interacting Bose gas. For low momenta
p < mc, excitations are sound waves with linear dispersion Ek = chk (dashed line).
At large momentum transfer p > me, excitations are free-particle like (dotted line),
with energy offset M2.

6kk' and [ak, ak] = [a, at] 0. For a judicious choice of the real parameters Uk

and vk the hamiltonian can be transformed into

H = EEk ( t k + atkt (2.73)

k

The correct choice is Uk = cosh k, Vk = sinh Ok, with tanh 2 0k = and /- = ng

from the preceding section. From the commutation relations for ak, at immediately

follows that atkak has eigenvalues 0, 1, 2,... and thus Eo represents the ground state

energy and Ek is the excitation spectrum of the hamiltonian. The ground state is

defined by ak O) = 0 for all k # 0 and can be thought of as the "quasi-particle

vacuum". One finds for the average energy per particle, with the particle density

n = N/Q,
Eo 2=rhan 1 + ) (2.74)
N m 15 ir

The first term in this expression is simply pt, which we could have obtained from the

preceding perturbation treatment. The second term is the Lee- Yang correction [148],

which is nonanalytic in the interaction parameter na3 and thus cannot be obtained

from perturbation theory.

The excitation spectrum Ek is given by (see Fig. 2-1)

Ek -[(Ek )2 - /_2] 1/2 (2.75)



which has the two limiting cases

V Ak k 0Ek { ; k-4 (2.76)
Ck + I, k-- 00

The long-wavelength excitations are thus sound waves with a speed of sound c =

/tr/m. At large momenta, the excitations correspond to free particles excited above

the condensate mean-field ~.

Quantum depletion

Even in the ground state, the particles are not all condensed in the same single-particle

state k = 0. Indeed, ak IO) = -vka-k 10) $ 0 and thus the ground state contains

particles in excited k-states. This number of excited particles is -N = .8 _3

N 3 "r

For a typical sodium BEC, it is less than 1%. Again, however, for our molecular

condensates this number can in principle be large. Of course, once na3 is no longer

small compared to 1, the approximation of weak interactions is no longer allowed.

Let us point out that the particles populating nonzero k-states are not to be confused

with thermally excited particles. They are in fact perfectly correlated admixtures to

the many-body wave function. One can show that these admixtures occur in pairs of

opposite momenta (k, -k), which one could probe by noise correlation experiments.

If the range of available k-states is restricted, for example by imposing a weak lattice

potential that singles out certain k-directions, the quantum depleted part of the many-

body wavefunction should lead to a distinct structure in the interference pattern of

expanding condensates5 [96, 254].

Superfluidity in weakly interacting Bose gases

With the aid of the excitation spectrum we are now able to argue that weakly inter-

acting Bose gases must show superfluidity. The well-known Landau criterion states

that, given a dispersion relation Ek of the medium, an object moving at a velocity

v smaller than vc = mink Ek/hk cannot scatter from the medium. For free particles

(hence also for the Bose-Einstein condensate in an ideal gas), Ek - k2 and thus vc = 0.

However, for the weakly interacting Bose gas, we find vc = c > 0, and thus for particle

velocities smaller than v it is a frictionless superfluid. Indeed, superfluidity of weakly
5This structure should be distinguished from the Bragg peaks due to atoms in the macroscopically

occupied single-particle state and from the incoherent (spherically symmetric gaussian) background
due to atoms localized in single lattice sites



interacting Bose gases has been studied for example by creating a single vortex in a

two-component BEC [164, 11], through impurity scattering [58, 179] and as a most

spectacular demonstration via the creation of vortex lattices [160, 2, 120, 87]. The

origin of quantized vortices will be discussed in chapter 6.

2.2.3 Fermi gases with attractive interaction: Cooper insta-

bility

The non-interacting Fermi gas did not show any phase transition down to zero temper-

ature. One might assume that this qualitative fact should not change as interactions

are introduced. This is true in the case of repulsive interactions. For attractive in-

teractions, the situation is, however, dramatically different. By taking advantage of

the attraction, the fermions regroup into pairs, which can then form a condensate.

The idea of pairing might be natural, as tightly bound pairs of fermions can

be regarded as point-like bosons, which should condense according to the preceding

section. However, for weak attractive interaction - as is the case for the electron-

electron interaction in metals - it is not evident that a paired state exists. Indeed,

we will see in the following that in three dimensions there is no bound state for two

isolated particles and arbitrarily weak interaction.

Two-body bound states in 1D, 2D and 3D

Localizing a quantum-mechanical particle down to a certain range R leads to an

increased momentum uncertainty of p - h/R at a kinetic energy cost of about ER =

p2/2m = h2/mR 2. Clearly, a shallow potential well of size R and depth V with

V/ER - E < 1 cannot confine the particle within its borders. But we can search for

a bound state at energy EB < ER of much larger size rB = 1/k h- /h 2/2mEB > R.

* In 1D, the bound state wavefunction far away from the well necessarily behaves

like e±k, for negative (positive) x (see Fig. 2-2a). As we traverse the well,

the wavefunction has to change its slope by 2k over a range R. This costs

kinetic energy h24"(x)/2m/ e' h2k/mR that has to be provided by the potential

energy -V (here, 4 is the average value of O(x) in the well). We deduce that

k P mRV/h 2 = c/R, the size of the bound state rB ; R/E is indeed much larger

than the size of the well, and the bound state energy EB ; -ER E2 /2 depends

quadratically on the weak attraction -V. Importantly, we can always find a

bound state even for arbitrarily weak (purely) attractive potentials.
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Figure 2-2: Bound state wavefunctions in 1D, 2D and 3D for a potential well of size R
and depth V. In 1D and 2D, bound states exist for arbitrarily shallow wells. In terms
of the small parameter c = V/ER with ER = h2/mR 2 , the size of the bound state
in 1D is R/e. In 2D, the bound state is exponentially large, of size Re- 1/. In 3D,
due to the steep slope in u(r) = rTI(r), bound states can only exist for well depths
V3D larger than a certain threshold V, , ER. The size of the bound state diverges as
RER/(V3D - Vc) for V3D > Vc.

* In 2D and for a spherically symmetric well, the Schrodinger equation for the ra-

dial wavefunction 0(r) outside the well reads lar(raor) = k24. The solution is

the modified Bessel function which vanishes like e-kr as r > 1/k (see Fig. 2-2b).

For R < r < 1/k, we can neglect the small bound state energy EB O kc 2 COm-

pared to the kinetic energy and have a,(rO') = 0 or O(r) z log(kr)/log(kR),
where 1/k is the natural scale of evolution for O(r) and we have normalized 0
to be of order 1. Note that in 2D, it is not the change in the slope 0' of the

wavefunction which costs kinetic energy, but the change in r4"'. Inside the well,
we can assume 0(r) to be practically constant as V < ER. Thus, ro' changes

from ; 1/log kR (outside) to ; 0 (inside) over a distance R. The corresponding

kinetic energy cost is '
2 ar(r') 0 h2/2mR 2 log(kR) = ER/2log(kR), which

has to be provided by the potential energy -V. We deduce k r e-cER/ 2 V and

EB , ER e- ER/V with a numerical constant c on the order of 1. The particle is

extremely weakly bound, with its bound state energy depending exponentially

on the shallow potential -V. Accordingly, the size of the bound state is expo-
nentially large, rB , RecER/ 2V. Nevertheless, we can always find this weakly
bound state, for arbitrarily small attraction".

6 Mathematically, the condition for the potential V(r) to allow a bound state in 2D requires the
integral fo rV(r)dr to be finite [145].



V
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rB

EB = -

< ER

e-r/rB

V/ER
-V2/En

< ER

Ko( -- logr/rB, R < r < rB
e- r/rB) r > rB

Re-cER/
2V

-ERe-cER/V

3D
> Vc J ER

e - V/TB

-(V - Ve) 2/ER

Table 2.1: Bound states in 1D, 2D and 3D for a potential well of size R and depth
V. Vp(r > R) is the wave function outside the well, rB is the size of the bound state,
and EB its energy (ER -= h2/mR 2).

* In 3D and for a spherically symmetric well, the Schrodinger equation for the

wavefunction 0 transforms into an effective one-dimensional problem for the

wavefunction u = r0 (see Fig. 2-2c). We might now be tempted to think that

there must always be a bound state in 3D, as we already found this to be the

case in 1D. However, the boundary condition on u(r) is now to vanish linearly

at r = 0, in order for 0(0) to be finite. Outside the potential well, we still

have u oc e - kr for a bound state. Inside the well the wavefunction must fall

off to zero at r = 0 and necessarily has to change its slope from -k outside to

- 1/R inside the well over a distance R. This costs the large kinetic energy

h2u"(r)/2mii ? h2/mR 2 = ER (with ii the average value of u(r) in the well).

If the well depth V is smaller than a critical depth V, on the order of ER, the

particle cannot be bound. At V = Vc, the first bound state enters at E = 0.

As k = 0, u is then constant outside the well. If the potential depth is further

increased by a small amount AV < Vc, u again falls off like e- kr for r > R. This

requires an additional change in slope by k over the distance R, provided by

AV. So we find analogously to the 1D case k ' mRAV/h 2. Hence, the bound

state energy E -AV 2/ER is quadratic in the "detuning" AV = (V - Vc),

and the size of the bound state diverges as rB , RER/(V - Vc). We will find

exactly the same behavior for a weakly bound state when discussing Feshbach

resonances in chapter 3.

The analysis holds for quite general shapes V(r) of the potential well (in the

formulas, we only need to replace V by its average over the well - if it exists -,

-f-oo V(r)dr in 1D, - foo rV(r)dr in 2D etc.). Table 2.1 summarizes the different
cases.

Applying these results to the equivalent problem of two interacting particles col-

liding in their center-of-mass frame, we see that in 1D and 2D, two isolated particles
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Table 2.2: Link between the density of states and the existence of a bound state
for arbitrarily weak interaction. To compare with table 2.1 note that Vo - VR".
Voc 2 ( 2)3/2 is the threshold interaction for the 3D case. The formula for
the 3D bound state energy as a function of scattering length a follows from the
renormalization procedure outlined in section 2.2.1.

can bind for an arbitrarily weak purely attractive interaction. Hence in ID and 2D,
pairing of fermions and their subsequent condensation can in principle be understood

already at the two-particle level. Indeed, one can show that the existence of a two-

body bound state in ID and 2D is a necessary and sufficient condition for a BCS

instability [201]. In 3D, however, there is a threshold interaction below which two

isolated particles are unbound. We conclude that if pairing and condensation occur

for arbitrarily weak interactions in 3D, then this must entirely be due to many-body
effects.

Density of states

What physical quantity decides whether there are bound states or not? To answer

this question, we formulate the problem of two interacting particles of mass m in

momentum space. This allows a particularly transparent treatment for all three cases

at once, and identifies the density of states in the different dimensions as the decisive

factor for the existence of bound states.

Searching for a shallow bound state of energy E = - 2 2 (m/2 is the reduced

mass), we start by writing the Schrodinger equation for the relative wavefunction

h(V2 - k2)4 = VV in (n-dimensional) momentum space:

k(q) = -2 2 +' (2 ) V(q - q')V k(q') (2.77)

For a short-range potential of range R <K 1/k, V(q) is practically constant, V(q)

V/o, for all relevant q, and falls off to zero on a large q-scale of - 1/R. For example,

1D 3D



for a potential well of depth V and size R, we have Vo - VR n . Thus,

k) m Vo 1 [ d q'
kh2 q2 + k2V (27r)n k (q ')  (2.78)

We integrate once more over q, applying the same cut-off 1/R, and can then divide by

the common factor fq<_ )k(q). We obtain the following equation for the bound

state energy E:

1 m dnq 1 1 Pn(E)
Vo h2 q<1 (27Tr)n q2 + k2 E + E(2.79)

with the density of states in n dimensions p,,(), the energy cut-off ER = h2/mR 2

and the volume Q of the system (note that Vo has units of energy times volume).

The question on the existence of bound states for arbitrarily weak interaction has

now been reformulated: As IVol - 0, the left hand side of Eq. 2.79 diverges. If

this equation is to have a solution for any small IVoI, the right hand side needs to

diverge as well as the bound state energy [EJ --+ 0. The question is thus whether

the integral over the density of states in Eq. 2.79 can take on any large value - or

whether it is bound from above. Table 2.2 presents the different cases in 1D, 2D,

3D. In 1D, the integral diverges as 1/V/[i , so one can always find a bound state

solution. The binding energy depends quadratically on the interaction, as we had

found before. In 2D, where the density of states P2D is constant, the integral still

diverges logarithmically as ElJ --+ 0, so that again one can find a solution JEl for any

small jVol. The binding energy now depends exponentially on the interaction and

P2D:
2fl

E2D = -2ER e-P2DývoI (2.80)

However, in 3D the integral is finite for vanishing IEl, and one needs to overcome a

minimum threshold interaction in order to bind the two particles.

These results might give us a hint why there might be a paired state for two

fermions immersed in a medium, even for arbitrarily weak interactions: It must be

that, somehow, the free 3D density of states for the fermions is altered due to the

presence of the surrounding atoms. This is exactly what happens, as will be discussed

in the next section.



Figure 2-3: Cooper problem: Two particles scattering on top of a Fermi sea. a)
Particles with equal and opposite momenta can scatter as shown. The Fermi sea
(grey shaded) blocks possible final momentum states. b) Here, the total momentum
of the two particles q is nonzero. Possible scattering states k + q/2 and -k + q/2
(or, equivalently, k - q/2, see construction) must lie outside the Fermi sea. Only in
the small shaded region (a circle in 3D) can both particles be close to their respective
Fermi surface. In contrast, pairs at rest in a) can take advantage of the entire Fermi
surface.

Pairing of fermions - The Cooper problem

Consider now two weakly interacting spin 1/2 fermions not in vacuum, but on top
of a (non-interacting) filled Fermi sea, the Cooper problem [66]. Momentum states
below the Fermi surface are not available to the two scattering particles due to Pauli
blocking (Fig. 2-3a). For weak interactions, the particles' momenta are essentially
confined to a narrow shell above the Fermi surface. We thus realize that the problem
is effectively 2D, and we should find a bound state for the two-particle system for

arbitrarily weak attractive interaction. The effective "2D" density of states should be

P3D(EF), the density of states at the Fermi surface.

In principle, the two fermions could form a pair at any finite momentum. However,
considering the discussion in the previous section, the largest binding energy can be
expected for the pairs with the largest "2D" density of scattering states. For zero-
momentum pairs, the entire Fermi surface is available for scattering, as we can see
from Fig. 2-3a. If the pairs have finite center-of-mass momentum q, the number of
contributing states is strongly reduced, as they are confined to a circle (see Fig. 2-3b).
Consequently, pairs at rest experience the strongest binding. In the following we will
calculate this energy.

We can write down the Schrodinger equation for the two interacting particles as
before, but now we need to search for a small binding energy EB = E - 2EF < 0 on



top of the large Fermi energy 2EF of the two particles. The equation for EB is

-_- - de (2.81)
Vo Q JEF<e<EF+ER 2(E - EF)+ ±EBI

The effect of Pauli blocking of momentum states below the Fermi surface is explicitly

included by only integrating over energies E > EF.

In superconductors, the natural cut-off ER is given by the Debye frequency WD,

ER = hWD, corresponding to the highest frequency at which ions in the crystal lattice

can respond to a bypassing electron. Since we have hwD < EF, we can approximate

P3D(E) • P3D(EF) (a constant just like in two dimensions!) and find:

EB = -2hWD e - 2
Q
/P3D (E F )IV

ol (2.82)

In the case of an interacting Fermi gas, we should replace 1/Vo by the physically

relevant scattering length a < 0 using the prescription in Eq. 2.63. The equation for

the bound state becomes

m 1 [EF+ER P3D(E) 1 E+ER (283)
4Zrh2 a F 2(h - EF) + EBI j i 2E

The right hand expression is now finite as we let the cut-off ER -* oo, the result being

(one assumes IEBI < EF)

SP3D(EF)( log( 2IEB (2.84)
4irh2a 2- 8EF

Inserting p3D(EF) = mkF with the Fermi wave vector kF = V2mEF/h 2 , one arrives

at

EB = -- EF e- r/kFl al  (2.85)
e

The binding energies Eqs. 2.82 and 2.85 can be compared with the result for the

bound state of two particles in 2D, Eq. 2.80. The role of the constant density of

states P2D is here played by the 3D density of states at the Fermi surface, P3D(EF).

As this is largest for zero-momentum pairing (see Fig. 2-3), Cooper pairs at rest have

the largest binding energy.

The result is remarkable: Two weakly interacting fermions on top of a Fermi sea

form a bound state due to Pauli blocking. However, in this artificial problem we

neglected the interactions between particles in the Fermi sea. As we "switch on" the

interactions for all particles from top to the bottom of the Fermi sea, the preceding



discussion shows that the gas will reorder itself into a completely new, paired state.

The Fermi sea is thus unstable towards pairing. The full many-body description

of such a paired state, including the necessary anti-symmetrization of the full wave

function, was achieved by Bardeen, Cooper and Schrieffer (BCS) in 1957 [23]. As we

will see in the next section, the self-consistent inclusion of all fermion pairs leads to

more available momentum space for pairing. The effective density of states is then

twice as large, giving a superfluid gap A that is exponentially larger than IEBI from

Eq. 2.85:

A = - EF e- / 2kFl al  (2.86)
e

2.3 The BEC-BCS crossover

The preceding section has shown that in the many-body problem we can expect

pairing for an arbitrarily weak interaction between fermions. The ground state of

the gas will be a condensate of Cooper pairs as described by BCS theory. For strong

interactions, a true two-body bound state between fermions exists even in vacuum.

Here, we expect a Bose-Einstein condensate of these tightly bound fermion pairs or

molecules to be the ground state of the system. It was realized by Leggett [149],
building upon work by Eagles [85], that the crossover from the BCS- to the BEC-

regime is smooth. This might surprise, as we know from before that two-body physics

shows a threshold behavior at a critical interaction strength, below which there is no

bound state for two particles. In the medium, however, we simply cross over from a

regime of tightly bound pairs to a regime where the pairs are of much larger size than

the interparticle spacing. Closely following the work of [149, 172, 74], we will describe

the BEC-BCS crossover in a simple "one-channel" model, where the scattering length

a is the parameter which "tunes" the interaction. For positive a > 0, there is a

two-body bound state available at EB = -h 2 /ma 2 (see table 2.2), while for a < 0,
corresponding to attractive interaction, pairing is purely a many-body effect. In either

case, for s-wave scattering the orbital part of the pair wavefunction p(rl, r 2) will be

symmetric under exchange of the paired particles' coordinates and will only depend

on their distance Irl - r 2I. We will attempt to find a many-body wavefunction

IF (rl,. .. ,rN) = Ap(Iri - r21)X12 . .· (IrN- - rNI)XN-1,N (2.87)

that describes a condensate of such fermion pairs, with the operator A denoting
the correct antisymmetrization of all fermion coordinates, and the spin function



Xij =- (i) 1. (j).
In second quantization notation we write

-N f d= 3ri ýp(rl --r2) T1(ri)1(r 2) ... " p (rN-1 -rN) I(rN-1)~ (rN) 10) (2.88)
i

where the fields It (r) = Ek Ck eikr. With the Fourier transform p(rl - r 2 )

Zk (pkeik r l e -ik'r2 we can introduce the pair creation operator

bt = kCtCt-kI (2.89)
k

and write

I')_N = btN/ 2 10) (2.90)

In this way, I I)N looks very suggestive, reminding of a condensate of bosonic particles.

However, it is important to realize that the operators bt do not obey the Bose-Einstein

commutation relations and thus do not describe bosons. In fact, we can calculate

[b, bt] = kk' k~ k' [CCtCkI CkTCtk] = 0 (2.91)

[b, b]_ = Ekk' WPkk' [C-klCkT, C-k'ICk'T] = 0 (2.92)

[6, bt] =Zkk' P k C-Pki[ckt, Ctk] _ E ( (- lkT - nk) (2.93)
k

The first two relations are fine, but the third one spoils Bose-Einstein statistics for

the b-particles. Only in the limit where the pairs are tightly bound do the b-particles

correspond to point-like bosons: Here, the pairs occupy a wide region in momentum

space and the occupation nk of any momentum state k is very small (see section 2.3.2

below). Thus, [b, bt]_ Zk 2 = 1.

Working with the N-particle state 1 ')N is inconvenient, as one would face a

complicated combinatoric problem in manipulating the sum over all the ck's (as one

chooses a certain k for the first fermion the choices for the second depend on this

k, etc.). Rather, one passes over to the grand canonical formalism, not fixing the

number of atoms but the chemical potential p, and defines the many-body state:

SI) = EN E ) 1 btN/2 10) = ebt 10)) EN~(N12,! NIIN (N/2)!
_ 

t  
_t

= Ik e'PkCkC -kl 10) = (1 + (Pk ct-kl) 10) (2.94)
k



where the last equation follows from ck2 = 0. If we choose the constant N = Hk U

,k( 1 + cp) 1/ 2 , then I9) becomes a properly normalized state

I'0BCS) = (k + vkCc k) 0) (2.95)
k

with vk = UkPk and IUk 12 + vk 2 = 1. This is the BCS variational wavefunction, first

introduced by BCS to describe condensation of Cooper pairs in momentum space.

From the above derivation, however, it is clear that its applicability encompasses the

entire regime of pairing, all the way towards the limit of small molecules.

2.3.1 Gap and number equation

The variational parameters uk and vk are derived in the standard way by minimizing

the free energy E - pN = H- N• . The many-body hamiltonian for the system

is
SVo t Vo

H S ekCku +Ck + C k+1TCk+ 1Ck'+JCk'-2T (2.96)
k,ra k,k',q

The approach taken by BCS consists in finding the wave function II) that de-

scribes a condensate of pairs at rest. As we have seen in section 2.2.3, such Cooper

pairs have the largest binding energy. Neglecting interactions between pairs at finite

momentum, we only keep the term for q = 0. The free energy becomes

K H - V 2 kk~kvk'Uk (2.97)
k k,k'

with (k = Ek- P

Minimizing E - IN leads to

- 1- )k 2 Ek
Uk  = +

with Ek 2 + A2  (2.98)

combined with the gap equation A -_ ok ACkTC-kt) -- •k UkVk = V k 2k

or
1 (d3k 1 Sk 1 (2.99)Vo (27r) 3 2Ek



(compare with the analogous equation in free space Eq. 2.79 and for the simplified

Cooper problem Eq. 2.81) and the number equation for the total particle density

n = N/I

n = 2 d v (2.100)

which have to be solved simultaneously to yield the two unknowns tz and A. We will

once more replace Vo by the scattering length a using prescription Eq. 2.63, so that

the gap equation becomes (compare Eq. 2.83)

m d~k 1 1m _ dk 1 1(2.101)
47rh 2a (2) 2Ek 26k (2.101)

where the integral is now well-defined. The equations can be rewritten in dimension-

less form with the Fermi energy EF = h2 k 2/2m and wave vector kF = (3 2 n)1 /3

1 _ 2 /1 (2.102)

kFa 7 r EF

1 EFA 3/ 2 ) (2.103)

with Ii(z) = dx x2 (2.104)

and 12 (z) = dxx 2  - (2.105)
o (2 - 2

This gives

1 22 2 1/3 (
kFa 7r 3I2 (/A) I I (2.106)

EF 2 )2/3 (2.107)
EF 3(M2

The first equation can be inverted to obtain p/A as a function of the interaction

parameter 1/kFa, which can then be inserted in the second equation to yield the gap

A. The result for p and A as a function of 1/kFa is shown in Fig. 2-4. Marini,

Pistolesi and Strinati have shown that one can even obtain analytic expressions for

the above in terms of complete elliptic integrals [163].



U.W

-1.5

-1.0

-0.5

-0.0
2 1 0 -1 -2

1/kFa

Figure 2-4: Chemical potential (dotted line) and gap (straight line, red) in the BEC-
BCS crossover as a function of the interaction parameter 1/kFa. The BCS-limit of
negative 1/kFa is to the right on the graph. The resonance where 1/kFa = 0 is shown
by the dashed line.

BCS limit

In the BCS-limit of weak attractive interaction, kFa -- 0_, we have7

[ EF (2.108)

T2 e
- r/ 2 k F la l  

(2.109)

The first equation tells us that adding a spin up and spin down particle to the

system costs a Fermi energy per particle 8: In the weakly interacting BCS limit Pauli

blocking still dominates over interactions, and hence the particles can only be added

at the Fermi surface. The second equation is the classic result of BCS theory for

the superfluid gap'. Compared to the bound state energy for a single Cooper pair

on top of a non-interacting Fermi sea, Eq. 2.85, the gap is exponentially larger (a

factor eTr/ 2 kFjaj), as the entire collection of particles now takes part in the pairinglo.
7This follows by substituting ( = x 2 - z in the integrals and taking the limit z --+ oo. One has

I,(z) •'z (log(8z)- 2) and I2(z)= 2Z
3 / 2

.
8BCS theory implicitly assumes an equal number of spin up and spin down atoms. The chemical

potential is thus the energy cost for adding a spin up atom if at the same time a spin down particle
is added.

9The present mean-field treatment does not include density fluctuations, which modify the pref-
actor in the expression for the gap A [98].

o0In the self-consistent BCS solution, not only the momentum states above the Fermi surface
contribute to pairing, but also those below it, in a symmetric shell around the Fermi momentum. In
the Cooper problem the states below the Fermi surface were excluded, reducing the effective density
of states by a factor of two. The pairing energy depends exponentially on the density of states,
which explains the difference between the binding energy in the Cooper problem and the gap energy
of BCS theory.

o°..... .................



However, the gap is still exponentially small compared to the Fermi energy: Cooper

pairing is fragile.

To give a sense of scale, Fermi energies in our dilute lithium gas are on the order

of a pK, corresponding to 1/kF - 4 000 ao0. A "typical" scattering length for lithium,
in the absence of scattering resonances, will be about 50 - 100 ao (on the order of the

van der Waals-range). The gap is thus vanishingly small, A/kB , 10-30 ... 10-60 K.

With that number in mind, it seems simply hopeless to achieve superfluidity in Fermi

gases. However, Feshbach resonances allow tuning of the scattering length, bringing

the gas into the strongly interacting regime where kF jal > 1 (see chapter 3). In

this case, there is a good chance to reach superfluidity: The above mean-field theory

predicts A = 0.22EF or A/kB ' 200nK for kF lal = 1. Such temperatures are now

routinely achieved in experiments on ultracold gases.

BEC limit

In the BEC limit of tightly bound pairs, for kFa -- 0+, one findsi"

h2  7rh 2an
= m 2 + (2.110)2ma2  m

A 16 EF (2.111)

The first term in the expression for the chemical potential is the binding energy

per fermion in a tightly bound molecule (see table 2.2). Naturally, this energy is only

available if we add two fermions of opposite spin at the same time to the system (we

have assumed an equal mixture of spin-up and spin-down fermions when writing down

the wave-function in Eq. 2.87). Adding only one spin-up fermion to the system does

not give or cost any energy to first approximation: The tightly bound fermions occupy

a large region in momentum space, hence the Fermi gas is not degenerate and Pauli

blocking not relevant anymore' 2. The second term is a mean-field contribution de-

scribing the repulsive interaction between molecules in the gas. Indeed, a condensate

of molecules of mass mm = 2m, density nM = n/2 and a molecule-molecule scattering

length aM will have a chemical potential MM 4 2amnm (see section 2.2.2). Since pm

is twice the chemical potential for each fermion, we obtain from the above expression

11"This result follows from the expansion of the integrals for z < 0 and Izi --+ 00. One finds

32(z)= -Ej- - and 2 (z)

12To the next order of approximation, the single fermion feels a repulsive mean-field interaction
from the gas of molecules, so it costs an energy to add this particle. This is discussed in detail in
chapter 7.
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Figure 2-5: Occupation nk of momentum states k in the BEC-BCS crossover. The
numbers give the interaction parameter 1/kFa.

the molecule-molecule scattering length aM = 2a. However, this result is not exact.

Petrov, Shlyapnikov and Salomon [193] have performed an exact calculation for the

interaction between four fermions and shown that aM = 0.6a. The present mean-field

approach neglects correlations between different pairs, or between one fermion and a

pair. If those are included, the correct few-body physics is recovered [195, 123].

2.3.2 Evolution from BCS to BEC

Our variational approach smoothly interpolates between the two known regimes of a

BCS-type superfluid and a BEC of molecules. The transition, which occurs approx-

imately between 1/kFa = -1 and +1, appears fully continuous. The occupation of

momentum states nk = vk evolves smoothly from the step-function O(kF - k) of a

degenerate Fermi gas, broadened over a width A < EF due to pairing, to n times the

square of the molecular wave-function 'pk oc 1 S2 (see Fig. 2-5). It is also interesting

to follow the evolution of the "Cooper pair" wavefunction1 3 in k-space, where it is

given by K(TBcsI CbTCtkIt IBCS) = UkVk, and in real space, where it is

I3d 3 k k(1(ri - r2 ) ('BCS 1 (r1 )'(r 2) I'BCS) J Ukvkeik(r-r2) (2.112)

I A eik-(r-r2) (2.113)
2 (27)3 VJ2+ A

13Note that this definition is not equal to the Fourier transform of the pair wavefunction ýp(r)
introduced in Eq. 2.87, which would be vk/Uk. The definition given here is the two-point correlation
fmunction. Both definitions for the Cooper pair wavefunction show a sharp feature, either a peak
or an edge at the Fermi surface, of width - 6k, thus giving similar behavior for the real space
wavefunction.
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Figure 2-6: Evolution of the spatial pair wavefunction O(r) in the BEC-BCS crossover.
The inset shows the Fourier transform O(k), showing clearly that in the BCS-limit,
momentum states around the Fermi surface make the dominant contribution to the
wavefunction. In the crossover, the entire Fermi sphere takes part in the pairing.
In the BEC-limit, q(k) broadens as the pairs become more and more tightly bound.

O(r) was obtained via numerical integration of f_ d<si( (here, = 1 = m), an

expression that follows from Eq. 2.113.

In the BCS limit, the fermions taking the most advantage from pairing reside

at the Fermi surface k = kF, in a region of width 6k - 2-~ -6-0 , where vF is the

velocity of fermions at the Fermi surface. We thus expect the spatial wavefunction

of Cooper pairs to have a strong modulation at the inverse wave vector 1/kF, and an

overall extent of the inverse width of the pairing region, - 1/6k , h- > 1/kf. This

is indeed the result of Eq. 2.113, which gives (setting r = Irl - r 21) [23]

(r) = 2rk sin(kFr) Ko (•r r--oc sin (kFr) e-r/(rýBcs) (2.114)
i2r VF rBCS

where Ko(kr) is the modified Bessel function that falls off as e- kr at infinity. The

envelope function is of the same type as what we have found for a two-body bound

state (see table 2.1). The characteristic size of the Cooper pair, or the two-particle

correlation length ýo, can be defined as 0o = (r)r 2(r)) and this gives indeed

~o - 1/6k,
Bo Scs > 1/kF in the BCS-limit (2.115)

In the BEC limit, UkVk oc 1+(k•), and so

e-Irl-r 21/a
0(rl - r2 ) r(2.116)

Irn - r21

5

1/kFa = 0
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Figure 2-7: From tightly bound molecules to long-range Cooper pairs. Evolution of

the pair size 0o /((r)(r2)o(r)) as a function of the interaction parameter 1/kFa.

On resonance (dashed line), the pair size is on the order of the inverse wave vector,
o(0) ~ -, about a third of the interparticle spacing.

which is simply the wavefunction of a molecule of size - a (see table 2.1). The two-

particle correlation lengthl 4 is thus ýo - a. Fig. 2-6 summarizes the evolution of the
pair wavefunction, and Fig. 2-7 shows the pair size given by [23, 197] 02 (= (r)lr 2=1(r))

as a function of the interaction parameter 1/kFa.

2.3.3 Single-particle and collective excitations - Landau cri-

terion

The BCS-state 'I) describes a collection of pairs btk 0) = Uk 10) + vkC ki |0). A

single fermion that we add in state k T, say, cannot find a pairing partner and requires

a kinetic energy Gk. The new state does not profit from pairing in (k T, -k 1),
as -k I is empty, and we loose the pairing energy 2(kV2 - 2kv -- ukVk -k' kUk',Vk,

( ) k - Ek (see Eq. 2.98). The total cost for adding one fermion is

thus simply (k - (Ek - Ek) = Ek. In the same way, one calculates the cost for removing

a fermion from the BCS-state, which is again Ek.

Fig. 2-8 shows the single-particle excitation energy Ek for different interaction

strengths in the BEC-BCS crossover. For p > 0, the minimum energy required to

excite a particle out of the condensate occurs for k = 1p and is A, which gives A

' 4 This length scale should be distinguished from the coherence length ýphase that is associated
with spatial fluctuations of the order parameter. The two length scales coincide in the BCS-limit,
but differ in the BEC-limit, where (phase is given by the healing length cx . See [197] for a
detailed discussion.
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Figure 2-8: Evolution of the single-particle excitation spectrum in the BEC-BCS
crossover. On the BEC-side, for p < 0, the minimum required energy to add a particle

is Vll2 + A2 and occurs at k = 0. This qualitatively changes at 1/kFa = 0.553 where

p= 0. For p > 0, the minimum energy is A and occurs at k = V2m-p/h 2.

the name of the superfluid gap. Possibly the most visual demonstration of this gap,
which prevents single fermions to enter the superfluid, is the phenomenon of phase

separation in imbalanced Fermi mixtures (see chapter 7). However, for [1 < 0 the

minimum energy becomes i 12+ A2 and occurs for k = 0. Deep in the BEC-

regime, this corresponds to h2/ma 2, which is simply the energy needed to break a

molecule. If we want to make a distinction between the BEC- and the BCS-limit,
that seem to be so smoothly connected, the natural point would be the interaction for

which / = 0, as here the character of single-particle excitations changes from having

k > 0 to having k = 0. In the variational solution, this occurs for 1/kFa = 0.553.

We may now ask for the critical velocity of the superfluid in the BEC-BCS

crossover. Given the single-particle excitation spectrum above, Landau's criterion

for the critical velocity would predict

E A -0+ A
Vc,BCS = min l = 2 - p) / -- (2.117)

An object that is dragged through the superfluid at this velocity will break a fermion

pair. In contrast, in the BEC-limit of a condensate of tightly bound molecules we

would expect density fluctuations, sound waves, to provide the mode of smallest

critical velocity, at the speed of sound c, = /pM/mM = /rh 2an/m 2. This Bo-

goliubov sound mode of the BEC-limit finds its analog in the BCS-regime, where it

is called the Bogoliubov-Anderson mode, propagating at the speed of sound VF/4/V,

with VF = hkF/m the Fermi velocity'5 . The connection is smooth, as expected and

'This speed of sound can be calculated using the hydrodynamic equation c = , p = m n
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Figure 2-9: Critical velocity v, in the BEC-BCS crossover. The relevant excitations
in the BEC-regime correspond to Bogoliubov (Bog.) sound waves with speed of
sound cs = = - F-V-fa. This sound mode eventually becomes the Bogoliubov-
Anderson (Bog.-And.) mode in the BCS-regime, with c = ~. The evolution is
smooth [74, 176, 27, 64], but only the limiting cases are shown here. In the BCS-
regime the excitations with the lowest critical velocity are single-particle excitations
that break a Cooper pair. Here, vc - . After [64].

found by [74, 176, 27, 64]16

The critical velocity for the superfluid is given by the smaller of the two velocities,
the speed of sound c, and the critical velocity for pair breaking Vc,BCS. For the

BEC-side, it is shown in [64] that for small momenta k <K 1/a which do not resolve

the composite nature of the molecules, the expression for the Bogoliubov-dispersion

Ek,BEC -= M+ M) 2 -[L2 remains valid even well into the crossover region.
This allows us to determine the speed of sound in an approximate way in Fig. 2-9.
Notable in this figure is the sharp peak in the critical velocity around resonance. It
is here that the superfluid is the most stable [219, 64]. Importantly, we observe that
the nature of the dominant low-lying excitations changes from rather benign (low
k's) sound waves in the BEC-limit to the more violent pair breaking in the BCS-limit
(large k). An experimental consequence is that the superfluid is very fragile in the
BCS-regime in response to stirring (see chapter 6).

and the pressure of a normal Fermi gas P = =E E = 2A (37r2)2/3n5/3. Thus, the sound
mode is already present in the normal Fermi gas, the main effect of pairing being to push low-lying
single-particle excitations up in energy, which would otherwise provide damping. While this damping
would also vanish in a non-interacting gas at zero temperature, this sound mode cannot propagate,
as collisions are absent and the gas can no longer maintain local equilibrium.

16Note that in superconductors, density fluctuations can only occur at the plasma frequency, as
they are charged superfluids.



2.3.4 Finite temperatures

To study the system at finite temperature, we have to include fluctuations around

the BCS variational ground state. This is done most elegantly using the procedure by

Bogoliubov [33] and Valatin [249]. The goal is to introduce new quasi-particles that

approximately diagonalize the original many-body hamiltonian, just like what was

done for the interacting Bose gas in section 2.2.2. For this, new fermionic operators

are introduced:

ykT UkCk -- kC•k I  (2.118)

- kJ = UkCtkJ + VkCkT

(2.119)

with the requirement that the BCS state presents the new "vacuum" for these quasi-

particles: ykT I|T) = 0 = Y-kj IT ). If Uk and Vk are chosen as before, the hamiltonian

becomes

H - I = Z(k - Ek) + Ek(tkfTkT + "7k•)Yk (2.120)
k k

The first term is the free energy E - pN in the BCS state. The second gives the

energy of a collection of quasi-particles. yktT simply creates the state we considered

above, where a fermion is added in state k T, the paired state -k 1 being empty. As

we have seen, the energy for this excitation is Ek, as is correctly accounted for in the

diagonalized hamiltonian.

Gap equation at finite temperature

The gap equation is modified at finite temperature. With the definitions above one

finds

(ckTC-kl) = UkVk (i Y7TkT - KYkkiik) (2.121)

As the quasi-particles are fermions, they follow the Fermi-Dirac distribution (tyrkT? =

l+ k The equation for the gap = - k (CkC-kl) thus becomes (replacing V0o

as above by the scattering length a)

m -- = (tanh ( (2.122)

4,h2a (21r )3 2 26k



Temperature of pair creation

We are interested in determining the temperature T* = 1/1* at which the gap

vanishes. In the BCS-limit, this procedure gives the critical temperature for the

normal-to-superfluid transition. Setting A = 0 in the gap equation, one needs to

solve [172, 83, 74]

drn k 1 tanh 1) (2.123)
47rh2a (2 )3 2-k 2  21Ek

This has to be solved simultaneously with the constraint on the total number of

atoms. Above the temperature T*, we have a normal Fermi gas with a Fermi-Dirac

distribution, so the number equation becomes

Sk 1 (2.124)n 2 (27r) 3 1 + eO*k(

In the BCS-limit, we can expect p >> kBT* and thus find p , EF. Inserted in the

gap equation, this gives the expected critical temperature for BCS superfluidity

Tcs = TC,BCS e er/2kFa -- A 0  (2.125)

with Euler's constant y, and e0 - 1.78. Here, we distinguish A0, the value of the

superfluid gap at zero temperature, from the temperature-dependent gap A(T). One

can show that

SA 0 - V27rAo kBT e - A /kBT, T < Tc

(T) kc Tc - T < Tc (2126)

In the BEC-limit, the chemical potential p = -Eb/2 = --h 2/2ma 2 is again given

by half the molecular binding energy as before, and the temperature T* is found to

be

T*EC 3/b (2.127)
2 (ln EbI)3/2

This is not the critical temperature for the superfluid transition but simply the tem-

perature around which pairs start to form. The logarithmic factor has its origin in

the entropy of the molecule-free fermion-mixture, which favors unbound fermions and

lowers kBT* below the binding energy Eb. There is no phase transition at T*.
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Figure 2-10: Superfluid transition temperature Tc and pair creation temperature T*
(dashed line) in the BEC-BCS crossover. In the BEC regime, Tc corresponds to the
BEC transition temperature for a gas of molecules. In the BCS regime, the critical
temperature depends exponentially on the interaction strength, drastically reducing
Tc. Figure extracted from [74].

Critical temperature

Determining Tc, the temperature at which long-range order is established, is more

involved. In the deep BEC-regime, the critical temperature is simply given by the

non-interacting value for the BEC transition of a gas of molecules at density nM = n/2

and mass mM = 2m,

27rh 2  nM) 2/ 3  7rh2 ( )2/3
TC,BEC= = 0.21EF (2.128)

mM ( m 2(()

This result holds for weakly interacting gases, with only a small correction due to

interactions. On the BCS-side, the critical temperature should smoothly connect to

the BCS result given above. Fig. 2-10 shows the behavior of Tc as a function of

the interaction strength. Whether there is a local maximum of Tc somewhere in the

crossover region is not fully settled [115].

"Preformed" pairs

In the region between Tc and T*, we will already find bound pairs in the gas, which

are not yet condensed. In the BCS-limit, where T. -- Tc, condensation occurs at

the same time as pairing, which we see now is not true for stronger interactions.

r

r



On the deep molecular side, it is of course not surprising to find thermal molecules

in the gas above Tc. However, the qualitative picture of thermal pairs still holds

in the entire crossover region from -1 < 1/kFa < 1. These uncondensed pairs are

sometimes called "preformed" (pairing occurs before condensation) and are detected

as a "pseudo-gap" in RF spectroscopy experiments [59].

2.3.5 Definition of the condensate wavefunction

As Fritz London proposed in 1938, superfluidity should be a quantum mechanical

phenomenon occurring over macroscopic distances. A "wavefunction" 0(r) should be

ascribed to the superfluid, whose "stiffness" against perturbations would result in the

peculiar properties of the superfluid.

In the case of weakly interacting Bose-Einstein condensates, we can readily identify

V)(r) with the condensate wavefunction shared by all the bosons in the ground state

of the system. Its squared magnitude 1I(r)12 _ n(r) is equal to the density of the

condensed gas. Thus, taking an absorption image of a weakly interacting Bose-

Einstein condensate directly reveals the magnitude of the wavefunction. This has

led to the spectacular demonstration of coherence between two Bose condensates [13]

and the observation of vortex lattices [160, 2, 120, 87] by straight-forward absorption

imaging (to name only a few examples).

For fermionic superfluids, it is the center-of-mass wavefunction of the condensed

fermion pairs which takes on the role of V)(r). We can define it as the thermal average

of the pair creation operator T I(r) P (r):

(r) = M Tt (r)T t (r) (2.129)

where N is a constant we can conveniently choose.

One realizes an immediate difficulty in measuring this wavefunction: If the pairs

are not tightly bound, like on resonance or in the BCS-regime, an image of the atomic

density will not reveal the center-of-mass wavefunction of the pairs. One would rather

observe the distribution of, say, the spin-up atoms nT(r) -= (K (r)4T(r)), which turns
out to practically not change as one enters the superfluid regime17 . This presents a

more profound difficulty than the mere absence of a bimodal density profile of the

gas in the presence of a thermal cloud. It shows that in the BCS-regime, even at zero

temperature, we cannot easily detect interference, vortices or other effects related to

' 7We have experimentally observed slight changes in the density profile on resonance, see chapter 5.
Note also that for unequal mixtures, there is a dramatic signature, see chapter 7.



the condensate's coherence.

As one can readily check with the tools from previous sections, in a uniform BCS

state one has LQ = -'k Z c, c t -k Ek =_ A, where we have used the BCS

gap equation. We see that 0 is simply proportional to the superfluid gap A, which

is zero in the normal and finite in the superfluid state. As such, 0(r) naturally lends

itself as the order parameter for the superfluid phase transition, an angle of thought

that was pioneered by Landau.

BEC-limit: Gross-Pitaevskii equation

How should we choose the prefactor M? In the BEC-limit of tightly bound mole-

cules, 0(r) should represent the wavefunction of the molecular condensate. As such,

its squared magnitude should give the density of condensed molecules nM, equal to

half the total density n at zero temperature: [012 = n/2. As X(t i) already has

units of density, the prefactor N must be the square root of a volume. We found in

section 2.3.1 that in the BEC-limit and at zero temperature, A = T . Using

V = 4irh2a/m it can be seen that one should choose KV = Vi a3/2. The result-

ing condensate wavefunction O(r) solves the Gross-Pitaevskii-equation we know from

atomic Bose-Einstein condensates:

( -V + ±Vext(r) + g kJ(r) 2 V(r) = M (r) (2.130)

with g = 47rh 2aM/mM, the molecular scattering length aM, the mass mM = 2m and

the molecular chemical potential pM.

In complete analogy with atomic BEC, we directly know that (in the Thomas-

Fermi regime, neglecting the kinetic energy) the condensate density will be given

by

nM(r) = /,(r)2 = max (M - Ve xt(r), ) (2.131)

which results in the famous inverted parabola in the case of harmonic trapping. Note

that for experiments in optical traps, the polarizability of molecules is twice that of

single atoms, so that Vext for molecules is twice as large as the potential experienced

by atoms.

We thus expect a direct signature of condensation in the density profile of the

molecular gas. This was therefore our starting point for studying fermionic superflu-

ids, as will be described in chapter 5.



BCS-limit: Ginzburg-Landau equation

In the limit of tightly bound molecules, the fermionic degrees of freedom are not rel-

evant for the description of the condensate. The momenta of the fermions forming

the molecules are spread out over the large range of 1/a, the inverse size of the mole-

cule, which is in this limit much larger than the Fermi momentum kF. The fermions

themselves thus form a non-degenerate gas. In the BCS-limit, the fermionic degrees

of freedom are dominant, with each spin species forming its respective Fermi sea. We

can then no longer expect that there exists a single equation for the center-of-mass

wavefunction of pairs V4(r), which can correctly describe the physics of the fermion

pair condensate. The Cooper pairs are spread out in space and overlap strongly, so

that a priori, non-local equations should replace the local Gross-Pitaevskii equation we

had found for the condensate of molecules. Indeed, the Gorkov formulation based on

Green's functions allows to write BCS theory in the form of two coupled equations for

the normal (TKt(r, t) ,(r', t')) and anomalous K('(r, t) T(r', t')) Green's functions
and their complex conjugates (see for example [90]). Still, in the limit where the gap

A(r) is small, and close to the critical temperature Tc, one can find a single equation

for the center-of-mass wavefunction of the pairs, the Ginzburg-Landau equation. It

was introduced in 1950 as a purely phenomenological equation for the condensate

wave function 0(r) with parameters that needed to be fixed by experiments18 :

S2m*72 + b(r) kb(r)I) 2 (r)= -a(r) V'(r) (2.132)

Closely resembling the Gross-Pitaevskii equation above, this equation describes

the motion of "superfermions" of mass m*. The condensate wavefunction is normal-

ized to give the density of these "superfermions", 1b(r)12 ,= n. In a uniform system,
the two solutions of Eq. 2.132 are V) = 0 (the normal state) or IV|12 = -a/b. The order

parameter 04 should vanish at Tc, so a natural choice is to set a(T) = (T - Tc)a'.

This implies a "superfermion" density that vanishes linearly close to Tc. The sim-

plest choice for b is a constant. For a non-uniform system, we see by inspection that

Eq. 2.132 defines a natural length scale over which the order parameter varies, the

1sWe omit the effect of a magnetic field for the case of electron pairs, which could be included by
introducing a vector potential A. Rotation of fermion pairs in a neutral fermionic superfluid could
be included as well, as it is formally equivalent to the motion of superconducting electron pairs in a
magnetic field: One simply replaces eA/c by mn x r, where Q is the rotation frequency.



Ginzburg-Landau coherence length

h2 ',2
(GL(T) (2.133)

2m* a(T) 2m* (T - T) la' (2.133)

This length scale becomes very large close to the critical temperature, and in partic-

ular it can be large compared to the BCS-coherence length aBCS = hvF/lrAo, defined

above via the zero-temperature gap A0o. Spatial variations of the order parameter

thus occur at a length scale much larger than the size of a Cooper pair. This is in

essence the reason why, even in the BCS-regime of long-range fermion pairs, the con-

densate can be described by a local equation [236]. Remarkably, the Ginzburg-Landau

equation, introduced on phenomenological grounds, was later derived by Gorkov from

BCS theory. The "superfermions" turned out to be fermion pairs, so that a natural

normalization of the wavefunction is provided by the density of pairs, 0((r) 12 = n,/2,
where n, is the total superfluid density (at zero temperature, we necessarily have

n, = n, the total fermion density). This normalization fixes the phenomenological

parameters, m* = 2m as expected for fermion pairs, a = 6r 2 ( 2 1 -- ) and

al/b n 1 - -). Comparing with the equation for the superfluid gap close to

Tc, Eq. 2.126, and using the result for the critical temperature Tc = Ao e'/wl in the

BCS-limit, we arrive at

2 T 75(3) A 2  A 2

IV)c1 =n 8e2- n 0.33 n (2.134)
/0 0

The numerical prefactor is not correct at zero temperature, where one should expect

=|1
2 = n/2, as here, the superfluid density must equal the total density. This should

not be of concern, however, since T = 0 lies outside the applicability of the Ginzburg-

Landau equation. The approximate expression for the gap close to Tc in Eq. 2.126

extrapolates to an incorrect value (- 1.7Ao) at T = 0.

At least close to Tc, Eq. 2.134 finally fixes the normalization parameter A in

Eq. 2.129 for the BCS-regime,

S /7= V 56((3) 1 EF a 3/2 (2.135)s- v= VAO V -2-y A
VA 3e2r; kFlal o1

It is satisfying to note that, using the limiting expression for the gap Ao in the
BEC-regime, Ao = 6 one recovers, up to a numerical constant, the same
normalization constant 3  / 2 we had found before to arrive at the Gross-Pitaevskii
normalization constant KV oc a3/2 we had found before to arrive at the Gross-Pitaevskii



equation. This suggests that the regime of applicability of the Ginzburg-Landau

equation increases from the far BCS-side, where it is Tc - T < Tc, to the far BEC-

side, where it encompasses all temperatures from T = 0 up to Tc. In the intermediate

regime of strong interactions (kFlal > 1), the Ginzburg-Landau approach is expected

to still provide a reasonable, qualitative description of the condensate [74, 236].



Chapter 3

Feshbach resonances

Typical scattering lengths in alkali atoms are on the order of the van der Waals-

range ro 50 - 100ao. Common interparticle spacings in our ultradilute gases

are n- '/ 3 . 10000a 0o. We have seen in the preceding chapter that it is simply

hopeless to achieve superfluidity in Fermi gases with such a small interaction strength

kF lal - 0.02, as the critical temperature depends exponentially on this parameter.

Clearly, one needs a way to enhance the interatomic interactions by some sort of

scattering resonance.

Early on, 6Li was considered a very promising candidate to achieve fermionic

superfluidity [237], as its triplet scattering length was found to be unusually large and

negative, about -2000 ao [3]. As we will see, this is due to an almost bound state

in the interatomic potential of 6Li, causing low-energy collisions to be indeed almost

resonant. While this seems already too good to be true, 6Li offers in addition a "magic

knob" to tune the interaction strength at will, an unusually wide Feshbach resonance,

predicted in 1997 [124]. These resonances occur as a bound state in the interatomic

potential is tuned into resonance with the energy of two colliding atoms. This tuning

is possible via an applied magnetic field if the magnetic moment of the bound state

differs from that of the two unbound atoms. Feshbach resonances have not only

allowed to reach the strongly interacting regime where kF lal > 1 [174, 106, 36], but

also to create ultracold molecules from samples of ultracold atoms [205, 69, 239, 128], a

new way of doing "quantum chemistry". Of great importance here was the realization

that the gas close to resonance is stable [78, 174, 69, 239, 128, 202], a property that

is directly linked to the Pauli principle [193].

In the following, I will describe scattering resonances in general and the phenom-

enon of Feshbach resonances in particular.



3.1 Scattering resonances

Let us consider the archetypical example of a square-well potential of size R and

depth V (see Fig. 3-1). We have already seen in the preceding chapter that in order

have a 3D bound state for two particles of mass m, the potential well needs to be

deeper than a minimum depth V,. For a square-well potential [145], V, = mr12. Let
us discuss the relevant situations.

* If no bound state is present, for V < V, two colliding particles will feel at-

traction, corresponding to a negative scattering length a < 0. That is, the
r>Rradial wavefunction for their relative motion u(r) r sin(k(r - a)) appears to

be "pulled in", to originate from negative values of the distance r between the

atoms (see upper left panel in Fig. 3-1). The closer V gets to the critical V,
the more negative the scattering length becomes. It is helpful to think of an
"almost" bound state that exists just above the energy of the colliding atoms

(the "threshold"). Second-order perturbation theory then shows that this "vir-

tual" state will repel the incoming state, lowering the energy of the colliding

particles and thus leading to their attraction. The closer the virtual state lies

to threshold, the stronger the attraction.

* If the well is just a bit deeper than the critical V,, a true bound state is available

below zero energy. This state pushes the incoming state up in energy and thus

leads to repulsion of the colliding atoms. The closer the bound state lies with

respect to the incoming state, the stronger the repulsion. The wavefunction

u(r) appears to be "pushed out" from the origin, to originate from a > 0. We

see that necessarily, whenever a new bound state enters the scattering potential,
the wavefunction u(r) acquires a new node.

* Right at V = V,, a true bound state forms at zero energy. Atoms colliding at

very low energies are thus in resonance with this state. The scattering length

diverges, causing the wavefunction u(r) to look "flat" over distances r < 1/k. In

fact, over those distances u(r) cannot be distinguished from the equally "flat"

wave-function of the very large bound state (see section 2.2.3), the overlap

between the two is at its maximum, as we expect for resonant coupling. Like

in optics, this situation corresponds to maximum "absorption" of the incoming

wave by the potential well, with an absorption cross section given by a = 4.

This reminds us of the resonant absorption cross section of light by atoms, which
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Figure 3-1: Scattering resonances for the square well potential. Shown is the scatter-
ing length a and the bound state energies EB as a function of the square well depth
V. Close to a resonance (say at V,), the energy of the associated bound state depends
quadratically on V - V,. The four panels above illustrate the evolution of the wave-
function (red) at selected points (blue circles). The zero-crossing of its tangent (blue
dashed line) gives the scattering length. It is negative for a shallow well (left panel),
corresponding to attraction. As a bound state enters the well at a critical depth
(green), the scattering length diverges and reenters from +oo. The wavefunction now
has a new node at a.
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is a = with k the photon wave vector' (see section 2.2.1).

It is not difficult to show that the scattering length a is given by [145]

a= tan1 R (3.1)

where , =V- -. Away from any resonances, the scattering length is always close

to the "background" scattering length R. However, on top of this background value,
scattering resonances occur when rR = (2n + 1)1 with integer n. This coincides

exactly with the appearance of a new bound state in the potential (see Fig. 3-1). The

scattering length is positive if the nearest state is truly bound and negative when it

is still "virtual" or almost bound. Close to a resonance (say at V, = h2k /m), the

scattering length diverges as

1 2h2

a I2(3.2)kR(k - kc) mR(V - V) (3.2)

and for a > 0 the bound state energy is related to a by

1 (V - V)2
E 4 ER -a 2  (3.3)

We found this general behavior for weakly bound states already in chapter 2.2.3: The

binding energy depends quadratically on the "detuning". The beauty of the Fesh-

bach resonance mechanism is that this detuning is indeed an externally controllable

parameter.

3.2 Feshbach resonances

We now turn to realistic interaction potentials between alkali atoms. Here, the inter-

action actually depends on the internal structure of the two colliding atoms, namely

on the relative spin orientation of their valence electrons, singlet or triplet. In Fig. 3-2
for example, the atoms enter in a triplet configuration. If there was no coupling be-

tween the singlet Vs and the triplet potential VT, the atoms would simply scatter off
each other in VT(r), acquiring some certain, fixed phase shift. However, the hyperfine

'The factor "6" is related to the photon being a spin-1 particle, such that atom-photon collisions
always involve transfer of angular momentum. The lowest-energy collisions can thus be thought of
as being p-wave collisions.
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Figure 3-2: Origin of Feshbach resonances. Atoms entering (for example) in the triplet
potential are coupled to a singlet bound molecular state. By tuning the external
magnetic field, this bound state can be brought into resonance with the incoming
state (at B0 in the right graph).

interaction Vhf is not diagonal in the total electronic spin S = s1 + S2 of the two atoms

and thus provides a coupling between singlet and triplet potentials:

Vhf ahf (S1 ' il + S2 i2)
ahf ahfahf S (il + i2) + ahf

2 2

= Vhf + V (3.4)

with the hyperfine constant ahf and the nuclear spins il, 2 of the two atoms. Given

the coupling Vhf , the atoms can explore the singlet potential as well. It is in our

case a "closed channel", meaning that singlet continuum states are not available as

final scattering states by energy conservation. A Feshbach resonance occurs when the

state in which the atoms collide (the "incoming" state) is in resonance with a bound

state in this potential. The energy difference between the incoming and the Feshbach

bound state can be tuned via an applied magnetic field, due to their different magnetic

moments (see Fig. 3-2).

3.2.1 A simple model

Let us consider a simple model of a Feshbach resonance, in which there is only one

bound state of importance Im) in the closed channel, the others being too far detuned

in energy (see Fig. 3-3). The continuum of plane waves of relative momentum k

6
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Figure 3-3: Simple model for a Feshbach resonance. The dashed lines show the
uncoupled states: The closed channel molecular state Im) and the scattering states
1k) of the continuum. The uncoupled resonance position lies at zero detuning, J = 0.
The solid lines show the coupled states: The state I|) connects the molecular state Im)
at 6 < 0 to the lowest state of the continuum above resonance. At positive detuning,
the molecular state is "dissolved" in the continuum, merely causing an upshift of all
continuum states as p becomes the new lowest continuum state. In this illustration,
the continuum is discretized in equidistant energy levels. In the continuum limit
(Fig. 3-4), the dressed molecular energy reaches zero at a finite, shifted resonance
position 5o.
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between the two particles in the incoming channel will be denoted as Ik). In the

absence of coupling, these are eigenstates of the free hamiltonian

h2k2

Ho 1k) = 2ek k) with k 2m2m
Holm) = 6Jm) (3.5)

where 6, the bound state energy of the "bare" molecular state, is the parameter we

can experimentally control. We will only consider interactions between m>) and the

Ik)'s, neglecting scattering that occurs exclusively in the incoming channel. First, we
are interested in seeing how the molecular state is altered due to the coupling to the

continuum Ik). Thus, we want to solve

H Ip) = Elp)

with •p) = alm) + ck k) (3.6)
k

for E < 0 where H = Ho + V and the only non-zero matrix elements of V are

(ml V 1k) = gk/"V./ and their complex conjugates (we will take gk to be real). Q is
the volume of the system and introduced in this definition for later convenience. We

quickly find

k k C gk (3.7)

As we only consider low-energy s-wave scattering, one can take the gk's to be constant

go up to some cut-off ER and zero beyond. The right hand side of Eq. 3.7 side is then

identical to Eq. 2.79, and we can read off the solution from table 2.2 (3D case):

E+ g ~, ER P(E) = -6- 2Eo IEI
QE+Jo 2e + d El

1 a2  g2 [ER 1 4
with Jo dc p(E)- = FloER

and Eo (2 m•-)3/2 227r 2h2)



where we have assumed ER> Ej. As illustrated in Fig. 3-3, for positive detuning

6 > 6o the original molecular state is "dissolved" in the continuum. For 6 - 60 < 0,
we find a true bound state at

E = -Eo + 6 - So + (Eo - 6 + 60)2 - (6 - 60 )2  (3.8)

This "dressed" bound state energy is shown in Fig. 3-4. Far away from the resonance

region, for 60 - 6 > Eo, we have E -(0 - )2 - E, which describes,
apart from energy shifts, the original bound state. In the other limit, the bound state

crosses the energy of the incoming state at a shifted position 6 = 60. Close to this

point, the energy E -(6 - 6o)2/Eo depends quadratically on the detuning 6 - 6o,
as expected.

Scattering length

To find the scattering length, it is convenient to project the Schridinger equation

H I|4) = E I|) onto the two relevant subspaces, the space of the scattering states Ik)

of the incoming channel and the molecular state of the closed channel, Im). The goal

is to find out how the coupling to the molecular state affects scattering in k-space.

For this, we introduce the projectors Pk = -k Ik ) (kI and Pm = Im) (mi. The weight

of all other states being vanishingly small, we have Pk + Pm 1. The projected

wavefunctions are I Ck) = Pk 14) and I)m) = Pm 4P). The free hamiltonian Ho acts
exclusively within each subspace, so it commutes with the projectors. We define HO =
PkHoPk and Ho -= PmHoPm. In contrast, the interaction V couples k-space to the

molecular state, and its only non-zero projections are Vkm = PkVPm = Ek g Ik) (ml
and Vmk = PmVPk = Zk | Im) (kI. We can now easily calculate the projection of

H 14) onto k-space: PkH 4') = Pk(Ho + V) 14) = Hk I0ck) + PkV(Pk ± Pm) 4• --

Hok I0k) + Vkm (0m). In the same way we get PmH 4') = Hom Im) + Vmk I4k). The

Schridinger equation then reads

(E - Hok ) 10k) = Vkm 10m)

(E - Hom) Im) = Vmk ICk) (3.9)

We can formally solve the problem in the closed channel2 , ICm) = (E - Hom +

i0)- 1Vmk I0k) and insert this into the equation for ICk):
2The small positive infinitesimal part il7 ensures that the scattered wave will correspond to an

outgoing wave.



km(E HkmVmk k) (3.10)(E - H 10k )  Vkm(E-H i)--E - 6 + iq

where we have used Hom Vmk = Hom In) Zk g (k| = 6Vmk.
The scattering problem is now entirely formulated in the open channel. The

molecular state causes an effective interaction that corresponds to two atoms col-

liding, spending some (infinitesimal) time in the molecular state and exiting again

as two unbound atoms. From equations 2.60 and 2.63 we can read off the scatter-

ing amplitude for zero-energy collisions and hence the scattering length. We only

need to insert the Fourier transform of the effective interaction at E = 0, which is

Vo = Q limE,k,k'-, (kj Vk Vk gk)= -k:

I -j> - + --- -
m _ k I 1 _ -6047rh 2a 26k 90

or a m o (3.11)
47rh2 60 - 6

The scattering length, shown in Fig. 3-4, diverges at the shifted resonance position

6 = 60. Not surprisingly, we recover E = -h 2 /ma2 for the bound state energy close

to resonance for positive a > 0, as it should be.

In the experiment, the Feshbach resonance occurs for a certain magnetic field

Bo. With the magnetic moment difference AM between the incoming state and the

closed (uncoupled) molecular state, we have 6 - 6o = AML(B - Bo) (taking AL to be

constant). Including the background scattering length abg for collisions that occur

entirely in the open channel, the scattering length can be written in its usual form

( B 2m 2

a abg 1- AB with AB = 2  (3.12)
B - Bo 4rh2 A abg

3.2.2 Feshbach resonances in 6Li

We will now discuss the case of 6Li relevant for our experiments. Fig. 3-5 shows

the s-wave scattering length for collisions between the two lowest hyperfine states,
IF, m) = 11/2, 1/2) and 11/2, -1/2) of 6Li. It shows a broad Feshbach resonance cen-

tered around Bo = 834.15 G. The resonance is approximately described by Eq. 3.12

with abg = -1 405 ao, AB = 300 G [24]. These values are highly unusual when com-

paring scattering lengths and Feshbach resonances in other alkali atoms. Background
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Figure 3-4: Bare, uncoupled molecular state (dashed line), coupled, bound molecular
state (solid line) and scattering length (dotted line) close to a Feshbach resonance.
The shaded area represents the continuum of scattering states, starting at the collision
threshold at E = 0. Interaction between the molecular state and the continuum shifts
the position of the resonance by 60 from the crossing of the uncoupled molecular state
with threshold. Note the quadratic behavior of the bound state energy with detuning
(6 - 6o) close to resonance.
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Figure 3-5: Feshbach resonances in 6Li between the two lowest
IF, m) = 11/2,1/2) and 11/2,-1/2). A wide Feshbach resonance
G. The resonance position is shifted by an unusually large amount
the crossing of the uncoupled molecular state at 543 G. A second,
resonance occurs right at 543 G, shifted by less than 200 mG.

hyperfine states
occurs at 834.15
of - 300 G from
narrow Feshbach
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Figure 3-6: Bound state energies for 6Li 2 in a magnetic field. The weakest bound
state of the singlet potential, X 1ZE, v = 38, splits into two hyperfine components
with total nuclear spin I = 0 and I = 2. The state with I = 0 is almost not coupled
to the triplet scattering continuum, causing the narrow resonance at 543.2 G. In
turn, the state I = 2 is very strongly coupled and leads to the broad resonance at
834 G, a shift of AB e 300 G. The strong coupling is caused by a virtual state of the
triplet potential (dashed line in the inset), which is only Evs, h -300 kHz away from
threshold (E = 0). It is this virtual state that is responsible for the large background
scattering length for triplet collisions.

scattering lengths are typically on the order of ±100 ao or less, which is roughly the

range of the van der Waals-potential. Typical widths of other observed Feshbach res-

onances are at least two, rather three orders of magnitude smaller than AB. Clearly,
the broad Feshbach resonance in 6Li is a special case.

The unusually large background scattering length of 6Li that decreases even to

-2 100 a0o at high fields, hints at a resonance phenomenon even away from the wide

Feshbach resonance. Indeed, it turns out that there is an almost bound, virtual

state in the triplet potential of 6Li very close to the collision threshold. From the

large background scattering length we can estimate that the virtual state must lie

approximately Ev : h2 /mabg 2 h - 300 kHz above threshold.

It turns out that the wide Feshbach resonance at 834 G is caused by an interplay

between the molecular state in the singlet potential and the open channel resonance

due to the virtual state. Such a situation has been analyzed in [162] and applied to the

case of 6Li in [248]. As a crude approximation, we can argue that the molecular state

couples to the scattering continuum exclusively via the virtual bound state. From

the equation for the bound state energy, Eq. 3.7, we can estimate a resonance shift of



6 g9 /Evs due to the coupling to the virtual state. Even for a coupling gvs that is

not unusually large we expect the resonance position to be shifted considerably (and

hence the resonance to be wide) if the virtual state is close to threshold. Indeed, from

the resonance width AB 300 G we can estimate

gvs V/6Evs = /Ap AB Evs h - 15 MHz (3.13)

where we have used Ap 2PB on resonance, where the incoming state is essentially

a pure triplet, while the molecular state is a singlet. The hyperfine constant for 6Li is

ahf h - 150 MHz, which sets the scale for the interaction VhT. A typical coupling gk
is thus ahf times the overlap integral f d3ryOb(r)'k(r) of the bound state wavefunction

and the scattering states3 . We see indeed that gvs is not particularly large, and that

the cause for the wide Feshbach resonance at 834 G is the virtual bound state4 .

3.2.3 Broad versus narrow Feshbach resonances

We have seen how it is possible to tune the scattering length in atomic gas collisions

via Feshbach resonances. To what extent can the many-body description of chapter 2

be carried over to this case?

Let us recall that the derivation of the BEC-BCS crossover made use of a contact

potential V = Vo3(r), which was adjusted in such a way as to reproduce the correct

scattering length a. However, the use of such a contact potential implies the relation

EB = 2  (3.14)
ma

for the energy of the bound molecular state5 . This signifies that the character of

the molecular state is entirely described by the scattering length, a property of the
3To estimate the overlap integral, we assume the weakly bound singlet state to have a charac-

teristic size aB - 50 a0, the van der Waals-range of the potential. Over this small scale, the virtual
state's radial wavefunction uvs = r vs is approximately constant and equal to - 1/,aibg- (for nor-
malization). The integral f drub(r)uvs(r) is thus on the order of v/aB/abg -_ 0.1 - 0.2. With this
reduction we obtain the correct order of magnitude for g.

4The resonance at 543 G has a narrow width, because the molecular state causing it has a
vanishing matrix element (Clebsch-Gordan coefficient) with the virtual state.

5This can be seen by using a square well potential V(r) = -V for r < R and zero outside. The
relation between the scattering length, the Fourier transform of V(r), V(q) a V(0) = const (for
q < 1/R) and R is given by Eq. 2.63:

1 1 (3.15)
- 47rh 2a k<1 2Rk<1/R



scattering states in the open channel.

For any real situation, this relation holds only close to resonance. We see from the

simple model system of section 3.2.1 that the bound state energy starts to deviate

from the above relation once IEBI | E 0. E 0 is the energy scale associated with the

strength of the Feshbach coupling between the bare molecular state and the scattering

continuum. Close to resonance, for ]EBI < E 0, the "dressed" molecular state

Ip) = a im) + c Ik) (3.18)
k

will be almost entirely described by the scattering states of the open channel Ik) (one

finds a2 - 21EBi < 1). However, as IEBI starts to grow beyond E 0, the dressed

molecular state resembles more and more the original "bare" state Im), and a ; 1.

The crucial question for the many-body description is now: How does the Fermi

energy EF compare to the coupling scale E0? The BEC-BCS crossover occurs for

-1 < 1/kFa < 1. If we first reach the weakly interacting regime kFa < 1 (equiv-

alently EF << h2/ma 2 ) before h2/ma 2 - Eo, we can safely use the single channel

description for the crossover. The "dressed" molecular state is almost completely

dissolved in the open channel continuum throughout the crossover and the details

of the original molecular state (m) do not play a role (case of a "broad" Feshbach

resonance). However, if Eo0 is comparable to EF, then the molecular state affects the

many-body physics and it needs to be included in the description of the gas (case of

a "narrow" Feshbach resonance) [227].

Using Eq. 3.12 and the definition for E 0, Eq. 3.8, we can relate the coupling energy

scale Eo0 to experimentally observable parameters. One has

7 1 (AAB)2Eo0 = 1 ( 2  (3.19)
2 h2 /mabg

The fraction of the dressed molecular wave function that is in the deeply bound state

The equation for the bound state energy E < 0 was derived in Eq. 2.79 and is

1 1
(3.16)

V1 2Ek + IE|
k<1/R

We then have

m 1 1 (1 m 3/ 2  ER
47rh2- a I= 22 + E h2 V arctan (3.17)

47rh2 a k<12R 
2E6k + E| 27r2 2 2 aEc

where we have used the cut-off energy scale En = h2 /mR 2. For ER >> El we obtain Eq. 3.14.



im) is

2 = := 2-- (3.20)

For the resonance used in the experiments by D. Jin on 40K, Eo/kB M 1 mK, which

should be compared to a typical Fermi energy of EF/kB = 1MK. This resonance is

thus broad. Nevertheless, at kFa = 1 the fraction of the wavefunction in the closed

channel molecule is a 2 ; 6%. This might possibly explain the shorter lifetime of the

gas of molecules 40K2 close to resonance [202] as compared to the case in 6Li2 [35].

For the wide Feshbach resonance in 6Li, one has Eo/kB z 50 K, which makes it

an unusually broad resonance. However, as pointed out above, the simple model of

section 3.2.1 does not apply to the case of 6Li, and one has to take into account the

influence of the virtual state in the open channel. If this is done, one finds that the

energy scale equivalent to E 0 is6 rather 1 A =AB = kB - 40 mK, which is still very

broad. The simple relation EB = -h 2/ma 2 holds still to better than 3% at a magnetic

field of 600 G, 234 G away from resonance, while many-body effects (kFa > 1) start

to become important only above 750 G. Indeed, the closed channel contribution to

the dressed molecular state has been measured in the group of R. Hulet [188] to be

less than 1% at magnetic fields beyond 600 G and less than 10- 3 throughout the

entire strongly interacting regime beyond kFa , 1.

The Feshbach resonance in 6Li at 543 G, in turn, has Eo/kB a 1 /K and is thus

narrow. In the case of a narrow resonance, the many-body physics is qualitatively

different from the BEC-BCS crossover picture. For a detuning 6 - 60 < 0, all fermion

pairs are still tightly bound in the closed channel molecular state, where they form a

condensate. For 6 - 60 < 2EF, the molecular condensate coexists with a BCS-type

fermionic superfluid. Here, the molecular state (unstable in vacuum above threshold)

is stabilized by Pauli blocking, as the outgoing momentum states are occupied by

fermions in the BCS-state. Only for 6 - 60 > 2EF is the molecular state truly

emptied and we are left with a BCS-type superfluid. However, since the resonance is

narrow, the interactions for - J0 > 2EF >> E0 will be very small, kF al < - 1,
rendering the observation of such a state extremely difficult.

6At a detuning 6 - Jo = E0 , the bound state energy in the simple Feshbach model is about one
half times h2/ma 2. We can thus use the detuning where IEBI = lh 2/ma2 as the definition of the
coupling energy scale.



Chapter 4

Cooling fermions - The apparatus

Cooling a gas of atoms into the nanokelvin regime appears to be (almost) common-

place: Eight years after the discovery of gaseous Bose-Einstein condensates in 1995,
BECs were reliably produced in about 50 laboratories around the world, a number has

steadily grown since. At this pace, one would expect the number ultracold fermion

experiments to exceed 50: The first degenerate Fermi gas of atoms was created in

1998 [76]. However, by now only thirteen laboratories in the world are studying ul-

tracold fermions. This can hardly be explained by lack of interest in fermions, as they

are the building blocks of matter and Fermi statistics governs the structure of nuclei,
atoms, and the behavior of metals. The explanation lies in experimental complex-

ity. Of the two corner stones for achieving ultracold temperatures, laser cooling and

evaporative cooling, the latter fails to work for a sample of spin-polarized fermions.

In evaporative cooling [118, 73], the most energetic particles are forcibly removed

from the trap, while the remaining atoms rethermalize to a lower temperature. In

a spin-polarized cloud of fermionic atoms, however, s-wave ("head-on") collisions

are forbidden by the Pauli principle, and p-wave collisions will be frozen out at low

temperatures1. After removal of energetic particles, the sample would not thermalize.

The way out of this dilemma is to use a coolant: This can be either a second

spin state of the same fermionic atom [76, 100, 130] or another atomic species [247,

214, 112, 207, 97, 137, 225, 184, 19]. In such a mixture, s-wave collisions between

different atoms or spin states are allowed and sympathetic cooling of fermions can

'We can estimate the temperature for which p-wave collisions can occur, using the van-der-Waals
potential -C 6/r 6. The kinetic energy of the colliding particles with angular momentum h must
exceed the centrifugal barrier: E > 2/lr2 - C6/rl = 2hi2/3 pr2, where IL = m/2 is the reduced mass

and ro = (31 C6 /h2) 1/4 is the position of the barrier. For 6Li, ro = 70ao and thus kBT - 8 mK. At
the temperatures achieved by laser-cooling (- 500 ~K in our magneto-optical trap for 6Li), p-wave
collisions are frozen out.



proceed. In our experiment, fermionic 6Li is cooled by a cloud of bosonic 23Na atoms

in a magnetic trap, after an initial stage of laser cooling.

The choice of 6Li as the fermion species is simply explained by the relatively high

natural abundance of about 7% percent, allowing the use of an atomic beam source,
and the ease of laser cooling of alkali atoms. The only other stable fermionic alkali

atom, 40K, has a natural abundance of only 0.01%. The common conclusion is that it

needs to be enriched in an expensive process, precluding its use in a high-flux atomic

beam oven2 . Our group's expertise in Bose-Einstein condensation of sodium atoms -

in 2001 there existed three working sodium BEC-machines - made the choice of the

coolant a natural one. With 23Na, the largest alkali condensates (containing up to

100 million atoms) have been produced. The large number of available sodium atoms

presents an ideal refrigerator with large heat capacity. However, at the time the

project was started, the collision properties between sodium and lithium atoms were

completely unknown. It was thus a gamble whether sympathetic cooling would be

feasible at all. Nature was kind: The approach led to the production of large clouds

of about 50 million degenerate fermions [111] and to condensates containing about 10

million fermion pairs, a number that is a factor of 50-100 larger than that produced

in other experiments. This strong atomic signal certainly helped in the discovery of

small features such as vortices (chapter 6) or faint kinks (chapters 5 and 7) in the

density profile of fermionic superfluids.

4.1 Experimental setup

Table 4.1 summarizes the strategy followed to cool a gas of 6Li fermions from temper-

atures of 700 K in an oven down to 50 nK deep in the superfluid regime. It involves a

series of different techniques which all have to work reliably to produce a consistent

sample in every experimental run. From beginning to end, the sequence lasts about

40 s, the longest stage being the - 15 - 20 s of RF evaporation of sodium in the

magnetic trap.

The techniques of laser cooling and evaporative cooling in a magnetic trap, leading

to Bose-Einstein condensation, are nicely described in the Nobel lectures of 1997 (laser

cooling, S. Chu [60], W. Phillips [194] and C. Cohen-Tannoudji [63]) and 2001 (Bose-

Einstein condensation, E. Cornell, C. Wieman [67] and W. Ketterle [136]). Detailed

descriptions of a sodium BEC-apparatus can be found in PhD-theses [232, 57] of
2An atomic beam source for non-enriched potassium has been demonstrated very recently in the

Ketterle group [261].



6Li Atom number

Two-species oven

Laser cooling
(Zeeman slower & MOT)

Sympathetic cooling
(Magnetic trap)

Evaporative cooling
(Optical trap)

720 K

1 mK

1 nK

50 nK

3 x 0lollatms

- 3 x 108

5 x 107

2 x 107

1014 cm-3

1010 cm-3

5 x 1012 cm - 3

5 x 1012 cm -3

Table 4.1: Different stages during the preparation of a superfluid Fermi gas. Typical
numbers for the temperature, atom number, density and degeneracy factor TITF are
given. Up to the last stage, the gas is spin-polarized. In the optical trap, a spin-
mixture of the two lowest hyperfine states of 6Li is evaporatively cooled close to a
Feshbach resonance.

former members of the Ketterle group. The addition of fermionic 6Li to an existing

sodium BEC apparatus3 required designing a double-species oven, described in detail

in the PhD thesis of Cladiu Stan [233], as well as providing laser light for laser-cooling

of 6Li. Details on the latter can be found in my thesis written for the French Magistere

de Physique [264], as well as in Zoran Hadzibabic's PhD thesis [110].

The experimental setup is sketched in Fig. 4-1. Hot (-450 degrees C) 6Li and 23Na

atoms escape from the oven chamber, traverse a Zeeman slower and are captured in

a double-species magneto-optical trap (MOT). We obtain about 1010 sodium atoms

and 3 - 10s lithium atoms stored at temperatures of about 1 mK and densities of

- 1010 cm - 3 for 6Li and . 1011 cm - 3 for 23Na. The phase space densities of the clouds

are about 10- 7. The temperature is limited by the natural line width of the optical

transition (Doppler limit, see e.g. [194]). Hence, to advance further, the trapping light

needs to be switched off and the atoms are transferred into the conservative potential

of a loffe-Pritchard DC magnetic trap. It is crucial in our scheme to prepare the two

species in their respective "stretched hyperfine states", that is, both the nuclear and

electronic spins of each atom need to be aligned with the magnetic field. This ensures

that interatomic collisions (which to a good approximation preserve the total spin

projection on the magnetic field axis) cannot transfer atoms into other spin states

(so-called spin-exchange collisions) - a process that could potentially release a large

amount of energy and heat the sample.

3It is the same apparatus that produced the first sodium Bose-Einstein condensates in 1995.
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Figure 4-1: Experimental setup. a) The source of atoms, a double species oven for
6Li and 23Na. b) Main chamber, showing the setup for the MOT and slowing beams
and one of the two possible imaging directions.

Optical Pumping into the Stretched State Fig. 4-2 provides a closer look at

the hyperfine states of 23Na and 6Li. All alkali atoms have a single unpaired valence

electron, so S = 1/2. As 23Na has a nuclear spin I = 3/2, we have (2S+1)(21+1) = 8
hyperfine states available. For 6Li with I = 1, there are 6 hyperfine states. Only so-

called "low-field seeking" states can be magnetically trapped4 , leaving us in principle

with three options for sodium (not counting the weakly trapped 12, 0) state) and

three for lithium. Inspection of possible (that is, energetically favored) spin-exchange

collisions eliminates all combinations but two [110]:

12, 2 )Na + 13/2, 3 / 2 )Li  (stretched states)

I1, -1)Na + 11/2, -1/2)Li

As we see from Fig. 4-2, the lithium state 11/2, -1/2) is only low-field seeking

below 27 G. The lithium cloud would need to be colder than about 300pK in order

not to spill out from the trap. Clearly, the robust solution is to prepare both atomic

species in their respective stretched state5 .
4 Maxwell's equations only allow magnetic field minima in free space. Thus, only states that

minimize their energy at low field can be trapped.
5Historically, the stretched state combination was not the first to be tried [112], since sodium had

initially only been condensed in the I1, -1) state, and inelastic losses in the 12, 2) state were known
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Figure 4-2: Hyperfine states of 23Na and 'Li. Energies are relative to the situation
without hyperfine interaction. The sodium hyperfine splitting is aa = 1.77 GHz, for
lithium it is atL = 228 MHz. Good quantum numbers at low field are the total (nuclear
plus electronic) spin F and its z-projection, mF. At high field, it is the electronic
and nuclear spin projections ms and mr. The states relevant for the experiment
are marked with thick lines. Evaporative cooling of sodium and sympathetic cooling
of lithium are performed in the upper, stretched states. In the final stage of the
experiment, the strongly interacting Fermi mixture is formed around the Feshbach
resonance at 834 G (not shown in the graph) using the two lowest hyperfine states of
lithium, labelled I1) and 12).

We achieve spin-polarization of lithium and sodium by optical pumping for - 500

pis with o+ polarized light right after switching off the MOT trapping light. For 6Li,
both F (hyperfine-changing) and rnm (Zeeman-changing) pumping is used, while for
23Na we only employ F-pumping6. Next, the loffe-Pritchard magnetic trap is switched

on. A "purification" stage ensures that only stretched states remain in the trap: With

the 23Na F-pumping light (resonantly exciting F = 1 atoms) still illuminating the

cloud, the bias field of the trap is increased to 80 G. At this field, all hyperfine states

are resolved by RF spectroscopy at our initial temperatures of about 1 mK. A 0.6 s

to be more severe. Only later was condensation achieved also in the stretched state [111], greatly
facilitating cooling of lithium.

6Zeeman or mF-pumping for 23Na can improve the sodium numbers by -30%, which is usually
not worth the additional effort.

23I
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Figure 4-3: Magnetic trap for sympathetic cooling of 6Li with 23Na. The trap consists
of a "curvature coil" that produces an axially confining potential. Its offset magnetic
field is cancelled to about 0.5 G by the "anti-bias coil". Radial confinement is provided
by the gradient coils which are wound in "cloverleaf' configuration. They replace the
four loffe bars in a standard loffe-Pritchard trap. The anti-bias coils are used at a
later stage to access the wide Feshbach resonance between states 11) and 12) at 834
G.

microwave sweep near the hyperfine splitting of 23Na at 1.77 GHz transfers possible

12, 1)Na and 12, 0)Na 23Na-atoms into the untrapped i1, 0)Na or I1, 1)Na state. Here, the
atoms get "a second chance" to be transferred into the stretched state via absorption

of the F-pumping light. If they again end up in the "wrong" mF-state, they are

finally expelled from the trap by another 1.2 s microwave sweep, this time with the

pumping light switched off. The final transfer efficiency from the MOT into stretched

states in the magnetic trap is about 30-40% for sodium, and about 40-50% for 6Li.

4.2 Sympathetic cooling of 6Li by 23Na

Once the atoms are loaded into the magnetic trap (see Fig. 4-3), 23Na is evaporatively

cooled by forcibly removing energetic atoms with a microwave "knife" tuned to the

12, 2) -- 1, 1) hyperfine transition above 1.77 GHz. The lithium atoms are insensitive
to this frequency and simply cool via thermalization with sodium atoms. After 15 s of

evaporative cooling, the trap is adiabatically decompressed over 1 s in order to reduce

the effect of inelastic collisions in the increasingly dense sodium cloud. Without the
lithium cooling load, another 5 s of evaporative cooling result in a Bose-Einstein

I
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condensate of 10' sodium atoms. For experiments with lithium, sodium is completely

evaporated over 5 s, leaving a degenerate cloud of about N = 5 - 107 spin-polarized
6Li fermions at a temperature of T P 0.3TF, where kBTF = hw(6N)1/ 3 is the Fermi

energy, and w is the geometric mean of the trap frequencies.

If less lithium atoms are initially loaded into the magnetic trap, the cooling load

for sodium is smaller, resulting in a lower final temperature of the fermionic cloud,
with T ; 0.05TF [111]. However, it is not preferable to minimize temperature at the

cost of atom numbers at this stage, as further manipulations of the cloud necessarily

increase entropy. There are two main reasons for this increase in entropy:

1. The next stage of the experiment will require the transfer of the spin-polarized

cloud from the magnetic into an optical trap. As the two traps are never

perfectly "mode-matched" (e.g. they do not have equal trapping frequencies in

the case of harmonic trapping), the non-interacting Fermi gas, initially prepared

in equilibrium, is necessarily brought into a non-equilibrium distribution. Once

the gas is allowed to thermalize (see below), this will result in an increased

entropy.

2. The experiment proceeds by creating a two-state Fermi mixture from the

initially spin-polarized cloud. This is achieved in two steps: First, starting with

all atoms in the initial state 11), a radiofrequency (RF) Landau-Zener sweep

transfers all atoms into a coherent superposition of the initial state and the state

that we want to populate, 12). This coherent manipulation obviously preserves

entropy. However, as atoms travel along different paths in the trap, they pick up

different phases in the inhomogeneous magnetic field and decohere. Even if we

had started with a zero-temperature Fermi sea of I1)-atoms, we are now left with

two Fermi clouds of I1)- and 12)-atoms in which every second momentum state

is unoccupied within the original Fermi sphere. Clearly, the final temperature

will not be zero but rather a good fraction of the Fermi temperature.

We see that it does not pay off to reach very low temperatures at the cost of atom

number. Further evaporative cooling after loading the optical trap and creating the

two-state mixture is needed. This will actually be more efficient than sympathetic

cooling by sodium atoms, due to the strong interactions between the two fermionic

spin states. The true figure of merit of the sympathetic cooling stage is thus the

number of atoms that can be loaded into the finite volume of the optical trap.



4.3 Preparation of an interacting Fermi mixture

in an optical trap

At the end of the sympathetic cooling stage, we are left with a degenerate Fermi

gas of atoms polarized in the stretched hyperfine state of 6Li, IF, m) = 13/2,3/2).

As p-wave collisions are frozen out and s-wave collisions are forbidden by the Pauli

principle, such a non-interacting gas represents indeed one of the most "ideal" gases

imaginable. Evidently, in order to study interacting Fermions, a second spin state

needs to be populated to again allow for s-wave collisions. Unfortunately, all mixtures

of two magnetically trappable hyperfine states in 6Li are unstable with respect to spin-

changing collisions7 . However, the lowest two hyperfine states of 6Li, I1) E 11/2, 1/2)

and 12) - 11/2, -1/2) are stable. Furthermore, as we have seen in chapter 3, their

interactions are tunable over a wide range in the vicinity of a Feshbach resonance.

Both states I1) and 12) are high-field seeking at the relevant magnetic fields around

the Feshbach resonance. We are thus forced to use an optical trap, which can hold

atoms regardless of their spin.

4.3.1 Magnetic plus optical trapping

As atoms are polarizable particles, they are attracted by a static or slowly oscillating

electric field (slow on the timescale of electronic transitions). A laser beam detuned

to the red of the atomic transition (= slowly oscillating) thus traps the atoms at

its intensity maximum. Our optical dipole trap (ODT) consists of a single laser

beam 8 at a wavelength of A = 1064 nm, a maximum power of 4 W and a waist

(1/e 2-radius) of about 9 w = 125 ,im. The maximum trap depth is about kB x 10 YuK,
just about enough to catch the degenerate Fermi cloud in the magnetic trap with

Fermi energy kB x 3 pK. We take great care to ensure a radially symmetric trapping

potential, needed for the study of rotating quantum gases described in chapter 6.

The maximum radial trapping frequency is 300 Hz. The axial trapping provided by

the laser beam is very weak, due to the laser beam's large waist and accordingly

slow beam divergence (Rayleigh range zo = 7rw 2 /A = 4.6 cm!). If the optical trap

was the only potential acting on the atoms, the aspect ratio of the trapped cloud

713/2, 3/2) + 13/2, 1/2) -- 13/2, 3/2) + 11/2, 1/2) + llmK; 13/2, 3/2) + 11/2, -1/2) -- 13/2, 1/2) +
11/2,1/2), and 11/2,1/2) is untrapped; 13/2,1/2) + 11/2, -1/2) -4 13/2,-1/2) + 11/2,1/2), both
states are untrapped.

8Yb fiber laser, 20 W, IPG Photonics model PYL-20-LP
9Waist and maximum power have changed many times over the years. I present here the most

recent setup, used to detect vortices in fermionic superfluids (see chapter 6).



would be V2zo/w " 500 and the axial trapping frequency only 0.5 Hz. To ensure a

more manageable geometry and faster dynamics, we clearly need additional magnetic

confinement in the axial direction. This is conveniently provided by the "curvature

coils" already used in the magnetic trapping stage. They create a magnetic saddle

point potential with typical axial trapping frequency of v, = 23 Hz. The radial anti-

trapping with (imaginary) frequency vr = i 23/F2 Hz is negligible compared to the

strong radial confinement provided by the ODT.

4.3.2 Spin transfer

At the end of sympathetic cooling in the magnetic trap, the spin-polarized Fermi gas

is loaded into the optical trap by ramping up the laser power over 300 ms. The radial

confinement of the magnetic trap can now be removed, which is done by reducing

the current in the "gradient coils" (see Fig. 4-3) to zerolo over 1 s. The atoms,

all polarized in the stretched state IF, m) = 13/2, 3/2), experience now the radial

confinement of the optical trap plus the axial magnetic curvature. The transfer into

state II) - 11/2, 1/2) can be simply achieved by a RF sweep across the single-photon

13/2,3/2) -- 11/2,1/2) hyperfine transition at 228 MHz. However, state II) atoms

are high-field seekers and thus experience an anti-trapping axial curvature after the

spin flip. By quickly reversing the sign of the axial magnetic bias field the atoms are

trapped again (see Fig. 4-4). To minimize heating of the cloud due to expansion in

the transient anti-trap, the field curvature is reduced before the spin transfer, and

the magnetic field reversal takes place after less than half a trapping period. A more

elegant solution to this spin flip problem would be to use a more tightly focussed

ODT (which we avoid for other reasons, see chapter 6) or a second optical dipole trap

that provides axial confinement regardless of the atomic spin. However, subsequent

evaporative cooling of the interacting 11)-12) mixture (see below) will efficiently remove

the produced heat.

At this stage, the magnetic field is now increased to values around the Feshbach

resonance between state I1) and 12) (see chapter 3), located at B = 834 G. Here, the
6Li hyperfine states are in the Paschen-Back regime, that is, the electron and nuclear

10This is a slightly delicate process, as one needs to ensure that the center of the magnetic trap
remains aligned with the optical trap at all times during the current ramp. In the radial direction,
this trap center is defined by the zero-point of the radial magnetic fields. To this one must add
the influence of gravity, leading to sag. The position of the optical trap can be different, due to
requirements at later stages of the experiment (as in chapter 6). Additional bias fields in the radial
direction allow to overlap the magnetic trap with the optical trap, but the required field values
depend on the current in the cloverleaf coils. Hence, the bias fields need to be dynamically adjusted
as the gradient current is reduced.
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Figure 4-4: Hyperfine transfer of the cloud in a magnetic field curvature. The atoms
are initially trapped in state 13/2,3/2). After the spin transfer into state 11/2, 1/2),
the atoms are no longer trapped. Quickly reversing the sign of the magnetic field
retraps the atoms.

spins are decoupled. Both state I1) and 12) have their electronic spin aligned with

the applied magnetic field and thus have practically identical magnetic moments of

1 Bohr magneton. They only differ by the projection of the nuclear spin, mi = +1

for state 12), and mi = 0 for state II). An RF Landau-Zener sweep at about 80 MHz

can easily transfer atoms in state I1) into state 12). The final population in the two

spin states can be controlled by the sweep rate: The Landau-Zener probability for

the transfer 11) - 12) is

02
P1)-)12) = 1 - exp(-27r -- ),

where Q2 is the square of the Rabi frequency, proportional to the power of the RF

wave, and W is the frequency sweep rate. For a fully adiabatic transfer, 0Q >» W and

all atoms are transferred into state 12). A non-adiabatic transfer can produce any

final spin mixture.

One should note that the RF sweep is a coherent process that does not directly

convert atoms into another spin state (see [266], reprinted in appendix A). Rather,
each atom is brought into a coherent superposition state - a 11) + b 12). A non-

interacting, degenerate Fermi gas of atoms in state I1)will still be a spin-polarized

Fermi gas after the sweep, but now all atoms are polarized in the superposition state.

Clearly, we require a decoherence mechanism to truly populate the two distinct spin

states. This mechanism is found in the inhomogeneous magnetic field experienced by

the atoms, which scrambles their relative phase as they follow different paths in the



trap. By recording the onset of interactions in our cloud, we have measured [106]

the typical timescale for this decoherence to be tens of milliseconds for our magnetic

field curvatures. This is on the order of the axial trapping period, which is a sensible

result.

Once the fully decohered spin-mixture is created, efficient evaporative cooling of

the gas can begin. We typically lower the trap depth U over several seconds down

to about 1 1 K to enforce evaporative cooling. At this point, U becomes comparable

to the Fermi energy of the cloud, and further reduction in trap depth leads to strong

losses as atoms spill out from the trap. We reach temperatures of T/TF e 0.05 in a

Fermi mixture containing a total of about 107 fermion pairs.



Chapter 5

Bose-Einstein condensation of

fermion pairs

The hallmark of Bose-Einstein condensation in atomic gases was the sudden appear-

ance of a dense central core in the midst of a large thermal cloud [12, 72]. This

direct signature in the density distribution derives from a clear separation of energy

scales in weakly interacting gases. The condensate's repulsive mean-field p oc na is

much smaller than the critical temperature (times kB) at which condensation occurs,
TC OC 72/ 3: The gas parameter na3 is much less than 1 (about 4 x 10- 6 for our sodium

condensates). In a harmonic trap, the different energy scales directly translate into

the different sizes of a thermal cloud, Rth Oc vT, and of a condensate Rc oc vt .

However, in the case where p becomes comparable to kBTc, the condensate is no

longer clearly separated from the thermal cloud, hindering the direct observation of

condensation.

This is the situation we encounter in our Fermi mixture close to the Feshbach

resonance. In not too strongly interacting gases of molecules, it was indeed possible to

observe the characteristic bimodal density distribution known from atomic BEC [102,
271, 26, 36, 188] (section 5.1). The fact that molecules could be created [205] and were

found to be stable and long-lived close to a Feshbach resonance [69, 128, 239, 202]

was crucial for this observation. It finds its explanation in the fermionic nature of the

molecules' constituents [193].

As the interactions between molecules are increased by moving closer to the Fes-

hbach resonance, the size of the molecular condensate grows and the bimodal feature

close to Tc becomes invisible'. Now interactions dominate the appearance of both

the normal and the condensed cloud. At the same time - this is the essence of the
1This is almost true. See section 5.3 below and section 7.4.



BEC-BCS crossover - the composite nature of the molecules starts to play a role. The

constituent fermions, no longer spread out in k-space due to the molecular binding,
start experiencing Pauli pressure from the presence of others. The cloud size increases

even further until finally, on the BCS-side of the resonance, the size is completely dom-

inated by the single-particle energy, the Fermi energy EF. This is evidently the same

size the system would have in the normal state.

For this reason it seems no longer possible, in the strongly interacting regime, to

detect the superfluid phase transition in the density profile of the gas. To the rescue

comes the fact that in atomic Fermi gases, the interaction strength can be tuned at

will, on timescales short compared to the growth time of the condensates. This allows

to effectively "map" the condensate wavefunction in the strongly interacting regime

onto a molecular condensate wavefunction far away from resonance. If this is done in

the moment of releasing the gas from the trap, the final image of a molecular cloud

will again reveal a bimodal density distribution: The condensate surrounded by a

thermal cloud.

This method was employed by the JILA group [203] in a Fermi mixture of 40K,
and subsequently in our group for 6Li [272] to infer condensation of fermion pairs on

the BCS-side of the Feshbach resonance.

In the following I will first introduce the methods that have allowed the formation

of molecules, and present the observation of one of the first molecular Bose-Einstein

condensates. Next, I will describe the technique that has allowed to infer condensation

of fermion pairs on the BCS-side of the Feshbach resonance, where pairing is purely a

many-body effect. Finally, I will present unpublished data showing a direct signature

of the condensate in the density profile of the gas on resonance.

5.1 Bose-Einstein condensation of molecules

5.1.1 Feshbach resonances

Even before one could enter the realm of many-body physics, Feshbach resonances

have opened a new avenue in the physics of atoms and molecules: They have allowed

the production of ultracold molecules starting with ultracold atoms. The first obser-

vation of a Feshbach resonance in ultracold atoms [126, 235] showed strong losses in

the atomic signal that were attributed [250, 168, 259] to the formation of ultracold,

highly vibrationally excited molecules. It was predicted that these molecules, formed

out of two bosonic atoms, would undergo fast vibrational relaxation into more tightly
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bound molecules. Still, in experiments on 85Rb, the presence of the molecules, as

short-lived as they were (lifetime - 100 Is) could be detected via coherent beats be-

tween the free atomic and the bound molecular state [81]. Studies of the decay of

fermionic gases close to a Feshbach resonance [78, 36, 202] held a peculiar surprise:

The maximum atom loss was not centered on resonance, but was shifted towards

regions where the Feshbach molecular state was already quite deeply bound. The

gas close to resonance was stable [78, 174, 36, 204], in stark contrast to the bosonic

case. This molecular state could be reversibly populated via a magnetic field sweep

across resonance [205], at a conversion efficiency exceeding 90% [69, 121]. Most im-

portantly, it was found to be long-lived [69, 128, 239], with lifetimes between about

100 ms (for 40K) and several 10 s (for 6Li). This is to be compared to the conversion

efficiencies of only 5%-10% and lifetimes on the order of 5 ms observed in bosonic

gases [117, 255, 84].

It is this long lifetime which in the case of "Li has allowed to simply evaporatively

cool the gas close to the Feshbach resonance to create molecules [128], populating the

molecular state via collisions, and not via a magnetic field sweep.

5.1.2 Methods for making molecules

0,
a)

·t

I-

Magnetic Field

Figure 5-1: Creating molecules via three-body collisions. A molecular state is coupled
to the continuum (see Fig. 3-3). As the gas is cooled on the molecular side, the
molecular state is populated vie three-body collisions. If the binding energy is not
much larger than kB times the temperature, the energy carried away by the third body
does not substantially heat the sample. For fermionic particles, further vibrational
decay into small molecules is strongly suppressed due to Pauli blocking.

There are essentially two ways to create molecules out of unbound atoms close to a

Feshbach resonance. Three-body collisions and coherent two-body adiabatic transfer.
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Figure 5-2: Creating molecules via magnetic field ramps. A magnetic field sweep can
transfer unbound atoms adiabatically into the molecular state, much like a two-level
Landau-Zener transition.

In the three-body process, two of the colliding particles form a molecule, the third

carrying away the leftover energy and momentum. In a typical situation, molecular

states are deeply bound compared to the temperature of the gas (times kB). The

released energy in such a collision thus usually heats up the cloud, leading to trap

loss (hence the name "bad collisions"). However, in the case of a very weakly bound

molecular state close to a Feshbach resonance, the binding energy can be on the

order of the temperature, and molecules can efficiently form without severe heating

and trap loss (Fig. 5-1). Subsequently, leftover atoms can be efficiently evaporated

from the optical trap. Weakly bound molecules have twice the atomic polarizability,
hence the optical trap is twice as deep for molecules than for single atoms.

The molecules are only stable if the decay into more deeply bound molecular states

is suppressed in some ways. It turns out that for fermions there is such a suppression

mechanism: The Pauli principle. Decay into a deeply bound state requires three

fermions to be very close to each other in the final state of this process. With only two

spin states available, this is strongly forbidden [193]. For bosons, the decay process is

actually enhanced close to a Feshbach resonance, which results in molecular lifetimes

of only a few ms [117, 255, 84].

The second process is reversible, it does not generate heat and makes use of the

tunability of the molecular state: Starting with unbound atoms in the continuum,

one can adiabatically sweep the magnetic field across resonance and form a bound

molecule (Fig. 5-2). It is very helpful to think of this sweep in terms of a two-level

Landau-Zener sweep through an avoided crossing. For a coupling matrix element V
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between two "bare" states, la) and Ib), and an energy sweep rate E, one finds [168]

Pla)-lb) = 1 - e-c (5.1)

for the probability Pa)-•b) to make a transition from la) to Ib) as the bare state

energies are swept through resonance. Here c is a numerical constant on the order of

1.

In the case of Feshbach resonances, the two "levels" are the molecular state and

the energy of two unbound atoms. V is the coupling matrix element V = VNQ go =

vWY (Obl Vhf IIlk) that we have encountered in chapter 3. The number N of atom pairs
that appears in IV12 accounts for the fact that each spin up atom has N chances to

form a molecule with a spin down atom per volume Q. If we take our simple Feshbach

model of chapter 3, we can replace g02 = 4h2abg AMAB. The bare state energies are

tuned via the magnetic field, so E = AIBB. We have then

Patoms- molecules 2 1 - e- A (5.2)

with A = c 4 t bgAB. That is, the higher the density and the slower the magnetic field

ramp across resonance, the more efficient the production of molecules [141].

The simple two-state picture is obviously flawed, as the state of two unbound

atoms belongs to a continuum. Also, we neglect here the fact that two atoms need to

encounter each other in real space before the transition to the molecular state can take

place. In a "hot" atomic cloud, the production efficiency for adiabatic sweeps will

thus be less than 100%. In a semi-classical picture, we can expect that the efficiency

will be maximum if the two atoms belong to the same phase space cell. In a zero

temperature cloud, one would expect 100% efficiency of the sweep, as was discussed

in [121].

It should be noted that this coherent way of producing molecules generally does

not lead to a thermal equilibrium state if the sweep is too fast. The molecular cloud

needs to thermalize via collisions before it can settle into equilibrium (where, for

example, parts of it might be Bose condensed).

Distinguishing atoms from molecules

An amazing property of the molecular state close to resonance is its long range. A

most important consequence is that we can directly image the molecules using the

same laser light that is absorbed by unbound atoms. This is possible as long as the
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Figure 5-3: Imaging atoms and molecules. At zero field, only unbound atoms are
imaged. Tightly bound molecules do not absorb the imaging light resonant with
unbound atoms. Close to resonance, the molecules are so weakly bound that their
constituent atoms absorb light just like unbound atoms.

molecular size is much larger than the wavelength (divided by 27r).

The easiest way to distinguish atoms from molecules is to take an image at low

field, where the tightly bound molecules are detuned far from resonance (and their line

strength is diluted over the many excited molecular states), see Fig. 5-3. Alternatively,

one can dissociate the molecules into an unoccupied state using an RF pulse [205] and

subsequently image that state with a resonant laser beam. Yet another diagnostic

tool is the use of a Stern-Gerlach field gradient [128] to separate molecules from atoms

in a regime where their magnetic moments already differ substantially.

5.1.3 Formation of molecules

In a first experiment to locate the resonance, one can prepare a Fermi mixture on

the "BCS"-side of the Feshbach resonance, where no two-body molecular bound state

is available to atom pairs. As the magnetic field is swept across resonance, mole-

cules will form and, accordingly, the signal from unbound atoms taken with low-field

imaging will diminish (Fig. 5-4). This is a standard technique to locate Feshbach

resonances [205, 117, 234]. From Fig. 5-4 we determine a value of Bo = 838 + 27 G
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Figure 5-4: Molecule formation by magnetic field sweep across the Feshbach reso-
nance. a) Experimental procedure. A Fermi mixture prepared on the BCS-side of
the Feshbach resonance is swept across resonance (shown as the dashed line) to form
molecules. The gas is released from the trap at the end-point of the ramp at time
t = 0 ms. Zero-field imaging is used to be sensitive to only the leftover atoms. b)
Atomic signal vs end-point of the magnetic field sweep. The line is a fit to an error-
function, whose center is determined to be 838 ± 27 G, with an uncertainty given by
the 10%-90% width (54 G).

for the position of the resonance.

Seeing the atomic signal disappear can easily mislead one to believe that the
atoms are simply lost from the trap. However, the process is reversible: Ramping

back across resonance will dissociate the molecules (if done non-adiabatically, this

process can heat the cloud in the trap [171]).

In fact, the dissociation method gives a more accurate determination of the loca-

tion of the Feshbach resonance [203, 272]. To avoid effects due to the high density in

the trap (i.e. many-body physics), the molecular cloud is expanded to a 1000 times

lower density, about 1010 cm -3 . Then the magnetic field is ramped to a value Btest.
If Btest lies above the Feshbach resonance, the molecules will dissociate into unbound

atoms, which can subsequently be detected at low field.

The very sharp onset of the atomic signal at Btest = 821± 1 G is striking (see Fig. 5-
5) and suggests this magnetic field value as the position of the Feshbach resonance.
However, using molecular RF spectroscopy on a bound-bound transition between two

different Feshbach molecular states, the group of R. Grimm in collaboration with
the NIST theory group was able to infer the location of the Feshbach resonance 2 at

2A reason for our lower value could be few-body collisions, even at 1000 times lower density:
At 821 G, a - 30000ao and kFa is still on the order of 1. Another systematic shift could be the
finite ramp speed employed, that might dissociate the extremely weakly bound molecules at 821 G
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Figure 5-5: Locating the Feshbach resonance by molecule dissociation. The experi-
mental procedure is shown in the inset. A molecular cloud is prepared on the BEC-side
of the Feshbach resonance, at 780 G, and released from the trap at t = 0 ms. After
some expansion, the field is ramped to a test value around resonance (shown as the
dashed line), held constant and is finally brought to zero field, where only unbound
atoms are imaged. a) The atomic signal as a function of the test field shows a sharp
threshold behavior at 821 ± 1 G, where the uncertainty is the statistical error of a
threshold fit, shown in b).

834.1 ± 1.5 G [24].

From Fig. 5-5 we can directly see that before dissociation, more than 99% of the

gas exists in form of molecules. The reason is that this molecular cloud was formed

via the three-body process, by simply cooling the gas at the fixed field of 780 G

(the BEC-side of the resonance). The lifetime of the weakly bound molecules is so

long, and the binding energy is so small that losses and heating are negligible, and,

after evaporation of leftover unbound atoms, essentially all particles are bound into

molecules.

Coupling strength

Fig. 5-6 demonstrates the extremely strong coupling strength of the 6Li Feshbach

resonance. In this experiment, a Fermi mixture is released from the trap at B =

840 G, slightly above the Feshbach resonance. After a varying expansion time, the

magnetic field is switched off to zero field (at an initial slew rate of B = 30 Ps/G),

where the remaining atomic signal is detected. At the high density of the trap, almost

(binding energy 30 nK!). We searched for a dependence of the resonance location on these effects
and estimated that they could contribute an up-shift of the position by 3 + 3 G each. This is barely
within the error margin of the RF spectroscopy result.
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Figure 5-6: Revival of the atomic signal during expansion and strength of Feshbach
coupling, a) The magnetic field is switched off after varying expansion times for a
cloud released at 840 G. The field ramp creates molecules more efficiently at the high
densities of the trap than at low densities after long expansion. The inset shows the
atomic signal for immediate switch off (triangles pointing down) and for a switch off
after 4 ms expansion (triangles pointing up). In b), all of the atomic signal loss is
interpreted as molecular conversion and plotted as a function of density. The density
was calibrated by imaging the cloud at high field for varying expansion times. All fits
are for the simple Landau-Zener-model described in the text.

the entire atomic signal has vanished, the loss being almost 95%. However, as the

density decreases during expansion, the atomic signal revives, indicating that the

atoms were not truly "lost" but only "hidden" in the molecular state. In Fig. 5-6

b) we tentatively interpret all the atomic signal loss as conversion into the weakly-

bound molecular state3 . This conversion efficiency is plotted versus the density per

spin state at the given expansion time. Using the simple fit function given by the

Landau-Zener formula Eq. 5.2, we find A 24 1012 G with a relative error of 50%1012 cm- 3 
Ps

due to the uncertainty in the atom number.

The prediction is Eq. 5.2 with c = 27r, and using the lithium parameters we find

A = 87r2hbgB 19 (5.3)m 1012 cm- 3 
1us

The agreement is quite good but might be fortuitous, as the simple formula does

not take temperature and other effects into account (see [121] for a discussion of

more complete models and comparison with experiments). Also, here we have not

directly observed the molecular state, but only the loss in atomic signal, which could

30Other loss-channels like unobserved molecular states cannot be excluded here.
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be enhanced due to collisions after the ramp, leading to the formation of more deeply

bound molecules. Nevertheless, while the maximum conversion efficiency might be

subject to these systematics, the shape of the density dependence is likely less affected,

especially at low densities where collisions after the ramp should be negligible.

The strong coupling to the molecular state does not allow us to be fast compared

to the two-body time scale at the density of the trapped gas. For a typical n =

5 x 1012 cm- 3, in order to convert less than 10% of the atoms into molecules, we

would have to ramp at a rate of 1200 G / ps, about 40 times faster than the limit set

by our coil inductance.

On the other hand, this efficient molecule conversion will be very useful in sec-

tion 5.2, where the state of the fermion pair condensate above resonance is "frozen in"

by the rapid ramp into a condensate of molecules. That is, the ramp can be faster or

comparable to the many-body time scale but still slow enough for efficient molecule

formation.

For comparison, for the Feshbach resonance at B = 202 G used in experiments

with 40K we have A = 0.9 oG , (close to the measured value 0.71014 - s [2051),

resulting in efficient conversion into molecules at about 2000 times slower ramp rates.

5.1.4 Observation of molecular Bose-Einstein condensates

After the successful creation of ultracold molecules out of ultracold atoms via Fesh-

bach resonances in gases of fermions [205, 69, 128, 239] and bosons [81, 117, 255, 84]

the intriguing question was whether thermal equilibrium could be reached and cold

enough temperatures realized to observe the onset of Bose-Einstein condensation in

gases of molecules.

In the case of 6Li the long lifetime of molecules [36] (see Fig. 5-7) enables us to

evaporate the Fermi mixture at a fixed magnetic field, just as if one were to cool

a cloud of bosonic atoms towards BEC. As the mixture is cooled by ramping down

the trapping laser power, molecules form as the temperature becomes comparable

to the binding energy. Accordingly, the atomic signal observed in zero-field imaging

vanishes: We can see this in Fig. 5-5 for fields below resonance, where essentially no

atomic signal is measured. What renders evaporation very efficient is the fact that

molecules, having twice the polarizability of an atom, experience twice the trap depth

for unpaired atoms. The potentially energetic atoms produced during a molecule-

forming three-body collision are efficiently removed from the trap.

To observe the molecules directly, one can either use high-field imaging (see Fig. 5-
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Figure 5-7: Lifetime of molecules in partially condensed clouds. The cloud with ini-
tially about 1 x 106 molecules was held for 9.9 s (initial density about 5 x 1012 cm-3,
slightly varying with the interaction strength). Shown is the remaining fraction as
a function of scattering length. The lifetime 1/F is calculated under the simplify-
ing assumption of a pure exponential decay e-rt. The line is a fit with a power
law for F = ca-p, giving p = -0.9. The clouds were partially condensed (up to
80% condensate fraction at the largest scattering length), and all measurements were
done in the strongly interacting regime where a > 1/kF, so the expression for the
relaxation rate differs from the prediction for weakly interacting, thermal molecules
(r = ca- 2.55) [193].

3) or one can dissociate them as in Fig. 5-5 by crossing the resonance shortly before

taking an absorption image at zero field. Below a certain temperature, one observes

the striking onset of a bimodal density distribution, the hallmark of Bose-Einstein

condensation (see Figs. 5-8 and 5-9). In contrast to weakly interacting Bose gases,
the condensate peak is not much smaller than the thermal cloud, indicating a large

mean-field energy of the BEC, comparable to kB times the condensation temperature.

As we move closer to the Feshbach resonance, the size of the condensate grows to

be almost that of a degenerate Fermi gas. Figure 5-10 illustrates this fact for an

essentially pure condensate at 780 G.

We thus start entering the situation outlined in the introduction: All energy scales

approach each other. The molecules are no longer tightly bound and far from each

other, but rather their average distance nfM from each other becomes comparable to

the molecular size in free space, given approximately by the scattering length. One

has already entered the strongly interacting regime of the BEC-BCS crossover.
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Figure 5-8: Observation of Bose-Einstein condensation of molecules. As the trap
depth is lowered (from left to the right image), the characteristic bimodal density
distribution appears in the molecular cloud.
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I
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Figure 5-9: Bimodal density distribution emerging in a cloud of molecules. Shown
are radially integrated profiles of absorption images such as those in Fig. 5-8, as a
function of final laser power. The dashed lines are fits to the thermal clouds.
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Figure 5-10: Comparison between a molecular BEC (a) and a degenerate Fermi sea
(b). The condensate containing Nm = 6 x 106 molecules is in the strongly interacting
regime at a magnetic field of 780 G (1/kFa = 0.6). Its size is almost as large (factor
- 0.7) as a non-interacting Fermi sea containing Nm atoms, indicated by the white
circle. Image and profile b) show an essentially spin-polarized Fermi sea (minority
component of < 2% not shown) containing N = 8 x 106 atoms at the same field. The
images were taken after 12 ms expansion with the probe light aligned with the long
axis of the cigar-shaped clouds.
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5.2 Condensation of fermion pairs close to a

Feshbach resonance

In contrast to the case of molecular condensates, the superfluid in the strongly in-

teracting regime does not appear to spatially separate from the normal state. This

is the main "dilemma" with strongly interacting Fermi gases, dramatically shown in

recent high-resolution images (see Fig. 5-11). A second difficulty with Fermion pair

condensates on the BCS-side is the fragility of the pairs: During expansion, the gas

becomes more dilute, and the pair binding energy can decrease below (ksB times) the

local temperature. Thus, the pairs can break in time of flight (see chapter 6 for a

study of this effect using vortices). Clearly, a new detection method is needed to infer

condensation on the BCS-side of the resonance.

5.2.1 The rapid ramp technique

Such a method was introduced by the JILA group [203], and later adapted to 6Li

by our group [272]. The idea behind the rapid ramp technique is to "rescue" the

fragile fermion pairs by sweeping the magnetic field towards the BEC-side of the

resonance, thereby transforming them into stable molecules (see Fig. 5-12). This is

done in the moment the trap is switched off for expansion. If each fermion pair is

transferred into a tightly bound molecule, the momentum information of the original

pair is preserved. Time-of-flight analysis of the resulting molecules should thus allow

to infer the momentum distribution of pairs in the gas above resonance.

This technique has enabled us to demonstrate fermion pair condensation in the

entire BEC-BCS crossover. Sample images and profiles of the resulting molecular

clouds are shown in Fig. 5-13. The drastically reduced interaction results in a clear

separation of the condensate from the "thermal" or uncondensed part of the cloud4 .

The fact that this can be seen even with low-resolution imaging (compare the profiles

in Fig. 5-13 from February 2004 with those in Fig. 5-11 obtained two years later)

demonstrates the power of the method. Note that the rapid ramp converts atoms into

molecules with higher than 90% efficiency for all fields in the BEC-BCS crossover,
4At zero field, the scattering length between molecules should be on the order of the singlet

scattering length of lithium atoms, which is about 40 a0 . The exact value is not known. In fact,
the residual mean-field interaction at zero field is so low that the condensate practically does not
expand if the rapid ramp is performed immediately after switching off the trap. For this reason, it
is sometimes beneficial to let the cloud expand by some amount before the rapid ramp is performed.
This converts some of the interaction energy in the cloud into kinetic energy, which lets one "choose"
the final expanded size of the molecular condensate.
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Figure 5-11: The dilemma with strongly interacting Fermi gases: The superfluid
appears not to leave a trace in the density profile of the gas. Shown are high-resolution
images (from February 2006) of spin up atoms in a resonantly interacting, equal
mixture of spin up and spin down for different temperatures. The lower graphs show
aximuthally averaged radial profiles (noise level well below 1% of the maximum optical
density). All three clouds are very well fit using a finite-temperature Thomas-Fermi
distribution (with fugacity e /kBT, central density no and mean square radius (r2) as
free parameters, see Eq. 2.28). However, the empirical temperatures of T/TF= 0.22
(a), 0.13 (b) and 0.075 (c) determined from the profiles' wings indicate that at least
clouds b and c should be in the superfluid regime (which is indeed the case, see
chapter 6). Trap parameters v, - 162 Hz, v, = 22.8 Hz, 10 ms time of flight,
expansion factor 13.9, atom numbers N per spin state were 10.2 (a), 9.5 (b) and 7.5
x 106.
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Figure 5-12: Rapid ramp to the molecular side to observe pair condensation. Imme-
diately after switching off the trapping beam, the magnetic field is ramped to zero
field. This converts long-range pairs into stable, tightly bound molecules. Momentum
information of the original pairs is thus preserved.

see the discussion in section 5.1.3 above and Fig. 5-6.

5.2.2 Condensate fraction in the BEC-BCS crossover

The condensate fraction was determined by fitting a bimodal distribution to the

profiles like those in Fig. 5-13, a parabola for the central dense part and a gaussian

for the thermal background. To our surprise, we found very large condensate fractions

throughout the entire BEC-BCS crossover, with a peak of 80% at B 820 G, close

to, but still on the BEC-side of the resonance (determined via RF spectroscopy and

theory [24] to be Bo = 834 G)5 (see Fig. 5-14). It is intriguing to note that around

the same field, a minimum in the damping of collective excitations was found [25].

The high condensate fraction might be a hint that the pairs in the strongly inter-

acting regime on the BCS-side of the resonance are still smaller than the interparticle

spacing, and not larger as one would expect from long-range Cooper pairs. In this

case, it is intuitive that each atom of a given pair can still form a molecule with its

original partner during the rapid ramp. If the pairs were much larger than the inter-

particle spacing, molecules might rather form out of uncorrelated atoms, resulting in

a thermal cloud after the ramp. In accord with this argument, BEC-BCS crossover

theory predicts that the pairsize ( will be smaller than the interparticle spacing n - 1 /3

5Interestingly it is at this magnetic field where the sharp onset of the dissociation threshold was
found (see discussion of Fig. 5-5 above).
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Figure 5-13: Fermion pair condensates. Axial density of the atomic cloud after the
rapid ramp to zero field (in < 100 ps), further expansion (for 10 ms), and dissociation
of the resulting molecules by ramping back across resonance. The initial field B 0, the
number of fermion pairs N, the condensate fraction and the interaction parameter
1/kFa where a) 745 G, 700 000, 47%, 1.2; b) 835 G, 1.4 x 106, 81%, 0.0 (resonance);
c) 912 G, 1 x 106, 49%, -0.5.

up to kFa = -1 (see chapter 2), which is indeed on the BCS-side of the resonance.

So far no experiment on Fermi gases has shown condensation or superfluidity in a

regime where kFlaj (a < 0) is significantly less than 1 and hence where pairing is

truly long-range.

Let us also note that the high condensate fraction is in stark contrast to the

maximum fraction of about 14% found in experiments with 40 K [203]. The cause for

this discrepancy might be connected with the shorter lifetime of the Fermi mixture

in 4oK close to resonance, on the order of 100 ms [202]. This lifetime might not have

been sufficient to reach full thermal equilibrium of the gas in all three dimensions 6.

In our experiments, the condensates were found to be very long-lived. For a hold

time of 10 s, the condensate fraction on resonance was observed to still be close to

its initial value 7. In fact, these lifetimes can very favorably compare to those found

for atomic Bose-Einstein condensates.
6The axial trapping period in [203] was about 200 ms, comparable to the lifetime of atoms in the

regime where condensation has been reported [202].
70On the BEC-side, it decayed more rapidly due to the increasing rate of vibrational relaxation of

the molecules away from resonance. The decay in the condensate fraction on the BCS-side is likely
caused by atom loss without change in temperature.
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Figure 5-14: Condensate fraction in the BEC-BCS crossover as a function of the
magnetic field before the rapid ramp. The symbols correspond to different hold
times, 2 ms (crosses), 100 ms (squares) and 10 s (circles).

5.2.3 Discussion of the condensate fraction

Fig. 5-15 shows a "phase diagram" for the condensate fraction as a function of tem-

perature. Several theoretical works [79, 20, 51] have confirmed the general behavior

of the "critical temperature" of the observed condensation phenomenon in 40K and in
6Li. Also, the fact that high condensate fractions were found in our experiment could

be explained within the BEC-BCS crossover model [191, 209, 181] and by Quantum

Monte-Carlo simulations [18].

How does the condensate fraction change in the BEC-BCS crossover? On the

molecular side of the resonance, even in the absence of losses due to vibrational

relaxation, one would expect quantum depletion to reduce the condensate fraction.

The Bogoliubov theory of chapter 2 predicts _ for the condensate depletion

in a molecular gas of density nM and scattering length aM. At kFa = 1 (at about 750

G in our experiment) this would give 9% (we assume aM = 0.6a [193]). Evidently,
close to resonance this first-order expression diverges. The quantum depletion on

resonance will be a universal number.

On the BCS-side of the resonance, it is a priori not evident how a "condensate

fraction" should be defined. If we ask for the superfluid density, this must of course

equal the total density of the gas at zero temperature. This was in fact the way we

normalized the order parameter 0(r) on the BCS-side in section 2.3.5. If the question

concerns the fraction of paired fermions, this, too, would be given by 100% at T = 0.
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Figure 5-15: "Phase diagram" for the condensate fraction as a function of magnetic
field and temperature. Condensates are obtained in the entire BEC-BCS crossover.
The highest condensate fraction and highest onset temperature are obtained on the
BEC-side close to resonance. As a model-independent measure of temperature, the
condensate fraction at 822 G (see arrow) is used as the vertical axis. The Feshbach
resonance lies close to this point, at 834 G.

However, we have seen in section 2.3 that we should not regard the BCS-state as

a condensate of bosonic pairs: Anti-symmetrization of the many-body wavefunction

spoils this picture. The definition of "condensate fraction" that is usually employed

is a measure of coherence in the gas, the long-range order due to condensation. The

quantity that expresses this coherence is the "Cooper pair wavefunction" 0(r1 - r2 ) =

K I(rl)I(r 2)). The number of "condensed pairs" No is the norm of (r, -r 2 ). With

the tools of chapter 2 and following [209], we can calculate the condensate fraction

within the variational BCS Ansatz:

No = d3ri d3r 2  1(r -r 2) 2  (5.4)

Calculating this quantity for the BCS state one observes that the density of condensed

pairs is
No 1 1 f d3k A 2

no v = (5.5)Q E k 4J (2r)3 2 + A2
k

Quite satisfactorily, the integral can be obtained analytically and we find with [209]

no A3 /2  (5.6)
no8= h 3 ± 1±+ (5.6)
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p and A were calculated in chapter 2. In the BEC-limit, with the help of Eq. 2.111,
this becomes the density of molecules or half the total atomic density n, as expected,

no = n/2 (5.7)

that is, all molecules occupy the same single-particle ground state. In the BCS-regime,
where the gap is exponentially small, one finds [209]

mkF 3r A
no = mkA =- n (5.8)

87r h2  16 EF

Also this result is natural: Loosely speaking, the pairs that truly contribute to co-

herence in the system reside mainly close to the Fermi surface, in an energy width of

size A, so their density is simply - nA/EF.

On resonance, p/A and A/EF are universal numbers, for which the variational

BCS approach provides the approximations 0.85 and 0.69, respectively. One finds a

condensate fraction of
2No

= 0.70 (5.9)N

Hence, the variational BCS-Ansatz provides a hint that the condensate fraction on

resonance can indeed be large. Other studies have come to the same conclusion. For

example, a Monte-Carlo study gives 2No/N - 0.60 [18].

It is not evident that the rapid ramp method of the experiment directly measures

this condensate fraction. Our experiments on the growth time of fermion pair conden-

sates [270] and on the in-situ detection of condensation (see section 5.3 and chapter 7)

and theoretical modelling of the ramp [79, 191, 10, 260] have shown that the observed

bimodal density distributions provide a qualitative signature of a condensate on the

BCS-side. It is an open question whether the obtained condensate fractions can pro-

vide a good quantitative measure of the coherent part on the BCS-side. Fig. 5-16

compares the variational BCS prediction to the data obtained via the rapid ramp.

The very close agreement is fortuitous, but it is encouraging to see the correct trend

on the BCS-side.

5.2.4 Discussion of the time scales involved

One objection to the rapid ramp method might be that the condensates could be

formed during the ramp, on the molecular side of the Feshbach resonance. To rule

out this possibility, we need to address the question on what time scales condensate
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Figure 5-16: Condensate fraction as a function of the interaction strength in the
BEC-BCS crossover. The circles show the 100 ms data of Fig. 5-14. The interaction
strength is calculated using the known scattering length as a function of magnetic
field and the experimental value 1/kF = 2 000 ao. The curve shows the variational
BCS prediction for the condensate fraction. The good agreement on the BCS-side
should not be taken as proof that the rapid ramp truly measures the condensate
fraction. On the BEC-side, heating due to vibrational relaxation leads to fast decay
on the condensate. Figure adapted from [209] using Eq. 5.6.

formation takes place. Table 5.1 lists the different time scales of importance in our

experiment.

Time scale
Two-body physics
Magnetic field ramp (timescale on which the mole-
cular state changes with respect to threshold)
Fermi energy
Time required to leave resonance
Evolution of the gap at kFalI = 2
Gap at kFlal = 2
Inverse collision rate at unitarity and T/TF = 0.1
Growth time of a pair condensate at kFyla = 2
Radial trapping period

Formula
h/go -/27rn

go V2in/AB

h/EF
AB/B
A/A
h/A

0.23 hEF/(kBT) 2 [95]
hEF/A 2 [21]

27/w,

Table 5.1: Time scales involved in the rapid ramp technique

The fastest timescale is that relevant to two-body physics, the Feshbach coupling

strength. At the high densities of our trapped samples, we cannot beat this even
with our fastest magnetic field ramps (that is, switching off the power supply). As
discussed in section 5.1.3, for our ramp speeds the conversion into molecules is always
better than 90% for in-trap densities. The next fastest time scale is that set by the
Fermi energy, which in the unitarity regime on resonance would set the timescale
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20 ns
80 ns

3 ps
10 ps
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15 ps
70 ps
75 ps
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for collisions in the normal Fermi gas, were it not for Pauli blocking (and factors of

27r etc.). The time it takes to leave the resonance region in our gas is a bit longer

than the Fermi time scale, but might be smaller than the inverse collision rate. This

would mean that the original momentum distribution of fermion pairs is truly "frozen

in" during the ramp. The momentum distribution of the final molecules would then

reflect that on the BCS-side.

The ramp is non-adiabatic on the time scale of the gap, which is forced to evolve

faster than it can respond to the change in interaction strength, A/A > A/h. Finally,

there is the relaxation time scale of the gas in response to a change in the particle

distribution. In a normal Fermi gas of N particles at temperatures T < TF, relaxation

occurs via collisions of particles close to the Fermi surface, of number NT/TF. Pauli

blocking reduces the available final states for collisions by another factor of T/TF,

giving a relaxation time TR ;, hEF/(kBT)2 . In general, if the Fermi surface is smeared

over an energy width AE, the relaxation time is 7 hEF/AE2 . In the case of a

(BCS-type) superfluid, AE = A, and the relaxation time thus scales as "rR = hEF/A 2 .

We were able to show that fermion pair condensates grow indeed on a time

scale long compared to the ramp time, comparable to the expected relaxation time

scale [270]. This lends validity to the rapid ramp method.

This technique actually poses a difficult problem for many-body theory. For a

Bose-Einstein condensate, problems that involve time variations can be treated with

the time-dependent Gross-Pitaevskii equation (Eq. 2.65), which is applicable also

at zero temperature. The single characteristic timescale involved is the mean-field

timescale 7, = h/t. For the BCS-case, the pendant to the Gross-Pitaevskii equation

is the time-dependent Ginzburg-Landau equation for the order parameter A(r, t) (see

section 2.3.5), which is unfortunately only valid in a region of size (Tc/EF)4 close to

the critical temperature, and other approaches are needed. It turns out that the

gap introduces the time scale of coherent evolution of the wavefunction, while the

relaxation time hEF/A 2 gives the time scale for incoherent redistributions of the

many-body state.

If the ramp is faster than all many-body time scales, the BCS-state needs to

"project" itself onto the eigenstates on the BEC-side [79, 191, 10, 260], a process

similar to an orthogonality catastrophe [260]. As the BCS-state can either decay

into condensed or excited molecules, it is natural to expect the typical image of a

condensate embedded in a thermal cloud after expansion.

In summary, our experiments show that one can indeed infer the existence of a

fermion pair condensate on the BCS-side using the rapid ramp technique. It provides
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us with a qualitative signature of condensation. The quantitative comparison between

the observed condensate fractions and what is usually defined as a condensate fraction

in BCS theory is, however, far from trivial [79, 191, 10, 51].

5.3 Direct observation of the phase transition in a

resonantly interacting, equal mixture of fermi-

ons

5.3.1 The normal and the superfluid gas on resonance

Let us now return to the dilemma with strongly interacting Fermi gases we have

seen in Fig. 5-11: The superfluid does not appear to leave a detectable trace in the

density profiles of the gas on resonance. We can understand this qualitatively from

the principle of universality: As the scattering length diverges, the only length scale

of relevance is the interparticle spacing, n - 1/3 . Accordingly, the only energy scale

available is the Fermi energy, EF = (3ir2n)2/3 . The chemical potential p of the gas

can thus only be EF times a universal constant:

p =- s EF (5.10)

In a trap, the local chemical potential varies like p(r) = p - V(r), so we immediately

deduce that for harmonic trapping the shape of the cloud, at least at zero temperature,

must be given by

n(r) = no 1 RF- 2 (5.11)

with no - (~ )3/2 and the Thomas-Fermi radius RTF (we consider a

spherical trap without loss of generality). This shape is identical to the one we expect

for a normal Fermi gas (see chapter 2). The only difference is the universal constant

(, appearing in p and no. This parameter can indeed be measured for example by

determining the cloud size [174, 26, 139, 187], or the release energy of the gas [37]. It

is not difficult to check that

RT = EF (5.12)

RTF = 1/4 RF (5.13)
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with the usual expression for the Fermi energy of an equal mixture in a harmonic

trap, EF = hw(3N)1/3 
= I mw2 R' and the total number of atoms, N.

The above consideration holds strictly only at zero temperature, where the gas we

describe is the superfluid (hence the subscript s). The crucial point is now that above

the critical temperature Tc, the normal state can have a different universal parameter

ýn describing its zero temperature energy and size (which are, of course, never attained

due to the transition to the superfluid state). It should then, in principle, be possible

to directly observe the superfluid phase transition by a faint change in the density

profiles, as an inner superfluid core emerges with a different equation of state (that

is, if not accidentally ýn = G). It turns out that the superfluid constant (s has been

measured [174, 26, 139, 187] and calculated [43, 17, 44, 39] to be about

, e 0.45 (5.14)

while the universal constant for the normal state has been obtained in [38, 39] to be

about

ýn 0.59 (5.15)

Hence the characteristic size of a normal and a superfluid gas in a trap are expected

to differ.

5.3.2 Anomalous features in the density profiles of expanded

clouds at unitarity

To test this hypothesis, we have studied the density profiles of the unitary gas on

resonance after expansion. To a very good approximation, the trapping potential was

cylindrically symmetric (see chapter 6). This allowed us to obtain high-resolution

profiles via azimuthal averaging. Temperature was varied by changing the final trap

depth used during evaporation. After evaporative cooling, the trap was recompressed

to a fixed trap depth (U = 2.6 IK) before expansion. As an independent check for the

superfluid phase transition, the condensate fraction was determined using the rapid

ramp method, described in the previous section.

Sample profiles are shown in Fig. 5-17. The goal is to detect a deviation from the

shape of a single-component fermionic cloud. We thus fit an unconstrained finite-

temperature Thomas-Fermi function to the profiles. The relevant information is now

contained in the residuals of such a fitting procedure. The quality of the fit, given

by the parameter X2, is shown in Fig. 5-18 as a function of the trap depth. At tem-
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Figure 5-17: Density profiles of an equal Fermi mixture on resonance. The tempera-
ture in a) was T/TF ; 0.15, whereas in b) it was T/TF x 0.09. Temperatures were
determined from the thermal molecular cloud after the rapid ramp, and might not
be quantitatively accurate. Both gas clouds contained a condensate after the rapid
ramp to the BEC-side. The condensate fraction was: a) 7%. b) 60%.

peratures above 200 nK, the cloud is well fit by the Thomas-Fermi profile. However,
as we lower the trap depth during evaporation below a certain value, the fits become

suddenly worse than at high temperatures. Small "kinks" or changes in slope appear

in the profiles. This could indicate that now (at least) two "species" in the gas com-

pete for space. At our lowest temperatures, we see the quality of the fits to improve

again, indicating that now a large fraction of the gas is in the superfluid state. The

size of the cloud is then RTF = 0.83RF, which gives &S ; 0.47, which is in accord with

other experiments and theory [174, 26, 139, 187, 43, 17, 44, 39].

One should note that we never observe the fit residuals to deviate by more than

2% from the Thomas-Fermi shape. This explains why this effect has so far been too

small to be observable. Note that the conventional way of measuring an effective

temperature is to fit a Thomas-Fermi profile to the entire cloud. The small fea-

tures we observe will bias the fits and thus systematically affect such temperature

measurements. For example, the Thomas-Fermi fit to Fig. 5-17b would yield an un-

realistically low temperature of T/TF < 0.01. A better way to determine temperature

would probably be to only fit the profile's wings, where the gas should be normal.

The region to be included in the fit could be defined by requiring the quality indicator

X2 to be as low as that found for normal, "hot" clouds above the phase transition.

In Fig. 5-17b), such a procedure yields T/TF . 0.11. This compares quite well to

the value T/TF x 0.09 obtained from the thermal distribution of molecular clouds

observed after a rapid ramp to the BEC-side. However, the fact that the normal state
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Figure 5-18: X2 of the Thomas-Fermi fit as a function of the final evaporation trap
depth. X2 shows a strong dependence on temperature, as expected from theory [122,
190, 119, 230]. The condensate starts to form already around a trap depth of U - 2.2,
and the fit-residuals in Fig. 5-19 indicate the same transition. The quality of the
global fit does not appear to be sensitive to small condensates. The temperature was
determined from the thermal wings of expanding molecular clouds after the rapid
ramp. The Fermi temperature decreased slowly from 1.5 pK for U = 2.6 to 1.4 IK at
U = 0.4, and dropped quickly due to atom spilling below U = 0.2. All measurements
were done after recompression into a deeper trap with U = 2.0.

on resonance is still strongly interacting limits its use as a reliable thermometer.

A convenient way to graph fit residuals as a function of temperature is by means

of a "density" plot of gray shades, with white and black corresponding to positive

or negative deviations of the measured profile from the fit. This is shown in Fig. 5-

19. Also included in this figure is the information on the density profiles and their

curvature. While the profiles themselves do not appear to change with temperature

(trap depth) on the scale of the plot, we observe an intriguing structure appearing

in the residuals at an evaporation depth of about U = 2 pK. The curvature of the

density profiles shows a similar qualitative behavior.

As a strong indication that the observed feature indeed stems from the superfluid,
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Figure 5-19: Density profiles, their curvature and their fit-residuals on resonance. a)
Density profiles on resonance as a function of trap depth. There is no sign of a phase
transition at this resolution. b) After the rapid ramp to the BEC-side and expansion,
a, condensate is clearly visible below a certain trap depth. c) The curvature of the
density profiles on resonance in a) carries a signature of the condensate. No field
ramp is required. d) The fit residuals for a finite temperature Thomas-Fermi fit. Also
here, the condensate's imprint in the density profile is clearly visible. To obtain the
curvature, the noisy central region of +0.1RF in each profile was replaced by a fit.

we also include a density plot of the profiles obtained with the rapid ramp method.

As explained in the previous section, this allows to clearly separate the condensate

and thermal cloud in expansion. The condensate fraction is included in Fig. 5-18, and

shows, as one would guess from inspection of Fig. 5-19, that the condensate appears

around U = 2.2 (in a.u.), a trap depth of 4.2 pIK in real units. We conclude that a

small condensate does not leave a strong signature in the gas cloud, unlike the case of

weakly interacting Bose gases. Only when the condensate has grown to an appreciable

size (about 20% in our data) does it significantly deform the density profiles.

To conclude, we have shown that the dilemma stated in the beginning of this

chapter does not truly exist on resonance. The gas does show features in the density

profiles upon condensation. Such features have been predicted by several authors [122,
190, 119, 230], but up to now they were too small to be seen after column integration.
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Chapter 6

High-temperature superfluidity:

Observation of vortices in a

strongly interacting Fermi gas

A 7 V o 5 gGoA8te, Tr0i6 At" 4e7Acazx6;.

V o r t e x is king, having kicked out Zeus.

Aristophanes, Clouds 828 (423 B.C.)

i6v-rTa TS xaOT ' 1av4XqV lYiydo74Iat, T 5 8 Iv V T 5 riT1g
ova"5 T'YF" ~yv~ao•-w n7~vwv, 'V .atVYxyv AS'YS1.

All things happen by virtue of necessity, t h e v o r t e x being the cause
of the creation of all things, and this he calls necessity.

Diogenes Laertius, Lives of eminent Philosophers, IX 45
(DEMOCRITUS, 460-357 B.C.)

Superfluidity is the hallmark property of interacting quantum fluids, whether it occurs

in superconductors, in liquid helium or inside a neutron star. It is intimately, although

not directly related to the presence of a condensate. It might be evident from analogy

with atomic BEC that the molecular condensates of the preceding chapter are indeed

superfluid. But how can one demonstrate superfluidity for the strongly interacting

Fermi gas on resonance?

Quantized vortices in superfluids and superconductors

One of the most striking properties of superfluids is their response to rotation. In

contrast to a normal fluid, which rotates just like a rigid body, a superfluid can carry
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angular momentum only in the form of quantized vortices. Their mutual repulsion

results in a regular distribution of the vortex lines, the Abrikosov lattice [4]. In super-

conductors it is an applied magnetic field that attempts to set the charged superfluid

of electron pairs in rotation. The superconductor responds by either completely ex-

pelling the magnetic field (the Meissner effect) or by allowing quantized magnetic flux

lines, vortices, to penetrate it. Quantized magnetic flux was measured by Deaver and

Fairbanks [75] and Doll and Nabauer in 1961 [80] by moving a thin superconducting

cylinder of tin toward and away from a conducting coil and measuring the electromo-

tive force induced in the coil as a function of applied field. Entire Abrikosov lattices of

magnetic flux lines were observed by using ferromagnetic particles that were trapped

at the lines' end-points (Triuble and Essmann [246], Sarma [212], independently in

1.967). Preceding these experiments in superconductors, quantized circulation in su-

perfluid helium-4 [252] was observed by Vinen in 1958 by measuring the frequency

of circular motion of a thin wire placed at the center of the rotating superfluid. The

direct observation of vortex lattices in superfluid 4He was achieved in 1979 by Yarm-

chuk, Gordon and Packard [257] by imaging ions trapped in the core of the vortex

lines. Using the method of the vibrating wire, the presence of quantized circulation

was confirmed for the fermionic superfluid 3 He in 1990 by Davis, Close, Zieve and
Packard [71]. Our work presents the first direct imaging of vortices in neutral fermi-

onic superfluids. It is interesting to add to this list that glitches in the frequency of

pulsars, fast rotating neutron stars, have been attributed to the spontaneous decay

of vortex lines leaving the neutron pair superfluid [9, 82].

Superfluidity in dilute gases

The observation of superfluidity in gaseous Bose-Einstein condensates had been the

subject of many experimental efforts. One class of experiments performed at MIT

consisted in observing the energy dissipated in the cloud by a moving obstacle [200,
58, 179]. Another class of experiments addressed the change of the moment of inertia

as the gas turns superfluid. This could be evidenced by the observation of the scissors

mode for a Bose-Einstein condensate [161], the oscillation of a dilute gas generated by

the sudden rotation of the confining trap [108]. Finally, the observation of vortices in

weakly interacting BECs provided the most spectacular demonstration of superfluid-

ity. In a two-component condensate, the JILA group created a single vortex using a
phase-imprinting technique, in which one component was stationary while the other

was rotating around it [164, 11]. In an adaption of the "rotating bucket" idea, vortex
lattices in single-component BECs were created [160, 2, 120, 87] by driving surface
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excitations [178].

In Fermi gases, the direct observation of superfluidity was hindered by the fact

that the normal cloud above TC is still strongly interacting and obeys (collisional)

hydrodynamic equations of motion, of the same form as that expected for superfluid

hydrodynamics. The observation of an inversion of the aspect ratio of the cloud

during expansion [174], a hallmark for Bose-Einstein condensation in weakly inter-

acting Bose gases, indicated strong interactions in the gas but could not provide

proof for superfluidity [105, 36, 204]. Condensation on both sides of the Feshbach

resonance [102, 129, 271, 203, 272] showed the presence of very low-energetic fermion

pairs, but did not directly address questions of superfluidity or phase coherence. Evi-

dence for superfluidity was provided via measurements of collective excitations of the

gas [138, 25], and via the observation of pairing in the strongly interacting regime [59].

A signature of a phase transition was not observed in these experiments, in the form

of an abrupt change of the physical behavior of the gas as a function of temperature.

It is a remarkable fact that the BEC-BCS crossover supports bound fermion pairs

even above Tc, in an uncondensed state. Superfluid pairs could not be distinguished

from uncondensed pairs, and theoretical modelling was needed to infer the presence

of a superfluid.

In the experiments I will describe in the following, superfluidity was directly

demonstrated in ultracold Fermi gases through the observation of vortices. At the

same time, these results established phase coherence in gases of molecules and of

fermionic atom pairs. Vortices have now become a tool to study the limits of super-

fluidity close to the phase transition (section 6.3.3) or in imbalanced Fermi mixtures

(chapter 7).

In the following, I will present the experimental techniques used to set strongly

interacting gases into rotation (section 6.2), the observation of vortex lattices in sec-

tion 6.3 along with measurements on the damping time, and the phenomenon of pair

breaking in expanding superfluids (section 6.3.3).

6.1 Origin of the vortex phenomenon

Superfluids are described by a macroscopic wavefunction 0(r) (see chapters 2 and 5).

It is this quantity which is zero in the normal state and non-zero in the superfluid

state, so it qualifies as the order parameter of the superfluid phase transition. As a
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wavefunction, it is a complex quantity, with a magnitude and phase ¢

V(r)= I (r)l ei(r) (6.1)

The velocity of the superfluid is simply the gradient of its phase,

v = hV4 (6.2)
m*

where m* is the mass of the bosonic entities forming the superfluid. In the case

of fermionic superfluids, we have m* = 2m, where m is the fermion mass. If we

integrate Eq. 6.2 around a closed loop inside the superfluid, we immediately arrive at

the Onsager-Feynman quantization condition [180, 91, 92],

hv -dl = n- (6.3)i m*

with integer n. If the superfluid wavefunction has no nodal lines and the loop fully

lies in a simply connected region of space, we must have n = 0. However, Eq. 6.3 can

be fulfilled with n $ 0 if the wavefunction contains a vortex, that is, a flow field that

depends on the vortex core distance r like v - 1/r. At the location of the vortex, the

wavefunction identically vanishes, it has a nodal line. This is the way a superfluid can

carry angular momentum. In case of cylindrical symmetry, the angular momentum

per boson or fermion pair is quantized in units of h. Note that the vortices are an

equilibrium property of the superfluid at given angular momentum. This is in marked

contrast to classical vortices, which can only be found in non-equilibrium situations

(dynamical equilibrium). Here, vorticity must decay whenever the viscosity is non-

zero. Also, classical vortices do not obey any quantization rule and can occur with

any circulation.

It turns out that for quantized vortices, only the case of n = +1 is of relevance,
since more highly "charged" vortices are energetically not favorable and quickly decay

into singly charged vortices [222].

How can quantized vortices nucleate? Imagine that we move a stick or spoon

through the condensate. We know that the condensate will not respond to the spoon if

its motion is slower than a certain critical velocity. Another fact is that vortices cannot

suddenly appear within the condensate, as the angular momentum contained within a

closed loop inside the condensate cannot abruptly jump. Rather, the nodal lines have

to enter the condensate from its surface, where the condensate's wavefunction is zero.
This surface can also be the surface of the stirrer, if it fully expels the condensate.
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Figure 6-1: Fate of a quadrupole oscillation in a rotating atomic Bose-Einstein con-
densate. The images show a sodium condensate in the magnetic trap after stirring
slightly above the quadrupole resonance (at 52 Hz, trapping frequencies v1 = 73 Hz
and v, = 18 Hz) and equilibrating for a certain time t (time given in ms). First, the
condensate rotates in the form of a perfect quadrupolar collective excitation. After
about 100 ms, density depletions looking like vortex cores start to appear at the edges
of the condensate. Between 500 ms and 1 s, some of these penetrate inside the con-
densate as vortex lines, which arrange themselves into an ordered lattice after about
1-2 s.

We conclude that the spoon has to excite surface excitations, moving faster than

the local critical velocity v, for such excitations [14]. What surface excitations are

efficiently created depends on the shape of the stirrer [70], or, in the case of a rotating

container, the roughness of the container walls. Accordingly, the necessary critical

angular velocity Qc to nucleate vortices will likewise depend on the stirrer's shape.

Note that Oc is typically much higher than the thermodynamic critical angular velocity

Qth. The latter is the angular velocity at which, in the rotating frame, the ground

state of the condensate contains a single vortex. But simply rotating the condensate

at Qth will not lead to this ground state. If the condensate contains N bosons, N

units of angular momentum have to be provided to form the vortex. This presents

an energy barrier between the metastable state without vortex and the ground state

with vortex. Driving a surface excitation provides the necessary coupling mechanism

to "pump" angular momentum into the condensate, which can subsequently relax

into a state containing vortices.

6.2 Experimental techniques

In the case of weakly interacting Bose gases in magnetic traps, the techniques for

setting the cloud in rotation are well established [178, 160, 2, 113, 120]. In [113, 120],

the initially axially symmetric magnetic potential is deformed into an ellipse in the
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radial plane, which is then set in rotation. In [160], an asymmetric optical dipole

potential is superimposed onto a cylindrically symmetric magnetic trap, again re-

sulting in an elliptically deformed potential. In these cases, the role of the "rough

container walls" needed to nucleate vortices is played by the smooth elliptical defor-

mation. In contrast to the case of a sharp object or "spoon" stirring in the superfluid,
this smooth potential can only excite a specific surface excitation of the condensate,
a rotating quadrupole mode. This collective excitation carries angular momentum

m = +2 (the third component of angular momentum) and can only be excited at a

certain angular frequency' QQ = w±/v/, where w± is the radial trapping frequency2.

Below this threshold angular frequency, the rotating elliptical potential cannot excite

the condensate. Above this threshold frequency, the condensate's quadrupolar mode

is excited, and will eventually decay (via a dynamical instability) into vortices [159]

(see Fig. 6-1).

In the MIT experiments [178, 2, 1], two small, focussed laser beams were sym-

metrically rotated around the cloud. Vortices could be created efficiently over a large

range of stirring frequencies [2, 199]. The small beams presented a sharp obstacle to

the superfluid, most likely creating vortices locally at their surface [199], correspond-

ing to high angular momentum excitations at low critical angular velocities. This is

the strategy followed in our experiment on rotating Fermi gases.

6.2.1 Roadblocks

However, in contrast to the case of weakly interacting Bose gases in magnetic traps,
the rotation of Fermi gases and the observation of vortices is hindered by several

issues, some of them technical and some of them due to the physics of Fermi gases.

Technical difficulties:

1. Strongly interacting fermions in 6Li require an optical trap formed by a laser

beam. In contrast to magnetic traps, which can be designed to be very round

in the transverse plane, laser beams typically suffer from aberrations, such as

a non-uniform beam profile with potentially high spatial frequency noise, and -

without special care - are generally not round.

1While a collective excitation carrying angular momentum m has an energy hw vfm, it m-fold
symmetric and is thus excited at a frequency Q = w±/'V , see [240].

2In the presence of an elliptic deformation, one needs to replace w± by (w2 + w2)/2, where wUy
are the trapping frequencies in the direction of the long and short axis of the ellipse.
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2. The experiments have to be carried out at high magnetic fields3 . Stray gradients

can distort the optical trapping potential. Also, the expansion from the optical

trap, crucial for the magnification of the vortex cores, can be strongly affected

by the curvature of the magnetic potential.

3. Gravity is usually not considered a problem in magnetic traps, since it merely

shifts the center of the (to a very good approximation) harmonic trapping po-

tential. However, optical traps provide a gaussian potential for the atoms.

Gravitational sag can thus distort the trapping potential.

The technical difficulties can be overcome one by one using an atomic BEC of

sodium atoms as the "testbed". However, the following problems are specific to

Fermi gases:

Difficulties arising from the physics of Fermi gases:

1. Far on the molecular side of the Feshbach resonance, in the regime where kFa is

small, the situation should be fully analogous to the case of atomic condensates.

This is thus the natural starting point for observing vortices. However, too far

away from resonance, the molecules (which are in the highest vibrational state of

the interatomic potential!) can undergo rapid vibrational relaxation via three-

body collisions, leading to heating and trap loss. The lifetime of the gas needs to

be longer than the vortex nucleation and equilibration time (typically 1 s). This

limits the smallest values of kFa one can study (kFa > 3 in our experiment).

2. On the other hand, closer to resonance, quantum depletion becomes important:

The density of atoms in one spin state is no longer given by the square of the

superfluid wavefunction 0I(r)12 as was the case in the deep molecular regime.

The contribution of the coherent part of the gas to the atomic density actually

becomes exponentially small in the BCS regime (for definitions of the condensate

wavefunction see sections 2.3.5 and 5.2.3). Loosely speaking, only the Cooper

pairs, of weight NA/EF, contribute to the condensate wavefunction 0(r). Even

though 0(r) still has to identically vanish inside the vortex core, the density

n(r) does not anymore, and the vortex contrast is greatly reduced. This will

3"High" refers to the scale of atomic physics experiments, that is, the scale set by the hyperfine
interaction, ranging from about 100 G to several 1000 G. In condensed matter, magnetic fields
around tens of Tesla are considered "high", as here PBB becomes comparable to the gap energy and
kB times the critical temperature.
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set a technical limit on how deep into the strongly interacting regime one can

observe vortices as density depletions.

3. The vortex core size in the molecular Bose-Einstein condensate is given by

the healing length C oc -L 1S " As kFa is increased moving into the strongly

interacting regime, the vortex core shrinks. The core size will of course never

decrease below the value at unitarity, where it has to be on the order of 1/kF,
the only length scale available when a -. ±oo. Still, one might be concerned

whether this length scale can be resolved.

4. It is well-known from studies on atomic BECs [1] that vortices are strongly

damped by friction with the normal gas as the temperature approaches Tc. As

we move to the BCS-side of the resonance, Tc is strongly reduced (see chapter 2)

and we might expect vortices and rotation to be heavily damped.

5. On the BCS-side, the lowest lying excitations in the superfluid are those which

break a pair. However, as experience with sodium condensates in magnetic

traps suggests (see Fig. 6-2), one needs to strongly perturb the cloud in order

to nucleate many vortices. In the case of a gas in the BCS-regime, such a strong

perturbation is likely to simply destroy the superfluid via pair-breaking.

We will first describe the solutions to the technical problems, using an atomic

sodium BEC as the stepping stone.

6.2.2 "Sanding off the bumps"

Optical Trap

The experimental setup used for rotating Fermi gases is shown in 6-3. The atom trap

is formed by the combination of an optical dipole trap (waist w), confining the atoms

radially, and a magnetic saddle point potential that provides axial confinement (and

weak radial anti-confinement). We favored this geometry out of several reasons:

* The large waist for the optical trap allows for a smooth beam profile, suppressing

high spatial frequency noise that is usually introduced when focussing light down
to sizes not much larger than the wavelength.

* We aim for a small aspect ratio of the cigar-shaped trap (about v./vr = 5), so
that the stirring beam can rotate the entire cloud at once. For very elongated
clouds, a tightly focussed stirrer will excite the sample only locally, leading to
inefficient transfer of angular momentum into the cloud.
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Figure 6-2: Vortex nucleation for violent stirring in an atomic BEC. The upper row
shows expansion images of sodium condensates after 500 ms of stirring at the quadru-
pole frequency, for different laser powers of the stirring beam. The lower row shows
the resulting BEC after 300 ms of equilibration time. This suggests that the conden-
sate has to be severely excited to generate many vortices. From left to right, the laser
power was increased for each subsequent image by a factor of two.

The aspect ratio of purely optical traps at wavelength A (= 1064 nm in our experi-

ment) is given by v'irxw/A. We see that it is not possible to fulfill both requirements

with purely optical (near-infrared) traps. In the combined optical and magnetic trap,

the trap frequencies are essentially decoupled, v, being given by the optical trap and

vz fixed by the magnetic field curvature.

Another important requirement is that the cloud is allowed to cool after stirring.

Without dissipation, the excited cloud would never form an ordered vortex lattice. In

experiments using magnetic traps, this could be achieved by leaving an "RF-knife"

on during equilibration, which removed energetic atoms from the trap. Optical traps

have a finite trap depth "built in". Cooling of the cloud will be efficient if the trap

depth U is not much higher than the Fermi energy EF. This constraint fixes the

waist, once the aspect ratio a = vu/vz and the axial trapping frequency v, is given:

The relation between U and the waist w is

1 1 222
U = -m 22 w 22 (6.4)

4 4
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Figure 6-3: Experimental setup for the observation of vortices in a Fermi gas. a)
Sketch of the geometry. The atomic cloud (in red) is trapped in a weakly focussed
optical dipole trap (pink). The coils (blue) provide the high magnetic offset field to
access the Feshbach resonance as well as the axial confinement (additional curvature
coils not shown). Two blue-detuned laser beams (green) rotate symmetrically around
the cloud. An absorption image of the expanded cloud shows the vortices. b) Optical
setup for the vortex experiment. The laser beam forming the dipole trap is spatially
filtered using an optical fiber tolerating high laser power. The stirring beam (green)
passes through two crossed AOMs that deflect it in the transverse (XY) plane. These
beams are overlapped with the imaging light by dichroic mirrors. The light for the
magneto-optical trap (MOT) is overlapped on a polarizing beam splitter cube (PBS).

The Fermi energy per spin state for a total number of atoms N is given by (using the

harmonic approximation for the radially gaussian potential):

EF = h(w2Wz) 1/3(3N) 1/3 = hwa 2/3(3N)1 /3  (6.5)

Requiring U > EF results in

w > 2 F a-2/3 (3N)1 / 6  (6.6)

If we want to trap N = 1 x 107 atoms with an aspect ratio a = 5 and an axial trapping

frequency vz = 20 Hz (a typical value), we need the waist to be larger than 100 im.
Note that this requirement is quite stringent: Changing wz is limited: Increasing the
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Figure 6-4: Trapping potential for the study of rotating Fermi gases. The magnetic
field produces a saddle potential (left), confining in the axial and anti-confining in
the radial direction. The optical trap needs to be aligned with the confining axis in
order to avoid stray gradients. In the vertical direction, gravity shifts the center of
the potential seen by the atoms (middle + right). The optical trap thus needs to be
below the symmetry axis of the magnetic fields.

current in the curvature coils by a factor of two (which increases power dissipation

by four) only reduces the required waist by 20%. Allowing for an aspect ratio of 10

would only give another reduction by 35%, at the expense of making uniform stirring

across the longer cigar more difficult.

We choose w = 120 pm. The large waist ensures that there is negligible variation

of the optical trap along the axial direction of the cloud: The Rayleigh range of the

beam is z0o = rw 2/A > 4cm while a typical axial cloud size is 1 mm. The optical

trap is thus quite perfectly a cylindrically symmetric potential. The symmetry in the

radial plane is ensured using a high-power optical fiber to spatially filter and shape

the beam profile. Care is taken not to deteriorate the quality of the gaussian beam's

roundness when passing through several lenses after the fiber exit.

The maximum power in the laser beam is 4 W, which limits the trap depth to

about 10 tuK. This is still deep enough to load about 3 x 107 degenerate fermions

from the magnetic trap after the sympathetic cooling stage with sodium (The Fermi

temperature in the combined magnetic and optical trap during this loading is 5 yK,

and the degenerate cloud at T/TF - 0.3 is not much larger than a zero-temperature

Fermi sea).
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Magnetic Field profile

The offset magnetic field tunes the interatomic interactions close to the Feshbach

resonance. We would like this to be an independent parameter, so one requires two

coils in Helmholtz configuration that create a very flat magnetic field along the axial

dimension. Our "Feshbach" coils provide a residual magnetic field curvature that

corresponds to an axial trapping frequency of 11.0 Hz at 834 G (resonance). While

this frequency depends only as B-FB on the offset field BFB due to these coils, we can

render the dependence negligible by adding an additional magnetic field curvature via

independent sets of "curvature" coils. These coils also produce an offset field that

is directed opposite to the field from the Feshbach coils, yielding a total offset field

B 0 < BFB. The final curvature corresponds to v, = 22.8 Hz axial confinement, and

varies only by 1 Hz from B 0 = 700 G to B 0 = 1000 G. The optical trap providing

radial confinement with v, in the range of 50 to 300 Hz, the aspect ratio of the cloud

can be varied between about 2 and 12.

The combined potential of Feshbach and curvature coils creates a magnetic saddle

potential V(x, y, z) = mw(z 2 - -_ 2 ). It is then necessary to align the optical

trapping beam judiciously on top of the saddle, aligned with its confining (z-)axis

(see Fig. 6-4). Otherwise the cloud would experience stray gradients, distorting the

round trapping potential provided by the laser beam.

Gravity

Along the vertical (x-)axis, the combined potential of gravity+magnetic fields is
- m1 2 - mgx. Thus, gravity shifts the saddle potential by an amount 2g/w2 2

1 mm. The "sweet spot" in the radial plane to which the ODT needs to be aligned is

thus not the center of the magnetic field coils, but about 1 mm below it (see Fig. 6-4).

In this position no gradients act on the atoms. If the optical trap is round in the

radial plane, the combined potential experienced by the atoms is round as well.

The alignment procedure of the ODT is shown in Fig. 6-5. At the end of evapo-

ration of the lithium condensate, the trap depth is reduced in about 30 ms to a very

shallow depth which is not sufficient to hold the atoms if they are not in the "sweet

spot". After 10 ms of expansion from the optical trap one clearly observes in which

direction the atoms spill out, and one can counteract by moving the optical trap.
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Figure 6-5: Alignment of the optical trap to achieve a radially symmetric potential.
In the left image, the trap is still far from the "sweet spot". In the right image, stray
gradients are almost completely cancelled. The absorption images are of a lithium
pair condensate. The field of view for each image is 1.1 x 1.3 mm.

Expansion

While the trap is now round and the cloud can be set in rotation, one still needs to

observe the vortex cores. In the trap, the vortex size is on the order of the healing

length (for an atomic or a molecular BEC) or the inverse wavevector (for a strongly

interacting Fermi gas), about 200 nm. It is essentially impossible to detect them

in-situ using absorption imaging with larger optical wavelength (589 nm for 23 Na,

671 nm for 6Li). Fortunately, vortices survive the expansion of the condensate, which

we can thus use as a "magnifying glass". However, only in simple geometries is the

expansion a faithful magnification. Complications arise due to the expansion into a

saddle potential.

Let us discuss the case of an atomic or molecular condensate containing a single

vortex, initially confined in our cigar-shaped trap and with axial and radial Thomas-

Fermi radii Ra and R,. It is well-known that the condensate preserves its parabolic

density profile during expansion, and its radii scale according to a simple scaling

law [48, 131, 167, 47]. For very long cigars, Ra > Rr, the condensate's mean-field

mostly escapes in the tight radial dimension and the expansion is effectively 2D. For

free space expansion, R,(t) = R,(O) /1 + t2, while for expansion into our radial

anti-confining potential,

R,(t) = R,(0) cosh2 (• t + ( v sinh 2  t (6.7)(v/ ) L~r-V2
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Figure 6-6: Decrease of vortex visibility for a sodium condensate expanding from the
optical trap into a magnetic saddle potential. Top and bottom row show axially and
radially integrated optical densities, respectively. The saddle potential is confining in
the axial and anti-confining in the radial direction. As the condensate expands radi-
ally, it collapses in the axial dimension, a direct consequence of hydrodynamic flow.
The vortex cores shrink and collapse onto themselves, thereby filling in completely
and forming ring-like structures (see text for details). For the images, the magnetic
field curvature (v, = 26 Hz) was switched off after, from left to right, 0, 2, 3, 4, 5, 7
and 10 ms. The total time of flight was constant at 35 ms.

where wz/ýV is the rate of radial anti-trapping4.

How does the vortex core size change during expansion? There are two regimes one

can simply understand, the initial hydrodynamic expansion and the ballistic expan-

sion at long times of flight. In the first part of the expansion, the mean-field A oc na

changes so slowly that the condensate wavefunction can still react to the change in

density: Adjustments on the healing length scale C - about the size of a vortex in

equilibrium - can occur at a rate h/mC2 = p/h. As long as the rate of change of y

- essentially the rate of change of Rr - is smaller than 1i/h, the vortex core can still

adjust in size to the local mean-field. It thus grows as C cx 1/ t)a c R,(t) Ra()

If Ra does not vary appreciably, (/Rr(t) will remain constant during the expansion,
the vortex core grows just as the size of the condensate, and the magnification is

faithful.

Once the rate of change of 1 (t) becomes comparable to yu(t)/h, the condensate can

4In the case of hydrodynamic expansion of a gas with arbitrary equation of state e oc n", the
scaling factors br,z (t) for the radial (r) and axial (z) direction do not have an analytic expression,
but can be easily calculated as the solution to the differential equations [167]

bz = W2 2 bz (6.8)
_ w2_f 1

b 2+ = b + 2 be (6.9)

Here we assume that the axial confinement is still on during expansion, only the radial confinement
from the optical trap being switched off.
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no longer adiabatically adapt to the lowering density. The characteristic expansion

rate being w,, this occurs when i(t) a hw,. For much longer expansion times, we

are in the limit of ballistic expansion. Here, each particle escapes outward with the

given velocity (in free space) or, in the case of the saddle potential, with a radial

acceleration proportional to its distance from the origin. This simply rescales the

radial dimension, and thus stretches the vortex core and the cloud size by the same

factor. Again the magnification is faithful.

However, in our experiment we are not in the quasi-2D regime where Ra > R,.

The saddle potential "squishes" the cloud in the axial dimension, as the decreasing

mean-field no longer stabilizes the condensate's axial size. According to the above

estimate, the vortex cores will shrink in comparison to the cloud size by a factor

oc Ra/t). We can see the effect on a sodium condensate in our optical trap in

Fig. 6-6, where the axial curvature was left on for longer and longer times.

To work around this problem, we quickly reduce the magnetic field curvature

during expansion by ramping down the curvature coils (in about 1 ms). As this

increases the overall offset field (see above), the current in the Feshbach coils is

decreased accordingly, so as to leave the offset field B 0 - and the interaction parameter

of the Fermi mixture - constant. We can speed up the radial expansion even further

in comparison to the axial evolution by actively "squishing" the cloud about 3 ms

before release. This is done by simply ramping up the power in the optical trapping

beam by a factor of 4. Not only does this increase the radial trapping frequency, but it

also excites a "breathing" mode in the condensate. The result is that the condensate

expands almost twice as fast as without these steps.

Overcoming all technical difficulties, the resulting trapping potential can now

favorably compare with our magnetic traps. The residual ellipticity of the transverse

potential is estimated to be less than5 2%. Large vortex lattices containing about

120 vortices can be created in sodium Bose-Einstein condensates (see Fig. 6-7). The

vortex lifetime is about 4 s, which is at least half the lifetime of vortices in our

magnetic trap.

5Of course, this cannot compare with the almost perfect roundness of a (magnetic) TOP trap,
with residual ellipticity of less than 0.1% [113].
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Figure 6-7: Vortex lattice in a Bose-Einstein condensate of sodium atoms in the
magnetic trap (left) and the optical trap (right image). The optical trap (highest
number obtained " 120 vortices) can favorably compare with the magnetic trap
(highest number in our experiment - 150 vortices).
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Figure 6-8: Vortex lattice in a 6Li 2 molecular condensate. In a), stirring, equilibration
and imaging of the vortex lattice all took place at a fixed field, 766 G (1/kFa). Image
a) shows the very first clear signature we observed. The vortex core depletion is
barely 10%. b) A Fourier filter applied to a) clearly shows the Abrikosov vortex
lattice. c) The improved scheme of "squishing and release" (see text), as well as a
sudden reduction of the interaction strength led to an improved vortex contrast.

6.3 Observation of vortices in a Fermi gas

The search for vortices in Fermi gases started on the molecular side of the resonance,
to stay close to the analogous case of an atomic BEC. It was not clear whether there

would be a window in which 1. the molecular condensate lives long enough to nucleate

vortices and 2. the interactions are weak enough such that vortices show up as clear

density depletions.

It turned out that at a field of 766 G (1/kFa = 1.3), we were successful: After

stirring the cloud for 800 ms and letting the cloud equilibrate in 400 ms, we observed

a vortex lattice in the density profile (Fig. 6-8). This established superfluidity for

molecular condensates.

With this as the starting point, different methods could be tried to improve the

vortex contrast. What turned out to be crucial for good contrast was - as expected

- the reduction of the interaction strength. In the moment the vortex lattice is

released from the trap, the magnetic field is lowered to fields around 700-740 G

(1/kFa a 2 - 4 initially, further growing during expansion). If the condensate still

has time to react to this change in scattering length, the vortex size ( 0o R,(t)/V "

will increase relative to the condensate's radius (the expression for ( is valid in the

BEC-limit, and assumes radial expansion, see previous section). Also, at the new

interaction strength, quantum depletion of the condensate wavefunction is reduced.
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Figure 6-9: Observation of vortices in a strongly interacting Fermi gas. This estab-
lishes superfluidity and phase coherence in gases of fermions.

The vortices are effectively "emptied" by weakening the interactions 6.

This technique proved to work on both sides of the Feshbach resonance. Stirring,
equilibration and initial expansion could be performed at magnetic fields between 740

G (1/kFa = 2) and 860 G (1/kFa = -0.35), before switching to the BEC-side during

expansion for imaging. The observation of ordered vortex lattices above the Feshbach

resonance at 834 G, on the BCS-side of the resonance, establishes superfluidity and

phase coherence of fermionic gases at interaction strengths where there is no two-body

bound state available for pairing.

One might argue that the gas could have been in the normal state above resonance,
while the vortex lattice might have formed during the 10 ms of expansion at the

imaging field, on the BEC-side of the resonance. This is not possible. We showed

that the vortex lattice needs many hundreds of milliseconds to form in the stirred

cloud. This is the same time scale found for the lattice formation time in atomic

BECs [159, 1]. It is also in agreement with a theoretical study of vortex formation
6The ramp should not move too far into the weakly interacting regime: The condensate would

simply not expand anymore as practically all the repulsive mean-field has been taken out of the
cloud. On the other hand, letting the condensate expand for too long before the ramp should be
avoided as well. At reduced density the ramp would not allow the condensate to adjust to the new
interaction strength and modify the vortex size. The condition is again (see previous section) that
the "reaction time" of the condensate wavefunction, p/h, evaluated at the final field, should be faster
than the rate of change of p, that is, the rate of change of R,(t).
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in strongly interacting Fermi gases [245]. When a thermal cloud is slowly cooled

through the transition temperature [113], the condensate first forms without a vortex.

As the condensate grows, vortices are nucleated at the surface and then enter the

condensate [14]. When a thermal cloud is suddenly cooled, a condensate with phase

fluctuations will form [16, 224] which can arrange themselves into a vortex tangle.

In either case, one would expect a crystallization time of at least several hundred

milliseconds before a regular vortex lattice would emerge. It simply needs several

axial trapping periods for the vortex tangle to stretch out. It should be noted that

this time scale was found to be independent of temperature [1] and seems to represent

an intrinsic time scale of superfluid hydrodynamics.

Even if these timescales were not known, it is not possible to establish a regular

vortex lattice with long-range order in a gas that expands at the speed of sound of the

trapped gas. Opposing edges of the expanding cloud simply cannot "communicate"

fast enough with each other.

The regularity of the lattice proves that all vortices have the same vorticity. From

their number, the size of the cloud and the quantum of circulation h/2m for each

vortex, we can estimate the rotational frequency of the lattice. For an optimized

stirring procedure, we find that it is close to the stirring frequency. This excludes a

quantum of circulation of h/im or doubly charged vortices.

6.3.1 Vortex number and lifetime

The number of vortices that could directly be created on the BCS-side was rather

low in the first experiments, as the stirring seems to have had an adverse effect on

the stability of the pairs. This corresponds to the expectation that the gas is more

robust on the BEC-side, where the lowest excitations are sound waves, while on the

BCS-side it is pair breaking. To optimize the vortex number on the BCS-side, first

a large vortex lattice was produced close to resonance, at 812 G, before ramping the

magnetic field beyond the Feshbach resonance. In this way, large numbers of vortices

could be obtained in the entire BEC-BCS crossover (see Fig. 6-9).

The vortex lifetime is on the same order of what was found for atomic BECs.

This displays the high degree of metastability of vortices in superfluids. The longest

lifetime is found close to, but not right on resonance. In fact, there is a peculiar dip

in the lifetime on resonance, which we speculate to be caused by pair breaking. The

idea is the following: Pairs far outside, in the low-density regions of the cloud, and

close to resonance, have very small binding energies. For example, the (two-body)
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Figure 6-10: l/e-Lifetime (a) and number (b) of vortices in the BEC-BCS crossover.
Vortices are long-lived across the entire BEC-BCS crossover. A narrow dip in the
lifetime on resonance is presumably due to breaking of pairs whose binding energies
are comparable to hx the rotation frequency (several tens of Hz, corresponding to
the binding energy of free molecules a few G away from resonance). Open symbols
are data from April 2005. Optimization of the system using a deeper trap resulted in
improved characteristics on the BCS-side, shown by the full symbols (data from June
2005). In b), the triangles give the number obtained by stirring and equilibrating
both at the given field. Stirring at 812 G and subsequently ramping to the final field
for equilibration resulted in the data shown as circles.

molecular binding energy at 830 G, 4 G away from resonance, is only kB x 3nK or

h x 60 Hz. This is on the order of hx the rotation frequency Q of the lattice. If there

are small "bumps" in the trapping potential, the molecules rotating around the trap

are excited at their binding energy and thus tend to break. The effect could thus

be an interesting coupling of the external degrees of freedom with the internal ones.

Why do clouds in the BCS-regime not suffer from this pair breaking as well? Here,
the binding energy in the low-density regions is even smaller if not identically zero.

We speculate that this is because only the pairs that have a binding energy - hD are

in danger. Such pairs reside in a certain shell within the condensate. If this is not the

outermost paired shell, the surrounding superfluid "protects" the endangered pairs

from breaking.

This scenario might also explain why stirring the cloud on the BCS-side creates

heating and creates vortices only inefficiently. As the cloud is spun up, all frequencies

from Q = 0 Hz up to the final value will occur, thus destroying one shell of pairs after
the other.
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Figure 6-11: Rotating bucket for superfluid Fermi gases. a) Vortex number vs time
spent in the rotating trap. After a certain nucleation time the number of vortices
saturates and stays constant. The final vortex number depends on the power of the
green beam, indicating slippage due to residual friction with the "container walls".
The lower and upper curve correspond to lower and higher green beam power. b)
Absorption image of an optimized vortex lattice, containing about 75 vortices, after
10 s hold time in the rotating bucket. The magnetic field for all data was 812 G,
corresponding to 1/kFa - 0.2.

The dip in the vortex lifetime on resonance might thus be a spurious effect due

to residual trap anisotropy. Its presence is a curiosity, since the critical velocity of

the superfluid should be highest, and thus the superfluid the most stable close to

resonance [219, 64].

6.3.2 A rotating bucket

All the experiments described before first set the cloud in rotation using the stirring

beam and then let the gas equilibrate in the stationary trap to settle into a vortex lat-

tice. In the stationary trap, the configuration is of course only metastable. Granted, if

the trap was perfectly round, there would be no way for angular momentum to escape

and the vortex lattice would persist indefinitely. In this case, the vortex configuration

is the ground state of the equivalent system with a given angular momentum imposed

(mathematically speaking, it is the ground state for the hamiltonian in the rotating

frame H - QLz, where H is the hamiltonian in the absence of rotation and L. plays

the role of a lagrangian multiplier: the angular momentum imposed on the system

that fixes the rotation frequency Q). At zero temperature, it would not even matter

if the trap was not round, as the superfluid does not experience friction with the
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container walls. The only way the superfluid can spin down is via friction with the

thermal cloud [263, 88]. The thermal cloud's rotation, in turn, is slowed down quickly

by the container walls [107].

However, in the original "rotating bucket" experiments on helium-4 [257], it was

actually possible to continue rotating the trap practically indefinitely (for as long as

the refrigerator helium supply lasted). In the case of atomic condensates, the rotating

anisotropy or the "spoon" used to stir up the cloud usually needs to be switched off

before an ordered vortex lattice can form'. This is possibly because the spoon is not

moving smoothly enough to allow equilibration into a vortex lattice. Before their

observation of ordered vortex arrays, the experiments on helium-4 initially suffered

from similar perturbations [257].

In contrast to previous experiments, we have found that it is possible to keep

the stirring beams on during formation of the vortex lattice. The experiment was

performed at 812 G in a trap with radial trapping frequency vR = 90 Hz. The two

stirring laser beams (power in each beam ~~ 100 LW, waist w = 16 Lm) created only

a weak potential of about 20 nK each on the cloud (mean-field ;a p 400 nK). They

were rotated around the cloud at a frequency of 70 Hz. For imaging, the atoms were

released from the combined trap, the confining optical potential plus the repulsive

stirring beam. We found that it was possible to stabilize a vortex lattice containing

19 vortices for 20 s (see Fig. 6-11). The maximum time studied was only limited by

the memory of the computer controlling the experiment.

The final vortex number depended on the laser power or the "stiffness" of the

stirrer. Increasing the power in the stirring laser by 60 % allowed a larger equilibrium

vortex number, 29. This suggests that the stirrer is fighting a residual trap anisotropy.

The "slippage" is worse for a weaker drive, and causes the condensate to rotate at a

lower speed.

It is interesting to note that vortices become visible in the condensate only after

a considerable delay of 1 - 2 s. In contrast to the more severe perturbations used

in the previous studies (stirring potential i 100 nK), where the total stirring time

was about 500 ms to 1 s, the more gentle but continuous stirring is less efficient

in nucleating vortices. The system is stuck longer in the metastable state without

vorticity. Again, with the stronger stirrer, the time needed to nucleate the first

vortices was considerably reduced. That indicates that the barrier to the energetically

more favorable state containing vortices could now be overcome more easily.

7In Paris, 11 vortices ordered in a lattice were observed in expansion after ramping down the
stirring beam in only 8 ms [160, 54].
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Figure 6-12: Observation of pair breaking in a superfluid Fermi gas. Shown are
absorption images for different expansion times on the BCS-side of the Feshbach
resonance at 910 G (0,1,2,3,3.5,4, and 4.5 ms) and at 960 G (0, 0.5, 1, 1.5, 2, 2.5, and
3 ms), before ramping to the BEC-side for further expansion and imaging. The total
time-of-flight was constant. The vortices served as markers for the superfluid parts of
the cloud. Superfluidity survived during expansion for several ms, and was gradually
lost from the low-density edges of the cloud towards its center. The field of view of
each image is 1.2 mm x 1.2 mm.

At later stages of the experiment, we were able to stabilize 75 vortices for 10 s in

a deeper trap with v, = 120 Hz.

6.3.3 Pair breaking

A true qualitative distinction between the BEC- and the BCS-limit in fermionic su-

perfluids is the fragility of the pairs on the BCS-side. Here, pairing is purely a

many-body effect. In contrast to the case of Bose-Einstein condensates, the simple

expansion from the trap can destroy the superfluid (at finite temperatures): The now

isolated pairs will break. All information about the center-of-mass wavefunction of

the pairs 0(r) and hence the vortices, will be gradually lost. In our experiments, the

rapid ramp to the BEC-side ensures that the pairs survive as stable molecules.

It is now natural to delay the "rescuing" ramp to the BEC-side and observe

when exactly this breakdown of superfluidity occurs, using the presence or absence of

vortices as markers for superfluidity (216]. We thus let the gas expand on the BCS-

side for a certain time tBCS, then ramp down to the BEC-side for further expansion

and imaging. The total expansion time is kept constant.

It is found that superfluid flow initially persists during the expansion. Then,

vortices start to disappear first at the edges of the cloud, then, for longer BCS-
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Figure 6-13: (Color online) Peak interaction strength kFa during superfluid expan-
sion. Starting at a peak kFa in the optical trap, vortices survive up to an interaction
strength kFa ; -0.8, almost independent of the magnetic field (scattering length a).
Filled circles correspond to partially superfluid, open circles to normal clouds. The
observed number of vortices is color coded.

expansion tBCS, further inwards until the last vortex disappears at the cloud's center

(see Fig. 6-12). The time tBCS for which the last vortex disappears, increases the closer

we are to resonance, that is, the larger the interaction strength and the stronger the

fermion pairs are bound.

In fact, by varying the magnetic field and thus the scattering length, we find that

the last vortex always disappears at about the same value of the interaction parameter

kFa '• -0.8 (see Fig. 6-13). Here one enters the regime of weak interactions, where

the pair size is large, the critical temperature for superfluidity is small and hence the

superfluid state is fragile.

The simplest explanation for our observation is naturally that we cross the phase

transition line during expansion. While T/TF is an adiabatic constant for the expan-

sion, T/Tc is not, as Tc/TF depends exponentially on the density. As the density

decreases, the critical temperature in the outer regions of the cloud eventually drops

below T, superfluidity is lost starting from the edges inwards.

We can estimate the critical interaction strength for this breakdown to occur.

At our coldest temperatures, T/TF = 0.05 (see chapter 7). The formula for Tc

due to Gorkov and Melik-Barkhudarov [98] gives Tc = () 7/3TFe - /2kpF al  -

0.28 TF e- 7/2kFr aj. This formula should be valid in the BCS-regime where kFlal < 1.

We can now equate

T TTF TF
1= T - T- C 0.05 TC = 0.18 er/2kFIJa (6.10)Tc TF Tc Tc
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Figure 6-14: Loss of vortex contrast on resonance, at B = 834 G. Shown are absorp-
tion images at fixed total time-of-flight, but for different expansion times on resonance
(2, 2.5, 3, 3.5, 4,5, and 6 ms) before the magnetic field ramp to the BEC-side for fur-
ther expansion. The vortex contrast decreases uniformly across the cloud from 15%
(for 2 ms resonant expansion) to about 3% (for 5 ms). The field of view of each image
is 1.2 mm x 1.2 mm.

The result gives the critical interaction strength kF lal = 0.9. This is close to the

observed value.

However, we can think about other scenarios that might explain the observed

disappearance of vortices: In the BCS-regime around kFJla = 1, the pairs are large

and fragile. The expansion itself might be too much of a perturbation so that they

break apart. This dynamic pair breaking will occur if the rate of change in the binding

energy A is larger than the rate at which the pairs can respond to the reduced density,

A/h. For our experimental parameters, we find < 0.4, so the pair binding energy

still changes more slowly than the characteristic response time. However, the rates are

not too different, and this dynamic pair breaking mechanism might not be negligible.

Note that in the images, even for short "BCS-expansion" times, we see a clear

boundary between the coherent part containing vortices and a part of the fluid which

does not contain vortices and appears normal. For these short expansion times, the

dynamic pair breaking mechanism is ruled out and the most plausible scenario is that

we are simply seeing the normal-to-superfluid transition in the gas cloud: Tc = T

defines a certain density in the cloud beyond which the gas is necessarily normal.

On resonance, Tc oc TF, and one would not expect to loose superfluidity during

expansion. Indeed, here we observe that vortices survive expansion even in the low-

density edges of the cloud (see Fig. 6-14). However, the longer the ramp to the

BEC-side is delayed, the lower the vortex contrast in the final cloud, and the smaller

the apparent size of the vortex cores. We believe that this is due to the low density of

the cloud after long expansion on resonance. Then the gas is so dilute that, after the

ramp, the vortex cores cannot adjust anymore to the larger equilibrium size and the

increased contrast they should have on the BEC-side. It is expected that expansion

on resonance simply scales the dimensions of the cloud (at least for purely radial
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expansion) [47]. Hence we can speculate that, the longer we delay the ramp to the

BEC-side, the closer the final vortex contrast and vortex size will correspond to the

situation on resonance. Here, vortices are expected to be small, of size l ~ 1/kF, and

to show a reduced contrast [41].

To conclude, we observe superfluid flow in an expanded Fermi gas down to densities

of about 1011 cm - 3 . At these densities, the average distance between two atoms is 2

rIm! The average distance between neutrons in a neutron star is a few fm, correspond-
ing to densities of 1038 cm - 3 . This nicely illustrates how general the phenomenon of

fermionic superfluidity is.
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Chapter 7

Fermionic superfluidity with

imbalanced spin populations

In previous chapters, we have exclusively studied an equal spin-mixture of fermionic

atoms. Here, pairing can be complete and the entire gas can become superfluid at zero

temperature. What, however, happens if we deliberately imbalance the populations

in the two spin states? In this case, not every spin up (majority) fermion can find a

spin down (minority) partner. Immediately, several questions arise: Can the gas still

be superfluid? If so, are the excess fermions tolerated inside the gas of pairs or are

they expelled from the superfluid? If superfluidity breaks down, what is the nature

of such a strongly interacting, imbalanced normal mixture?

We studied these questions in a strongly interacting Fermi mixture by varying

the spin imbalance, temperature and interaction strength. Superfluidity was found

to be robust against population imbalance in the strongly interacting regime. We

could show that, below a certain temperature, the superfluid state requires equal

spin densities, and phase separates from the partially polarized normal state. At a

critical population imbalance, we observed the final breakdown of the superfluid state,
the Clogston or Pauli limit of superfluidity. Studying imbalanced Fermi mixtures

enabled us to directly observe the superfluid transition in situ, without any magnetic

field ramps into the molecular regime. The non-interacting, fully polarized part of the

cloud served as a reliable thermometer, solving, for the imbalanced case, the problem

of measuring temperature in a strongly interacting gas.

In contrast to the smooth BEC-BCS crossover physics in an equal Fermi mixture

with varying interaction strength, the imbalanced mixtures provide us with a rich

phase diagram, including zero temperature phase transitions, which challenges present

many-body theories.
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7.1 Historic overview

The question of imbalanced superfluidity has a 50 year old history. Bardeen, Cooper

and Schrieffer described the superconducting state as a condensate of pairs of electrons

carrying opposite spin. However, an applied magnetic field tends to align the electron

spins, thereby putting a "stress" on the fully paired superfluid state. Following this

thought, Clogston [61] derived in 1962 an upper limit for the critical magnetic field of

a superconductor: Once the energy gain for aligning the electron spins is larger than

the energy gain from pairing opposite spins, Cooper pairs must break and the system

should turn normal. This is the Pauli or Clogston limit of superconductivity. In 1964,
Fulde and Ferrell [94] and independently Larkin and Ovchinnikov [146] found that not

all the pairs necessarily break at once, but that there exists a novel superfluid state

which tolerates a certain amount of broken pairs by allowing the remaining Cooper

pairs to have a common non-zero momentum Q (FFLO or LOFF state). Thus, the

order parameter (the gap) is not a constant, but it oscillates at a wavelength . 1/Q,
where the typical value of Q is given by the Fermi momentum difference between

the two spin states. This state of the imbalanced superconductor will thus break

translational and rotational symmetry by picking out a certain direction Q. Forty

years later, the debate about the ground state of imbalanced superfluidity is still on-

going. The topic had been revived from several directions: From condensed matter,
through studies of exotic superconductors [46, 198, 30] that are essentially Pauli

limited, and from nuclear physics and the study of the quark-gluon plasma, where

similar questions arose in the study of superfluid pairing of quarks at unequal Fermi

energies [7], and from atomic physics, were the advent of ultracold atomic Fermi gases

presented a new opportunity to study imbalanced superfluidity.

Preceding the experimental studies, Liu and Wilczek [151] proposed the breached

pair or Sarma state [211] as an alternative to the FFLO state. Another suggestion,
that did not require breaking of translational, only rotational symmetry, was a state

with a deformed fermi surface [218]. Combescot and Mora [65] studied the FFLO-

state in Fermi gases in the BCS regime. Its direct detection by imaging the gas was

proposed by Mizushima et al. [169] (see also [49]). Bedaque et al. [28] noted that it is

favorable for a weakly interacting imbalanced Fermi mixture to phase separate into a

superfluid part at equal densities and a normal part at unequal densities. In the regime

of strong interactions, a Monte-Carlo study of the problem of imbalanced superfluidity

was performed by Carlson and Reddy [44]. They found that the imbalanced Fermi

gas on resonance was intriguingly close, within their error margins, to be a polarized
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superfluid, where unpaired excess fermions were tolerated by the Cooper pairs. The

implications of universality on resonance were discussed by Cohen [62]. Pao et al. [185]

performed a stability analysis of the superfluid state across a Feshbach resonance at

fixed densities, and found that homogeneous superfluidity was unstable on the BCS-

side and in the strongly interacting regime.

The subject has received much attention since our first observation of superfluidity

with imbalanced spin populations, reported in June 2005 [135]. We determined the

phase diagram of imbalanced Fermi gases, and found the Clogston limit of superfluid-

ity [268]. Hints of phase separation were seen in our work and at Rice University [187].

Imbalanced Fermi mixtures allowed us to observe the superfluid phase transition di-

rectly, without the necessity of field ramps [269]. Finally, using a novel imaging tech-

nique, we were able to demonstrate phase separation in strongly interacting Fermi

mixtures [223].

Motivated by these findings, phase diagrams for imbalanced mixtures close to a

Feshbach resonance were obtained' [185, 221, 229, 256, 152, 157, 103, 50, 127, 186],
and the shape of imbalanced Fermi gases in atom traps was studied [196, 140, 226,
258, 53, 114, 55, 220]. Insight into the equation of state on resonance was gained by

exploiting the principle of universality [52, 40] and via Monte-Carlo calculations [153].

The properties of the vortex state in imbalanced fermionic superfluid was discussed

in [242], showing that particles of the majority spin species will be trapped inside the

vortex cores.

Naturally, there are still many open questions: The role of temperature, finite size

effects or the nature of the strongly interacting normal state. The search is still on-

going for a signature of the FFLO-state or other proposed new forms of superfluidity.

We can expect that the next months and years will bring us exciting new experimental

results and theoretical insight.

7.2 The Clogston limit of superfluidity

7.2.1 The Clogston limit of superconductors

Naturally, it is not a simple task to magnetize a superconductor because of the Meiss-

ner effect [166]: Magnetic fields are actively expelled from charged superfluids. They

can only enter as magnetic flux lines or vortices (and only in so-called Type II super-

1This list is far from complete. Over 80 articles have been written on the topic over the past nine
months. I refer the reader to the cited publications and references therein.
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conductors). Once the energy cost per volume for expelling the field, B 2/2Ao0, exceeds

the difference in the free energy density F between the normal and the superconduct-

ing state, the superconductor turns into a normal metal. If the critical field is Bc, we

have
B2

S = .Fs + c (7.1)
2jLo

where the subscripts N and S stand for the normal and the superconducting state,

respectively. The free energy density difference "FN - .Fs is given by the pairing energy

A of p(EF)A electron pairs at the Fermi surface per unit volume (p(EF) is the density

of states per spin state at the Fermi energy),

1
- - TS = - p(EF)A2  (7.2)

2

which relates the critical magnetic field Be to the superconducting gap,

Be = V/pop(EF)A (7.3)

To get a sense of scale, for free electrons, p(EF) = -- , with n 1- 10. 1022 Cm-3 the

density of electrons and EF kB x 50 000 - 100 000 K, and assuming A = 1.76 kBTc

from BCS theory (see Eq. 2.125 in chapter 2), we get

B, T 50G Tc (7.4)
K

This is a very small field compared to the natural scale set by the critical temperature

and the electron's magnetic moment, BTc - kBTc/IB = 15 000 G Tc However, at

the surface of a superconductor, the magnetic field does not suddenly drop to zero,
but only over a certain penetration depth. For very thin superconductors or certain

special materials, the magnetic field can enter the superconductor, increasing the

critical magnetic field substantially. It was Clogston's insight that under the extreme

condition that there is no Meissner effect, there will still be a critical magnetic field

that destroys superconductivity a la BCS.

The reason is the following: The superconducting state is fully paired, that is,
there must be an equal number of spin up and spin down electrons present. In fact,
by changing a spin down into a spin up electron one gains an energy 2MBB, but

this would necessitate breaking the initial pair (cost A), and in addition there is

no pairing partner for the new spin up electron (cost another A) (for adding and

removing single particles to the BCS state see section 2.3.3). Thus, for /BB < A this
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cannot occur. However, the normal state is free to adjust the number of spin up vs

spin down electrons, thereby reducing its energy.

pt

2 gBB

Figure 7-1: Imbalanced chemical potentials for electrons in
the influence of a magnetic field.

the normal state under

Let us calculate this reduction of free energy density in the normal state in the

presence of a magnetic field. The field changes the energies of spin-up electrons

according to EkT = Ek - ABB, which we can incorporate into the chemical potential

AT = EF +UBB of the up-electrons2 (see Fig. 7-1). The energy density of a Fermi gas

at chemical potential 1T is e = T nT, with the density Tn, = kF and the Fermi
h2 k2

wave vector kFT related to IT via AT = - '. Hence, the free energy density of the

"two-species mixture" of spin-up and spin-down electrons is given by

3 3
N (B) = -T nT + -p/l n, - T n(T -A/ nl

S4 M 5/2 .5/2= 1-5 (1 /T Itl

(7.5)

(7.6)

with p(l) = - . Inserting the chemical potentials given as a function of EF and

B, we finally have

4 B p(E) 5/2 + BB 5/2

(-N(BF - 15 EF ]l EF

_F Ug(O) - p(EF) A2 B 2 valid for MBB < EF

(7.7)

(7.8)

2The sign-convention makes sure the spin-up electrons will be the majority species. This means,
the electron spin of spin-up electrons points into the direction opposite the magnetic field.
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The magnetization of the normal state is M = -___ = p(EF)p' B, proportional to

the applied field.

If the reduction in gFN is larger than the energy gain from forming a fully paired su-

perconducting state, Eq. 7.2, the metal favors the normal state. The critical magnetic

field found by Clogston is thus

BClogston = (7.9)

= 18 500 G (7.10)
K

The expression holds for weak interactions, where A < EF. This is evidently very

well satisfied by conventional superconductors, but it will be interesting to see whether

such a critical field might still exist in the strongly interacting regime.

7.2.2 Translation to dilute Fermi gases in atom traps

In dilute Fermi gases, the chemical potential difference 6S= - 2h = MT - I1 is not

directly controlled, as it was the case for superconductors in a magnetic field where

h = AIBB. What can be freely chosen in our case are the numbers of spin-up and

spin-down fermions, i.e. the populations of the two hyperfine states I1) and 12).

Furthermore, the experiments take place in the presence of a trapping potential

V(r). The chemical potentials of the two species are determined by the global require-

ment that they must correspond to the state that has the given particle numbers NT

and Nj in the two spin states. Let us say the system finds that p and po are the

correct (global) chemical potentials. Locally, the chemical potentials at point r in the

trap will thus be3

pT(r) = I - V(r)
(r)= ~ (r) (7.11)

While the average chemical potential Mu(r) = !1(r)+gt (r) varies across the trap, the2

difference chemical potential is constant throughout,

6J(r) = 2h = o - p(7.12)

Thus, effectively, the trapping potential tunes the ratio h/p1 over a certain range. An

3We assume here that the system can be described by local quantities, that is, we assume that
the local density approximation holds (see section 7.5).
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Figure 7-2: A weakly interacting, imbalanced Fermi mixture with superfluid compo-
nent in a harmonic trap. a) Trapping potential V(r), local, average chemical potential
M(r) and Clogston limit A(r)/l V. Where A(r)/v2 > 6Jp/2, the gas is in the super-
fluid phase. b) shows the densities of spin up and spin down atoms, c) the total and
the difference density distribution. For this illustration, the peak gap was chosen to
be A(O) = 0.25/p(0).
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imbalanced Fermi mixture in a trap can thus explore several local phases. Let us for

example consider the Clogston limit above. It occurs when the "field" h satisfies

1
h 1 A (r) for A << i (7.13)

where the superfluid gap A(r) is to be calculated as usual using the average chemical

potential I(r), that is in the weakly interacting regime4 A(r) = (2)7/3 y(r) e - 7/ 2 kF(r)jl al

with the Fermi wave vector kF(r) given by p(r) = h2 kF(r)2 /2m. The situation

is sketched in Fig. 7-2: The Clogston criterion defines a critical radius RsF where

A(RsF) = vfh = -L6. For radii r < RSF, the gas is in the BCS-type su-

perfluid state and thus fully paired. For radii exceeding RsF, the gas is in the

normal state. Here we can further distinguish the region where both spin up and

spin down particles are present, RSF < r < R, and the region where only spin

up atoms are present, R 1 < r < RT, the case of a fully polarized sample. These

radii are - in this weakly interactin case - simply given by the usual relations

V(RTI) = 'T,4' that is RT,j = 2- , for harmonic trapping. The densities are

given by nT,l(r) = 6•(2m,)3/2(1 -_ r 2 )3/2 (for RSF < r < RT,J), whereas for the

superfluid state at r < RSF one has nsF(r) = •2 ( )3/2 (1 2 3/2 .(1+O( )) with

R = - given by the average chemical potential and a small enhancement of the

density (O(ý-ý) due to pairing [220].

We will see in the experiments that the important qualitative features, a central

superfluid region of equal densities, a mixed normal region and a fully polarized region

further outside, remain valid also in the strongly interacting regime where kFlal > 1.

7.2.3 Phase separation in the BCS-regime

Fig. 7-2 shows that the densities of the two spin components are expected to jump

from their respective values in the normal state to a common value in the superfluid

state. This discontinuity nicely illustrates that the Clogston limit is a first-order tran-

sition: As h/p1 is tuned starting from zero (either directly via a magnetic field for a

superconductor, or implicitly via the varying trapping potential), the density differ-

ence is first zero, as one is still in the BCS superconducting phase. At the Clogston

limit h/ =/ 7- the system suddenly turns normal and the density difference jumps

to a finite value. In the language of thermodynamics, the free energy density, con-
4This is the BCS-gap when density fluctuations are taken into account [98]. Note that in the

weakly interacting regime, p does not depend on the interaction strength and is equal to the average
Fermi energy of a non-interacting Fermi mixture.

159



sidered a function of the superfluid gap A, has developed a new global minimum at

A = 0, the normal state.

We thus see that in the presence of a trapping potential, which tunes h/,, we

expect to observe phase separation between an inner superfluid core of equal densities

and a normal state outside. However, phase separation would also occur in the case

of an imbalanced Fermi mixture confined in a large box potential. In this case,

the global densities nT and n1 are fixed. We can consider three possibilities: 1. A

uniform superfluid state with imbalanced densities. 2. A uniform normal state with

imbalanced densities. 3. A phase separated state containing bubbles of a superfluid

equal mixture, surrounded by a mixed normal state.

A uniform BCS state with imbalanced densities is not possible, as we have already

seen in the case of superconductors. Polarization of the BCS state could only happen

if the "Zeeman field"

h = > A (7.14)
2

Before h could ever equal the gap, however, the system already turns normal at

h = A/v/2, the Clogston limit. The BCS state thus does not tolerate imbalanced

densities.

One might consider other possible states than the fully paired BCS-state, for

which, for increasing mismatch between the two Fermi surfaces of the homogeneous

superfluid, pairing still occurs, but becomes less efficient with decreasing Fermi surface

overlap, and the gap decreases until superfluidity finally disappears. One candidate is

the Sarma (or breached pair) state [211, 151]. For fixed "magnetic field" h, this state

is a maximum of the thermodynamic potential, hence unstable, but it was argued that

it might be stable in the case of fixed densities. For the BCS-case it turns out that the

phase separated state containing superfluid bubbles of equal densities is energetically

favored compared to a uniform normal state of unequal densities and the Sarma phase,
as was first pointed out by Bedaque, Caldas and Rupak [28]. In a certain parameter

regime, calculations indicate that the FFLO-state, where Cooper pairs have finite

momentum, should be the ground state of the system [94, 146, 169, 221, 157].

7.2.4 Critical number imbalance

In the case of weak interactions (A << p) and harmonic trapping, it is easy to derive

a critical population imbalance for which there will be no superfluid region. The

160



condition is simply RSF = 0 or

1
h = A(0) (7.15)

h 1
- = - , e-), ' /2k jaj  

(7.16)

where, as before, 4s is the average Fermi energy of a non-interacting, equal Fermi

mixture, p = EF. The numbers of particles in the normal state are given by the

usual relation for a harmonic trap (see Eq. 2.40 in chapter 2), NAT, = (pj )3. We

thus find the critical population imbalance for weak interactions

NT -N (1 + h) -(13 -) h 3A(0)ST) h 3 A(0)C =-  ( - ;  3- - (7.17)N + N (1+ ) + (1 h- )3 / /

cceuo

E0C..o_

0.(0

Figure 7-3: Critical population imbalance 6 - NT-N= for BCS-type superfluidity inNT+N1

a harmonic trap. The data-points give the experimental result [268]. The cross
marks the point on the BEC-side of the resonance where superfluidity occurs at any
imbalance smaller than 1. Using the Gorkov expression for the gap, this point lies at
1/kFa - 0.7, outside the applicability of our derivation. However, the point should
lie at 1/kFa > 0, probably around 1/kFa ; 1, where the chemical potential p changes
from positive to negative values and BCS-type physics is replaced by condensation of
small molecules.

Fig. 7-3 shows the resulting phase diagram, along with the experimental results de-

scribed in the next section. The calculation assumes the expression for h/Cp, Eq. 7.16,
to still hold in the strongly interacting regime, which is discussed below. In the
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weakly interacting regime, where h < I, we see that 6c is proportional to the gap

and thus depends exponentially on the interaction strength 1/kFlal. This presents -
apart from the exponentially low critical temperature Tc - another reason why in the

beginnings it was not clear whether experiments with fermionic atoms were able to

observe superfluidity. It appeared that the two spin populations had to be essentially

perfectly matched: For a Fermi energy of EF = 1 pK (1/kF 3800 ao) and a scatter-

ing length of a = -500 a0o, still ten times larger than "typical" scattering lengths in

alkali atoms, the critical population imbalance 5c is already smaller than one out of

105 atoms! If experiments do not control the number difference to better than 1%,
they cannot explore superfluidity at interaction strengths smaller than kFlal I 0.35.

Obviously, the use of Feshbach resonances solved this problem.

Using several independent techniques described in the following sections, we mea-

sured the critical number imbalance as a function of interaction strength. The data

for one type of measurement (via the condensate fraction) is shown in Fig. 7-3. It is

satisfying to see that the experimental data closely follows the expected trend for the

critical number imbalance.

Resonance

Note that in the above calculation of the critical number imbalance we have assumed

that the normal state is non-interacting. Also, the BCS-approach neglects Cooper

pairs at finite momenta as well as interactions between different Cooper pairs. In

addition, the simple formula Eq. 7.2 for the free energy density difference between

the normal and the superfluid state will be altered for large kFlal. For these reasons,
the results cannot be trusted in the strongly interacting regime. Nevertheless, it is

reasonable that the qualitative behavior remains unchanged all the way to (1/kFa =

0), in the same way the qualitative behavior of the BEC-BCS crossover model appears

to capture the essential physics of an equal mixture. Moreover, the expression for the

gap used in Eq. 7.16 above, due to Gorkov and Melik-Barkhudarov [98], gives for the

resonance case A = (2/e)7/3 EF = 0.49EF, which agrees surprisingly well with the

result of Monte-Carlo calculations, A = 0.50EF [44]. With all caveats in mind, we

give the critical population imbalance on resonance, using the expression for the gap

due to Gorkov and Melik-Barkhudarov

6~ = 80% at 1/kFa = 0 (7.18)

We have measured this critical imbalance on resonance (see below) and find 6"xp =
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74(5)%. A recent Monte-Carlo study predicts 6~ = 77% [153]. Using the variational

BCS-approach, for which A = 0.69EF on resonance, yields 6~ = 92%. However,
one should not expect the variational Ansatz to predict any parameter on resonance

in a quantitative way. Fluctuations, such as those included by Gorkov and Melik-

Barkhudarov in the BCS-regime, seem to play an important role. This example gives

hope that the study of imbalanced Fermi mixtures will substantially improve our

understanding of strongly interacting fermions.

Both experiment and recent theory obtain S, < 1 on resonance. By continuity,
this implies that there is a region on the BEC-side of the BEC-BCS crossover where

condensation cannot occur, even at zero temperature, in the presence of large spin

imbalance. This is surprising, since for a > 0, there is a molecular state available for

two atoms in vacuum, and one would expect these bosonic molecules to condense at

zero temperature (essentially, bosons have no other choice at zero T). A simple way

out of this dilemma is of course that the very presence of the large Fermi sea of spin

up atoms prohibits the formation of the molecular state. Essentially, the (two-body)

molecular state requires a width k - 1/a in k-space. Once a ? 1/kF in the strongly

interacting regime close to resonance, the required momenta are Pauli-blocked by the

presence of spin-up atoms occupying k-space from k = 0 to k = kFT > 1/a. Hence,
the molecular state is not available anymore.

7.3 Fermionic superfluidity with spin imbalance

In this experimental section, we will demonstrate superfluidity for imbalanced mix-

tures. The first experiment is a study of rotating fermionic mixtures. Vortices directly

demonstrate that superfluidity persists in trapped, imbalanced Fermi mixtures. The

second experiment determines the condensate fraction using the rapid ramp method

of chapter 5. Hereby we could show the robustness of the superfluid in the strongly

interacting regime and directly demonstrate the Clogston limit of superfluidity. In

the first paragraph I describe how the population imbalance can be varied in our

experiment.

7.3.1 Creation of imbalanced Fermi mixtures

The experiments start at maximum optical trap depth with a fully polarized sample

in the lowest hyperfine state of lithium, II), and at a magnetic field above resonance

(typically at 875 G). The energies of states I1) and 12) are split by about h x 76 MHz.
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A radiofrequency sweep then transfers a certain fraction from state I1) into state

J2) according to the Landau-Zener law P = 1 - e-21rZ/w, where hQR is the Rabi-

frequency of the transition, tunable via the power of the radiofrequency drive, and CD

is the sweep rate at which the transition is crossed. We typically keep hQlR fixed and

vary 0. After the sweep, all fermions are still polarized in a coherent superposition

state of II) and 12) and need several tens of milliseconds to decohere, as discussed in

chapter 4 and in [106]. As the sample has decohered, evaporative cooling can proceed.

Starting with an initial temperature of about T/TF = 0.3, we reach T/TF = 0.05.
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Figure 7-4: Creation of imbalanced Fermi mixtures. A faster-than-adiabatic Landau
Zener RF sweep is used to transfer a fraction of atoms from state 1) into state 12).
For a fixed final trap depth at the end of evaporation, the temperature varies only
slightly with imbalance.

During evaporation, mostly majority atoms escape from the trap, as their Fermi

energy is closer to the trap depth. Thus, evaporation will always reduce the imbalance

in the cloud. Fig. 7-4 displays the final atom number as a function of the Landau-

Zener probability. The dependence of the total atom number and temperature on the

population imbalance is fairly small. It could be further minimized by adjusting the

trap depth at the end of evaporation as a function of imbalance.
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BEC-Side B = 812 G, l/kFa = 0.19

Figure 7-5: Superfluidity in an imbalanced fermion mixture. For the 812 G data, the
population imbalance was (from left to right) 100%, 90%, 80%, 62%, 28%, 18%, 10%
and 0%. For the 853 G data, the mismatch was 100%, 74%, 58%, 48%, 32%, 16%,
7% and 0%.

7.3.2 Rotating imbalanced mixtures: Vortices

After a strongly interacting, imbalanced spin mixture has been created, the cloud is

set in rotation, equilibrates and is then imaged as described in chapter 6. Fig. 7-5

shows the resulting images, and Fig. 7-6 the number of vortices as a function of imbal-

ance and interaction strength. Vortices are observed for a wide range of imbalances.

Clearly, superfluidity in the strongly interacting Fermi gas is not constrained to a nar-

row region around the perfectly balanced spin-mixture, but instead superfluid flow

is observed for large population asymmetries. Gradually, for decreasing interaction

strength 1/kFa, the superfluid window closes around the optimal situation of an equal

mixture. This is what we expect from the discussion of the Clogston limit above.
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Figure 7-6: Number of vortices obtained in an imbalanced Fermi mixture. The curves,
from top to bottom, correspond to decreasing interaction strength 1/kFa = 0.2 (BEC-
side), -0.15, -0.3, -0.4, and -0.5 (BCS-side of the Feshbach resonance).
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12),

Figure 7-7: Fermion pair condensates and the Clogston limit of superfluidity in an
imbalanced Fermi mixture. For high population imbalance (6 > 6c), the gas is a
normal mixture (left). At 6 < 6c, a condensate emerges in the clouds' center, which
grows as the imbalance is further reduced (right). The images are obtained using the
rapid ramp method, starting from resonance.

7.3.3 Condensate fraction

Vortices are a direct indicator for superfluid flow. However, close to the limit of

superfluidity, the large normal cloud should quickly damp the rotation of the su-

perfluid [107, 1, 265]. Therefore, the detection of vortices can only provide a lower

bound for the size of the superfluid window. The methods of chapter 5 can be used

to directly detect whether or not a condensate was present in the imbalanced clouds.

A rapid ramp to the BEC-side, directly after release from the optical trap, stabilizes

the fermion pairs and transforms the initial pair condensate on the BCS-side into a

molecular condensate (see Fig. 7-7). Using this method has allowed to map out the

regime of pair condensation as a function of population imbalance and demonstrate

the Clogston limit of superfluidity.

Fig. 7-8a) shows the condensate fraction as a function of population imbalance

for varying interaction strength. This directly displays the strong dependence of

the superfluid window on 1/kFa. At a given interaction strength, there is a sharp

threshold behavior at a certain critical imbalance, below which condensates are found.

The critical imbalance determined from such data is shown in Fig. 7-3. On the BCS-

side, it should closely follow the value of the superfluid gap A. The qualitative

agreement with this expectation is excellent.

Fig. 7-8b) contrasts this quite dramatic dependence of the critical imbalance on the
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Figure 7-8: Superfluid window of imbalanced Fermi mixtures. The condensate frac-
tion is shown as a function of population imbalance for a) varying interaction strength
at the lowest temperature, and b) for varying temperature on resonance.

interaction strength with its weak dependence on temperature. While increasing the

temperature reduces the condensate fraction substantially, it only affects the critical

imbalance close to Tc. This is reminiscent of the weak dependence of the superfluid

gap on temperature5

From Fig. 7-8a) we recognize a dramatic consequence of population imbalance.

There is no longer a smooth crossover from the BEC- to the BCS-limit in the im-

balanced case, in contrast to the case of equal mixtures studied in previous chapters.

Rather, a phase transition occurs as the interaction strength is reduced below a criti-

cal value that depends on the interaction strength. In principle, it could well be that

more than one phase transition occurs around the critical interaction, from a BCS-

type superfluid to several forms of FFLO-type states, until finally the normal state

is reached. If such intermediate superfluid states exist, they leave - at our present

resolution - no distinct feature in the density profiles of the gas.

5For the BCS-gap A(T) . 1.74 A0  1 - T/Tc for Tc - T < Tc and A(T) Ao -
/2_rAokBT e - A o/kBT for T < Tc [89].
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7.4 Direct observation of the phase transition, im-

balanced case

The study of the condensate fraction has allowed us to establish the superfluid-to-

normal phase diagram of Fig. 7-3. One of the most amazing results of the analysis

that led to this phase diagram is clearly the prediction that the superfluid appears to

phase separate from the normal cloud (see Fig. 7-2). This suggests that in striking

contrast to the case of an equal mixture, one should be able to directly observe the

superfluid phase transition in the density profile of the gas, without the need of poorly

understood magnetic field ramps.

7.4.1 On resonance: Universality

We have indeed found this idea to be correct. Fig. 7-9 shows density profiles of an

unequal mixture on resonance at an imbalance of about 60%. As the sample was

cooled below a certain temperature, a central dense core appeared in the minority

cloud. Even at our coldest temperatures, this core was observed only below a critical

imbalance 6c = 74(5)%, the same value that we have found before using the rapid

ramp technique. It is thus natural to identify the central core with the fermion pair

condensate.

A different imaging technique, a variant of phase-contrast imaging (explained

below in section 7.5) was used to directly image the density difference as a function of

temperature. According to our expectation of Fig. 7-2c), the density difference should

rapidly drop to zero when crossing the boundary between the normal mixture and

the superfluid core. Indeed, as we cool down the sample, we observe the appearance

of a striking central depletion in the difference profiles, see Fig. 7-10. Naturally, this

depletion emerges at the same temperature at which we observe the central dense core

in the minority cloud (Fig. 7-9). In section 7.5 we will study whether the depletion

is complete, that is, whether the central densities are indeed equal in the superfluid

regime.

Apart from providing us with a direct method to detect the condensate, im-

balanced mixtures also enable us to measure temperatures. A substance can only

function as a reliable thermometer if it does not strongly interact with the sample to

be measured. This explains the difficulty of assigning temperatures to the strongly

interacting equal mixtures of chapter 5. In the case of imbalanced mixtures, atoms

in the outer wings of the majority cloud are not in contact with minority atoms (see
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Figure 7-9: Direct observation of the superfluid phase transition in a resonantly
interacting, imbalanced Fermi mixture. In contrast to the case of equal populations,
the fermion pair condensate in an unequal mixture is clearly visible in the density
profiles. This should be compared to the density profiles of an equal mixture, Fig. 5-
11. The upper row shows majority clouds, the lower row minority clouds, for an
imbalance of S = 60%. All images were obtained after 11 ms of expansion. The
dashed line is a fit to the wings of the minority cloud to a Thomas-Fermi profile,
clearly missing the central feature. Temperature was varied by lowering the trapping
power. It can be obtained from the ballistically expanding wings of the majority
cloud. We have T/TF = 0.14 (a), 0.09 (b) and 0.06 (c). Here, kBTF is the Fermi
temperature of an equal mixture containing the same total atom number.
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Trap Depth (kBx pK)

Figure 7-10: Direct observation of the superfluid phase transition via in-situ phase
contrast imaging. At a critical temperature, a central depletion appears in the dif-
ference density, corresponding to the appearance of the condensate as observed in
Fig. 7-9.

Fig. 7-9). They expand ballistically from our trap and can thus be used as a reliable

thermometer. This has allowed us to measure the critical temperature for a given

population imbalance (see Fig. 7-11). Future experiments can obtain the critical

temperature as a function of imbalance and might thus - by extrapolation - lead to a

reliable value even for the case of an equal mixture.

A mixed, unbalanced region on resonance

Fig. 7-9 shows that there exists a mixed region outside the condensate, where minority

and majority spins coexist. This is a necessary consequence of the existence of the

critical imbalance 6c on resonance. Starting with a normal mixture at 6,, the gas will

not suddenly fully condense for slightly lower imbalance. This normal mixture above

6, (or beyond the radius of the condensate at RSF) is an intriguing state of matter: It is

strongly (resonantly!) interacting, yet normal (as far as we know from the observation

of condensates and vortices). Moreover, we find that the minority spin state in this

mixed region is very well fit with a Thomas-Fermi profile of a non-interacting Fermi

gas. Only the cloud radius shows that this is indeed a strongly interacting gas, as

it is found to be smaller than that of an equivalent non-interacting cloud (we find

RI/RTFJ X 0.75 at 6 = 6,). This might indicate that the strongly interacting Fermi

gas behaves like a collection of non-interacting fermions with an effective mass. This
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Figure 7-11: Critical temperature for an imbalanced Fermi mixture on resonance. The
quality of a Thomas-Fermi fit, expressed as its X2-value, is plotted as a function of
the reduced temperature T/TF as determined from the majority cloud's ballistically
expanding wings. A threshold fit (black line) gives the critical temperature for 6 =
59% as Tc/TF - 0.12.

is the essence of Landau's Fermi liquid theory and the reason why other than pairing

interactions between fermions can be neglected in BCS theory [215]. Here, the only

role of interactions is to "dress" the "bare" fermions with an effective mass, the result

being a reformulation of the interacting system in terms of weakly interacting quasi-

particles. It is an important goal of future experiments to understand whether this

idea still works in the strongly interacting regime on resonance.

Here, we will give an elegant argument independently found by F. Chevy [52] and

Bulgac and Forbes [40] that shows how the different radii of the superfluid, the mixed

region and the fully polarized cloud constrain the conditions for being in either of

these three phases.

At unitarity, there are only two energy scales available, the chemical potentials

MT and ,I for the two species. Their ratio 7 -= " determines in which of the possible

states the Fermi mixture is in. Clearly, for 77 = 1 we are in the superfluid state. As

we reduce i7, we will, according to our results, leave the superfluid state and enter

the normal mixed state, say at a critical q7a. Then, upon further reduction of q, the

system will eventually switch into the fully polarized state, say at qb. The following

considerations allow us to constrain these parameters.

Bounds for q7 a and 7b

We start with the same analysis as for the Clogston limit in the weakly interacting

case: We need to minimize the free energy density F of the two-species mixture, that

is, find the state with maximum pressure P = -7F. In the fully polarized state, the
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pressure is (see Eq. 7.6)

PN= -p(1) ./2 (7.19)
15

Due to universality on resonance, the chemical potential p of a fully paired superfluid

state must be proportional to the Fermi energy, p = -EF = 2-•-(67r2n)2/3. From

p = it follows that the energy density in the superfluid state has the same form

as that of a normal, two-component Fermi gas: E(pT, pl) = pT nT + g p n p n,

with n = nT = nT and6 p = . The pressure Ps - pT nT + p nl - E(pT, p1 ) = 4n

in the superfluid state is then

4 1
Ps = ) p(2) (PT + P1)5/2 (7.20)

If there was no intermediate mixed phase, we would have a phase transition from

the superfluid to the fully polarized normal state when their pressures become equal:

PN = PS (7.21)

I LI = ((2)3/5 1) T

The universal parameter ( has been measured in experiments on equal mixtures

[174, 26, 37, 139, 187], most simply by determining the cloud size, and calculated for

example via Monte-Carlo calculations [43, 44, 17]. Our cloud size measurements yield

( = 0.47 (see section 5.3), in close agreement with other determinations. This means

that the superfluid-to-fully polarized normal transition would occur at ic, = -0.04.

Since we observe the intermediate phase before the system becomes fully polarized,
we must have 7la > Tic.

An upper bound for rib, the transition from the mixed to the fully polarized region,
can be obtained as follows. At rib, we essentially have the situation of only one minority

atom experiencing the interaction with the cloud of NT majority atoms. In the BCS-

regime, this interaction would simply be the (attractive) mean-field-term 47rh 2 anT/m.

On resonance it will be a universal number times the only energy scale left in this
situation, pT- We naturally expect this interaction to be still attractive, corresponding

to some sort of "binding" of the minority particle to the majority Fermi sea. Two

independent variational approaches by Chevy [52] and Bulgac and Forbes [40] result
6Note that this only depends on the average chemical potential p, because the superfluid is not

sensitive to the difference 6p: The magnitization M = -&d/,6p = 0 is zero in the BCS state.
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Figure 7-12: Constrained radii of the superfluid (Re), the mixed (Rp) and the fully
polarized phase (R 1) on resonance. The departure for larger minority clouds is likely
due to the fact that for small population imbalance the superfluid did not have a
very distinct boundary, which increased the uncertainty in determining Ra. Figure
extracted from [52].

in the upper bounds for the "binding" energy Ibl:

I -0.44 AbT, (Chevy)
-0.50 LbT, (Bulgac and Forbes)

Therefore we have rb < -0.50.

Constraint from the measured cloud radii

In the case of a harmonic trap, the chemical potentials vary as given in Eq. 7.11. The

transition from the superfluid to the mixed normal region will occur when

-o mw 2 -SF
I 2 F2 /a (7.23)
T , 2 2 SF

defining the radius of the superfluid RSF. The transition from the mixed region to the

fully polarized normal one occurs at a radius R1, where the minority cloud vanishes:

1 2 2  10b (7.24)

Finally, one can note that the chemical potential [p of the majority spin state is

simply given by the majority cloud radius, [T = mw 2R2. These equations allow us
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to eliminate both po and yo and we obtain an equation for the radius of the superfluid

core [52, 40]:

Rs.F (Rg/RT) 2 - q (7.25)
RT 1 - q

where q = - is the value of (RI/RT) 2 at which the superfluid vanishes.

The comparison of Eq. 7.25 to our data [269] is reproduced from [52] in Fig. 7-

12. Our data results in q = 0.32, from which Chevy deduces the following stringent

bounds on r7a and rlb:

-0.04 < 7a < 0.02 (7.26)

-0.55 < 77b < -0.50 (7.27)

The parameter qra has a meaningful interpretation: It is the ratio of the den-

sity discontinuities in the majority and minority clouds at the superfluid-to-normal

transition 7,
AnT -rla (7.28)

While the minority cloud clearly shows a sharp change in its density at the phase

transition, the majority profiles do not feature a dramatic jump (see Fig. 7-9). We

were able to see faint traces of the condensate in the majority density (see supplemen-

tal material in [269], reprinted in appendix I), but the smallness of the effect certainly

speaks for a small value of ?ra.

One should remark that the variational BCS approach (not including the correc-

tion due to Gorkov-Melikbarkhudarov) would predict a considerably smaller inter-

mediate phase. The critical density imbalance beyond which no superfluid region

persists in a uniform system would be ; 93%, corresponding to ?ra 0.1, as one can

calculate using the results for the Clogston limit above. The energy needed to add a

minority atom to a majority Fermi sea would be identically zero, 7rb = 0, as interac-

tions between atoms that do not form a Cooper pair are neglected. In contrast, the

upper bounds found by Chevy and Bulgac and Forbes show that the minority atom

is "bound" by an energy that is at least one half of the majority cloud's chemical

potential. This nicely confirms the intuitive picture that the large spin up Fermi sea

presents an attractive "mean-field" potential to a single minority atom.

7Due to universality, the pressure in both phases can be written as P = f (r7 ).5/)2 . The densities

are given by nT = = f'()(- ) + and n = = f'()( )5/2. The pressure and

the chemical potentials are continuous across the transition, so Ant = -- An.
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Concluding this section, we see how the simple measurement of cloud radii in

the strongly interacting regime has allowed to extract viable information about the

equation of state of the system. The general equation of state for the two-species

mixture will read

E(T 1,/Ij) = f(r/)EF (7.29)

with an unknown universal function f(,q) that, hopefully, future studies will be able

to determine.

7.4.2 On the BEC side: strongly interacting Bose-Fermi mix-

ture

On the BEC-side, at 1/kFa = 0.5, we find several features that are qualitatively

different from the resonance case.

1. At the lowest temperatures, the minority atoms are now essentially all part of

the condensate. That is, there is practically no mixed region.

2. The majority spin species now also shows a dramatic signature of condensation.

A closer look on the resonance profiles reveals, however, that this latter distinction is

only quantitative: There is indeed a very faint trace of the condensate in the majority

distribution (see supplementary information in [269], reprinted in Appendix I).

Fig. 7-14 displays the condensate fraction as a function of the reduced temper-

ature T/Tc, where T is determined as before from the non-interacting wings of the

majority component, and Tc is the critical temperature of a non-interacting cloud

of N1 molecules. We see that interactions strongly reduce the critical temperature

from the non-interacting value. The downshift by a factor of two is in accord with a

mean-field model of condensates in the strongly interacting regime [35]. The cloud of

excess atoms will act to further reduce the critical temperature.

Mean-field model

The situation on the BEC-side of the resonance resembles that of a strongly inter-

acting mixture of bosons (the molecules) and fermions (the unpaired atoms of the

majority species). Indeed, Pieri and Strinati [196] have shown that on the far BEC-

side of the Feshbach resonance, where kFa < 1, this view is indeed correct. What

emerges is a mean-field description in which the condensed bosons repel the unpaired
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Figure 7-13: Phase transition in a strongly interacting atom-molecule mixture, at
B = 780 G or 1/kFa , 0.5. Unlike on resonance, all minority particles are part of the
condensate at low temperatures: there is essentially no mixed normal region. The
reduced temperatures were T/TF = 0.2 (a), T/TF = 0.12 (b) and T/TF < 0.05 (c).
The noise in the center is an artefact of azimuthal averaging: the number of averaged
pixels evidently increases with distance from the center.
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Figure 7-14: Condensate fraction of the molecular condensate (at B = 780 G) as a
function of temperature. Strong interactions reduce the condensation temperature
by a factor of two compared to the non-interacting value. The critical temperature is
T/TF = 0.18 for an imbalance of 6 = 75%. N/ 6 a/ah.o. is the gas parameter giving the
interaction strength. In a weakly interacting atomic BEC, this number is typically on
the order of 10-2. The condensate fraction was determined using a simple bimodal
fit, a gaussian plus a parabola (solid circles) or a fit that assumes full expulsion of
the thermal cloud by the condensate (open circles).

fermions. For increasing interaction strength, the fermions are essentially fully ex-

pelled from the condensate. This form of phase separation has also been theoretically

studied in "true" dilute Bose-Fermi mixtures, both in the trapped system [170] and

in the bulk [253], and it certainly reminds of the phase separation between 3He and
4He mixtures [99] (only 6% of 3He are soluble in 4He at low temperatures).

We can quite easily "guess" the mean-field equations for this mixture, and re-

fer the reader to the full derivation given in [196]. To start, we need to know the

relevant scattering lengths for the system. The molecule-molecule scattering length

was calculated by Petrov, Shlyapnikov and Salomon [193] by solving the four-body

problem exactly. The result is aBB = 0.6a, where a is the atom-atom scattering

length. Thus, the molecules repel each other, as we had found in chapter 2 within the

BCS variational approach. This, however, predicted the larger values aBB = 2a. The

8 The reason is that the BCS variational approach neglects interactions between pairs, and three-
body interactions between a fermion and a molecule.

178



fermion-boson scattering length aBF = 1.18a was calculated almost half a century

ago [228] but has so far not been verified experimentally.

At low temperature, all minority fermions will be paired with majority ones,
and the resulting molecules will practically all be condensed. We thus have only

two contributions, the molecular condensate O(r) and the density of excess fermions

6n(r). The excess atoms experience the molecules as an additional external potential

oc aBF 10(r)12, so we have (see Eq. 2.28 in chapter 2)

1 1
6n(r) = -5B PolyLog (3/2, -e( T- Vext( r) -> C

F Ir)2)/kBT (7.30)
3dB

where AT is the chemical potential of the majority atoms. The molecules, in turn, feel

the mean-field repulsion from the excess fermions, in addition to their own repulsive

mean-field. The Gross-Pitaevskii equation for 0(r) thus reads

h2V2  (2V() 3rB-h2 aBF ) 4 4rh2aBB
- (r) + 2Vxt(r) + n(r) (r) + (r)
2mM m mM

(7.31)

with the mass mM = 2m of molecules. The factor 2 in front of Vext simply signifies

that each molecule experiences twice the potential felt by a single atom. The chemical

potential for molecules lM in an equal mixture is IpM = 2Ip + EB with EB = h2/ma 2

the molecular binding energy (see chapter 2). In the case of unequal mixtures, chem-

ical equilibrium in the atom-molecule mixture requires pmM = I.1 + p~ + EB. The set

of equations is closed by introducing the total density n(r) = 2 |1(r) 12 + 6n(r) and

requiring

N + N J = dr n(r) (7.32)

N- NI = Jd3r 6n(r) (7.33)

with the given number NT and N1 of majority and minority atoms.

We can proceed further using the Thomas-Fermi approximation, neglecting the

kinetic term in the Gross-Pitaevskii-equation. Also, we now work at zero temperature.

The equations for O(r) and 6n(r) become

10(r)12 = max (IM - 2Vext(r) 3rh2 aBF n(r), 0 (7.34)

S(2m)3/2 max Vex(r) h2aB r 2  (7.35)6n(r) = =6 --y -- Vext (r) (r) (735),r h mx (PT

179



>4
0)
W

E
c'J

o

ci,C1
a0

1-

A.

.......... ..............

100 0 100 100 0 100 100 0 100

Radius [glm] Radius [glm] Radius [jim]

Figure 7-15: Effective potential and density of excess fermions in a Bose-Fermi
mixture. The upper row shows the self-consistent effective potential Vff(r) =
Vext(r) g BF I(r)12 experienced by excess fermions in the presence of a molecu-
lar condensate with wavefunction #(r). The dotted line gives the chemical potential
wT of the majority spin species. The lower row shows the density of excess fermions
6n(r) and the condensate density nc(r) = 1(r) 12. The population imbalance 6 was
a) 20%, b) 70% and c) 99%, and the interaction strength 1/kFa = 2. Calculations
are for a spherical trap with trapping frequency w = 21r 100 Hz and a total number of
107 fermions.

These equations allow us to study several cases (see Fig. 7-15).

Small imbalance If the excess density is small, we can neglect the influence

of the few excess atoms on the molecular condensate. The excess atoms, in turn,

experience an effective "Mexican hat potential", the trapping potential plus the mean-

field interaction from the condensate (see Fig. 7-15a):

Veff = Vext(r) + max(lpM - 2Vext(r), 0) (7.36)
gBB

with the couplings gBB = 27rh2aBB/m and gBF = 37rh 2aBF/m. The inverted potential

from the condensate mean-field on the right always dominates the "bare" potential in

the center, as 2gBF/gBB = 3aBF/aBB P 6 > 1. This shows that the excess atoms will,
for small imbalance, always reside in the wings of the condensate, never in the center.

As the imbalance or the strength of the interactions are increased, the mean-field

repulsion from the excess atoms starts to affect the condensate. Still, the effective

potential retains its qualitative shape (see Fig. 7-15). Thus we arrive at the fact that

180

nc(r)
5-

8n(r)

. : n-0,

n. . i
rrr

-AL.
0 ....



in the trapped case, there will always be an extended region in the phase diagram

where an "unmagnetized" superfluid at equal spin densities is spatially separated from

a mixed region.

A "magnetized superfluid" As the population imbalance is increased, or the

interaction strength decreased, more and more excess atoms enter the condensate

from the edge inwards. At the critical point where the chemical potential of majority

atoms becomes large enough to overcome the condensate's mean-field repulsion at

the trap center, tt = M,• excess particles can penetrate all the way into the

condensate (see Fig. 7-15b). The superfluid phase is "magnetized" throughout. In

the language of the BCS-state, now the cost of having unpaired atoms inside the

superfluid is outweighed by the gain in "Zeeman energy" 2h = YT - IL of changing

a spin down (minority) into a spin up (majority) particle. Recall from chapter 2

that the role of the excitation gap on the BEC-side is played by V2 + A2. The

fact that polarization of the superfluid is favorable means h > V 2 + A2. This

is indeed possible on the far BEC-side, as there is no Clogston limit anymore (see

Fig. 7-3). One can note that [/p
2 ++ 2  M + • M in the far BEC-limit (with the

variational BCS-Ansatz, that leads however to the "wrong" values of gBF and gBB),
and we recover the above criterion for Ty.

Strong interactions: complete phase separation For strong interactions, on

the other hand, the condensate expels essentially all excess fermions. Phase separation

between the superfluid and the normal region is thus complete and occurs for all

imbalances. The situation now closely resembles our expectations for the BCS-side.

Fig. 7-16 summarizes these findings by plotting the central density of excess fermi-

ons 6n(0) as a function of imbalance and the interaction parameter 1/kFa. The

equations Eqs. 7.34 and 7.35 were solved by iterative insertion of one density profile

into the equation for the other, and adjusting at each step the value of the chemical

potentials pM and PT to converge to the required particle number.

As pointed out by [196], the details of the density profiles - the maxima in the

density of excess fermions, the critical imbalance / interaction where phase separation

starts, etc. - depend on the value of the atom-molecule scattering length. Accurate

measurements of the density profiles will allow to verify the 50 year old prediction

aBF = 1.18.
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Figure 7-16: Phase diagram for the strongly interacting Bose-Fermi mixture in a
harmonic trap at zero temperature. Shown is the density of excess fermions in the
center of the trap. Excess fermions can enter the condensate either for large imbalance
or fixed (non-zero) imbalance and weak interactions, above the critical line shown in
black. Near a critical interaction around 1/kFa = 1, excess fermions are expelled
from the condensate's center at all imbalances. The profiles on top show the case
for 6 = 80% at varying interaction parameters, 1/kFa = 3 (left), 2 (middle) and 1
(right). Other parameters as in 7-15.

7.5 Observation of phase separation

In previous sections we have seen that both on the BCS, and on the BEC-side of the

resonance, we would expect to observe phase separation in the sample. We define a

phase separated state by the presence of a region in space where the spin densities

have equal densities, and which is surrounded by a shell at unequal densities. Hints of

phase separation were found by subtracting the column density profiles in Fig. 7-9 and

finding a dip in the center of the difference distribution. Similar central depletions

have been found in [187]. However, to distinguish a phase-separated state from a

merely strongly interacting normal state that would show similar depletions [267], it

is necessary to reconstruct the 3D density difference. In principle this can be achieved

by subtracting the absorption pictures of the two spin species, and inverting the

resulting profiles [267]. But forming the difference between two large and fluctuating
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quantities leads to large fluctuations in the result. A method was needed to directly

image the density difference. Phase contrast imaging provides such a method, as is

discussed in the following.

7.5.1 Experimental method: Phase-contrast imaging

(a( i_ (bN

12)

Ii )-0-

Figure 7-17: Phase contrast imaging for the observation of phase separation in an
imbalanced Fermi mixture. a) The probe beam is tuned right in between the two
resonance frequencies for atoms in states I1) and 12). The resulting phase shift is
thus proportional to the difference in column densities. b) Phase contrast image of
atoms in state II) (left) and 12) (right) and that of an equal mixture of the two states
(middle).

In order to directly measure the density difference distribution, we employ a vari-

ant of phase contrast imaging (see Fig. 7-17 and [232]). Light that is off-resonant

with an atomic transition (detuning 161 much larger than the linewidth F) experi-

ences a phase shift O(x, y) oc 1 f dz n(x, y, z) when passing through the atomic cloud

with density n(x, y, z). Atoms in states II) and 12) have imaging resonances that are

about 80 MHz apart. Thus, if a laser is detuned right in between those two imaging

resonances, the phase shift due to atoms in state I1) will have the opposite sign of

that due to atoms in 12). The total phase shift will be proportional to the difference

of the column densities.

The phase information can be transformed into an intensity information by a

standard homodyning technique. If Ei is electric field of the collimated incoming light,

and Ef is the field after passing through the atoms, then E, = Ef - Ei = Ei( e o - 1)
is the scattered light from the atoms (we neglect absorption in our description as

151 > F). The scattered light is imaged onto a CCD camera, where it interferes with

the unscattered light Ei. This would give an intensity propotional to IEj + E,12 2c

11 + i012 2c 1+ ÷2/2 for small phase shifts 0. The dependence is quadratic and thus
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weak. To increase the sensitivity to ¢, the collimated light that misses the atoms

is phase shifted by 7r/2 using a phase spot in the focus of a lens. The scattered,
phase-shifted light from the atoms in the object plane will miss the phase spot. The

intensity on the camera is now proportional to lei r/2 ± io12 o 11 + ¢12 oc 1 + 2¢. The
signal is thus linear in q and thus sensitive to small phase shifts.

7.5.2 In-situ profiles of the column density difference

Figure 7-18: In situ imaging of an imbalanced Fermi mixture for various population
imbalances. The profiles directly measure the column density difference of the two
spin states. Below an imbalance of 6 < 75%, a distinctive central depletion is observed
and a shell structure emerges.

This new experimental tool has allowed us to directly probe the density difference

in imbalanced Fermi mixtures in-situ (in the trap) (see Fig. 7-18). We observed how

the depleted core region diminished for increasing imbalance and eventually vanished

completely around an imbalance 6 _ 75%.

The 3D reconstruction of the density difference finally revealed that at low temper-

atures, the central depletion in the density difference actually results from a central

core at equal densities, surrounded by a shell at unequal densities (see Fig. 7-19).

The reconstruction is performed using an inverse Abel transformation. The only as-

sumption entering this analysis is that of cylindrical symmetry of our trap, which we

know from chapter 6 to be very well fulfilled. This allows us to check two further

assumptions that are often made, namely the local density approximation (LDA) and

the approximation of harmonic trapping [226, 125].

In local density approximation, the densities nT,I(r, z) and their difference can

only depend on the value of the local potential V(r, z) = Imw2r 2 1 mw 2. That is,
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Figure 7-19: Reconstruction of 3D density profiles. Double integration results in a flat
difference density profile, as expected from LDA when integrating over a hollow shell.
The 3D reconstruction of the difference density profile shows an extended region of
equal densities surrounded by a shell with unequal densities.

they are functions of A2r 2 + z 2 only, where A = wr/w, is the aspect ratio of the trap.

The border of the region of equal densities must likewise be defined by a certain value

of the potential V, hence constant A2r 2 + z 2 - Rore. Let us now calculate the doubly

integrated difference profile

An,a(z) = dx dy An(A2 (x2+y2)+z 2 ) = 7 d(p') An(p2+z2 ) = 7r du An(u)

(7.37)

Now if Jz| < Rcore, then An(u) is zero from u = z2 up to u = Rore. The doubly

integrated density is thus constant:

00
Ana(IzI < Rcore) = - or du An(u) (7.38)

Indeed, when performing the double integration, we observed such a character-

istic "flat top" distribution, indicating that LDA and harmonic trapping are good

approximations.

7.5.3 Two regimes of phase separation

For the range of interaction parameters studied in the experiment [223] (-0.4 <

1/kFa < 0.6), the observation of a central core with equal densities was correlated

with the existence of a condensate after the rapid ramp to the BEC-side (see Fig. 7-
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Figure 7-20: Correlating the condensate fraction with the observation of phase sepa-
ration. Whenever a condensate is found after the rapid ramp, the in-situ densities of
the two species are equal.

20). This shows that the physics on both sides of (but still close to) the Feshbach

resonance is qualitatively the same, which does not surprise given the experience with

equal mixtures.

However, there is an important qualitative difference between the BEC- and the

BCS-regimes. On the BCS-side, it is always energetically favorable to place a new

majority atom not inside the superfluid, but on top of the Fermi sea of excess atoms

in the phase separated normal state. To reverse this situation, the "Zeeman" energy

h would have to overcome the pairing gap A, but the Clogston limit occurs already

before this can happen, at h = A/v/2. In the far-BEC-regime, on the other hand,
we are dealing with a Bose-Fermi mixture of tightly bound molecules and unpaired

atoms. Excess fermions can enter the molecular condensate without destroying it.

While for small imbalance, the central region of the trap will still contain a superfluid

at equal spin densities, at a certain imbalance excess atoms start to fill in the central

region. This means that there will be a "magnetized superfluid" on the BEC-side of

the imbalance phase diagram (see Fig. 7-21).
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Figure 7-21: Phase diagram for trapped, strongly interacting, imbalanced Fermi mix-
tures. This shows the combined diagrams of Figs. 7-3 and 7-16, along with the data
of [268] (empty circles) and [223] (full circles). The normal state density difference
in the BCS-regime was calculated for a non-interacting mixture. This central density
difference should sharply rise from zero on the BCS-side as the system turns normal.
In contrast, on the BEC-side the density difference increases smoothly from zero,
starting at some critical imbalance. The superfluid is not destroyed, and one obtains
a "magnetized superfluid".

7.6 Outlook

The study of imbalanced Fermi mixtures has revealed a host of interesting effects.

Their quantitative explanation presents a challenge to many-body theories, especially

in the strongly interacting regime. Varying the spin imbalance led to new insight into

the strongly interacting normal state above the critical imbalance. The critical po-

larization is itself an important number. It provides a measure for the stability of the

superfluid state at equal densities, when compared to the strongly interacting normal

state. On resonance, it is a universal number, of the same importance as the gap

or the chemical potential of an equal mixture in units of the Fermi energy. In the

BCS-limit, the critical polarization is linearly related to the pairing gap, with a uni-

versal coefficient (see Eq. 7.17). Future experiments can study the superfluid-normal

mixture, as well as the mixed normal state in the trap for example by measuring their

collective excitations, the damping of out-of-phase oscillations ("second sound"), the

excitation spectrum via RF spectroscopy and the behavior under rotation. An excit-

ing experiment would be to observe majority atoms trapped inside vortex cores. In

principle, this should be possible using phase contrast imaging of a rotating mixture.
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New forms of superfluidity? In all of the above, we only considered the nor-

mal state and the BCS state as possible "candidates" for the ground state of the

imbalanced system. However, the BCS derivation does not include the possibility of

forming Cooper pairs at finite center-of-mass momentum. In the balanced case, this

can well be justified: As a system (without currents) turns superfluid, the growth

rate of the zero-momentum pair population is largest [215]. By "mode-competition"

these zero-momentum pairs completely dominate other possible populations. How-

ever, in the imbalanced case, Fulde, Ferrell [94] and Larkin and Ovchinnikov [146]

have shown that there is indeed a state of lower energy than both the normal and

the BCS-type superconducting state, which involves pairing of fermions at finite mo-

menta. This superfluid state is expected to approximately occur between (slightly

below) the Clogston limit h = -A = 0.707A and hFFLO = 0.754A. While this

state is favorable compared to the normal and BCS state, there is a host of other

possible proposals for the ground state, involving more than one common Cooper

pair momentum or states with deformed Fermi surfaces [46]. Unfortunately, the pa-

rameter space for these exotic states of superfluidity appears to be very small [221]

(but see [169] for a more optimistic view). The trapping potential tunes h/1 quickly

over the interesting range, and the FFLO-state might be obscured by surface effects

at the superfluid-to-normal phase boundary.

Nevertheless, the study of imbalanced Fermi mixtures will necessarily improve our

understanding of fermionic superfluidity in the strongly interacting regime, and will

help us to decide on the features a full theory of Fermi gases must have.
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Chapter 8

Conclusion

Not even three years ago the first Bose-Einstein condensates of molecules had been

observed. The rapid developments, the quick succession of major experimental break-

throughs and new theoretical insights were and still are truly breathtaking. The amaz-

ing pace in the field of fermionic superfluids in atomic gases has its origins evidently

in the (comparatively) long experience with the bosonic counterparts, Bose-Einstein

condensates of atoms. While four and a half years had passed between the discovery

of the first atomic BEC and the first observation of a vortex lattice in a condensate,
it only took a third of that time for fermionic superfluids. By now the field has

matured as experiments are in a position to address open questions of many-body

physics. My colleagues and I have been fortunate to be able to contribute to this

exciting field of physics. To conclude this thesis, let me shortly summarize what has

been accomplished by our group, what questions still await an answer and in what

directions we can go from here.

From the moment it became clear that molecules, formed out of two fermionic

atoms, would not undergo fast vibrational decay close to a Feshbach resonance, the

strategy in the search for fermionic superfluidity was evident: One should first pro-

duce a stable molecular condensate before entering the unknown realm of strong

interactions. For this task, 6Li turned out to be a "magic" substance, allowing

molecular lifetimes of several tens of seconds close to resonance. Molecular BEC

could thus be achieved by evaporating the gas at fixed interaction strength, much

in the same way bosonic atoms are condensed. These condensates allow to explore

the regime of strong interactions, where beyond mean-field corrections apply. Such

effects are difficult to observe in atomic condensates, where quantum depletion is

marginal (- 1%) (at least in the bulk). One might worry that the fermionic nature of

the molecular constituents might dominate beyond mean-field corrections expected
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for point-like bosons. However, a diagrammatic expansion in the BEC-limit of the

crossover shows [195], and Monte-Carlo calculations confirm [17], that the only effect

of the fermionic constituents in this regime is to modify the scattering length for

molecules into aM = 0.6a. The study of strongly interacting molecules could thus

confirm decade old predictions, for example the Lee-Yang correction for the equation

of state for point-bosons [148]. Preliminary data on collective oscillations from the

Innsbruck group indicates these corrections to be present and to have the expected

value.

The next step in achieving fermionic superfluidity was to change the sign of the

scattering length from repulsive to attractive and search for condensation of fermion

pairs. In this regime binding is purely a many-body effect, as the molecular state

has disappeared. The binding can be understood as arising from Pauli-blocking of

possible scattering states, as in conventional Cooper pairing. However, the pairs in

our experiments are likely never larger than the interparticle spacing, as kFlal >| 1

in all cases studied so far. This might explain why the transfer into tightly bound

molecules is so efficient. This transfer allows to detect condensates on the attractive

side of the Feshbach resonance, by effectively "mapping" the many-body wavefunc-

tion onto a thermally excited state containing a molecular condensate. We could

confirm that the transfer occurred on a timescale short compared to the growth time

of pair condensates, which gave an important piece of evidence that the fermion pair

condensates were indeed formed before the transfer. This work also demonstrates the

great potential given by the Feshbach resonance mechanism to study time-dependent

and out-of-equilibrium situations. These are theoretically challenging problems, as

the most widespread tool, the time-dependent Ginzburg-Landau equation, only works

if the order parameter A varies so slowly that the system is always close to equilib-

rium [260].

The final goal of the experiments was evidently to prove superfluidity and phase

coherence in atomic Fermi mixtures. Both these goals were simultaneously achieved

by observing ordered vortex lattices in a rotating Fermi gas. These Abrikosov lattices

are well-known from Type-II superconductors placed in a magnetic field. They have

not yet been observed in Helium-3, the only other neutral fermionic superfluid. A

future direction for the work on rotating Fermi gases can be the observation of a

critical rotation frequency [251, 262], which is analogous to the critical magnetic field

Hc2 in Type-II superconductors. Another interesting topic is the non-trivial density

profile of a vortex on the BCS-side of the resonance [143, 109, 116, 173, 158, 219].

On the BEC-side, the only microscopic scale is the healing length oc 1/vn-a which
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then necessarily sets the size of the vortex core. On the BCS-side, however, there are

two length scales at zero temperature, the Fermi wavelength oc 1/kF and the Pippard

or BCS coherence length 0o = hVF/7rA > 1/kF. The vortex profile should show

variation on the scale of ýo and oscillations on the scale of the Fermi wavelength. To

complicate things further, the vortex core size should also depend on temperature

(the Kramer and Pesch effect) [143, 109, 116]. Furthermore, the density depletion

due to the vortex core is strongly reduced when tuning the interaction towards the

BCS-side [41, 134, 158, 219, 56]. One can relate this effect to the presence of quasi-

particle bound states inside the vortex core [45, 219, 56]. Preparing imbalanced Fermi

mixtures might allow the direct observation of these bound states as locations where

the majority atoms reside preferentially [242].

In all of the above examples, we could be guided either by intuition borrowed

from atomic BEC or from BCS superconductors. The last chapter of this thesis has

described arguably the first experiment where truly new questions were addressed,
that cannot be studied in this way in superconductors or other materials, namely

the study of fermionic superfluidity with imbalanced spin populations. Superfluidity

survived in a certain window of imbalance, a result that one could have guessed on

the molecular side of the resonance, but that is less trivial on the BCS-side. Quite

intriguing was the observation of direct signatures of the phase transition in the

density profile, without any magnetic field ramps. A remarkable result was that in

a resonantly interacting gas, superfluidity can be destroyed by a chemical potential

mismatch. The nature of this strongly interacting "normal" state (as it appears)

remains to be understood. Can it be described as a collection of quasi-particles

with effective mass? A recent Monte-Carlo study indicates this to be the case [153].

However, Monte-Carlo methods have their limits when dealing with unequal Fermi

mixtures because of the famous "sign-problem" in requiring the antisymmetry of the

many-body wavefunction. Experiments might be able to determine the full equation

of state for arbitrary density imbalance. An important question is whether a fermionic

superfluid in three dimensions can exist (at zero temperature) at unequal densities.

On the BEC-side, such a "magnetized" superfluid should clearly be observable. On

the BCS-side, calculations indicate the FFLO-state to be the ground state of the

system, in a certain window of parameters (see for example [65, 169, 221, 157]). The

question is whether this parameter regime translates into a large enough region in

real space for the novel state to be observable in experiments. As there is a multitude

of candidate FFLO-like states with crystal-like distribution of Cooper pair momenta,
it is not at all clear how such a state could be unambiguously observed.
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Finally, let me attempt to give a brief outlook as to where atomic physics can

help to answer burning questions in condensed matter, nuclear and astrophysics. As

both bosonic and fermionic superfluids are now available, these gases can be applied

to form model systems that simulate real materials. One of the most challenging

and important problems is that of High-Tc superconductors, specifically the ques-

tion whether d-wave Cooper pairs are contained in the Hubbard model, one of the

most promising candidate hamiltonians for High-Tc materials. Fermionic atoms with

repulsive interaction in optical lattices could potentially realize the Hubbard model.

One of the first signatures to look for will be anti-ferromagnetic ordering of spin-up

and spin-down atoms, a robust normal state one obtains when all lattice-sites are

singly occupied. Experiments are being set up to study this important topic.

An important future subject will be the study of strongly interacting quantum

mixtures of different atomic species. For example, a mixture of 6Li and 40K could

be used to observe fermionic superfluidity of unequal particles, with unequal masses.

This is yet another way to imbalance the chemical potentials of the two species,
qualitatively different from the population imbalance studied in the preceding chapter.

It will be intriguing to see how nature copes with this mass mismatch. One can go

further and dream about studying superfluids with three different atoms or spin states,

which would be a (simplified) analog of quark ("Color") superfluidity, where different

quarks with different Fermi momenta form superfluid pairs.

Furthermore, the use of interspecies Feshbach resonances, like the ones discovered

by our group [234], might provide a new road towards ultracold, heteronuclear ground

state molecules. Such molecules would have a large electric dipole moment, very

useful for a variety of applications. These range from measurements of fundamental

constants [142] to the use of dipolar molecules as q-bits in a quantum computer [77].

For many-body physics, ultracold dipolar molecules would open the door to the study

of quantum gases with strong anisotropic interactions [210].

About hundred years have passed since the first formation of a superfluid in 1908,

and the discovery of superconductivity in 1911. After the discovery of Bose-Einstein

condensation in dilute gases in 1995, atomic physics has been in fast-forward mode for

ten years to "catch up" with condensed matter physics. We appear to finally be in the

position to start solving open problems, using atoms, the building blocks of matter,

as model systems for real materials. With ever more experimental and theoretical

groups joining in for the excitement, we can look forward to new discoveries and

insights in the years ahead. The last four years were certainly a thrill for me.
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Appendix A

Spectroscopic Insensitivity to Cold

Collisions in a Two-State Mixture

of Fermions

This appendix contains a reprint of Ref. [266]: Martin W. Zwierlein, Zoran Hadz-

ibabic, Subhadeep Gupta, and Wolfgang Ketterle, Spectroscopic Insensitivity to Cold

Collisions in a Two-State Mixture of Fermions, Phys. Rev. Lett. 91, 250404 (2003).
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Spectroscopic Insensitivity to Cold Collisions in a Two-State Mixture of Fermions

Martin W. Zwierlein, Zoran Hadzibabic, Subhadeep Gupta, and Wolfgang Ketterle
Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, MIT1

Cambridge, Massachusetts 02139, USA
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We have experimentally demonstrated the absence of spectroscopic resonance shifts in a mixture of
two interacting Fermi gases. This result is linked to observations in an ultracold gas of thermal bosons.
There, the measured resonance shift due to interstate collisions is independent of the coherence in the
system, and twice that expected from the equilibrium energy splitting between the two internal states in
a fully decohered cloud. We give a simple theoretical explanation of these observations, which elucidates
the effect of coherent radiation on an incoherent mixture of atoms.

DOI: 10.1103/PhysRevLett.91.250404

The coherence properties of light and matter are in-
timately connected with the quantum statistics of the
constituent particles. One quantitative measure of the
coherence in a system is the two-particle correlation
function at zero distance, g(2), which measures the proba-
bility that two particles are simultaneously detected.
Intensity fluctuations in the incoherent light emitted by
a light bulb lead to photon "bunching," making this
probability twice higher than in the coherent light of a
laser. Identical fermions on the other hand exhibit "anti-
bunching," making such a probability zero.

Interactions in ultracold atomic gases crucially depend
on the value of g(2) [1]. The reason is that s-wave scatter-
ing relies on particles overlapping in real space. The
interaction energy in a many-body system is determined
by coherent collisions, for which the outgoing and the
incoming two-particle states are identical. Under this
constraint, the two colliding particles can at most do
two things-either preserve their momenta, or exchange
them. We can thus distinguish four cases: (i) Two identical
bosons in a thermal gas can collide in both ways, corre-
sponding to g(2) = 2. (ii) Two atoms in a Bose-Einstein
condensate (BEC) have the same momenta and cannot
undergo the exchange interaction. Here g(2) = 1. (iii) Two
distinguishable particles, fermions or bosons, also cannot
exchange their momenta because that would make the
outgoing state different from the incoming one. Again,
g(2) = 1. (iv) Two identical fermions cannot collide at all,
so g(2) = 0. In all cases, the mean-field energy of a par-
ticle with mass m is given by g(2)(4jrt 2/m)an, where a is
the s-wave scattering length, and n is the density of atoms
it interacts with.

Mean field energies and therefore g(2) can be measured
spectroscopically. In experiments on ultracold hydrogen,
mean-field shifts of the S-2S two-photon transition were
used to prove the existence of a BEC [2]. However,
quantitative interpretation of the shifts led to a vivid
theoretical discussion about the coherence related "fac-
tors of 2" [3-6]. More recently, Harber et aL performed
Ramsey spectroscopy in a two-component, thermal gas of

250404-1 0031-9007/03/91(25)/250404(4)$20.00

PACS numbers: 03.75.Ss, 05.30.Jp, 32.30.Bv, 34.20.Cf

87Rb bosons to measure g(2) in the interstate collisional
shift [7]. Their measurements yielded g(2) = 2, indepen-
dent of the degree of coherence between the two states.
The spectroscopic results thus seemed to correspond to
the case of all particles being in an identical coherent
superposition of the two internal states, even though the
binary mixture was partially decohered and should have
had a mean-field energy corresponding to I < g(2) < 2.
The authors commented on this mystery [8]: "it is a
pleasure to note that a two-level system can still yield
surprises, 75 years after the advent of quantum mechan-
ics." The mystery can be formally resolved using a quan-
tum Boltzmann equation [9-13].

Here, we experimentally address the relation between
coherence and spectroscopic measurements in a binary
mixture of ultracold fermions. We demonstrate that shifts
of spectroscopic lines are absent even in a fully decohered
binary mixture, in which the particles are distinguish-
able, and the many-body mean-field energy in the system
has developed. We theoretically show that this is a direct
consequence of the coherent nature of the radiofrequency
(rf) excitation, which, in general, leads to a final state
with g(2) different from the initial state.

Our calculation intuitively explains both our results for
fermions, and the results for bosons of Ref. [7].

In a recent paper [14], we demonstrated the absence of
mean-field "clock shifts" in a coherent two-state super-
position of 6Li fermions. In this case, rf spectroscopy was
performed on a gas prepared purely in one internal state.
Since an rf pulse acts as a rotation in the two-state Hilbert
space, all the atoms stayed in an identical (superposition)
state and could not interact. As long as the fermionic
atoms were indistinguishable, g(2) = 0, and the resonance
was thus found to be unperturbed at vo = (E12/h), where
E 12 is the energy difference between the internal states I1)
and 12).

However, once decoherence sets in, for example due to
inhomogeneous magnetic fields across the cloud, the spa-
tial overlap between atoms in different states grows and
mean-field energy density builds up:

@ 2003 The American Physical Society 250404-1
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Sint(r) = g(2)V12nI (r) n2 (r), V12 = a 12, (1)m

where nl and n2 are the local densities of particles in
states I1) and 12), and a12 is the interstate s-wave scatter-
ing length. Here decoherence means that off-diagonal
matrix elements of the density matrix have vanished
locally. As a result, everywhere in the sample, atoms
are no longer in one pure state, but occupy two orthogonal
states, and s-wave collisions are no longer suppressed by
the Pauli principle. In a fully decohered cloud, we have a
binary mixture of two distinct species of atoms, with a
mean-field energy density Lint = V12nln 2 . This interac-
tion changes the equilibrium energy level of atoms in
state I1) (12)) according to 485/1,2 = V12n2,1. The differ-
ence in equilibrium mean-field energy of the two states
is then

AEint = 1/-2 - 51A = V 12(nl - n2). (2)

This suggests [7,8,14] that in a decohering sample, the
resonant frequency for population transfer between the
two states gradually changes from Pl2 = 0 to P12 =

0 + AEint. Here, we show both experimentally and
theoretically that this conclusion is wrong, and that the
spectroscopic resonance frequency vl2 is always the un-
perturbed frequency v0.

Our experimental setup was described in [14,15].
About 107 fermionic 6Li atoms were confined in an
optical dipole trap at a temperature of 35 p.K. The two-
level system under consideration is formed by the two
lowest ground state hyperfine levels, I1) and 12), corre-
sponding to IF, mF) = 11/2, 1/2) and 11/2, -1/2) in the
low field basis, respectively. A dc magnetic field of B =

_80

a-

~ 60-

1 40-

Ci: 40

20-

CL

320 G was applied to the sample in order to tune the
interstate scattering length a12 to a large value of
-- 300ao, where ao is the Bohr radius [14].

We created a superposition of atoms in states I1) and 12)
using a nonadiabatic rf sweep around the energy splitting
of 74 MHz. As the sample decohered, efficient evapora-
tive cooling set in, confirming a large elastic scattering
length. After 1 sec, we were left with a fully decohered
mixture at a mean density n = 5 x 1013 cm - 3 . The rate
of the rf sweep was adjisted so that after decoherence and
cooling, 80% of the atoms were in state 12). The mean-
field interaction should thus have increased the energy
splitting of the two levels by hsv = .2 -2 •1/ =

Vl2(n 1 - n2) = h X 10 kHz. Our experiments involving
a third state [14] have confirmed the presence of such
energy shifts, and prove that full decoherence has been
reached.

Rabi spectroscopy in the interacting binary mixture
was performed by applying 200 Is rf pulses of different
frequencies, and recording the final populations in the
two states by simultaneous absorption imaging (Fig. 1).
In order to eliminate the systematic uncertainty in the
value of o0, we performed a second experiment with the
population ratios of states I1) and 12) reversed. According
to Eq. (2), one would expect an opposite shift of the
resonance.

Within our precision, no interaction shift of the reso-
nance frequency was observed. Comparing the expected
difference in mean-field shifts for the two experiments,
26v = 20 kHz, with the measured line separation of
(34 _ 146) Hz, we arrive at an apparent value for g(2) =
0.002(7). This demonstrates the universal absence of a
resonance shift in a very cold two-level Fermi gas, inde-
pendent of the coherence in the system.

Evidently, rf spectroscopy does not measure the ex-
pected difference in thermodynamic chemical potentials
for the two states. Experiments with thermal bosons have
posed a similar puzzle [7]. Here we explain that this is a

a) 12)

-5 0
Frequency - 74,159.672 kHz

FIG. 1. Absence of mean-field shift of an rf transition in a
binary Fermi system. The resonance curves were measured for
fully decohered (80/20)% two-state mixtures of fermions. The
measured frequency difference between the two lines is (34 ±
146) Hz, even though Eq. (2) would predict a splitting of
20 kHz.

FIG. 2. Bloch sphere representation of rf transitions. (a) An rf
pulse rotates a pure state A into B. The superposition state
decoheres into a "ring" distribution, represented by its aver-
age, C. (b) A second rf pulse transforms the fully decohered
state C into a partially coherent state D. The final state E is
reached only after further decoherence. (c) Transfers A - B
and C -- D are coherent and reversible. B -* C and D -- E are
irreversible.
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direct consequence of the coherent nature of the rf
excitation.

In Fig. 2, the average properties of the many-body state
at a specific point r in the trap are described by the three
coordinates of the local spin-1/2 Bloch vector m(r) =
mz(r), z + mL(r). In the following, we omit the label r.
m, = [(n2 - n1)/2] represents the population difference
in the two states, whereas the transverse component mL is
a measure of the coherence in the system. The length of
the Bloch vector measures the purity of the average state
and hence the entropy of the system. Fully decohered
statistical mixtures do not have off-diagonal matrix ele-
ments of the density matrix and are represented by vec-
tors with m1 = 0, with state A being the special case of a
pure state. In Fig. 2(a), state B is created by applying an rf
pulse on a pure sample A. In this case, there is no inter-
action energy in the system during the rf pulse, and no
frequency shift is expected [14]. State C is formed
through subsequent decoherence of state B. States B and
C have the same number of particles in I1) and 12), but in
C the mean-field has fully developed.

Our experiment is performed on a C-like state
[Fig. 2(b)]. Here we explain why Eq. (2) still does not
give the correct resonance frequency for an infinitesimal
transfer of atoms between 11) and 12). The key point is that
even though the sample is fully decohered, the applied rf
pulse reintroduces coherence into the system. According
to Eq. (6) below, this will change the value of g(2). Let us
consider two fully decohered states, C and E. Equation (2)
correctly gives the energy of the transformation C -- E.
However, these two states have different entropies, as
indicated by Bloch vectors of different lengths. An rf
pulse is a unitary transformation of the system, and
must preserve entropy. The true effect of the rf pulse is
thus to change the relative populations of Il) and 12) by
tilting the Bloch vector away from the z axis, into state D.
It is the energy of this transformation, C -- D, that needs
to be calculated in order to find the correct resonant rf
frequency.

In the case of fermions with short-range (delta func-
tion) interactions, we can prove very generally that the
resonance frequency will always be vo, by showing that
the interaction Hamiltonian is invariant under rotations
on the Bloch sphere. The interstate s-wave interaction at
point r is described by the second-quantized Hamiltonian
density

Hint(r) = Vl201(r) •(r)t2(r)0I (r). (3)

Under a general rotation, described by polar angles 0, 0,
the field operators 0,12 transform according to:

0t. = cos e-iI/2/t + sin eik/21 2,
(4)

t = - sin0e-i/2uf + COS ei0/2
20, 2 1h2 02.

Using the standard fermionic anticommutation relations

(01 022 = - l02 01, 010 1 = 0, etc.), it is easy to show that

Hint- = V12•to, 12o,64F20,-110,- = Hint-

We therefore see that an rf-induced rotation on the Bloch
sphere commutes with the interaction Hamiltonian, and
hence does not change the energy of the many-body state.
It is then obvious that the resonant frequency will always
be vo, independent of the coherence of the system.

We now present a more general calculation of the
mean-field frequency shifts, which holds for both fermi-
ons and bosons. To reduce complexity and concentrate on
the only controversial case of interstate interactions, we
consider a fictitious boson with no intrastate interactions
(all = a22 = 0). The (local) mean-field expectation
value of the Hamiltonian density in Eq. (3) is [16]

Eint(r) = (Hint)= Vl2(nln 2 + en12n21)

g( 2) = 1 + 61l2n21,
njn2

where n1 = ('/lt q1) and n2 = (/t q/2) are the local
densities in the two states, we have introduced "coher-
ences" n1 2 = (i/t q2) and n21 = (q2t 2j1), and e = + 1 for
bosonsfermions. In a fully coherent sample n 12n21 =
nin2 and g(2) = 1 + e. As decoherence sets in, g(2) in-
creases (decreases) from 0 (2) to 1 for fermions (bosons).
For the most general case of a partially decohered sample,
we can rewrite Eq. (6) in terms of the (local) Bloch
vector, using nl, 2 = 1 2 mz, n 12 = mx + i my = n21, and
nl2= m + 2 = m, where n is the total particle
density. This gives

n2

Eint = V12 - + eVl21ml 2 - (1 + E)V 12m2. (7)

Two samples with the same numbers of atoms in states
I1) and 12), but different levels of coherence, have the
same mZ, but different ImlI [e.g., states D and E in
Fig. 2(b)]. Again we see that two such samples indeed
have different interaction energies.

Now, let us evaluate the effect of coherence on the
resonant rf frequency. A coherent rf excitation preserves
entropy (Iml = const), and the total density n. In an
infinitesimal tilt of the Bloch vector, the density of atoms
transferred from 11) to 12) is dn2 = -dn I = dmz.
Therefore, the change of interaction energy per trans-
ferred particle, and thus the shift in the resonant fre-
quency A ', comes out to be

I 8Eint I10int - (1 + E)V,2 (nl-n 2). (8)
h amz n,lml h

In analogy with a spinning top which precesses in
the gravitational field, the resonant frequency for an
infinitesimal tilt of the Bloch vector is also equal to
the frequency of its free precession. In the traditional
language of atomic physics, this analogy jist reiterates
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rermions II I1) Bosons

FIG. 3. Mean-field represented as effective magnetic field.
(a) Fermions: The exchange and direct interaction add up to
form a magnetic field aligned with the average spin (V12 < 0 in
the drawing). The net torque vanishes and the Bloch vector m
precesses at the unperturbed frequency v0 . (b) Bosons: The
exchange interaction has opposite sign to that in fermions. It
exerts a torque on the average spin equal to the torque induced
by the direct interaction, as can be seen by comparing the two
cross products with m. The Bloch vector thus precesses at vo
plus twice the frequency shift due to direct interaction.

that Rabi [14] and Ramsey [7] spectroscopy measure the
same characteristic frequency of the system. The striking
result is that in contrast to the interaction energy [Eqs. (6)
and (7)], the precession of the Bloch vector, or equiva-
lently the rf frequency shift [Eq. (8)], does not depend on
the level of coherence in the sample. Remarkably, the final
state may have a value of g(2) different from the initial
state, such that the energy difference per transferred
particle is independent of the initial g(2). Equation (8)
explains both our measurements with fermions, and the
experiment with thermal bosons of Ref. [7].

In order to further elucidate the role of coherences
in the precession of the Bloch vector, we employ the
interpretation of the mean-field energy as the interac-
tion of the average spin with an effective magnetic
field [12,13]. Using Eq. (7), we obtain gint = const -

1Beff m [17] with

Bef f = 2Vl2(mzi z - Em/). (9)

In this picture, the precession of the spin due to interac-
tions is driven by the torque Beff X m. The magnetic field
along the z axis is induced by the direct interaction, and
has the same sign for fermions and bosons (Fig. 3). The
transverse magnetic field comes from the exchange inter-
action, and has opposite signs for fermions and bosons.
For fermions, Beff is parallel to m [Eq. (9)] and hence
does not cause any precession. Equivalently, the direct
and exchange interaction exert torques equal and opposite
to each other. For bosons, the two contributions add up to
yield exactly twice the precession frequency given by the
direct interaction alone. During decoherence, the exerted
torque shrinks in proportion to the decaying transverse
spin. Therefore, the precession frequency remains con-
stant, no matter how small the coherences are.

r

250404-4

In conclusion, we have demonstrated the absence of the
mean-field shift of rf transitions in a fully decohered,
interacting binary mixture of fermions. This was ex-
plained by proving the invariance of the interaction en-
ergy under coherent Hilbert space rotations. This result is
relevant for the potential use of a fermionic atom supply-
ing the frequency standard in an atomic or optical clock,
since it implies a robust elimination of the systematic
errors due to density dependent frequency shifts.
Previously, the absence of such clock shifts was explained
by the absence of mean-field energy in a purely coherent
superposition state [14]. Now we have shown that there is
no spectroscopic shift even after decoherence has led to
measurable mean-field energies. Further, we have pre-
sented a simple theoretical framework for calculating
the precession frequency of the Bloch vector which de-
scribes an arbitrary spin state of either fermions or bo-
sons. This resolves "the mystery of the Ramsey fringe
that did not chirp" [8] with a simple and intuitive picture.
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the NSF, ONR, ARO, and NASA.
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Observation of Bose-Einstein Condensation of Molecules

M.W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. E Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle
Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, MIT,

Cambridge, Massachusetts 02139, USA
(Received 27 November 2003; published 15 December 2003)

We have observed Bose-Einstein condensation of molecules. When a spin mixture of fermionic 6Li
atoms was evaporatively cooled in an optical dipole trap near a Feshbach resonance, the atomic gas was
converted into 6Li2 molecules. Below 600 nK, a Bose-Einstein condensate of up to 900 000 molecules
was identified by the sudden onset of a bimodal density distribution. This condensate realizes the limit
of tightly bound fermion pairs in the crossover
condensation.

DOI: 10.1103/PhysRevLett91.250401

Over the past few years, many different approaches
have been used to cool and trap molecules [1,2]. One
major goal has been the creation of molecular Bose-
Einstein condensates, which could lead to advances in
molecular spectroscopy, studies of collisions, and preci-
sion tests of fundamental symmetries.

Recently, a new technique for creating ultracold mole-
cules led to major advances towards molecular Bose-
Einstein condensation (BEC). Molecules were produced
from ultracold atoms [3-9] near a Feshbach resonance
[10], where a molecular state is resonant with the atomic
state and molecules can form without heat release. These
molecules are highly vibrationally excited and would
usually undergo fast decay. However, in the case of fer-
mionic atoms the molecules showed very long lifetimes
[7-9,11]. This has been attributed to Pauli suppression of
the vibrational quenching process, which couples a very
weakly bound molecular state to much more tightly
bound lower lying vibrational states [12]. We have
now been able to cool such molecules to Bose-Einstein
condensation.

This Bose-Einstein condensate represents one extreme
of the crossover from Bose-Einstein condensation of
tightly bound pairs (molecules) to BCS superfluidity of
Cooper pairs, where fermions form delocalized pairs in
momentum space [13].

In most of the recent experiments, molecules were
formed by sweeping an external magnetic field through
the Feshbach resonance, adiabatically converting atoms
to molecules [3-6,8]. This atom-molecule coupling is a
coherent two-body process [14].

In the case of 6Li, experimental work indicated [7,9]
and theoretical work predicted [15,16] that cooling the
atoms at constant magnetic field would create an atom-
molecule mixture in thermal equilibrium. In this case, the
atoms and molecules are coupled by three-body recom-
bination [17]. For temperatures lower than the binding
energy of the molecular state, an almost pure molecular
gas should form, and at even lower temperatures, a mo-
lecular Bose-Einstein condensate. This work demon-
strates that this surprisingly simple method to create

between BCS superfluidity and Bose-Einstein

PACS numbers: 03.75.Ss, 05.30.Jp

molecular condensates works. The success of this ap-
proach depends on a very favorable ratio of collisional
rates for formation and decay of molecules which may be
unique to 6Li.

The goal of molecular BEC was reached in several
steps. Using Feshbach resonances, atomic condensates
were put into an atom-molecule superposition state [2].
Pure molecular gases made of bosonic atoms were cre-
ated close to [6] or clearly in [4] the quantum-degenerate
regime, but the effective heating time (of about 2 ms in
Ref. [4]) was too short to reach equilibrium. Earlier this
month, while this work was in progress, two papers were
submitted. Reference [18] observed a quantum-degener-
ate gas of potassium molecules with an effective lifetime
of 5 to 10 ms, sufficiently long to reach equilibrium in
two dimensions and to form a quasi- or nonequilibrium
condensate [19]. Reference [20] provided indirect evi-
dence for a long-lived condensate of lithium molecules
[21]. Here we observe the formation of a condensate
by evaporative cooling of a molecular gas close to
equilibrium.

The basic scheme of the experiment is similar to our
earlier work when we identified two Feshbach resonances
in lithium by monitoring the loss of trapped atoms due to
three-body recombination as a function of the external
magnetic field [22]. This process leads to ultracold mole-
cules in the highest vibrational state below the continuum.
However, no attempt was made to detect these molecules
because until very recently [7,9] they were believed to
decay rapidly.

Our experimental setup was described in Refs. [22,23].
After laser cooling and sympathetic cooling with sodium
atoms in a magnetic trap, 35 X 106 lithium atoms in the
IF, mF) = 13/2, 3/2) state were transferred into an opti-
cal trap formed by a single far detuned laser beam with up
to 7 Wof power at 1064 nm. The beam had a 20 Am waist
and was aligned horizontally along the symmetry axis of
the magnetic trap. This generated a 650 /K deep trapping
potential with 15 kHz radial and 175 Hz axial trapping
frequencies. They were determined with an accuracy
of 10% by exciting dipolar oscillations with an atomic
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sodium condensate and scaling them to lithium atoms
using the ratios of polarizabilities and masses.

The 6Li atoms were then transferred to the lowest en-
ergy state 11), using an adiabatic frequency sweep around
the lithium hyperfine splitting of 228 MHz. dc magnetic
fields of up to 1025 G could be applied, a range encom-
passing the I1) - 12) Feshbach resonance [22,24,25],
where 12) denotes the second lowest hyperfine state of 6Li.

Most of our experiments were performed at a magnetic
field of 770 G. This was below but still within the width of
the broad Feshbach resonance. Here the atomic scattering
length is positive corresponding to a stable weakly bound
molecular state. Using rf-induced transitions near
80 MHz, an equal mixture of states I1) and 12) was
prepared with a ratio of temperature T to Fermi tempera-
ture TF around 0.3. The sample was cooled in 350 ms by
ramping down the laser power of the optical trap to
typically 10- 3 of the maximum power resulting in a
calculated trap depth for unbound atoms of 650 nK. The
weakly bound molecules have twice the atomic polar-
izability. They experience the same trap frequencies and
twice the trap depth as the lithium atoms. Therefore, we
expect mainly atoms to be evaporated.

Atoms and molecules were detected by absorption
imaging after ballistic expansion times of 1 to 30 ms.
During the time of flight, the magnetic field was suddenly
switched off, and atoms in both states were imaged
simultaneously since the two optical transition frequen-
cies are equal at zero field. Molecules were detected by
first dissociating them by sweeping the magnetic field
across the Feshbach resonance up to 925 G and then by
imaging the resulting atoms at zero field. With the
Feshbach sweep, molecules and residual atoms were im-
aged together. Without it, only the unbound atoms were
detected after switching off the magnetic field. We have
found that during the initial phase of the evaporative
cooling the atomic population dominated. A significant
molecule fraction formed around T - 2 AK, and in the
final phase of the cooling, no atoms could be discerned.
The absorption images and profiles shown in Figs. 1 and 2
therefore represent purely molecular column densities.

When the laser power of the optical dipole trap was
ramped down, the shrinking size of the cloud in absorp-
tion imaging signaled lower temperatures. Very abruptly,
the smooth distribution changed to a bimodal distribu-
tionthe well-known Amoking gun'of Bose-Einstein
condensation [26,27] (Figs. 1 and 2). Because of a slight
asymmetry of our trapping potential, the centers of the
condensate and of the thermal cloud were shifted.

The phase transition could be identified by plotting the
effective area of the cloud vs laser power P [Fig. 3(a)]. At
the phase transition, there was an abrupt change in slope,
whereas the temperature changed smoothly. For a classi-
cal gas, the area depends only on temperature and trap
frequencies, which vary smoothly with P.

hntitative information on temperature, total atom
number, and condensate fraction was obtained by fitting

250401-2

FIG. 1. Observation of Bose-Einstein condensation in a mo-
lecular gas. Shown are three single-shot absorption images
after 6 ms of ballistic expansion for progressively lower
temperatures (left to right). The appearance of a dark spot
marks the onset of BEC. The field of view for each image is
1.4 x 1.4 mm2 . The long axis of the optical dipole trap was
vertical in the image.

axial profiles (such as in Fig. 2) using a bimodal distri-
bution: a Bose-Einstein distribution for the broad normal
component and a Thomas-Fermi distribution for the nar-
row (condensate) component. Condensates containing up
to 900 000 molecules and condensate fractions of up to
75% were obtained. The onset of BEC was observed at a
temperature of 600 nK with 1.4 X 106 molecules. For an
ideal gas with this number of molecules, the predicted
BEC transition temperature Tc = 0.94 ti N/ 3/kB is
650 nK, where & denotes the geometric mean of the three
trapping frequencies. This agreement is fortuitous, given
the uncertainty in the trap frequencies at low power [28].

The cooldown is characterized in Fig. 3. Axial tem-
peratures were obtained from the spatial extent of the
thermal cloud (the size stayed almost constant during the
time of flight). The axial temperatures are in arbitrary

lx10o

Position [ mm ]

FIG. 2. Bimodality in the density distribution of a molecular
gas. Shown are radially averaged profiles through absorption
images such as those in Fig. 1, as a function of final laser power.
The dashed lines are fits to the thermal clouds.
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FIG. 3. Characterization of the phase transition. (a) The ef-
fective area is the integrated optical density divided by the
peak optical density of the absorption images. The §udden
shrinking'of the area coincides with the appearance of a
bimodal density distribution and indicates the BEC phase
transition. (b) The radial (squares) and axial (triangles) tem-
peratures varied smoothly during the evaporation. The axial
temperatures are in arbitrary units. (c) Condensate fraction.
Below the critical temperature, the condensate fraction in-
creased from zero to up to 75%.

units [28]. Absolute radial temperatures were obtained
from the ballistic expansion. All of our temperature
measurements are consistent with equilibration in three
dimensions.

From the expansion of the largest condensates, we
determined the mean-field energy gu to be 300 ±
100 nK. The peak density n of the condensate was ob-
tained from the fit to be 7 1013 cm - 3. The relation At =
4rih2an/m, where m is the molecular mass, implies a
molecular scattering length of a = 8 nm with an uncer-
tainty of ± 60%. These uncertainties were estimated from
the discrepancy of fits done at different times of flight
which were not fully consistent. This might reflect asym-
metries and anharmonicities of the trapping potential
which were not characterized.

It was predicted that the molecular scattering length a
is 0.6 times the atomic scattering length a, [12]. At our
magnetic field of 770 G, the predicted value of aa lies
between 140 and 340 nm depending on the uncertain
position of the Feshbach resonance between 810 and
850 G [25]. The discrepancy between the predicted and
observed values of a needs further study.

The molecular gas decayed faster than extrapolated
from Refs. [7,9]. Just above Tc, the thermal cloud had a
peak density of 1 X 1013 cm - 3 and an initial decay time
of about I s. Condensate numbers decayed to one third
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after a hold time of 30 ms. Those short lifetimes may
reflect leakage or heating in our optical dipole trap at low
laser power. In the present experiments, the laser power
was not stabilized. The lifetime of the thermal gas is
much longer than estimated values of the axial trap
period of 100 ms and of the collision time of 2 ms, which
should lead to full equilibrium. Depending on how the
condensate grew during the evaporative cooling, its life-
time may have been too short to develop phase coherence
in the axial direction [19].

Using the experimentally determined scattering
length, we find that the molecular cloud at Tc has a ratio
of mean-free path to radius close to 10 and should show
only negligible anisotropy during ballistic expansion
[19]. Therefore, the onset of strongly anisotropic expan-
sion is a distinguishing feature of the molecular conden-
sate (Fig. 1).

The 6Li2 molecules are extremely weakly bound. The
molecular binding energy depends on the atomic scatter-
ing length aa as i2/ma 2 [29]. For an assumed aa
200 nm the binding energy is 2 /K. The molecular state
which causes the Feshbach resonance is the X 1'I, v =
38 state. This state is tightly bound, but near the Feshbach
resonance it is strongly mixed with the state of the collid-
ing atoms, and the molecular wave function is spread out
over an extension of order aa/2 [29].

Direct evidence for the large size of the molecules was
obtained by resonant imaging during ballistic expansion
at high magnetic fields. At 770 G, molecules could be
directly imaged using light in resonance with the atoms at
the same field. The absorption was comparable to the
zero-field absorption signal obtained after dissociating
the molecules. This shows that the molecular bond is so
weak that the absorption line is shifted from the atomic
line by less than a linewidth F. The molecules are ex-
pected to absorb most strongly near the outer turning
point R. The excited state potential is split by the resonant
van der Waals interaction {rhF(A/R)3, where A is
the resonant wavelength divided by 27r and { is
+3/4, ±3/2 for different excited molecular states. The
observed absorption signal implies a molecular size R >
100 nm. It is this huge size compared with the much
smaller size of the molecule in lower vibrational states
which, together with Fermi statistics, inhibits vibrational
relaxation and leads to the long lifetimes [12].

Condensates were observed after evaporative cooling at
various magnetic fields between 720 and 820 G. At the
lower magnetic fields, the condensate expanded more
slowly, consistent with the predictions of a smaller re-
pulsive mean-field energy.

In future work, we plan to use the molecular BEC as
the starting point for studying the BEC-BCS crossover
[13]. By ramping up the magnetic field across the
Feshbach resonance, the molecules are dissociated into
fermionic atoms and the interaction between the atoms
changes from repulsive to attractive, allowing for the
formation of Cooper pairs. Starting with an almost pure
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condensate and conserving entropy, a Fermi sea should
form with temperatures well within the range where BCS
type superfluidity has been predicted [30,31].

In conclusion, we have realized Bose-Einstein conden-
sates of up to 900 000 molecules by evaporative cooling
of a spin mixture of fermionic lithium atoms.

This work was supported by the NSF, ONR, ARO, and
NASA. We thank A. Leanhardt for helpful comments.
S. Raupach is grateful to the Dr. Jiirgen Ulderup founda-
tion for financial support.

Note addedkn- an optical trap with a slightly en-
larged beam waist, we were recently able to hold molecu-
lar condensates for up to 400 ms (or three axial trapping
periods) which should result in 3D equilibration. The l/e
decay time was about 200 ms.
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Condensation of Pairs of Fermionic Atoms near a Feshbach Resonance

M.W Zwierlein, C. A. Stan, C. H. Schunck, S. M. F Raupach, A. J. Kerman, and W. Ketterle
Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, MIT,
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(Received 1 March 2004; published 25 March 2004)

We have observed Bose-Einstein condensation of pairs of fermionic atoms in an ultracold 6Li gas at
magnetic fields above a Feshbach resonance, where no stable 6Li2 molecules would exist in vacuum. We
accurately determined the position of the resonance to be 822 ± 3 G. Molecular Bose-Einstein
condensates were detected after a fast magnetic field ramp, which transferred pairs of atoms at close
distances into bound molecules. Condensate fractions as high as 80% were obtained. The large
condensate fractions are interpreted in terms of preexisting molecules which are quasistable even
above the two-body Feshbach resonance due to the presence of the degenerate Fermi gas.

DOI: 10.1103/PhysRevLett92.120403

Ultracold atomic gases have become a medium to
realize novel phenomena in condensed matter physics
and test many-body theories in new regimes. The particle
densities are 108 times lower than in solids, but at tem-
peratures in the nanokelvin range, which are now rou-
tinely achieved, interactions and correlations become
important. Of particular interest are pairing phenomena
in fermionic gases, which have direct analogies to super-
conductivity [1].

The interactions which drive the pairing in these gases
can be controlled using a Feshbach resonance [2], in
which a molecular level is Zeeman tuned through zero
binding energy using an external magnetic field. This
provides an opportunity to experimentally probe what is
known as the BCS-BEC crossover; as the strength of the
effective attractive interaction between particles is in-
creased a continuous transition from condensation of
delocalized Cooper pairs to condensation of tightly
bound bosonic molecules is predicted [3-6]. Whereas in
the BCS limit the pairing is a strictly many-body effect
[7], in the BEC limit a pair of fermions is bound even as
an isolated molecule. A novel form of high-temperature
superfluidity has been predicted to emerge in the cross-
over region [3-6]. Until recently, the observation of con-
densation phenomena in fermionic atomic gases was
restricted to the extreme BEC limit, where several groups
have observed Bose-Einstein condensation of diatomic
molecules [8-11].

An important step was recently reported, in which
condensation of atomic 40K fermion pairs was observed
on the BCS side of a Feshbach resonance [12]. It was
argued that those pairs were not bound into molecules, but
merely moved together in a correlated fashion, similar to
Cooper pairs of electrons in a superconductor [13].
However, the exact nature of these pairs remained unclear.
In this Letter, we apply similar techniques to 6Li atoms,
which have very different collisional properties [14], and
observe the pair condensation phenomenon above a
Feshbach resonance. In contrast to the previous work,

120403-1 0031-9007/04/92(12)/120403(4)$22.50
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where at most 15% of the atom pairs were condensed
[12], condensate fractions of up to 80% were observed. We
argue that such a high condensate fraction is unlikely for
pairs which are long range, but rather it indicates a
condensate of short-range atom pairs which are essen-
tially molecular in character even on the BCS side of the
resonance.

A simple argument supports this possibility. In the
basic picture of a Feshbach resonance, a molecular state
above the dissociation threshold has a finite lifetime,
which becomes shorter as the energy of the state in-
creases, as recently observed [15]. In the presence of the
Fermi sea, its lifetime will be increased due to Pauli
blocking. The molecular level will be populated until its
energy becomes larger than twice the Fermi energy cor-
responding to the total number of atoms. The BCS-BEC
crossover is expected to occur at this point, and not at the
location of the two-body Feshbach resonance [5,6].

The basic setup of our experiment was described in
[10]. By sympathetic cooling of 6Li atoms with 23Na in a
magnetic trap, a degenerate gas of about 3 X 107 6Li
fermions at -0.3T/TF was created. After transfer into
an optical dipole trap (maximum power 9 W focused to
an e- 2 radius of 25 1/m), an equal mixture of atoms in the
lowest two hyperfine states 11) and 12) was prepared The
sample was evaporatively cooled at a magnetic field of
770 G using an exponential ramp-down (time scale -
400 ms) of the optical trap to a final laser power of
15 mW. This created essentially pure Bose-Einstein con-
densates of up to 3 x 106 6Li2 molecules. The observed
trap vibrational frequencies could be described by the
following expression: 'ad 115 Hz J_, va, 1.1 Hz
/P + 120B, where P is the optical power in mW, and B

is the magnetic field in kG. The latter dependence arises
from the residual axial curvature of the magnetic field.
Considerable improvements over our previous setup [10]
led to an improved e-' condensate lifetime of 10 s at
770 G. Moreover, within the experimental uncertainty
in the total number of molecules (-50%), mean-field

© 2004 The American Physical Society 120403-1
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measurements were consistent with a molecule-molecule
scattering length of 0.6a, where a is the atomic scattering
length [16,17].

Previously, the location of the 6Li Feshbach resonance
was determined either by observing a peak in the inelas-
tic loss [18] or the interaction energy of a I1) - 12) mix-
ture [19]. A more accurate determination can be made by
mapping out the onset of dissociation of the molecular
state [12,15]. After releasing an almost pure molecular
sample from the trap at 770 G, the magnetic field was
linearly ramped up in 10 ms to a variable value. During
that time, the particle density dropped by a factor of 1000.
If the field crossed the resonance, molecules dissociated
into atoms. These atoms were then imaged at zero field,
where the remaining molecules were not detected [10].
The Feshbach resonance appeared as a sharp onset in the
number of detected atoms (Fig. 1). The speed of the
downward ramp to zero field had to be chosen carefully.
Fast ramps could dissociate very weakly bound molecules
[20], such that the Feshbach resonance appeared system-
atically shifted to lower fields. For too slow a ramp-down,
on the other hand, we found that even for clouds as dilute
as -3 x 1010 cm- 3 molecules were recreated, lowering
the measured atomic fraction. However, when we varied
the ramp rate over more than 3 orders of magnitude, we
found a range of rates which gave identical thresholds at
822 ± 3 G (Fig. 1).

To produce samples in the crossover region, we started
with an essentially pure Bose-Einstein condensate of
molecules formed at 770 G. The laser power of the optical
trap was increased in 500 ms from 15 to 25 mW in order
to accommodate larger Fermi clouds above the resonance.
In some experiments, we used a deeper trap with up to
150 mWof power; the additional compression was carried
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out after ramping in 500 ms to 900 G to avoid enhanced
losses on the BEC side of the resonance. Once the final
trap depth was reached, the magnetic field was ramped in
500 ms to values between 650 and 1025 G. The adiaba-
ticity of this ramp was checked by ramping back to 770 G
and observing an identical density profile and condensate
fraction, similar to studies in Ref. [8]. At 1025 G, the total
peak density of the spin mixture in the deepest trap was
3 X 10'13 cm - 3, corresponding to a Fermi energy of
3.6 AK and inverse Fermi wave vector k' = 2000ao,
where ao denotes the Bohr radius.

To probe the gas, we released it from the trap, and after
a variable delay Td of usually 40 lus, applied a rapid
transfer technique [12]: the magnetic field was switched
off exponentially to zero with an initial slew rate of
30 G/lts, which adiabatically converted pairs of atoms
into deeply bound molecules at zero field [21]. As long as
no collisions or other dynamics occur during this ramp,
the velocity distribution of the resulting molecules then
constitutes a probe of the atom pairs' center-of-mass
motion before the measurement. After 3-6 ms time of
flight at zero field, we dissociated the molecules with a
3 ms field pulse to 900 G and imaged the resulting atoms
after 2 ms at zero field [10,22]. We could also selectively
detect any remaining atoms by omitting the dissociation
pulse, and we observed that for rd - 500 /s, less than
10% of the sample consisted of atoms, independent of the
initial magnetic field. At longer delay times, the atom-
molecule conversion became less efficient due to the
decreased density.

Typical absorption pictures of molecular clouds after
the rapid transfer ramp are shown in Fig. 2 for different
temperatures, clearly exhibiting a bimodal distribution.
This is evidence for condensation of pairs of 6Li atoms on
the BCS side of the Feshbach resonance. The condensate
fractions were extracted from images like these, using a
Gaussian fit function for the "thermal" part and a
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FIG. 1. Determination of the Feshbach resonance position.
Shown is the onset of molecule dissociation when the magnetic
field was slowly raised and then ramped down to zero field with
a variable rate: Using a switch-off of the power supply at an
initial rate of 30 G//Ls (crosses), a linear ramp to zero field of
100 G/ms (circles), a linear ramp for 16 ms at 12.5 G/ms,
followed by switch off (triangles). The identical threshold for
the two lowest ramp rates determines the resonance position to
be 822 ± 3 G, marked by an arrow.
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FIG. 2 (color online). Emergence of a Bose-Einstein conden-
sate of atom pairs as the temperature was lowered. Shown are
column densities (after 6 ms of time of flight) of the fermion
mixture after a rapid transfer ramp from 900 G for three
different initial temperatures T/TF - 0.2, 0.1 and 0.05, to-
gether with their axially integrated radial density profiles.
The dashed line is a Gaussian fit to the thermal component.
Condensate fractions are 0.0, 0.1, and 0.6. Each cloud consists
of about 2 X 106 molecules. The field of view is 3 X 3 mm.
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FIG. 3. Condensate fraction after the rapid transfer vs initial
magnetic field, for different hold times at that field in the
shallow trap (P = 25 mW). Crosses: 2 ms hold time, after
500 ms ramp to 1000 G and 4 ms ramp to the desired field;
squares and circles: 100 ms and 10 s hold time, after 500 ms
ramp from 770 G. The reduction of the condensate fraction for
long hold times far on the left side of the resonance is probably
due to the rapidly increasing inelastic losses for the more
tightly bound molecules [20,23]. The lower condensate fraction
at high field for long hold times is probably an effect of lower
density since the number of atoms had decayed by a factor of 4
without change in temperature.

Thomas-Fermi profile for the "condensate." Figures 3-5
show the observed condensate fraction as a function of
both magnetic field and temperature. The striking fea-
tures of these data are the high condensate fraction of
80% near resonance, and the persistence of large con-
densate fractions on the BCS side of the resonance all
the way to our maximum field of 1025 G. After 10 s
hold time, this value was still as high as 20%. These
observations were independent of whether the final mag-
netic field was approached starting with a Fermi sea or a
molecular condensate. Note that for our peak densities,
the strongly interacting region of kFlal > 1 extends from
710 G onward.

There is experimental evidence that the observed pair
condensates existed before the sweep and were not pro-
duced during the sweep by collisions. First, the observed
condensate fraction depended on the initial magnetic
field. Second, the condensate fraction did not change
when we varied the delay time rd (between release of
the atoms from the trap and the magnetic field ramp) from
0 to 200 /s, although the density of the cloud changed by
a factor of -4 [25]. However, we cannot rule out with
certainty that the momentum distribution of the pairs is
modified by collisions during the ramp [26]. At our high-
est densities, it takes about 4 /s to take the molecules
created during the ramp out of the strongly interacting
region (kFlal - 1). A classical gas at the Fermi tempera-
ture would have a unitarity limited collision time com-
parable to the inverse of the Fermi energy divided by A,
which is about 2 pAs. However, this may be affected by

120403-3

FIG. 4. Condensate fraction for different temperatures as a
function of magnetic field. The temperature of the molecular
cloud was varied by stopping the evaporative cooling earlier
and applying parametric heating before ramping to the final
magnetic field. Temperatures are parametrized by the molecu-
lar condensate fraction No/N at 820 G (open circles: 0.8; filled
circles: 0.58; open squares: 0.51; filled squares: 0.34; "+":
0.21; triangles: 0.08; "X": <0.01). The lowest temperature
was realized in the shallow trap (P = 25 mW); the higher
temperatures required a deeper trap (P = 150 mW).

Pauli blocking for the atoms and bosonic stimulation for
the molecules.

Assuming that collisions during the ramp can be ne-
glected, it is still crucial to ask what exactly happens
during the rapid transfer ramp, and what kind of pairs
would likely be detected. A reasonable assumption is that
atoms form molecules preferentially with their nearest
neighbor, independent of the center-of-mass velocity of
the pair. If, as our data show, a large fraction of the

o
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0.8
700 800 1 900 1000

Magnetic Field [G]

FIG. 5 (color online). Temperature and magnetic field ranges
over which pair condensation was observed (using the same
data as in Fig. 4). The right axis shows the range in T/TF
(measured at 1025 G) which was covered. For high degenera-
cies, fitting T/TF was less reliable and we regard the conden-
sate fraction as a superior "thermometer." Note that for an
isentropic crossover from a BEC to a Fermi sea, T/TF is
approximately linearly related to the condensate fraction on
the BEC side [24]. For our maximum densities the region where
kFlal - 1 extends from about 710 G onward.
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detected molecules are in a zero-momentum state after
the fast transfer, this means that nearest neighbors had
opposite momenta. If the distance between the fermions
with opposite momenta making up each pair were com-
parable to or larger than the interatomic distance (as in
long-range Cooper pairs) one would not expect to find
high condensate fractions; on the contrary, the transfer
into a tightly bound molecular state would randomly pick
one of the nearest neighbors, resulting in a thermal mole-
cule. We regard our observed high condensate fractions as
evidence for the existence of condensed atomic pairs
above the Feshbach resonance, which are smaller in size
than the interatomic distance and, therefore, molecular in
character. Their stability may be affected by Pauli block-
ing and mean-field effects, but their binding should be a
two-body effect and not a many-body effect as in the case
of Cooper pairs.

In conclusion, we have observed 6Li2 molecular Bose-
Einstein condensates after a fast downward magnetic
field ramp starting with equilibrium samples at fields
on either side of the broad 6Li Feshbach resonance.
Since there are no truly bound molecular states above
the resonance, we tentatively interpret our results as a
Bose-Einstein condensate of pairs of atoms which are
molecular in character and stabilized by the existence
of the Fermi sea. This condensate would drain particles
from the Fermi sea and lead to a reduced atomic Fermi
energy roughly equal to half the energy of the molecular
level [5,6]. Indeed, both in Ref. [8] and in the present
work, a reduction in the size of the cloud was observed as
the Feshbach resonance was approached from above,
which may be due to this effect. In agreement with
theoretical predictions [6] we have observed pair conden-
sation in the regime where T/TF < 0.2 and kFjal > 1
(Fig. 5). The exact nature of the atom pairs remains to
be elucidated; they could be related to virtual states or
scattering resonances in the continuum; they may turn
out to be the tight-binding limit of Cooper pairs. It is also
possible that the pair condensate is a superposition state
of molecules and Cooper pairs [4-6]. We regard the
characterizing feature of the BCS-BEC crossover a quali-
tative change of the pairing phenomenon which has not
yet been observed.
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Feshbach resonances in 6Li were experimentally studied and theoretically analyzed. In addition to two
previously known s-wave resonances, three p-wave resonances were found. Four of these resonances are
narrow and yield a precise value of the singlet scattering length. The position of the broad s-wave resonance
near 83 mT is mostly sensitive to the triplet potential. It was previously determined in a molecule-dissociation
experiment for which we, here, discuss systematic shifts.
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Interactions in ultracold atomic gases can be magnetically
tuned using Feshbach resonances [1]. A Feshbach resonance
occurs when the energy of two colliding atoms is nearly
degenerate to the energy of a bound molecular state. Tunable
interactions have been used to explore novel phenomena in
collisional and many-body physics. Recently, Feshbach reso-
nances have been used to control pairing processes in ultra-
cold fermionic gases. This led to the achievement of Bose-
Einstein condensation (BEC) of molecules in '4K [2] and 6Li
[3-5] and to the first studies of the BEC-BCS crossover, the
continuous transition of fermion pairs from weakly bound
molecules to long-range Cooper pairs [5-11].

Most experiments in 6Li have been carried out in the vi-
cinity of the s-wave Feshbach resonance near 830 G
[5,7-11] (1 G= 10- 4 T). The quantitative interpretation of
these experiments and the characterization of the BEC-BCS
crossover require a precise knowledge of the resonance lo-
cation. However, its determination is not trivial since the
resonance width is extremely large and the line shape is
strongly affected by many-body effects. In our previous work
we determined the position of this resonance by the onset of
molecule dissociation to be 822±3 G [8].

In this paper we report on a detailed study of Feshbach
resonances in the two lowest hyperfine states of 6Li with the
goal of accurately characterizing the interaction potential of
two 6Li atoms. In addition to two previously known s-wave
resonances, we find three p-wave resonances [12]. The posi-
tions of the p-wave resonances together with the location of
the narrow s-wave resonance near 543 G are used for a pre-
cise determination of the singlet s-wave scattering length.
These results, however, do not constrain the position of the
broad resonance, which also depends on the triplet scattering
length. An improved measurement of its location is presented
and the magnitude and the origin of possible systematic er-
rors are discussed.

The experimental setup has been described in Ref. [13].
Up to 4x 107 quantum degenerate 6Li atoms in the IF,mF)
= 3/2,3/2) state were obtained in a magnetic trap by sym-
pathetic cooling with 23Na. The 6Li atoms were then trans-
ferred into an optical dipole trap (ODT) formed by a focused

PACS number(s): 03.75.Ss, 32.80.Pj, 34.50.Pi

1064-nm laser beam with a maximum power of 9 W. In the
optical trap a single radio-frequency sweep transferred the
atoms to state II1) (IF,mF)= 1/2, 1/2) at low field). A subse-
quent Landau-Zener sweep at an externally applied magnetic
field of 565 G could then be used to either prepare the entire
sample in state 12) (11/2,-1/2) at low field) or create an
equal mixture of atoms in states I1) and 12). Except for the
measurement of the broad s-wave Feshbach resonance, all
resonances were observed by monitoring magnetic-field-
dependent atom losses. Atom numbers were obtained from
absorption images taken at zero field. The externally applied
field was calibrated by driving microwave transitions from
state 12) to state 15) (13/2, 1/2) at low field) at several mag-
netic fields close to resonance positions and from state 12) to
state 13) (13/2,-3/2) at low field) at high magnetic fields
around 800 G.

For spin-polarized samples either in state I 1) or 12) s-wave
scattering is forbidden by symmetry, therefore, the observed
resonances occur in the p-wave channel. The same molecular
state that is responsible for these two resonances also causes
a p-wave resonance in the 1)+ 12) mixture. The three p-wave
resonances were observed in clouds with typical tempera-
tures T-6 pK and TITF-0.5-1.5, where TF is the Fermi
temperature. Radial and axial trap frequencies were typically
Wr=27nX 1.0 kHz and woa=27rX 6.9 Hz.

The position of the p-wave resonance in the collision of a
pair of state I1) atoms was determined by first ramping the
magnetic field to approximately 5 G below the resonance.
Using an additional power supply to precisely change the
magnetic field within a 10G range, the field was then
switched in 1 ms to a test value Btest. Here the atoms were
kept for 200 ms before the field and the optical trap were
switched off. Finally, atom number versus Btest was recorded.
Resonantly enhanced losses due to inelastic three-body de-
cay led to a Lorentzian shaped feature as shown in Fig. 1(a).
Resonance positions and widths are summarized in Table I.

The same technique was used to determine the 11)+12)
and 12)+12) p-wave resonances. The resonance line shapes
are asymmetric (see Fig. 1), possibly due to threshold effects
[14,15]. The splitting of a p-wave resonance due to spin-spin
interactions [16] is for these resonances more than one order
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FIG. 1. p-wave resonances for I1)+ 1) (a), 11)+12) (b), and 12)
+ 12) (c) collisions. Dashed lines are Lorentzian fits to the data. The
results are summarized in Table I.

TABLE I. Position of the Feshbach resonances. Given are the
experimentally and theoretically determined resonance locations
Bexpt and Btheory, respectively, and the measured resonance width.
The uncertainties for the experimental data in the first four rows are
dominated by magnetic field drifts between the measurement of the
resonance and the field calibration for which we find an upper
bound of 80 mG. For the I1)+ II) resonance an additional drift was
monitored. The statistical error of determining the line center and
the estimated uncertainty due to asymmetric line shapes are negli-
gible. The quoted linewidths are not corrected for source depletion
due to atom loss. We estimate that this effect reduces the linewidths
by 25%-40%. For the broad s-wave resonance (fifth row) only a
range is given. See the text for a discussion.

States Wave Bexpt [G] Btheory [G] Width [G]

I1)+I1) p 159.14_±0.14 159.15(4) 0.4
j1)+12) p 185.09±0.08 185.15(4) 0.2
12)+12) p 214.94±0.08 214.90(4) 0.4
1l)+12) s 543.28±0.08 543.27(5) 0.4

11)+12) s 822...834

of magnitude smaller than the width and could not be dis-
cerned with our sensitivity.

The position of the s-wave resonance near 543 G in the
11)+ 12) mixture was determined as presented above in clouds
with typical temperatures of 6 AK, but in a slightly deeper
optical trap and with an extended holdtime of 2900 ms at
B,,,. The result of a fit to the Lorentzian lineshape is given in
Table I. This s-wave resonance was first reported in [17] and
calculated in [18].

To determine the position of the broad s-wave Feshbach
resonance near 830 G a different method was required. The
resonance was identified as the onset of molecular dissocia-
tion [6,8,19]. Molecules were first created on the repulsive
(BEC) side of the Feshbach resonance and then dissociated
into atoms when the magnetic field crossed the resonance.
However, this method is subject to systematic shifts in the
resonance position that depend on the molecular density and
the speed of magnetic field ramps. To control the density-
dependent shift, the molecular density was varied by using
different parameters for the optical dipole trap and by per-
forming the dissociation at different times of flight.

The starting point of the experiment was an almost pure
6Li2 molecular BEC that was prepared at a magnetic field of
about 780 G in the optical trap as described in Ref. [8]. The
data shown in Fig. 2 were obtained by releasing the mol-
ecules from the optical trap at 780 G [20]. After 2 ms the
field was ramped to a test value Best, in 14 ms. In these first
16 ms time of flight the peak molecular density dropped by
three orders of magnitude to nmol=5 X 109 cm- 3. The mag-
netic field was held at Bte,,, for another 5 ms before it was
ramped down. The critical field ramp, which can alter the
resonance position, is the initial phase of the magnetic field
ramp down in which the molecules are still in the resonance
region. Here, fast ramps can dissociate weakly bound mol-
ecules. However, we could only use a limited time of flight
while maintaining a good signal-to-noise ratio. Therefore the
field was ramped down in two steps: at an initial rate of
100 G/ms for 2 ms to leave the resonance region, followed
by an exponential decay with time constant 30 G//ls which
brought the field to zero in 3 ms. To better control the effects
of the field ramp, the experiment was repeated for different
initial switch off speeds. Finally, the sample was imaged
with light which was resonant only with unbound atoms; the
possible molecular transitions are far detuned from the
atomic transition at zero field. By monitoring the atom num-
ber as a function of Btest the onset of molecule dissociation
was observed. The data in Fig. 2 show the onset at 821 ± 1 G.
The slow approach of the atomic signal to unity reflects the
time constant of dissociation and the possible reconversion
of atoms into molecules during the magnetic field switch off.
In our analysis only the onset of the atomic signal was evalu-
ated.

We now consider the two sources of systematic errors
mentioned above in more detail. Few-body collisions might
dissociate molecules when their size, which near resonance
is on the order of the scattering length between the constitu-
ent atoms [21], becomes comparable to the mean distance
between the molecules, a - no3. The scattering length near
resonance is parametrized by a=abg[ +AB(B-B 0]
= abgA / (B - B0), where abg is the negative background scat-
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FIG. 2. Determination of the position of the broad s-wave
Feshbach resonance. (a) Onset of dissociation of molecules into
atoms at 821 ± I1 G. (b) The resonance position was obtained by
fitting two lines to the data points near the threshold, one horizontal
through the points showing no atomic signal and a second line
following the initial rise in atom number. The intersection of the
two lines gives the resonance position; the estimated uncertainty of
this point is ±1 G.

tering length, B0 is the resonance position, and AB is the
resonance width. So molecule dissociation will become im-
portant at a magnetic field B for which abgAB/(B-Bo)
-~ n 13 . For the broad resonance, this density-dependent,
few-body effect is expected to shift the observed resonance
position to lower magnetic fields.

The second systematic error is a density-independent,
single-molecule effect. Switching off the magnetic field be-
comes nonadiabatic close to resonance and destroys very
weakly bound molecules [22]. If a molecule with binding
energy hw=-421(ma 2) is forced to change its size faster than
its oscillation frequency (i.e., if a/a > w), the molecule may
dissociate. With the magnetic field dependence of a given
above, the rate 6ila-B/(B-Bo) becomes comparable to w
S(B-Bo)2 at a magnetic field that is shifted from the reso-

nance location B0 by AB=B-Bo--B1 3. This expression
gives the scaling of the ramp-induced systematic error with
the ramp speed B.

To find the order of magnitude of these shifts we have
determined the resonance locations for three different ramp
rates at constant density and for three different densities at
constant ramp rate.

At a molecular density of nmol= 1.5 x 1010 the resonance
positions were measured at initial ramp speeds of 30 G/)us
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(fastest possible switch off), 100 G/ms (fastest externally
controlled ramp), and 12.5 G/ms (controlled ramp). For the
fastest switch off the onset of dissociation occurs at
793±7 G, for the other two controlled ramps at 822±3 G.
Assuming that no density shifts affect these data, one can

extrapolate to zero ramp speed based on the (B-Bo) x J1/3

dependence. In this way we find a resonance position of
825±3 G.

For a fixed initial ramp speed of 100 G/ms the resonance
locations were determined at densities of 5 X 109 cm -3. 1.5
X 1010 cm - ' , and 1.2 x 1012 cm - 3 to be 821 +1 G, 822±3 G,
and 800±8 G, respectively. Here one can use the (B-Bo)
cn 113 dependence to extrapolate to a resonance position of
825±3 G, neglecting effects due to nonadiabatic magnetic
field ramps.

Both systematic effects shift the maximum magnetic field
value at which the molecules are stable to lower magnetic
fields. In a simple picture, one would expect the total shift to
be the larger of the two. However, if they are similar, as in
our case, they may add or combine in a more complicated
way. We have measured the threshold position at low density
and slow ramp rates to be 822±3 G and determined two
shifts of 3±3 G. Therefore, we expect the position of the
Feshbach resonance to be between 822 and 834 G. A more
accurate extrapolation requires measuring the dissociation
threshold for more ramp speeds and densities. However,
technical limitations in varying magnetic field ramp speeds
and an unfavorable signal-to-noise ratio at lower densities
precluded this.

All Feshbach resonances discussed in this paper are due
to the v=38 vibrational state of the singlet potential with
total electronic spin S equal to zero. The p-wave resonances
have a total nuclear spin 1= 1, while the 543 G and broad
s-wave resonances have 1=2 and 1=0, respectively.

The resonance locations are compared with results of
scattering coupled-channel calculations. We locate the reso-
nance from the maximum of the elastic cross section as a
function of magnetic field. The collision energy is fixed at
E=kBT, where kB is the Boltzmann constant and T is the
experimental temperature. Our collision model, described in
detail in Ref. [18], treats the singlet and triplet scattering
lengths as adjustable parameters. The triplet state has a total
electron spin equal to one. It turns out that all narrow reso-
nances, which could be accurately located, are insensitive to
the triplet scattering length. Only s- and p-waves are in-
cluded in the calculation. Fitting the singlet scattering length
as to the field locations given in the first four rows of Table
I yields a very accurate value of as=45.1591(16)a o, where
ao=0.052 917 7 nm. With this value, the resonance positions
given in the third column of Table I were calculated at a
collision energy equal to kBT. The agreement with the ex-
perimental values is excellent. The location of the s-wave
resonance is also in very good agreement with the determi-
nation of Ref. [23], 543.26(10) G.

Our theoretical uncertainties do not include contributions
due to a thermal average. Moreover, there can be a discrep-
ancy between the field values at which the observed three-
body loss rate and the theoretical two-body elastic cross sec-
tion are maximal. Experimental observations on 40K [14] are
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not conclusive about the magnitude of this shift, although
they suggest it is well within the linewidth of the observed
loss features. As an estimate of our possible systematic error.
a shift in the resonance position 8(G) will give rise to a shift
from our best as of (-0.0365,)ao0.

The broad resonance is caused by a hyperfine-induced
mixing between a singlet vibrational level and an almost-
bound virtual state of the triplet potential, a situation ana-
lyzed in [24,25]. It is the virtual state that gives rise to the
large and negative triplet scattering length aT of 6Li. Mixing
occurs for magnetic field values above 500 G. In fact, in
absence of the hyperfine mixing, the resonance would occur
around 550 G. The coupling shifts the resonance by a few
hundred gauss. For typical Feshbach resonances, these shifts
are no more than a few gauss. A consequence of the large

shift is that the resonance location depends critically on the
less well known triplet potential.

In conclusion, we have found three p-wave Feshbach
resonances in 6 Li. Together with the narrow s-wave reso-
nance they give a precise value of the singlet scattering
length. The position of the broad resonance could not be
constrained using the refined singlet potential. The determi-
nation of the position of the broad resonance via molecule
dissociation is subject to systematic errors, which shift the
onset of dissociation to lower magnetic fields.
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Formation Dynamics of a Fermion Pair Condensate
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The dynamics of pair condensate formation in a strongly interacting Fermi gas close to a Feshbach
resonance was studied. We employed a phase-shift method in which the delayed response of the many-
body system to a modulation of the interaction strength was recorded. The observable was the fraction of
condensed molecules in the cloud after a rapid magnetic field ramp across the Feshbach resonance. The
measured response time was slow compared to the rapid ramp, which provides final proof that the
molecular condensates reflect the presence of fermion pair condensates before the ramp.

DOI: 10.1103/PhysRevLett.94.180401

Atomic Fermi gases close to a Feshbach resonance [1]
offer the unique possibility of studying many-body phe-
nomena in a strongly interacting system with tunable in-
teractions. Recently a major focus has been on condensates
of pairs of fermionic atoms [2-8]. By changing the mag-
netic field, the interaction strength between atoms in two
spin states can be varied. That way, condensates of either
tightly bound molecules or of extended pairs of fermions
can be created, whose size can become comparable or even
larger than the interparticle spacing. The description of this
so-called BEC-BCS crossover [9] is an active frontier in
many-body physics with still controversial interpretations
[10-13].

The control of interactions via magnetic fields does not
only give access to very different physical regimes, it also
allows one to apply a time-varying interaction strength
[14,15] and to study the dynamics of a many-body system
in novel ways. This was used in recent experiments in
which molecular condensates were observed after a rapid
field ramp from the BCS to the Bose-Einstein condensate
(BEC) side of the Feshbach resonance [6,7]. It was argued
that if the ramp time was faster than the formation time of a
molecular condensate, its presence after the sweep neces-
sarily reflected a preexisting condensate of fermion pairs.
However, without access to that formation time, secondary
evidence was gathered, namely, the invariance of the con-
densate fraction under variations of the sweep rate [6] or of
the density immediately before the ramp [7]. This excluded
simple models of the molecular condensate formation
during the ramp, but left room for more sophisticated
many-body effects. In particular, the time to cross the
Feshbach resonance in these experiments was not faster
than the unitarity limited collision time oc hE 1', and there-
fore dynamics during the sweep could not be ruled out.

Here we present an experimental study of the formation
dynamics of a fermion pair condensate on the BCS side of
the Feshbach resonance [16]. We employ a novel phase-
shift method, which records the delayed response of the
many-body system to a modulation of the magnetic field
that changes periodically its interaction strength. The ob-

PACS numbers: 03.75.Ss, 05.30.Fk

servable is again the molecular condensate fraction after a
rapid sweep to the BEC side of the Feshbach resonance. Its
sensitivity to changes in the scattering length on the BCS
side [6,7] arises through the dependence of the critical tem-
perature for pair condensation on the interaction strength.
By showing that the delayed response time of the molecu-
lar condensate fraction is long compared to the sweep
times used in the present and previous experiments, we in-
fer that the observed condensates could not have been cre-
ated during the rapid transfer and thus must originate from
preexisting fermion pair condensates. However, we do find
evidence that condensed pairs are more likely to be trans-
ferred into molecules than thermal pairs. Therefore, in con-
trast to assumptions made in previous work [6,7], the mo-
lecular condensate fraction after the ramp may not equal
the fraction of condensed atom pairs above resonance.

The experimental setup was the same as in our previous
work [7]. A degenerate cloud of 6Li, sympathetically
cooled with 23Na, was loaded into an optical dipole trap
to access a broad Feshbach resonance at 834 G [17,18]
between the two lowest hyperfine states of 6Li, labeled I1)
and 12). An equal mixture of these states was evaporatively
cooled at 770 G using an exponential ramp-down of the
optical trap to 15 mW. This resulted in an essentially pure
Bose-Einstein condensate of 3 x 106 molecules. An upper
limit for the temperature of the gas is - < 0.2, with the
Fermi temperature TF given by the zero-temperature, ideal
gas relation TF = Ao(3N)'/ 3 , w/2Tr is the geometric mean
of the trapping frequencies, and N is the total atom number.
Next, the trap was recompressed to 25 mW (trap frequen-
cies: vx = vy = 580 Hz, vz = 12.1 HzO10.2 + B with the
magnetic field B in kG) and the magnetic field was adia-
batically increased in 500 ms to 1000 G, the starting point
for the following experiments. Here, in the wings of the
Feshbach resonance, the scattering length a was still suffi-
ciently large and negative for the gas to be in the strongly
interacting regime, with kFlaI = 1.6 at a Fermi energy of
EF = 2.0 uK and a Fermi wave number kF = 1/2700a0.
The temperature at this point could therefore not be reli-
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ably determined, but is expected to be significantly lower
than the one on the BEC side due to adiabatic cooling [19].
Subsequently, the magnetic field and thus the interaction
strength in the gas were modulated at frequencies in the
range of 100-500 Hz, and an amplitude of about 50 G [20].
At a variable time t after the start of the modulation, the
fraction of condensed fermion pairs was recorded by time-
of-flight analysis.

To identify fermionic condensates across the resonance
region, we proceeded as in [6,7]. Immediately after the
release of the cloud from the optical potential, the magnetic
field was switched to zero field (initial ramp rate
30 G/ls), where further expansion of the cloud took
place. This rapid ramp out of the resonance region trans-
formed large fermion pairs into deeply bound molecules
with high efficiency [21]. Figure 1 details the imaging
procedure used to determine molecular condensate frac-
tions and the number of unpaired atoms in each state after
the ramp. In our previous work, we showed that the con-
densate fractions had a peak around the Feshbach reso-
nance and fell off on either side [7]. Here, this dependence
was exploited to observe the delayed response of the
system to the magnetic field modulation on the BCS side.

Figure 2 shows the main result of this Letter: The
condensate fraction in the molecular clouds after the rapid

Time of Flight

Stern-
Gerlach

Separation

Atoms Thermal and
State 11> Condensed Molecules

Molecules
Atoms in 11> and 12>

Atoms
State 12>

FIG. 1. Imaging of molecular condensates. The rapid ramp to
zero field after release from the trap created a cloud containing
both molecules and unpaired atoms. A Stern-Gerlach field
gradient separated atoms (magnetic moment _± I .La for states
II1) and 12), respectively) from molecules, which are purely
singlet at zero field. At the end of 5 ms of ballistic expansion,
the molecules were dissociated in a fast ramp (in 3 ms to
-1200 G) across the Feshbach resonance. After another 2 ms
expansion again at zero field, an absorption image of the sepa-
rated clouds was taken. Condensate fractions were determined
from the molecular cloud, and the numbers in each component
were recorded. An absorption image is shown on the bottom, the
field of view is 3 mm X 1 mm.

ramp did not follow the magnetic field modulation instan-
taneously, but lagged behind. At a Fermi energy of EF =
2 ,/K, the peak condensate fraction was delayed by rR =
(500 ± 100) /cs with respect to the magnetic field's closest
approach to resonance [22]. This time scale was indepen-
dent of the modulation frequency [compare Figs. 2 and
4(a), below]. This also rules out that our results are affected
by the excitation of collective modes. TTR equals 130 times
the unitarity limited collision time, hEF1 = 3.8 p/s. The
rapid magnetic field ramp utilized here and in [7] traversed
the Feshbach resonance in less than 10 /s, which is much
smaller than rR.

This delay time can be interpreted as the relaxation time
of the fermionic condensate. In a normal Fermi gas of N
particles at temperatures much smaller than the Fermi
temperature TF, relaxation occurs through collisions be-
tween the thermally excited particles close to the Fermi
surface, whose number scales as Nth "N . The numberEF
of available scattering states again being proportional to
kE , the relaxation time will be rR = hi . In general, ifEF (k4T)
the Fermi surface is smeared out over an energy width AE,
the relaxation time is - •AEL . This formula with AE = A

should apply also to the superfluid state [23] when the gap
parameter A is rapidly changed to a much smaller value.
Generally, one would expect AE to be the larger of A and
kBT. Using 7rR = 500 /s, we obtain the estimate AE =
0.1 EF which may set an upper bound for both temperature
and pairing gaps.

A decay is superimposed to the periodic modulation of
the condensate fraction. It could be caused by heating due
to the nonadiabaticity of the process. Another source of
heating could be the excitation of the cloud via the small
accompanying variation of the magnetic field curvature.

0 2 4 6 8 10
Time [ms]

840

880

920

960

12 14 16

FIG. 2. Measurement of the relaxation time of fermionic pair
condensates. Shown is the delayed response of the observed
condensate fraction (data points and thick line to guide the eye)
to a 250 Hz magnetic field modulation (thin line) on the BCS
side of the Feshbach resonance at 834 G. The condensates were
detected as described in Fig. 1. Three measurements per point
were taken in random order, the size of the data points reflecting
the standard deviation. The vertical lines indicate the points of
maximum condensate fraction, which are delayed with respect to
the times at which the magnetic field is closest to resonance.
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Despite the decay of the condensate fraction, the relaxation
time was constant for subsequent cycles of modulation,
within the (limited) accuracy of our measurement.

In a compressed trap of p = 150 mW, at a 1.8 times
higher Fermi energy of 3.6 /K, the measured delay time
was 7R = (230 + 100) As. BCS theory predicts that the
relaxation time should scale with density like 7R oc
E' elr/(kFlal), giving rR = 200 As for this experiment per-
formed around 900 G. However, we regard this agreement
with observation as fortuitous since BCS theory cannot be
rigorously applied, and finite temperature effects may con-
tribute to the relaxation.

We now discuss further observations regarding the effi-
ciency of converting atoms into molecules. Since the re-
laxation time introduces some hysteresis, we observe the
same condensate fraction at two different magnetic field
values. Therefore, in contrast to equilibrium experiments
[6,7], we can distinguish the dependence of the conversion
efficiency on condensate fraction and magnetic field.

Figure 3 shows that the total number of detected atoms
(in both the atom and the molecule channels) was modu-
lated by the magnetic field. We assume that this instanta-
neous response reflects the two-body physics during the
magnetic field sweep. In a simple two-state Landau-Zener
model, the initial magnetic field and the sweep rate deter-
mine what fraction of the atoms appears as bound mole-
cules. However, the total number of bound or unbound
atoms should be constant in contrast to our observations.
This is evidence for the presence of other molecular states
(e.g., lower lying vibrational states) which are populated
during the magnetic field sweep, and the population is
larger for initial magnetic fields closer to the Feshbach
resonance. Note that the determination of the condensate
fraction is immune against those "disappeared" mole-
cules, since the two-body physics does not depend on the
center-of-mass motion of the atom pair.

We now look at the molecular fraction which we define
as 1 - Naom/Ntotal, where Natom is the number of atoms

observed after the sweep and Nota1 the total number of
atoms before the sweep (this definition includes the dis-
appeared molecules) [24]. If the molecule fraction would
follow the instantaneous magnetic field, it would again
reflect the two-body physics during the sweep. Instead,
we observe a delayed response in perfect correlation with
the condensate fraction (Fig. 4). Since the delay time
reflects the many-body physics of condensate formation,
this is clear evidence that the molecule conversion effi-
ciency depends on the initial many-body state.

One consistent explanation of these findings is that
fermion pairs in the condensate are more completely trans-
ferred into tightly bound molecules than thermal pairs.
With this assumption, we extrapolated the fitted line in
Fig. 4(b) to a zero condensate fraction to obtain the transfer
efficiency from thermal atom pairs into molecules (includ-
ing the missing fraction) as pth = 75% [21]. Extrapolating
towards the other limit, we do not expect any unpaired
atoms after the ramp already for a condensate fraction of
80% [25], suggesting a transfer efficiency for condensed
fermion pairs into molecules of Po = 100%. This effect
would lead to an overestimate of the fermionic condensate
fraction before the sweep. Small condensate fractions
could be overestimated by as much as P = 33%. The
largest absolute error occurs for an initial pair condensate
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FIG. 3. Total number of detected atoms (unbound atoms and
molecules) after the rapid ramp (same data set as in Fig. 4). It is
modulated in phase with the magnetic field. For initial fields
close to resonance, more atoms are "missing" after the rapid
ramp.

0.0 0.2 0.4 0.6
Molecular Condensate Fraction

FIG. 4. Correlation between the observed condensate fraction
and the molecular fraction. Shown are (a) the condensate frac-
tion vs time during a 500 Hz field modulation (circles), the
fraction of molecules (triangles) and the magnetic field. Unlike
the total detected signal (Fig. 3), the molecular fraction is
modulated not in phase with the magnetic field, but in complete
correlation with the condensate fraction. (b) The molecular
fraction vs the condensate fraction, together with a fitted line
through the data.
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fraction of = 46% and would be about 7% in our
case.

This effect can have several possible origins: One is that
the atomic separation in a condensed atom pair is smaller
than that of two uncondensed atoms. Also, the presence of
a large pair condensate increases the density of the cloud
[26]. Finally, if there are incoherent processes involved
during the rapid ramp, bosonic stimulation into the mo-
lecular condensate could play a role.

In conclusion, we have determined the intrinsic time
scale for the growth of a fermion pair condensate by
observing the delayed response of the system to a change
in its interaction strength. For our trap parameters, the
response was delayed by - 500 /.s. This time is far longer
than the time spent within the resonance region during the
conversion of fermion pairs into molecules. This provides
final proof that the observed molecular condensates origi-
nated from condensates of pairs of fermions above the
resonance. Regarding the two-body physics of the rapid
transfer, we found that there is a missing fraction of
particles after the ramp, presumably transferred into un-
observed molecular states. We found evidence that con-
densed fermion pairs are more efficiently transformed into
molecules than thermal pairs during the rapid ramp. Thus,
the observed molecular condensate fractions tend to over-
estimate the initial fermion pair condensate fraction.
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ARTICLES

Vortices and superfluidity in a strongly
interacting Fermi gas
M. W. Zwierlein', J. R. Abo-Shaeer't, A. Schirotzekl, C. H. Schunck' & W. Ketterle'

Quantum degenerate Fermi gases provide a remarkable opportunity to study strongly interacting fermions. In contrast to
other Fermi systems, such as superconductors, neutron stars or the quark-gluon plasma of the early Universe, these
gases have low densities and their interactions can be precisely controlled over an enormous range. Previous
experiments with Fermi gases have revealed condensation of fermion pairs. Although these and other studies were
consistent with predictions assuming superfluidity, proof of superfluid behaviour has been elusive. Here we report
observations of vortex lattices in a strongly interacting, rotating Fermi gas that provide definitive evidence for
superfluidity. The interaction and therefore the pairing strength between two 'Li fermions near a Feshbach resonance
can be controlled by an external magnetic field. This allows us to explore the crossover from a Bose-Einstein condensate
of molecules to a Bardeen-Cooper-Schrieffer superfluid of loosely bound pairs. The crossover is associated with a new
form of superfluidity that may provide insights into high-transition-temperature superconductors.

The first observations of Bose-Einstein condensates (BECs) of
molecules consisting of loosely bound fermionic atoms' - initiated
a series of explorations4- 1'2 of the crossover between a BEC and a
Bardeen-Cooper-Schrieffer (BCS) superfluid -'". When an external
magnetic field is varied across a Feshbach resonance, these molecules
transform adiabatically into the Cooper pairs of a BCS superfluid. All
physical properties are expected to vary smoothly throughout this
crossover. For example, the size of fermion pair condensates
smoothly increases from the BEC- to the BCS-side of the resonance,
while the strength of the bond between two paired atoms smoothly
decreases. The similar size and shape of normal and condensed gas
clouds makes it difficult to detect condensation on the BCS-side.
However, using a rapid magnetic field sweep back to the BEC-side,
introduced by the Boulder group4, pair condensation was
observed4'5" 2.Although Bose-Einstein condensation and superfluid-
ity are intimately connected, they do not necessarily occur together.
In lower dimensions, superfluidity occurs in the absence of
Bose-Einstein condensation". An ideal Bose gas or disordered
three-dimensional system can have a condensate, but shows no
superfluidity'6. Phase fluctuations, which are probably present in
short-lived condensates of fermionic pairs', can suppress superfluid
behaviour.

Several ground-breaking studies in Fermi gases of hydrodynamic
expansion7-7 , collective excitations"9, thermodynamic properties"
and the binding energy of pairs"° were suggestive of superfluid
behaviour or were consistent with theoretical calculations predicting
superfluidity, but did not provide unambiguous evidence. In the
meantime, several theoretical papers'8 -22 emphasized that the
rotational properties of a gas of fermion pairs could directly reveal
superfluidity in such systems.

Quantized vortices in a rotating gas provide conclusive evidence
for superfluidity because they are a direct consequence of the
existence of a macroscopic wavefunction that describes the super-
fluid. The velocity field of the superfluid is proportional to the
gradient of the wavefunction's phase. In such a case, flow must be
irrotational and angular momentum can enter the system only in the

form of discrete line defects (vortices). In contrast, for a normal gas
the lowest state of rotation corresponds to rigid body rotation.
Metastable vortex patterns have been observed in classical inviscid
fluids". However, the final number and charge of the vortices
depends chaotically on the initial conditions, in contrast to the
regular vortex lattices that we have reproducibly observed. Further-
more, vortex patterns in classical fluids are only stable at extremely
low viscosity (that is, for Reynolds numbers > 105). For a Boltzmann
gas rotating close to the trap frequency, the Reynolds number is
approximately the cloud size divided by the mean free path, which
does not exceed 103 in our case. Pauli blocking can only decrease the
Reynolds number further.

Figure 1 I Observation of a vortex lattice in a molecular condensate.
a, Fixed field. Stirring for 800 ms, followed by 400 ms of equilibration, and
imaging after 12 ms time-of-flight all took place at 766 G. The vortex core
depletion of the integrated density profile is barely 10%, as indicated by the
5-ttm-wide cut on top. b, Fourier filter applied to a to accentuate the vortex
contrast. Spatial frequencies with an absolute value of about the inverse
vortex core size were enhanced by a factor of four. c, Varying field. The
vortex lattice was created at 766 G and imaged at 735 G following the
procedure outlined in the text. The vortex core depletion is now about 35%
(see 5-Rm-wide cut on top). The field of view is 780 im x 780 Pm.

1Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139, USA. iPresent address:
Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 88R0192, Berkeley, California 94720, USA.
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Figure 2 1 Vortices in a strongly interacting gas of fermionic atoms on the
BEC- and the BCS-side of the Feshbach resonance. At the given field, the
cloud of lithium atoms was stirred for 300 ms (a) or 500 ms (b-h) followed
by an equilibration time of 500 ms. After 2 ms of ballistic expansion, the

Experimental procedure
To create a strongly interacting Fermi gas, spin-polarized fermionic
6Li atoms were sympathetically cooled to degeneracy by 23Na atoms
in a magnetic trap24. The Fermi cloud was then loaded into an optical
dipole trap, and an 875 G external magnetic field was applied. Here
a 50%/50% spin mixture of the two lowest hyperfine states of 6Li
was prepared. Between these two states, labelled 11) and 12), there is a
300-G-wide Feshbach resonance located at 834 G (refs 25, 26).
Evaporative cooling (achieved by reducing the laser power)
accompanied by a magnetic field ramp to 766 G on the BEC-side
of the resonance typically produced a BEC of 3 X 106 molecules3.

Previous experiments studying the rotation of atomic BECs
employed magnetic traps operating at low bias fields27 •.Because
the Feshbach resonance in our system occurs between two high-field
seeking states that cannot be trapped magnetically, an optical dipole
trap operating at high magnetic bias fields was necessary. Our set-up
employed a trapping beam with a 1/e2 radius of 123 Im (wavelength
1,064 nm), radially confining the gas with a trap frequency of 59 Hz at
a power of 145 mW. Axial confinement with trap frequency
vz = 23 Hz was provided by an applied magnetic field curvature
that decreased the radial trap frequency to Pr = 57 Hz. The aspect
ratio of the trap was 2.5. In this trap, at a field of 766 G, condensates of
1 X 106 molecules (the typical number in our experiment after
rotating the cloud) have Thomas-Fermi radii of about 45 Am radially
and 110 Am axially, a peak molecular density of 2.6 X 1012 cm-3, a
chemical potential of about 200 nK, and a characteristic microscopic
length scale of 1/krF 0.3 Am. Here, the Fermi wavevector kF is
defined by the Fermi energy (EF) of a non-interacting two-state
mixture of 6Li atoms of mass m with total atom number N in a
harmonic trap of (geometric) mean frequency cj, EF = hc(3N)1/ 3 

=

hi.2k2F/2m. Throughout this Article we will estimate the interaction
parameter 1/kpa using the average number of fermion pairs
N/2 = 1 x 106. Here, a is the scattering length between atoms in
states I1) and 12). At a field of766 G, 1/kFa = 1.3. Because this gas is
strongly interacting, it is difficult to extract a temperature from the
spatial profile. For weaker interactions (at 735 G) the condensate
fraction was in excess of 80%, which would isentropically connect to
an ideal Fermi gas" ' at T/Tr = 0.07. The BEC-BCS crossover
(1/kFlal < 1) occurs in the region between 780 G and 925 G.

The trapped cloud was rotated about its long axis using a blue-
detuned laser beam (wavelength 532 nm)28,29'33. A two-axis acousto-
optic deflector generated a two-beam pattern (beam separation
d = 60 .m, gaussian beam waist w = 16 1m) that was rotated
symmetrically around the cloud at a variable angular frequency Q.

1048

magnetic field was ramped to 735 G for imaging (see text for details). The
magnetic fields were 740 G (a), 766 G (b), 792 G (c), 812 G (d), 833 G (e),
843 G (f), 853 G (g) and 863 G (h). The field of view of each image is
880 Im x 880 ttm.

The two beams with 0.4 mW power each produced a repulsive
potential of 125 nK for the 6Li cloud, creating a strongly anisotropic
potential. This method was first tested using a weakly interacting,
atomic BEC of 2 3Na in the stretched upper hyperfine state in an
optical trap with P, = 60 Hz, v• = 23 Hz. Fully equilibrated lattices
of up to 80 vortices were observed. The vortex number decayed with a
l/e lifetime of 4.2 ± 0.2 s, while the atom number decayed, owing to
three-body losses and evaporation, with a lifetime of 8.8 ± 0.4 s. The
roundness of the optical trap and its alignment with both the optical
stirrer and the axes of the magnetic potential were critical. Any
deviation from cylindrical symmetry owing to misalignment, optical
aberrations, or gravity rapidly damped the rotation. The generation
of vortices in sodium was comparatively forgiving, and had to be
optimized before vortices in 6Li2 could be observed.

Observation of vortex lattices
In experiments with 6Li close to the Feshbach resonance, the
interaction strength between atoms in states I1) and 12) can be freely
tuned via the magnetic field. Thus, it is possible to choose different
magnetic fields to optimize the three steps involved in the creation of
a vortex lattice: stirring of the cloud (for 800 ms at a typical stirring
frequency of 45 Hz), the subsequent equilibration (typically 500 ms)
and time-of-flight expansion for imaging. To stay close to the

Magnetic field (G)
833

4- BEC Interaction parameter, 1/kFa BCS---

Figure 3 1 Optimized vortex lattices in the BEC-BCS crossover. After a
vortex lattice was created at 812 G, the field was ramped in 100 ms to 792 G
(BEC-side), 833 G (resonance) and 853 G (BCS-side), where the cloud was
held for 50 ms. After 2 ms of ballistic expansion, the magnetic field was
ramped to 735 G for imaging (see text for details). The field of view of each
image is 880 tm x 880 Im.
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analogous case of an atomic condensate, our search for vortices
started on the BEC-side of the resonance, at a fixed magnetic field of
766 G. To image the cloud, the trapping beam was switched off and
the cloud expanded in the residual magnetic potential. After 12 ms
time-of-flight, a molecular absorption image along the axial direc-
tion was taken with light resonantly exciting atoms in state 12) 3

(Fig. la). Although the contrast of the vortex cores was low, a regular
lattice pattern containing about 25 vortices was visible (see Fourier
filtered image in Fig. lb). This establishes superfluidity for molecular
condensates.

Subsequently, it was found that the contrast of the vortex cores
could be enhanced by the following procedure: the magnetic field
curvature was reduced by a factor of five during the first millisecond
of time-of-flight. After 2 ms expansion at the initial field, the
magnetic field was ramped down over 2 ms to 735 G. The cloud
was imaged after an additional 9 ms of expansion at this field.
Attempts to image at even lower fields did not enhance the contrast.
Further improvements were achieved by forcing the cloud to expand
faster by increasing the power of the optical trap by a factor of 4.5
during the last 2 ms of trapping (Fig. lc). We suspect that owing to
the residual magnetic field curvature, a faster expansion was superior
to a longer time-of-flight.

Using this procedure, we observed vortices that were created not
only on the BEC- but also the BCS-side of the Feshbach resonance, at
magnetic fields between 740 G and 863 G (Fig. 2). On the BCS-side,
isolated fermion pairs are unstable. As the cloud expands from the
trap and the density decreases, the pairs will become more fragile and
dissociate at a certain point in the time-of-flight. Information on the
centre-of-mass wavefunction of the pairs, and hence the vortex
contrast, will be gradually lost. The field ramp to the BEC-side
during expansion protects the pairs by transforming them into stable
molecules. At 853 G, this ramp could be delayed by 6 ms into ballistic
expansion before the vortex contrast was lost. It is not clear why this
ramp was found to be necessary already at 812 G, on the BEC-side of
the resonance, where isolated fermion pairs are stable.

It is impossible for vortex lattices to form during ballistic expan-
sion at the imaging field (735 G). We show below that the formation
of vortex lattices even at the high density of the trapped cloud takes
several hundred milliseconds. Furthermore, even if there was some

1/kFa

4.0 2.0 1.0 0 -0.5 -1.0 -1.3

unpredicted fast formation mechanism for vortices, they could not
form a regular array with long-range order in a cloud that expands at
the speed of sound of the trapped gas. The observation of vortex
lattices on the BCS-side of the Feshbach resonance above 834 G
demonstrates superfluidity of fermions at magnetic fields where they
cannot form stable, isolated molecules.

The highest number of vortices (-40) was obtained by stirring
at 766 G and then equilibrating close to resonance at 812 G
(1/kFa = 0.35). We suspect that the violent nature of the stirring
produced more heating near the Feshbach resonance where the pairs
are loosely bound. On the other hand, fields closer to resonance were
favourable for equilibration owing to suppression of vibrational
relaxation. After preparing such a vortex lattice at 812 G, the
magnetic field was ramped over 100 ms to a test field. After a hold
time of 50 ms, the vortex lattice was imaged as discussed above
(Fig. 3). Vortices were observed for test fields between 700 G
(l/kFa = 3.8) and 954 G (1/kpa = -1.2) (Fig. 4).

The regularity of the lattice proves that all vortices have the same
vorticity. From their number, the size of the cloud and the quantum
of circulation h/2m for each vortex, we can estimate the rotational
frequency of the lattice. For an optimized stirring procedure, we find
that it is close to the stirring frequency. This excludes a quantum of
circulation of h/mn or doubly charged vortices.

Formation and lifetime of vortex lattices
Before we found the detection scheme described above, we studied
the formation and decay of the vortex lattices using a different
procedure. The magnetic field was lowered to 735 G (1/kpa = 2.3)
in the last 30 ms before expansion. Reduction of the magnetic field
curvature by a factor of five took place during the last 5 ms before
expansion, avoiding undesired compression of the cloud in the axial
direction. As before, the trap was compressed by increasing the
trapping power by a factor of 4.5 during the last 2 ms before the
switch-off. Imaging was done after 12 ms expansion at 735 G.

When a superfluid is rotated, the creation of quantized vortices is
energetically favoured only above a certain critical rotation fre-
quency. In some cases, a higher rotational frequency is necessary to
actually nucleate the vortices"- . This occurs through a dynamic
instability of surface excitations3 '.' 39 ' 6 . Figure 5 shows that vortices
in the BEC region were created over a large range of stirring
frequencies, as opposed to only near the quadrupole surface mode
resonance28 29 . Similar non-resonant behaviour was observed in
atomic sodium condensates with small stirring beams" 6. The strong
dependence of the observed stirring efficiency curve on the magnetic

700 750 800 834 900 950
Magnetic field (G)

Figure 4 1 Vortex number versus magnetic field and interaction strength In
the BEC-BCS crossover. The open triangles show the number of vortices
obtained after stirring and equilibration at the given, fixed magnetic field, as
in Fig. 2. For the filled circles, a procedure similar to the one in Fig. 3 was
used, where the vortex lattice was prepared at 812 G, and then the field was
ramped to the test field. The position of the Feshbach resonance2 6 

is marked
with the vertical dash-dotted line. The data points and error bars give the
average and standard deviation of several measurements.
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Figure 5 1 Vortex number versus stirring frequency in the BEC region for
different interaction strengths. Vortices were efficiently created over a
broad range of stirring frequencies. The open triangles and filled circles
correspond to stirring (for 800 ms) and equilibration (for 500 ms) at 766 G
and 812 G, respectively. The data points and error bars (if larger than the
symbol) show the average and standard deviation of three measurements.
The radial trap frequency (57 Hz) is indicated by the small arrow on the
horizontal axis.
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Figure 6 ( Formation and decay of a vortex lattice in a fermion pair
condensate on the BEC-side close to the Feshbach resonance. A molecular
condensate, prepared at 766 G as shown in a, was stirred for 800 ms. The
field was then ramped to 812 G in 20ms for equilibration. At this field,
l/kFa = 0.35, and the condensate was deep in the strongly interacting

regime. To observe the vortex lattice, the field was ramped in 25 ms to 735 G

field strength could be related to the increase of the speed of sound in
the condensate for stronger interactions, leading to a higher critical
velocity.

Figure 6 shows the formation of a vortex lattice close to the
Feshbach resonance, on the BEC-side at 812G (1/kFa = 0.35).
Immediately after stirring, the cloud was in a turbulent state
(Fig. 6b). It took several hundred milliseconds for the vortices to
fully crystallize into a lattice (Fig. 6c-e). The vortices arranged
themselves in a hexagonal Abrikosov lattice to minimize their
interaction energy2 9"'7 . Because the trap potential was not perfectly
round (trap asymmetry (v~ - v)/(v, + ei) - 0.03), the vortex lattice
slowly decayed on a timescale of several seconds (Fig. 6f-h). These
observations are fully analogous to those already made in atomic
BECs29'. 5, 38. The formation time of several hundred milliseconds is in
agreement with these experimental studies, as well as with a recent
theoretical study on the vortex lattice formation in a strongly
interacting Fermi gas". Note that this timescale was found to be
independent of temperature-' , and seems to represent an intrinsic
timescale of superfluid hydrodynamics. The long formation time
excludes the possibility that ordered vortex lattices can be created
during the 30 ms field ramp to 735 G, used for imaging. This holds
even more strongly for the imaging method described first, where the
magnetic field was switched only in time-of-flight. We are not aware
of any possible formation mechanism that could create regular
vortex lattices during ballistic expansion.

In principle, the presence of vortices can be used to map out the
superfluid regime as a function of temperature and interaction
strength, even in regions where fermion pairs are much larger than
the interparticle spacing and can no longer be detected by transform-
ing them into stable molecules4' . As a first step, the lifetime of the
vortex lattice was studied at different magnetic fields and interaction
strengths. After preparing a fully crystallized vortex lattice containing
about 30 vortices in the BEC-region at 812 G, the magnetic field was
ramped to a chosen point in the crossover. After a variable hold time,
the cloud was imaged at 735 G as described above, and the remaining
number of vortices was counted. The results of this measurement are
summarized in Fig. 7. The longest lifetime, 3.4 s, was obtained for
magnetic fields slightly below resonance, near 810 G (l/kpa = 0.4).
Here, we observed four vortices even after 7 s. During this time the
fluid at the vortex core (with characteristic size I/kr) rotated more
than 50,000 times, displaying truly superfluid behaviour. As
expected, the lifetime was reduced at low magnetic fields where the

1050

(1/kpa = 2.3), where the condensate was released from the trap and imaged
after 12 ms time-of-flight. The equilibration times after the end of the
stirring were 40 ms (b), 240 ms (c), 390 ms (d), 790 ms (e), 1,140 ms (f),
1,240 ms (g) and 2,940 ms (h). Owing to stirring, evaporation and
vibrational relaxation, the number of fermion pairs decayed from 3 x 106
(a) to I x 106 (b-h). The field of view of each image is 830 I&m X 830 ttm.

molecules heat up owing to vibrational relaxation. In addition, and
unexpectedly, a narrow dip in lifetime at approximately 831 G with a
width of 8 G was observed. We speculate that this decrease in lifetime
so dose to resonance is caused by a coupling of the external motion of
the loosely bound pairs to their internal motion, causing pair
breaking or rotational excitation. Indeed, at 831 G, the binding
energy for isolated molecules divided by h is about 35 Hz, compar-
able to the initial rotational frequency of the lattice. The reduced
lifetime on the BCS-side could be caused by an increasing fraction of
thermal fermion pairs5 '3 due to the decreasing critical temperature
for superfluidity. In a two-fluid model, angular momentum is stored
as a vortex lattice in the superfluid component. Friction is provided
by the normal component, which increases as we move further away
from resonance on the BCS-side. At 925 G (1/kFa = - 1.0) the vortex
lifetime was reduced to only 10 ms, with a large error bar indicating

1/ka
2.0 1.0 0.5 0 -0.5 -0.8 -1.0

4 BEC Cros over BCSi-

740 770 800 834 860
Magnetic field (G)

890 920

Figure 71 Decay rate and lifetime of the vortex lattice versus magnetic field
and interaction strength. The data points and error bars give the decay rate
or lifetime and one standard deviation extracted from exponential fits to the
vortex number decay. The dashed and dotted lines are gaussian and
exponential fits to guide the eye, the dashed line including a lorentzian fit for
the narrow feature near resonance. The position of the Feshbach resonance2

is marked with the vertical dash-dotted line.
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strong fluctuations in the vortex number. Here we might be
approaching the region where the superfluid-to-normal transition
takes place.

Conclusions
We have detected long-lived vortex lattices in a strongly interacting
Fermi gas over the entire BEC-BCS crossover region by imaging
them after switching to lower magnetic fields during ballistic expan-
sion. This provides the first direct signature of superfluidity in these
systems. We expect that vortices in rotating Fermi gases will serve as
an important starting point for future studies on superfluid
dynamics.
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Appendix G

Superfluid Expansion of a Rotating

Fermi Gas

This appendix contains the preprint Ref. [216]: C. H. Schunck, M. W. Zwierlein, A.

Schirotzek, and W. Ketterle, Superfluid Expansion of a Rotating Fermi Gas, preprint

cond-mat/0607298.

224



Superfluid Expansion of a Rotating Fermi Gas

C.H. Schunck, M.W. Zwierlein, A. Schirotzek, and W. Ketterle
Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics,

MIT, Cambridge, MA 02139
(Dated: October 5, 2006)

We study the expansion of a rotating, superfluid Fermi gas. The presence and absence of vortices
in the rotating gas is used to distinguish superfluid and normal parts of the expanding cloud. We find
that the superfluid pairs survive during the expansion until the density decreases below a critical
value. Our observation of superfluid flow in the expanding gas at 1/kpa = 0 extends the range
where fermionic superfluidity has been studied to densities of 1.2 x 1011 cm - 3, about an order of
magnitude lower than any previous study.

PACS numbers: 03.75.Ss, 03.75.Hh, 05.70.Fh

Ultracold atomic gases have been used to create
novel quantum many-body systems ranging from Bose-
Einstein condensates and Mott insulators in optical lat-
tices to high-temperature superfluids of strongly interact-
ing fermions. These systems offer a high degree of control
over physical parameters including interaction strength
and density. Many important features in these gases have
a spatial scale too small to be resolved while the gas is
trapped. A standard technique to reveal this physics is to
switch off the confining potential and release the gas from
the trap. A non-interacting gas expands ballistically and
the expansion reveals its momentum distribution. The
expansion dynamics of an interacting gas is modified by
the effect of collisions. This can result in classical hydro-
dynamic flow and in this case the expansion serves as a
(not necessarily linear) magnifying glass for the trapped
state. In contrast to classical hydrodynamics, superfluid
hydrodynamic flow does not rely on collisions. When
a weakly interacting Bose-Einstein-Condensate (BEC) is
released from an anisotropic trapping potential, super-
fluid hydrodynamics leads to an inversion of the aspect
ratio, often regarded as a hallmark of Bose-Einstein con-
densation [1].

The expansion dynamics of strongly interacting Fermi
gases has been the subject of a longstanding debate. For
a weakly interacting ultracold Fermi gas anisotropic ex-
pansion has been proposed as a probe for superfluidity,
analogous to the case of weakly interacting BECs [2].
Anisotropic expansion has been experimentally observed
in strongly interacting Fermi gases [3-5]. In this case,
however, the inversion of the aspect ratio can occur due
to collisions between the expanding atoms even if they
were initially at zero temperature [6, 7]. So far exper-
iments have not been able to discriminate between su-
perfluid and collisional hydrodynamics in expansion and
indeed one would expect both effects to contribute: In
the BCS-regime, the superfluid transition temperature
TC depends exponentially on the density. Starting at
T < Tc, the superfluid gas first expands according to
superfluid hydrodynamics. As the density drops, T ap-
proaches Tc and superfluidity cannot be maintained.

From this point on, the gas should expand according
to collisional hydrodynamics or enter a regime interme-
diate between collisional hydrodynamic and collisionless
expansion.

In this paper we study the expansion of a superfluid
Fermi gas, in the regime where pairing is purely a many-
body effect. We have observed superfluid flow even after
5 ms of expansion, when the cloud size had increased by
more than a factor of 4 and the peak density had dropped
by a factor of 17 compared to the in-trap values.

Superfluidity in Fermi gases has previously been estab-
lished through the observation of vortex lattices [8, 9]. To
detect vortices in a rotating fermion pair condensate the
pairs are transferred into stable molecules by sweeping
an external magnetic field across a Feshbach resonance
shortly after the gas is released from the trap. Vortices
can be observed only when the gas is still a superfluid
at the moment of the magnetic field sweep [10]. At the
final magnetic field (on the BEC side of the Feshbach
resonance) the interactions are much weaker. Therefore
the vortex core has higher contrast and is larger than
near resonance. If the gas is no longer superfluid at the
time of the field ramp, we expect the vortex core to fill in
quickly and disappear. The observed vortex cores there-
fore serve as markers for the regions which are superfluid
at the time of the magnetic field ramp.

Our experimental setup has been described earlier [11,
12]. 6Li fermion pair condensates containing 5 x 106
fermions were created in an optical dipole trap at a mag-
netic field of 812 G. This is on the BEC-side of a Fesh-
bach resonance at B 0 = 834 G. At magnetic fields below
(above) Bo, on the BEC (BCS) side, the scattering length
a is positive (negative) and a nearby molecular bound
state exists (does not exist). The radial and axial trap-
ping frequencies were wr = 27r x 120 Hz and wa = 27r x 23
Hz, respectively. To observe vortices as a probe of super-
fluid flow, the gas was set in rotation: two blue-detuned
laser beams were rotated symmetrically around the cloud
for 1 s at an angular frequency of 27r x 80 Hz [8]. We al-
lowed 500 ms of equilibration before the magnetic field
was ramped (in 500 ms) to several probe fields on the



910G

960 G

FIG. 1: Superfluid expansion of a strongly interacting rotating Fermi gas. Shown are absorption images for different expansion
times on the BCS-side of the Feshbach resonance at 910 G (0.0, 1.0, 2.0, 3.0, 3.5, 4.0, and 4.5 ms) and 960 G (0.0, 0.5, 1.0,
1.5, 2.0, 2.5, and 3 ms), before the magnetic field was ramped to the BEC-side for further expansion. The vortices served as
markers for the superfluid parts of the cloud. Superfluidity survived the expansion for several milliseconds and was gradually
lost from the low density edges of the cloud towards its center. Compared to 910 G (a = -7200 ao), superfluidity decayed
faster at 960 G (a = -5000 ao) due to the reduced interaction strength. The total expansion time remained constant [14]. The
field of view of each image is 1.2 mm x 1.2 mm.

BCS side of the resonance. Finally, we studied the expan-
sion of the rotating superfluid: The gas was released from
the optical trap and expanded at the probe field for a
variable "BCS-expansion" time tBcs, that was increased
in 500 ps steps. To transfer the remaining fermion pairs
into stable molecules the magnetic field was then low-
ered in 400 ps to 680 G [13]. Here, the cloud was given
several milliseconds of "BEC-expansion". For absorption
imaging the magnetic field was raised to 730 G in 500 us
before the last 2 ms of time-of-flight. For most of the data
the total time-of-flight was chosen to be 11 ms [14]. An
absorption image of the gas was obtained separately at
tBCS to determine the peak density and the peak Fermi
momenta kF before the magnetic field sweep.

Fig. 1 shows absorption images taken as outlined above
for seven different BCS-expansion times at both 910 G
and 960 G. The presence of vortices proves that super-
fluid fermion pairs survived in the expanding gas for sev-
eral milliseconds. As the density of the gas dropped dur-
ing the BCS-expansion the vortices were gradually lost
from the low density edges of the cloud towards its center.
After 4.5 ms time-of-flight at 910 G and 3 ms at 960 G all
of the vortices had decayed. If we regard the number of
vortices as an indicator of the superfluid fraction of the
gas, we can draw the "phase diagram" of Fig. 2. Here the
number of vortices is shown as a function of the inverse
scattering length 1/a and the inverse peak Fermi momen-
tum 1/kF. As 1/kF increases at a given magnetic field,
corresponding to the decrease in density during time-of-
flight, vortices are lost. The reduction in the number
of vortices for decreasing lal reflects the decrease of the
superfluid fraction for smaller attractive interactions at
a given temperature. In addition, the increase in the
normal fraction leads to higher damping of the remain-

ing vortex number [8]. Most importantly, however, we
see that vortices are lost earlier in time-of-flight as the
interactions are reduced.

At all magnetic fields, we find that the peak interac-
tion strength at the point where all vortices were lost
is about constant, kFa - -0.8 (see Fig. 3). As shown
in Fig. 1 the loss of vortices occurred gradually and the
surviving vortices were located within a circle of decreas-
ing radius. We assume that the critical value of kFa for
which superfluidity was lost, was first reached at the edge
of the cloud and subsequently further inward. However,
we were not able to confirm this picture quantitatively
without a model that describes how the shape of the
cloud and the bimodality develop during and after the
magnetic field sweep.

It is remarkable that the observation of superfluidity
and fermion pair condensation for trapped gases has also
been limited to values of kFjaI larger than 1 [8, 12, 17].
This suggests that the underlying reason for this lim-
itation is the same for a trapped and an expanding
gas. One obvious scenario for the decay of the vortex
lattice during expansion is the breakdown of superflu-
idity due to finite temperature when a critical inter-
action strength is reached. As the density decreases,
Tc/TF drops while T/TF remains constant (since the
phase space density n x T - 3 / 2 is invariant during expan-
sion). Therefore Tc eventually becomes smaller than T
everywhere in the cloud and superfluidity is lost. The
critical interaction strength can be estimated by equat-
ing 1 - T/Tc = (T/TF)(TF/Tc) = 1.76(T/TF)(EF/A).
Here A = (2/e)7/3 EF exp(-7r/2kFjaj) is the pairing gap
in the BCS limit (valid for kFjajI 1) [18], where the
peak Fermi energy EF = h2kf 2/2m and kF are den-
sity dependent. For an estimate of our lowest tempera-
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FIG. 2: (color online)"Phase diagram" of an expanding, ro-
tating Fermi gas: At a given magnetic field the number of
vortices served as a measure for the size of the superfluid re-
gion in the gas. The number of vortices is plotted versus
1/kF and 1/lal. The contour plot was created from a total of
53 data points. In this diagram lines of constant kFa corre-
spond to hyperbolas. The vortices decayed when the density
(increasing 1/kF) or the scattering length (increasing 1/jal)
was reduced. For weaker interactions, at smaller scattering
lengths lal, vortices were lost already at higher densities. The
four data points shown mark the breakdown of superfluidity
and are the same as the squares in Fig. 3.
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FIG. 3: (color online) The peak interaction strength during
superfluid expansion. Starting at a peak kFa in the optical
trap (triangles) vortices survived up to a critical peak kFa of
-0.8 +/- 0.1 (squares), almost independent of the magnetic
field (scattering length). Filled circles correspond to partially
superfluid, open circles to normal clouds. The observed num-
ber of vortices is color coded. The critical kFa was obtained
for each magnetic field separately by taking the average of
the peak kF of the last partially superfluid and the first com-
pletely normal cloud. The error in kFa is about 10% and
dominated by the systematic error in the atom number.

FIG. 4: Disappearance of bimodality. Zero temperature
Thomas-Fermi profiles (dotted) were fit to the density profiles
(solid) obtained after BCS-expansion at 885 G and subsequent
BEG-expansion at 680 G. The x2 of the fit was monitored as
a function of the BCS-expansion time tBCS. A high X2 indi-
cates a bimodal density distribution. Vortices were still ob-
served after 5 ms of expansion (indicated by the dashed line in
the figure) while the bimodality had already disappeared (for
X2 values smaller than 0.01 bimodality cannot be discerned).
Hence, the absence of bimodality does not imply the absence
of superfluidity.

tures of T/TF = 0.05 [19] this gives kFa = -0.9 close to
the observed value. This finite-temperature scenario im-
plies that the superfluid state evolves adiabatically dur-
ing expansion, which is plausible: Even when the critical
kFa is reached, the pair binding energy still changes at
a slower rate, A/A, than the rate at which the pairs can
respond to this change, A/h [20]. For weakly interacting
BECs, the decay of vortex lattices at finite temperature
was studied theoretically in [21], and remarkably similar
structures are found.

In analogy to the critical magnetic field He2 in type-
II superconductors, superfluidity can also break down
in response to rapid rotation [22, 23]. Superfluidity is
quenched when the vortex core size becomes comparable
to the separation between the vortices. Both the crit-
ical temperature as well as the vortex core size in the
BCS limit depend exponentially on kFa and therefore
the effects of rotation might not be negligible. In [23],
however, it was found that superfluidity should be sta-
ble in the strongly interacting regime (kFlajl 1.0) at all
rotation frequencies.

Another explanation for the loss of vortices is a possi-
ble failure of the transfer of correlated fermion pairs into
molecules since the size of the fermion pairs increases
with decreasing density. When the fermion pair size be-
comes larger than the interparticle spacing, molecules
might be formed out of uncorrelated nearest neighbors
rather than out of correlated pairs. The magnetic field
sweep then destroys the coherent many-body wavefunc-
tion.

Vortices [8, 9] and bimodal density distributions [12,
17] have been used as indicators for superfluidity and
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FIG. 5: Loss of vortex contrast on resonance at 834 G. Shown are absorption images after a fixed total time-of-flight, but for
different expansion times on resonance (2, 2.5, 3, 3.5, 4, 5, and 6 ms) before the magnetic field was swept to the BEC-side for
further expansion. A gradual loss of the vortex contrast from about 15% (after 2 ms of expansion on resonance) to 3% (after
5 ms) was observed across the whole cloud. The field of view of each image is 1.2 mm x 1.2 mm.

pair condensation, respectively. If a fermion pair con-
densate is transferred to the BEC side before its inter-
action energy has been converted into kinetic energy, it
continues to expand with the drastically reduced mean-
field energy of a molecular BEC at 680 G. This results in
a clear separation of condensate and thermal cloud after
further BEC-expansion. If the transfer of fermion pairs
into molecules is delayed after releasing the gas from the
trap, the fermion pair condensate initially expands just
like the normal part of the cloud. This eventually leads to
a loss of bimodality in the density profiles after the trans-
fer. We can now study how the two indicators, vortices
and bimodality, are related in this experiment. For short
BCS-expansion tBcs our data showed bimodality as well
as vortices. However, the bimodality was gradually lost
and could not be discerned after a longer BCS-expansion
although vortices were still visible (see Fig. 4 for details).
The absence of bimodality therefore does not indicate a
breakdown of superfluidity.

So far we have studied the expansion of the gas on the
BCS side of the Feshbach resonance. On the BEC side
and on resonance, Tc is proportional to TF so that T/Tc
is constant during expansion. Therefore, one would not
expect to observe a breakdown of superfluidity in expan-
sion. Fig. 5 shows absorption images that were obtained
after an initial expansion of the cloud on resonance at
834 G. In contrast to the situation on the BCS-side of
the resonance no vortices were lost. Instead, the vortex
contrast decreased uniformly across the cloud for longer
expansion times. Vortices have been detected at total
densities as low as 1.2 x 1011 cm - 3 in the wings of the
expanded cloud. Here the critical temperature Tc of ap-
proximately 0.2 TF [15, 16] was below 20 nK (kBTF is the
local Fermi energy). We believe that the decrease in the
vortex contrast is due to the low density of the gas after
long BCS-expansion: after the magnetic field sweep the
vortex cores cannot adjust quickly enough to the high
contrast and large size they would have in equilibrium
on the BEC-side. This reduction of contrast limited our
study of the breakdown of superfluidity to magnetic fields
above 880 G.

In conclusion we have shown that superfluid pairs can

survive during the expansion of a strongly interacting
Fermi gas. This is the first observation of non-equilibrium
superfluid flow in such systems. It has allowed us to ob-
serve fermionic superfluidity at total densities as low as
1.2 x 1011 cm - 3 . Our results show that future exper-
iments with expanding, superfluid Fermi gases can be
carried out in situ, i.e. without magnetic field sweeps to
the BEC side. An intriguing question is whether fermion
pairs expanding from two clouds can coherently interfere.
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[1] W. Ketterle et al., in "Bose-Einstein Condensation in
Atomic Gases", IOS Press, Amsterdam, 1999 pp. 67-176.

[2] C. Menotti et al., Phys. Rev. Lett. 89, 250402 (2002).
[3] K. M. O'Hara et al., Science 298, 2179 (2002).
[4] C. A. Regal et al. Phys. Rev. Lett. 90, 230404 (2003).
[5] T. Bourdel et al., Phys. Rev. Lett. 91, 020402 (2003).
[6] S. Gupta et al., Phys. Rev. Lett. 92, 100401 (2004).
[7] B. Jackson et al., Europhys. Lett. 67, 524 (2004).
[8] M. W. Zwierlein et al., Nature 435, 1047 (2005).
[9] M. W. Zwierlein et al., Science 311, 492 (2006).

[10] The sweep time is much faster than the formation time of
a vortex lattice in the trap, which is several hundred mil-
liseconds. Detection of vortices after the ramp therefore
proves their presence before the ramp [8].

[11] Z. Hadzibabic et al., Phys. Rev. Lett. 91, 160401 (2003).
[12] M. W. Zwierlein et al., Phys. Rev. Lett. 92, 120403

(2004).
[13] The ramp time was 200 As for the data taken at 834, 865

and 885 G. We have checked that the rate of the magnetic
field sweep to 680 G had no influence on the number of
observed vortices within our measurement accuracy.

[14] To increase the visibility of the vortices for tacs = 0 and
500 As the total time-of-flight was increased to up to 15
ms and/or the power of the optical trap was increased by
a factor of 4.5 during the last 2 ms of trapping [8].

[15] A. Bulgac et al., Phys. Rev. Lett. 96, 090404 (2006).
[16] E. Burovski et al., Phys. Rev. Lett. 96, 160402 (2006).
[17] C. A. Regal et al., Phys. Rev. Lett. 92, 040403 (2004).
[18] L. P. Gor'kov et al., Sov. Phys. JETP 13, 1018 (1961).
[19] M. W. Zwierlein et al., Nature 442, 54 (2005).



[20] We find = x A, x + F). Since the gas ex-
pands to a very good approximation only radially, we
assume that the density varies as n(t) = no/(1 + wct2 ),
and obtain = ). For the exper-
imental parameters when the vortices in the center of the

cloud are lost we find that hA/A 2 
< 0.4.

[21] S. Kragset et al., preprint, cond-mat/0604416.
[22] M. Y. Veillette et al., preprint, cond-mat/0607775.
[23] H. Zhai et al., preprint, cond-mat/0608233.



Appendix H

Fermionic Superfluidity with

Imbalanced Spin Populations

This appendix contains a reprint of Ref. [268]: Martin W. Zwierlein, Andre Schi-

rotzek, Christian H. Schunck, and Wolfgang Ketterle, Fermionic Superfluidity with

Imbalanced Spin Populations, Science 311, 492 (2006), published online on Science

Express on 21 December, 2005 (10.1126/science.1122318) (in Science Research Arti-

cles).

230



I* EL .k

Fermionic Superfluidity with
Imbalanced Spin Populations
Martin W. Zwierlein,* Andre Schirotzek, Christian H. Schunck, Wolfgang Ketterle

We established superfluidity in a two-state mixture of ultracold fermionic atoms with imbalanced state
populations. This study relates to the long-standing debate about the nature of the superfluid state
in Fermi systems. Indicators for superfluidity were condensates of fermion pairs and vortices in
rotating clouds. For strong interactions, near a Feshbach resonance, superfluidity was observed for
a broad range of population imbalances. We mapped out the superfluid regime as a function of
interaction strength and population imbalance and characterized the quantum phase transition to
the normal state, known as the Pauli limit of superfluidity.

F ermionic superfluidity, whether it occursin superconductors, helium-3, or insidea neutron star, requires pairing of fer-mions, particles with half-integer spin. In an
equal mixture of two states of fermions ("spin
up" and "spin down"), pairing can be com-
plete and the entire system will become super-
fluid. When the two populations of fermions
are unequal, however, not every particle can
find a partner, raising the question of whether
superfluidity can persist in response to such a
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population imbalance. This problem arises in
many different fields of physics-for exam-
ple, in the study of superfluidity of quarks in
the dense matter of the early universe, where
charge neutrality and differing masses impose
unequal quark densities. In superconductors,
an applied magnetic field could in principle
imbalance the densities of spin up and spin
down electrons. As first discussed by Clogston
in 1962 (1), there exists an upper limit for this
magnetic field, beyond which superconductiv-
ity with equal spin densities will break down.
Fulde and Ferrell (2), and independently Larkin
and Ovchinnikov (3), proposed a more stable
configuration of the superconductor that allows
for unequal densities, the FFLO or LOFF state
containing nonzero-momentum Cooper pairs.

The true ground state of imbalanced fermionic
superfluids has been the subject of debate for
decades (4, 5), and experimental studies are
highly desirable. However, superconductors are
charged fermionic superfluids, and imbalanc-
ing the electron densities by applying magnet-
ic fields is hindered by the Meissner effect.
The fields are either fully shielded from the
superconductor, or they enter in the form of
quantized flux lines or vortices. Only in spe-
cial materials can these effects be suppressed,
such as in heavy-fermion superconductors (6-8)
or in quasi-two-dimensional (2D) organic su-
perconductors (6). In the neutral superfluid
helium-3, one can mismatch the Fermi sur-
faces by a magnetic field and thus destroy
interspin pairing. However, superfluidity per-
sists due to (p-wave) pairing between equal
spins (9).

Fermionic superfluids of atom pairs. The
recently discovered fermionic superfluids in
ultracold atomic gases (10-19) provide an ex-
citing new possibility of exploring unequal mix-
tures of fermions, because populations in two
hyperfine states of the fermionic atom can be
freely chosen. In addition, the (s-wave) inter-
actions between two atoms in different states
and the binding energy of atom pairs can be
tuned via Feshbach resonances. In equal mix-
tures of fermions, this tunability gives access
to the crossover from a Bose-Einstein Con-
densate (BEC) of molecules to a Bardeen-
Cooper-Schrieffer (BCS) superfluid of loosely
bound pairs (13-19). At zero temperature, this
crossover is smooth (20-22), the system stays

BEC-Side

11

B = 812 G
likF a = 0.1$

BCS-Side

(1)

B = 853 G
ltkF a = -0.15

IZ

Fig. 1. Superfluidity in a strongly interacting Fermi gas with imbalanced
populations. The upper (lower) pair of rows shows clouds prepared at
812 G, on the BEC side (853 G, BCS side), where 11kFa = 0.2 (1/kFa =
-0.15). In each pair of rows, the upper image shows state 11), the
lower one state 12). For the 812-G data, the population imbalance 8 =
(N2 - N,)I(NI f N2) between Ni atoms in state 11) and N2 in state 2) was

(from left to right) 100, 90, 80, 62, 28, 18, 10, and 0%. For the 853-G
data, the imbalance was 100, 74, 58, 48, 32, 16, 7, and 0%. For different
values of 6, the total number of atoms varied only within 20% around N =
7 x 106, with the exception of the end points 8 = 100% (N = 1 x 107)
and 8 = 0% (N = 1.2 x107). The field of view of each image is 1.4 mm
by 1.4 mm.
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superfluid even for arbitrarily weak interac-
tions, and no phase transition occurs. In the
case of unequal mixtures, the phase diagram is
predicted to be much richer (23-28). In the
molecular limit of tight binding, all fermions in
the less populated spin state will pair up with
atoms in the other state. The resulting molec-
ular condensate will spatially coexist with the
remaining Fermi sea of unpaired atoms. As the
repulsive interaction between atoms and mol-
ecules is increased, the condensate will start to
expel unpaired atoms, leading to a phase sep-
aration of the superfluid from the normal phase

Fig. 2. Vortex number versus pop-
ulation imbalance for different inter-
action strengths. Results are shown
for 812 G or 1/kFa = 0.2 (e), 853 G
(lkFa = -0.15, o), 874 G (1/kFa =
-0.3, A), 896 G (1/kFa - -0.4, 0),
and 917 G (1/kFa = -0.5, e).
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Rait t11> RItal 12>
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0.0
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Fig. 3. Radial density profiles of the two components of a strongly interacting Fermi gas mixture
with unequal populations. The profiles are azimuthal averages of the axially integrated density. (A
and B) Profiles of the component in state 11) and 12), respectively, originating from 883 G (llkFa =
-0.27). The imaging procedure, as detailed in the text and in (32), involves a magnetic-field sweep

and ballistic expansion. The population imbalance was 8 - 0% (red), 8 = 46% (blue), and 8 = 86%
(green). (C) Difference between the distributions in state 11) and 12). The total number of atoms was
N = 2.3 x 107. The clear dip in the blue curve caused by the pair condensate indicates phase
separation of the superfluid from the normal gas. (D) Color-coded profiles of clouds prepared at
three different interaction strengths. The condensate is clearly visible as the dense central part
surrounded by unpaired fermions or uncondensed molecules. Spin-polarized clouds (8 = +100%)
are not in thermal equilibrium, owing to Pauli suppression of collisions. OD, optical density.

(24-26, 29, 30). This picture is expected to ex-
tend into the BCS limit of weakly bound pairs,
where the pairing gap A prevents unpaired atoms
from entering the BCS superfluid (24-26, 31).
As the binding energy and hence the pairing
gap is further reduced, A will eventually be-
come small compared to the chemical poten-
tial difference Sp = p2, - [t, between the two
spin states, allowing unpaired excess atoms to
enter the superfluid region. Close to this point,
superfluidity will cease to exist. In the weakly
interacting BCS limit, the pairing gap is expo-
nentially small compared to the Fermi energy;

www.sciencemag.org SCIENCE VOL 311 27 JANUARY 2006

hence, an exponentially small population im-
balance can destroy superfluidity.

This superfluid-to-normal transition is an
example of a quantum phase transition, which
occurs even at zero temperature, when all ther-
mal fluctuations are frozen out and only quan-
tum fluctuations prevail. It can also be driven
by increasing the mismatch in chemical poten-
tials between the two spin states to the critical
value of 8p = A, inducing collapse into the
normal state. In this context the phase transi-
tion is known as the Pauli or Clogston limit of
superfluidity (1). However, its exact nature--
whether there is one or several first- and/or
second-order transitions-remains the subject
of debate (6, 27, 28).

Imbalanced spin populations. As the start-
ing point of our experiments, we prepared a
degenerate Fermi gas of spin-polarized 6Li
atoms, using methods of laser cooling, sym-
pathetic cooling by sodium atoms, and optical
trapping (32). A radiofirequency sweep with an
adjustable sweep rate created a variable spin
mixture of the two lowest hyperfine states,
labeled I1) and 12). Interactions between these
two states are strongly enhanced around a 300-
G-wide Feshbach resonance located at Bo -

834 G. At lower values of the magnetic-bias
field B, two isolated fermions can bind into a
stable molecule (BEC side), whereas at higher
values fermion pairs can exist only in the stabi-
lizing presence of the surrounding gas (BCS
side). The interaction is described by the pa-
rameter l/kFa, where a is the scattering length
and kF is defined as the Fermi momentum of a
noninteracting, equal spin mixture.

For the study of vortices and superfluid
flow as a function of population imbalance,
the spin mixture was set in rotation on the
BEC side, using two laser beams that rotated
symmetrically around the cloud (19, 32). Start-
ing with either a rotating or a nonrotating cloud,
we then varied the interaction strength by ramp-
ing the magnetic field B to several values
around the Feshbach resonance. To image the
fermion pair condensates, the cloud was re-
leased from the optical trap and the binding
energy of the pairs was increased by switch-
ing the magnetic field to the BEC side, far
away from resonance (13, 14, 19. 32). This
revealed the center-of-mass wave function of
the pairs and thus, for rotating clouds, the even-
tual presence of vortices.

Figure 1 shows images of the two spin
states for varying population imbalance, orig-
inating from the BEC side (B < 834 G) and
from the BCS side (B > 834 G) of the res-
onance. Starting with a pure Fermi sea in
state II), we see how gradually, for increasing
numbers in the second spin state 12), first a
normal (uncondensed) cloud of fermion pairs
emerges, then a condensate peak appears
within the normal cloud (see also Fig. 3, A
and B). The condensate can be clearly distin-
guished in the minority cloud as the dense
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central region (appearing as white in the im-
age) surrounded by the lower density normal
component (appearing as gray). As the con-
densate size increases and the friction due to
the normal component decreases, vortices ap-
pear in the rotating cloud, a direct and un-
ambiguous signature of superfluid flow. As
expected, the largest condensates with the
largest number of vortices are obtained for an
equal mixture. However, superfluidity in the
strongly interacting Fermi gas is clearly not
constrained to a narrow region around the per-
fectly balanced spin mixture, but is observed
for large population asymmetries.

Figures 1 and 2 summarize our findings
for rotating spin mixtures and displays the
number of detected vortices versus the pop-
ulation imbalance between the two spin states.
The vortex number measures qualitatively how
deep the system is in the superfluid phase: The
higher the nonsuperfluid fraction, the faster the
condensate's rotation will damp given the non-
vanishing anisotropy [(o" - o0)/(4c + i)
1.5%] of our trap (19, 33, 34). Figure 2 there-
fore shows the shrinking of the superfluid re-
gion with decreasing interaction strength on the
BCS side, closing in on the optimal situation
of equal populations.

The fraction of condensed fermion pairs.
Close to the breakdown of superfluidity, vortices
are strongly damped and difficult to observe.
Therefore, the presence of vortices provides only a
lower bound on the size of the superfluid window.
A more detailed map of the superfluid phase as a
function of interaction strength and temperature
was obtained from a study of condensate fi-actions,
determined from cloud profiles such as those
shown in Fig. 3. Throughout the whole crossover
region, pair condensation occurred for a broad
range of population imbalances. As expected,
this range was even wider than that obtained
from the observation of vortices.

An intriguing property of the superfluid state
with imbalanced populations is the clear depletion
in the excess fermions of the majority component
(Fig. 3C). The profiles in Fig. 3 present the
axially integrated density; hence, the true
depletion in the 3D density is even stronger.
The condensate seems to repel the excess
fermions. This feature was observed after
expansion at 690 G, where interactions are still
strong (initially l/kFa z 2.0). The expansion, at
least in the region around the condensate, is
hydrodynamic and should proceed as a scaling
transformation (35, 36). Therefore, the depletion
observed in expansion hints at spatial phase
separation of the superfluid from the normal
state. This effect was observed throughout the
resonance region, and on resonance even when
no magnetic field ramps were perfonned during
expansion. After submission of our work,
depletion of excess fermions in the center of
the trap was reported (37). However, to distin-
guish a phase-separated state with equal densities
in the superfluid region fiom more exotic states

allowing unequal densities, a careful analysis of
the 3D density, reconstructed from the integrated
optical densities, will be necessary.

We did not observe (by simultaneously im-
aging along the long and short axis) a mod-
ulation in the condensate density as would be
predicted for the FFLO state (23, 38, 39). How-
ever, this state is predicted to be favored only in
a narrow region of parameter space and might
have escaped our attention.

The condensate fraction was determined
from the minority component, which in all
cases is very well fit by a Gaussian for ther-
mal molecules and unpaired atoms, plus a
Thomas-Fermi profile for the condensate (fig.
S2) (32). Figure 4 shows the condensate frac-
tion obtained for varying population differ-
ence and temperature, and for several magnetic
fields (i.e., interaction strengths) around reso-
nance. The data for 754 G, on the BEC side
of the resonance, show condensation over al-
most the entire range of population imbalance.
As the interaction strength is increased toward
resonance, the condensate fraction for equal mix-
tures grows (14). However, for large population

754 G EK,. [nK]

asymmetries, the condensate disappears. The
window of condensation shrinks further as we
cross the resonance and move to the BCS side
(Fig. 4, 833 to 924 G).

The temperature varied with number im-
balance, as indicated in the insets of Fig. 4. The
temperature maximum for equal mixtures at
754 G is likely due to the greater energy release
when more deeply bound molecules were formed
and explains the smaller condensate fraction for
equal mixtures found at this field. For higher
fields, the temperature changes much less with the
spin composition (32). The observed critical pop-
ulation imbalance was only weakly dependent on
temperature. This may reflect the fact that well
below the critical temperature for superfluidity,
the pairing gap is only weakly dependent on tem-
perature (40). The critical imbalance at our coldest
temperatures will thus essentially coincide with its
value at zero temperature.

On resonance, where the scattering length a
diverges, the system is in the unitary regime (41),
where the only remaining energy scales of the
system are the Fermi energies EF., and EF.2 of the
two spin components (42). The breakdown of

786 G
/kF a=0.75 . 600 l/kF a 0.39

0.4 . 400
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Fig. 4. Condensate fraction versus population imbalance for several temperatures and interaction
strengths. The total number of atoms N = 2.3 x 107 is constant to within 20% for all data points
(TF = 1.9 pK for an equal mixture) (32). For a given population imbalance, the uppermost curves
for different magnetic fields are approximately isentropically connected. The different symbols
correspond to different evaporation ramps. The average radial kinetic energy per molecule of
thermal clouds in the minority component serves as an indicator for temperature and is shown in
the insets for 754 G (upper) and 833 G (lower) for the coldest data. On resonance, for a pop-
ulation asymmetry of 50%, we measure an energy of k. x 300 nK (circles) (k, is the Boltzmann
constant), 345 nK (inverted triangles), 390 nK (squares), 420 nK (triangles), and 505 nK
(diamonds). The critical population imbalance 6c for the breakdown of condensation at 754 G is
about-8754 = 96%, and at 786 G it is 6786 = 95%. For the data at higher magnetic fields, we
determine 8c through a threshold fit to the first three data points with nonzero condensate
fraction for each sign of asymmetry. Although we could have used any reasonable threshold
function, empirically, it was found that the function nc(1 - 1/c=13- 3) (n, - maximum condensate
fraction) provided a good fit to all data points. Therefore, it was used for the threshold fits and is
shown as a guide to the eye.
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superfluidity occurs for a certain universal ratio
of these two or equivalently, in a harmonic trap,
for a certain critical population imbalance. We
determine this universal number to be 6,c
±70(3)% for our approximately harmonic trapping
potential. In (37), depletion of excess fennions
was reported up to an imbalance of 85% and was
interpreted as indirect evidence for superfluidity.
However, superfluidity was not directly observed,
and our data show that the system is normal at
this imbalance.

The critical imbalance Sc corresponds to a
Fermi energy difference 8E, = EF,2 - EF1 =

[(1 + 6c)1/3 - (1 -
6
ac)

13]EF = 0.53(3)EF,
where EF is the Fermi energy of an equal mix-
ture of noninteracting fermions. The standard
BCS state is predicted (1) to break down for a
critical chemical-potential difference 8pi = v_ A.
On resonance, however, Monte-Carlo studies
predict (24) the superfluid breakdown to occur
when 8p = 2.0(1)A = 1.0(1)E,. Only in the
weakly interacting regime do the chemical po-
tentials equal the Fermi energies. Quantitative
agreement with the Monte-Carlo study would
require that 8p = 2 8E,. This is not unreasonable
given that interactions will reduce the chem-
ical potential of the minority component. In a
preliminary analysis, we indeed find close
agreement with theory.

Figure 5 summarizes our findings, showing
the critical mismatch in Fermi energies for which

we observed the breakdown of superfluidity as
well as the pairing gap A versus the interaction
parameter l/kFa. Far on the BEC side of the
resonance, the superfluid is very robust with
respect to population imbalance. Here, pairing is
dominantly a two-body process: The smallest
cloud of atoms in state !1) will fully pair with
atoms in state 12) and condense at sufficiently
low temperatures. On the BCS side of the
resonance, however, pairing is purely a many-
body effect and depends on the density of the two
Fermi clouds. As the density of the minority
component becomes smaller, the net energy gain
from forming a pair condensate will decrease.
Even at zero temperature, this eventually leads to
the breakdown of superfluidity and the quantum
phase transition to the normal state. We have
experimentally confirmed the qualitative picture
that fermionic superfluidity breaks down when
the difference in chemical potentials between the
two species becomes larger than the pairing gap.

Concluding remarks and outlook. We have
observed superfluidity with imbalanced spin
populations. Contrary to expectations for the
weakly interacting case, superfluidity in the
resonant region is extremely stable against
population imbalance. As the asymmetry is in-
creased, we observe the quantum phase tran-
sition to the normal state, known as the Pauli
limit of superfluidity. Our observation opens
up intriguing possibilities for further studies on

E, = 0.36 E,
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Fig. 5. Critical difference in Fermi energies SEF between the two spin states for which the
superfluid-to-normal transition is observed. 8EF for each interaction strength and temperature is
obtained from the critical population imbalance determined in Fig. 3 using 8EF/E, = (1 + 8,)1/3 -

(1 - 8C)
d

3. The symbols are defined in Fig. 3. The Line shows the expected variation of the pairing
gap A, where the value on resonance has been taken from (24) and the exponential behavior in the
BCS regime, A - e-/' 2k,•ai, was assumed. Although the trend of 8E, is expected to follow that of A,
the close agreement is coincidental. Representative density profiles illustrate the quantum phase
transition for fixed interaction and for fixed population imbalance along the dashed lines.
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Fermi systems with mismatched Fermi sur-
faces. One important aspect concerns the density
distribution in the superfluid regime. Standard
BCS theory allows only equal spin densities,
which would entail complete phase separation of
the superfluid from the normal density. More
exotic solutions (6) allow superfluidity also with
imbalanced densities, most notably the FFLO
state. A more detailed scan of the parameter
space and precise measurements of spatial
profiles might resolve the long-standing question
of the true ground state. Equally fascinating is the
nature of the strongly correlated normal state
slightly below resonance. For sufficient popula-
tion imbalance, we have the remarkable sit-
uation in which bosonic molecules, stable even
in isolation, do not condense at zero tempera-
ture, owing to the presence of the Fermi sea.
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Community Genomics Among
Stratified Microbial Assemblages
in the Ocean's Interior
Edward F. DeLong,l* Christina M. Preston, 2 Tracy Mincer,' Virginia Rich,' Steven i. Hallam,'
Niels-Ulrik Frigaard, 1 Asuncion Martinez,' Matthew B. Sullivan,1 Robert Edwards, 3

Beltran Rodriguez Brito,3 Sallie W. Chisholm,' David M. Karl 4

Microbial life predominates in the ocean, yet little is known about its genomic variability,
especially along the depth continuum. We report here genomic analyses of planktonic microbial
communities in the North Pacific Subtropical Gyre, from the ocean's surface to near-sea floor
depths. Sequence variation in microbial community genes reflected vertical zonation of taxonomic
groups, functional gene repertoires, and metabolic potential. The distributional patterns of
microbial genes suggested depth-variable community trends in carbon and energy metabolism,
attachment and motility, gene mobility, and host-viral interactions. Comparative genomic analyses
of stratified microbial communities have the potential to provide significant insight into
higher-order community organization and dynamics.

Microbial plankton are centrally involved
in fluxes of energy and matter in the sea,
yet their vertical distribution and func-

tional variability in the ocean's interior is still only
poorly known. In contrast, the vertical zonation of
eukaryotic phytoplankton and zooplankton in the
ocean's water column has been well documented
for over a century (I). In the photic zone, steep
gradients of light quality and intensity, temperature,
and macronutrient and trace-metal concentrations
all influence species distributions in the water
column (2). At greater depths, low temperature,
increasing hydrostatic pressure, the disappearance
of light, and dwindling energy supplies largely
detenrine vertical stratification of oceanic biota.

For a few prokaryotic groups, vertical distrib-
utions and depth-variable physiological properties
are becoming known. Genotypic and phenotypic
properties of stratified Prochlorococctus "ecotypes"
for example, are suggestive of depth-variable
adaptation to light intensity and nutrient availabil-
ity (3-5). In the abyss, the vertical zonation of
deep-sea piezophilic bacteria can be explained in
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part by their obligate growth requirelment for
elevated hydrostatic pressures (6). In addition,
recent cultivation-independent (7-15) surveys have
shown vertical zonation patterns among spe-
cific groups of planktonic Bacteria, Archaea,
and Eukarya. Despite recent progress however,
a comprehensive description of the biological
properties and vertical distributions of plank-
tonic microbial species is far from complete.

Cultivation-independent genomic surveys
represent a potentially useful approach for char-
acterizing natural microbial assemblages (16, 17).
"Shotgun" sequencing and whole genome assem-
bly from mixed microbial assemblages has been
attempted in several environmnents, with varying
success (18, 19). In addition, Tringe et al. (20)
compared shotgun sequences of several disparate
microbial assemblages to identify community-
specific pattems in gene distributions. Metabolic
reconstruction has also been attempted with en-
vironmental genomic approaches (21). Never-
theless, integrated genomic surveys of microbial
communities along well-defined environmental
gradients (such as the ocean's water column)
have not been reported.

To provide genomic perspective on microbial
biology in the ocean's vertical dimension, we
cloned large [-36 kilobase pairs (kbp)] DNA
fragments from microbial communities at differ-
ent depths in the North Pacific Subtropical Gyre

(NPSG) at the open-ocean time-series station
ALOHA (22). The vertical distribution of micro-
bial genes from the ocean's surface to abyssal
depths was determined by shotgun sequencing of
fosmnid clone tennini. Applying identical collection,
cloning, and sequencing strategies at seven depths
(ranging from 10 m to 4000 m), we archived
large-insert genomic libraries fium each depth-
stratified microbial community. Bidirectional DNA
sequencing of fosmid clones (~ 10,000 sequences
per depth) and comparative sequence analyses
were used to identify taxa, genes, and metabolic
pathways that characterized vertically stratified
microbial assemblages in the water column.

Study Site and Sampling Strategy
Our sampling site, Hawaii Ocean Time-series
(HOT) station ALOHA (22045' N, 158vW),
represents one of the most comprehensively
characterized sites in the global ocean and has
been a focal point for time series-oriented ocean-
ographic studies since 1988 (22). HOT inves-
tigators have produced high-quality spatial and
time-series measurements of the defining physi-
cal, chemical, and biological oceanographic pa-
rameters from surface waters to the seafloor. These
detailed spatial and temporal datasets present
unique opportunities for placing microbial ge-
nomic depth profiles into appropriate oceano-
graphic context (22-24) and leverage these data
to formulate meaningful ecological hypotheses.
Sample depths were selected, on the basis of
well-defined physical, chemical, and biotic char-
acteristics, to represent discrete zones in the water
column (Tables 1 and 2, Fig. 1; figs. SI and S2).
Specifically, seawater samples from the upper
euphotic zone (10 m and 70 m), the base of the
chlorophyll maximum (130 m), below the base of
the euphotic zone (200 m), well below the upper
mesopelagic (500 m), in the core of the dissolved
oxygen minimum layer (770 m), and in the deep
abyss, 750 mi above the seafloor (4000 mi), were
collected for preparing microbial community DNA
libraries (Tables 1 and 2, Fig. 1; figs. Sl and S2).

The depth variability of gene distributions was
examined by random, bidirectional end-sequencing
of - 5000 fosmids from each depth, yielding - 64
Mbp of DNA sequence total from the 4.5 Gbp
archive (Table 1). This represents raw sequence
coverage of about 5 (1.8 Mbp sized) genome
equivalents per depth. Because we surveyed
-180 Mbp of cloned DNA (5000 clones by
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Fermionic Superfluidity with Imbalanced Spin
Populations

Martin W. Zwierlein, Andr6 Schirotzek, Christian H. Schunck,
Wolfgang Ketterle

Materials and Methods
Creation of ultracold imbalanced spin mixtures. To map out the superfluid regime as a
function of population imbalance, we use two complementary techniques: the detection of vor-
tices in a rotating cloud (SI) and the determination of the fraction of condensed fermion pairs
in non-rotating mixtures (S2-S4). The two experimental methods require slightly different pro-
cedures for imaging the pair condensate wavefunction after release from the trap. To determine
the fraction of condensed vs uncondensed pairs, the condensate must separate well from the
thermal cloud and should therefore remain small. For the detection of rotating clouds, the con-
densate should expand to a large size in order to magnify the vortices. In the following, we give
the parameters used to determine the condensate fraction (experiment B) in parentheses after
those used for vortex detection (experiment A).

In the first stage of the experiment, fermionic 6Li atoms were sympathetically cooled to
degeneracy by 23Na atoms in a magnetic trap (SS5). The ultracold cloud was subsequently loaded
into an optical dipole trap (waist w - 120 tIm) at a maximum trap depth of about 8 pK. At a
magnetic bias field of 875 G, a variable spin-mixture of the two lowest hyperfine states (labelled

1i) and 12)) was created via a Landau-Zener radiofrequency sweep with an adjustable sweep
rate. The spin mixture was evaporatively cooled further by lowering the trap depth to 1.6 IK
resulting in radial and axial trap frequencies of v, = 110 Hz and v, = 23 Hz, respectively.
At the same time, the magnetic field was ramped to about 815 G, which is on the BEC-side
close to the Feshbach resonance at 834 G (S6), and deep in the strongly interacting regime. The
rather moderate evaporation still leaves room for thermal molecules in an equal mixture, but was
chosen to efficiently cool highly asymmetric mixtures, avoiding spilling of large Fermi clouds.
This ensured that the total number of atoms was approximately constant and independent of the
asymmetry between the two spin states (see Fig. S ).

For the vortex experiment, we set the spin mixture in rotation using two blue-detuned laser
beams (wavelength 532 nm) rotated symmetrically around the cloud at angular frequency Q =
27r 70 Hz) (Si). After 800 ms of stirring, the rotating cloud was left to equilibrate for several
hundred ms (S7).



Tuning the interactions and imaging the cloud. Starting with either the rotating or the non-
rotating cloud, we varied the interaction strength between the two spin states in the gas by
ramping the magnetic field in 100 ms (experiment B: 500 ms) to several values around the Fes-
hbach resonance (for the condensate fraction experiment B, the trap depth was simultaneously
increased to 4 ILK (v, = 192 Hz)). After 50 ms (B: 100 ms) of hold time, an image of the
cloud was taken following the procedure outlined in (Si): After releasing the cloud from the
optical trap the binding energy of fermion pairs was rapidly increased by ramping the magnetic
field within 2 ms (B: 200 ps) to 690 G, in the far wings of the resonance on the BEC side.
Here, fermion pairs were stable throughout further expansion. After a total of 11 ms (B: 14
ms) of expansion (in the remaining magnetic saddle-point potential) an image of either state 11)
or state 12) was taken. In experiment A on vortices, the clouds were imaged at 690 G. For the
condensate fraction data (B), the magnetic field was suddenly switched to 800 G right before
imaging. At this field the molecules absorb the probe light with the same strength as free atoms
(reduced to 75% at 690 G). The images revealed the center-of-mass wavefunction of the pairs
and, for rotating clouds, eventually the presence of vortices. For the condensate fraction experi-
ment, the 200 Is fast ramp to the BEC-side immediately after release from the trap ensured that
even large condensates separated well from the normal, uncondensed component. A rapid ramp
to zero field would result in an even better separation (S3, S4), but we found that field sweeps
into regions far outside the resonance cause loss of observed atoms (S4). Since the ramp was
fast compared to the radial trapping period, the size of the expanded condensate was mostly
governed by the residual mean-field interaction at 690 G, where a = 1400 ao. This expanded
size was actually smaller than that of a condensate released from equilibrium at 690 G, because
of the lower mean-field energy before expansion.

The described approach to detect fermion pair condensates originating from the BCS-side
was theoretically discussed by several authors (S8-S12). In some cases (S8, SiO, S11) even
quantitative agreement with experiments (S2, S3) was reached. It is reasonable to assume that
condensed fermion pairs on the BCS-side can transform into zero-momentum molecules, as
long as their original pair size is smaller than the interparticle spacing. Experimentally, our
group showed that the formation dynamics of these condensates is slow compared to the time
needed to cross resonance in the rapid ramp (S4), excluding growth of the condensate during
the ramp. The ramp employed in our present work does not result in loss of atoms, previously
encountered for ramps to zero field (S4). The condensate fraction is thus a direct measure of the
superfluid component in the mixture.



Determining the condensate fraction. Fig. S2 shows typical optical density profiles origi-
nating from resonance. Azimuthal averaging resulted in very good signal-to-noise in the optical
density, with relative fluctuations of 10- 3. The total signal fluctuated from shot-to-shot by about
5%, due to frequency fluctuations of the imaging laser, but the profile's shape was not affected.
Imperfections in the polarization of the light, stray light etc. tend to systematically lower the
optical density. Indeed, the total signal obtained by imaging with circularly polarized light
along the magnetic field axis was 20% smaller than the (more robust) number obtained from
imaging perpendicular to the magnetic field axis. The latter coincided with the total number of
atoms, which was calibrated by measuring the trap frequencies and the Fermi radius of almost
perfectly spin-polarized degenerate Fermi clouds (a pure spin-polarized Fermi gas would not
reach thermal equilibrium due to Pauli suppression of collisions).

The profile of the minority component was very well fit by a bimodal fit, consisting of a
gaussian e-r2 /2R t plus a Thomas-Fermi-profile of the form (1 - x2)3 /2 for the condensate. The
standard deviation in the condensate fraction for three measurements taken over the course of an
hour was 1%, while the standard deviation of the population imbalance was 3%. A more refined
fitting function, accounting for depletion of the thermal cloud in the presence of the condensate,
increased the condensate fraction by at most 10% (for a condensate fraction of 50%), without
changing the quality of the fit (see Fig. S2).

The highest condensate fractions of 40% were limited by the chosen evaporation ramp,
which avoided spilling of large Fermi clouds but did not result in the coldest attainable tem-
peratures for equal mixtures (see Fig. S ). Essentially pure condensates, with no appreciable
thermal component, were achieved in equal mixtures by evaporating to a lower final trap depth.
For asymmetric mixtures, such a ramp strongly reduces the population imbalance by preferen-
tially removing unpaired atoms.

Thermometry in the strongly interacting regime. The width of the expanded thermal molec-
ular cloud Rth after the rapid ramp to the BEC-side provides an upper limit for the system's
temperature (see Fig. S 1). The average radial kinetic energy per molecule in the thermal cloud
is given by Ekin = 2mR 2h/t2, where m is the mass of a lithium atom and t is the expansion
time. A standard correction was applied to this formula accounting for the cloud's expansion in
the harmonic saddle-point potential. For a non-interacting cloud, Ekin/kB equals the tempera-
ture of the gas, where kB is Boltzmann's constant. Interactions increase Ekin. Note, however,
that the mixture immediately after the rapid ramp to the BEC-side is more dilute than an equi-
librium sample at 690 G, due to the large initial size of the Fermi gas on the BCS-side. Ekin/kB
should therefore be a good estimate of the system's temperature. Indeed, for equal mixtures
on resonance, a condensate was observed when Ekin/EF (EF is the Fermi energy of an equal
mixture) was lowered from 0.34 (diamonds in Fig. 4, 833 G) to 0.28 (triangles in Fig. 4). This
is close to the predictions Tc/TF = 0.29 (S13), TC/TF = 0.31 (S14) and Tc/TF = 0.3 (S15)
for the ratio of the critical temperature of superfluidity on resonance and the Fermi temperature
TF = EF/kB.
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Figure 1: Upper two panels: Dependence of the spin populations after evaporation and their
imbalance as a function of the rate of the radiofrequency sweep applied to control the spin
populations at full trap depth. These sweeps are characterized by their Landau-Zener transfer
probability. Lower panels: Dependence of the average radial kinetic energy and the total number
of atoms in the mixture as a function of population imbalance. The clouds originate from 883
G (BCS-side, see Fig. 4). Red closed circles: Atoms in state I1). Open blue circles: Atoms in
state 12). The data-points are averages of three measurements taken over the course of one hour.
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Figure 2: Radial density profiles of an unequal spin mixture originating from resonance. The
density profile of the minority component (red curve) was fit using two different models for the
thermal cloud: the non-interacting case (gaussian, dotted line) and the strongly interacting case
of a thermal cloud that is fully separated from the condensate (leading to a flat distribution in
the axially integrated profile at points where there is a condensate, dash-dotted line). The two
fits are indistinguishable on the scale of this graph. The residual of the gaussian plus Thomas-
Fermi-fit after subtraction of the original profile is shown on top.
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Direct observation of the superfluid phase
transition in ultracold Fermi gases
Martin W. Zwierlein', Christian H. Schunckt , Andre Schirotzek' & Wolfgang Ketterle'

Phase transitions are dramatic phenomena: water freezes into ice,
atomic spins spontaneously align in a magnet, and liquid helium
becomes superfluid. Sometimes, such a drastic change in beha-
viour is accompanied by a visible change in appearance. The
hallmark of Bose-Einstein condensation and superfluidity in
trapped, weakly interacting Bose gases is the sudden formation
of a dense central core inside a thermal cloud'-'. However, in
strongly interacting gases-such as the recently observed fermio-
nic superfluids"-there is no longer a clear separation between the
superfluid and the normal parts of the cloud. The detection of
fermion pair condensates has required magnetic field sweeps" '

into the weakly interacting regime, and the quantitative description
of these sweeps presents a major theoretical challenge. Here we
report the direct observation of the superfluid phase transition in a
strongly interacting gas of 6Li fermions, through sudden changes in
the shape of the clouds-in complete analogy to the case of weakly
interacting Bose gases. By preparing unequal mixtures of the two
spin components involved in the pairing'2 ,", we greatly enhance the
contrast between the superfluid core and the normal component.
Furthermore, the distribution of non-interacting excess atoms
serves as a direct and reliable thermometer. Even in the normal
state, strong interactions significantly deform the density profile
of the majority spin component. We show that it is these inter-
actions that drive the normal-to-superfluid transition at the
critical population imbalance of 70 t 5 per cent (ref. 12).

The dramatic signature of Bose-Einstein condensation in weakly
interacting gases in atom traps derives from a natural hierarchy of
energy scales: the critical temperature for condensation, T' oc n 73 at
particle density n, is much larger than the chemical potential
(divided by the Boltzmann constant kB) of a pure condensate,
C oc na, which measures the interaction strength between particles

(a is the scattering length). Hence, for weak (repulsive) interactions
(a > 0, na 3 < 1), the condensate is clearly distinguished from the
cloud of uncondensed particles through its smaller size and higher
density. However, as the interactions are increased, for example by
tuning a using a Feshbach resonance, this hierarchy of energy scales
breaks down, as ; can now become comparable to kBTc. In Fermi
gases with weak attractive interaction (a < 0, nlaI3 < 1), the
chemical potential is given by the Fermi energy EF and will even
far exceed the superfluid transition temperature kBTc oc EFe-ir2kelaI
(where k F oc n113 is the Fermi wave vector). Both the normal and the
condensed cloud will here be of the same size and shape, dependent
only on EF and the trapping potential.

The phase transition from the normal to the superfluid state,
although dramatic in its consequences, is thus not revealed by a
major change in the appearance of the gas. Indeed, in strongly
interacting Fermi gases no deviation from a normal cloud's shape
has so far been detected, either in the unitary regime, where a
diverges, or on the attractive Bardeen-Cooper-Schrieffer (BCS)
side of a Feshbach resonance. Theoretical works predicted small

'kinks ' 4-"' or other slight deviations'7 in the density profiles of the
gas in the superfluid regime, but after line-of-sight integration these
effects have so far been too small to be observable. Condensates could
only be observed via rapid magnetic field ramps to the Bose-Einstein
condensate (BEC) side (a > 0) of the Feshbach resonance, per-
formed during expansion"9' 0. This suddenly reduced the condensate's
chemical potential, and let the thermal fraction grow beyond the
condensate size. A similar ramp was used to detect vortices on
resonance and on the BCS side in the demonstration of fermionic
superfluidity". However, these magnetic field ramps are difficult to
model theoretically, and a satisfactory quantitative comparison of,
for example, the condensate fraction with experiments has not been
accomplished"' 2

In this work we demonstrate that the normal-to-superfluid phase
transition in a strongly interacting Fermi gas can be directly observed
in absorption profiles, without the need for any magnetic field ramps.
As in the case of weakly interacting BECs, preparation, expansion and
detection of the sample all take place at the same, fixed magnetic field
and scattering length. As for BECs, the phase transition is observed as
a sudden change in the shape of the cloud during time-of-flight
expansion, when the trap depth is decreased below a critical value. To
clearly distinguish the superfluid from the normal component, we
break the number symmetry between spin-up (majority atom
number, N T) and spin-down (minority atom number, N 1) and
produce an unequal mixture of fermions (imbalance parameter
6 = (Nt - NI)/(Nt + N1)). Standard BCS superfluidity requires
equal densities of the two spin components. Hence, when cooled
below the phase transition the cloud should show a sudden onset of a
superfluid region of equal densities. Indeed, below a critical tem-
perature, we observe how the density distribution of the minority
component becomes bimodal.

Breaking the symmetry in atom numbers thus produces a direct
and striking signature of the superfluid phase transition22-24 . A
similar situation has been encountered in Bose-Einstein conden-
sation, where breaking the symmetry of a spherical trap resulted in
dramatic anisotropic expansion of the condensate, now a hallmark of
the BEC phase transition.

Figure 1 shows column density profiles of the two imbalanced spin
states for different points along the evaporation path corresponding
to different temperatures, and for three magnetic fields that corre-
spond to the BEC side, exact resonance and the BCS side of the
resonance. For large final trap depths (upper panels in Fig. 1), the
smaller cloud has the expected shape of a normal, non-superfluid gas:
it is very well fitted using a single, finite temperature Thomas-Fermi-
profile (with central optical density, radius and the fugacity as
independent fit-parameters). However, below a critical trap depth,
a second, denser feature appears in the centre of the minority
component (lower panels in Fig. 1). This onset of bimodality occurs
very suddenly as the trap depth is lowered, as can be seen from Fig. 2:
Around the critical point, the atom number (Fig. 2a) and population
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imbalance (Fig. 2b) are practically constant, and the temperature
(Fig. 2c) varies in a smooth linear way with the trap depth. In contrast,
below the critical trap depth, the shape of the smaller cloud starts to
deviate drastically from the Thomas-Fermi distribution of a normal
gas, as quantified in Fig. 2d. This sudden increase in the standard
deviation of a fit to a single-component fitting function is a standard
way of identifying the BEC phase transition in a model-independent
way2.

Figure 2e displays the fact that below the critical trap depth a new,
third radius is required to describe the two clouds. As we will see below,
the appearance of this central feature coincides with the appearance of
the fermion pair condensate in experiments involving the magnetic field
ramp technique' -' 2. It is this condensate that contains the superfluid
vortices in refs 8 and 12. We are thus naturally led to interpret the central
core as the condensate of fermion pairs, and the outer wings as the
normal, uncondensed part of the cloud. This constitutes, to our
knowledge, the first direct observation of the normal-to-superfluid
phase transition in resonantly interacting Fermi gases on resonance and
on the BCS side (that is, without a magnetic field sweep that so far
cannot be quantitatively accounted for).

Already at high temperatures, above the phase transition, the
larger cloud's profile is strongly deformed in the presence of the
smaller cloud, a direct signature of interaction. Indeed, on resonance
the cloud size of the minority component is significantly smaller than
that of a non-interacting sample with the same number of atoms (see
Fig. 2e). At the phase transition, the outer radii of the clouds do not
change abruptly. This demonstrates that interactions, not super-
fluidity, are the main mechanism behind the reduced cloud size of an
interacting Fermi gas.

On the BEC side, the condensate is clearly visible in the larger cloud.

On resonance, however, the condensate is not easily discernible in the
larger component's profiles at the scale of Fig. 1. Nevertheless, we
have found a very faint but reproducible trace of the condensate
when analysing the curvature of these column density profiles (see
Supplementary Fig. S ). On resonance and on the BCS side, the onset
of bimodality in the smaller cloud can be clearly observed for
imbalances larger than -20% (but below a certain critical imbalance,
see below), for which the condensate is small compared to the
minority cloud size. With increasing magnetic field on the BCS
side (that is, with decreasing interaction strength), the bimodality
becomes less pronounced and is not clearly discerned beyond 853 G
(interaction parameter llkF a < -0.15).

Thermometry of strongly interacting Fermi gases has always been a
major difficulty in experiments on strongly interacting fermions2s. A
thermometer can only be reliable if the working substance is not
affected by the sample to be measured. In equal mixtures of fermions,
the two overlapping atomic clouds are strongly interacting through-
out. Temperatures determined from a non-interacting Thomas-
Fermi fit to these clouds need calibration based on approximate
theoretical calculations25 . In addition, as will be reported elsewhere,
we find that those fits do not describe the profiles of a partially
superfluid Fermi gas as well as they do in the normal state, in
agreement with theory -'4- . In the case of imbalanced mixtures, the
wings of the larger component, where the spin-down species are
absent, are non-interacting and thus serve as a direct thermometer
(see Fig. 2c). For an imbalance of 6 = 75 + 3% we determine the
critical temperature for the phase transition on the BEC side at l/kF
a = 0.46 to be T/TF = 0.18(3) (kBTF=hw(3(NT+Ni))1/3 =
h2k2/2m is the Fermi energy of a non-interacting, equal mixture
with the same total number of fermions NT+ N 1, w/21r is the
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Figure 1 I Direct observation of the phase transition in a strongly
interacting two-state mixture of fermions with imbalanced spin
populations. Top (a-c) and bottom (d-f) rows show the normal and the
superfluid state, respectively. Panels a and d were obtained in the BEC
regime (at B = 781 G), b and e on resonance (834 G), and c and f on the BCS
side of the Feshbach resonance (853 G). The profiles represent the azimuthal
average of the column density after 10 ms (BEC side) or 11 ms (on resonance
and BCS side) of expansion. The appearance of a dense central feature in the
smaller component marks the onset of condensation. The condensate causes
a clear depletion in the difference profiles (bottom of each panel). Both in
the normal and in the superfluid state, interactions between the two spin
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states are manifest in the strong deformation of the larger component. The
dotted lines show Thomas-Fermi fits to the wings of the column density.
The radii Rt and RI mark the Fermi radius of a ballistically expanding,
non-interacting cloud with atom number N1, N 1. The trap depth U (in pK),
the atom numbers, the population imbalance 6 (in %), the interaction
parameter 1/kF a, the temperature T (in nK) and the reduced temperature
TITF were respectively: a, 4.8, 1.8 X 107 and 2.6 X 106, 75, 0.42, 350, 0.20;
b, 3.2, 1.8 X 107 and 4.2 x 106, 63, O0 (resonance), 260, 0.15; c, 2.5, 1.5 X 10
and 4.5 X 106, 52, -0.13, 190, 0.12; d, 0.8, 6.5 x 106 and 1.5 x 106, 62, 0.67,
50, 50.05; e, 1.1, 1.5 x 107 and 3.8 x 106, 60%, O (resonance), 70, 0.06; f, 1.2,
1.3 x 10' and 4.4 x 106, 50, -0.15, 100, 0.08. a.u., arbitrary units.
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geometric mean of the trapping frequencies, and m is the mass of "Li).
This corresponds to T/Tc, = 0.55(9) when comparing the tempera-
ture to the critical temperature Tc, for Bose condensation in a non-
interacting gas with N1 bosons. The reduction in the critical tempera-
ture is a direct consequence of strong repulsive interactions between the
molecules. On resonance, at 6 = 59 + 3%, we find T/TF = 0.12(2),
and on the BCS side (l/k Fa = -0.14) for 6 = 53 + 3% we obtain T/I
TF = 0.11(2). These are, to our knowledge, the first directly measured
and reliable temperatures for the superfluid transition in strongly
interacting Fermi gases. They may serve as a checkpoint for theor-
etical models.

BEC side
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We note that the critical temperature will in general depend on the
population imbalance. For example, for large enough imbalance on
resonance or on the BCS side, no condensate will form even at zero
temperature 2 , as we discuss below. Here, the critical temperature for
superfluidity will be zero.

An important qualitative difference distinguishes the BEC side
from resonance at the lowest temperatures. On the BEC side, the gas
consists of only two parts-the superfluid core surrounded by a fully
polarized degenerate Fermi gas of the excess species. On resonance
and on the BCS side, however, there exists a third region, a normal
state in which both species are mixed. Several recent theories describe
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Figure 2 1 Characterization of the phase transition. a-e, The data
characterize the evolution of the fermion mixture as the cloud is
evaporatively cooled by lowering the trap depth. The chosen magnetic fields
are identical to those in Fig. 1. Data obtained from the majority (minority)
cloud are shown as diamonds (circles). a, The atom number; b, the
population imbalance between the two spin states; and c, the temperature of
the spin mixture as determined from the non-interacting wings of the
larger cloud's profile. d, A finite temperature Fermi-Dirac (for resonance
and the BCS side) or gaussian (for the BEC side) distribution is fitted to
the minority cloud; the phase transition is marked by a sudden increase in
X2 as the condensate starts to appear. e, Outer radii of the majority and

56

o
! !-!

0

1 2 3
Trap depth (K)

• x9

I | I l

1 2 3
Trap depth (IIK)

minority cloud (for the minority cloud on the BEC side, thermal cloud
radius; all other cases, Thomas-Fermi radius) as well as the condensate
radius (open circles), defined as the position of the 'kink' in the minority
profile (see Fig. 1). The majority (minority and condensate) cloud size is
normalized by the Fermi radius Rt (R1) of a non-interacting cloud with NJ
(NI) atoms, and adjusted for ballistic (hydrodynamic) expansion. Note
that the imbalance decreases during evaporation because the larger
majority cloud incurs stronger evaporative losses. For the data, three
(BEC and resonance) to five (BCS) independent measurements were
averaged.
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nced Fermi mixtures2" 32. Mean-field theories observed the quantum phase transition from the superfluid to the
n the normal cloud and between the normal normal state as a critical population imbalance of bc = 70% was
re only in qualitative agreement with our exceeded. This strongly suggests that the bimodality observed here
t exclude the mixed region or find super- directly in the minority component, and the bimodality observed in
all population imbalances are ruled out by molecular clouds after a magnetic field sweep, are signatures of the

same phase transition.
of the clear separation between condensate The transition at 6c is known as the Clogston limit of super-
,we varied the population imbalance at our fluidity' 233, and occurs when the chemical potential difference 6b1
d on resonance. Figure 3b shows several becomes larger than a constant times the (local) superfluid gap A(r)
1 ms expansion from the trap. For large (see Supplementary Information). Here we present a simple picture
minority cloud is not bimodal and well fitted for the character of this phase transition in a harmonic trap.
omas-Fermi profile. At a critical imbalance Thomas-Fermi fits for the normal clouds beyond 6, allow a simple
nsate appears and then grows further as estimate of the central three-dimensional density of the gas (with an
d (for the cloud radii, see Supplementary estimated accuracy of 20% for the relative density difference), shown

in the inset of Fig. 3. For large imbalances, we find that the three-
pearance of the condensate for imbalances dimensional densities differ significantly, as is expected for two
ias-Fermi profile is fitted to the wings of the weakly interacting Fermi clouds. As the imbalance is reduced towards
:tion of atoms not contained in this fit is a the critical 8c, the central densities approach each other and become
ate fraction (see Fig. 3). We find a critical approximately equal around 6. This is a direct consequence of strong
% above which the condensate disappears. interactions in the normal state. In a non-interacting Fermi mixture
vious work12, where we employed a rapid with an imbalance of 6s, the central densities would differ by a factor
side to extract the condensate fraction. We of 2.4.

This observation now offers an intriguing insight into the nature of
a fermionic superfluid on resonance or on the BCS side. Already in
the normal state above Tc or beyond 6 = •,, interactions between

Population imbalance (%) the two spin states are strong. Indeed, this is directly seen in the
80 70 60 50 40 deformation of the majority cloud due to the presence of the

minority species (see Figs 1, 3). However, here these interactions
are not strong enough to let the central densities of the two clouds
become comparable. At the critical imbalance the Clogston criterion
6 = cA(r = 0) is fulfilled in the centre of the trap (here, c is a
constant that equals J2 in the BCS limit"). For smaller imbalance, a

I* central superfluid region can form: the condensate. Its borders are
* defined by 6b < cA(r). The simple density estimate in Fig. 3 suggests

* * 0 that in this region, the two clouds will have equal densities, although
* S more refined techniques to measure small density differences have to
* be developed to finally settle this question. Outside the superfluid

region there is still a normal state with unequal densities of minority
and majority components. The discontinuity in the clouds' densities

** at the normal-to-superfluid phase boundary gives rise to the visible
kink in the column density profiles. Such a density discontinuity is
characteristic of a first-order phase transition.

Interestingly, most of the 'work' needed to build the superfluid
state has already been done in the normal component by decreasing
the density difference. Consequently, the critical population differ-
ence needed to form the superfluid is largely determined by the
interactions in the normal gas.

In conclusion, we have observed the normal-to-superfluid phase
transition through the direct observation of condensation in an
imbalanced Fermi mixture-on the BEC side, on the BCS side, and
right on the Feshbach resonance. Uneoual mixtures offer a direct
method of thermometry by analysing the non-interacting wings of

ran pansition to superfluidity fraction' of ecess the majority species. Strong interactions are already visible in the

ned in the Thomas-Fermi fit, versus population normal cloud as marked deformations of the majority profile. It is
Column density profiles of majority (blue) and these interactions in the normal gas that squeeze the two components
uthally averaged, for varying population and eventually, at the critical imbalance, let them reach almost equal
is clearly visible in the minority component as densities in the centre, aiding the formation of the superfluid. Our
top of the normal background (finite- method of direct detection of the condensate is a powerful new tool

i fit, dotted lines). Below the critical imbalance to characterize the superfluid phase transition. At the current level of
tarts to form. The inset in a shows the central precision, the appearance of a condensate after magnetic field sweeps
k diamonds) and smaller (grey circles) cloud in and the direct observation of the central dense core occur together, and
his demonstrates that here the central densities indicate the normal-to-superfluid phase transition. An intriguing
perfluidity. The densities were calculated from question is whether further phases are possible, including a more
nd the fitted size of the clouds, assuming local
adjusting for ballistic (hydrodynamic) exotic superfluid state with unequal densities. Several theories predict
of majority (minority) clouds. The data points that the Fulde-Ferrell-Larkin-Ovchinnikov state, a superfluid state

show the average of several independent with oscillating order parameter, should be present for imbalanced spin
populations-2.2,s.
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METHODS
Experimental procedure. Our experimental setup is described in previous
publications"• ". A spin-polarized cloud of 6Li fermions is cooled to degeneracy
using a combination of laser cooling and sympathetic cooling with sodium
atoms in a magnetic trap. After transfer into an optical trap, a variable spin
mixture of the lowest two hyperfine states, labelled I 1 ) and I 1 ), is prepared at a
magnetic bias field of 875 G. Interactions between the two spin states can be
freely tuned via a 300-G-wide Feshbach resonance located at Bo = 834 G. At
fields below Bo, two-body physics supports a stable molecular bound state (BEC
side), while at higher fields (BCS side), no such bound state exists for two isolated
atoms. Our trap combines a magnetic saddlepotential with aweaklyfocused (waist
w - 120 pm) infrared laser beam (wavelength A = 1,064 nm), leading to a
harmonic axial confinement with oscillation frequency of v, = 22.8(0.2) Hz and
a gaussian radial potential with variable trapping frequency vr in the central
harmonic region. The trap depth U is related to v,. and ', by:

2 p 2(P, + V 2/2)
U=-m(21rr)22 2 /2)

4 2Y \

The initial degeneracy of the spin mixture is about TITF - 0.3. The strongly
interacting gas is further cooled by decreasing the laser power of the optical trap
over several seconds and evaporating the most energetic particles. During the
first few seconds, the magnetic field is adiabatically ramped to a chosen final
field in the resonance region where the last stage of the evaporation (shown in
Fig. 2) takes place. For detection, the optical trap is switched off and the gas
expands in the remaining magnetic saddle-point potential. After a variable
time-of-flight, an absorption image of atoms either in state I I ) or I 1 ) is taken
along the axial direction of the trap (the direction of the optical trapping
beam). The cloud's radial symmetry allows for azimuthal averaging of the
resulting column densities, leading to low-noise profiles' 2 .

For preparing clouds at the coldest temperatures (as shown in Fig. 3) with
varying population imbalance, the spin mixture is evaporated down to a trap
depth of 1 ILK over several seconds on resonance, after which the trap depth is
increased again to 1.4 RK for more harmonic confinement (trap frequencies:
vr = 115(10) Hz and v, = 22.8(0.2) Hz). The temperature of the gas is determined
to be T/TF 5 0.06 for all 6 > 15%, and appears to smoothly rise to TITF = 0.11
for an equal mixture, although thermometry in the interacting wings is
problematic. The total atom number was 1.5 x 107 and constant to within
15% for all values of 8.
Errors. The error in the critical temperature 7Tc:/TF for the phase transition is
dominated by the uncertainty in the atom number entering the determination of
TF, which we estimate to be 30% (ref. 12). For TF we use the harmonic
approximation for the radially gaussian trapping potential, with the measured
trapping frequencies reflecting the average curvature of the gaussian potential.
The phase transition is observed above U = 2 1K, where anharmonicities
contribute only 3% to the error in TF. Note that anharmonicities do not affect
the temperature measurement performed on the majority wings: ballistic
expansion of non-interacting atoms reveals their momentum distribution,
regardless of the shape of the trap.
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Supplementary Figure 1: (Color online) Signatures of the condensate on resonance in the spatial
profiles. The curvature of the observed column density is encoded in shades of gray with white
(black) corresponding to positive (negative) curvature. The outer radii of the two components and
the condensate radius are shown as an overlay in the lower panel. As a direct consequence of
strong interactions, the minority component causes a pronounced bulge in the majority density
that is reflected in the rapid variation of the profile's curvature. The condensate is clearly visible in
the minority component (6 > 0), but also leaves a faint trace in the majority component (6 < 0).
The image was composed out of 216 individual azimuthally averaged column density profiles,
smoothed to reduce technical noise. Data close to the cloud's center suffer from larger noise due
to the lower number of averaged points. The central feature of about 50ym width is an artefact of
smoothing in this region of increased noise.
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Supplementary Figure 2: Outer radii of the two cloud profiles and condensate radius versus
population imbalance. Data obtained from the majority (minority) cloud are shown as diamonds
(circles). The outer radii of the clouds (black) are determined from Thomas-Fermi fits to the pro-
files' wings, where the results of a zero-temperature and a finite temperature fit were averaged. For
the minority cloud, the representative error bars indicate the difference between these two results.
The position of the "bulge" in the majority profile (white diamonds) naturally follows the outer
minority radius. The condensate radius is defined as the position of the "kink" in the minority
profiles. It was obtained by a) fitting an increasing portion of the minority wings until a significant
increase in X2 was observed (grey circles), and b) the position of the minimum in the profile's
derivative (white circles). All sizes are scaled by the Fermi-radius of a non-interacting equal mix-
ture. The minority radii were adjusted for the observed hydrodynamic expansion (expansion factor
11.0). The non-interacting wings of the majority cloud expand ballistically (expansion factor 9.7),
as long as they are found a factor 11/9.7 = 1.13 further out than the minority radius. For small
imbalances (6 < 20%), also the majority wing's expansion will be affected by collisions. The grey
diamonds give the majority cloud's outer radius if hydrodynamic expansion is assumed.
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Supplementary Methods

Hydrodynamic vs. ballistic expansion

A non-interacting cloud of atoms simply expands ballistically from a trap. However, strongly
interacting equal Fermi mixtures, above and below the phase transition, are collisionally dense and
therefore expand according to hydrodynamic scaling laws 1-3. These scaling laws only depend on
the equation of state of the gas, E oc ny, with 7 = 1 for the BEC-side, -y = 2/3 for resonance
(a direct consequence of unitarity) and -y = 2/3 for the BCS-side, away from resonance. In
an unequal spin mixture of fermions, the expansion does not follow a simple scaling law. The
minority cloud is always in contact with majority atoms and thus strongly interacting throughout
the expansion, which is therefore hydrodynamic. The excess atoms in the wings of the larger
cloud are non-interacting and will expand ballistically, as we have checked experimentally. The
absorption images after expansion are taken along the axial direction of the trap (the direction of
the optical trapping beam). In order to compare the expanded cloud sizes to the in-trap Fermi radii
of non-interacting clouds (see Fig. 2 and Fig. S2 below) we scale the majority cloud with the
ballistic factor for the radial direction

/cosh2 (27rvzt/•/) + (VVr/Vz)2 sinh2 (27rvzt/i-v),

where t is the expansion time and vl/v2 gives the radial anti-trapping curvature of the magnetic
saddle-point potential. The scaling factor for the hydrodynamic expansion of an equal mixture is
given by the solution to a differential equation 2, 3. A priori, the minority cloud in unequal mixtures
could expand with a different scaling, since the equation of state now depends on two densities.
However, by imaging the cloud in trap and at different times during expansion, we found that
the minority cloud's expansion is very well described by the scaling law for an equal mixture.
In particular, the aspect ratio of the minority cloud did not change as a function of population
imbalance (within our experimental error of 5%), and was equal to that of a balanced mixture.

For the data on resonance in Figs. 3, S and S2, which were obtained after 11 ms expansion
out of a trap with radial (axial) frequency of vr = 113(10) Hz (v, = 22.8(0.2) Hz), the ballistic
(hydrodynamic) expansion factor for the radial direction is 9.7 (11.0).

Supplementary Discussion

Signature of the condensate

Fig. S 1 demonstrates that on resonance, the condensate is visible not only in the minority compo-
nent, but also in the larger cloud as a small change in the profile's curvature. In the condensate
region, the majority profile is slightly depleted when compared to the shape of a normal Fermi
cloud. This effect is still significant on the BCS-side (see Fig. 1): Although here, the condensate
is less visible in the smaller component than on resonance, the larger cloud's central depletion still
produces a clear dip in the difference profile.



Radii in the unequal Fermi mixture

Fig. S2 shows the outer radii of the majority and minority cloud, together with the condensate
radius (on resonance, for the deepest evaporation compatible with constant total atom number ver-
sus imbalance). As was the case for the phase transition at finite temperature, the outer cloud sizes
change smoothly with imbalance. No drastic change is seen at the critical population imbalance.
The radii are obtained by fitting the profiles' wings to the Thomas-Fermi expression for the radial
column density n(r):

Li 2 (_ A1r2R 2)

n(r) = no Li2 (-A)

with the central column density no, the fugacity A and the Thomas-Fermi radius R as the free
parameters. Li 2 (x) is the Dilogarithm. The zero-temperature expression reduces to n(r) = no(1 -
r2 /R2)2.

Lower and upper bounds for the critical chemical potential difference at 6~

For the clouds at the critical imbalance Sc, we now want to extract a lower and upper bound for
the difference in chemical potentials J/c of the majority and minority component. This difference
allows us to conclude that BCS-type superfluidity with imbalanced densities is not possible.

The chemical potential difference 5/ - 2h = (AT - L1) measures the energy cost, relative
to A = (It + yi)/2, to add a particle to the cloud of excess fermions. A, the pairing gap, is the
energy cost for this additional majority particle to enter the superfluid. Both the critical temperature
Tc and the critical chemical potential difference Jpc provide a measure of the superfluid gap:
The superfluid can be either destroyed by raising the temperature or by increasing the population
imbalance. If h, = - 6p/2 < A, excess atoms will always stay outside the superfluid, in the phase
separated normal state. For h, > A, excess atoms can enter the superfluid for he > h > A.
Hence, superfluidity with unequal densities, if allowed via he > A, would be favored at large
population imbalance, contrary to the interpretation in 4, where such a state was proposed for small
population imbalance. A recent Monte-Carlo calculation 5 for the Clogston limit on resonance
gives h, = 1.00(5)A = 0.50(5)EF and can thus not decide on the question of superfluidity with
imbalanced densities.

We can attempt to extract the chemical potential from the cloud sizes RT,I - taking into
account hydrodynamic expansion for the minority cloud and ballistic expansion for the excess
fermions. For the majority cloud, we find Le,T = 1/2 mw2R2 = 1.21(6)EF. For the minority
cloud, we find 1/2 mwrR2 = 0.39(10)EF. Throughout the smaller cloud, minority atoms are
always strongly attracted by majority atoms. This strong attractive interaction likely reduces their
chemical potential from the above upper limit. The difference of the chemical potentials 6t• - 2h,
is thus given by h, = (/c,,T - C,1)/2 > 0.41(6)EF = 0.51p/, our lower bound. Another condition
on hc concerns whether the normal state can be mixed, he < p, (minority and majority atoms in
the same spatial region) or whether the normal state is always completely polarized hc > A. Our
observation of the mixed region in Fig. 1 immediately results in hc < A, the upper bound.



On resonance, A = 1.16M in BCS-theory, while a recent Monte-Carlo study 5 obtains
A = 1.2p. If A > ya holds true, our finding of the upper bound on h, would imply h, < A
and hence would exclude a superfluid with unequal spin densities (at least on the basis of BCS-
theory, see 6 for a recent suggestion which goes beyond BCS).
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Observation of Phase Separation in a Strongly Interacting Imbalanced Fermi Gas
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We have observed phase separation between the superfluid and the normal component in a strongly
interacting Fermi gas with imbalanced spin populations. The in situ distribution of the density difference
between two trapped spin components is obtained using phase-contrast imaging and 3D image recon-
struction. A shell structure is clearly identified where the superfluid region of equal densities is surrounded
by a normal gas of unequal densities. The phase transition induces a dramatic change in the density
profiles as excess fermions are expelled from the superfluid.

DOI: 10.1 103/PhysRevLett.97.030401

Cooper pairing is the underlying mechanism for the
Bardeen-Cooper-Schrieffer (BCS) superfluid state of an
equal mixture of two fermionic gases. An interesting situ-
ation arises when the two components have unequal pop-
ulations. Does the imbalance quench superfluidity, does it
lead to phase separation between a balanced and an im-
balanced region, or does it give rise to new forms of
superfluidity? A search for exotic superfluid states is prom-
ising in imbalanced mixtures, since the imbalance desta-
bilizes BCS-type s-wave pairing, which is usually the
strongest pairing mechanism [1-4]. Recently, this problem
has been experimentally addressed in ultracold atomic
Fermi clouds with controlled population imbalances [5-
7]. Superfluidity was observed in a strongly interacting
regime with a broad range of imbalances, and the
Clogston limit of superfluidity [8] was characterized [5,7].

The phase separation scenario suggests that unpaired
fermions are spatially separated from a BCS superfluid of
equal densities due to the pairing gap in the superfluid
region [9-11]. In our previous experiments [5,7], we ob-
served a strong central depletion in the difference profiles
of expanding clouds indicating that excess atoms are ex-
pelled from the superfluid region. Reference [6] reports
depletion of excess atoms at the trap center. None of these
experiments answered the questions of whether the den-
sities of the two spin components are equal in the super-
fluid region and whether phase separation or rather
distortions of the cloud due to interactions have occurred
[12,13].

Here we report the direct observation of phase separa-
tion between the superfluid and the normal region in a
strongly interacting Fermi gas with imbalanced spin pop-
ulations. The density difference between the two spin
components is directly measured in situ using a special
phase-contrast imaging technique and 3D image recon-
struction. We clearly identify a shell structure in an im-
balanced Fermi gas where the superfluid region of equal
densities is surrounded by a normal gas of unequal den-
sities. This phase separation is observed throughout the
strongly interacting regime near a Feshbach resonance.
Furthermore, we characterize the normal-to-superfluid

PACS numbers: 03.75.Ss, 03.75.Hh, 05.70.Fh

phase transition of an imbalanced Fermi mixture using
in situ phase-contrast imaging. The onset of superfluidity
induces a dramatic change in the density profiles as excess
fermions are expelled from the superfluid.

A degenerate Fermi gas of spin-polarized 6 Li atoms was
prepared in an optical trap after laser cooling and sympa-
thetic cooling with sodium atoms [14,15]. The population
imbalance 8 of the two lowest hyperfine states 11) and 12)
was adjusted with a radio-frequency sweep [5]. Here 8 =
(N1 - N2)/(NI + N2), where N1 and N2 are the atom
numbers in I1) and 12), respectively. Interactions between
these two states were strongly enhanced near a broad
Feshbach resonance at B0 = 834 G. The final evaporative
cooling was performed at B = 780 G by lowering the trap
depth. Subsequently, the interaction strength was adiabati-
cally changed to a target value by adjusting the value of the
magnetic-bias field B with a ramp speed of 5 0.4 G/ms.
For typical conditions, the total atom number was Nt =
N1 + N 2 ý X 107 and the radial (axial) trap frequency
was fr = 130 Hz (f, = 23 Hz).

The condensate fraction in the imbalanced Fermi mix-
ture was determined via the rapid transfer technique
[16,17]. Immediately after turning off the trap, the mag-
netic field was quickly ramped to B = 690 G (1/kFa :-
2.6, where kF is defined as the Fermi momentum of a
noninteracting equal mixture with the same total atom
number and a is the scattering length) in approximately
130 /s. The density profile of the expanding minority
cloud was fit by a Gaussian for normal components (ther-
mal molecules and unpaired atoms) and a Thomas-Fermi
(TF) profile for the condensate [18].

The density difference between the two components was
directly measured using a phase-contrast imaging tech-
nique (Fig. 1). In this imaging scheme, the signs of the
phase shifts due to the presence of atoms in each state are
opposite so that the resulting phase signal is proportional to
the density difference nd of the two states [19]. This
technique allows us to directly image the in situ distribu-
tion of the density difference nd(;) and avoid the short-
coming of previous studies [5-7] where two images were
subtracted from each other.

@ 2006 The American Physical Society
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FIG. 1. Phase-contrast imaging of the density difference of
two spin states. (a) The probe beam is tuned to the red for the
1) -- le) transition and to the blue for the 12) -- le) transition.

The resulting optical signal in the phase-contrast image is
proportional to the density difference nd - nl - n2 , where nl
and n2 are the densities of the states 11) and 12), respectively.
(b) Phase-contrast images of trapped atomic clouds in state Il)
(left) and state 12) (right) and of an equal mixture of the two
states (middle).

For a partially superfluid imbalanced mixture, a shell
structure was observed in the in situ phase-contrast image
(Fig. 2). Since the image shows the column density differ-
ence (the 3D density difference integrated along the y
direction of the imaging beam), the observed depletion in
the center indicates a 3D shell structure with even stronger
depletion in the central region. The size of this inner core
decreases for increasing imbalance, and the core shows a
distinctive boundary until it disappears for large imbal-
ance. We observe this shell structure even for very small
imbalances, down to 5(3)%, which excludes a homogene-
ous superfluid state at this low imbalance, contrary to the
conclusions in Ref. [6].

The reconstructed 3D profile of the density difference
shows that the two components in the core region have
equal densities. We reconstruct 3D profiles from the 2D
distributions iid(X, z) of the column density difference us-
ing the inverse Abel transformation (Fig. 3) [20]. The
reconstruction does not depend on the validity of the local
density approximation (LDA) or a harmonic approxima-
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FIG. 2. In situ direct imaging of trapped Fermi gases for
various population imbalance 8. The integrated 2D distributions
of the density difference iid(x, z) f nd(N)dy were measured
using phase-contrast imaging at B = 834 G for total atom num-
ber N, - 1 X 107. For 85 75%, a distinctive core was observed
showing the shell structure of the cloud. The field of view for
each image is 160 pum X 800 Atm. The three leftmost images are
displayed with different contrast levels for clarity. The image
with 6 = 5(3)% was taken for N, - 1.7 X 107.

FIG. 3. Reconstruction of 3D distributions from their inte-
grated 2D distributions. (a) An integrated 2D distribution iid
with 8 = 58% at B = 834 G. (b) A less noisy distribution was
obtained by averaging four quadrants with respect to the central
dashed lines in (a). (d) The ID profile obtained by integrating the
averaged distribution along the z direction shows the "flattop"
feature. (c) The 2D cut nd(x, y = 0, z) of the 3D distribution
nd(r) was reconstructed by applying the inverse Abel trans-
formation to (b). (e) The radial profile of the central section of
the reconstructed 3D distribution in the xy plane. The dashed
lines in (d) and (e) are fits to the profiles' wings using a TF
distribution.
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tion for the trapping potential [12,21,22] and assumes only
cylindrical symmetry of the trap. The two transverse trap
frequencies are equal to better than 2% [15]. A ID profile
obtained by integrating hid along the axial direction
[Fig. 3(d)] shows a flattop distribution, which is the ex-
pected outcome for a shell structure with an empty inner
region in a harmonic trap and assuming LDA.

The presence of a core region with equal densities for
the two components was correlated with the presence of a
pair condensate. The density difference at the center ndo
along with the condensate fraction is shown as a function
of the imbalance 8 in Fig. 4. As shown, there is a critical
imbalance 6c where superfluidity breaks down due to large
imbalance [5,7]. In the superfluid region, i.e., S < Sc, ndO
vanishes, and for 8 > 8,9 ndo rapidly increases with a
sudden jump around 8 - Sc. We observe a similar behav-
ior throughout the strongly interacting regime near the
Feshbach resonance, -0.4 < 1/kFa < 0.6. This observa-
tion clearly demonstrates that for this range of interactions
a paired superfluid is spatially separated from a normal
component of unequal densities.

The shell structure is characterized by the radius of the
majority component, the radial position Rp of the peak in

nd(r), the size Rc of the region where nd is depleted, and
the "visibility" a of the core region (Fig. 5). The sudden
drop of a around 8 - 6c results from the sudden jump of
ndo. The comparison between R, and Rc shows that the
boundary layer between the superfluid and the normal
region is rather thin. It has been suggested that the detailed
shape of profiles in the intermediate region could be used
to identify exotic states such as the Fulde-Ferrell-Larkin-
Ovchinnikov state [23-25]. This will be a subject of future
research.

I
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FIG. 4 (color online). Phase separation in a strongly interact-
ing Fermi gas. Normalized central density difference 7r (black
circles) and condensate fraction (red triangles) as functions of
imbalance 8 for various interaction strengths at our lowest
temperatures (T•s 0.0 6 TF). r7 = nd/lno, where ndO was mea-
sured as the average over the central region of 7 pm X 40 pAm
in a 2D cut of the 3D distribution [Fig. 3(c)] and no = 3.3 X
1012 cm - 3 is the calculated central density of a fully polarized
Fermi gas with Nt = I X 107. The condensate fraction was
determined from the minority component (see the text). The
solid line is a fit for the condensate fraction to a threshold
function cc (1 - 18/8,I"). The critical imbalances 8, indicated
by the vertical dashed lines were 96% (exponent n = 21), 77%
(n = 3.1), and 51% (n = 3.4) for B = 780 G, B = 834 G, and
B = 884 G, respectively.

The superfluid requires equal central densities in the
strongly interacting regime at our coldest temperatures.
A normal imbalanced Fermi mixture will have unequal
densities. Thus, one should expect that a visible change
in the density difference occurs as the temperature is
lowered across the normal-to-superfluid phase transition
[7,9]. In situ phase-contrast images of a cloud at various
temperatures are shown in Fig. 6. The temperature T of the
cloud is controlled with the final value of the trap depth in
the evaporation process. The shell structure appears and
becomes prominent when T decreases below a certain
critical value. This shell structure gives rise to the bimodal
density profile of the minority component that we observed
after expansion from the trap in our recent work [7]. Here
we show via in situ measurements that the onset of super-
fluidity is accompanied by a pronounced change in the
spatial density difference.

The phase transition is characterized in Fig. 7. As T is
lowered, ndo gradually decreases from its plateau value and
the condensate fraction starts to increase. From the point of

(b) so8-
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FIG. 6. Emergence of phase separation in an imbalanced Fermi
gas. The temperature of the cloud was controlled by varying the
final value of the trap depth Uf in the evaporation process.
Phase-contrast images were taken after adiabatically ramping
the trap depth up to kB X 3.7 pAK (f, = 192 Hz). The whole
evaporation and imaging process was performed at B = 834 G
(Nt - 1.7 X 107, 8 - 56%). The field of view for each image is
160 pm X 940 pm. The vertical and the horizontal scale of the
images differ by a factor of 1.5.
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FIG. 5 (color online). Characterization of the shell structure.
(a) Reconstructed 3D radial profiles at B = 834 G. (b) Radius of
the majority component R (black circles), peak position of the
density difference Rp (red circles), and radius of the empty core
Rc (blue triangles) as a function of population imbalance 8. R
was determined from the profiles' wings using a fit to a zero-
temperature TF distribution. The solid line indicates the TF
radius of the majority component in an ideal noninteracting
case. R at 8 = 0 (open circle) was measured from an image
taken with a probe frequency preferentially tuned to one com-
ponent. Rc is defined as the position of the half-peak value in the
empty core region for 8 < 8c. (c) Visibility of the core region is
defined as a - (nd(Rp) - ndo)/(nd(R) + nd0o). For low 8,

nd(Rp) is small, and small fluctuations of ndO around zero lead
to large fluctuations in a.

condensation (condensate fraction >1%) and deformation
of the minority clouds [X2 in Fig. 7(b)], we determine the
critical temperature Tc = 0.13( 2 )TF for the imbalance of
8 = 56(3)%. TF = 1.7 /LK is the Fermi temperature of a
noninteracting equal mixture with the same total atom
number. The rise in X2, the drop in ndo, and the onset of
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FIG. 7 (color online). Phase transition in an imbalanced Fermi
gas. The phase transition shown in Fig. 6 was characterized by
measuring (a) population imbalance 8, (b) temperature T (black
circles), X 2 for fitting the minority cloud with a finite tempera-
ture Fermi-Dirac distribution (red triangles), (c) central density
difference ndo (black circles), and condensate fraction (red
triangles). The solid line is a guide to the eye for X2. 8 decreased
mainly due to loss in the majority component, which was
reduced by 14% between Uf/kB = 3 and 1 pK and more
rapidly below 1 pK. The number of minority atoms was almost
constant (N2 - 3.7 X 106). T was determined from the non-
interacting outer region of the majority cloud after 10 ms of
ballistic expansion [7]. T and ndo are averaged values of three
independent measurements. The open (solid) arrow in (c) in-
dicates the position for Tc (T*). See the text for the definitions of
Tc and T*.

condensation are all observed at about the same tempera-
ture. Better statistics are needed to address the question of
whether some weak expulsion of majority atoms from the
center occurs already slightly above T,.

Below a certain temperature T*, ndO reaches zero while
the condensate fraction is still increasing, implying that the
superfluid region of equal densities continues to expand
spatially with decreasing T (see Fig. 6). Full phase sepa-
ration does not occur until this temperature T* < Tc is
reached. We interpret the state between T* and Tc as a
superfluid of pairs coexisting with polarized quasiparticle
excitations. This is expected, since at finite temperatures
the BCS state of an equal mixture can accommodate excess
atoms as fermionic quasiparticle excitations [23,26-28].
There is a finite energy cost given by the pairing gap A(T)
for those quasiparticles to exist in the superfluid. The
assumption that excess atoms should have thermal energy
kBT > A(T) to penetrate the superfluid region suggests the
relation between T* and A(T) to be kBT* - A(T*). From
our experimental results, T* - 0.09 TF and A(T*) - h X
3.3 kHz.
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In conclusion, we have observed phase separation of the
superfluid and the normal component in a strongly inter-
acting imbalanced Fermi gas. The shell structure consist-
ing of a superfluid core of equal densities surrounded by a
normal component of unequal densities was clearly iden-
tified using in situ phase-contrast imaging and 3D image
reconstruction. The technique is a new method to measure
the in situ density distribution, allowing direct comparison
with theoretical predictions.
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