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Abstract

Random porous solids such as bone and geomaterials exhibit a multiphase composite nature,
characterized by water-filled pores of nm- to lim-scale diameter. The natural synthesis and
operating environments of such materials significantly alters phase composition and multi-
scale structural heterogeneities throughout the material lifetime, defining significant changes
in macroscopic mechanical performance for applications ranging from multispan bridges to
calcium-phosphate bone replacement cements. However, the nanoscale phases formed within
the unique chemical environment of pores cannot be recapitulated ex situ in bulk form, and
imaging of the composite microstructure is obfuscated by the size, environmental fragility, and
nonconductive nature of such geomaterials and natural composites. Thus, there is an increas-
ing drive to develop new approaches to image, quantify the mechanical contributions of, and
understand the chemomechanical coupling of distinct phases in such composites.

In this thesis, we utilize recent advances in experimentation namely instrumented inden-
tation, and micromechanical modeling namely homogenization techniques, in an attempt to
quantify the mutli-phase, multi-scale heterogeneity observed in all cement-based materials. We
report a systematic framework for mechanically enabled imaging, measuring and modeling of
structural evolution for cement based materials (CBM), porous geocomposites, at length scales
on the order of constituent phase diameters (10-8 - 10-6 In), and thus identify two structurally
distinct but compositionally similar phases heretofore hypothesized to exist. The presented

experimental and modeling results culminated in micromechanical models for elasticity and

strength that can predict the macroscopic mechanical behavior for a range of CBM systems.

The models directly correlate the changes in chemical and mechanical state to predict the ex-

perimentally observed range of macroscopic mechanical properties. This general framework is

equally applicable to other man-made and natural composites, and enables -accurate prediction

of natural composite microstructure and mechanical performance directly from knowledge of

material composition.

Thesis Supervisor: Franz-Josef Ulm

Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

Natural solids such as bones, geomaterials, woods, and cement-based materials exhibit a multi-

scale multi-phase composite nature1 . The most prominent heterogeneity of these systems is

the pore space which varies from a few Angstroms in diameter to micrometric dimensions. It

is this multi-scale, environmentally coupled heterogeneity that ultimately defines the macro-

scopic mechanical performance of these materials. For example, consistent with trends in other

natural composites (see Tab. 1.1), the elastic modulus (E) and uniaxial compressive strength

(E,) of a cementitious composite can range from E = 10 to 60 GPa and E, = 10 to 200 MPa,

respectively, depending on material composition and degree of hydration. From a structural

design point of view this uncertainty in strength and elasticity constitutes a threat to pos-

sible damage and catastrophic failures of safety-critical applications ranging from multi-span

bridges to calcium-phosphate cements currently being considered as bone replacement materi-

als [231]. While most codes of practice in design account for this heterogeneity through safety

factors to achieve macroscopic material properties with some certainty, current trends in ma-

terials science and engineering aim at a better representation of the microstructure at multiple

length scales. Advances in experimental approaches such as instrumented nanoindentation and

analytical approaches such as micromechanical homogenization present an opportunity to quan-

tify structurally heterogeneous materials at length scales corresponding to individual chemical

'Virtually all natural solids are multiphase multiscale material systems, i.e., they are composed of several

chemical constituents (multiphase) that manifest themselves in different length-scales (multiscale) creating in

the process complicated hierarchical composites to deal with.
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Material Elastic Modulus, [GPa] Compressive Strength, [MPa] References

Bone 1-40 1-100 [163]
Cement-Based Material 10-60 10-200 [180]

Geomaterial 5-40 1-30 [142]

Wood 0.5-20 5-20 [99]

Table 1.1: Approximate mechanical properties ranges for selected natural composites.

phases, and then to upscale their mechanical response at the level of engineering applications.

The development of such a framework would enable one to model and predict the mechanical

performance of a multi-phase, multi-scale composite directly from knowledge of the material

composition and a modest number of mechanical experiments. Here, in this thesis, we demon-

strate this approach through the correlation of nanomechanical testing and micromechanical

modeling of cementitious composites as a function of environmental exposure, and predict with

high accuracy the macroscopic mechanical behavior of this multi-scale composite. The tech-

niques and methodology proposed are quite general, and apply equally well to other man-made,

geological, and biological composites.

1.1 Problem Statement

Is it possible to break down cement-based materials (or more generally, natural porous material

systems) to a scale where solids no longer change from one material to another, and upscale

('nanoengineer') the behavior from the nanoscale to the macroscale of engineering applications?

- This is the challenging question we want to address in this thesis through the use of some

tools and methods of experimental and theoretical microporomechanics.

As it was elegantly stated by Scrivener and Van Damme in a recent special issue of Materi-

als Research Society Bulletin [208] "...the application of concrete is largely based on empirical

knowledge acquired through macroscopic testing, and the depth of our understanding of the

chemical and physical processes that deliver the performance of concrete on a macroscopic scale

is quite limited." The lack of knowledge can be attributed to the high complexity possessed by

these materials. Understanding cement-based materials (CBM) requires knowledge from chem-

istry, geological sciences, materials science, granular media, porous media, colloidal physics,

etc. In addition, the inability of certain experimental methods to be applied quantitatively
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to CBM, have added further confusion. One can therefore reach the unfortunate conclusion

that a conceptual framework for modeling the mechanical behavior of cement-based materi-

als as elegant as that of metals, polymers, and ceramics does not currently exist [208]. It is

therefore the intention of this thesis to provide such a framework by utilizing recent progress

in experimental and theoretical nanornechanics. Figure 1-1 shows a schematic of the materials

science approach adopted in this thesis. While significant progress has been made over the last

50 years on the link between synthesis, processing and microstructural evolution, very little is

known on the link between structure-property relations. It is the intention of this thesis to

bridge this gap and provide a direct link between physical chemistry and mechanics. Once such

a coupling is established, predictions of the macrosopic.mechanical behavior can be made based

on knowledge of the material synthesis.

1.2 Research Objectives

A comprehensive approach is presented in this thesis to address the scientific challenge. It is

composed of experimental investigation, theory and modeling, and finally experimental valida-

tion (see details in Section 1.3). This approach studies the effects of microstructural details on

the multi-scale mechanical behavior of CBM materials ranging from the nanometer scale where

a porous material exists, to the macroscopic scale where concrete is applied in engineering ap-

plications. To tackle this problem, we pose a series of objectives which, once met can lead to a

solution to our problem. The four research objectives are now summarized:

Objective 1: Develop a theoretical framework that allows application of indentation tech-

niques to multi-phase, cohesive-frictional materials. The nanoscale phases formed within the

unique chemical environment of CBM pores, the Calcium Silicate Hydrates (C-S-H), cannot

be recapitulated ex-situ in bulk form, and as a consequence their mechanical properties are

essentially unknown. Nanoindentation provides a possibility for overcoming this problem. The

knowledge of indentation analysis is currently restricted to homogeneous metallic materials,

i.e., materials that follow a cohesive yield behavior independent of the hydrostatic pressure.

As a prerequisite to the experimental investigation, a comprehensive framework that allows

extracting mechanical properties from indentation on such complicated systems is developed.
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Figure 1-1: Materials science approach applied to mechanical behavior of solids.
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Objective 2: Validate the tools of indentation analysis on model materials. The developed

schemes for cohesive-frictional materials and multi-phase composites are validated on a series

of tests performed on a bulk metallic glass (BMG) and a titanium-titanium boride.

Objective 3: Study the multi-scale mechanical behavior of CBM materials and reconstruct

quantitatively its microstructure. The mechanical behavior of the individual constituents com-

posing cement pastes microstructure are essentially unknown. In fact the exact nature of the

main constituent, the C-S-H, is still under debate. We aim to decode the microstructural details

and provide intrinsic mechanical properties for all CBM constituents.

Objective 4: Develop a multi-scale micromechanics model that can predict the macroscopic

mechanical behavior of any CBM material, independently of initial mix proportions, degree of

hydration or applied environmental conditions. Macroscopic mechanical behavior of CBM shows

significant variability. We aim to incorporate this diversity in our micromechanical model and

provide a direct link between synthesis and mechanics.

These four objectives provide an elegant framework for modeling a multi-scale, multi-phase

mechanical system as CBM. It is hoped that the development of such a framework can therefore

serve as a model for quantitative analysis of other complicated hierarchical composites.

1.3 Methodology

2 Modeling the micromechanical behavior of concrete can be approached from several directions

and at various degrees. Many of the formulas used in design rely on empirical expressions that

seem to fit the extensive experimental data. Even though such approaches have been extensively

used in cement-based modeling and proved to be useful and convenient, the results are limited

to the conditions under which the data were obtained. The methods provide no physical

understanding and restrict our predictive capabilities to the range on which the laboratory

experiments were performed. In this thesis, we seek a more general approach, one that will give

us the ability to predict and a refined understanding. In pursuing such a fundamental approach,

we place a premium on this goal of predictive power. However, a goal of this magnitude requires

2 The introduction of this section is motivated by the introduction given by R.M. Christensen in his book
'Mechanics of composite materials', Ref. [53].
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significant effort and time. We aim here to lay the foundation and stimulate interest for further

research.

1.3.1 Theoretical Modeling

Homogenization techniques developed within the framework of continuum micromechanics are

arguably the most systematic methods to address the large heterogeneity observed in CBM.

The underlying idea of continuum micromechanics is that it is possible to separate a hetero-

geneous material into phases with (on-average) constant mechanical and structural properties.

Homogenization, which is based on volume averaging over the representative element volume

(R.E.V.) of the constitutive relations defined at the scale of the phases, delivers the macro-

scopic elastic/poroelastic/strength properties of the R.E.V. as a function of the microscopic

phase properties, volume fractions, and specific morphologies. Upscaling schemes for elasticity

and poro-elasticity are well developed in the literature, whereas schemes for strength are still

the subject of intense research. Application of these elements to CBM will be detailed in fol-

lowing chapters. It is instructive to note that special emphasis is placed on the representation

of the material which masks the physics of the problem.

1.3.2 Experimental Investigation

The primary purpose of our experimental effort is to provide the necessary ingredients for

the micromechanical modelling of our materials. We recall that the required information for

a micromechanical modeling are a) the mechanical properties of each phase, b) their volume

fractions, and c) their morphologies. Morphological characterization is primarily achieved via

electron microscopy. Throughout this research Scanning Electron Microscopy (SEM), Environ-

mental Scanning Electron Microscopy (ESEM), Atomic Force Microscopy (AFM), and Optical

Microscopy have been extensively used. The morphological investigations culminate in the

development of multi-scale think model that guided both our experimental and modeling pro-

gram. It should be noted that the multi-scale 'model for CBM presented in Chapter 4 satisfies

the separation of scales principle. That is, each level is separated from the next one by at least

one order of magnitude, which is a prerequisite for the application of homogenization schemes.

Volume fractions have been obtained through experimental chemical methods. In the case of
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EXPERIMENTAL THEORETICAL
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VF, IP, M

Figure 1-2: Proposed methodology. Microstructural break down (downscale) of natural ma-

terial systems using experimental methods. Once volume fractions (VF), intrinsic mechanical

properties (IP), and morphological characterestics (M) are obtained, upscaling is enabled via

micromechanical models.

CBM, one can go a step further and provide predictions of volume fractions using advanced

chemistry models, certain of which have been verified with the help of X-ray diffraction or in-

dentation results. Instrumented indentation provided the mechanical properties of each phase.

Its use has been the key feature that made this research possible.The proposed methodology is

summarized in Fig. 1-2. In the presence of a new material system, one needs to downscale and

reconstruct the multi-scale structure of the material using experimental methods. In particular

the use of instrumented indentation will prove to be of utmost importance. Once the structure

is understood and all necessary ingredients are in place macroscopic properties can be predicted

with the use of advanced homogenization schemes. These two complimentary approaches will

prove to be of extreme importance. We show for the first time in this thesis that their coupling

can be an invaluable tool for modeling natural composites.

1.4 Industrial and Scientific Motivation

Cement-based-materials are characterized by low cost and high availability. These two charac-

teristics, coupled with excellent mechanical properties, are the primary reasons that concrete
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is the leading construction material in the world. The five major elements that make up most

of cements minerals, Si - 0 - Al - Ca - Fe, are the dominant elements in the Earth's crust. It

is therefore reasonable to predict that no other material is expected to displace concrete from

the construction industry in the years to come. Refining our understanding of the mechanisms

responsible for the macroscopic mechanical response of the dominant construction material on

Earth is essential and indispensable. The multi-scale materials science approach developed in

this thesis has the promise to provide answers to questions concerning the mechanical origin

and durability performance of natural composites, by bridging length scales between the mi-

crostructure of construction materials (materials science), the macroscopic mechanical material

properties (mechanics of materials), and the engineering stiffness-, strength-, and deformation

behavior of structures (structural engineering). Once this link is established, the relative signif-

icance of the individual chemical constituents comprising the materials microstructure can be

quantified. Such an approach can provide some industrial and scientific benefits. They include:

" Reduced macroscopic tests: Macroscopic mechanical properties prediction can be made

by the sole knowledge of the chemistry of the problem. This can significantly replace a

large fraction of macroscopic mechanical tests with a few chemical tests, with significant

economic benefits for the industrial world.

" Quantification of the strength and elasticity at various length-scales: The advent of

nanoindentation allows access to the mechanical properties of materials at length scales

where chemical constituents with intrinsic atomic structure and mechanical properties

manifest themselves. It is for the first time that the mechanical response of the C-S-H

component, the main constituent of all CBM systems, can be quantitatively investigated.

" Material optimization and 'concrete ' la carte': Using advances in the materials science

and manufacturing, it will be possible to rationally design the macroscopic mechanical

behavior of cement-based materials for specific applications by tailoring their microstruc-

ture at different scales. The development of sustainable materials, which are dimensionally

stable in space and time, becomes possible. From the knowledge thus acquired, a new

generation of these materials might well become available.

" Physical basis for understanding degradation mechanisms: The approach adapted in this
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research has its starting point at the level offthe individual constituents, providing a

fundamental understanding to the origins of elasticity and strength of cement-based ma-

terials. Since all chemical constituents are incorporated in our modeling procedure the

same models can capture the effect of chemical reactions on mechanics, provided the

chemistry is understood and mechanical testink&f asymptotic behavior is obtained.

9 Provide a link between physical chemistry and mechanics: The approach adapted in this

thesis aims at bridging the gap between cement chemistry and concrete mechanics. It

is hoped that results presented in this thesis will stimulate interest and bring the two

communities closer together.

1.5 Thesis Outline

This thesis is divided into six major parts. The first part, Chapter 1, deals with the presentation

of the topic. The second part of the thesis focuses on the experimental approach that made

this research possible: instrumented indentation. Chapter 2 presents the technique and the

theoretical tools that allow converting indentation data into meaningful mechanical properties.

While most efforts in the literature concentrate on indentation on metals, we attempt to extend

the method to non-metallic materials, in particular to materials that follow a pressure sensitive

yield/failure criterion of the Mohr-Coulomb or Drucker-Prager type. For validation purposes,

we then employ in Chapter 3 the tools developed in Chapter 2 on a model cohesive-frictional

material, bulk metallic glass, an amorphous metal.

The third part of this thesis focuses on the multi-scale experimental investigation of CBM

and comprises three chapters. Chapter 4 presents the proposed multi-scale model that guides

both the experimental and theoretical developments. Chapter 5 extends the indentation meth-

ods to account for the multi-phase nature of cement-based materials. A new method which

accounts for this complexity is presented and validated on a white cement paste. Chapter 6

then describes the experimental investigation performed on cement-based materials: materials

tested include cement pastes and mortars with different compositions (w/c-ratios and cement

composition), curing temperature (heat curing 20-60 C), and experienced environmental con-

ditions (heat treated, calcium leached).
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Parts IV and V of this thesis deal with the micromechanical modeling of CBM systems. Mo-

tivated by our experimental findings, we develop a multi-scale poroelastic model that depends

on a few material-invariant properties and volumetric proportions. The model which is pre-

sented in Chapter 7 can predict mechanical properties over length scales spanning several orders

of magnitude. The multi-scale poroelastic model is then validated in Chapter 8 for a variety of

CBM and experimental conditions. The fifth part is then devoted to the strength behavior of

CBM systems. Using the tools developed in Chapter 2 we present first order estimates of the

C-S-H strength (Chapter 9). Potential routes for upscaling the mechanical behavior of CBM

systems are then presented in Chapter 10 and compared with experimental data in Chapter 11.

Chapter 12 (Part VI) summarizes the main findings of this study, discusses current limita-

tions, and proposes future perspectives. Additional information complementing the ideas and

discussions put-forward in this thesis are presented in the Appendix.
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Part II

INDENTATION ANALYSIS
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Chapter 2

Instrumented Indentation on

Cohesive-Frictional Materials

The use of indentation will play a prominent role in our multi-scale investigation of natural

composite materials. Here, we introduce the experimental approach and present the theoret-

ical background that will allow us to transform indentation data into meaningful mechanical

properties. The advent of instrumented indentation techniques has provided the mechanics

community with an unprecedented opportunity to explore mechanical properties of materials

at multiple length and force scales. Indeed, thanks to the self-similarity possible in indentation

testsi and the resulting mechanical response of the materials system, one single experimental

technique is able to provide access to mechanical properties of materials from the nanoscale

to the macroscale. Most of the developments in the last decade concentrated on indentation

testing of metals, which are atomically cohesive materials. In contrast, natural composites,

like cement-based materials, soils, bones, wood, etc., exhibit a pronounced cohesive-frictional

behavior that will play an important role in our investigation. Starting from a dimensional

analysis of the physical quantities involved in indentation testing, the aim of this chapter is to

review recent developments in the field of indentation analysis, and to identify the tools required

'In the case of pyramidal or conical indentation, the ratio of the area of contact to the depth of indentation is
independent of the magnitude of the applied load. This leads to a property of the indentation test called geometric
similarity. For geometrically similar indentations the stresses and strain within the material are independent of
the depth of penetration or load application. This is discussed in detail in Section 2.2 of this chapter.
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to translate indentation data of cohesive-frictional materials into mechanical properties. These

tools will be validated in Chapter 3 for a particular cohesive-frictional material: bulk metallic

glass. In this chapter, we restrict ourselves to the analysis of indentations on homogeneous ma-

terials. The heterogeneous nature of natural composite materials will be addressed in Chapter

5.

2.1 Introduction

It has long been hypothesized that the localized contact response measured by an instrumented

indentation experiment can serve to characterize the mechanical properties of materials as quan-

titatively as conventional testing techniques such as uniaxial compression and tension. This ex-

perimental approach provides a continuous record of the variation of the depth of penetration,

h, as a function of the prescribed indentation load, P, into the indented specimen surface. Ad-

vances in hardware and software control currently enable maximum penetration depths on the

nanometer scale, such that nanoscale instrumented indentation provides a convenient, relatively

non-destructive means to evaluate the fundamental mechanical response (stiffness, strength,

creep, etc.) of small material volumes of a bulk, thin film, or composite material. Commer-

cially available indenters accommodate various indenter geometries, including sharp pyramidal,

conical or spherical probes, so that elastic and inelastic mechanical properties can be estimated

at any scale within the limits defined by the indenter dimensions and maximum penetration

depth, as well as by the load and depth resolution/maxima of the specific instrument. Thus,

instrumented indentation is a versatile tool for material characterization, particularly at scales

where classical mechanical tests based on volume-averaged stresses are inadequate [50, 185, 98].

2.1.1 Historical Background

The very concept of 'hardness' can be found as early as in the 18th century in the works of

several prominent mineralogists, R6aumur (1683-1757), Hatny (1743-1822) and Mohs (1773-

1839) [245]2. These scientists, however, were not fundamentally concerned with the hardness as

2The French scientist Rene Reaumur (1683-1757), was named by Williams [2451 as the father of hardness

measurements. The French mineralogist, Rene-Just Haity is one of the founders of the science of crystallography.
In 1812 the Mohs scale of mineral hardness was devised by the ( >rman mineralogist Frederich Mohs (1773-1839),
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a mechanical property, but introduced 'hardness' as a means for the classification of materials

and standardization of products. The application of indentation methods to assess material

properties is more recent and can be traced back to the work of the Swedish metallurgist

Brinell (1849-1925). Pushing a small sphere of hardened steel or tungsten carbide against the

surface of the specimen, Brinell empirically correlated the shape of the resulting permanent

impression (indentation) with the strength of metal alloys (steels). The first accessible work of

this pioneering approach of the Swedish engineer can be found in a 1900 International congress

in Paris [36]. The merits of Brinell's proposal were quickly appreciated by contemporaries:

Meyer, O'Neill, and later Tabor [223] suggested empirical relations to transform indentation

data into meaningful mechanical properties. These early studies concentrated on the evaluation

of hardness of metals and on the link of hardness with strength properties. Hardness is defined

as the maximum applied force divided by the projected residual imprint left on the material.

Hardness measurements, therefore, do not require a continuous measurement of the indentation

depth. In contrast, as we will see later on, an estimate of the elastic properties of the material

requires information on the depth response of the material to the indentation force. More

recently, due to progress in hardware and software control, depth sensing techniques were

introduced that allow a continuous monitoring of the displacement of the indenter into the

specimen surface during both loading and unloading. Depth sensing indentation techniques

have been conceptualized by Tabor and coworkers [216,223] and its implementation down to

the nanoscale appears to have developed first in the former Soviet Union from the mid 1950s on

throughout the 1970s. This instrumented indentation approach received considerable attention

world-wide, ever since Doerner and Nix [70] and Oliver and Pharr [184] in the late 1980s and

early 1990s, also identified this technique for analysis and estimation of mechanical properties

of materials such as microelectronic thin films for which few other experimental approaches

were available. While the chronology of events of discovery may still be in debate3 , there is

little doubt, at least as far as the elastic behavior is concerned, that it is the Hertz-type contact

who selected ten common minerals and attributed hardness values from 1 to 10, 1 being Talcum Powder, 10

being diamond. The scale is not a linear scale, but somewhat arbitrary, and the hardness has no dimension. For

a review of early contributions (prior to 1940) see Ref. [245] and references therein. For more recent reviews of

modern indentation techniques and analysis, see Refs. [50,185,31].
3The chronology of events of discovery of depth-sensing indentation and indentation analysis is discussed by

Borodich in several publications (see for instance Ref. [31]).
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problem that forms much of the theoretical background of modern indentation analysis. The

analytical solution of Heinrich Hertz (1882) [114] of the linear elastic contact problem of two

spherical surfaces (with different radii and elastic constants) provides a means of evaluating the

contact area of indentation, and forms the basis of much experimental and theoretical work in

indentation analysis based on contact mechanics. In 1885, Boussinesq published a solution for

the problem of contact between a solid of revolution and an elastic continuum [33], of which the

flat punch solution is the best known. In the first half of the 20th century, the elastic solutions

were extended to other shapes of indenters by Love [157], Galin [89], and Harding and Sneddon

[107]. Subsequently, Sneddon [213] derived general relationships among load, displacement and

contact area for a punch of arbitrary axisymmetric shape. Much of the later developments [137]

rely on these general solutions and solution methods.

Incorporating plasticity phenomena in the indentation analysis is a much more complex

problem. The nonlinear nature of the constitutive relations, as well as the increased number of

material properties required to describe material behavior, complicate the derivation of analyt-

ical solutions. As a result, much of our knowledge of the importance of plasticity in indenter

contact problems comes from experimentation, and more recently through finite element simula-

tions. Various researchers have proposed semi-analytical procedures in which the experimental

P - h response is used to calculate elastic properties such as the Young's modulus E, pseudo-

properties characterizing resistance to deformation such as hardness H, and plastic properties

such as the yield strength o and the strain hardening exponent n [70, 184, 98]. Experimen-

tal data has demonstrated that analysis of indentation response via elastic and rigid-plastic

solutions provides reasonable estimates of the elastic modulus and hardness of the indented

material, provided that the contact area is measured or calculated accurately [70,184]. The

validity of these concepts in the case of cohesive-frictional materials is reviewed below.

2.1.2 Indentation Test: Measured Quantities

An indentation test consists of establishing contact between a material of known properties,

i.e. the indenter (typically diamond), and the indented material for which the mechanical

properties are of interest. By monitoring the mechanical response of the system, i.e. the P - h

curve, and by applying a mechanical model to the data, the unknown mechanical properties of
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the indented material are extracted. The technique has its origins in the original Mohs scale of

mineral hardness developed to rank materials based on their ability to leave a permanent scratch

on the surface of each other. The approach is still in use today, but the scale of observation has

shifted by several orders of magnitude, from the macroscopic scale to the nanoscale. The ability

of currently available equipment allows displacements to be monitored down to the Angstrom

scale and forces down to nanoNewtons.

A typical indentation test consists of (at least) a loading and an unloading phase. The

type of data presented in Fig. 2-1 is obtained when an indenter is brought in contact with the

flat surface of a specimen under a constant loading (or displacement) rate. Both the loading

and the indentation depth are recorded at each load increment. During loading, the material

immediately below the rigid indenter undergoes elastoplastic deformation, whereas the material

further away from the contact zone deforms elastically. Thus, a portion of the energy that is

provided to the system is either stored in elastic deformation or dissipated by plastic deformation

in the material below the indenter and along surfaces of discontinuity. Following the holding of

load at maximum force Pmax the load is steadily decreased until complete unloading. During

unloading, the load-displacement follows a different path than during loading, until, at zero

load, a permanent impression is left on the surface. Naturally, if only elastic deformation is

imposed, the loading and unloading paths retrace. During this unloading process, the elastic

energy is recovered and the contact stiffness, Smax = d , gives a measure of the material

elastic response. Often, a holding period at maximum load, during which the load is maintained

approximately constant, is also employed and an increase of the indentation depth is indicative

of some creep behavior of the material.

Provided the calibrations are performed properly and the factors affecting force and dis-

placement are controlled, the P - h response is recorded within the accuracies defined by the

indentation equipment (see Tab. 3.1); typically load resolution in 100 nN and depth resolution

in 0.lnm. Except for the projected area of contact, Ac, all measured quantities are directly

obtained from the P - h curves: the maximum applied force, Pmax, with the corresponding

maximum depth hmax for the loading phase, and the unloading indentation stiffness Smax, with

the residual indentation depth hf for the unloading phase. The contact area A, at Pmax is also

extrapolated from hmax. These measured quantities allow one to determine the hardness H and
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Figure 2-1: P - h response of an indentation test. Measured quantities include the maximum

load, Pmax, the maximum depth, hmax, the residual depth, hf, the contact stiffness at maximum

load, Smax = j|h' the plastic indentation work, W,, and the elastic indentation work, We.

the indentation modulus M of the indented material from:

def Pma
H = max

def 2
S-vF MA,

(2.1)

(2.2)

Definition (2.2) is also known as Bulychev-Alekhin-Shoroshorov (BASh) equation [30], or Sned-

don's solution [213].

Two alternative quantities that can be determined from the indentation curves, are the total

work provided to the system Wt, and the elastic recoverable energy We (Fig. 2-1):

Ploading(h)dh ; We =
I-hmax
h=hf

Punloading (h)dh

The ratios H/M, We/Wt or hf/hmax all quantify the relative influence of elastic and plastic

deformation in an indentation test. However, as we will see below, it is important to note that
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the measured quantities H and M (as well as Wt and We) are not material properties, but

rather snapshots of the strength and stiffness properties of the indented material system. In

the following sections we investigate the very nature of the hardness (see Eq. (2.1)) and the

indentation modulus (see Eq. (2.2)); and we propose ways to link them to true mechanical

properties of cohesive-frictional materials. In other words, we aim at presenting the theoretical

tools that allow us to link H and M to strength and elastic material properties of the indented

material.

2.2 Self-Similarity of the Indentation Test

2.2.1 Indenter Geometries

Spherical, conical or pyramidal indenters are the most common shapes used in practice. Spher-

ical indenters provide a smooth transition between elastic to elastic-plastic contact [132] and

are commonly used for larger scales as the evolution of the contact area with depth is rapidly

evolving. In this thesis, however, we are primarily concerned with sharp indentation testing

with conical or pyramidal indenters. The Vickers indenter is a four-sided pyramid with a semi-

vertical angle of 68' (Fig. 2-2). The Berkovich indenter which is commonly employed for small

scale testing it is a three-sided pyramid and was constructed with a semi-vertical angle of 65.30,

such as to maintain the same area-to-depth ratio as the Vickers indenter. In contrast to the

four-sided pyramids, Berkovich indenters have the advantage that their three edges are more

easily manufactured to meet at a point. A cube corner indenter has the same geometry as a

Berkovich indenter but with a sharper face angle of 90'.

2.2.2 Self-Similarity Properties

One key feature of the analysis of pyramidal or conical indentation is the self-similarity of Hertz-

type contact problems. The conditions under which frictionless Hertz type contact problems

possess classical self-similarity were stated by Borodich (see Ref. [30]); and include:

1. The shape of the indenter is described by a homogeneous function whose degree is greater

or equal to unity. Using a Cartesian coordinate system 0X1 x 2x 3 whose origin 0 is at
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Figure 2-2: Geometrical characteristics of conical, Vickers, and Berkovich indenters.

the indenter tip and x3 is the orientation of the

(height) is defined by:

indentation, the shape of the indenter

f (Axi, Ax 2 ) = Adf (Xi, x2) (2.4)

for arbitrary positive A. Here d is the degree of the homogeneous function f; in particular

d = 1 for a cone and d = 2 for the elliptic, paraboloid considered by Hertz. Such axisym-

metric indenters can be described by monomial functions of the form (first introduced by

Galin, according to Borodich and Keer [31]):

f = f (x1 = r cos0,x2 = r sin0) = Brd (2.5)

where B is the shape function of the indenter at unit radius. For a conical indenter

(d = 1), having a semi-vertical angle 0; B = cot 0. For a spherical indenter of radius R,

d = 2 and B = 1/ (2R). The previous expression was recently extended to indenters of

non-axi-symmetric shape, such as pyramidal indenters that are frequently employed in

depth-sensing indentation tests [30]:

f = B (p) rd (2.6)
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where B (#) describes the height of the indenter at a point (#, r = 1). For a three-sided

pyramid, d = 1, and making use of the triple symmetry:

B (a) = cot V sin (ir/6 + #) (2.7)

where 0 is the angle in vertical cross-sections. For a Berkovich indenter, having a face

angle of 115.13', o = 65.30; and for a cube corner indenter of 90' face angle, ' = 35.26'

(see Tab. 2.1).

2. The operators of constitutive relations F for the indented material is a homogeneous

function of degree r, with respect to the components of the strain tensor e (respectively

the strain rate-tensor d):

F (Ae) = A)F (e) (2.8)

Evidently, a linear elastic law satisfies this relation since r, = 1; as does any nonlinear

secant elastic formulation of the form - = C(e) : e for which the secant elastic stiffness

tensor satisfies:

C(Ae) = A'-'C(e) (2.9)

A similar reasoning applies to the dissipation function 7r (Ad) = A'7r (d) applied in yield

design solutions, as we will see in Section 2.3.2.

Then provided the homogeneity of material properties and that the stress-strain relation

remains the same for any depth of indentation, the whole load-displacement curve in a depth-

sensing test can be scaled by [30]:

P =(h) 2±n d-1) - AC d/2 (2.10)
P1 h, hi A,

where Ac is the projected contact area, which appears to be not affected by the constitutive

relation. In return, the hardness is scaled with the indentation depth by:

tc(d-1)
H (h)d 

(2.11)
H1 hi
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Projected Area Semi-vertical angle, 0 Equivalent cone angle 0

Berkovich 30h2 tan2 V 65.30 70.320
Vickers 4h 2 tan 2 V 68.00 70.320

Cube corner 3iv3h 2 tan2 , 35.260 42.280
Cone rh 2 tan2 , 9 9

Table 2.1: Geometrical relations between projected area and equivalent half-apex cone angle.

We note that the load-displacement relation is scaled by P oc h2 for conical and ideal (sharp)

pyramidal indentation, for which d = 1, irrespective of the constitutive relation. As a conse-

quence, the hardness is a constant over the lqading process, which justifies Eq. (2.1). On the

other hand, the constitutive relation power r significantly affects the load-displacement relation

for spherical or elliptic paraboloid indenter geometries, for which d = 2, and must be known

in advance in order to analyze the load-displacement curve. For instance, for an elastic behav-

ior, P oc h (which corresponds to d -+ oc) is indicative of flat indentation, and is described

by Boussinesq's solution; P oc h3 / 2 is indicative of linear elastic spherical or paraboloids of

revolution [213].

Finally, given the same d = 1 degree of the homogeneous shape function of three-sided

pyramidal (Berkovich, corner cube) and conical indentation, it is common practice to consider,

instead of the original three-dimensional pyramidal shape, an equivalent cone of revolution in

sharp indentation analysis, such that the projected contact area with respect to indentation

depth of the cone is the same as that for the real indenter, i.e. from Eq. (2.10):

A (h) = Cih2 = 7r (h tan 0) 2 -= tan9= 0 (2.12)
7T

where C1 is a constant characterizing the specific pyramidal indenter, and 9 is the equivalent

semi-apex cone angle (see Tab. 2.1). Using Eq. (2.12), the flat Berkovich indenter (V = 65.30),

for which C1 = 24.56, can be assimilated to an equivalent cone of semi-apex angle 9 = 70.32';

and a cube corner indenter (,0 = 35.260; C1 = 2.598) to one with 0 = 42.28'. The area-to-depth

relations for different sharp indenter shapes are summarized in Tab. 2.1.
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SCANNING PROBE MICROSCOPY 'SPM'

Scanning probe microscopy is a technology for imaging and measuring surfaces

on a fine scale, down to the level of molecules and groups of atoms. In this type

of imaging, a cantilever sharp probe tip is moved in a raster scan pattern across a sample

surface using a three-axis piezo positioner. The X-Y piezo tube moves the tip

across the surface with very high resolution, while the Z-axis position is varied

using a feedback loop. This feedback loop is controlled by some type of detector

(typically a force detector) to measure spatial information about the sample (in

our case height). Typical types of detectors include chemical, electrical, mechanical,
thermal etc. and typical spatial information would be elasticity, capacitance, thermal

characteristics, chemistry, but most often, height. In such a fashion a surface topology

is obtained. Equipment that employ mechanical force detectors to measure

the interaction force between the tip and investigated surface are the most commonly

employed in practice and are often referred to by the name, Atomic Force Microscopes
or simply 'AFM'. The resulting images can be viewed in several ways:

Topography images show change in elevation on the sample using a range of

colors, light being high and dark being low.
Gradient images show change in slope on the sample using a range of colors.

Both indenters used in this study are capable of Scanning Probe microscopy.

Table 2.2: Scanning Probe Microscopy 'SPM' techniques.

2.2.3 Imperfect Indenter Geometry

In practice, the area-to-depth relations A (h) often deviate from the ideal geometry parameters

given in Tab. 2.1, as most indenters end in a spherical cup that has a radius R on the order of

R = 50 - 250 nm. The indenter tip radius used in this study were ensured by the manufacturer

to be in the range of 50 - 100 nm. To account for non-ideal geometry (see Fig. 2-3) it is

necessary to apply a correction factor to the ideal area-to-depth relations of Tab. 2.1. This

correction factor can be found directly by SEM-AFM investigations (see Tabs. 2.2 and 2.3 for

details) of the exact indenter tip geometry.

The approach is however time consuming and an indirect method is commonly employed in

practice, by means of a corrected area function of the form:

A (h) = C1 h2 + C 2h + C3012 + C4h/4 + ... (2.13)
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SCANNING ELECTRON MICROSCOPY 'SEM'

Scanning electron micrographs are direct ways to visualize materials microstructures.
From a simplistic point of view they provide the tools for us to observe an invisible
object (with naked eye) in a stereographic fashion with a magnified scale. SEM
produces and scan a finely-focused beam of electrons across the specimen and
measures signals resulting from the electron beam-specimen interaction. Common
signals employed in SEM analysis include secondary electrons (SE) for imaging
surface topology; backscatter electrons (BE) for highlighting compositional
differences; and X-rays for determining elemental composition and imaging element
spatial distribution. Images from an SEM are monochrome since they reflect the
electron or X-ray flux resulting from the beam-specimen interaction. BE and X-ray
modes are most useful for quantitative purposes.

Table 2.3: Details of Scanning Electron Microscopy, 'SEM', imaging technique.

where C1 is the area-to-depth constant of the perfect pyramidal indenter (i.e. C1 = 24.6 for

Berkovich and C1 = 2.6 for cube corner), while the constants Ci (i = 2,3, ...) are constants

used for accounting for the curvature. These constants are determined from indentation tests

on a reference material of known elastic properties (indentation modulus M), typically fused

quartz. Assuming that the elastic properties do not change with the indentation depth, several

indents at different load levels are performed, and using the BASh formula Eq. (2.2) the

actual area-to-depth relation is determined and fitted to the function shown in Eq. (2.13). It is

interesting to note that imperfect indenter geometry plays a significant role only for indentation

depths comparable to the indenter radius, h/R ~1 The error tends to get very small as the

indentation depth increases and the correction seems unnecessary.

2.3 Indentation Hardness

From its very start, the field of indentation technique concentrated on hardness measurements,

a fundamental quantity which constitutes the vast majority of metallurgical tests. Despite

its extensive long standing use, an exact physical interpretation is still a matter of debate

[49, 50]. For a wide variety of metals, a proportionality of hardness to yield strength was found

experimentally, on the order of H/up = 3 [223]. This rule-of-thumb [206], however, is restricted

to cohesive frictionless materials, and cannot be extrapolated for cohesive-frictional materials:

Several researchers report hardness-to-compressive stiength ratios for frictional materials on
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Figure 2-3: An SEM image, in the secondary electron mode (SE) - see Tab. 2.3, of a Cube

Corner indenter showing the imperfect geometry of the tip. Dust particles on the surface are

also visible.

the order of H/E ~ 20 - 30 [125,136,59], which highlights the effect of internal friction on

the hardness of cohesive-frictional materials. We start our presentation with a dimensional

analysis of the indentation test and present a limit analysis approach that can provide, under

certain restrictions, a link between hardness H and the fundamental mechanical properties

characterizing the strength response of cohesive-frictional materials: cohesion c and friction

angle yp.

2.3.1 Dimensional Analysis

To motivate the forthcoming developments, we consider a three-dimensional, rigid, conical

indenter of a given half-angle 0, indenting normally into a homogeneous elastic perfectly plastic

cohesive-frictional material half-space. The origin (0) of the Cartesian coordinate system is

put at the point of the initial contact between the conical indenter and the half-space (Fig.

2-4). Conical indentation leads to geometrically self-similar indentation states. That is, for a

given half-angle, the average pressure below the indenter is independent of the indentation load

and the true contact area. Using the projected current contact area, which is proportional to

the true contact area for geometrically self-similar indenters (i.e., Am = A,/ sin 9 for conical
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r

Figure 2-4: Schematic of a conical indentation test.

indenters), yields the classical definition of hardness H, presented in Eq. (2.1), which can be

determined at any point along the P - h curve for which the contact area is known:

def Pi P2 _ P (.4
A 1  A 2  A

where Ac = -rra 2 is the projected contact area, a =he tan 0 is the contact radius, and he is the

contact depth (Fig. 2-4).

The main problem in the analysis is that the contact surface Ac (respectively the contact

depth hc) is not known a priori, but is a solution of a boundary value problem. In fact, the rigid

displacement h of the indenter is generally not the contact depth, he (Fig. 2-4), corresponding to

the maximum projected contact surface of the indenter with the deformed half-space surface:

he/h < 1 corresponds to what is referred to, in the indentation literature, as sink-in; and

hc/h > 1 as pile-up (Fig. 2-4). Hence, there are a priori two independent measurements to

be carried out: the force P and the projected contact surface A. It is instructive to perform
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a dimensional analysis4 : The two dependent quantities of interest that define the hardness

(2.1), force P and contact area A, (respectively the contact depth h,), depend on the material

properties (Young's modulus E, Poisson's ratio v, cohesion c, friction angle 0), the indenter

geometry (which in the case of conical indentation reduces to the semi-apex angle 0), and the

indentation depth h:

P = f (E, V, c, , 0, h) (2.15a)

Ac = g (E, L, c,, 0, h) (2.15b)

Among the six governing parameters E, v, c, p, 0, and h two of them, namely c and h have

independent dimensions. From a straightforward application of dimensional analysis (or more

precisely the Pi-Theorem [12]) to relations (2.15), the two dimensionless relations are readily

found:

P E
2 = Ha -, V, V, 0 (2.16a)ch2 c

= H, -, y, p,(2.16b)

Eqs. (2.16a) and (2.16b) demonstrate that the force of the indenter P and the contact area A,

are, for conical indenters, proportional to the square of indenter displacement h; and that the

dimensionless numbers h and I are independent of the indentation depth h. In fact, for a

given semi-apex angle 9, they are only functions of three dimensionless material characteristics,

E2
-ThV, p. Hence, any deviation from the h2 -scaling relations would imply the presence of a

length-scale that has not been considered in the sets (2.15) of independent quantities.

Furthermore, Eqs. (2.16a) and (2.16b) define a unique third dimensionless relation, the

hardness-to-cohesion ratio as a function of the stiffness-to-cohesion ratio and the Poisson's

ratio, the friction angle and the semi-apex angle:

H Ha (EH =H '( - , (2.17)

4The dimensional analysis presented here is inspired by the one presented in a review paper by Cheng and

Cheng, 2004 [50]. In contrast to Cheng and Cheng's presentation, our focus will be on the indentation response

of cohesive-frictional materials.
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We readily find that the hardness is independent of the depth of indentation h, which demon-

strates the self-similarity of the problem as recognized by its definition (2.14). In turn, the

hardness of a material, or the average pressure under the indenter tip, or its resistance to in-

dentation, stems a prior from a combination of elastic, plastic and geometrical contributions5

Equation (2.17) has been extensively studied for elasto-plastic cohesive materials (o = 0), with

and without strain hardening (see review in Ref. [50]); in the case of a power-law strain hard-

ening material, it suffices to add the power exponent n to the set of independent parameters on

the right-hand-side of relations (2.15)). In particular, it has been shown, that the H/c-ratio for

cohesive materials, for which c/E -+ 0, comes close to Tabor's suggestion (noting that a-y = 2c

for a Tresca material):
H H 1 C (2.18)
Ou, 2c 2 R E *

It is worthwhile to note that c/E -+ 0 comes close to the assumption of yield design approaches

which can be found early on in the indentation literature. For instance, Lockett [156] and

Chitkara [51] developed yield design solutions for conical indentations in rigid-plastic solids.

Later developments attempted to incorporate the elastic contribution into the model. In 1945,

Bishop et al. [28] suggested that the stress distribution under a conical indenter can be ap-

proximated by that of a spherical cavity. Using this approximated stress field and assuming

that the contact area was essentially the geometric contact projection, Johnson [132] derived

the pressure distribution beneath a conical indenter of angle 0:

H = 2 cot (0) E 2 1 -2v ~21

0-1 3 1 2c (1 v) 2c 3 1 - v(1

Equation (2.19), which is commonly referred to as the 'cavity expansion model', is often used

to analyze indentation data in elastic-perfectly plastic solids, though questions remain about

the extend of its validity. More recently, Cheng and coworkers [46,47] showed by means of finite

element simulations for a large range of material properties that H/-,Y is not a constant, but

decreases with the strength-to-stiffness ratio c-y/E (and to a lesser extent with the Poisson's

ratio v). Figure 2-5 displays the different results. However, for most metals for which 0.001 <

5An additional contribution may come from the friction between indenter and indented material, which is not
considered in this investigation.
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Figure 2-5: Finite element simulations of Cheng et al. [50] of frictionless conical indentation

(0 = 68') on an elastic/Von Mises half-space. The dimensionless parameter H/y is plotted

against ay/E for different Poisson's ratios and Young's moduli. The cavity expansion model of

Johnson [132] (see Eq. 2.19), and the rigid-plastic solution of Lockett [156] are also displayed

for comparison.

Oly/E < 0.01 [8], H/uy is between 2.5 and 2.6 [223, 132]; thus very close to the rigid-plastic

solution of Lockett [156], which seems relevant for uy/E < 0.01.

It becomes apparent that yield design approaches are well suited for characterizing the hard-

ness response of cohesive materials provided that the strength-to-stiffness ratio is very small.

The same should hold true for cohesive-frictional materials. Indeed, for most geomaterials,

for which typically c/E ~ 10-3 - 10-6 it is most likely that yield design solutions are highly

relevant; i.e. solutions of the form:
H
H ='H (<p, 0) (2.20)

However, a limit analysis result of the form (2.20) is still missing for conical indentation in

cohesive-frictional materials, since -as Johnson notes in his classical book [132]- 'problems of

axi-symmetrical plastic flow cannot, in general, be solved by the method of characteristics (slip
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lines) as in plane strain (page 168)'. Indeed, to our knowledge, the only analytical slip-line

solutions we found for cohesive-frictional materials in axi-symmetrical conditions are for flat

punch indentation problems (the circular foundation problem), for which 0 = r/2 [121, 165]. Of

course, like for pure cohesive materials, the finite-elemeht method has been employed for the

inverse analysis of indentation load vs. indentation depth curves for some particular cohesive-

frictional materials, such as metallic glass [236]. Beside questions concerning the uniqueness

of this inverse problem (see e.g., Ref. [50]), finite element analysis are computationally too

intensive to be used for day-to-day applications in instrumented indentation analysis. Hence,

a solution for conical indentation is highly desirable as a first engineering approach to the

assessment of the cohesion and friction angle of cohesive-frictional materials.

2.3.2 Limit Analysis of Cohesive-Frictional Materials

In this section6 we present the formulation of the indentation problem within the framework

of limit analysis. To this end, we consider an indentation tast of a rigid conical indenter into

an infinite half-space oriented in the -z direction (Fig. 2-4). The indenter is at an indentation

depth h, the contact area A, is assumed to be known, and a force P is applied. The work rate

provided from the outside to the (half-space material) system is:

JW = Ph = j T (n) - _Uda (2.21)

where h is the rate of indentation, AM = A,/ sin 0 is the contact area of the cone mantel with

the material (A, being the projection of this surface on the z-axis); T (11) = a - n is the stress

vector on AM oriented by the unit outward normal n (positive outward to the material domain;

i.e. in a cylinder coordinate frame n = - cos e + sin0 e ); and U is the velocity field of the

material on AM.

In elasto-plastic problems, a part of the external work rate shown in Eq. (2.21) is stored

into recoverable elastic energy (including hardening) into the material system. In contrast, limit

analysis is based on the assumption that a material system, at plastic collapse, has exhausted

6 The limit analysis results presented in this and the next sections, which will lead to the proposition of a novel

dual indentation technique, were achieved in co-operation with Frangois Ganneau, during his Master Thesis at

M.I.T. [93]. The results are also presented in a co-authored paper [92].
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in response to the prescribed force P the capacities (i) to develop stress fields that are both

statically compatible (i.e. in equilibrium) with the external loading and compatible with the

local strength domain of the constitutive materials; and (ii) to store the externally supplied

work rate (Eq. (2.21)) into recoverable elastic energy. As a consequence, the work rate 6W

is entirely dissipated in the material bulk and along surfaces of discontinuity; hence from an

application of the generalized divergence theorem to Eq. (2.21):7

bW = i r (d) d + jr ([[l]]) dlF (2.22)

where ir (d) = sup o : d and 7r ([[E]]) = supT - [[L]] is the maximum dissipation capacity the

material can develop in the material bulk and along surfaces of discontinuity for the solution

fields (o,,U). The solution stress field o is statically and plastically admissible, satisfying:

Cr =to; divo, = 0; [[_T] = [[0 -11]] = 0 (2.23a)

f (0') <; 0: f (T) < 0 (2.23b)

where superscript t stands for transpose; and f (a) and f (T) are the yield functions defining

the strength domain of the material system in continuous material sub-domains and on surfaces

of discontinuity, respectively, while d is the solution strain rate field in continuous material sub-

domains, and [[Q] is the velocity jump over surfaces of discontinuity F, which are kinematically

compatible with the velocity field U, and compatible with the plastic flow rule of the material:

1 Of
d = - (grad U+ t grad U) = A (2.24a)

= _ U- = A (2.24b)

Here A stands for the plastic multiplier. Provided that (u,LL) are related through Eq. (2.24) by

7For completeness, the generalized divergence theorem reads:

j f - nda = f divf dQ + j [[f]] -ndF

where Q is the domain of boundary ail and [[f]] = f+ - f- denotes the jump of f over the surface of discontinuity
IF.
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the normality rule of plastic flow, the dissipation functions are unique functions of the strain

rate (respectively velocity jump) only. For instance,for a Mohr-Coulomb material, for which

the yield function is given by:

f (a ) = o- (1 + sin p) - -11i (1 - sin (p) - 2c cos K < 0 (2.25a)

f (T) = 1t - _T (1)|+ tan op (n -T (_1)) - c < 0 (2.25b)

the volume dissipation function r (d ) is [204, 232]:

i (d) = p tr d if tr d > sinIp (|d,|+ IdII + |dI1) (2.26)
.+oo else

and the discontinuity dissipation function ir ([[U]]) is:

c lUtI if Un > iUt Itanp } (2.27)

+oo else

where a-1 : c- 11  0-11 are principal stresses; d1 > d11  d111 are principal strain rates;

Ut = t - [[U]] and Un = n- [[_U] are the tangential and normal velocity jump, respectively, and

p = c cot <p is the cohesive pressure.

The limit theorems of yield design approach the actual dissipation capacity shown in Eq.

(2.22) by a lower and an upper bound estimate. The lower estimate is based on statically

and plastically admissible stress fields a' and Stress vectors T' satisfying Eq. (2.23); and the

upper bound approach is based on kinematically and plastically admissible strain rate fields d'

and velocity jumps [[U']], satisfying Eq. (2.24). Noting that tr d' = div U' in Eq. (2.26) and

making use of the generalized divergence theorem for the upper bound, the limit theorems for

the conical indentation problem for a homogeneous Mohr-Coulomb material half-space can be

written in the form:

- T' (_1) - f, da h < P h < p U' - nda (2.28)
JAM aQ

Herein, P' = - fAm (n) - e., da is a lower bound limit of the indentation load in equilibrium

with statically and plastically admissible stress fields o' in Q, satisfying Eqs. (2.23) and (2.25);
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while U' - n is the normal component of the velocity field at the surface 0Q of the half-space,

which includes the cone mantel AM oriented by n = - cos 0 f + sin 9.t, and the stress-free

surface outside the contact radius r > a = VAc/7r oriented by n = ez. In order for the

dissipation to remain finite, this surface velocity field U' must locally satisfy the inequalities in

Eqs. (2.26) and (2.27). Finally, since the contact area is assumed to be known, inequalities of

Eq. (2.28) can be recast in the form of the dimensionless relation (2.20):

H- <H = 'H (') < H = 9) (2.29)
C C C tanW

where 6' (o, 9) = - fJan U - nda (with U' = U'/h the normalized surface velocity field) rep-

resents a global dilatation coefficient. Hence, any statically admissible stress-strength solution

provides a lower bound H-/c to the sought dimensionless relation in Eq. (2.17); and it is the

inverse of any velocity-flow rule solution.

Lastly, for either the lower or -upper bound, we need to define the boundary conditions,

or more precisely the contact conditions at the indenter-material interface. For a frictionless

contact condition, all shear stresses at the interface are zero, i.e. Vt - n = 0; t T' (_n) = 0 <

T' (n) = or'n:

t-' (n)= (o,'z - ar) sin 29 + o'4_ cos 20 = 0

V (r, z) E Am;

_A -T'(n)= ', sin 2 9+ zz cos 2 9- rZ sin 29 (2.30)

Vr > a; z = 0 : T' (n = ez) = 0

In the upper bound approach, a velocity field is kinematically admissible if it satisfies the zero-

velocity boundary conditions at infinity. On the other hand, there is an additional interface

condition, which arises from a frictionless contact condition, that a priori permits a tangential

slip (without dissipation) while the normal velocity ' is the one of the rigid indenter:

V (r, z) E AM; U' - n -h sin0 (2.31)

(r, z) -+oo; U'= 0
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2.3.3 Ganneau's Solution and Validation

The formulation of the indentation problem described in the previous section defines two formi-

dable optimization problems: either to construct statically admissible stress fields o' that

maximize the indentation load (or the hardness); or to construct kinematically admissible ve-

locity fields U' that minimize the maximum dissipation capacity the material can support.

Given the limited possibilities for analytical solutions (such as slip-line solutions), the bene-

ficial use of a continuum discretization into finite elements together with linear programming

techniques was early on recognized for the implementation of both the lower bound theorem

for plane stress conditions [162], [188] and the upper bound theorem for plane strain condi-

tions [6], [87], [32]. The most advanced implementation is due to Sloan et al. combining (plane

stress/plane strain) 2-D or 3-D linear finite element formulations with linear and non-linear

programming [210] , [211] , [212] , [160], [161]. Ganneau and Ulm [93] employed a similar strat-

egy for the axi-symmetrical conditions of the indentation test, which to our knowledge have

not been addressed in the open literature. The material domain is discretized by linear finite

elements (triangles in 2-D, tetrahedra in 3-D). In the lower bound approach, stress discontinu-

ities are a priori permitted for out-of-plane stresses provided that the stress vector continuity

([[0' -a]] = 0) is enforced as a constraint condition over common edges of adjacent elements.

This is achieved by designing nodes of elements so that multiple nodes share the same set

of coordinates. A similar strategy is employed to model velocity jumps in the upper bound

approach.

In the lower bound approach, the stress field is discretized in the form:

=-';g = Nk (r, z) oi (2.32)
k

where uk are the nodal stresses and Nk are linear shape functions which in axi-symmetrical

conditions depends only on r, z. Since most optimization algorithms are minimization algo-

rithms, the lower bound optimization problem for the indentation test is formulated using the

objective function max,.k (H-) = ming,. (-H-) in the discretized form for a unit projected
13 T
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contact area: J-H~ = -mink [C]T 
[WJ]

Subject to: (2.33)

[A 1][-'] - [bi] = 0

F(u') ~- [A 2] [a'] - [b 2] ; 0

Herein, [C] assembles the objective function matrices for the nodes along the cone surface from

a discretization of the lower bound integral in Eq. (2.28); [A 1 ] and [bi] assemble the constraint

coefficients arising from a discretization of the momentum balance div o' = 0 per element

of the stress vector continuity [[(' - 1]] = 0 over shared edged of elements and of extension

elements at the boundary of the discretized domain (which extend the statically admissible

stress field beyond the limits of the domain discretized by finite elements). F(u') assembles the

constraints arising from the yield criterion Eq. (2.25a) at all nodes (including the one of the

extension elements situated at the boundary), which ensures that the stress field is plastically

admissible throughout the entire half-space. In order to satisfy the strength criterion Eq.

(2.25b) throughout the element, it suffices to enforce it at the element nodes since the stresses

vary linearly according to the chosen shape or interpolation functions between the nodes [160].

This reduces the number of inequalities significantly. Furthermore, in order to employ the tools

of linear programming (thus avoiding nonlinear constraints on the unknown nodal stresses),

the Mohr-Coulomb criterion is linearized through a polygonal approximation of the principal

stresses, which is expressed by the matrix [A 2] and vector [b 2] in Eq. (2.33). The derivation

and expressions of the matrices and vectors for axi-symmetrical conditions can be found in Ref.

[93].

In the upper bound approach, the velocity field is discretized in the form:

Ui'= Nk (r,z) u (2.34)
k

where uo are the nodal velocities and Nk are linear shape functions. Using the classical notation

of displacement-based finite element formulation (see e.g., Ref. [16]) which is here applied to

the velocity formulation, the components of the strain rate tensor are given by [d'] = [Bij] [uf],

where [Bij] is the strain rate-velocity matrix (equivalent to the strain-displacement matrix in the
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FEM), which allows a straightforward calculation of the maximum local dissipation capacity per

element from (2.26) and along surfaces of discontinuities (i.e., joined edges between elements)

from (2.27). Integrated over the discretized half-space domain, it is this dissipation capacity

which is minimized in the upper bound implementation; i.e. formally:

H+ = minO [C']T [U']

Subject to: (
(2.35)

[A'fj [U'] - [b'j= 0

G(U') ~ [A'] U'] [ [b'] (; 0

where [U'] = ut/h is the normalized nodal velocity vector and matrix [C'] assembles the '(unit)

element and discontinuity dissipation terms. The equality constraints arise from the contact

condition in Eq. (2.31), while G(U') < 0 assembles the constraints arising from the conditions

g (d') = sin p (d'I + Icd'I + dIrIII) - tr d' < 0 and g([[']]) = UtJtan o - U" < 0 in Eqs. (2.26)

and (2.27) that ensure the finiteness of the (local) dissipation. In order to preserve the nature

of these equations as a linear programming tool, these (nonlinear) inequality constraints were

linearized (on similar lines as the Mohr-Coulomb criterion), in a series of linear inequalities.

The derivations and expressions of the matrices and vectors can be found in Ref. [93].

This novel computational limit analysis of the indentation problem was validated for the

two analytical solutions that exist in the literature. The first solution, which is due to Hopkins

et al. [121], is for the 'smooth' punch corresponding to the frictionless boundary conditions

(2.30) and (2.31):

V (r, z = 0) E AM; zz, rz (2.36)
U' -n = -h

It is based on kinematically admissible velocity fields U', i.e., an upper bound approach, which

is shown to be compatible with a statically and plastically admissible stress field oa (E') in the

bounded region below the footing and throughout the rest of the half-space satisfying the lower

bound conditions (6.7). Hence, the slip-line solution for the smooth flat punch problem is the

exact plastic collapse solution in the sense of Eqs. (2.21) to (2.24). The second benchmark

solution is due to Matar and Salengon [165]: a perfectly rough punch on a Mohr-Coulomb

half-space. The perfectly rough punch translates into a frictional interface stress condition and
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a no-slip velocity condition of the form:

f (T)=lo-' I + tan po-' z - c < 0
V (r, z = 0) { Am; -0 } (2.37)

U'_n=-h; U'.t=o

Matar and Salengon's solution is based on statically and plastically admissible stress fields -',

i.e. a lower bound approach, constructed by the method of characteristics along characteristic

lines in a zone spreading under the foundation and emerging at the stress-free surface. In this

same zone a velocity field U* (c-' is constructed that satisfies the compatibility conditions of

Eqs. (2.24) and (2.37)2; yielding a so-called 'incomplete solution' [28], as the stress field and

the velocity fields have not been extended throughout the rest of the half-space. Both solutions

employ the Haar-Karman hypothesis 8 which is a posteriori verified.

Figure 2-6 displays the lower and upper bounds of the hardness-to-cohesion relation H/c =

'H (p,0 = r/2), obtained with the yield design algorithm presented in Ref. [93] for the smooth

punch problem and the rough punch problem together with the benchmark solutions. The upper

bound solution comes remarkably close to the exact solution of Hopkins et al. [121], and also

very close to the 'incomplete' (lower bound solution) of Matar and Salengon [165] (the maximum

relative difference is consistently less than 6%); while the lower bound solution performs rather

poorly. The reason for this poor performance of the lower bound is that the algorithm converges

towards diagonal stress fields (no shear stress) due to the stress-free boundary condition on

r > a, which propagates urz = 0 from the surface boundary into the entire domain [93].

Because of this restriction to diagonal stress fields, the lower bound approach is limited to a

relative small range of possible stress solutions that appear too restrictive to come close to the

actual stress fields in the punch tests. In contrast, the upper bound approach is free of such

restrictions and is able to accommodate any collapse mechanism, converging towards the actual

dissipation capacity. The observation that the upper bound solutions are much more realistic

than the lower bound solutions does not only hold for the punch problem, but was verified for

8 The Haar-Karman hypothesis assumes that the middle principle stress is equal either to the major or minor

principal stress,

C1 = [a( + UrnF) - E - 11) ;= k1

71



- - Upper Bound

Smooth Punch
__ Solution

--- Lower Bound

10 20 30 40

Friction Angle (0 [Degree]

10 20 30 40

(b) Friction Angle ep [Degree]

Figure 2-6: Hardness-to-cohesion solutions for the flat punch problem: (a) 'Smooth' punch
solutions (benchmark solution of Hopkins et al. [121]); (b) 'Perfectly rough' punch solutions
(benchmark solution of Matar and Salengon [165]), from Ref. [92].
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all types of axisymmetric indentation tests: conical, spherical, etc. (for details, see Ref. [93]).

This and the excellent agreement of the flat punch solutions with the reference solutions are

very strong arguments in favor of the use of the upper bound solution for indentation analysis.

2.3.4 Dual Indentation Technique

It has very recently been recognized that the extraction of material properties from the reverse

analysis of a single indentation test suffers from non-uniqueness (see e.g., Ref. [50]); and several

multiple indenter approaches have been proposed to overcome this limitation for elasto-plastic

cohesive materials (with or without'strain hardening) using conical or pyramidal indenters [37,

52,88, 221]. The key idea of the multiple indenter approach is to exploit the self-similarity

of the indentation test with respect to the indenter geometry; i.e., for conical indentation

with respect to the semi-apex angle 9. We follow a similar strategy here for the extraction

of the cohesion and the friction angle from the hardness-to-cohesion relation (2.20), using the

upper bound approach for conical indentation. It is readily understood, that the number

of indentation results obtained with different semi-apex angles should equal the number of

unknown constants in the constitutive model [88], i.e., two hardness measurements in the case

of cohesive frictional materials, provided that c/E -> 0. However, the uniqueness of such a dual

indentation procedure needs to be ensured.

Figure 2-7 shows the results of upper-bound simulations for different tip semi-apex angles

(and frictionless contact conditions), while keeping the friction angle constant. The results are

displayed in form of H/c vs. 9 (Fig. 2-7), together with some velocity fields for selected semi-

apex angles (Fig. 2-8). The resulting H/c = H ( po = const, 0) curve has a minimum around

0 ~ 450 and increases for both smaller and larger semi-apex angles. The increase for larger

semi-apex angles can be attributed to the simple idea that a sharp cone (0 > 450) is easier

to drive into a material half-space than a flat punch (9 = 90'). This is evidenced from the

velocity profiles shown in Fig. 2-8: the velocity profiles appear more concentrated for smaller

semi-apex angle than for larger semi-apex angle. Hence, at plastic collapse, the amount of

activated material volume that contributes to the overall dissipation decreases when the semi-

apex angle is reduced and reaches a minimum around 0 ~ 45'. Surprisingly, for very sharp

cones (0 < 450) there is an inverse trend, an apparent increase of the hardness, which may be
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Figure 2-7: Influence of the apex angle on the hardness-to-cohesion ratio (p = 10'). Evidence

of the existence of a minimum, from Ref. [92].

due to the fact that the plastic zone concentrates into a material cone around the very sharp

indenter whose volume increases quadratically compared to the volume of the conical indenter.

A similar minimum phenomenon was reported by Houlsby and Wroth for the cone penetration

test used in geotechnical applications, who reported a minimum of 0 ~ 500 from exploring a

lower bound approach [122]. This minimum phenomenon is an important property regarding

uniqueness of the inverse problem of the assessment of the cohesion and friction angle by two

indentation tests. Indeed, provided that H/c for a given friction angle is a monotonic increasing

(or decreasing) function of the semi-apex angle, the uniqueness of the dual indentation method

can be ensured.
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Figure 2-8: Velocity fields for upper bound conical indentation solutions: (a) 0 = 0, (b) 9 = 70 ,

(c) 0 = 450, (d) 0 = 25~ (all results for <p = 10 ), from Ref. [93].
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2.3.5 Application to Berkovich and Cube Corner Indentation

By way of application, we consider two commercially available indenter geometries that are

commonly employed in instrumented indentation tests, the 3-sided pyramidal Berkovich and

cube corner indenter. As it is common practice in indentation analysis (see Section 2.2, also

Ref. [86]), the 3-sided pyramids are approximated as cones so that the normalized projected

contact area Ac/h 2 of the cone is the same as that of the real indenter, i.e., A,/h 2 = 7r tan2 9

(see Tab. 2.1). In the light of the results displayed in Fig. 2-7, it is readily understood that the

effective cone angle of OB = 70.320 for the Berkovich-indenter and Occ = 42.28' for the cube

corner indenter ensure the uniqueness of the reverse problem. Figure 2-9 displays the H+/c -

relations determined with the upper bound approach for those two semi-apex angles. Following

the dimensionless expression in Eq. (2.29), we fit the obtained results in a power-series of the

form:

H+ 6'(o, 0) 1 k=N k- - 'an - ---- (a (0) tan o) (2.38)c tan p tan ok1

where coefficients ak (9) depend only on the semi-apex angle. In the interval p E [30, 30'], a

N = 6 power expression (i.e., fifth-order in tan o) fits perfectly the results, and the coefficients

ak (OB) and ak (Occ) are given in Tab. 2.4. While this fitting function is strictly valid only

in the interval for which it was fitted, it may serve for limited extrapolation to higher friction

angle. Furthermore, it is interesting to remark that the asymptotic values for a frictionless

material, i.e., limw 0O (H+/c) = al (9), come very close to the value given in (2.18) obtained

by extensive elastoplastic finite element simulations (H/c = 2H/cr ~ 5.6; [50]). However, as

the friction angle increases, we observe a strong deviation from this 'rule-of-thumb' value [206],

generally admitted for metallic materials. In fact, internal friction kinematically impedes the

45' slip lines commonly observed for frictionless materials and as a consequence increases the

plastic yield volume and thus the overall dissipation capacity of the system, which translates

into a higher hardness value, and which is captured by the results displayed in Fig. 2-9. The

stress state of the material beneath the indenter is a highly compressive triaxial stress state

with a hydrostatic component that gives rise to an amplified shear strength behavior due to

the internal friction.
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Figure 2-9: Upper bound solutions for the hardness-to-cohesion ratio for two (equivalent conical)

indenter geometries: Berkovich indenter (OB = 70.32') and Cube Corner indenter (OcC

42.280) (Data from Ref. [93]).
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a, a2  a3 a 4  a 5  a6

OB = 70-320 5.7946 2.9455 -2.6309 4.2903 -3.4887 2.7336
Occ = 42.280 5.9455 2.4253 -2.7578 4.0152 -3.2938 2.5369

Table 2.4: Coefficients of power-series fit Eq. (2.38) for H/c relations of Berkovich indenter

(OB) and Cube Corner indenter (Occ) assimilated to equivalent cones of same projected contact
area.

On this basis, we propose a dual indentation technique from a combination of Berkovich

and cube corner hardness values. Given the dimensionless expression (2.29), it is possible to

determine the friction angle of the material from the ratio of two hardness measurements:

H1 _ c (p, 01) 6' (o, 01)
H2 - c (P, 92) 6' (p, 02)

Figure 2-10 displays the hardness ratio for the Berkovich and cube corner indenters (01 =

OB; 02 = OCC) as a function of the friction angle in the interval p E [50, 30]. The figure

confirms that there is a unique relation between the hardness ratio and the friction angle,

which provides a means of assessing o from the difference in hardness between a Berkovich

indentation test and a cube corner indentation test. While small for very small friction angles,

the hardness ratio becomes significant for greater friction angles; at these larger p, the ratio

appears to increase almost linearly with o in the interval considered. Once the friction angle

is determined, it is possible to determine the cohesion from the H/c curves displayed in Fig.

2-9. To our knowledge, this simple technique is the only one currently available for extracting

strength properties of cohesive-frictional materials at small volumes. We will validate this novel

method in Chapter 3 for a model cohesive-frictional material, prior to applying the technique

to heterogeneous cohesive-frictional materials in the core of this thesis.

2.4 Indentation Modulus

The second quantity that is extracted from an indentation test is the indentation modulus

defined by Eq. (2.2), which is an instantaneous measure of the elastic properties of the indented

material. In fact, in contrast to the yield design assumption that the work provided to the

materials system during loading is entirely dissipated, actual indentation experiments reveal
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that a small proportion of this work is stored in form of elastic deformation, which is released

upon unloading (see Fig. 2-1). It has been proposed that the initial unloading response is

purely elastic [223, 216]; and can be employed 'to extract the elastic properties of the indented

material. As in Section 2.3, we start with a dimensional analysis of the physical quantities at

stake during unloading, and present the tools required to link the indentation modulus to the

elastic properties of the material.

2.4.1 Dimensional Analysis

In contrast to the loading phase, the unloading portion of the P - h response is characterized

by an additional length parameter, the maximum depth' hmax, at which unloading starts. The

force P during unloading is now a function of seven independent physical quantities: the elastic

constants (Young's modulus E , Poisson's ratio v), the strength parameters (cohesion c, friction

angle o), the indenter displacement h, the maximum depth hmax, and the indenter half angle

0:

P = fu (v, E, c, p, h, hmax, 0) (2.40)

Dimensional analysis yields:

P h (241
Eh 2 I=W ' hmax',) (2.41)

Hence, in contrast to the dimensionless loading response in Eq. (2.16a), the dimensionless force

P/Eh2 during unloading is a priori no longer simply pifportional to the square of the indenter

displacement h; but depends as well on h/hmax [50]. In an indentation test, the unloading slope

S = l is evaluated at h/hmax = 1. Hence, if we derive the -nnloading response with respect to

the indenter displacement and evaluate the resnlt at h/hmax = 1, we obtain:

S 1 dP

Ehmax Ehmax dh Ih/hmax=1 (2.42)

2y c h +c h 11 zc= 211y (v,-,9 , h =1,- 6o +; v, ,phrj, = 1,) n=U(v,j ,o,)I 7E 7P M; 10V 0 hmax =max

where H = dHIy/dh = (1/hmax) dlLy/d (h/hmax). Equation (2.42) reveals that the contact stiff-

ness S increases with the indentation depth in an indentation experiment, all other parameters
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(v, c/E, o, 0) held constant. On the other hand, since the contact stiffness is evaluated at the

maximum indentation depth, the second unknown of the contact problem, the contact area A,

is still given by the dimensionless expression in Eq. (2.16b), which we use in Eq. (2.42) to

obtain a new invariant:

S _ I13 (v,IyP, ) (2.43)

Finally, a comparison of Eq. (2.43) with the BASh-relation Eq. (2.2) yields:

S _2 Mc
( v -, ) (2.44)

Dimensional analysis therefore suggests that the indentation modulus M is a function of both

elastic and plastic properties of the material for a given indenter geometry. Several observations

however are in favor of applying elasticity solutions to the unloading portion of indentation

response:

" Experimental observations [216] suggest that the unloading portion of the curve is fully

elastic. Cyclic loading at the beginning of unloading tend to trace the same path sug-

gesting that reverse plasticity phenomena are negligible and that the unloading portion

of the P - h response can be safely considered as purely elastic.

" Cheng and Cheng [48,50] and Dao et al. [66] performed a large series of elastoplastic

finite element simulations (with and without plastic hardening), and demonstrate that the

indentation modulus is insensitive to plastic properties (yield strength uy, power exponent

n). The results which are illustrated in Fig. 2-11 in form of a plot of (1 - V2) S/Ea =

2 (1 - V2) M/E, do almost not depend on neither the strength-to-stiffness ratio (U,/E =

2c/E), nor on the power-law exponent n of the power-law strain hardening material

(o = oy + ken).

While these results were established for cohesive materials, it is reasonable to assume that

they also hold for cohesive frictional materials:

ST = M (v, ) <=> M = M (E, v) (2.45)
EV
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The indentation unloading response is purely elastic and all plasticity effects that the material

exhibits during the loading phase of indentation are incorporated in the evolution of the contact

area, which evolves in such a way as to maintain a constant pressure beneath the conical

indenter. This finding is remarkable, as it allows to employ elastic contact solutions to determine

the link between the indentation modulus M and the elastic properties (E, v). This is shown

next.

2.4.2 Indentation Modulus vs. Elastic Properties: The Galin-Sneddon So-

lution

The earliest attempt to relate the unloading portion of the curve with the elastic characteristics

of the materials can be found in the work of Tabor et al. [223,216]. By means of cyclic

loading-unloading on the material, they confirmed experimentally that the unloading branch

of the curve was purely elastic, and that the deformation characteristics of the contact surface

conformed with the Hertz contact solution for the elastic deformation of spherical surfaces

[223]. One can generalize the concepts by considering the elastic indentation problem of an

axisymmetric smooth rigid indenter on an elastic half-space.

The main focus of contact mechanics is the determination of size and exact shape of the

contact area. Unlike classical mechanical problems, the contact zone is unknown so that areas

where displacements (in the contact region), and those where forces (free surface) are prescribed,

are not known a priori. This makes the analysis intrinsically non-linear, since the surface

boundary conditions have to be written under conditions of a point z that is either situated

in the contact zone or in the stress free surface. The contact problem between a rigid axi-

symmetric indenter and an infinite half-space is described by the following set of equations,
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Figure 2-11: Finite Element simulations of Cheng et al. [50] of frictionless conical inden-

tation (0 = 68') on an elasto-plastic cehesive half-space. The dimensionless parameter

(1 - v 2 ) S/Ea = 2M/E, where a represents the projected constant radius, appears to be inde-

pendent of the strength-to-stiffness ratio Uy/E, the Poisson's ratio v, and the strain hardening

power exponent n (from Refs. [48] and [50]).
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Figure 2-12: Contact between a rigid axi-symmetric indenter of shape f(p) and an infinite
half-space. The total applied load is F, the indentation depth is h and the projected area of
contact is A.

written in polar coordinates (p, 0, z) [214j:

div u = 0 (2.46a)

S= F(e) (2.46b)

6 = -(Vu+Vu) (2.46c)

P = j~u z~p0,)pdpd0 (2.46d)

Uz(P, 0, 0) = -h + f (p); p < a (2.46e)

u-pz(p, 9,O) = 0; p >O (2.46f)

-z(p,9,0) = 0;p>fa (2.46g)

where P is the total load applied, in direction z as shown on Fig. 2-12, f(p) defines the

axi-symmetric shape of the indenter, and a is the contact radius. Equation (2.46a) is the

static equilibrium condition, Eq. (2.46b) gives the stress strain relation through a function F,

Eq. (2.46c) derives strain from displacements, and the remaining relations are the boundary
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conditions for the total load Eq. (2.46d), the vertical displacement in the contact region Eq.

(2.46e), the zero shear stress on the surface Eq. (2.46f) which includes the frictionless contact

condition, and the stress-free boundary condition outside the contact zone Eq. (2.46g).

There are several ways of solving the above set of equations, the more traditional one

being the method developed by Lea and Raddock [146,147 and further formalized by Sneddon

[213, 214]9, which consists in performing on all problem equations two dimensional Fourier

transforms in the directions of the surface coordinates x and y. In the case of axi-symmetry,

this integral transform is called a Hankel transform on the polar coordinates p and 9. The polar

coordinates p and 0 are transformed into a variable of dimension L-1. The area of contact

is circular by symmetry and its projected radius a is kept as an unknown. It turns out that

the equations written with a new set of non-physical coordinate can be solved analytically in

the transformed space. Finally, the integral transforms are performed backwards to come back

to the initial problem. Following this procedure, the expressions for h and P for an isotropic

half-space read:

h = af f'(p)dp (2.47)
fp=O Va2 _ p2

= 2E a p2 f'(p)dp (2.48)1 2 p= a2 _1 2 p o Va -p2

where f is any smooth convex function, and f' stands for its derivative with respect to p. This

result implicitly relies on an assumption about the contact area, through a. By inverting Eqs.

(2.47) or (2.48), the contact radius a can be expressed as a function of the prescribed depth h

or load P. The displacements in the half-space are given by:

up(p, Z) = I- 1 ' (.1 - 2v - z)A( )e-1zJi(p )d< (2.49)
2(1 - v)

Uz(p, Z) = j (2 - 2v + z)A( e-IzJo(p )< (2.50)
2(1 - v) 0

where A(s) depends on the shape of the indenter and Jo and J1 are Bessel functions of the first

9.The solution for a frictionless axisymmetric indentation has apparently been found earlier by Galin [89] (See
discussion in Ref. [30]).
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kind.

It is interesting to write here the solutions of Eqs. (2.47) and (2.48) for an axisymmetric

indentation with a cone of semi-apex angle 0, for which:

f(p) = (2.51)
tan 9

In this case,

A(() = 1 1 - cos(a() (2.52)
tan0 2

and

1 - 2v p p/a 1- 1-(p/a)2

up (p < a, 0) = 4(-v)tn0In I 1 2(2.53)
4((1v) tan9 _ 1 + 1 - (p/a)2  (p/a)2

Uz(p > a, 0) = [a sin- + p2 -a 2 - p (2.54)
tan 0 p

Uzz(p < a, 0) = tl E 2 cosh- (-) (2.55)
2tanO 1 -v2 P

Eq. (2.55) shows a stress singularity for p = 0 right below the tip of an infinitely sharp

cone. This is not the case for smooth indenters, but it appears in the case of a flat punch for

0Upz(p = a, 0). Equations (2.47) and (2.48) give the explicit values of the depth and load as a

function of the contact radius:

7r a
h = t (2.56)

2 tan 0

P = 7 E a2 (2.57)
2 1 - v 2 tan9

Eliminating a from (2.56) and (2.57) gives the load vs. depth relation:

P 2 EtanO h2  (2.58)
7r 1-v 2

As expected from the dimensional analysis, P is scaled by h2 , which provides an interesting

insight into the non linearity of the contact problem: for each increment of load, both the area

of contact and the depth of indentation increase. Similarly, a and h are linearly related, and
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one can define the contact depth as the distance measured on the z-axis between the indenter

tip and the contact edge. From Eq. (2.56) we obtain the following relation:

a _2

hc = tan = -h (2.59)

Equation (2.59) suggests that elastic indentation always produces sink-in. In fact, provided that

the material remains purely elastic, the contact depth to indentation depth ratio will always be

a constant, hc/h = 2/7r = 0.64. Furthermore, if one rewrites P and h in Eqs. (2.56) and (2.57)

as a function of the projected area of contact A, = ira 2 , then one obtains

h = Vr (2.60)
2 tan0

1 E Ac
P = 1E AC(2.61)21-v 2 tan6

Finally, deriving Eq. (2.61) with respect to depth, the shape of the indenter defined by 0

disappears, and we obtain the BASh formula Eq. (2.2) [39]:

dP 2
S = -- = -M Ac (2.62)

dh fr

together with the sought link between the indentation modulus and the elastic properties of

the isotropic half-space:

M E2 (2.63)
1- V

2

While originally derived for indentation by a rigid cone, Bulychev et al. showed that Eq. (2.62)

also applies to spherical and cylindrical indenters (see review in Ref. [31]). Subsequently, Pharr,

Oliver and Brotzen in their classical paper [191] demonstrated that Eq. (2.62) applies to any

indenter that can be described as a solid of revolution of a smooth function. Using Sneddon's

solutions [213], they proceeded by algebraically manipulating Eq. (2.48) into:

P = 2 E a f'() p>dp a f'(p) Va 2 - p2 dp (2.64)
1 - t fp=0 trai ndt2 bp=0 e

Noting that the first term inside the brac ket is simply the displacement h, Eq. (2.64) can be
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differentiated with respect to a to give:

dP E dh P E d a
dP = 2  E -+-- -2 - f'(P) /a 2 _ p 2dp (2.65)
da I - V2 da a I - V2 da ,_0

The third term on the right hand side of Eq. (2.65) was shown to be equal to P/a, thus

canceling out the second term and reducing Eq. (2.64) to:

dP E dh
-- = 2 - (2.66)
da 1 - v 2 da

The initial unloading stiffness, S = d, is then reduced to:

dP _dP/da 2
S=- - k2eM (2.67)

dh dh/da #!~~

which is the BASh formula Eq. (2.62) together with the indentation modulus M, assuming an

infinitely rigid indenter, Eq. (2.63).

The effect of indenter compliance can be considered by substituting for the indentation

modulus M the result of the Hertz contact solution of two elastically deformable bodies [114]:

1 1 -v 2  V _2V
-+ -Fi (2.68)M E E-,n

where E, v and Ein, vin are the elastic constants of the indented material and the indenter,

respectively. It must be checked from case to case whether the compliance of the diamond

indenter needs to be considered in the evaluation of the elastic properties of materials by way

of indentation (see also Section D.3.1 and Fig. D-5). Strictly speaking, diamond crystals

are transversely isotropic. Given the hexagonal symmetry of their crystal structure there are 5

independent constants required to fully describe the elasticity tensor. The mechanical properties

of diamonds will therefore be a function of orientation of the crystallographic plane. This may

explain the large range of experimental values reported in the literature: Ein = 800 - 1200

GPa, Vin = 0.06 - 0.07. Exact properties are usually provided by the manufacturer. The

International Standards Organization has recently issued a draft international standard (ISO

14577-2002, [127]) in which the use of Ein = 1,140 GPa, Vin = 0.07 for diamond indenters is

recommended. These values will be used throughout the rest of this thesis.
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2.4.3 Limitations of and Extensions to the Galin-Sneddon Solution

The Galin-Sneddon solution can be seen as a first-order displacement solution, in the sense

that it enforces through Eq. (2.46e) points on the undeformed surface in a distance p to the

symmetry axis to be situated after deformation vertically along a straight line defined by the

cone shape function. Strictly speaking, this contact condition is only valid if the points do not

move radially as well, hence in the absence of any radial displacements. Effectively, however,

points on the originally flat surface with coordinates (p, z = 0) move to the final positions

beneath the indenter given by:

r = p+up(p<a,0) (2.69a)

Z = uz(p<aa,)=-h+ (2.69b)
tan 0

where up (p < a, 0) is the first-order radial displacement solution given by Eq. (2.53). Equation

(2.69) completely describes the actual shape of the deformed surface in the contact zone. Not

surprisingly, only in the case of v = 1/2, for which up (p < a, 0) = 0, is the shape of the indenter

consistent with the geometry of the rigid indenter, while for all other Poisson's ratios, the

material surface appears to penetrate into the rigid indenter, thus violating the non-penetration

condition. This second-order effect due to the radial displacement was identified by Hay et al.

[111] by means of elastic finite-element simulations in which the geometry of the surface in the

region of contact was forced to match that of the rigid cone and compared with the Galin-

Sneddon solution. The finding of the analysis was incorporated in the BASh formula through

a correction factor:

S =,8 (V, 0) 2 V/Tl M (2.70)

where AC = 7ra 2 needs to be determined using the actual contact radius from the rigid cone

boundary condition. For frictionless contact (no shear stresses parallel to the interface), / (v = 1/2, 0) =

1, while for all other Poisson's ratios, # (v, 0) > 1; as displayed in Fig. 2-13. The figure shows

that the deviation from the Galin-Sneddon solution, expressed by the correction factor / (v, 0),

increases with decreasing Poisson's: ratio and indenter semi-apex angle 0. Hay et al. also

proposed semi-empirical models to estimate the correction factor for cube corner indentation
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Figure 2-13: Results of finite element simulations [111] for the relation between correction factor
3 and Poisson's ratio v (adapted from Ref. [111]).

(Occ = 42.28') and Berkovich indentation (OR = 70.320) assimilated to cones of equivalent

area-to-depth ratio:

# (v, 9cc = 42.28') = 1 + (v) cot 0CC (2.71)

(V, OB = 70-320) 7F- 7r/4 + 0.15483073K (v) cot OB
(7r/2 - 0.83119312K (v) cot OR)2

where K (v) = (1 - 2v) / (4 (1 -v)).

The case of adhesive (no-slip) contact between the half-space and the indenter can be seen

as a limit case that eliminates the second-order effect due to the radial displacement. The

adhesive contact problem has been addressed analytically by Mossakovskii 1954 [174], 1963

[175], Goodman 1962 [102], Spence 1968 [215], and is reviewed in detail by Borodich and Keer

[31,30]. Once the point of the surface contacts with the indenter, the radial displacement does

not change further with the increase of load, thus naturally ensuring that the shape of the

material surface coincides with the surface of the rigid indenter. Incorporating this boundary
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condition in the analytical solution procedure, Borodich and Keer [31] derived analytical ex-

pressions for the correction factor for punches of monomial shapes. For a flat punch (9 = 7/2),

the correction with respect to the frictionless contact problem is:

_ (1 - v) In (3 - 4v) (2.73)
(1 - 2v)

and for a cone with large half-tip angles 0 = 7r/2 - a, for which a linearization is possible,

tan a ~ a:

(v, = r/2 - a) = 2(1-v) (2.74)
v/3 - 4 v

Remarkably, but not surprisingly, whatever the indenter geometry, 3 = 1 for v = 1/2, while

# > 1 for any other value of the Poisson's ratio, with a maximum value of 3 (v = 0, 0 = 7r/2) =

ln (3) = 1.0986 for the flat indenter, atid /3 (v = 0, 9 = 7r/2 - a) = 2/V/3 = 1.1547. The correc-

tions factors derived from the adhesive contact problem are also displayed in Fig. 2-13, showing

that they constitute upper bounds for cones of large tip-angles and relatively small Poisson's

ratios, v < 0.3. For all practical purposes, we retain that the Galin-Sneddon solution is a lower

bound of the contact stiffness S, while any effect of friction and second-order effects due to

radial displacement increase the contact stiffness:

2 vA M < S = < ' (v, 0) 2 v'M (2.75)

In other words, use of the BASh formula (2.2) yields upper bound estimates of the indentation

modulus and related elastic properties.

Equation (2.67) is based on the elastic solution for indenters that can be described by a

smooth solid of revolution (spherical, conical, elliptical, etc.) [191]. Berkovich and Vickers in-

denters (four- and three-sided pyramidal cones, respectively), which are more commonly applied

in instrumented indentation techniques, cannot be described as bodies of revolution. However,

it has been found experimentally and by means of finite element simulations that the devia-

tion from Eq. (2.67) of pyramidal and other geometrical shapes during unloading is negligible

[137, 191, 66, 219]: The geometric constant c* = 1.142 for the Vickers pyramid indenter (square

cross section), and c* = 1.167 for the Berkovich indenter (triangular cross section) differ little
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from c* = 2//7 = 1.128 4 of the axisymmetric indenters.

It can be seen that the correction factor introduced in the case of frictional contact is a mere

consequence of the Poisson's ratio, v. As a result when the Poisson's effect becomes negligible,

for example in the case of an incompressible medium v --- 1/2, then the proposed solution yields

the frictionless result, + , /M and the correction factor collapses to 1. It is extremely

interesting to note that the correction factor ranges from C=ln(3) = 1.0986 for v = 0, to C-+1

at v -+ 0.5, and as a result Eq. (2.2) is within 10% (for materials with positive Poisson's ratio).

In other words, Eq. (2.2) can be used without large error, even when the indenter is not a

true body of revolution or friction between the indenter and material is present; that is, Eq.

(2.2) can be considered as a general characteristic of elastic indentation mechanics. In this

case, E can be determined from the measured slope at the onset of unloading, provided that

a reasonable estimate of the Poisson's ratio 0 and an independent measure of the contact area

A, upon unloading are available.

2.5 Area of Contact

The key to a successful determination of strength and elasticity properties from indentation

tests relies on the determination of the correct projected contact area at the point of initial

unloading, A. This is not an easy task.

2.5.1 Direct Measurements

Traditionally, the contact area has been determined by direct measurement of the size of the

residual hardness impression after complete unloading, as shown in Fig. 2-14. As one may

expect, the residual imprints may deviate from the initial contact area at maximum load if there

is significant elastic recovery on unloading. Fortunately, it has been experimentally observed

that the residual imprint left on the surface of an indented specimen is in very good agreement

with the contact area at maximum load [216]. In other words, even in the case of an appreciable

recovery in depth during unloading, there is practically no change in the diameter (or contact

"However, it is not necessary to know the value of the Poisson's ratio with great precision to obtain a good
value of the elastic modulus, as E oc (1 - V2) and v < 1/2.
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radius a) of indentation. Refined analysis using finite element simulations confirmed that elastic

recovery effects are appreciable only for materials with extremely high values of H/M [191,66].

It is therefore reasonable to use the final imprint for the determination of the hardness and the

indentation modulus from Eqs. (2.1) and (2.2).

2.5.2 Oliver and Pharr Method

For practical reasons some means other than direct observation of the hardness impressions is

needed to measure contact areas, since imaging very small indentations is both time-consuming

and difficult. An original method for conical indentation that circumvents the necessity to

measure the contact area, was suggested by Oliver and Pharr [184] in the classical paper of

1992, which is now extensively used (see also the 2004 review paper by the authors [185]).

The method is based on the assumption that the elastic contact height-to-indentation depth

relation (2.59), i.e. he/h = 2/7r equally applies to the elastic recovery in elastoplastic indentation

characterized by a residual indentation depth hf. This assumption is shown schematically in

Fig. 2-15, and is expressed by:

2
hc - hf = - (hmax - hf) (2.76)

7r

Since hmax and hf are measurable quantities, one can determine the contact depth he from Eq.

(2.76), and subsequently the contact area Ac = 7r (hc tan 0)2. In practice, however, the residual

indentation depth hf is very sensitive to non ideal surface preparations. By considering that

the elastic unloading is scaled, for conical indentation, by a power-two function,

P = c(h - h) 2 ; h-hf =2 (2.77)

the final depth is no longer needed. Indeed, a combination of Eqs. (2.1) and (2.2) yields:

h 1 = _ Pmax (2.78)
hmax Shmax

where c = 2 (1 - 2/7r) = 0.73. Equation (2.78) is also valid for other indenter shapes: c = 1 for

a flat punch, and c = 0.75 for a paraboloid.
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(a) (b) (c)

(d) (e) (f)

Figure 2-14: Gradient, (a)-(c), and 3-D topographic , (d)-(f), views of AFM images of residual
impressions after microindentation in a shale material. Image Sizes: (a) and (d) 20 x 20Pm 2

(b) and (e) 10 x 0tm2 , (c) and (f) 5 x 5pm 2
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Figure 2-15: Determination of the area of contact with the Oliver and Pharr method [184],
wher h, is related to hmax and Pmax/Smax (from Ref. [184]).
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The main assumption incorporated in this analysis is that the surface area beyond the

contact points conforms with the elasticity solutions:' it assumes that the material sinks-in.

The main assumption of the Oliver and Pharr method is that the shape of the deformed solid

outside the area of contact is elastic. This is not true when plastic deformations occur around

the indenter to form material pile-up. Indeed, Eq. (2.78) cannot predict he/h > 1 which may

be the source of important errors, particularly in plastic dilating materials (which are cohesive

frictional materials). The second concern about this method is that most of the unloading

curves in Berkovich indentation tests obey to a power relation of the form:

P = b(h - hf)' (2.79)

with values for the power-law exponent in the range 1.2 < m < 1.6 for a large range of tested

materials [185]. By comparing this experimental scaling relation with the closed form elastic

solutions for the flat punch (P oc h), conical indenter (P oc h 2) and paraboloid of revolutions

(P oc h3 / 2 ) [213], it appeared that the unloading curves are best approximated by an indenter

that behaves like a paraboloid of revolution, (m = 1.5); and the value E = 0.75 was recommended

for Berkovich indentation. The conclusions are somewhat surprising because the axi-symmetric

equivalent of the Berkovich indenter is a cone, for which m = 2. This discrepancy has since

been explained by the concept of an "effective indenter shape" [185]: During loading the lo-

calized area around the indent gets heavily distorted and as a consequence, upon unloading,

permanent deformations remain on the surface of the material. Reloading that region involves

a conical surface that pushes against a concave surface. According to Oliver and Pharr, such a

phenomenon can be well approximated by a paraboloid indenter pressed against a flat surface.

2.5.3 Cheng and Cheng Method

A more recent attempt to develop a method that can circumvent, by design, the need for

measuring the contact area is the one proposed by Cheng and Cheng [47], who used finite

element indentation simulations for a wide variety of elasto-plastic materials with different

work hardening characteristics to examine pile-up during conical indentation (see also the work

of Giannakopoulos and coworkers in Refs. [97,98]). The proposed method relies on the work of
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indentation which can be directly measured from the P - h response. The remarkable result

the authors obtain is that the ratio of the irreversible work to the work of indentation is a

unique function of the hardness-to-indentation modulus ratio, H/M, irrespective of the work

hardening characteristics of the material:

Wtot - Wei H ~ 1 - 5--(2.80)
Wtot M

where Wtot (the area under the loading curve) is the total work of indentation, and Wei (the

area under the unloading curve) is the work recovered during unloading. Furthermore, using

Eqs. (2.1) and (2.2) to eliminate the contact area, we obtain:

4 Pmax H (2.81)
r S 2  M2

Recalling that Wtot, Wei, Pmax, S are all measurable from the load-displacement data, Eqs.

(2.80) and (2.81) form a closed system that can be used for the evaluation of hardness and

indentation modulus without the need for measuring the area of contact. Once the hardness

and indentation modulus are obtained then the area of contact can be calculated from Eqs.

(2.1) and (2.2). Presumably this area should account for any pile-up or sink-in phenomena. To

our knowledge, this method has not been validated in actual indentation tests. Furthermore,

some limitations of the method may arise from the way Eq. (2.80) was determined:

* The finite element simulations were performed with an equivalent cone angle of 680; and

it is not clear whether Eq. (2.80) would still hold for other semi-apex angles and indenter

geometries.

" Equation (2.80) was fitted from finite element simulations of von Mises materials; and it

is not clear whether it would still be valid for cohesive-frictional materials.

The accuracy of these methods in calculating the area of contact at maximum load will be

further explored in Chapter 3. Generally speaking, experimental evidence and finite element

simulations suggest that the Oliver and Pharr method for calculating the contact area is in

reasonable agreement with the true contact area, provided the material response around the

indenter contact perimeter is not experiencing pile-up deformations [185,49,50.
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2.5.4 Application of Dual Indentation Technique

One problem which we will face in this work concerns the determination of the contact areas

in the dual indentation technique (see Section 2.3.4). The principle of the technique is to

carry out two indentation tests with different indenter geometries, e.g., a Berkovich and a cube

corner indenter. The only quantities that are directly measured are the loads (Pexp(1), Pexp( 2))

the maximum indentation depths (hexp(l), hexp(2 )) and the unloading slopes (Sexp(l), Sexp( 2))

Assuming the validity of the BASh formula (2.2), the contact area in the indentation test is

given by:

7r SexpOi)2
AC = - (2.82)

c 4 (M

where superscript (i = 1, 2) stands for indentation test (for instance, Berkovich = 1; cube corner

= 2); M is the indentation modulus that is linked to the elastic properties of the material and

the indenter by Eq. (2.68). If we had an independent means to determine M, Eq. (2.82) would

allow us to determine the contact area. In return, given that the indentation modulus is the

same in both tests, we can determine the ratio of the contact area directly from the measured

unloading slopes:

A_ = (Sexp(l) 2

___ Sex(2))(2.83)A () gexp(2)

Hence, it suffices to determine A, in one indentation geometry accurately to determine A, from

the unloading slopes for the other indentation geometry. Furthermore, Eq. (2.83) is readily

employed to determine the hardness ratio (which serves as an input for the determination of

the friction angle via Fig. 6-3 from Eq. (2.1):

H(1) pexp(l) (Sexp(2) 2

H( 2) pexp(2) Sexp(1)

For the determination of the individual hardness values, an iterative procedure is suggested.

Instead of measuring the contact area, we estimate the projected contact area by any approx-

imate method, say the Oliver and Pharr method, giving us Aest(l) , A st(2); from which we

determine a first estimate of the hardness and the indentation stiffness from Eqs. (2.1) and
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(2.2):
pexp(i) - 2 -1/2

Hest(') - ; Mest(i) - 8 exP(i) A )(2.85)

If Mest(l) = Mest(2) , the estimate is correct, and hence:

Mest(l) = Mest(2) = Mexp(l) (2.86)

If Mest(1) 5 Mest(2 ), the estimates may not be correct, and we need to proceed in an iterative

fashion. We first need to verify that one of the two contact area estimates is exact. Let us

assume that this was the Berkovich indentation stiffness (i = 1):

Mest(l) Mexp(l); Aest(l) = Aexp(l) (2.87)
C C (.7

We can then readily check whether the contact area estimation is valid for the cube corner

(i = 2), from:

A(2) =\2 Aest( 2) (2.88)
C MexP(1) c

Hence, if the corner cube indentation stiffness estimate Mest(2 ) coincides with the Berkovich

indentation stiffness Mexp(l), the contact area has been correctly determined. In the contrary

case, we need to correct the estimated contact area Aest( 2) using (2.88). Finally, we obtain the

cube corner hardness from:

(2) et(2)MexpCl)2
H Hest(2) (2.89)

(Mest(2)

where Hest(2 ) pexp( 2)/Acst(2) is the estimated Corner cube hardness. Of course, the obtained

value of the hardness is more accurate as the value of MexP(1) is more accurate. Note that

Mexp(1) and Mest(2 ) are the indentation stiffness values, which include the material stiffness

and the indenter compliance as defined by Eq. (2.68).

We recall that the derivation of the above procedure relies on the validity of BASh relation.

As was discussed in Section 2.4.3, however, second order effect may impose an error in the

formulation that needs to be corrected. It is interesting to note that the aforementioned proce-

dure, which relies on the ratio of data collected from two indenter geometries, tends to reduce
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such error (the new error will now be #' = , where 3' < /1 /2 since #1 /2 > 1) or even

eliminate such error (in cases where the 3-factor is not a function of 0, /' = collapses to 1).

For the time being, an estimate of the /-factor for cohesive-frictional material does not exist.

In the light of such a correction factor, Eqs. (2.82) - (2.89) should be modified accordingly.

2.6 Chapter Summary

An indentation test is a surface test which provides access to bulk properties of the indented

material. This first chapter on indentation analysis focussed on the underlying mechanical

principles that allow one to translate indentation data into meaningful mechanical properties:

self-similarity of the indentation test, advanced limit analysis, and elastic contact mechanics.

This background provides a strong argument that instrumented indentation can give reliable

estimates of the hardness and indentation modulus of materials provided that the P vs h

response is properly measured and that the area of contact is obtained correctly. While the

indentation analysis of homogeneous cohesive materials like metals is well advanced, we have

discussed in this chapter the possibilities of extending the analytical tools to cohesive-frictional

materials. The link between indentation modulus and the elastic properties remains unaffected,

provided that the correct contact area is determined. In contrast, the link between hardness

and cohesion is a strong function of the internal friction. From the limit analysis solutions

(see also Ref. [92]), we propose a novel dual indentation technique. This dual indentation

method is highly reductionist in nature: it is based on the geometrical self-similarity of the

conical indentation test and on yield design assumptions, reducing the number of parameters

governing the hardness-to-cohesion ratio to two, the friction angle p and the semi-apex angle 0.

In this reduced (H/c, W, 0) invariant space, it is possible to ensure the uniqueness of the inverse

analysis and extract the strength properties of cohesive-frictional materials. This method has

several advantages, but also restrictions, compared to other inverse analysis methods:

1. The main advantage of the method is the ease of utilization: Compared to advanced finite

element elastoplastic inverse analysis of indentation data, the method requires as input

only two hardness values corresponding to two indenter geometries (semi-apex angle 9).

By means of fundamental dimensionless relations for the hardness-to-cohesion ratio, we
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find that the hardness-to-hardness ratio is a unique function of the friction angle, which

ensures the uniqueness of the reverse problem. We demonstrated this method for two

indenters commonly employed in instrumented indentation, Berkovich and cube corner

indenters approximated as cones of different semi-apex angles. Of course, the same method

could be employed with any other semi-apex angle, and the method is the more efficient

the higher the H/c-contrast between two semi-apex angles for a given friction angle. We

should also note that such a contrast is not achieved by spherical indentation of different

sphere radius-to-indentation depth ratios, R/h, which replaces the apex semi-angle in

the dimensionless relation of Eq. (2.17), i.e., H/c = S ('p, R/h), making the conical

indentation test the most efficient way to extract cohesion and friction angle from hardness

measurements. We come to this conclusion from lower and upper bound H/c-solutions

for spherical indentation which have been obtained with the novel computational solution

of the limit analysis problem [93]. Not surprisingly, we also found that it is not possible to

extract the friction angle from the hardness ratio of two indenter geometries that do not

belong to the same family of self-similar indenter shapes; for instance from a combination

of conical and spherical indentation; entailing the non-uniqueness of the reverse problem

(for details, see Ref. [93]). This emphasizes that the geometrical self-similarity is a

necessary condition for the uniqueness of the proposed inverse procedure.

2. The main analytical tools we employ in this method are fundamental H/c = H, (so, 0)

relations which have been developed in Ref. [93] from a novel computational implemen-

tation of the limit theorems in axisymmetric conditions. One restriction of the approach

relates to the assumption of the normality rule (or principle of maximum plastic work),

which is at the very basis of the existence of the limit theorems of yield design, and which

cannot capture non-associated flow behavior of the plastically deforming material. From

the perspective of dimensional analysis, the consideration of a non-associated flow rule

adds one additional independent quantity, the dilatation angle, to the set of parameters

in Eq. (2.15), but cannot be handled by the proposed yield design solution procedure in

which the dilatation angle equals the friction angle. For such materials, advanced finite

element simulations are required. In this case, the proposed method can be used to deter-

mine initial values of the cohesion and friction angle for the iterative inverse analysis. A

101



similar remark can be made for contact friction (which has been investigated for cohesive

materials, [51]) and strain hardening effects, which we ignore in our yield design solutions.

3. It could also be (and has been) argued that yield design approaches cannot capture

piling-up or sinking-in phenomena, as yield design evaluates the dissipation capacity of

a materials system for a fixed geometry. Indeed, in our upper-bound simulations, we

assumed the surface surrounding the indenter to be flat, which is far from what is observed

on topographic images (see Fig 2-14) in indentation tests particularly for very sharp

indenters like the cube corner. However, compared to the material bulk volume that

contributes to the overall dissipation capacity (see Fig. 2-8), the additional contribution

of the pile-up material volume can be expected to be of second-order in the evaluation

of Eq. (2.22) of the maximum dissipation the material system can afford. Of course, the

piling-up or sinking-in phenomena cannot be neglected in the evaluation of the hardness

values from the definition of Eq. (2.1), which is an input in our method. Hence, like all

indentation procedures, the successful determination of the strength properties from the

two indentation tests relies on the determination of the correct projected contact area.

This novel dual indentation technique will be validated in Chapter 3 for a model cohesive-

frictional material, bulk metallic glass; together with the other tools presented in this chapter,

the BASh formula, the Oliver and Pharr method for contact area determination, and so on.
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Chapter 3

Indentation Analysis of a

Cohesive-Frictional 'Model'

Material: Bulk Metallic Glass

This chapter illustrates the application of instrumented indentation for a cohesive-frictional

'model' material: amorphous metal or bulk metallic glass (BMG). The rational of validating

the tools of indentation analysis presented in Chapter 2 for this 'model' material is twofold: (1)

Bulk metallic glass is a fine-tuned man-made cohesive-frictional material, which is much more

homogeneous than highly heterogeneous 'natural' composites with which we will be concerned in

subsequent chapters of the thesis; and (2) the cohesive-frictional nature of BMG was recently

identified through a number of investigations ranging from the atomistic scale [159] to the

macroscopic scale [72,158], including indentation testing and comprehensive 3-D elastoplastic

finite-element reverse analysis of Berkovich indentation tests [236, 206]. Given this background,

BMG appears to us an ideal model material to validate the concepts introduced in Chapter

2: determination of the contact area, indentation modulus, hardness; and the translation of

these indentation data into mechanical properties. A special focus will be on the validation

of the dual indentation technique for the extraction of the cohesion and the friction angle of

this cohesive-frictional model material. Furthermore, this chapter will also allow us to provide

a 'hands-on' introduction to indentation testing, including indentation set-up and calibration
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procedure, which are critical for obtaining reliable indentation data.

3.1 Indentation Set-up and Calibration Procedure

The loading and unloading branches of the load-displacement or P - h curve, which give access

to the micromechanical properties of the indented material, depend on the experimental set-

up, i.e., machine compliance, friction between the indenter and indented material, specimen

clamping, sharpness of the indenter tip, and so on. The high precision equipment combined

with a careful execution of the experiments allow one to minimize errors in the experimental

data. The indentation equipment is calibrated before each test to ensure the accurate recording

of the P - h material response. The important features of data collection, machine calibration

and potential sources of error are briefly described in this section.

3.1.1 Indentation Equipment

Nanoindentation experiments in this study are carried out using two instruments located in the

Nanomechanical Technology Laboratory -the so-called 'Nanolab'- in the Department of Ma-

terials Science and Engineering at M.I.T. These are the NanoTest 600 of Micro Materials Ltd.,

and the Triboindenter of Hysitron Inc. Table 3.1 summarizes specifications of both indenter

systems, which are critical in performing indentation tests.

The indenter system of Micro Materials Ltd. has a NanoTest option and a MicroTest

option. The first allows monitoring the P-h relationship in a load range of 0 to 500 mN, and

in a displacement range of 0 to 20 pm, with resolutions of 3 nN and 0.06 nm, respectively

[170]. The MicroTest allows indentations at higher loads and displacements: 20 N and 20

pum respectively. The increase in maximum allowable force and displacement comes with a

reduction in the resolution: Loads and displacements are now recorded with a resolution of 15-

20 nN and 0.2-0.23 nm respectively. In the Micromateiials set-up, a pendulum pivoting around

frictionless leaf springs applies the load to the specimen (Fig. 3-la). A current passes through

a coil mounted at the top of the pendulum and attracts the coil to a fixed permanent magnet.

This sets the indenter into motion to the specimen surface which is firmly clamped to the

loading stage. The displacement of the indenter (depth h of penetration into the specimen) is
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Figure 3-1: Cross-section schematic of a) Micromaterials and b)Triboindenter transducer set-up

(from [170] and [124]).

continuously monitored and recorded by the change in the voltage of a parallel plate capacitor.

In this way, the complete P - h response is obtained [170]. P(V) and h(V) are calibrated by

the user, as is frame compliance Cf. A vibration isolation platform and an acoustic enclosure

ensure no interference of noise and thermal drifts on the experiments.

The heart of the Hysitron's testing instruments is the patented three-plate capacitive trans-

ducer that is both the actuator and sensor of the instrument [124]. The force is applied elec-

trostatically while the displacement is simultaneously measured by the change in capacitance

(Fig. 3-1b). To apply a force, a large DC bias (up to 600 V) is applied to the bottom plate of

the capacitor. This creates an electrostatic attraction between the center plate and the bottom

plate, pulling the center plate down. The force is calculated from the magnitude of the voltage

applied'. The maximum load force available from the transducer is approximately 12 mN. This

arrangement gives resolutions of 1 nN in load and 0.04 nm in displacement. The electrostatic

force constant of the transducer is calibrated prior to each testing to maintain a linearized

'This is not actually calibrated by the user, just the maufacturer.
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Manufacturer Hysitron Inc. Micro Materials Ltd.

Triboindenter MicroTest NanoTest

Maximum Force [mN] 12 20,000 500
Load Resolution [nN] 1
Load Noise Floor [nN] 100
Maximum Depth [i/tm] 20

Displacement Resolution [nm] 0.04
Displacement Noise Floor [nm] 0.2

Thermal Drift [nm/sec] <0.05'
Machine Compliance [nm/mN] 14
Specimen Clamping [nm/mN] ~0.01

Table 3.1: Specification of nanoindenters. Values provided by
rely on accurate calibrations prior to testing.

relationship between bias voltage and force. This instrument

to establish tip-sample contact in the loading train.

15-20 2-3
100 100
20 15

0.2-0.23 0.05-0.06

<0.1 <0.1
0.3-0.4 0.3-0.4
-0.01 ~0.01

the manufacturers some of which

includes a piezoelectric actuator

3.1.2 Calibration Issues

A list of factors that affect the accuracy of the recording of the P - h response are listed in Tab.

3.2. In general, load detection is less susceptible to errors compared to the depth measurements.

Several factors that can be recorded in the depth data might not be attributed to the material

response, and should be excluded before analyzing the P - h response:

1. Specimen Clamping: Specimens are attached directly to a stub holder 2 by means of a

suitable adhesive. The main criterion for choosing an adhesive is that the layer formed

is thin and stiff once set and does not significantly contribute to the system compliance.

The highly localized deformation response of the system excludes any boundary effects to

the indentation response. In our study, we employ cyanoacrylate "Superglue".

2. System Compliance: Depth measurements during an indentation test incorporate the

effect of instrument deformation resulting from the reaction forces during loading. To

account for this additional deformation, one needs an estimate of the frame compliance,

through calibrations that are performed on the machine. Considering that the specimen-

indenter and the load frame are springs in series the total compliance, CT, can be written

2 The stub holder is firmly clamped, either mechanically (Microtest) or magnetically (Hysitron) to the stage.
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P h

Specimen Clamping x /
System Compliance x /

Noise/Thermal Drift x /

Vibrations / /
Spring Constants / x

Table 3.2: Factors influencing the recorded P - h response.

as:

CT = Cs + Cf (3.1)

where C, = 1/S is the specimen compliance (S being the contact stiffness; see Section

2.4), and Cf is the frame compliance. Assuming a linear elastic response on unloading,

the material compliance can be linked to the indentation modulus M of the material using

the BASh formula Eq. (2.2):
v/1

CT = + Cf (3.2)

The machine compliance Cf is then determined by several large load indents using a

Berkovich indenter with large indentation depths (he > 1/3 tip radius) in a reference ma-

terial sample of known elastic properties, typically fused quartz. A graph of the measured

compliance CT vs. A-1/2 for a series of indents yields a straight line with the machine

compliance as the y-axis intercept. In this calibration procedure, the area of contact A, is

calculated using the different techniques presented in Section 2.5. It is readily understood

that this calibration procedure depends on the accuracy of the contact area determination

and the relevance of the elasticity assumption, and may therefore incorporate significant

inaccuracy in the machine compliance estimation [238]. To eliminate this source of inac-

curacy, Van Vliet et al. [238] suggested to make a direct compression test on the system

in the absence of any sample to determine Cf. Typical values of the compliance of our

machines are approximately 1 nm/mN (see Tab. 3.1), which translates into an error of

12 nm displacement contribution for the maximum forces (for Hysitron indentations).

Hence, the error induced by a wrong machine compliance is the more significant the

smaller the indentation depth i.e., in nanoindentation tests, and needs to be taken into

account carefully. On the other hand, in the case of microindentation tests, operated
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to indentation depths in the micrometer range, the machine compliance plays a minor

role. Furthermore, while the machine compliance introduces little inaccuracy in the P - h

response of soft materials, the effect of the compliance of the system becomes significant

when indenting on very hard materials. As we will see, this is the case for indentation

testing of Bulk Metallic Glass (BMG) presented in this chapter. Figure 3-2 shows the

effect of machine compliance on the P - h response obtained from Berkovich indentation

on Vitreloy 1 TM, the BMG investigated in our study. In particular, the unloading contact

stiffness appears to be very sensitive to the machine compliance, which therefore strongly

affects the determination of the indentation modulus M. A careful system compliance

calibration is therefore essential in order to avoid any errors in the P - h response, and in

the indentation modulus/hardness evaluation. Using the direct stiffness approach [238],

we found a machine compliance of Cf = 0.3854 nm/mN for the Micro Materials indenter.

The fact that the indentation modulus M we determine for BMG by way of indentation

as shown here below, is very close to the actual M-modulus of the material (determined

from known elasticity properties using (2.68)), is strong evidence of the accuracy of the

frame compliance determination.

3. Noise/Thermal Drift: A change in depth under constant load can be observed due to

dimensional instabilities of the apparatus to thermal changes. This change in depth

imposes a 'thermal drift' error onto the actual depth values. The indentation instruments

are equipped with an acoustic enclosure that has been designed to minimize the amount of

temperature changes during testing. The enclosure also blocks air currents and acts as an

acoustic buffer to help eliminate additional errors. There is a large door in the front that is

used to access the sample stage for loading and unloading of samples. This set-up ensures

that noise and thermal drift are restricted to very low levels (Angstroms/second, see Tab.

3.1). Given the indentation depths achieved in most nanoscale indentations (h < 200nm),

the thermal drift effect on the indentation data can be significant. It should be noted that

thermal and noise drift corrections are taken into account in our data since the software

offers automated corrections. To account for thermal drift errors both instruments allow

for hold periods at either the beginning (0% of maximum load-Hysitron) or the end (90%

of unloading-Micromaterials) of a test were data points are accumulated and a thermal
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drift rate is calculated that is later applied to the whole data.

4. Vibration: Both instruments provide anti-vibration platforms that damp noise in high

and low frequency ranges. The errors induced by potential vibrations during testing are

minimized to 100 nN for load and 0.2 nm for depth. This ensures a high quality of the

recorded data.

3.2 The 'Model' Material: Bulk Metallic Glass

3.2.1 Background

Most metals crystallize as they cool, arranging their atoms into a highly regular spatial pattern

called a Bravais lattice or crystalline. If crystallization does not occur, and the atoms settle

into a nearly random arrangement akin to a liquid, the final form of the solid is a metallic glass.

The difficulty in making a metallic glass is to cool the metallic liquid (which has a disordered

structure as well) rapidly enough so that there is not enough time for the ordered, crystalline

structure to develop. This was recognized in the 1960s, when it was found that thin ribbons,

wires, or sheets of metals can be produced in an amorphous state with exceptional mechanical

properties after being cooled down at high rates (over 10 5 K/s) [112],[206]. More recently, new

alloys have been developed that form glasses at much lower cooling rates, around 1 to 100 K/s.

While still fairly rapid, this rate is slow enough that bulk ingots of these metallic alloys can

be cast, and they will solidify to form glasses. Metallic glasses are mostly prepared by casting

methods 3 or by consolidation of glassy powders in the supercooled liquid region, through a

process of warm-extrusion [135].

Bulk metallic glasses have been of great technological and scientific interest since their

discovery in 1960, and are considered today as emerging structural materials due to their

high strength and large elastic deformation capacity prior to the onset of plastic deformation

(see Fig. 3-3). Typical metallic glass has a Young's modulus on the order of 100 GPa, and

uniaxial tensile strength of roughly 2 GPa for Zr-based glasses (between 1.3 and 1.5 GPa for

3 An alloy ingot is prepared by arc melting pure metals in a purified argon atmosphere. Bulk amorphous alloys

are then prepared in Pd or Zr based system by repeated melting of their molten alloys fluxed with B 2 0 3 (from

[176]).
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Figure 3-3: Typical strengths and elastic limits for various materials. Metallic glasses (Glassy

Alloys) are unique (Image Source: http://www.its.caltech.edu/~vitreloy/development.htm).

Pd-based metallic glasses), thus allowing for a pure elastic deformation, in uniaxial tension of

about 1/50 for Zr-based glasses (compared to 1/400 for steel). In addition, metallic glasses

posses an excellent strength to weight ratio, usually around 300 kPa/kg/m 3 (compared to 63

kPa/kg/m 3 for steel), and relatively high fracture toughness values: Fatigue fracture toughness

values of approximately 20 MPa mi/2, and notched toughness in excess of 100 MPa m1/2. These

exceptional mechanical properties make metallic glasses an extremely appealing material and

have prompted intensive research.

The exceptional material properties of metallic glasses with many possibilities for structural

applications were overshadowed by the tendency of early material developments to fail in local-

ized shear bands entailing minor ductile catastrophic failures [236]. The potential applications

of these materials with the restrictions at stake called for detailed mechanical investigations,

but the limitation to small specimen volumes (the fast cooling rates restricted the size of the

products to mm-size ribbons or sheets) made conventional macroscopic mechanical tests diffi-

cult. With the development of depth sensing indentation techniques (for a recent survey, see

Ref. [206]) and concurrent manufacture of metallic glasses in bulk form (BMG) a renewed

interest arose. Of these alloys, Zr-based bulk metallic glasses are now commercially available
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I Average Scatter References

Elastic Modulus [GPa] 92.23 83-100.4 [112],[158],[55],[217]
Poisson's Ratio [1] 0.37 0.351-0.38 [112],[158],[55],[217]

Compressive strength, Ec [GPa] 1.88 1.83-1.9 [249],[158],[35],[254]j,[154]
Tensile strength, Et [GPa] 1.47 1.2-1.9 [35],[55],[254],[154]

Vickers Hardness [GPa] 5.29 5.03-'5.40 [249],[112],[100],[55]

Table 3.3: Summary of mechanical properties for Zr-based Bulk Metallic Glass as found in the
literature

as engineering materials, the best known example of which is the Zr-based metallic glass of

composition Zr 4 1.2Ti13 .8 Cu 12 .5NiioBe 2 2.5 (nominal composition in at.%), which goes by the com-

mercial name Vitreloy 1 TM. We concentrate our discussions here on this class of BMG. Our

interest in the material stems from the recent evidence that BMGs exhibit a pressure sensitive

shear strength behavior which is evidence of the cohesive-frictional nature of these materials.

3.2.2 Mechanical Properties at Multiple Scales

A summary of different studies of mechanical properties of Vitreloy 1TM is given in Tab. 3.3.

While the data show some scatter, the average values show a great deal of consistency. The

elastic properties of Vitreloy 1TM are well known by now from both ultrasonic measurements

[55], [158] and FE inverse analysis of microindentation data [236]: Young's modulus E ~ 96

GPa, Poisson's ratio v ~ 0.36. Furthermore, there is a growing body of both experimental

and theoretical evidence that metallic glasses are cohesive-frictional materials that obey to a

Mohr-Coulomb criterion, and not purely cohesive materials of the Von Mises kind, as it was

originally suggested.

Donovan [72] derived the cohesive-frictional nature of Pd-based metallic glass (Pd4ONi4 0P 20)

at the macroscale, from uniaxial compression, plane-strain compression, plane-strain tension

and shear tests. The macroscopic results proved that the Pd 40 Ni4OP 20 metallic glass obeys a

Mohr-Coulomb criterion,

f (o) = T + Qon - c = 0 (3.3)

with the following strength properties:

c = 795 25 MPa and tan p = 0.113 t 0.03 (3.4)
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where -r = (or - o1 11 ) /2 is the shear stress, o = (ou + cr1 1 ) /2 is the normal stress, and a

is the friction coefficient. These macroscopic findings were confirmed by Lu and Ravichandran

[158] by means of an extensive experimental investigation of the triaxial strength behavior of

Zr-based metallic glass. By fitting the Mohr-Coulomb criterion (3-2) to four principal failure

stresses reported in the paper [(434; 434; 2480) ,(602; 602; 2740) , (1000; 1000; 3320) ; (1508; 1508; 4050)],

we find:

c = 755 MPa and a = tano = 0.18 (3.5)

These values are consistent with the friction coefficient of tan V = 0.16 reported in the paper

obtained by fitting 23 representative triaxial stress states to the Mohr-Coulomb criterion of Eq.

(3-2); to capture the orientation of the shear bands observed in the experiment, the authors

employ a modified Mohr-Coulomb criterion, in which the mean stress Orm = (al + oi + aii1 ) /3

replaces the normal stress o = (or + u-1 1 ) /2 (see Fig. 3-4a): 4

g (o-) = r + #am - c = 0 (3.6)

with the following strength values:

c = 804 MPa; 3 = 0.17 (3.7)

At the microscale, a further evidence of the cohesive-frictional nature of Zr-based metallic glass

was provided by Vaidyanathan et al. [236], by means of a comprehensive 3-D finite element

elastoplastic inverse analysis of microindentation tests operated to a maximum indentation

depth of 9 x 10-6 m. By fixing the tensile yield strength in the simulations to a value of ft = 1.9

GPa, the authors showed that the load-depth prediction using a Mohr-Coulomb criterion with

4 Function (3.6) can be interpreted as a ncn-associated flow rule of BMG, but was not introduced as such by
Lu and Ravichandran [158]. In fact, the strength behavior of BMG in the triaxial tests of Lu and Ravichandran
is well captured by a Mohr-Coulomb criterion of the form (2.25a), which does only depend on the two extreme
principal stresses, ai and o-ii, while the flow behavior appears to be goverend as well by the intermediate
principal stress Quj. This motivated the authors to propose considering the modified Mohr-Coulomb criterion
(3.6). In return, this modification has little influence on the cohesion and friction coefficient; so that the fitted
values (3.5) can without big error be assimilated with the cohesion and friction coefficient in the sense of a
Mohr-Coulomb material.
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Figure 3-4: Triaxial strength domain for Zr-based metallic glass (Vitreloy ITM), from [158].
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a friction coefficient of,

tan p = 0.13 (3.8)

follows the results more closely than a von Mises material behavior. Finally, Lund and Schuh

[159] provide theoretical atomistic arguments in favor of the cohesive-frictional behavior of

metallic glass through an intriguing analogy between the relative motion of randomly packed

atoms in a metallic glass and the cohesive-frictional response of randomly packed particles in a

granular solid [151]. This suggestion was confirmed by molecular statics simulations of Zr- and

Cu-based metallic glasses, from which the authors derive the following friction coefficient:

tan p = 0.123 ± 0.004 (3.9)

It is remarkable to note from Eqs. (3.4) to (3.9) that the friction angle of metallic glasses

is almost the same over eight orders of length magnitude: from the scale of its atoms to the

macroscale of laboratory test specimens. This scale independence is most likely related to the

high homogeneity of the materials, a consequence of their amorphous structure created during

the rapid cooling which prevents an ordered, crystalline structure to develop. It is for this reason

that we have chosen metallic glass as a 'model' material for validating the tools of indentation

analysis for cohesive-frictional materials presented in Chapter 2, and in particular the yield

design solutions and the dual indenter technique of Section 2.3.4. Furthermore, bulk metallic

glass shows an almost elastic-perfectly plastic behavior in uniaxial compression/tension, with

almost no strain hardening. This makes the application of a yield design approach even more

appealing for this model material.

3.2.3 Choice of Material and Methods

The model material we investigate is Vitreloy 1 TM, an as-cast fully amorphous

Zr 4 1.2Ti 13 .8 Cu1 2. 5 NijoBe 22.5 bulk metallic glass, manufactured by Howmet Corporation, Green-

wich, CT. It is the same Zr-based material composition investigated by Lu and Ravichandran

[158] and Vaidyanathan et al. [236]. An indentation campaign with a Berkovich indenter and a

cube corner indenter was performed with the MicroTest 6 0 0 TM nano/micro-indenter from Micro

Materials Ltd. (see Tab. 3.1). A series of 100 Berkovich and 50 cube corner indentations were
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Figure 3-5: A grid of Berkovich indentations on a Bulk Metallic Glass. Grid size (spacing

between indents) is 200 pm.

performed on a specimen of dimension 20 x 20 x 3 mm. These indentation series were preformed

on a grid with adjacent indents separated by 200 pam, a spacing that is large enough to avoid

any possible interaction between consecutive tests (see Fig. 3-5). The indentations tests were

load-controlled at a constant rate of 300 mN/ s for the Berkovich indentations and 30 mN/ s for

the cube corner indentations. At maximum load, a dwell period of 15 s was imposed before

unloading, and a hold period of 20 s at 90% of unloading facilitated the correction for any ther-

mal drift effects in the system. The indentation data was analyzed in a statistical fashion to

ensure the good repeatability of the results and their low standard deviation. Residual imprints

of indents were examined under an Environmental Scanning Electron Microscope (FEI/Philips

XL30 FEG ESEM) and an Optical Microscope, both located in the Center of Materials Science

and Engineering at M.I.T.

3.3 Indentation Results

Table 3.4 gives a summary of the directly measured indentation data (see Section 2.1.2), namely

the maximum force Pmax, the maximum indentation depth hmax, the unloading slope (or contact
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T Berkovich [_Cube Corner

#100 50
Pmax [mN] 11,472 172 1, 083 ± 32
hmax [nm] 10,870 64 7, 692 ± 38

S [mN/nm] 4.83 ± 0.06 1.55 ± 0.02

We [nJ]* 15, 575 ± 0.375 0.355 ± 0.028
Wp [nJ]* 28,531 ± 0.531 2.684 ± 0.117
Ac amz 2,116 ± 11 211± 9

Table 3.4: Summary of measured quantities from Berkovich and Cube Corner indentations:

Mean ± St.Dev. The contact area A, was determined from visual inspection of five residual

impressions ( * 1 nJ = 10-9 N.m).

stiffness) S, the elastic and plastic work We and Wp, and the projected contact area A, measured

by visual inspection after unloading. The very low standard deviation of all the data is an

indication of the high repeatability of the test procedure (including sample preparation), and

of the homogeneity (in a statistical sense) of the indented BMG material. In a first step, we

analyze the results in the light of the dimensional analysis presented in Chapter 2, to identify

limits of the concept of self-similarity which is at the very basis of indentation analysis.

3.3.1 P - h Responses

Figure 3-6a which displays the ensemble of P - h curves for the two indenter geometries

(Berkovich and cube corner), shows the high repeatability of the indentation test procedure.

It is readily seen from the figure that the force required to drive the blunt Berkovich indenter

to roughly the same indentation depth as the cube corner is much higher: Pmax = 11, 472 1pN

for hmax = 10, 870 nm in the case of Berkovich indentations vs. Pmax = 1, 083 pIN for hmax =

7, 692 nm in the case of cube corner indentations (see also Tab. 3.4). This is consistent with

the yield design results of Figs. 2-7 and 2-8 (see Section 2.3.4) comforting the simple idea that

a sharp pyramid (cube corner) is easier to drive into a cohesive-frictional material half-space

than a blunt one (Berkovich).

The P - h curves in Fig. 3-6a are displayed in a log-log scale which facilitates the analysis of

the P oc h"' scaling relation. Following the dimensional analysis presented in Sections 2.2 and

2.3.1, the indentation force P should scale, for pyramidal indenters (i.e., d = 1 in Eq. (2.10)),

with h 2 , so that P/h2 does not depend on the indentation depth. Indeed, recalling relation
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(2.16a), we should have:
P E
T= C x H , , , ) (3.10)

Figure 3-6a shows that the experimental P - h curves for the loading part approach the power-

two scaling relation (displayed as dashed lines) only in an asymptotic fashion for indentation

depths h > 200 nm, and this for both Berkovich and cube corner indentation. For very small

indentation depths, roughly P oc h, which is indicative of a flat punch (the more for Berkovich

indentation than for cube corner). The way by which the scaling changes in the course of the

indentation tests is displayed in Fig. 3-6b in a plot of P/h2 vs. the indentation depth. The fact

that P/h2 depends on the indentation depth implies the existence of a length scale, say f, which

affects the indentation response at small indentation depths and which becomes negligible at

larger indentation depth, so that the P/h2 curves converge towards a constant, as shown in

Fig. 3-6b; hence instead of relation (3.10):

P E (3.11)
h2 = ch ~ ,v y ,(.1

Possible candidates for this additional length scale are either of intrinsic nature related to the

existence of a material length scale (such as the one considered in strain gradient plasticity

models used to explain indentation size effects [181], [123],[242]), or of experimental nature

related to imperfect indenter geometry, surface roughness of surface layers by oxidation or

hardening from preparation procedures [86]. We keep the existence of potential indentation

size effects in mind, but note as well that for our BMG investigation these are almost negligible

at the chosen scale of maximum indentation depth.

3.3.2 Contact Stiffness S

A certain portion of the unloading P - h response was fitted to a function of the form (Eq.

(2.79)):

P = b(h - hf)' (3.12)

118



100,000

10,000

(a) Indentation Depth, h [nm]

0

Berkovich

Cube-Corner1

_I

5000 10000

(b) Indentation Depth, h [nm]

Figure 3-6: a) P - h curves for Berkovich and cube corner indentation in metallic glass. Note

the log-log scale showing the repeatability of the test procedure and the P oc h' scaling, which

for h > 200 nm is close to m = 2 (dashed lines) consistent with dimensionless Eq. ( 2.16a). b)

The dimensionless parameter P/h2 is plotted versus the indentation depth, h. Consistent with

Eq. (3.10) P/h2 becomes independent of h for large indentation depths, roughly greater than

2 pm.
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and the contact stiffness, S, was estimated by differentiating Eq. (3.12) with respect to h and

evaluating it at h = hmax :

S = mb (hmax - hf)m-1

Oliver and Pharr [184] recommended that the upper two-thirds (66%) of the curve should be

used for the fitting process. Varying this percentage from 40-80% affected the S-determination

by less than 2%. For the rest of our analysis the two-thirds recommendation of Oliver and Pharr

will be employed. Figure 3-7 displays a histogram (or frequency plot) of the contact stiffness

S= L showing a remarkable repeatability of the test data for both Berkovich and cube

corner indentation with very small standard deviations, on the order of 1.2% of the respective

mean values (Tab. 3.4). This is the more remarkable as the indentation stiffness is obtained

from a derivation of the P-h unloading relation with respect to h. Figure 3-8 shows that S/hmax

is invariant with respect to hmax, thus confirming the theory (from dimensional analysis) that

S/hmax for a given cohesive-frictional material and given indenter geometry does not depend

on the indentation depth according to Eq. (2.42).

3.3.3 Area of Contact A,: Direct Measurements

One key input to indentation analysis is the projected contact area, which we measured using

microscopy images. After indentation the specimens were examined both under an optical

microscope and an environmental scanning electron microscope (ESEM), as shown in Fig. 3-9.

The projected contact areas as seen through the microscope on a plan-view were measured

using straight line measurements, and the values are reported in Tab. 3.4. The accuracy of the

length measurements was on the order of 0.1 pum, which translates into an accuracy of ±10 pum 2

in the area calculations.

Furthermore, an interesting observation is that the impression left by Berkovich indenta-

tion on the surface has a slight concave cushion-like profile (see Fig. 3-10), while cube corner

indentations leave a very strong convex barrell-shape impression visible in the optical micro-

scope images on Figs. 3-9d and 3-11a. Since cushion-like images are indicative of sink-in and

barrel-shape profiles of pile-up phenomena (see e.g.., [98]), the profiles provide evidence that

the Berkovich indentation in BMG leads to some (minimal) sinking-in, while cube corner in-

dentation entails significant piling-up, which can be clearly seen in the scanning images in Fig.
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Figure 3-7: Frequency diagrams of the indentation stiffnesses of Berkovich (a) and Cube Corner

(b) indentations on Vitreloy 1TM.
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Figure 3-8: The almost constant relation between the normalized contact stiffness, S/hmax, and
the indentation depth, hmax proves the invariance of the S/h coefficient.

3-12. A quantification of these sinking-in/piling-up phenomena is possible by using the area

functions in Eq. (2.12) and the equivalent cone angles of Berkovich and cube corner indenters

(see Tab. 2.1):

- -coto (3.13)
hmax 7h 2

Using 0 B = 70.32' for the Berkovich indenter and 0cc = 42.28' for the cube corner indenter

together with the values for A, and hmax reported in Tab. 3.4, we obtain:

Berkovich: h = 0.85 (3.14a)
hmax

Cube Corner : = 1.17 (3.14b)
hmax

The fact that hc/hmax < 1 for the Berkovich indentation and hc/hmax > 1 for the cube corner

confirms the visual observations that Berkovich indentation in BMG entails a sink-in, while

cube corner indentation leads to pile-up. This difference between Berkovich and cube corner

indentation seems to be related to the intensity of the plastic failure mechanism that occur

in the indentation tests. Indeed, a careful examination of the failed surfaces reveals that the
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(b)

(c) (d)

Figure 3-9: Microscopy images of residual impressions left on the surface of BMG after inden-

tation. Images (a) and (b) are for Beckovich indentations whereas images (c) and (d) are for

cube corner indentations. Image (c) is from Moser [173] from unpublished work.
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Figure 3-10: a) ESEM image of the residual imprint of a Berkovich indentation. A magnification

of the right hand side of the image (b) clearly demonstrates the shear band formation.
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material below the indenter concentrates in localized shear bands as primary mechanism of

inelastic deformation (see e.g., [236],[206]), and this in both Berkovich indentation (Fig. 3-10)

and cube corner indentation (Fig. 3-11). On the other hand, while the spacing of the shear

bands in the Berkovich indentation is on the order of 2 prm (Fig. 3-10b), atomic force microscopy

images of the periphery of the cube corner impression (Fig. 3-11b) reveal a denser formation

of such shear bands with a regular spacing equal or smaller than 1 pim. This provides evidence

that the pile-up found in cube corner indentation can be attributed to the higher density of

shear bands that form during loading. While the more localized form of plastic deformation in

cube corner vis-a-vis the Berkovich indentation is consistent with the plastic failure mechanism

obtained analytically with the implementation of the upper bound yield design approach (see

Fig. 2-8), the finite size of the shear bands appears to us a prime cause of the indentation

size effects which we observe in the P/h2 curves for small indentation depths (see Fig. 3-6b

and Eq. (3.11)). These effects are observed at h of similar order as the shear band spacing,

f = 0 (h). On the other hand, for the maximum indentation depths of roughly 10 pm, the shear

band spacing is almost an order of magnitude smaller than hmax, so that the tools of continuum

indentation analysis can be applied with some confidence.

A final question we want to address is the dimensionless nature of the contact area-to-

indentation depth relation (2.16b), according to which Ac/h 2 should not depend on the inden-

tation depth:
A E
h= (3.15)

To verify this relation, we performed Berkovich indentation tests to three maximum indentation

depths of 4 pm, 7 pm and 11 pm. Figure 3-13a displays the P - h curves. After indentation,

the areas of contact were measured from optical images (see Fig. 3-14), and the results were

analyzed in light of the dimensionless relation of Eq. (3.15). Figure 3-13b displays the results

in a plot of Ac/h 2 vs. h showing some scale effects, but with some tendency towards an

asymptote for larger indentation depth, very similar to the P/h2 results shown in Fig. 3-6b.

Hence, for the chosen maximum indentation depth, we can conclude that Ac/h 2 tends towards

a constant value, which is in good agreement with the theory of indentation analysis based on

self-similarity.
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Figure 3-11: Optical microscope image of a cube corner indent (a). An atomic force microscopy

image of the shear band formation is shown in (b) (courtesy of K.J. Van Vliet).
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(a)

(b)

(C)

Figure 3-12: Topographic, atomic force microscopy images of the residual imprint of a cube

corner Indentation on Vitreloy 1: (a) Plan view image, Image size 10 x 10bLm 2 ; (b) 3-D view of

the scan, 10 x 1Opm 2; (c) Magnified view of the indented region.
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Figure 3-13: a) P - h curves for Berkovich indentations at three different depths: h ~ 4, 7, 11.
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Figure 3-14: Optical images of Cube Corner indentations at different depths (h = 4,7,11 Pm).

3.4 Validation of the Tools of Indentation Analysis

The aim of indentation analysis is to link indentation data to meaningful mechanical properties

i.e., relating hardness to strength properties (see Section 2.3) and relating indentation modulus

to elastic properties (see Section 2.4). The focus of this section is to validate the tools of

indentation analysis, namely the novel dual indentation technique and the BASh formula. The

input for this validation are the directly measured indentation data presented in Section 3.3:

the maximum force Pmax, the unloading slope S, and the measured projected contact area

A,. Because the elastic properties of Vitreloy 1 TM are well known, we start with validating

the BASh formula (2.2), before turning to the validation of the hardness-strength relations

using the Dual Indentation Technique. An investigation of the relevance of indirect methods to

determine the contact area (see Section 2.5) is presented separately in Section 3.5.

3.4.1 Indentation Modulus

The use of the BASh formula (2.2) requires as input the unloading slope S, and the projected

contact area A,. Using the mean indentation data from Tab. 3.4, we determine the indentation
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modulus for the Berkovich and cube corner test:

MB = v4. 8 3 ±.0 6  mN = 93.05 ± 1.2 GPa (3.16a)
2 N/2, 116 nm x Im

MCC = 1.55±0.02 mN = 94.57 ± 1.2 GPa (3.16b)
2 V/21 nm x /m

An interesting observation is that the indentation moduli determined with the BASh formula

from both the Berkovich and cube corner data are of the same order; and that the difference

in between them is just slightly greater than the standard deviation. In order to relate the

indentation modulus to the elastic properties, we recall Eq. (2.68):

1 V 1 -2 Vy
1- = + =- + l z (3.17)

M Mmat Min E Ein

where Mmat is the plane stress modulus of the indbnted material, BMG, and Min the plane

stress modulus of the diamond indenter. Using the known elastic properties of the diamond

indenter (Ein = 1, 140 GPa, Vin = 0.07), the plane stress moduli of BMG which we obtain from

the Berkovich and cube corner indentation moduli (Eq. (3.16)) are:

Mmat = 101.27±1.37GPa (3.18a)

M = 103.07± 1.45 GPa (3.18b)

For validation purposes, we compare these results with the plane stress modulus deduced from

ultrasonic measurements [158] (small stress amplitude measurements):

MUv 96a = 110.29 GPa (3.19)
1 - 0.362

Hence, what we find is that the plane stress moduli (3.18) we determine with the BASh formula

from our indentation tests underestimate the actual plane stress modulus of BMG by roughly

7-8%. There may be several reasons for this underestimations, but one that can be excluded is

the second-order effect due to radial displacements (see Section 2.4.3), since neglecting this effect

entails an overestimation of the determined elasticity properties [111]. One possible reason of

this underestimation is the energy dissipation induced by shear band formation during loading
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(see Figs. 3-10 and 3-11), which is likely to be sensed upon unloading in the activation of

the elasticity of the bulk material. In such a case, however, the cube corner results should

yield smaller elasticity values than the Berkovich results; this is not observed. The most likely

reason, therefore, appears to be the impurity of the tested Vitreloy 1 TM sample, leading to

consistent lower elasticity values than the one obtained by ultrasonic measurements. In favor of

this interpretation is the fact that the elasticity properties we determine from microindentation

tests are in very good agreement with the range of elasticity values reported for Vitreloy 1 TM in

the literature (see Tab. 3.3). We can therefore conclude that the BASh formula for estimating

the indentation modulus of the material, which relies on the elastic unloading of the P - h

response, can give accurate estimates of the indentation modulus of cohesive-frictional materials

provided the area of contact is measured properly.

3.4.2 Berkovich and Cube Corner Hardness

The second condensed quantity of an indentation test is the hardness of Eq. (2.1). Using the

mean indentation data from Tab. 3.4, we determine the hardness for the Berkovich indentation

results and the cube corner indentation results for the maximum indentation depth:

11, 472±t 172 mN
H B 1 217 2  = 5.42 ± 0.08 GPa (3.20a)

2, 116 pm2

HCC 1,083±32mN -5.13 ± 0.15 GPa (3.20b)
211 pm2

Consistent with the cohesive-frictional nature of BMG (see Fig. 2-9), the Berkovich hardness

HB is found to be greater than the cube corner hardness HCC, which forms the background

of the dual indentation technique (see Section 2.3.4). Furthermore, an interesting observation

is that the Berkovich hardness is on the same order of Vickers hardness values reported in the

literature (see Tab. 3.3). To quantify this link, it is useful to recall that the Vickers hardness

test has the same equivalent cone angle as the Berkovich indenter (see Tab. 2.1). The Vickers

hardness method consists of indenting the material by a load of 1 to 100 kg (approximately

10 to 1000 N) with a diamond indenter, in the form of a right pyramid with a square base

and an angle of 136' between opposite faces. The full load is normally applied for 10 to 15

seconds. The two diagonals (di and d 2 ) of the indentation left on the surface of the material
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after removal of the load are measured using a microscope and the average, d, is calculated. The

Vickers hardness is the quotient obtained by dividing the load in [kg] by the area of indentation

in [mm 2 :
2P sin ( 3) P

HV _ 2 1.854- (3.21)
d2 d2

Noting that the projected contact area of the Vickers indenter is A, = 2d 2 , a comparison of Eq.

(3.21) with Eq. (2.1) leads to a relation between Vickers Hardness and Indentation Hardness

of the form:

HV = 1.0785 x HV (3.22)

where the conversion factor 1.0785 is a geometric constant. In other words the Vickers hard-

ness is roughly 8% lower than hardness defined as the average pressure beneath the indenter.

Applying this correction factor to the range of Vicker hardness values reported in Tab. 3.3, the

Vickers indentation hardness is HV = 5.42 - 5.82 GPa. The lower value is in perfect agreement

with our Berkovich hardness value (3.20a), which given the difference in indenter geometry and

test method, provides evidence of the consistency of our indentation data.

Finally, it is interesting to check the relevance of the dimensionless relation (2.17), according

to which the hardness should not depend on the indentation depth:

H = c x 'R , V, <p, ) (3.23)

Using the maximum force and the projected contact area determined for a maximum indentation

depth of 4 [Lm, 7 pm and 11 pm, we find that the Berkovich hardness is almost constant: HB -

5.47 - 5.46 - 5.42 GPa. While a small indentation size effect can be noted, it is found to be

smaller than the standard deviation in the considered indentation depth range. This confirms

our previous analysis of the P/h2 -scaling relation (Fig. 6-5b) and the Ac/h 2-scaling relation

(Fig. 3-13), that possible indentation size effects vanish for indentation depths larger than the

characteristic size of small scale heterogeneities, such as the shear band spacing. Hence, the

hardness values in Eq. (3.20) can be used with some confidence for the validation of the dual

indentation technique.
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3.4.3 Validation of Dual Indentation Technique

The premise of the dual indentation technique presented in Section 2.3.4 is that it is possible to

extract the cohesion and the friction angle of a cohesive-frictional material from two hardness

measurements obtained from two indentation tests with two indenter geometries, i.e., Berkovich

and cube corner indenters both approximated as cones of equivalent semi-apex angles. The

input for the method are the hardness values as in Eq. (3.20). The dual indentation technique

consists of the following two steps:

1. Using the Berkovich-to-cube corner hardness ratio in Fig. 6-3, we extract the friction

angle; i.e., with the values in Eq. (3.20):

HB 1.057 7.3 (3.24)

2. Use of the friction angle in Fig. 2-9 (Eq. (2.38)) yields the HB/c and Hcc/c ratio. Since

the hardness values are known (i.e., Eq. (3.20)), we solve for the cohesion c:

H B = 7.15 c
tan W = 0.13 = =-> c = 760 ± 20 MPa (3.25)

H c = 6.78 c

To validate the method, we compare the determined cohesion and friction angle with co-

hesion and friction angle values of BMG reported in the literature (see Section 3.2.2): The

friction coefficient tan p = 0.13 agrees remarkably well with the values in Eqs. (3.8) and (3.9)

obtained respectively from extensive 3-D finite element back calculation of Berkovich inden-

tation P - h curves [236] and from molecular simulations [159]. The friction coefficient also

agrees reasonably well with (3.5) obtained by Lu and Ravichandran [158] from a large series

of macroscopic multiaxial compression tests. Furthermore, the cohesion c = 760 ± 20 MPa is

on the same order of the cohesion values reported from macroscopic tests by Donovan [72]

for Pd4 0 Ni40 P 20 metallic glass and by Lu and Ravichandran [158] for Vitreloy 1 TM, the same

material we tested here. Our value slightly underestimates the reported cohesion values by 5%,

which could be attributed to the fact that our results are based on an upper bound solution,

which overestimates the H/c-ratio, thus underestimating the cohesion for a given friction an-
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gle. For purpose of completeness, we should also note that our cohesion value (as well as the one

reported from macroscopic testing [72,158]) is smaller than the cohesion that has been applied

in the 3-D finite element back calculations of Vaidyanathan et al. [236], in which the uniaxial

tension has been fixed to a relatively high value of ft = 1.9 GPa, corresponding to a cohesion

of c = ft (1 + sin o) /2 cos 9 = 1, 080 MPa. The order of magnitude of the employed tensile

strength appears to us to be rather on the order of the macroscopic compressive strength (see

Tab. 3.3), in which case the cohesion would turn out to be c = fc (1 - sin so) /2 cos 0 = 840

MPa, on the same order as the value we determined.

In a last step, we need to verify the yield design assumption c/E -* 0, which is at the basis

of the Dual Indentation Technique, and which reduces here to 0.76/96 = 8 x 10-3. The fact

that c/E < 1 seems to be sufficient to justify a posteriori the use of the yield design solution

for the extraction of the cohesion and friction angle.

3.5 Validation of Indirect Methods of Contact Area Determi-

nation

The validation of the tools of indentation analysis in Section 3.4 was based on the direct

measurements of the projected contact area A,. Such direct measurements may be appropriate

for validation purposes of the BASh formula, the Dual Indentation Technique, and so on; but

fail to meet the needs of day-to-day indentation practice, requiring a method that circumvents

the need of direct measurements. Two of these methods were described in Section 2.5, namely

the Oliver and Pharr method and the Cheng and Cheng method. The focus of this section is

to validate these methods for BMG, and discuss the limitations of these methods with respect

to the extraction of the indentation modulus and the hardness.

3.5.1 The Oliver and Pharr Contact Area Estimator

The Oliver and Pharr method of Eq. (2.78),

h_1_ Pmax (3.26)
hmax Shmax
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provides a means to estimate the contact height h, from the sole knowledge of the maximum

force Pm,, the unloading slope S, and the maximum indentation depth hmax; hence using the

mean values from Tab. 3.4 in (3.26) (letting E = 0.75 as recommended by Oliver and Pharr

[184,185]):

hest 11,472
Berkovich: -= 1 - 0.75x x = 0.84 (3.27a)

hmax 4.83 x 10, 870
hest _1, 083

Cube Corner : e = 1 - 0.75 x 1 03 = 0.93 (3.27b)
hma 1.55 x 7,692

These values need to be compared with Eq. (3.14) determined from direct measurements of the

contact area. It is remarkable to note that the Oliver and Pharr method estimates with high

accuracy (the error is smaller than 2%) the contact height in Berkovich indentation. On the

other hand, since this method -by design- can only capture sink-in phenomena, it obviously

fails to predict the pile-up observed in cube corner indentation. This error affects quadratically

the contact area estimation, as one can see when using the equivalent cone area function:

Aest ( hest 2

C= r ) tan2 9 (3.28)
nma hma

Hence, for BMG, the Oliver and Pharr method is expected to predict close to 3% the exact

contact area in Berkovich indentation, while an error of more than 35% is to be expected in

cube corner indentation:

Aest _ e t 2 0.97 Berkovich
-. - -- -h (3.29)
Ac hc 0.63 Cube Corner

The error in the contact area estimation strongly affects the estimation of both indentation

modulus:

Mest Ac hc 1.02 Berkovich (3.30)

M Acst -hst 1.26 Cube Corner(

and hardness:

Hest AC he 2 1.03 Berkovich

H Aest hest 1 (3.31)
c C 1.58 Cube Corner
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Finally, our analysis here is based on the ideal equivalent cone geometry and area function

(3.28). The results, however, still hold in the case of an imperfect indenter geometry described

by a fitted area function of the form (2.13). Figure 3-15 displays frequency plots of the indenta-

tion modulus and hardness of our 100 Berkovich and 50 cube corner indentation tests in which

the contact height was estimated with the Oliver and Pharr method. The figure confirms our

analysis that application of the Oliver and Pharr method to Berkovich indentation entails rea-

sonable estimates of the indentation modulus and the hardness, while the application to cube

corner indentation largely overestimates both M and H. Moreover, an interesting observation

is that the results are well represented by a normal distribution with the following mean (y)

and remarkable low standard deviations (s) in both Berkovich indentation (100 tests):

Iest = 95.14 GPa sMest = 1.82 GPa = 1.9% (3.32)

pBest = 5.67 GPa suest 0.17 GPa = 3.1%

and cube corner indentation (50 tests):

cc
Mest = 124.25 GPa sMeSt = 2.06 GPa # = 1.7% (3.33)

cc (.3
PHet = 8.06 GPa sHest = 0.26 GPa = 3.3%

3.5.2 The Cheng and Cheng Contact Area Estimator

The Cheng and Cheng method (see Eq. (2.80)) circumvents by design the estimation of the

contact area by evoking the elastic and total energy. On the other hand, using Eqs. (2.1) and

(2.2) in Eq. (2.80) and solving the result for the projected contact area, the method provides

the following contact height estimation:

hest 2 Pmax W
- x Shmax "5-- x oto (3.34)

hmax 7re
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Figure 3-15: Frequency plots of (a) indentation modulus and (b) hardness of BMG obtained

with Berkovich and Cube corner indenters. The area of contact was estimated using the Oliver

and Pharr method.
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Using the mean values from Tab. 3.4 in Eq. (3.34) we obtain:

hest Mest Hest
Berkovich : hmax = 0.70 = MB 1.21; HB = 1.46 (3.35a)

hset Mest Hest
Cube Corner : hmax = 2.72 M 0 0 = 0.43; HC = 0.18 (3.35b)

The results show that the Cheng and Cheng method, in contrast to the Oliver and Pharr

method, is qualitatively able to accommodate pile-up phenomena, heSt/hmax > 1. However,

quantitatively the method performs rather poorly by overestimating both the sink-in phenomena

in Berkovich indentation, to a greater extend the pile-up phenomena in cube corner indentation.

As a consequence, the indentation modulus and hardness estimated with this method are of

little quantitative interest.

3.5.3 Return to Dimensional Analysis

To fully understand strength and limits of the contact area estimators, it is appropriate to

return to first principles, i.e., dimensional analysis, by recalling the dimensionless relations of

Eq. (2.16) that characterize hardness, and Eq. (2.42) which characterizes the elastic unloading

slope:

Fmax = la - , ) (3.36a)
chma C

c ,3 ( , c , ) (3.36b)
h-2  c~max

E = 6 , v, c,) (3.36c)
Ehmax E)) )

Recombining Eq. (3.36a) and Eq. (3.36c) allows us to identify a new dimensionless number

which figures in both the Oliver and Pharr method Eq. (2.78) and the Cheng and Cheng

method Eq. (3.34):

Pmax c ia (f7, , ,) / C \
= -x=HE (3.37)

Shmax E H6 (E,, , ) E'

This dimensionless number is independent of the indentation depth, as is the indentation

modulus-to-hardness ratio, as one can show by substituting Eqs. (3.36b) and (3.37) in the
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BASh formula Eq. (2.2):

H 2 IE E

Finally, Eq. (3.38) allows us to rewrite the contact area Eq. (3.36b) in the dimensionless form:

Ac _ 4 Pmax M (339)
h2max 7r Shmax H

respectively, with the help of Eq. (3.28), the contact height-to-indentation depth ratio:

he 2 Pmax M= x max X- x coto (3.40)
hmax 7r Shmax H

Equation (3.40) is to be compared to the Oliver and Pharr method of Eq. (3.26) and the Cheng

and Cheng method of Eq. (3.34):

1. The key assumption of the Oliver and Pharr method is that elastic indentation solutions

remain valid during unloading in elastoplastic indentation, as is implicit in the E - factor.

A comparison of Eqs. (3.26) and (3.40) yields an expression for E as a function of the two

invariants (see Eqs. (3.37) and (3.38)):

Shmax 2 ME = - -x - x coto (3.41)
Pmax 7r H

Without difficulty we verify that the elastic (conical) indentation solution yields the E -

factor suggested by Oliver and Pharr:

Shma M
Elastic: max = 2; - = 2 tan 0 => E = 2 (1 - 2/7r) ~ 0.73 (3.42)

Pmax H

While strictly valid only for the elastic solution, Oliver and Pharr suggest that this values

also applies to elastoplastic indentation, and this independent of the cone angle. It is

interesting to determine E for the Berkovich and cube corner indentation by using the

mean values of Tab. 3.4 and the actually measured M/H - values from Eqs. (3.16) and
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(3.20) in Eq. (3.41). This yields:

Shmax MB
Berkovich : m = 4.58, = 17.17 =- = 0.67 (3.43a)

Shmax MCC
Cube Corner : = 11. O - 18.43 => E = -1.90 (3.43b)

In contrast to the elastic solution Eq. (3.42), we find that the dimensionless number

Shmax/Pmax defined by Eq. (3.37) strongly depends on the cone angle 0 in elastoplastic

indentation, and that it is much greater than the elastic value Shmax/Pmax = 2. Similarly,

the indention modulus-to-hardness ratio of Eq. (3.38) is much greater than the elastic

values (M /HS = 1.82 and Mc//Hc C = 5.59), but less sensitive to the cone angle.

Given these significant differences, it is almost surprising that E in elastoplastic Berkovich

indentation of Eq. (3.43a) comes very close to the elastic value of Eq. (3.42), which

explains the excellent estimates via Eqs. (3.27a) to (3.31) obtained with the Oliver and

Pharr method for Berkovich indentation. On the other hand, the poor performance of this

method for cube corner indentation appears to be related to the fact that elastoplastic

cube corner indentation deviates significantly fiom the elastic sink-in solution.

2. The key assumption of the Cheng and Cheng method is the link of Eq. (2.80) between

the indention modulus-to-hardness ratio of Eq. (3.38) and the unloading-loading energy

ratio:
M = KW (3.44)
H We

where K = 5 was found to fit well elastoplastic finite element results for a given indenter

conical indenter geometry (9 = 680) [50]. Use of K = 5 in Eqs. (3.44) and (3.40) yields Eq.

(3.34), which we have seen provides a poor quantitative prediction of the contact height

in both Berkovich and cube corner indentation. It is interesting, therefore, to determine

the , factor for our BMG indentation data, by using the mean values of Tab. 3.4 and the

actually measured M/H - values from Eqs. (3.16) and (3.20) in Eq. (3.44). This yields:

K=M We 6.1 Berkovich (.5

H Wt 2.2 Cube Corner
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The K - factor of the Cheng and Cheng method appears to be highly sensitive to the cone

angle, and ostensibly to the friction angle, i.e. , = , = (0, p, ...). Given the deviation from

Cheng and Cheng's value K = 5, the poor performance of the method is not surprising.

In summary, the existing indirect methods for estimating the projected contact area all

suffer from the same problem: these involve semi-empirical constants (E in the Oliver and Pharr

method, r, factor in the Cheng and Cheng method) that depend on the material properties of

the indented material and the indenter geometry. It can only be speculated that the good

performance of the Oliver and Pharr method in BMG Berkovich indentation is related to the

flat indenter geometry, which limits pile-up deformation during loading, so that the unloading

response is actually dominated by the elastic sink-in of the surrounding material, which is the

key assumption of the method. On the other hand, the Cheng and Cheng method which has

the ability to capture pile-up phenomena is, at this stage of its development, rather qualitative

than quantitative.

Lastly, a comment on statistical analysis of indentation data is in order. According to the

dimensionless relation of Eq. (3.38) the M/H for a homogeneous material should be a constant

for a given cone angle. This relation should be understood in an average sense, as one can never

exclude, in real indentation experiments, random errors in the determination of M and H related

to surface roughness, material imperfections, etc. that give rise to a scatter in individual values

of M and H (Fig. 3-15). If this random error is related to surface properties, the error should

translate into a M - H scaling relation. Figure 5-22 displays the M - H scaling relations for

Berkovich indentation and cube corner indentation, in which the contact area was estimated

by means of the Oliver and Pharr method (mean values and standard deviations are given by

Eqs. (3.32) and (3.33)). It is remarkable to note that the Berkovich indentation modulus scales

with Mgt oc (H8t) 0.54 which is very close to the theoretical scaling relation M oc V71 one

would expect from random errors in contact area estimation. This good agreement confirms

the good performance of the Oliver and Pharr method for Berkovich indentation, and the small

difference in the scaling relation can be attributed to the improper area estimation with the

Oliver and Pharr method. However, the (non-random) error in the area estimation one commits

with the Oliver and Pharr method in cube corner indentation translates in a strong deviation

from the M oc d relation, as the estimated cube corner indentation modulus scales with
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mest oc (Hest)".I This underscores the importance of a correct contact area estimation.

3.5.4 Elasticity Corrector Method for Dual Indentation Analysis

The absence of a method that accurately predicts the'contact area for different indenter geome-

tries (semi-apex angle 0) is a problem for the application of the Dual Indentation Technique

developed in Section 2.3.4 and validated in Section 3.4.3 using hardness values that were de-

termined from direct contact area measurements. In Section 2.5.4, we proposed a new method

for the determination of the contact areas particularly for the application in dual indentation

analysis. Validating this method for BMG is the focus of this section.

The method is based on the validity of the BASh formula Eq. (2.2) and the assumption

that the indentation modulus, Eq. (2.68), is the same for both indenter geometries. This yields

Eq. (2.83), linking the contact area ratio to the contact stiffness ratio. Use of the mean values

of Tab. 3.4 yields the following result for BMG:

A _Nest SB 2 24.83N2

ACCJ -SCC 1.55 9.71 (3.46)

This ratio compares rather well with ratio of the measured contact areas AB and A0C from

Tab. 3.4; A /ACC = 10.03. The difference is actually smaller than the error induced by the

accuracy of the surface measurement technique of 10 pm2 (see Section 3.3.3). On this basis, a

good estimate of the hardness ratio is provided oy Eq. (2.84), which with values from Tab. 3.4

yields for BMG:

HB est pB X50 0Sx2 11,472 1 1.09 (3.47)
Hcc) px B 1,083 9.71

The hardness ratio compares reasonably well with'the experimentally determined ratio (3.24)

of HB/HCC = 1.06. Use of the estimated hardness ratio of Eq. (3.47) in Fig. 6-3 yields a

friction angle of pest = 9.1', and substitution of this friction angle in Eq. (2.38) allows us to

determine the hardness-to-cohesion ratios:

tanpest =0.16-> (H- >)est -7.81 c=? (3.48)
(Hcc/c)est = 7.19
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In order to determine the cohesion, we need at least one hardness value, either the Berkovich

hardness or the cube corner hardness, and need to assume that at least one of the two in-

dentation test series was determined with a correct contact area. This is not an easy choice

theoretically, given the shortcomings of existing indirect methods. However, given the excellent

results we obtained with the Oliver and Pharr method in Berkovich indentation, we suggest to

employ the Berkovich indentation hardness derived with the Oliver and Pharr method as the

'correct' indentation result; i.e., from Eq. (3.32):

HB ?e B = 5.67GPa

(3.49)

cest 5.67 = 730 MPa
7.81

Both, friction coefficient tan pest = 0.16 and cohesion Cest = 730 MPa, compare very well

with the values determined from direct contact area measurements given by Eq. (3.25), and

are in very good agreement with experimental values reported for bulk metallic glass. This

is exemplified in Fig. 3-17, which compares the experimental strength envelope of Lu and

Ravichandran [158] with the Mohr-Coulomb envelopes determined from Eqs. (3.25) and (3.48)-

(3.49).

Finally, the indirect method we propose here employs only measured quantities, the contact

stiffness and the indentation force, to provide an estimate of the contact areas in Berkovich and

cube corner indentation, and the only assumption is that the Berkovich hardness is correctly

evaluated with the Oliver and Pharr method. Following the developments in Section 2.5.4, one

could employ directly the mean values of the Berkovich and cube corner indentation modulus

estimated with the Oliver and Pharr method (i.e., Eqs. (3.32) and (3.33)) to correct the cube

corner contact area from Eq. (2.88):

A _(_ = (Mest(2) 2 ( 124.25 1 (3.50)

est(2) Mexp(l) IM J (95.14
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Figure 3-17: Comparison of predicted yield envelope with experimental data from [158].

and to correct the cube corner hardness accordingly:

/B
cc P'Mest

- LHest I cc
( Mest ) 2 S = 4.73 GPa

1.71
(3.51)

Since this modified elastic corrector method is based on the assumption that the Berkovich

indentation modulus and hardness MB = [LBe.t and HB = AB e determined with the Oliver

and Pharr method are the correct values, we can employ the dual indentation technique using

the corrected value of the cube corner hardness (3.51):

HB est

HCC )

B
=e I

cc
PHest

(Z cc 2B
[tMest

5.67 =

4 731.20
(3.52)

Application of Eq. (3.52) in the dual indentation technique yields a friction angle of <pest - 14.9',

and a cohesion of:

tan <pe"' = 0.27 =-> {(HR/c) = 11.179

(f-Icc/c) est = 9.344 9
}- c"=t = 510 MPa
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BASh, Mmat [GPa] Dual Indentation Technique

Contact Area, A. Berkovich I Cube Corner c [MPa tan [1]

Direct Measurement 101.3 103.1 760 ± 20 0.13
Oliver & Pharr 103.8 139.4 --

Cheng & Cheng 124.9 42.2 -

Elasticity Corrector (S) - - 730 0.16
Mod. Elasticity Corrector (M) 103.8 103.8 510 0.27
Literature 110.3 755-840 0.12-0.18

Table 3.5: Summary of validation of tools of indentation analysis for Bulk Metallic Glass.
Mmat stands for the plane stress modulus of BMG. Boldface type indicates the techniques we
recommend for indentation analysis of cohesive-frictional materials.

Hence, compared to the contact area estimation (3.46), the modified elastic corrector method

shown in Eq. (3.50) does not perform that well, most likely because this approach propagates the

error in the indentation stiffness determination into the hardness ratio. In fact, our derivation is

based on the rules of self-similarity of the conical indentation test, which appear to be perturbed

by the error in the contact area estimation. For practical purposes, we therefore recommend to

use the contact area estimation of Eq. (3.46) based on only measured quantities: the contact

stiffness S.

3.6 Chapter Summary

The results presented in this first part of the thesis provide strong evidence that a combination

of high accuracy indentation testing and advanced indentation analysis allows one to translate

indentation data into meaningful mechanical properties of cohesive-frictional materials. Table

3.5 summarizes the results of our indentation analysis of Berkovich and cube corner indentation

tests on a model cohesive-frictional material, Bulk Metallic Glass:

1. The fundamental equation to translate indentation data into elastic properties is the

BASh formula (2.2), which appears to give highly accurate results for both Berkovich

indentation and cube corner indentation data provided the area of contact is measured or

estimated properly. For our model material, BMG, we did not find that the BASh formula

overestimates the indentation modulus due to second-order effects in radial displacements

(see Section 2.4.3). This could be due to the fact that plastic dilating deformation which
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take place in cohesive-frictional materials, counterbalance the elastic contraction behavior.

Hence, the BASh formula -appears to us as a reliable tool to translate indentation data

into elasticity properties of the indented material.

2. The novel dual indentation iethod we here propose allows one to translate hardness

values into strength properties of cohesive-frictional materials. The cohesion and friction

angle values we obtain with this method for BMG are in excellent agreement with values

reported in the literature, which confirms that bulk metallic glasses are cohesive-frictional

materials of the Mohr-Coulomb type.

3. The accuracy of any indentation method depends on the quality of the determination of

the projected contact area. This is not an easy task: in the validation of the BASh formula

and the dual indentation technique for bulk metallic glass, we measured the contact area

by direct measurement of the residual hardness impression after a complete unloading.

For practical reasons, however, some means other than direct observation of the hardness

impressions is needed. We have tested several methods proposed in the open literature

(and implemented in many indentation software programs), and found that the Oliver and

Pharr method provides reasonable estimates of the contact area for Berkovich indentation,

in which the plastic deformation behavior below the indenter is constrained. In the case

where excessive pile-up is present, like in cube corner indentation, the estimates provided

by the method are largely in error. To circumvent the introduction of errors in our dual

indentation technique we propose a new method based on (1) a correction of the contact

area using directly measured quantities (contact stiffness S), and (2) the accuracy of

the Oliver and Pharr method in Berkovich indentation. The results obtained with this

elasticity corrector method in dual indentation analysis of BMG are in excellent agreement

with results based on direct measurements of the contact area. The ease of utilization

makes this method even more appealing for day-to-day application in indentation testing.

The experimental results presented for Vitreloy 1TM (see Tab. 3.5) validate the indentation

technique, and provide the basis for indentation analysis of more complex, highly heterogeneous

cohesive-frictional materials: natural composites.
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Chapter 4

Multi-Scale Think Model for CBM

Concrete, based mainly on Portland cement, water and aggregates, is the most widely used

material on Earth. Current estimates of world cement manufacture are of the order of 1.7 x 10 9

tons/year, enough to produce well over 6 km 3 of concrete per year or at least 1 m 3 per person

[95]. However, the omnipresence of concrete in construction belies its complexity. The complex

chemical reactions that occur when a gray powder (cement) is transformed, by the simple addi-

tion of water, at room temperature, to a rigid solid, creates one of the most heterogeneous class

of materials in existence. The most prominent feature of this heterogeneous microstructure

is the large amount of porosity which manifests itself from the length scale of a few atomic

diameters to millimetric dimensions. There have been very few attempts so far to link the

mechanical behavior of this heterogenous material to composition and structure, and identify

a fundamental unit of material invariant properties. This is what we attempt in this thesis

through a multiscale investigation of the mechanical properties of cement-based materials at

multiple scales and the use of advanced homogenization theories to translate micromechani-

cal properties into macroscopic properties. This chapter reviews the multi-scale structure of

cement-based materials. Chapter 5 demonstrates how the concepts of indentation testing and

analysis can be adapted for multi-phase and multi-scale composites like cement-based mate-

rials (CBM) to identify properties of different phases present in the microstructure. As an

application, Chapter 6 illustrates how this novel approach, based on nanoindentation analysis,

allows the identification of microstructural changes induced by heat curing and heat treatment

of CBM. These indentation results will form the backbone for later development of a multiscale
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micromechanics based model that predicts mechanical properties of cement-based materials on

the basis of composition and structure.

4.1 Chemical Reactions and Material Formation

The solid we call cement paste and which forms the binding matrix for all cementitious systems,

is the resulting product of the chemical reaction between cement and water, a reaction commonly

referred to as hydration. It is therefore natural to ,-tart our multiscale investigation of the

mechanical behavior of CBM by familiarizing ourselves with the mineralogical composition and

physical properties of cement, as well as the resulting hydration products.

4.1.1 Portland Cement

Manufacturing

Cement is a generic term for a material which in the presence of water develops cohesive

properties that make it possible to bind a particulate matter together. The first use of cementing

agents can be traced back to the ancient Egyptians, Greeks and Romans who used calcined

limestones, sand and crashed stone to produce an ancient form of concrete. Today's cements

do not differ fundamentally from this natural historic occurrence. Cement is made from a

mixture of clay and calcareous materials. The essential ingredients are lime and silica, which

are abundantly found in suitable forms of chalk (or limestone) and clay, respectively. The

manufacturing process is simple: first, the raw materials are proportioned to supply the desired

amounts of lime, silica, aluminum oxide and iron oxide; and then heated in rotary kilns. The

heat treatment during the mixing process involve temperatures on the order of 1500'C, at which

the material undergoes sintering, partial fusion reactions and chemical composition changes

[226]. The resulting particles, called clinker, of almost spherical shape (a few centimeter in

size), are cooled and ground to a fine powder, Portland cement, of mean particle diameter

~ 20 pm [4].
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Mineralogical Phase Shorthand Notation mass %

3CaO.SiO 2  C3S 50-70
2CaO.SiO 2  C2S 15-30
3CaO.A 20 3  C3A 5-10
4CaO.A12 0 3.Fe2O 3  C4 AF 5-15

Table 4.1: Typical mineralogical composition of a Portland cement.

Chemical Composition

The silica and calcium rich materials are mixed at high temperature and interact with one

another to form a series of more complex products until a state of chemical equilibrium is

attained. Due to the relatively fast cooling rates the crystallization process is not complete

and a certain degree of amorphous material is present in the clinker phase [226]. Nevertheless,

cement can be considered as being in a state of frozen or quasi-equilibrium where different

compounds coexist. In an ordinary Portland cement, four compounds are regarded as the

major constituents, these being: tricalcium silicates, C 3 S, dicalcium silicates, C2 S, tricalcium

aluminates, C3A, and tetracalcium aluminum ferrites, C4 AF 1 :

Limestone -+ CaO+CO 2  3CaO.SiO 2  C3 S

15000C 2CaO.SiO 2  C2 S
4 (4.1)
3CaO.A12 0 3  C3A

Clay -+ SiO 2 +A1 203+Fe2 O3 +H 20 4CaO.A 2O3 Fe2O3  C4AF

A typical mineralogical composition of Portland cement is given in Tab. 4.1.

4.1.2 Hydration of Portland Cement

Once cement and water is mixed the material is in a state of suspension. The mixture can

withstand limited shear and flows like a (non-Newtonian) fluid (Fig. 4-1a). As time goes

on, the cement reacts with water forming hydration products that percolate to form a rigid

solid which can withstand shear stresses (Fig. 4.1b). In fact, all four clinker phases of Portland

cement (see Tab. 4.1) react with the water ini a process that is called hydration. In the following

'Cement chemists' notation is used throughout; C=CaO; S=SiO 2 ; A=A12 0 3 ; F=FeO3; S=SOa. Thus,
C3 S=3CaOSiO 2 . Dashes in the formula C-S-H emphasizes its variable composition.
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(b)

Cemend C-S-H(A)
Water/Pare C-S-H(B)

Figure 4-1: Schematic of cement hydration: (a) Cement paste at the plastic-fluid state once
cement and water is mixed, (b) Cement paste in the hardened state after cement and water
reacted (a few days) to form a connected network of solids that precipitate under water.

presentation, we separately describe the hydration of aluminates and silicates. They form the

most important part of the microstructure of a cement paste.

Aluminate Hydration

The hydration of the tricalcium aluminates, C 3 A, is a rapid process that leads to calcium

aluminates which are called AFm phases. A set 2 of hydration reactions is [226]:

2C 3A+27H

2C 3A + 21H

-4 C4 AH 19+C 2 AHs

-- + C4 AH 13 +C 2 AH 8

C3 A + CH + 12H - C4AH 13

2 The expression "set" indicates that the reactions are consistent among themselves. Depending on the source

slightly different writings can be found.
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In addition to this phase, Ettringite (AFt in the notation of Taylor [226]) forms in the presence

of sulfates (SO) and water:

C3A+ 3CSH2+26H -+ C6 AS 3 H32  (4.3)

Once the sulfate ions are consumed, the Ettringite becomes an AFm phase according to the

following reaction:

2C3A + C6AS 3H32 +4H - 3C 4 AS 3H12  (4.4)

The hydration of tetracalcium aluminum ferrites, C 4 AF, is very similar to the hydration of

C3 A except for the slower kinetics. The reactions (4.2) can be written analogously with the

aluminum being replaced by iron. The characteristic length of the end products of the aluminate

hydration is in the 10-6 m range.

Silicate Hydration

The hydration of silicates, C3 S and C2 S, leads to the main products of cement hydration. The

hydration of the two silicate phases is very similar, differing only in their rate of formation, and

can be divided in three stages [226]:

1. Dissolution of the clinker grains (C3 S and C2 S);

2. Diffusion of the ions in the interstitial solution;

3. Precipitation as the saturation point for the different hydrates is attained.

As the precipitation takes place, the ion concentration in the solution is lowered and more

clinker is dissolved. Making the approximate assumption that the final reaction product of C3 S

and C2 S is C3 .4 S2 Hs [227] the reactions of hydration can be written as:

2C 3S + 10.6H- C3.4S 2H8 +2.6CH (4.5)

2C 2S + 8.6H-+C3 .4 S2Hs+0.6CH

Equation (4.5) suggests that the hydration of tricalcium silicates and dicalcium silicates yield

the same hydration products, namely Calcium Hydroxide (CH) and Calcium-Silicate-Hydrates
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Mineralogical Phase vol % Crystallinity I M6rphology Dimensions

C-S-H 50-70 Very Poor Unresolved 10 - 100 nm
CH 15-20 Very Good Solid Hexagonal 10 - 100 Pim

C4 AS3 H 12  1-5 Good Solid slender 10 x 0.5 pm
.._ needles

Solid Thin
C6 AS 3 H 32  1-5 Fair-Good h xol Tes 1 X 1 x 0.1Pm

I hexagonal plates

Table 4.2: Typical mineralogical composition and physical characteristics of a cement paste
(from Ref. [169]).

(C-S-H). In addition, both silicates require approximately the same amount of water for their

hydration, but C3 S produces more than twice as much (on a mass basis) CH as is formed by

the hydration of C2 S. The calcium hydroxide (CH) usually constitutes approximately 10 to 20

vol% of the hydration product.

4.2 Phases in Hardened Cement. Paste (hcp)

From the chemical reactions that occur during hydration, it is readily understood that the re-

sulting solid, the hardened cement paste (hcp), is a multiphase composite material. It consists

of the hydration products of the different cement phases and residues of unhydrated cement

particles, in addition to water filling the pores. Table 4.2 shows a typical mineralogical compo-

sition together with their relative volumetric proportions found in Portland cements. Although

there are five distinct chemical phases in the cement paste, which are detailed below, there are

two phases that dominate in volumetric proportions: C-S-H and CH, which constitute more

than 85% of the total volume. Therefore, the macroscopic mechanical behavior of cementitious

materials is expected to be governed by the mechanical properties of these phases. Special

emphasis is placed on their description and characterization.

4.2.1 Calcium Silicate Hydrates: C-S-H

Calcium silicate hydrates (C-S-H) build up the main binding phase in all Portland cement-

based systems. They account for 50 - 70% of the volume, and are considered to be the most

important contributors to the mechanical properties of cementitious systems. Their high relative

proportion makes C-S-H the only percolated phase in hcp, and as a consequence the macroscopic
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mechanical behavior heavily depends 6n it. The fact that the term C-S-H is hyphenated signifies

that it is not a well defined compound, but that it exists in several different forms [226]. The

chemical formula C3 .4S 2 H8 used in the hydration reaction (Eq. 4.5) is only an approximate one

because the actual composition of this hydrate experiences significant local variabilities. For an

Ordinary Portland Cement (OPC), the Calcium-to-Silica (Ca/Si)-ratio varies between 1.2 and

2.3 with a mean of 1.75, and the structural water content, that is the water chemically bound in

the crystal structure, varies even more [198]. The morphology of C-S-H also varies from poorly

crystalline fibers to a reticular or crumbled sheet-like network. Of primary importance is their

colloidal nature3 , with an extremely high surface area of 100 to 700 m 2 /g (about a thousand

times greater than the surface area of cement particles). Due to their colloidal dimensions

and a tendency to cluster, C-S-H crystals could only be visualized with the advent of electron

optical microscopy. The most striking feature of the C-S-H matrix is the porous nature. A large

volume fraction of nanometer size pores is present in all cement-based materials independent of

their processing and mix proportions. This-striking feature suggest a gel like morphology that

is responsible for the peculiar macroscopic mechanical behavior: pressure sensitive strength

capacity, poromechanical response, volumetric instability in Relative Humidity changes, and so

on.

The structure and composition of calcium silicate hydrates has been the subject of many

experimental and theoretical attempts over the last 100 years. The foundations were laid

by Le Chatelier with his groundbreaking work in 1887 (cited from [180]), who noted the gel

like morphology of C-S-H phase and identified crystalline phases of the hydration products. Le

Chatelier's investigation relied on the available equipment at the time which were limited to low

magnification optical microscopes. As new experimental methods and data become available

new models were designed to re-interpret the very nature of C-S-H phase. A brief review of

different models concerning the C-S-H structure categorized by their length-scales is given

below.

3A system of finely divided particles, which are approximately 10 to 10,000 angstroms in size. 1 angstrom =
10- 0 m.
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Authors Primary Exp. Basis Type Refs

Taylor [1984/1993] XRD, Chemical Analysis Disordered [226]
Richardson and Groves [1992/2004] TEM, SEM Disordered/Crystalline [197,199]

Cong and 2 Si MAS NMR .
Kirpkpatrick [1996] 1H_29S. CPMAS NMR Disordered [57]

Nonat and Lecoq [1996] NMR studies Crystalline [182]
Chen et al [2004] NMR, Chemical Analysis Disordered [41]

Table 4.3: Summary of models for the atomic-stochiometric structure of C-S-H.

Atomic Structure and Stoichiometry of C-S-H

The smallest scale models are atomistic-molecular models describing the structure and stoi-

chiometry of the C-S-H. First indications of the main features of the C-S-H nanostructure were

obtained from comparisons of C-S-H with known (about 30) crystalline calcium silicate hy-

drates [226]. It was suggested that C-S-H resembles the natural mineral of Tobermorite [106]

or the mineral of Jennite [29]. A great deal of information has been gained on the nanostruc-

ture of C-S-H in recent years principally from the use of trimethilsilylation (TMS) and solid

state nuclear magnetic resonance (NMR) spectroscopy. The model of Taylor [226] together

with more recent contributions from Richardson [198], Jennings [130], Faucon [83] and other

researchers suggest that C-S-H can be visualized as a Tobermorite with many imperfections and

irregularities; such that it becomes nearly amorphous, possibly intermixed at a very fine scale

with a similar version of Jennite. In addition, it has been found that C-S-H consists of dimeric

and higher polymeric species, mainly linear pentamers and octamers, suggesting a 2,5,8... (3n-1)

sequence of linear silicate chain lengths. It is also generally accepted that dimers dominate in

high C/S-ratio systems, and that the chain length by polymerization increases as the C/S-ratio

decreases [198].

Most contributions to the atomistic structure can be traced back to the groundbreaking

work of Taylor [226] in the early 1960s. From an in-depth investigation of the crystal chemistry

of the phases of the lime-silica-water system at different temperatures, Taylor postulated the

resemblance of two types of C-S-H, C-S-H (I) and C-S-H (II), with naturally occurring minerals

of Tobermorite and Jennite, respectively. These minerals have a layered structure based on

calcium sheet flanked on each side by linear silicate 'dreierketten' chains as demonstrated by
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Si MAS NMR 4 measurements (see [57] and references therein). In Tobermorite, two oxygen

atoms from non-bridging tetrahedra coordinate to calcium ions; while in Jennite only one

oxygen of the non-bridging tetrahedra coordinate to the calcium ions of the sheet, and the

other oxygen is provided by hydroxide ions. Their crystal structure has only been recently

decoded and their limiting formulas can be described by Ca 5H 2 Si 6 Oi 8 .8H 20 (Ca/Si=0.83) for

1.4-nm Tobermorite, and Ca 9H2Si 6Oig(OH) 8.6H 20 (Ca/Si=1.5) for Jennite [29]; see Fig. 4-

2. Later models suggested modifications of these crystals structures in an effort to capture

experimentally observed trends; in particular:

" Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) stud-

ies reveal small scale variabilities in the composition of the C-S-H phase, while the Ca/Si

ratio in different regions of neat hydrated C3 S and C2 S exhibits large variabilities of values

ranging between 1.2 and 2.1 with a mean value around 1.75 [197, 198]. The length scale

of these investigation was around 100 nm.

* C-S-H tends to become compositionally more uniform with age. A bimodal distribution

was observed at early ages that seems to unify as the paste matures [197, 199]. The mean

Ca/Si-ratio during that process was noted to remain almost unaffected. The primary

inconsistency between experimental data of cement pastes and the minerals of Jennite and

Tobermorite is the higher mean Ca/Si-ratios experimentally observed. Several models

were proposed over the years in an attempt to increase the Ca/Si-ratio and meet the

experimental observations. The absence of a unique stoichiometry gave rise to many

different models all of which are crystal-chemical possible. We acknowledge the ones of

Richardson and Groves [197,199], Cong and Kirkpatrick [57], Nonat and Lecoq [182, 183],

Chen et al. [41], and a modified version of Taylor's' original proposition [226]. Richardson

and Groves model incorporates a lot of variables which make it very flexible and which

converges to most of the other models under specific assumptions [197, 199]. The modified

Taylor model suggests that the bimodal distribution experimentally observed at early

ages is a reflection of a defect-Tobermorite model and a defect-Jennite model that give

peaks of Ca/Si at 1.2 and 2.3 respectively. Taylor then suggested that as the material

4Magic angle spinning nuclear magnetic resonance.
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Figure 4-2: a) Schematic diagrams showing dreirkette chains present in 1.4nm-Tobermorite
projected along [010] (top) and [210] (bottom). The chains have a kinked pattern where some
silicate tetrahedra share 0-0 edges with the central Ca-0 layer (P=Paired tetrahedra) and
others that do not (B=Bridging tetrahedra). b) Schematic diagrams showing dreirkette chains
present in Jennite projected along [010] (top) and [100] (bottom). (from Ref. [199])
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ages the two precipitates interact with each other to form a unimodal distribution of an

amorphous mixture of Jennite-Tobermorite contributions. Based on experimental data

on synthetic C-S-H, Cong and Kirkpatrick [57] argued that the existence of Tobermorite

structures dominates in their system, and as a consequence they suggested a Tobermorite

defect model. Chen et al. [41] reconciled solubility curves for specimens with a broad

range of compositions and attempted to interpret the data as representing a spectrum of

metastable phases whose internal structure ranges from purely Tobermorite-like to largely

Jennite-like. Intermediate stages suggest a defective Jennite-Tobermorite mixture. Based

on recent evidence from atomic force microscopy (AFM) image analysis of grown C-S-

H crystals [183], Nonat and Lecoq suggested that the C-S-H phase is not necessarily

amorphous, and that the Ca/Si ratio can be altered by incorporating OH- and Ca2 ± ions

in the interlayer space of a Tobermorite crystal.

There is still a fundamental question regarding the nature of C-S-H particles: What is the

stoichiometry of C-S-H particles occurring in cementitious materials? Or on a more fundamental

level: Are C-S-H phases crystalline or amorphous? In the absence of a definite answer to these

nagging questions, there is an increasing body of experimental evidence that suggests that

independent of their atomic nature, C-S-H precipitates to form particles of nanometer dimension

that eventually agglomerate to form a gel network. The extremely high specific surface area

of these materials, their nanometer size porosities, and their continuous interaction with water

all hint towards the gel like properties of the material. Figure 4-3 shows recent atomic force

microscopy and transmission electron microscopy (TEM) images testifying towards the colloidal

nature of C-S-H systems. All three images, taken from different researchers on different cement

based samples, suggest particles on the order of tens of nanometers. This is discussed below.

Colloidal Structure of C-S-H

The tendency of C-S-H to agglomerate and form clusters yields a characteristic microstructure

in the range of a few nm to hundreds of nm. Several models were proposed over the years in

an attempt to deduce specific characteristics of this microstructure. Since the microstructure

cannot be directly observed, research focused on finding the hidden underlying structure that is

consistent with a variety of experimental observations (Tab. 4.4). Most models originate from
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Figure 4-3: Microscopy images demonstrating the nanoparticulate nature of C-S-H, a) Topo-

graphic, atomic force microscpy image of C-S-H nanoparticles (60 x 30 x 5 nm) precipitated

after a single crystal of calcite was immersed in a sodium silicate solution [192], Image Size:

5 x 5 pm2, b) AFM image of the surface of a cement paste cast against a calcite single crystal,

revealing particles with a mean size of 30 - 50 nm [183], Image Size: 0.8 x 0.8 Am 2 , c)TEM

image of high performance concrete showing particles ranging in size from 20 - 60 nm [91].
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Authors Primary Experimental Basis Type Selected Characteristic

Water Sorption Gel products

Volume of pores 28% pore volume

Kantro et al [1970] Hysteresis of water sorption Layer Tobermorite High surface area gel

Clay like structure
Feldman and Nitrogen sorption Layer with stprantroe

Sereda [1970] Length/Modulus/Weight vs. RH Layers with important role
of interlayer water

Important role

Wittmann [1979] Modulus vs. RH Colloid of water in spaces
between particles

Density Consistent with as

Jennings [1994/2000] Composition Colloid much experimental
Surface Area Coti mc prie

Fractal data as possible

Table 4.4: Summary of models for the 1-100nm structure of C-S-H , from [225].

the groundbreaking works of Powers et al. [194], who deduced a gel-type colloidal microstructure

of C-S-H from water sorption and pore volume data. Power's model was debated and advanced

by Feldman and Sereda [85] who suggested that C-S-H, similarly to clay particles, form a

three dimensional assemblage of C-S-H sheets which tend to form a subparallel, few layer thick

group, and which enclose pores of dimension of the interlayer spaces and upwards. This model is

consistent with surface area measurements and sorption isotherm data. It also gives a great deal

of information about the state of water and porosity at this scales. Wittman's 'Munich model'

[246] combines elements of the previous models, and focuses much on the state of the structural

water in spaces between particles, which was substantiated by relative humidity measurements.

But in all these early models, C-S-H is treated as a single phase (with some variability), and

no distinction between different types of C-S-H is made. Furthermore, none of these models is

conclusive on the link between microstructure and mechanical behavior of the material.

Two Types of C-S-H

Recent evidence suggest that calcium-silicate-hydrates, C-S-H, in cement based materials exist

in, at least, two different forms. First observations can be traced back to Taplin [224], who

attributed the two families to the inner and outer hydration products. Early indicative stud-

ies employed light microscopy of thin sections [65], which were later confirmed by means of

161



Classification 1I Reference

Outer Product - Inner Product I Taplin [224] , Richardson [198], Groves [105]
Middle Product - Late Product Scrivener [207], Taylor [226]

Phenograins - Groundmass Diamond and Bonen [68]
Low Density - High Density Jennings and Tennis [130, 227]

Table 4.5: Classification of the two morphological entities of C-S-H found in the open literature.

high resolution TEM of ground and redispersed material [105,65,196, 198], X-Ray mapping of

flat polished sections [225, 198], Neutron Scattering [229] and other techniques. These studies

provide clear evidence of the existence of two morphological entities of C-S-H. More recently,

based on a comprehensive analysis of disparate measurements of specific surface area of hcp

reported in the open literature, Jennings and Tennis [130, 227] proposed a colloidal model for

the two types of C-S-H, with identical chemical composition but distinct pore volume fractions

and geometry. The two types of C-S-H have been referred to in the literature as the C-S-H

portions of phenograins - groundmass [68], outer product - inner product [224], low density -

high density [130, 227], or middle product - late product [207, 226]. Table 4.5 summarizes the

different classifications of the two types of C-S-H.

Recent TEM images of Richardson [199] displayed in Fig. 4-4a-c show a distinct difference in

morphology of the two types of C-S-H. At lower magnification (Fig. 4-4d [82]) the two types of

C-S-H can be distinguished by differences in the gray scale exhibiting sharp propagation fronts

probably related to diffusion processes in the material that occur during hydration. From these

images it becomes apparent that:

" A clear, distinct border exists between the two types of C-S-H, which hints towards a

threshold in the physicochemical formation process.

" A distinct difference in morphology and packing density is evident (see magnifications of

the two types in Figures 4-4b and 4-4c).

" The regions the two types of C-S-H occupy extend over several micrometers in width.

While the existence of two types of C-S-H appears today as a well-established fact in cement

chemistry (see Tab. 4.5), little is known about their mechanical properties and their contribu-

tion to the overall macroscopic mechanical performance of cement-based materials. This will
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(d)

Figure 4-4: TEM (left) [ 199] and SEM (right) [82] images of Portland cement pastes. Image b

and c are magnification of the dense and loose parts of image a. The two significantly different

morphologies can be distinguished in all images of different magnifications.
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Figure 4-5: a) CH Stochiometry: A single layer of CH crystal structure (a = b 3.593 A;
c = 4.909 A) illustrating the 3.1 (= b x sin (60)) and 1.8 (= a/2) A repeat distances (from Ref.

[1991). b) SEM image of CH crystal found in a Portland cement paste of w/c = 0.5.

be one of the focus of Chapters 5, 6, and 10.

4.2.2 Calcium Hydroxide Crystals (CH)

Calcium hydroxide (CH) is often described by its mineral name Portlandite. It occupies 10-20%

of the solid volume in hcp, and appears to grow in regions initially occupied by water. In contrast

to C-S-H, CH is a compound with a definite stoichiometry (Fig. 4-5a). Under ideal conditions

of crystallization, it tends to form crystals with a distinctive hexagonal prism morphology

[226] (Fig. 4-5b). But as hydration proceeds, the main deposits of CH become massive and

of indeterminate shape, though the good cleavage persists. Actual crystal sizes vary from a

few micrometer to several hundreds micrometer, and depend on temperature, hydration time,

available space, and impurities present in the system [167]. TEM studies reveal that a small

proportion of CH in cement pastes, especially in the case of low w/c-ratio, is cryptocrystalline

and intimately mixed with the C-S-H [105]. Inclusions of CH at that scale were also identified

by decomposition and diffraction patterns [226].
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E [GPa] Poisson's Ratio v I Hardness [GPa] Method Reference

35.24 E [20]
48 E [247]
39.77 < E < 44.22 0.305 < v < 0.325 B [171]
36 + 3 1.35 ± 0.5 I [2]

38 ±5 1.20 ± 0.4 I [58,59,60]

Table 4.6: Elastic properties of Portlandite crystals found in the literature, E= Extrapolation,
B= Brillouin Spectrum, I= Indentation, .

Several experimental studies on the elastic behavior of CH are reported in the literature

(Tab. 4.6):

" Beaudoin [20] and Wittmann [247] measured the elastic modulus of CH compacts pressur-

ized to different levels to obtain specimens with different porosities. The elastic modulus

E of these compacts was obtained from three-point bending tests. The intrinsic modulus

of CH was found by extrapolating to zero porosity, log E versus porosity curves. . The

logarithmic relation between E and porosity shows a good fit in the range of porosi-

ties considered, however no theoretical argument support that the assumed relationship

should hold for low porosity values.

" Monteiro [171] used the elastic stiffness coefficients of CH, determined by the use of

Brillouin Light Spectrum 5 in the Voight-Reuss (V-R) and Hashin-Strikman (H-S) stiffness

bounds, to obtain the following range of elastic modulus and Poisson's ratio:

ECH = 39.77 - 44.89 GPa; VCH = 0.305 - 0.343 (V-R) (4.6)

ECH = 39.77 - 44.22 GPa; vCH = 0.305 - 0.325 (H-S) (4.7)

where ECH, VCH are the intrinsic elastic modulus and Poisson's ratio of CH crystals. By

intrinsic, we mean the elastic properties of the material at zero porosity.

* Acker [2] and Constantinides and Ulm [58,59,60] measured the elastic properties of CH by

performing indentations on large crystals found in the microstructure of cement pastes.

5 Measurements of the ultrasonic and hypersonic longitudinal velocities, on grown crystals and at different

directions, provide the stiffness coefficients.
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The elasticity data summarized in Tab. 4.6 show a fair amount of consistency, so that the

elastic properties of CH can be regarded as known. In contrast, very little is known about

the strength behavior of CH. The only information about strength comes from hardness mea-

surements performed by nanoindentation. The data of Acker [2] and Constantinides and Ulm

[58,59] agree at a hardness value of approximacely 1.2 - 1.35 GPa, which translates for a pure

cohesive material into a uniaxial strength of (see Section 2.3.1, Eq. (2.18)):

- 2.8 =430-48OMPa (4.8)

The relatively high strength of CH compared with typical strength values of hcp suggests that

CH crystals in hcp contribute to the overall strength behavior. However, large crystals with

distinct cleavage and small surface area are often sources of significant stress concentrations that

make CH a limiting contributor to the strength of hcp [180]. Finally, due to the high solubility

of CH, the presence of CH makes cement-based materials more vulnerable to chemical attack

(see e.g. Refs. [116,58]).

4.2.3 Minor compounds: Calcium Sulfates, Aluminates and Ferrites

Calcium sulfates, aluminates, and ferrites occupy approximately 15% of the solid volume in

the cement paste (Tab. 4.2). Their contribution to the macroscopic mechanical performance

is generally assumed to be limited. The influence of Ettringite becomes more significant for

mortars, because of the tendency of Ettringite to accumulate in the aggregate-cement paste in-

terface [164]. In fact, Ettringite, together with CH crystals, dominate the interface properties.

It should also be noted that in ordinary Portland cement paste, Ettringite eventually transforms

into monosulfate hydrate, C4 ASH 18 , which forms hexagonal, plate crystals. The characteristic

length scale of these compounds is in the range of 10-8In to 10-6 m [226]. Information in the

literature concerning the mechanical behavior of these compounds is scarce. The only informa-

tion we found were estimates of the elastic moduli (Bulk Modulus, K and Shear Modulus, G) of

Ettringite by extrapolating elastic measurements of 5 ompact specimens of different porosities

to a zero porosity value [256]:

K = 47.9 GPa; G = 19.9 GPa (4.9)
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which correspond to an elastic modulus of E = 52.4 GPa and a Poisson's ratio of v = 0.32. To

our knowledge, there is no information about the strength behavior of Ettringite.

4.2.4 Unhydrated Cement Grains: Clinker Phases

The proportional presence of unhydrated cement grains in hcp highly depends on the cement

particle size and duration of hydration. Some clinker grains can be found in hardened cementi-

tious systems even long after hydration. The amount of unhydrated cement is often expressed

by the degree of hydration defined as the percentage of current cement content, c (t), to the

initial cement content, co; = c (t) /co. The particle size of cement grains is anywhere between

1 to 50 pm, where 50 ptm is usually the maximum cement particle size in modern cements [4].

As the hydration proceeds, the smallest particles dissolve first, and the large ones gradually

start decreasing in size. Due to the limited space available, the hydration products tend to

crystallize in close proximity and often appear as a coating on the clinker grain. In addition,

since the hydration products occupy more space than the cement and water from which they

form, complete hydration cannot occur if the water-to-cement ratio (w/c) is below a certain

value. Powers and Brownyard demonstrated experimentally that a w/c-ratio of 0.426 is suf-

ficient to completely hydrate the cement in a mix [180]. For w/c < 0.42 there will always be

some cement left unhydrated in the system.

The mechanical properties of the clinker phases have only recently been measured [239,2].

Indentation tests on all clinker phases yield results about the elastic modulus and hardness

(Tab. 4.7). The measured elastic and hardness values are one to two orders of magnitude

higher than all other cement paste constituents. The clinker phases can therefore be considered

as a natural reinforcement to cement based materials. In fact, by reducing the w/c-ratio

a significant proportion of clinker phases (together with the enhancement of the mechanical

properties) remain in the system at no additional cost. The effect of clinker phases on the

mechanical properties of CBM will be further explored in following chapters.

6 At a w/c < 0.42 free access to water will tend to increase tha maximum possible degree of hydration.
Therefore, in cases of small cement paste samples, hydrated under saturated conditions (water curing) the
limiting w/c-ratio which impedes complete hydration might get to values as low as 0.38.
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Clinker Phases[ E (GPa] H [GPa] o-, [GPa]

C3S 135 ±7 8.7 ±1 3.1
C2 S 130 ±20 8.0 ±2 2.9
C3A 145 ± 10 10.8 ± 1.5 3.9
C4 AF 125 ± 25 9.5-± 3 3.4

Table 4.7: Mechanical properties of clinker phases reported in [239], [2]. The uniaxial strength
o-, for a cohesive (frictionless) material is determined from Eq. (2.18).

4.3 Pore and Water Phases in HCP

The porosity in cement based systems is probably the most important component in the mi-

crostructure. But rather than a single pore space and morphology, the pore structure of hcp

comes in a large variety manifesting itself over several orders of length scales. Indeed, a typical

pore size distribution shows an impressive range of porosities ranging from atomic diameters to

millimetric dimensions. It is worth recalling that the only porous material phase in the system

is the C-S-H gel. Therefore, the total porosity trapped in the system due to the initial mix

design (packing arrangement of particles and water) is either allocated in between or within

the C-S-H phase. The various types of pores are categorized in terms of their length scales (see

Fig. 4-6).

Interlayer Space and Gel Porosity in C-S-H

The porosity of C-S-H that results from the chemical formation of the C-S-H structure is often

referred to as gel-porosity (for colloidal interpretations) or interlayer space (for clay type/layered

interpretations). Traditionally, the porosity #0 has been determined from measuring the density

of saturated and oven dried C-S-H:

p* = 0 + p, (1 - 0 ) (4.10)

where p* is the specific mass density of saturated C-S-H, p, (1 - 0 ) is the specific mass density

of the oven-dried C-S-H, while p, is the specific mass density of the C-S-H solid phase occupying

the volume fraction 1 - #0 in the C-S-H. Depending on the C-S-H model (see Section 4.2.1)

different values for the gel porosity can be found in the literature. The interlayer space in

Powers model is 1.8 nm [194] and amounts to 00 = 28% of gel porosity in C-S-H. Feldman and
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Entrained Air due to
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Figure 4-6: Classification of the different pores that might be present to concrete according to

their size. The range of C-S-H particles and clusters is also indicated (adapted from Ref. [193]).
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Sereda [85] suggest that the interlayer space varies from 0.5 to 2.5 nm, but they do not provide

values for the porosity. Jennings and Tennis colloidal model of the two types of C-S-H [130, 227]

differentiates between the interlayer space and the gel porosity:

P*J = 0J+ Po (1 - 0J) + p, (I -PO) (1 - #j); J = LD, HD (4.11)

where p, = 2.8 is the specific density of the basic building block, i.e., the true C-S-H solid

phase, which mixes with a interlayer space porosity of 9o = 18% to form a globule-type building

block. This globule-type building block forms two different types of C-S-H, a low density C-S-H

characterized by a gel porosity of OLD = 37.3%; and a high density C-S-H phase characterized

by a gel porosity of 4 HD = 23.7%. There is general agreement that the amount of interlayer

porosity (and the saturating structural water) forms an integral part of the C-S-H solid and

that the void size is too small to have an adverse effect on the macroscopic mechanical behavior

of hcp. On the other hand, water in these small voids an be held by hydrogen bonding, and

its removal under certain conditions may contribute to drying shrinkage and creep [167].

Capillary Pores

Capillary voids represent the unfilled residues of the space between the cement grains. The total

volume of a cement-water mixture remains essentially unchanged during the hydration process

[180]. By contrast, the average bulk density of the hydration products is considerably lower

than the density of anhydrous Portland cement. Thus, cement hydration may be considered as

a process during which the space originally occupied by cement and water is replaced more and

more by the space filled with hydration products. The space not occupied by the cement or

the hydration products forms the capillary pore space.J-n contrast to the gel pores, this kind

of pore is large enough to be detected by SEM investigations. In well-hydrated, low w/c-ratio

pastes, the capillary void diameters may range from 10 to 100 nm. In high w/c-ratio pastes at

early ages of hydration, the capillary voids may be as large as 3 to 5 pm. In general, the volume

and size of the capillary voids is determined by the initial distance between the anhydrous

cement particles in the freshly mixed cement paste (i.e., w/c-ratio) and the degree of cement

hydration. From a mechanics point of view, it has been suggested that the pore size distribution,
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(a) (b)

Figure 4-7: (a) Air voids trapped during the mixing of a cement paste. (b) A magnification of

the larger pore. Cracks originating from the void circumference are evident.

not the total capillary porosity, is a better criterion for evaluating the characteristics of hcp

[167]. Due to the nature of their formation, capillary voids are generally irregular in shape. This

is in contrast with air voids (discussed below) which usually exhibit nearly perfect spherical

morphology (see Figs. 4-7a-b).

Air Voids

Air voids are usually attributed to improper vibration, i.e., entrapped air during mixing (as

large as 3 mm) or entrained air voids introduced with the aid of admixtures (10 to 200 [tm).

Both air voids types are much larger than the capillary space and may adversely affect the

mechanical properties of concrete, particularly the strength that shows a scale dependency

with the size of inhomogeneity [27]. Large voids are usually the sites of stress concentrations

and are inhibitors of fracture processes, limiting strength due to the localized phenomena taking

place on the circumference (Fig. 4-7b. This type of pore can be excluded by proper mix-design

and vibration during the cement paste preparation.

Diamond [69] noted that some of the pores present in cement paste are derived from the
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hollow shell (Hadley grain) hydration mechanism. Such pores represent a space that is rather

within than in between the original cement grains. This type of pore is associated with diffusion

processes, and is present in cement pastes of low w/c-ratios. From a mechanical point of view,

their influence is as detrimental as the other capillary pores and no distinction is made provided

that their volumetric proportions are included in the analysis.

4.4 Length Scales of Observation and Morphological Charac-

terization

In the preceding sections, we identified the different phases present in concrete and their struc-

ture. To complete the characterization, it is instructive to separate the different microstructural

features according to their length scales, and identify the morphological characteristics of the

constituents at the different scales [58,60]. This categorization has its origin in the separation

of scale principle of continuum micromechanics (see e.g., [218, 253]), to which we will come back

in later chapters of this thesis.

4.4.1 Level 0 (L = 10-10 - 10- 8 m): Single Colloidal Particle

At the nanometer scale, the elementary components of the different constituents are the pri-

mary building blocks of the different crystal or amorphous structures of the phases. Chemical

structures and morphological characteristics were described in Section 4.2.1. Much is known

about the atomic structures of the minor compounds CH, Ettringite and clinker phases, but

there is still an incomplete knowledge regarding the C-S-H phases. This is the level at which the

C/S-ratio gives indications about the crystal structure and the length of the silica chains of the

C-S-H sheets. Jennings [130] suggests that several sheets (of eventual layered structure) form

a colloidal particle of spherical dimension to which he refers as globules. The packing density

of the structural arrangement of C-S-H lamellae is very high, on the order of 1 - <po = 0.821 in

Jennings model, determined from the specific densities (see Tab. 4.8). The remaining interlayer

space forms an 18% nanoporosity, and the water filling this space is not a bulk water phase,

but probably structural water, as suggested in Wittmann's 'Munich' model [246]. Very little,

however, is known about the mechanical properties of the colloidal particles.
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LEVEL Density [kg/m'] Porosity [%] Mass Content [%]

0: C-S-H solid Psat Pary YO, fO
PO

Basic Building Block 2, 800 - - [131](a)

Globules 2, 480 2,300 18(b 18 [131](a)

I: C-S-H matrix

C-S-HLD 1, 930 1,440 37.3 ± 0.1(c) [131] (a)

C-S-HHD 2, 130 1, 750 23.7 ± 0.1(c) 3 8 (d) [131](a)

II: Cement paste

C3 S-Clinker 3,150 - -

C2 S-Clinker 3, 280 - -

C3 A-Clinker 3, 030 - -

C4 AF-Clinker 3, 730 - -

CH 2, 240 - -

III: Mortar
Sand 2, 650 - [116]

Table 4.8: Intrinsic properties of cement paste and mortar constituents I:
a Density values of C-S-H as predicted from the quantitative colloidal model of C-S-H by Jennings [28,29].
b Nanoporosity (intra-globular porosity) filled by structural water;

Gelporosity (inter-globular porosity) of low density and high density C-S-H (excludes nanoporosity);
d A m = change in mass content due to drying at 1050 C; includes structural water in nanoporosity and bulk
water in gelporosity.

4.4.2 Level I (L = 10-8 - 10- 7 m): C-S-H Gel Matrix

At a scale of tens to hundreds nanometer, colloidal particles ('globule') agglomerate around two

characteristic patterns with distinct packing arrangements. Their existence has been postulated

by many researchers; their pore volume has been quantified by Jennings and Tennis [130]; and

their mechanical behavior has been measured by Acker [2] and Constantinides and Ulm [58].

Jennings et al. [130, 131] postulate that the two types of C-S-H have the same solid building

block ('globule') and differ only in the packing modes of these fundamental building block.

Figure 4-8 displays the colloid model proposed by Jennings [130, 131], which provides elementary

dimensions of the C-S-H solid phase: a solid phase of a characteristic size of 5.6 x 10-9 m, which

includes the 18% intra-solid nanoporosity representative of the interlayer space within the C-

S-H. This solid phase together with gel porosity yields two characteristic forms of the C-S-H,

a low density form (LD C-S-H) and a high-density form (HD C-S-H). The difference between

the two C-S-H phases is the gel porosity, respectively the packing density: the LD C-S-H is
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characterized by a gelporosity of roughly OLD = 37%, and the HD C-S-H is characterized by a

gelporosity of roughly #HD = 24%. It is intriguing to note here that the corresponding packing

densities, 1 - OLD = 0.63 and 1 - kHD = 0.76, come very close to two maximum packing

densities of mono-sized spherical packing [128,209,71]: The packing density of LD C-S-H is of

striking similarity of the so-called random close packing (RCP) 7 of - 0.64, and the packing

density of HD C-S-H is of striking similarity of the highest possible density of ordered spheres,

known as the face-centered cubic lattice, of 7r/vT15 = 0.74 (see Appendix E). In all cases, the

order of magnitude of the packing densities seems to confirm Jenning's postulate that the two

types of C-S-H are composed of mono-sized building blocks of probably spherical dimension. It

will be one focus of our multiscale investigation to decode the mechanical significance of these

packing densities.

Furthermore, the dual packing arrangement of C-S-H appears to be consistent with the

formation process. Figure 4-9 shows the Powers and Brownyard model [194] in a slightly

modified form. Following the original model, immediately after mixing, the unhydrated cement

particles in a fresh paste are dispersed in an aqueous solution (Fig. 4-9(a)). During the first few

minutes, the reaction rate is very rapid, and C-S-H form a coating around the cement grains.

As hydration proceeds, hydration products including calcium hydroxide, precipitate from the

saturated solution in the capillary pores or spaces.

The C-S-H formed during this period appears to precipitate in a characteristic pattern with

uniform porosity (about 10 - 100 nm in size). They correspond to the outer product or LD

C-S-H. Any microcrystalline CH and minor compounds formed during this period is included

into the LD C-S-H structure. Since 1 cm 3 of cement produces 2.2 cm 3 of cement gel, about

half of the gel forms inside the original boundary of the cement grain, and half is deposited in

the surrounding water filled space. Eventually, bridging occurs between cement particles and

the paste stiffens into its final shape (Figs. 4-9(b) to 4-9(c)). Further hydration which involves

some complex diffusion processes, results in further deposition of cement gel at the expense of

unhydrated cement and capillary pore water. During this period, HD C-S-H is formed which

7 Donev et al. [71] remark that the random close packing (RCP) concept is ill-defined, because it may depend
on the packing protocol. They suggest instead to refer to the RCP packing density as the maximally random
jammed (MRJ) state, corresponding to the least ordered among all jammed packings. For a variety of order
metrics, it appears that the MRJ state has a density of 0.637 and is consistent with what has traditionally been
thought of as RCP
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LEVEL I:
C-S-H matrix < 10-6 m
Two types of C-S-H
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Courtesy: K. Scrivener

Figure 4-8: Jenning's colloid model of the two types of C-S-H [130,131].
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Figure 4-9: Evolution of cement paste microstructure with time: a) cement intially mixed with
water, b) LD CSH forms first as a rim around cement particles, until it percolates and stiffens

the matrix. c) Mature cement paste where LD CSH forms a matrix with cement inclusions and

HD CSH rims. Pore space that might not be filled br the hydration products remains in the

system (common for high w/c-ratios).
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appears to have a lower porosity and pore diameter (about 5 - 50 nm). It is apparent from

the current description that the characteristic patterns, and as a consequence the mechanical

performance of each C-S-H phase does not change either with the degree of hydration or with

the w/c-ratio. The only thing that changes is the volumetric proportions of the two types of

C-S-H, which appear to depend on the w/c-ratio and probably also on the cement particle

size. Recalling that a w/c-ratio of 0.42 is enough to cause complete hydration, we suggest:

" For w/c < 0.42, it is expected that both types of C-S-H coexist. In addition to unhydrated

cement particles, they form the cement paste at this scale.

" For 0.42 < w/c < 0.6, cement particles are completely consumed by hydration, the two

types of C-S-H are still present, and their relative proportions vary as a function of the

w/c-ratio.

" For w/c > 0.6, all C-S-H formed is LD C-S-H due to the large space available for the

hydration products to precipitate. In addition, a new group of pores appears, which grows

in volumetric proportions and probably in size with increasing w/c-ratio.

The proposed modified Powers and Brownyard [58] model is consistent with measurements of

pore size distribution [167] that suggest the presence of a pore group of 100 nm size irrespective

of the w/c-ratio: LD C-S-H gel porosity. On the other hand, measured degree of hydration

and surface area developments in time [130] show that the surface area curve tends to flatten

out during the last stages of hydration (Fig. 4-10), which suggests that this period is intimately

related to the formation of a low surface area compound: HD C-S-H. Finally, omitting large

pores (> 132 nm), a single pore-size distribution was found to characterize w/c > 0.6 cement-

based materials (Fig. 4-11, [167]). This provides strong evidence of a uniform microstructure

for all materials: LD C-S-H. In addition, it shows that the increase in total porosity in hcp

resulting from increasing w/c-ratios manifests itself in the form of larger pores only (see Fig.

4-11). For w/c-ratios less than 0.6,. the pore size distribution shifts to lower volumes, which is

a consequence of the varying volumetric proportions of the two types of C-S-H (see Fig. 4-11).
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Figure 4-10: Degree of reaction and rate of rpaction for a typical cement paste with w/c-ratio

of 0.4 (after [ 229]). It is obvious that after 12 to 14 hours the surface area cease to increase at

the same rate as the amount of reaction product suggests that the product form during that

period contributes little to the overall surface area.
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Figure 4-11: (a) Pore size distribution obtained by mercury porosimetry in hardened cement

pastes of different w/c-ratios [167]. (b) Pore size distribution of small pores in cement pastes

of varying water/cement ratios. Figure (a) replotted after ommiting the larger pores (> 132

nm) [ 167].
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4.4.3 Level II (L = 10-6 - 10- 4 M): Cement Paste

The structure and properties of cement paste at Level II and above are generally well ac-

cepted and understood. Due to the relatively large characteristic length scale of the different

inhomogeneities present at that scale, direct visual observation is possible by SEM and other

microscopy imaging techniques. Consequently, there is a high degree of consistency among the

different models proposed in the literature. It is generally agreed that the two types of C-S-H

from Level I form a homogeneous matrix that accommodates large Portlandite crystals, as well

as the residues of unhydrated cement clinker. Other phases potentially present at this scale,

include entrained air incorporated by the use of admixtures (i.e., for freeze-thawing protection),

capillary porosity (> 1pm) present for high w/c-ratio material systems, and so on. Level II can

be considered as representative of the macroscopic mechanical performance of cement pastes.

4.4.4 Level III (L = 10-3 _ 10- 2 M): Mortar-Concrete

At Level 111, sand particles contribute to the heterogeneous nature of mortar and concrete,

which is composed of three phases: a cement paste matrix (formed by the phases of Level

II), sand and aggregate inclusions, and surrounding interfacial transition zone (ITZ). Several

models have been proposed in the literature, which consider mortar as a two-phase material,

or three phase material ([152, 109, 90, 118], etc.). The porosity at this scale is assumed to be

incorporated into the different phases below (Level 0, I and II).

4.5 Volumetric Proportions

To complete this presentation of the microstructure of cement-based materials, a quantification

of the different hydration products is in order. We note in particular the models of Powers

and Brownyard [194] and the model of Jennings and Tennis [227], which we will use in later

developments of this thesis.

4.5.1 Powers-Brownyard Model

Based on 12 years of extensive research, Powers and Brownyard presented an empirical model

for the phase distribution in hardened cement paste. This model is a benchmark in cement re-
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search as it allowed the first quantitative calculations of the volumetric proportions in cement-

based materials. In the following years, Powers slightly modified his model to account for

self-dessication and water entrainment phenomena. In their 1948 paper, Powers and Brown-

yard ([194], see also presentation in Hansen [108]) provided the following empirical relations to

calculate the relative volumetric proportions of chemical shrinkage (Vc,), capillary pores (Vcp),

porous gel phase (Vgel), and unhydrated cement (Vci):

VC8 = 0.20 (1 - p) Chemical Shrinkage

VCP = p - 1.32 (1 - p) Capillary Pores
(4.12)

Vgei = 2.12(1 - p) Gel Pores

VC1 = (1 - p) (1 - () Unhydrated Cement

where is the degree of hydration, and p is the initial porosity, that is, the space initially

occupied by water:

w /c
P = / (4.13)

W /C + pW/pc

where pc = 3, 150 kg/ m3 , p, = 1, 000 kg/ m3 is the cement and water mass density, respectively.

Equations (4.12) provide the volumetric proportions of all constituents per volume of cement

paste, V. There is, however, a small percentage of chemical shrinkage that the material un-

dergoes during development and Eqs. (4.12) will therefore have to be normalized with respect

to the new volume, V - V,,. It is readily understood from Eqs. (4.12) that the two variables

controlling cement paste microstructure are the initial w/c-ratio and degree of hydration, .

Figure 4-12 shows the evolution of the volumetric proportions of the different constituents as a

function of the degree of hydration, , for a cement paste of w/c = 0.5. It is readily observed

that as the hydration progresses the volume of the residual clinker phases is consumed and

the amount of capillary pores is reduced (filled with hydration gel products). The degree of

hydration, however, is of primary importance for the early age development of the material but

it is generally accepted that after 28 days this hydration degree reaches an asymptotic value.

For most practical purposes (materials > 1 month old), it is therefore the initial w/c-ratio that

controls materials microstructure and eventually macroscopic mechanical performance. Finally,
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Figure 4-12: Volume fractions of cement paste constituents as a function of the degree of

hydration as predicted by the Powers-Brownyard model (w/c = 0.5).
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we note that in Powers-Brownyard model the gel phase is composed of 28% pores, (Vg,), and

82% solids, (Vgs):

Vgp = 0.60 (1 - p) Gel Pores (4.14)

Vgs = 1.52 (1 - p) Gel Solid

A final comment concerns the conditions under which Eqs. (4.12) were obtained: The specimens

from which the data was obtained were kept in sealed conditions, i.e., water was not allowed

to enter or leave the system. Under such conditions a phenomenon commonly referred to as

self-dessication takes place: water from the capillary pores is consumed, and as a consequence

the relative humidity inside the specimen drops and hydration is retarded. In cases in which

specimens are exposed to a permanent water supply (immersed in water), self-dessication is

minimal and Eqs. (4.12) should be modified accordingly.

In summary, the PB model is of great interest as it provides a simple quantification of the

volume fractions of the microstructure. However, it concentrates on the gel phase and does not

incorporate all the hydration products. In particular, cement composition is not specifically

considered and the model fails to distinguish between the two types of C-S-H phases.

4.5.2 Jennings-Tennis Model

The Jennings and Tennis model [227] aims to fill the gap left by the Powers-Brownyard model:

find volumetric proportions of all constituents. The basis of the model is that C-S-H forms as

one of two types, High- or Low-density C-S-H. Based on this concept, a microstructure for C-S-H

was proposed that is consistent with a series of experimental data (surface area measurements,

nitrogen sorption etc.) and provide a means of quantifying, through physical chemistry, the

volumetric proportions of each cement paste constituent (hydration products), including the

two types of C-S-H. The model assumes simple stoichiometric reactions for the hydration of

the four dominant compounds in Portland cement, C3 , C 2 S, C3 A, and C 4 AF (see Eq. (4.2)

and (4.5)). Given the composition of the cement and the water/cement ratio (w/c-ratio), the

governing chemical and kinetic equations provide a means of computing the quantity of the

various phases present in the microstructure at any given time:
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Vuc = C (1 - total) ()Unhydrated Cement

VCH = c (0.189 1pi + 0.058 2P2) Portlandite

VAFm = c (O.84 963P3 + 0.472 4 4 ) AFm
4

VC, = (1 - c) - cE ( ipiai) Capillary Pores (4.15a)
i=1

VCSH solid = c (0- 34 7 iPi + 0. 4 6 i1'2P2) C-S-H solid

VCSH pores = 0. 6 2 VCSH solid Gel Pores

Vtotal pores = VCSH pores + Vc, Total Porosity

where V. is the volume of the x (e.g., CH) in 1 g of paste; c is the initial weight of cement (in

grams) in 1 g of paste, c = -1w; j is the degree of hydration of reactant i and pi is the percent

of i in cement, where i = 1 represents values for C3 S, i = 2 for C2 S, i = 3 for C3A, i = 4

for C4 AF, PC is the cement mass density computed from a weighted average of the densities of

the compounds in the cement, and Ai is the volume change based upon the difference in solid

volume between the products and the reactants (using the stoichiometry of Eqs. (4.2) and (4.5)

and data in Tab. (4.9). The values calculated for these are A1 = 0.437cm 3 /g, A 2 = 0.503cm 3 /g,

A 3 = 0.397cm 3 /g, A 4 = 0.136cm 3 /g. The volumes of Eqs. (4.15a) have dimensions of volume

per mass of paste. Using the assumption of constant total volume, a conversion of values to

values with dimensions of volume per volume of paste can be made by dividing by the ratio

of V/D where V is the initial volume of the paste, V = + (1 - c), and D is the D-dried

weight of the paste, D = c + (0.24 c) .

In this model, the distribution of C-S-H into each type is determined by assuming that

the LD C-S-H is the only component of the microstructure that contributes appreciably to the

surface area as measured by nitrogen. Each type of C-S-H contains a specific amount of total

gel porosity: none of the pores in HD C-S-H are accessible to nitrogen, while only some of the

pores in LD C-S-H are accessible to nitrogen. Nitrogen adsorption data on D-dried samples is

used to calibrate the model and provide estimates of the formation of the two types of C-S-H.

This is achieved by introducing the ratio of the mass of LD C-S-H to the total mass of C-S-H:

Mr = SN2MD (4.16)
SLDMt
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Density Molecular Weight Molar Volume
Compound Formula [kg/m 3 ] [kg/mol] [xI0-5 m 3/mol]
Alite C3S 3150 0.228 7.24
Belite C2S 3280 0.172 5.24
Aluminate C3A 3030 0.270 8.92
Ferrite C4AF 3730 0.486 13.03
Water H20 1000 0.018 1.80
Gypsum SCH2  2320 0.172 7.41
Calcium Hydroxide CH 2242 0.074 3.31
AFm, saturated C4ASH 12  1990 0.658 34.6
AFm, D-dried C4ASH 8  2400 0.550 22.9
C-S-H, saturated C3.4S2H8  1770 0.455 25.9
C-S-H, D-dried C3.4S2H3 2300 0.365 12.8

Table 4.9: Values used in the J-T model for
each constituents, from Ref. [227].

the calculations of the volumetric proportions of

where SN 2 is the specific surface area of the dried paste (determined from nitrogen sorption

isotherms), MD is the mass of dried paste, SLD is the surface area per gram of D-dried LD C-S-

H (which is not independently measurable), and Mt is the total mass of C-S-H. Using multiple

linear regression, an equation for Mr is obtained [227] that is applied to other data:

w
Mr = 3.017w - 1.3476 + 0.538

C
(4.17)

where w/c is the water/cement ratio and is the degree of hydration. Once the mass ratio is

calculated, via Eq. (4.17), the volume of HD C-S-H is given by:

Mt (1 - Mr)
PHD

(4.18)

and the volume of LD C-S-H by:

VTD = Mr Mt (4.19)
PLD

where p, is the density of x = LD, HD, and Mt is the total mass of C-S-H. The additional

volume Vp of pores in LD C-S-H is given by:

(4.20)VP =VLD - MrMt
PHD
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The variables remaining to be determined are PHD, PLD and SLD- Values obtained after optimiz-

ing the model are proposed in Ref. [227]: For saturated specimens, pyt = 2130 kg/m 3 ,p,,t

1930 kg/M 3 , and for dry specimens pdj4 = 1750 kg/M 3 , pd = 1440 kg/M 3 , SLD = 247 m 2 /g.

Given these values and relations (4.16)-(4.20) one can quantify the relative proportions of LD

to HD C-S-H present in a given cement paste system as a function of the degree of hydration,

(, and the initial w/c-ratio.

4.6 Chapter Summary: Four-Level Microstructural Think Model

of Cement-Based Materials

Is it possible to link the mechanical behavior of cement-based materials to composition and

structure, and identify fundamental units of material invariant properties (the mechanical 'blue-

print')? - This is the overarching theme of this part of the thesis devoted to cement-based ma-

terials. As a starting point, we have divided the heterogeneous microstructure of cement-based

materials into different levels of material observation representing characteristic microstruc-

tural features of this multi-scale and multi-phase natural composite material (see also Refs.

[58,60,235]). We owe this approach to the theory of continuum micromechanics (see e.g.,

[218, 253]). A phase, in the sense of continuum micromechanics, is not necessarily a chemi-

cal phase as in physical chemistry, but rather a material domain characterized by a distinct

morphology and (on-average) constant mechanical properties. Such phases in heterogeneous

materials are referred to as micro-homogeneous phases. We apply and adopt this approach for

the multi-phase and multi-scale heterogeneities present in cement-based materials. The result of

this endeavor is the four-level microstructural think model of cement-based materials displayed

in Fig. 4-13, which summarizes the elements developed in Sections 4.1-4.4. Each level in this

representation is separated from the next one by at least one order of length scale, reflecting

the separation of length scale assumption required to defile a representative elementary volume

(R.E.V.). Hence, moving from one level to the another is expected to change the observable

material behavior.

The lowest level we consider is Level 0 representing a single particle of C-S-H of a char-

acteristic length-scale on the order of 10-8 m, which-we associate with a micro-homogeneous
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C-S-H solid phase, - the globule in terms of Jennings colloidal model [130]. At a level still below

constituting the atomic scale (see Section 4.2.1), this solid phase is composed of highly packed

minerals with imperfections and irregularities and interlayer space amounting to a nanoporosity

of o = 18%. There is still a lack, of knowledge about the organizational pattern of the miner-

als, and in particular how the stoichiometry of C-S-H, imperfections thereto and the physical

state of water in the interlayer space translate into a characteristic sheet packing density of

1 - o = 0.82. At this stage of knowledge available, it can only be speculated that the rela-

tively high density value at Level 0, which is well above the highest possible density of ordered

spheres (7r/vY/I = 0.74, [209]), and recently found random packing limits of ellipsoids of the

same order [71], hints towards an important role of the structural water in the organization of

the single C-S-H particle. Some very recent studies using molecular dynamics simulations [101]

and AFM investigations [150, 133] provide first indications about the very nature of the solid

phase at this scale and will be further discussed in Chapter 8. Research into the mechanical

behavior of the material at nanometer scale is still in its infancy, and requires no-doubt detailed

knowledge of the stoichiometric nature of C-S-H and the state of the water filling the interlayer

space. Advances in experimentation coupled with model-based simulations based on molecular

dynamics and quantum mechanics are expected, in the close future, to shed light on the physics

at stake at this scale. Given the current state of knowledge, we restrict ourselves to the single

C-S-H globule, considering that the minerals and structural water form a micro-homogeneous

phase in the sense of continuum micromechanics.

Level I is the scale of agglomeration of C-S-H globules in two distinct packing morphologies,

LD C-S-H and HD C-S-H. We will discuss in Chapter 5 why and how the mechanical properties

of the material at this scale can be assessed by nanoindentation. From Jennings model, we

retain the striking similarity of the packing densities of LD C-S-H and HD C-S-H with maximum

packing densities of mono-sized spherical systems (see Section 4.4.2). The packing modes may

not necessarily be of a spherical nature, but it appears as the simplest think model that can

capture an amorphous structure of the two types of C-S-H at the considered scale while being

consistent with porosity and surface measurements and pore size distributions. The two packing

densities should, however, not be seen as deterministic packing morphologies, in the sense that

C-S-H globules agglomerate only in one or the other form; but rather that C-S-H globules
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organize in a large variety of packing densities varying from random to ordered. Hence, the

two packing morphologies have a statistical meaning and are representative, in the sense of

micro-homogeneous phases, of a characteristic distribution of C-S-H phases in a low-density

and a high-density form. While the chemo-physical origin of these packing densities is still not

known, it can be (and has been) speculated that they are of chemical origin, or more precisely

of kinetic origin reflecting the precipitation of the hydration products in an unconfined vs. a

confined space. If this holds true, the relative occurrence of one or the other packing should be

affected by hydration conditions, particularly the w/c- ratio and environmental conditions.

The two types of C-S-H, CH crystals, capillary porosity and residual clinker phases in low

w/c- materials form the cement paste at Level II, which is recognized as a highly heteroge-

neous material system, and which varies in functions of the properties and proportions of its

components, and in particular of the C-S-H. This composite forms the binding matrix for all

cementitious systems, mortar and concrete which manifest themselves on Level III.

It is on the basis of this four-level think model of the microstructure of cement-based ma-

terials that we can now turn to the experimental investigation of the mechanical behavior of

the materials at multiple scales, aiming at identifying fundamental units of material invariant

stiffness and strength properties.
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Figure 4-13: Four-level microstructural schematic of cement-based materials: Level 0 = Single

particle, Level I = Agglomeration, Level II = Cement Paste, Level III = Mortar/Concrete.

Image Credits: Level 0 = from Ref. [130]. Level I = from Ref. [183], Level II = courtesy of

K.Scrivener, Level III = from NIST website [http://www.bfrl.nist.gov/].
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Chapter 5

Indentation on Multi-phase

Composites: Grid Indentation

Technique

Is it possible to apply continuum indentationa analysis to heterogeneous materials and, if so,

how? The indentation analysis presented in Chapter 2 is restricted to homogeneous material

systems. In contrast, as we have seen in Chapter 4, cement-based materials like most other

natural solids are multi-phase and multi-scale composites with heterogeneities that manifest

themselves from the scale of the C-S-H phases to the macroscopic scale of the mortar-concrete

composite. This particular feature of natural composites makes the application of continuum

indentation analysis questionable. In this chapter we propose an original way of extending the

indentation analysis techniques to multi-scale composites. In particular we present a grid inden-

tation technique that under certain restrictions can provide both quantitative and qualitative

information about microstructure and properti.es of the indented composite material. The large

amount of data is treated in a statistical sense: (1) astatistical analysis of the results gives

access to the mechanical properties and volumetric proportions of all involved phases, whereas

(2) a spatial representation of the mechanical properties measurements provides information

about the morphological arrangement of different phases. This is illustrated here for Berkovich

indentation in a model multiphase material: hardened cement paste.
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5.1 Choosing a Length Scale: Thin-Film Analogy

Instrumented indentation is becoming a standardized test for the evaluation of mechanical

properties of materials (see Chapter 2), yet its potential for and application to composite

material systems has been largely neglected. A search in the literature on indentation on

composite materials yielded only two very recent publications [77, 139], signifying the absence

of knowledge in this field. This is not surprising, given the complexity of the mechanical

response of a material system when microstructure interferes with indentation testing (see Fig.

5-1), which makes it difficult to translate - by means of the tools of continuum indentation

analysis - indentation data into meaningful mechanical properties. In what follows, we propose

a way that reduces by design this complexity by a careful choice of indentation length scales

which allows one to apply the tools of continuum indentation analysis.

5.1.1 Indentation Length Scales

Continuum indentation analysis is generally based on the assumption of homogeneity of material

properties and that the stress-strain relation remains the same for any depth of indentation

[30]. Like all continuum analyses, continuum indentation analysis is based on the concept of

a representative elementary volume (R.E.V.) of characteristic size £ that needs to obey to the

scale separability condition:

d < L < (h, a, D) (5.1)

where (h, a) is the indentation depth and the indentation radius that define the order of mag-

nitude of the variation of the position vector x; D is a characteristic length scale of the mi-

crostructure and d is the characteristic size of the (largest) heterogeneity contained in the R.E.V.

Provided that Eq. (5.1) is satisfied, an indentation test operated to an indentation depth h

gives access to the material properties that are characteristic of a material system at a length

scale of C (see Fig. 5-1). On the other hand, since most indentation solutions are based on

the similarity approach, and derived from the infinite half-space model (which by definition has

no length scale), and from the assumption of uniform material properties (see Section 2.2), the

properties extracted - by means of an inverse analysis - from indentation tests are averaged

quantities characteristic of a material length scale defined by the indentation depth or the in-
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Figure 5-1: Geometrical and material length scales involved in indentation on composites.

dentation radius. A good estimate is that the characteristic size of the material domain sensed

by an indentation is on the order of max (h, a); roughly 3h for Berkovich indentation and h

for the corner cube. Given the self-similarity of the indentation test, choosing the indentation

depth, therefore, comes to choose the length scale of material investigation. One question that

arises is what happens when the length scale of the microstructure D is on the order of the

indentation depth h, i.e., when microstructure interferes with indentation testing, for which the

classical tools of continuum indentation analysis fail to apply.
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5.1.2 Phase Properties: h << D

What we aim to derive is a critical indentation depth below which the effect of microstructure

does not interfere significantly with the indentation results, so that an indentation test per-

formed to such a depth gives access to the intrinsic properties of the material composing the

microstructure rather than to the microstructure itself. The simplest geometrical representation

of a heterogeneous particulate system is a layered system, which turns out to be also the most

severe one among other possible configurations [77]. Such layered systems have been investi-

gated in some detail in the context of indentation on thin films, one of the most popular current

applications of nanoindentation. In the case of this thin-film analogy, we equate film thickness,

t, with the characteristic length scale of the microstructure D in (5.1), and explore thin film

indentation models to identify a critical indentation depth below which one actually measures

the properties of the homogeneous phase, i.e., the film stiffness Ef and the film hardness Hf.

The majority of models for thin film indentation rely on phenomenological arguments or

finite element simulations and tend to relate the composite modulus, Eeff, to the elastic moduli

of the film, Ef, and the substrate materials, E,:

Eef f = Ef + (Ef - Es)TM (5.2)

where IM is a weight function that depends on the indentation depth-to-film thickness ratio,

h/t. In fact, as _T -+ 0 the effect of the substrate is eliminated and Eeff -+ Ef. Several

models have been proposed in the literature to estimate IM and quantify the effect of the

substrate on the composite response: By using the Hankel's transform method, Li and Chou

[155] calculated the Green's function for a coated substrate and evaluated the displacement,

stress field and load-indentation depth relation of the thin-film/substrate system under an axi-

symmetrically distributed loading on the plane surface of the film. King [137] studied the effect

of the substrate on the global response using finite element simulations, whereas Gao et al. [94]

devised a first order rigorous moduli-perturbation method to derive a closed-form solution for

the contact compliance of an uncracked film/substrate medium:

2a ( [ - ) ( + ( )
M~ tan-- + (1 - 2v) -In 2 _ [27r(1 - v)]4 (5.3)

7r a a (L) 2
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In this approach which is based on a perturbation caldiilation of the elastic energy of a coated

substrate indented with a flat punch of raHitis a, the assumption is made that the mechanical

properties of both materials do not differ widely. The model was validated by Chen and Vlassak

[43] by means of finite element analysis, showing that the model is correct for moduli mismatch

ratio in the range 0.5 - 2. On the other hand, the weight function suggested by Gao et al.

[94] was found to overestimate the substrate effect when the film is stiffer than the substrate

and that the substrate influence is underestimated if the film is more compliant. Yu et al.

[252] have considered the elastic solution of an axi-symmetric mixed boundary value problem.

An elastic layer is assumed to be either in frictionless contact or perfectly bonded to a semi-

infinite elastic half-space. In this work spherical, conical and flat-ended cylindrical indenters

were considered. The results are obtained by solving a Fredholm integral equation of the second

kind with a continuous symmetrical kernel which depends on the bonding conditions. With the

aid of finite element calculations, Chen and Vlassak [43] compared the theoretical results of

Yu et al. [252] with numerical results and showed very good agreement. Perriot and Barthel

[190] proposed a method relying on the work by Li and Chou [155], in which they calculated

the Green's function for a coated substrate. Since Li and Chou's stress/strain relation could

not be inverted, it is of little use for contact problems. Using the auxiliary fields introduced by

Sneddon, however, Perriot and Barthel have reformulated Li and Chou's expression to allow

the problem to be inverted at low numerical cost. They have found that, whatever the indenter

shape, all curves almost have the same shape, regardless of the moduli mismatch between the

layer and the substrate. This shape is very much like that provided by Gao et al. [94], and is in

very good agreement for the moduli mismatch ratio in the range 0.5 - 2. Perriot and Barthel

have empirically extended Gao's function of Eq. (5.3) to a wider range of moduli mismatch

ratio (Ef /E, = 0.01 - 100):

I =B [I+ Ik (5.4a)

where a is the contact radius, n is an empirical constant (n = 1.27) and k is defined by:

log(k) = -0.093 + 0.792 log 0.05 (log ( ))(5.5)

Equations (5.2) to (5.5) show a fair degree of consistency and suggest that substrate effects are
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negligible for stiffness mismatch ratio Ef/E E [0.01, 10] as long as the indentation depth h is

smaller or equal to 10% of the film thickness t. This is also illustrated in Fig. 5-2 in which the

critical h/t-ratio for which the error in the modulus estimation does not exceed 10% is plotted

against the moduli mismatch ratio Ef/Es.

Similar concepts have been extended to hardness. Buckle [38] proposed that the hardness

of a composite system, Heff, could be expressed as:

He! = Hs + (Hf - Hs) IH (5.6)

where 1H is an empirical parameter. Estimates for this parameter have been provided by

several researchers: Bhattacharaya and Nix [25] proposed estimates on the basis of finite element

simulations which discriminate between hard-on-soft, and soft-on-hard systems:

Soft-on-Hard: TH = exp L (h)) (5.7a)
(_Y Es t

Hard-on-Soft: II = exp Hf Yf h (5.7b)
Hs Y Es t

where Yf and Y, stand for the uniaxial strength of the material. It is readily understood that

substrate effects become negligible as IH -- 1 (or j --+ 0). To obtain an order of magnitude

of this effect, we calculated the critical h/t-ratio for which the Heff is within 10% of the film

hardness, Hf. In calculating (h/t)l0 % we assumed that there is no moduli mismatch between

the two phases, Ef = E, and that the hardness ratio equals the ratio of the yield strengths1 .

Figure 5-2 shows the critical values of h/t calculated from relations 5.6 and 5.7a as a function

of Hf/Hs. Several things become apparent:

* As the contrast between the substrate-film properties becomes significant, the restrictions

on the indentation depth required to get good estimates of the film properties become

more stringent. This is especially true for hard-on-soft systems for which the h/t relation

seems to evolve much faster with the hardness ratio Hf/Hs. A similar trend is found for

the stiffness.

'For cohesive materials where the hardness is directly proportional to the yield strength this assumption holds
in fact true. For cohesive-frictional materials however some deviation may exist.
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11 Aspect Ratio ac/rp, h/tp
Case (height/diameter) Hard/Soft Soft/Hard

Particle 1.0 0.8 0.7
Needle 5.0 1.3 0.65

Thin Film 0.05 0.25 1.1

Table 5.1: Normalized contact radius or depth up to which an effect in hardness of less than
10% is measured for different particle geometries. Finite element results from [77].

e In calculating the results in Fig. 5-2, we assumed that the elastic modulus of the two

phases is the same. A look on Eq. (5.7a) suggests that any mismatch in the elastic moduli

will tend to alleviate the restriction on the allowable indentation depth.

The above models have been developed for a very specific geometric arrangement, the thin

film, but they are generally considered to be a very good first order approximation for more

general substrate systems. The only available information for particulate systems in the liter-

ature is a finite element study by Durst et al. [77] who performed numerical investigations for

overlaying-substrate systems having a yield strength ratIo of 0.5 - 2. The different geometries

considered in their analysis are shown in Fig. 5-3 and the finite element simulations results are

displayed in Fig. 5-4. Table 5.1 summarizes the ratios of the length scales for which continuum

indentation analysis can be applied without any significant deviation. It appears that the thin

film geometry yields the most strict restrictions on the depth of indentation and, therefore, use

of the thin-film analogy to define a critical indentation depth with respect to the size of the

heterogeneity seems to be a conservative choice.

In summary, in order to apply continuum indentation analysis to heterogeneous systems,

the indentation depth should be at most 1/10 of the characteristic size of the microstructure

D in order to access phase properties. This rule of thumb, also known as 1/10-rule of Buckle

[38], is a rough first estimate and in cases where the contrast between the mechanical properties

of the two phases becomes significant (( -, f-) [0.01,10]), the method tends to be either

too strict (like soft films on hard substrates) or too relaxed (hard films on soft substrates). In

all cases, at higher indentation depths, the indentation response interferes with microstructure,

and special care should be taken in the interpretatioA of the indentation results.
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Figure 5-2: (a) Critical h/D-ratio vs. Ef/E, as predicted by Perriot and Barthel [190] for

which the composite modulus, Eqff, is within 10% of the film modulus, Ef. (b) Critical

h/D-ratio vs. Hf/H, as predicted by Bhattacharaya and Nix [25] for which the composite

hardness, Heff, is within 10% of the film hardness, Hf.
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Figure 5-3: Geometries considered in the simulations of Durst et al., adapted from Ref. [77].

5.1.3 Composite Properties: h > D

To complete the thin film analogy, it is useful to provide an estimate for the indentation depth

that gives access to composite properties. The finite eiement simulations of Durst et al. [77]

(see Fig. 5-4) suggest that the response reaches an asymptotic values for a/t > 2. Equating t

with D, it is possible to estimate that an indentation depth operated to h > 2D cot 0 (with 0 the

equivalent semi-apex angle; see Tab. 2.1) should give access to composite material properties.

Hence, it is in between the two limit cases, 0.01 < h/D < 2 cot 0 that microstructure is expected

to strongly affect the indentation response on heterogeneous materials.

5.2 Grid Indentation Technique

5.2.1 Gedanken Experiment

Consider a material to be composed of two phases of different mechanical properties and charac-

terized by a length scale D. If the indentation depth is much smaller than the characteristic size

of the phases, h < D (Section 5.1.2) then a single indentation test gives access to the material

properties of either phase 1 or phase 2. If, in addition, a large number of tests (N > 1) is

carried out on a grid (Fig. 5-5) defined by a grid spacing f that is larger than the characteristic

size of the indentation impression, so to avoid interference in between individual indentation

tests, and much larger than the characteristic size of the two phases (NvN > D), so that the
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Figure 5-4: Finite element simulation results of Durst et al. [77] for the indentation behaviour

of soft and hard particles for three different geometrical arrangements. a) Cylindrical Particle:

Normallized hardness HFEM/Hp for soft and hard particles (ratio of yield strength is 2 (0.5))

as a function of normalized contact radius. b) Needle Shape: Normallized hardness HFEM/Hp
for soft and hard particles (aspect ratio 1.0) as a function of normalized contact radius. c)

Thin film: Normallized hardness HFEM/Hp for soft and hard particles (aspect ratio 0.05) as a

function of normalized contact radius.
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((C)

(a) (b)

Figure 5-5: Optical microscope images of a 10 x 10 indentation grid: (a) example of microin-

dentation grid ; (b) and (c) residual impressions on a cement paste (magnification x100).

locus of indentation has no statistical bias with respect to the spatial distribution of the two

phases, the probability of encountering one or the other phase is equal to the surface fraction

occupied by the two phases near the indentation surface. Provided that a similar distribution

is found equally on other surfaces, the local or near-surface volume fraction can be assimilated

with the volume fraction of the two phases present in the (isotropic) material. Consider next

an indentation test performed to a maximum indentation depth that is much larger than the

characteristic size of the individual phases, h >> D (Section 5.1.3). It is readily understood, by

letting D = d in the scale separability condition of Eq. (5.1), that the properties extracted from

such an indentation test are representative in a statistical sense of the average properties of the

composite material.

The simple gedanken experiment has all the ingredients of statistical indentation analysis

that need to be performed when it comes to natural composite materials. The key results of
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such analysis are distributions and their derivatives (i.e., histograms or frequency diagrams) of

mechanical properties determined by a large number of indentation tests at a specific scale of

material observation defined by the indentation depth. Generally speaking, small indentation

depths (h < 0.1 D) give access to mechanical phase properties, and potentially to volume

fractions:
Ni n

N ; Nj=N (5.8)
J=1

where Nj is the number of indentations on material phase J, that can be identified by the

difference in material properties; that is fj is the volume fraction of a 'mechanically' identifiable

material phase. In turn, greater indentation depths (h > 2D cot 0) give access to homogenized

material properties of the composite. The principle is displayed in Fig. 5-6. Finally, a mapping

of mechanical properties allows one to identify characteristic morphologies within the resolution

defined by the grid size.

5.2.2 Deconvolution Technique

The simple gedanken experiment is based on the premise that the two phases have two properties

of sufficient contrast which makes it possible to easily separate one phase from the other in small

scale indentation tests. Natural composite materials are generally more complex, requiring the

use of some elementary statistical relations to analyze the indentation data. Let us assume that

the distribution of the mechanical property x = H, M of each phase J is best approximated by

the normal or Gaussian distribution:

pj (x) = exp (X LL2) (5.9)
2rs2 2sg

where the mean [j is the arithmetic mean of all Nj values of each phase, while the standard

deviation, sj, or the root mean square deviation, is a measure of the dispersion of these values:

1 Nj
IJ -E ks Nrl1- (k bj 2  (5.10)

.ik=1 Ni-k=1

The case of a single phase, n = 1, corresponds to the case of a homogenous material, for which

mean value and standard deviation describe the properties of the material in a statistical sense.
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Figure 5-6: Schematic of the principle of the proposed grid-indentation technique for heteroge-
neous materials. Bottom: At low indentation depths (h << d) the individual constituents can

be identified giving rise to multimode ditributions. Top: At high indentation depths (h >> d)

the properties of a homogenized medium is obtained.
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In the case of several phases (J = 1, n), that all follow a normal distribution, and which do not

(mechanically) interact with each other, the overall frequency distribution of the mechanical

property x = H, M obeys to the following theoretical probability density function:

n

P (x) = Zfpj (x) (5.11)
J=1

where fj is the volume fraction of phase J subjected to the constraint:

Zf =1 (5.12)
J=1

Hence, there is a total of 3n - 1 unknowns in the problem (5.11); (fj, 1aj, sj) for each phase

reduced by the compatibility condition state in Eq. (5.12). If empirical frequency densities are

obtained by nanoindentation in form of discrete values P', one can determine the unknowns by

minimizing the standard error:
m (Pi - P (xi)) 2

min M (5.13)
i=1

where P' is the observed value of the experimental frequency density, P (xi) = Z'1 f. Pi (Xi)

is the value of the theoretical probability density function (5.11) at point xi, and m is the

number of intervals (bins) chosen to construct the histogram (see Tab. 5.2). The number of

observed values P' should exceed the number of unknowns, and will obviously be smaller than

the total number of tests; hence:

3n - 1 < m < N (5.14)

5.2.3 Discussion

In the application of the deconvolution technique to natural composites, the number of phases n

is generally known in advance. Indeed, in small scale indentation (h < D), n is determined by

the number of distinct chemical phases (identified e.g. by XRD analyses) and/or morphological

units (identified, e.g., by microscopy) that compose the microstructure. In turn, large scale

indentation (h > D) for which n = 1 represents the composite phase.

It is useful to have a closer look on the two key assumptions of the proposed deconvolution
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Histogram and Frequency Distribution

The histogram is a graphic interpretation of the variability of experimental information.
For a specific set of experimental data the histogram is constructed as follows:
From the observed experimental data we choose g range on the abscissa (for a 2-d graph)
sufficient to include the largest and smallest observed values (range of data), and
divide this range into convenient number (m) of intivals (bins). Then count the
number of observations within each interval and draw vertical bars with heights
representing the number of observations in the respective intervals. Alternatively the
heights of the bars may be expressed in terms of the fraction of the total number of
observations in each interval. The experimental discrete frequency distribution (Pi) is
then obtained by dividing the ordinates of the histogram by its total area.
A question arises about chosen number of intervals and the corresponding bin size.
Truth is that the choice of interval number will change the shape of the frequency plot.
Generally speaking the number of intervals should be larger than the number of unknowns,
3n - 1, restricted of course by the total number of tests (N); hence 3n - 1 < m < N.
A small number of intervals will lead to a significant loss of information, whereas a large
number to intervals (compared to the number of tests) will lead to artifacts with misleading
information.

Table 5.2: Histogram and discrete frequency distribution.

technique:

1. The mechanical phase properties of each phase are normal distributed. For n = 1 (homo-

geneous system), this assumption can be checked easily using the Chi-square test (see e.g.

[7]). Considering a sample of N measurements for a given random variable, the X2 -test

compares the observed frequencies pl, p 2 p 3  pm in m intervals with the correspond-

ing frequencies P (x 1) , P (x 2 ) , P (X3) , --P (Xm) from an assumed theoretical distribution:

(pp(X)) 2 (5.15)

i=1 P(xi)

which approaches the X2 -distribution withf =.m -1 degrees of freedom as N - oo. On

this basis if an assumed distribution yields for a given set of data:

m (pi - p (Xi)) 2< -aJ(16
P ( <Cla,f (5.16)

where cla,f is the value of the appropriate X2 -distribution at the cumulative probability
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1 - a, the assumed probability distribution is an acceptable model at the significance level

a. By way of illustration, Fig. 5-7 displays the X2-test for a Gaussian distribution of the

Berkovich indentation results of bulk metallic glass (see Chapter 3) at a significance level

of 5%, using a commercial statistical software, Crystal BallTM. Strictly speaking, other

distributions (like the log-normal) showed a better fit to our data but the choice of the

normal distribution was driven by mathematical tractability and convenience. The normal

distribution will therefore serve in the rest of this thesis as the preferred probability density

function describing the random variability of our experimental data. For a multiphase

system, n > 1, the assumption of Gaussian distribution is simply the most convenient

distribution for deconvolution purposes of the indentation data. In this case, a X2 -test,

because of the minimization (5.13), provides a means to quantify the quality of the fit of

the unknowns of the problem, (fj, pjj, sj) ; J = 1, n; but it would probably fail to validate

the assumed normal distribution of phase properties. For all practical purposes, it is

convenient to fit the observed frequencies P (i = 1, m) successively from "left to right",

starting with the phase with the smallest mean, and introducing successively the phases

with higher means to minimize the standard error (5.13). While we are not aware of a

mathematical proof for the uniqueness of this left-to-right fitting, the procedure turns out

to work very well, converging to a specific set of fitted values, (fj, puj sj) ; J = 1, n, which

we consider as phase properties.

2. The interaction between different phases that are sensed in indentation testing is negligible.

We have seen in Section 5.1.2, from the thin-film analogy, that the effect of mechanical

interactions between different phases can be reduced by a careful choice of the indenta-

tion depth, h/D < 1/10. Of course, in highly heterogeneous materials, it is difficult to

completely avoid mechanical interaction between different phases in indentation on mul-

tiphase systems. For instance, the indentation response in a matrix phase adjacent to

an inclusion will be affected by boundary effects, and even more so indentation on a stiff

inclusion on a softer matrix (the 'hard-on-soft' scenario in Figs. 5-2 and 5-4) will always

be more compliant then the inclusion. On the other hand, provided that a large number of

tests is carried out, which respect on-average the 1/10-rule-of-thumb, the probability of

identifying in-situ phase properties is very high. A similar remark can be made regarding
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Figure 5-7: Frequency diagrams and the corresponding normal distributions for the inden-

tation modulus (a) and hardnes (b) measurements of Berkovich indentations on BMG. The

goodness-of-fit tests of chi-square test (x2) and Kolmogorov-Smirnov (K-S) was performed us-

ing a statistical software, Crystal Ball.

206

~1

.260

.195

.130

0. .065

.000

---------------------.

--------------------

------------------

-- ---- -- -- -- ---- --- - -- -- -- -- -- --- ---- -- -- ---- --- -

----- -- -- -- -- -- -- ---- --- ---- ----- ----- -- -- -------

---- -- --- -- -- -- ----- ------------ -- - ----- -- - -- -

(I



large-scale indentation tests h/D > 1 , in which the effects of microstructure cannot be

avoided over the entire P - h indentation response. Indeed, since h increases continuously

from 0 to hma, one cannot exclude indentation depths that violate the h/D > 1 scale

separability condition. On the other hand, provided that hmax/D > 1 (or more precisely

hmax/D > 2 cot 0), it is reasonable to assume that the final properties Pmax and hmax do

not depend much on the nature of the first indented heterogeneities, the bluntness of the

indenter, surface roughness, etc. The derived indentation data at maximum indentation

depth hmax, namely Pmax and Smax, can therefore be used with confidence in continuum

indentation analysis of the composite behavior.

A validation of the proposed grid indentation technique on a model material (Ti-TiB) is

outlined in Appendix D.

5.3 Application of Grid Indentation to Natural Composites:

Cement Paste

The grid indentation technique presented in Section 5.2 is very general and can be applied to any

composite material whether man-made., geological or biological, satisfying the two key assump-

tions: (1) normal distribution of individual phases and (2) negligible mechanical interaction

between different phases in indentation testing. The purpose of this section is to demonstrate

the use, strength and limitations of this approach through an application to a challenging multi-

phase and multiscale composite: hardened cement paste. The highly heterogeneous structure of

cement paste, which is the main binding matrix of all cementitious composites, was discussed

in Chapter 4. It is the premise of the proposed grid indentation technique to complete the

characterization by means of a mechanical investigation of properties at multiple scales. In

particular, we focus the investigation of the properties at two different scales of the four-level

microstructure of cement-based materials (Fig. 4-13): the C-S-H matrix (Level I, see Section

4.4.2) and the cement paste composite (Level II).
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Mineral[ wt% Mineral wt%

C3S 72 C4AF 1
C2 S 17 Na 20+K 20 0.7

C3A 5 Free Lime 1.6

Table 5.3: Composition of Cement (US Gypsum Co., Chicago, I)

5.3.1 Materials and Methods

Specimen Preparation

The material investigated in this and Chapter 6 is a white cement paste. It is the same material

tested by Thomas and Jennings for weight-loss experiments [230]: White portland cement with

a low aluminates content (US Gypsum Co., Chicago, IL, cement composition given in Tab.

5.3) was cast into plastic molds at a water/cement ratio of w/c = 0.5, to form bars measuring

0.25 m x 0.025 m x 0.025 m. The specimens were hydrated under limewater at room temperature

and kept in such conditions until testing.

For the indentation testing, the square plate specimens were cut into slices of approximate

thickness 5 - 10mm. The surfaces were ground and polished with silicon carbide papers and

diamond particles to obtain a very flat and smooth surface finish. This was achieved in six stages

of decreasing fineness with the last one being in the range of 250 nm final surface roughness.

Special attention was paid to keep the specimens flat and parallel on both sides, since this could

influence the angle of indentation and thus the result of the measurements. After polishing, the

samples were placed in an ultrasonic bath to remove the dust and diamond particles left on the

surface or in the pore structure. The age of the material at testing was 5 months.

Indentation Parameters

The two scales investigated, namely Levels I and II of cementitious materials (Fig. 4-13), are

show-cases of heterogeneous composite materials: The submicron scale, Level I, is the scale

of individual components and phases present in cementitious materials; while the submillime-

ter scale, Level II, is the length scale of a homogeneous composite behavior. According to

the results of Section 5.1, the mechanical properties of the individual phases (Level I) should

be accessible by indention testing with maximum indentation depths hmax/D < 1/10, while
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composite properties should be accessible by indentation depths hmx/D > 1, where D stands

for the characteristic size of individual phases and microstructure. We refer to the former as

nanoindentation and to the latter as microindentation:

9 In nanoindentation the maximurn indentation depth must be such to respect the scale

separability condition (5.1) and the 1/10-rule-of-thumb:

do << hmax <_ DI/10 (5.17)

Hence, in order to obtain the properties of LD and HD C-S-H, do and DI represent the

characteristic sizes of respectively the heterogeneity within LD and HD C-S-H, and the

microstructure of C-S-H. Possible candidates for do are the single colloidal particle in

C-S-H (see Section 4.4.1) or the gel porosity of similar size, i.e., do - 5.6 nm as suggested

by Jennings et al. ([130], see also Fig. 4-8) On the other hand, the characteristic size of

the microstructure DI is more difficult to estimate, as the microstructure itself depends

on mix proportions, hydration degree, etc., and may differ for LD C-S-H and HD C-S-H.

SEM, ESEM and TEM images of w/c = 0.5 cement pastes in the literature ([199], [82], see

also Fig. 4-4) suggest that a length scale of DI ~ 1 - 3 pm is characteristic of the porous

C-S-H gel matrix, which we adopt in this study. Hence, an appropriate indentation depth

that allows one to access the properties of the C-S-H phases by nanoindentation is:

Level I : hrax E [100, 300] nm (5.18)

For smaller depths the indentation response will be affected by the discrete nature of the

colloidal particles, and for larger depths substrate effect related to the presence of other

phases will prohibit access to intrinsic properties of the C-S-H. The order of magnitude

of hmax in Eq. (5.18) also allows access to the in-situ properties of CH and eventually

residual clinker phases if present. In deed, the elementary size of the Portlandite crystal

structure is on the order of 5 A = 0.5 nm (Fig. 4-5) and the size of the crystals present in

cementitious materials is on-average of micrometer dimension, which falls in the range of

values that were used in (5.17) to estimate (5.18). We should emphasize, however, that

(5.17) is only satisfied in an average sense, and that the presence of 'violators' of these
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conditions is inevitable. For instance, nanoindentation responses dominated by adjacent

capillary voids of a characteristic size of 10 - 100 nm (see Section 4.3). The error induced

by indentation on such phases that do not satisfy (5.17) should be of random nature, and

should be captured by the statistical analysis method (see Section 5.2.2).

In microindentation aiming at properties of the homogenized medium, the indentation

depth is lower-bounded by the size of the microstructure, i.e., D, ~ 1 - 3 [m. While

there is theoretically no restriction to the maximum indentation depth, a natural limit

derives from the capacity of the equipment (see Section 3.1, Tab. 3.1). A reasonable

choice for hcp is a maximum indentation depth of:

Level II : hmax ~ 10 pm (5.19)

Finally, we need to situate the target indentation depths in the context of the grid indenta-

tion technique performed on a highly heterogeneous material (see Fig. 5-5). A convenient way to

achieve on-average indentation depths as specified in Eqs. (5.18) and (5.19) is to employ a series

of load-controlled indentation depths. This requires some experimental iterations. We found

that a maximum load of Pmax = 500 pN (475 ± 8 plN after correcting for the spring constant, see

Section 3.1.2) yields an average maximum indentation depth of hmax = 167 ± 53 nm in nanoin-

dentation, and that Pmax = 1, 000 mN (996±6 mN after correction) yields hmax = 9, 873±678 nm

suitable for microindentation. In all indentation tests, a trapezoidal load history was prescribed,

defined by a loading time rL = 10s, a holding time 'H = 5s, and an unloading time rU = 10s

(Fig. 5-8). In addition, a hold period of 20 seconds at 90% of unloading facilitated the correction

for any thermal drift effects in the system.

For the purpose of a repeatability study, three grid indentation experiments of 100 (10 x

10) indents on different areas of the same surface were performed with a Berkovich indenter.

Residual imprints of microindents were examined under an Optical Microscope located in the

Center of Materials Science and Engineering af M.I.T. Individual tests were analyzed based on

the method presented in Chapter 2. Table 5.4 summarizes details of the experimental program

for both nanoindentation and microindentation.
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Series N*-1 N*-2 N*-3 ]___M**_ 1
# 100 100 100 10

P***x [pN] 476±7 471 ± 10 477 7 996,180 ± 6, 200
hmax [nm] 155 ± 41 189 ± 65 161 47 9,873 ± 678

S [JLN/ nm] 25.97 ± 5.08 23.77 ± 5.78 24.31 ± 7.50 966 ± 32
TL [ s] 10 10 10 10

TH [s] 5 5 5 50
Machine**** HYS HYS HYS MM

Table 5.4: Experimental program and mean ± standard deviation of indentation results: (*)
Nanoindentation tests, (**) Microindentation tests. (***) The deviation of the maximum force

from the expected value is due to the spring force correction (see Section 3.1.2). (****) Ma-

chines: MM = MicroMaterials, HYS = Hysitron.

Indentation Analysis

Indentation results were analyzed both individually and globally: An individual test gives access

to mechanical information of the indented region and a series of tests describes the composite

material behavior. Typical P - h curves for the two indentation depths are illustrated in Fig.

5-8. Some of the curves tend to deviate from the theoretical parabolic P - h relationship,

either due to improper contact detection or severe damage during loading. Such curves where

detected manually (visual inspection) and excluded from the analysis. The largest percentage of

discarded curves was related to surface preparation procedures, and the number of tests excluded

for this reason was generally smaller than 5% of the total number. Figure 5-9 shows examples of

curves that were excluded from (or corrected for) our analysis. Such curves are easily detectable

from their large (compared to the average value) recorded maximum penetration depth in

the force-driven indentation tests. Individual tests were analyzed based on the methodology

presented in Chapter 4: A function of the form P = b(h - hf)"' was fitted to the unloading

portion of the P - h curve and the indentation stiffness S was evaluated at maximum load

Pmax. The indentation modulus M and indentation hardness H were then calculated from Eqs.

(2.1) and (2.2), where the area of contact at maximum load A, was estimated with the Oliver

and Pharr method (see Section 2.5 and Eq. (2.78)). Optical images of residual indents of

microindentations (Fig. 5-5) demonstrated that there were no visible pile-ups in the Berkovich

tests, suggesting that the Oliver and Pharr method would yield accurate results (see discussion

in Section 2.5). The large amount of analyzed indentation data was then treated in a statistical
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fashion:

1. Frequency Diagrams and Distributions: Similar to the procedure presented in Sec-

tion 3.3 for homogeneous materials, frequency plots are used to analyze indentation data

on a composite material. For small indentation depths, h << D, such plots give rise to

multimode distributions, each peak corresponding to the mechanical manifestation of a

phase2 . In order to extract mechanical properties of the involved phases the deconvolution

technique presented in Section 5.2.2 is employed. For indentation depths much greater

than the largest characteristic length-scale of heterogeneities, h >> D, the different me-

chanical phases tend to merge into a single peak, which is the mechanical manifestation

of the composite material (here, hardened cement paste).

2. Mechanical Maps: The analysis of each indentation curve provides information about

the mechanical properties at a point of the grid. The discrete data system can then be

transformed in a continuous distribution of mechanical properties by linearly interpolating

the nodal values over the whole indented surface (grid region). For the microindentation

results a square grid of 100 pm spacing was formed (see Fig. 5-5), whereas for the

nanoindentation results a 10 pum grid size was used. As shown below, such a mapping of

nano-mechanical properties provides information about the morphological arrangement

of the different phases in a composite material.

5.3.2 Nanoindentation Results (Level I): Frequency Plots

Figure 5-10 shows the frequency diagrams of the indentation modulus and hardness for the

N-1 specimen (see Tab. 5.4) obtained from 100 nanoindentation tests with an on-average

indentation depth of 155 t 41 nm. At the considered scale the material is highly heterogenous,

as testified by the multiple peaks of indentation properties. To analyze the data, we choose

to consider four phases (n = 4): residues of pore spaces (MP), two types of C-S-H (LD C-

S-H and HD C-S-H), Portlandite crystals (CH). There may also be some residues of cement

particles (CL) present, but as we have seen in Chapter 4 (Tab. 4.7), the stiffness and hardness

2In the case of Nanoindentation on cement paste the mechanical phase coincides with a chemical phase. Such
a scenario provides a direct link between physical chemistry and mechanics.
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properties of the clinker phases are at least an order of magnitude higher than the one we find

in nanoindentation. This is consistent with the fact that w/c = 0.5 cement-based materials are

close to complete hydration. We therefore concentrate our analysis on the indentation stiffness

and hardness values situated within M E [0; 50] GPa, H E [0, 1.5] GPa, which covers the

aforementioned four phases. Following the deconvolution technique of Section 5.2.2, we assume

that the mechanical properties (M and H) of each phase are normally distributed, characterized

by Eqs. (5.9) and (5.10). The statistical analysis is preformed in a truncated fashion in an

attempt to emphasize the region where the C-S-H phases exist. The problem then consists in

finding the 3 x 4 = 12 unknowns (pj, sj, fj) -f the 4 phases involved, J =MP, LD C-S-H, HD

C-S-H, CH, that characterize the theoretical density function P (x) = EJ_1 fJ pj (x) which

minimizes the standard error (i.e., Eq. (5.13)), for the given set of experimentally obtained

discrete values P', subject to the constraint:

4 N
Zf =l fr; fr = N (5.20)
J=1

where f, is the volumetric proportion of the high stiffness/hardness phases, N. is the number

of data points having stiffness (or hardness) greater than 50 GPa (or 1.5 GPa) and N is the

total number of tests (here, 100). The number of bin sizes used at this level, Level I, was,

m, = 12, satisfying Eq. (5.14); mi = 12 > 3 x 4 - 1 = 11. The optimization was performed

using the SOLVER function in EXCEL. The resulting best fits of Gaussian distributions of

indentation modulus and hardness, which give access to the means, standard deviations, and

volume fractions of all 4 phases are shown in Figs. 5-11 to 5-14. The results are listed in Tab.

5.5, and deserve some comments. .
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_ J [-] D MP LD C-S-H [HD C-S-H CH

N-1 M [GPa] 9.2 ± 1.6 19.6 ± 2.8 29.5 ± 3.8 38.6 t 2.5

[%1 17 14 13 6

f [%] 7 46 27 12
H [GPa] 0.24 ± 0.07 0.49 ± 0.2 0.95 ±0.17 1.40 ± 0.03

[%j 29 41 18 2

f [%] 14 45 45 1

N-2 M [GPa] 8.3 ± 2.4 18.1 ± 3.6 29.0 ± 4.2 40.9 ± 3.5

[ 29 20 15 9

f 1%] 10 52 26 9
H [GPa] 0.13 ± 0.05 0.42 ± 0.18 0.92 ± 0.03 1.30 ± 0.07

[%] 38 43 3 5

f [%] 7 68 12 5
N-3 M [GPa] 5.7 ± 0.8 18.8 ± 5.7 31.6 ± 3.1 44.2 ± 1.4

[%] 14 30 10 3

f [%] 1 66 20 12
H [GPa] 0.14 ± 0.03 0.46 ± 0.10 0.85 ± 0.19 1.30 ± 0.25

A [%] 21 22 22 19

f [%] 15 42 41 15

ALL M [GPa] 8.7 ± 1.9 18.8 ± 3.9 30.1 ± 4.7 41.2 ± 5.6

() [%] 22 21 16 14

f [% 9 49 27 12
H [GPa] 0.18 ± 0.07 0.47 ± 0.15 0.85 ± 0.08 1.31 ± 0.20

S( [%] 39 32 9 15

f [%1 10 53 20 12

Table 5.5: Summary of grid indentation results for three different trials of 100 indentations
obtained after statistical analysis of the frequency diagrams: Indentation Modulus, Hardness,
Volume fractions, and Coefficients of Variations for all constituent phases.
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Figure 5-11: Best fitted Gaussian distributions for the different phases found in cement pastes

microstructure - Control 1: Macropores, LD C-S-H, HD C-S-H, CH. The summation of the

fitted Gaussian distribution is in very good agreement with the experimentally observed one.
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Figure 5-12: Best fitted Gaussian distributions for the different phases found in cement pastes

microstructure - Control 2: Macropures, LD C-S-H, HD C-S-H, CH. The summation of the

fitted Gaussian distribution is in very good agreement with the experimentally observed one.
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Figure 5-13: Best fitted Gaussian distributions for the different phases found in cement pastes

microstructure - Control 3: Macropores, LD C-S-H, HD C-S-H, CH. The summation of the

fitted Gaussian distribution is in very good agreement with the experimentally observed one.
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Mean Values of all Four Phases are Reproducible

The fitted mean values of indentation modulus and hardness of the 4 phases considered do not

significantly vary from one test series to another:

N-1 N-2 N-3 N-all

[GPa] [GPa] [GPa] [GPa]

M 9.2 8.3 5.7 8.7 Macropores (5.21)
19.6 18.1 18.8 18.8 LD C-S-H

29.5 29.0 31.6 30.1 HD C-S-H

38.6 40.9 44.2 41.2 CH

N-1 N-2 N-3 N-all

[GPa] [GPa] [GPa] [GPa]

H 0.24 0.13 0.14 0.18 Macropores (5.22)
0.49 0.42 0.46 0.47 LD C-S-H

0.95 0.92 0.85 0.85 HD C-S-H

1.40 1.30 1.30 1.31 CH

In particular, the difference in mean values of the C-S-H phases and the CH-phase is on the

order or smaller than the respective standard deviations, and hence statistically insignificant.

It is interesting to observe that the mean values obtained by deconvoluting the total number

of tests (N-all) is not a simple average of all the mean values obtained in each test. Are those

repeatable values representative of the intrinsic properties of each phase? This question will be

further explored in Section 5.4 of this chapter.

Indentation Hardness Exhibits More Scatter Than Indentation Modulus

The deviation of the mechanical properties of each phase from their mean values shows some

significant variation between different test series. Looking at the nature of this scatter provides

insight in the significance. The spread of the data for each phase, here quantified in terms of

the standard deviation and coefficient of variation (Tab. 5.5), is a result of a combination of

(at least) three phenomena:

222



" The natural variability of each phase (i.e., variable density or packing modes in the case

of the C-S-H phases). For instance, it is well known that local variabilities like porosity

or other heterogeneities tend to affect strength properties (and/or hardness) in a more

pronounced way than elasticity properties.

" The mechanical interaction between phases, which affects the hardness more than the

indentation modulus (see Section 5.1.2 and Fig. 5-2).

" Error introduced in the calculations of M and H, which is due to estimating the area of

contact (see Section 2.5). Since M oc A;;1/2 and H oc A;; 1 , an error in the contact area

estimation is expected to affect hardness more significantly than the indentation modulus.

It therefore becomes apparent that the indentation modulus results obtained by indentation

contain less uncertainty than the indentation hardness values, and should therefore be the

preferred quantity for comparison purposes and for understanding the microstructure. Indeed,

the data in Tab. 5.5 show that the coefficient of variation for hardness of all phases is consistently

higher than the coefficient of variation of tha indentation modulus.

Finally, a comment is due on the scatter of the data obtained for the two types of C-S-H.

It is interesting to note that the coefficient of variation of the LD C-S-H is significantly higher

than the one of HD C-S-H, hinting towards a more ordered and homogeneous structure of the

latter. Of great interest is also the coefficient of variation of Portlandite crystals (15%). Given

their crystalline nature, one would expect a scatter much less than the rest of the phases. It is

therefore reasonable to assume that the primary source of variability for this hard phase is the

substrate effect that cannot be avoided in full (see Section 5.1.2).

Volumetric Proportions are Better Estimated Through M-modulus Analysis

The volumetric proportions of each phase calculated from the deconvolution of hardness and

modulus somewhat vary from one series to another (see Tab. 5.5). It is useful to emphasize that

the deconvolution procedure works best when there are clear peaks in the experimentally ob-

tained distribution. In cases where the peaks merge the fitting process suffers from pronounced

non-uniqueness. In fact, the error minimization process converges to several minima for dif-

ferent combination of volumetric proportions and standard deviations. While the mean values
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of the involved phases are little affected, the estimated standard deviations and volumetric

proportions could be largely in error.

Indentation modulus plots tend to show clear peaks and as a consequence the extracted

volume fractions f show a high degree of repeatability:

N-1 N-2 N-3 N-all

[%] [%] [%] [%] --

7 10 1 9 Macropores (5.23)
46 52 66, 50 LD C-S-H

27 26 20 27 HD C-S-H

11 9 12 12 CH

The small deviations observed between tested specimens can be attributed to local variabilities

of the materials microstructure. By contrast, the volume fractions extracted from fitting the

hardness distribution show a large variability, which should be attributed to fitting errors (not

clear peaks). Generally speaking, the discrepancy between the volume fractions calculated from

the indentation modulus and hardness tends to become less significant as the number of tests

increases. The volume fraction results for all three samples (N-all) given in Tab. 5.5 converge

for both M and H:

M H

[%] [%1

(f)N-all 9 10 Macropores (5.24)
50 53 LD C-S-H

27 20 HD C-S-H

12 12 CH

It is suggested that the indentation modulus deconvolution which usually shows a clear sepa-

ration of phases, should be used for estimating volume fractions.

Volume Proportions Vary with Locatiop but Converge for Large N

The volume fractions estimated for the three test series show some variability associated prob-

ably to the spatial distribution of mechanical phases, which is a reminder that the hydration
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reaction and as a consequence the resulting volumetric proportions of the formed phases are

complicated functions of the particle size, local w/c-ratio, etc. (see Section 4.2). It is there-

fore reasonable to expect some unavoidable local variability. On the other hand, as the size of

the sample area and thus the number of tests increases, the effect of local variability should

fade out and the volume fractions should converge towards some statistically representative

values. The results of a convergence study of the volume fractions of the LD and HD C-S-H

phases, which are shown in Fig. 5-15, support this suggestion. Within the context of a square

grid-indentation technique proposed here, a linear length estimate of the required sampling

size is provided by 1VN-, where I is the grid spacing between indents and N is the number

of indentations. Figure 5-15 which shows the indentation results for a grid spacing of I = 10

ym and for N = 5, 10, 30,50, 100,200, and 300 suggests that a sampling region on the order of

10V/50 ~ 55 pm is enough to provide converging values of the relative volumetric proportions

of the two C-S-H phases. This is in line with the separation of scales principle (Eq. 5.1) which

suggests that the characteristic size of an R.E.V. should be an order of magnitude higher than

the characteristic length scale of any heterogeneity (here, d _ 1 - 3 pm < 55 pm).

Negligible Effect of Bin Size on Deconvolution Results

One could argue that the results obtained with the deconvolution technique heavily depend on

the bin-size chosen to represent the experimental probability density P'. To further investigate

this issue we have increased the number of bins by 50% (mi = 18) and evaluated the best fitted

curves for each resulting histogram by minimizing the quadratic error in Eq. (5.13). Further-

more, we also fitted the results for two bin sizes, m, = 12 and m, = 18, by simultaneously

minimizing the total quadratic error -for the two bin-sizes:

min (Pi -P (xi))2 + (Pi - P (xi))2 (5.25)
1 ~~m1=12 =m=8

Figures 5-16 and 5-17 display the fitting results, which are summarized in Tab. 5.6. While the

choice of the bin-size may have some effect on the obtained results, the mean values of each

phase is relatively little affected, and the difference between the different bin size fitting results

is in all cases much smaller than the standard deviation. This shows that the deconvolution
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N-all 11 MP LD C-S-H HD C-S-H CH

m=12 M [GPa] 8.7 +1.9 18.8 ± 3.9 30.1 ± 4.7 41.2 ± 5.6

(L) [%] 22 21 16 14

f [%] 9 50 27 12

H [GPa] O.18 ± 0.07 0.47 ± 0.15 0.85 ± 0.08 1.31 ± 0.20

() [% 39 32 9 15

m=18 M [GPa] 9.1 + 2.3 19.0 ± 4.0 32.0 ± 5.0 44.0 ± 3.1

(1) [%] 25 21 16 7

f [%] 8 49 24 14
H [GPa] 0.16 ±0.06 0.47 ±0.17 0.87 ±0.08 1.08 ± 0.21

[%] 38 36 9 19

m=12+18 M [GPa] 9.1 ± 2.3 18.8 ± 4.0 31.0 ± 4.0 41.0 ± 3.9

[%] 25 21 13 10

f [%] 8 51 25 13

H [GPa] 0.16 ± 0.07 0.47 ± 0.17 0.87 ± 0.08 1.19 ± 0.16

[%j 43 36 9 14

Table 5.6: Summary of grid indentation results for three different trials of 100 indentations

obtained after statistical analysis of the frequency diagrams: Indentation Modulus, Hardness,
Volume fractions, and Coefficients of Variations for all constituent phases.

technique is quite robust for extracting the phase properties of highly heterogeneous materials,

provided a large experimental data base (here, all series) and provided that condition (5.14) is

satisfied.

Nanoindentation Results (Level I): Mechanical Maps

Indentation testing allows monitoring the spatial distribution of indents. In our Nanoindentation

campaign a square grid of 10 pm spacing (between indents) was used. The analysis of each inden-

tation curve provides information about the mechanical properties (M, H) at each grid point.

These properties are, strictly speaking, representative of a material domain of characteristic

length scale max(h, a). Hence, provided that the grid spacing is larger than the characteris-

tic length scale of the materials sensed in each test, mapping of the properties over the grid

region provides information about the morphological arrangement of the phases within the mi-

crostructure. This is a second result of the proposed grid-indentation technique. A convenient

and simple way to generate these maps is by transforming the discrete data system into a
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Figure 5-17: Frequency distributions for the indentation hardness of white cement paste, w/c =

0.5 for two different bin sizes: m = 12 and 18. The best fitted normal distributions were obtained

after minimizing the average error of the two distributions.
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continuous distribution of mechanical properties by linearly interpolating the grid point values

over the grid region. The result of this mapping can be displayed as contour plots in either

3-D images or plan views (see Fig. 5-18). Such a contour depiction of mechanical properties

requires the selection of min-max limits between different phases. As the frequency plots 5-11 to

5-14 show, there is some significant overlap in the distribution between different phases, which

makes it difficult to define clear boundaries between phases. As a first order approach we chose

equal size domains centered around the mean values of each phase:

1. Macroporosity domain 0 - 13 GPa: Values situated in this range are associated with

regions for which the mechanical response is dominiated by high porosity. For purpose of

comparison, these areas are indicative of the macroporosity.

2. Low-Density C-S-H domain 13-26 GPa: Values situated in this range are contained within

the second peak in the frequency plots 5-11 to 5-14, and are associated with regions in

which the mechanical response is dominated by the LD C-S-H.

3. High-Density C-S-H domain 26 - 39 GPa: Values situated in this range correspond to

the third peak in the frequency plots 5-11 to 5-14, and are attributed to the dominant

mechanical effect of the HD C-S-H.

4. CH domain and unhydrated clinker > 39 GPa: The higher stiffness values are indicative

of Portlandite and unhydrated clinker phases. While the first tends to grow in regions of

high w/c-ratios adjacent to macropores and in between LD C-S-H, the residual clinker

phases are generally rimmed by HD C-S-H.

Figure 5-19 shows plan views of contour plots of.the indentation modulus for the three

series N-1, N-2 and N-3. An SEM image of a cement paste of w/c = 0.5 at 28 days is also

shown in the figure, and demonstrates the qualitative resemblance of the mechanical maps with

optical images. Hence, the mechanical maps provide a means to characterize the morphology

of the microstructure at the scale defined by the chosen (nano)indentation depth, and allows

visualizing microstructural features. In particular, for hardened cement paste, the contour plots

provide a snapshot of the formation process of the cement paste: unhydrated clinker particles are

rimmed by HD C-S-H which can be associated with so-called 'inner products' (see Tab. 4.5 and
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Figure 5-18: Three-dimensional (3-d) view (a) and plan view (b) of a mechanical contour plot

of indentation modulus on cement paste. Grid (inter-indentation) spacing = 10 pm
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Figure 5-19: Plan views of mechanical maps of indentation modulus (N-1 (a), N-2 (b), N-3

(c)). A similar magnification of an SEM image (d) (courtesy of K. Scrivener) is also shown for

comparison. Image size: 150 x 150 [Lm 2 , Grid spacing = 10 [Lm.
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Fig. 4-4). Further away from high stiffness phases is the LD C-S-H phase (or 'outer products'),

which seems to be the percolated matrix phase in the materials system. The unfilled residues

of water, that is the space not filled by hydration products, can also be visualized in both SEM

and mechanical maps. Of great importance is also the repeatability of the microstructural

features obtained by mapping the mechanical properties. The three images obtained from

three test series are very similar suggesting that a grid surface of 100 Am x 100 Am is able

to avoid any statistical bias in the detection of microstructural features. This is consistent

with the convergence of volume fraction predictions with increasing size of sampling region,

presented in Fig. 5-15. The morphological characterization of the microstructure provided by

the mechanical mapping technique completes the characterization of the Level I properties and

morphological arrangement of hcp. As will be discussed later, this will form the backbone of

the development of micromechanical models for stiffness and strength upscaling.

5.3.3 Microindentation Results (Level II)

Figure 5-20 shows the frequency diagrams of the microindentation modulus and hardness ob-

tained from a series of 10 microindentation tests operated to a maximum indentation depth of

roughly 10 pm (see Tab. 5.4). Consistent with the ideas put forward in Fig. 5-6, the material

response 'homogenizes' as the depth of indentation increases and the multi-mode distribu-

tion collapses into a mono-modal distribution (Fig. 5-20), representative of the homogenized

medium, hardened cement paste. Assuming that the mechanical properties of cement paste

are normally distributed, one can calculate the mean values and standard deviation from Eq.

(5.10):

M H

Cement Paste JL [GPa] 21.6 0.515 (5.26)
s [GPa] 3.2 0.07

15 14

Alternatively, one can use the deconvolution technique presented in section 5.2.2 with identical

results. This is also shown in Fig. 5-20, and the chosen number of bins was mr1 = 7, satisfying

Eq. (5.14) (for n = 1). An interesting observation is that the homogenized response reflected

in Eq. (5.26) is not equal to the simple statistical average of the phase properties weighted by
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their volume fraction (which would correspond to the so-called Voigt bound, yielding3 (M) =

25.5t11.9 GPa, (H) = 0.70± 0.48 GPa). Instead, the mean values in Eq. (5.26) come very close

to the ones of the low density C-S-H phase, which seems to dominate over all other phases.

Furthermore, it is interesting to note that the homogenization process is associated with a

significant reduction of the degree of variability. The large range of values for M and H found

in nanoindentation (Figs. 5-11 to 5-14) is significantly reduced at the microscopic scale, and

the standard deviation and coefficient of variation in microindentation is considerably smaller

than in nanoindentation. The mean values obtained from mechanical testing at the microscopic

scale (Level II) represent a mechanical averaging process that yields homogeneous macroscopic

properties.

5.4 Material Invariant Properties of C-S-H

The indentation moduli and hardness for the two types of C-S-H which are the outcome of the

grid indentation technique proposed in Section 5.2, are insensitive to bin sizes, spatial location

in cement paste, number of tests, time, etc. They can therefore be considered as intrinsic

material properties. To further investigate the intrinsic nature of these properties, we compare

our results with values existing in the literature. Since the C-S-H phases cannot be reproduced

in large scales, data on their mechanical performance are scarce. In fact the only information

comes from indentation testing or by extrapolating macroscopic testing of different porosities

to zero porosity. This is now discussed.

3We use here standard notations of continuum micromechanics; that is, for the volume average

(Y) = L Jy (x) dV

Appendix B provides a summary of notations used in this thesis.
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dotted lines represent the statistical averages calculated from the nanoindentation data.
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5.4.1 Comparison with Existing Data

Indentation Modulus

The mean values of LD and HD C-S-H almost perfectly agree with results presented by Acker [2]

obtained by nanoindentation on an ultra high performance cementitious material of w/c = 0.2:

M ()

[GPa] [%]

(M)- - Macropores (5.27)
20 ± 2 10 C/S<1 C-S-H

31 ± 4 13 C/S>1 C-S-H

36 ± 3 8 CH

The values obtained here for white cement paste are also consistent with our previous nanoin-

dentation results of a normal cement paste of Type I, w/c = 0.5 (MLD = 23.0±2.2 GPa, MHD =

31.2 ± 2.4 GPa) [58,59,60]. Furthermore, the value of the indentation modulus for Portlandite

crystals, MIbd = 41.0 ± 3.9 GPa is in very good agreement with values reported in the liter-

ature, MPHJ = 38 - 48 GPa (see Tab. 4.6 in Section 4.2.2). Beside indentation testing, the

only experimental based estimate of the intrinsic C-S-H gel elasticity comes from the 1966 work

of Helmuth and Turk [113], who prepared different cement paste specimens of different capil-

lary porosities and measured their macroscopic elastic properties using a resonance frequency

method4 . The elastic properties of the C-S-H gel were obtained by fitting an empirical function

to the experimental data of the form:

E = Eg (1 - Vc,) 3  (5.28)

4 Resonance frequency methods involve the determination of the natural frequency of vibrations of a specimen,
which based on knowledge of the density of the material, can be transformed into an estimate of its modulus of

elasticity.
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where Ve, is the capillary porosity 5 and Eg is the elastic modulus of the paste for zero capillary

porosity, which is an approximation for the C-S-H gel. An estimate of Eg was obtained by

measuring the slope of the best fitted straight line on a plot E vs. (1 - pc) 3 ; from which Eg = 31

GPa, which would translate into an indentation modulus of M. = Eg/ (1 - v 2 ) ~ 33 GPa

(assuming a Poisson's ratio of v = 1/4). In the absence of any capillary porosity the material

is left with the hydration products. The w/c-ratio used in Helmuth and Turks experiments

ranged between 0.4 - 0.7 which suggests that the gel is a mixture of LD C-S-H, HD C-S-H,

Portlandite crystals and any unhydrated cement (for 0.40 < w/c < 0.42). The porosity was

varied by reducing the w/c-ratio, and as a result the material tends to consist of more HD

C-S-H and less LD C-S-H. The extrapolated value which appears to be very close the one of HD

C-S-H (MHD = 31 ± 4 GPa), is probably the homogenized value of the extrapolated mixture

found from experiments.

Indentation Hardness

Reported values for hardness of cement paste constituents are scarce. The only information

comes from the work of Acker [2] who reported indentation hardness values for the Portlandite

crystals and the two types of C-S-H:

H H

[GPa] [%]

(H)i Macropores (5.29)
0.80 ± 0.2 25 C/S<1 C-S-H

0.90 ± 0.3 33 C/S>1 C-S-H

1.35 ± 0.5 36 CH

Acker's values seem to agree reasonably well with our experimental data with the exception

of the LD C-S-H. To be more precise, Acker [2], reports a value of 0.8 GPa for a C-S-H

phase having C/S< 1. While the indentation modulus of this phase correlates very well with

5The capillary porosity used in Helmulth and Turk was the one defined in Powers and Brownyard model (see

section 4.5.1) and was found by correcting the evaporable water (representative of total porosity) for the constant
water, as assumed in the Powers and Brownyard model, held within the gel pores.

237



our indentation modulus of LD C-S-H phase (see (5.27)), the hardness appears to deviate.

Furthermore we associate the low modulus/hardness values of C-S-H with a low density phase

which according to Jennings [130] does not appear to deviate in chemical composition (the

only difference being porosity). Our results which show a fair degree of consistency between

the three different specimens tested, are also consistent with previously obtained data, and will

be further investigated in the following chapter, prior to drawing any conclusions. Finally, the

cement paste hardness we obtain at Level II (see (5.26)) compares very well with microhardness

results reported by Igarashi et al. [125] on a cement paste of w/c = 0.5; H = 560 MPa.

Volumetric Proportions

Measured data of the volumetric proportions of the different phases present in hcp are scarce,

and most of the data available are based on semi-empirical chemical reaction models, as the

ones presented in Section 4.5. In particular, to our knowledge only two models exist for the two-

types of C-S-H: the Tennis and Jennings (J-T) model [227] and the one proposed by Bernard

et al. [23]. Figure 5-21 displays the volumetric proportions of these two models for a w/c = 0.5

cement paste as a functions of the hydration degree. In order to compare our experimental

volumetric proportions with the chemical reaction modeling results, we first need an estimate

of the hydration degree of our hcp, which we obtain from the number of indentation results

that display a higher indentation modulus than 50 GPa, and which are attributed to residual

clinker phases. This provides a measure of the clinker volume fraction fc which with the help

of the Powers model (fci = (1 - ( Pc ) yields an estimate of the degree of hydration:

82% N-1

I94% N-2
(1 - fr) = (5.30)

98% N-3

94% N-All

Similar to the individual volume fraction, the hydration degree displays some variations from

one surface to another, and we base our analysis on all three series, i.e. ~ 94%. Use of this

value in Figure 5-21, yields the following ratio of volume fractions of LD C-S-H vs. HD C-S-H

for the two models:
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Figure 5-21: Volumetric proportions of cement paste constituents as predicted by the Jennings

[130] (a) and Bernard et al. [23] (b) models.
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LD fHD ALD fHD Ref.

Models: (( ~ 0.94) = fH fLD (5.31)
2.2 31 69 [227]

2.9 26 74 [23]

These values compare reasonable well with the valuelxe obtain with the grid-indentation tech-

nique:

fLD/fHD fLD fHD

[%] [%]
1.7 37 63 N-1

NI-tests: = (5.32)
2.0 33 67 N-2

3.3 23 , 77 N-3

2.1 32 68 N-All

One can go a step further and compare the volumetric proportions of the CH crystals present

in the investigated microstructure with the one predicted in Fig. 5-21. The prediction of the

chemistry models, however, include all hydration phases including the AFm and AFt phases

produced in the hydration of the C3A and C4AF (see section 4.1), which makes a direct com-

parison difficult, as our deconvolution technique considers only 4 phases. In order to do so,

we compare the relative CH volume normalised by the volume of C-S-H, gfH,. The exper-

imentally found ( ) = 0.17 = 15/85, and compares well with the model predictions:

(fC ) J- = 0.21 = 17/83 [227], (- ) = 0.32 = 24/76 [23]. Given the variability of

these systems and the assumptions introduced in the chemistry models and the senstivity of

the deconvolution technique one should not expect accuracies higher than 10-15%. Given the

reasonable agreement between experiments and model estimates one can use the experimental

data as first order approximations to the true volumetric proportions.

5.4.2 A Posteriori Check of Invariants

Before we conclude this chapter, we return to dimensional analysis. In particular we would like

to address the question how far the dimensionless relations of continuum indentation analysis

(see Sections 2.3.1 and 2.4.1) hold for heterogenous materials, i.e., the self-similarity relations
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(3.36):

= 2a -, y, , (5.33a)
Mh2  (M

C= ( , 0, ,(5.33b)

The previous relations hold for each indentation test performed on a homogeneous material.

If we indent on a heterogeneous material, each of the previous invariants should actually be

a discrete random variable. Hence, for an indentation on a given phase the relations should

be independent of the indentation depth (at least theoretically). Vice versa, if the invariants

do show some scaling with the indentation depth, it is most likely that the separation of scale

condition (5.1) is not satisfied, so that the indented material cannot be considered as homoge-

neous in an average sense. Therefore, an investigation of any possible scaling of the invariants

should provide a means to verify or falsify the separation of scale condition, on which our con-

tinuum indentation analysis is based. In checking the scaling relationships, however, one needs

to separate the different phases. There is a priori no theoretical argument that the invariants

for each phase (IF , IH', I; i =MP, LD C-S-H, HD C-S-H, CH,CL) should have the same value.

In fact, as relations (5.33) show, the actual value of Hll and H3 is a function of the mechanical

properties of each phase (-, v, p) and of geometry effects (9).

To analyze the indentation data, we will assume relevance of the Oliver and Pharr method

to determine estimates of the indentation modulus and the hardness (M, H)est. Using these

estimates in (5.33), we determine estimates of H1 a and H3 from:

jjest - Pmax (5.34a)
a Mesth2

Pmax
Hest - Hmsi (5.34b)

SHesth2 max

Figure 5-22 displays the invariants vs. indentation depth, hmax, and identifies data for individual

phases. It is useful to recall (see Eqs. (2.57) and (2.59)) that in the case of Berkovich indentation

into a linear isotropic elastic half-space, the invariants are lel = 2/ir tan9 = 1.78 and fel =

4/ir tan2 9 = 9.95. The 1 1 est values we obtain from our experiments are all somewhat smaller

than the elastic values, except for the clinker phase (CL) which has 11 est values on the same
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order. Similarly, our 11 s't values are significantly higher than than the elastic value. The most

interesting observation is that H"' has an extremely low standard deviation, and that the value

H, takes for different phases and different indentation depths does not vary in large proportions,

with an overall mean of 32.06 ± 2.64 (8.2%). This and the fact that I-Ist > Hej suggest that

the contact area is evolving in -such a way to accommodate the plastic behavior underneath

the indenter. Furthermore, recalling that Ac/h 2 = 24.6 for the ideal Berkovich indenter, the

higher value of 11 "' = Ac/hmax can be attributed to an imperfect indenter geometry which

is captured in the experimental procedure through the calibrated area function (see Section

2.2.3). On the other hand, the values of Ha vary quite significantly, ranging from H1aIt ; 0.25

for the MP-phase to Hst ~ 1.75 for the CL-phase. In the light of Eq. (5.33a), it is most likely

that this variation is a consequence of the dependence of Ha on the cohesion-to-stiffness ratio,

c/M. A means of quantifying this dependence of the heterogeneous indentation response is the

indentation modulus-to-hardness ratio, estimated from (M/H)"t = Hr/Ha for the different

phases, i:

56.9 MP

40.0 LD C-S-H

(M/H)[st = 35.6 HD C-S-H (5.35)

34.5 CH

14.5 CL

Since H, is almost the same for all phases, M/H is a mere reflection of the variation of 1/Ha.

The values of (M/H)est for all phases are all greater than the elastic value, (M/H)" = 2 tan 0 =

5.59. An interesting observation is that the mean M/H values of LD C-S-H, HD C-S-H and

CH are very close to each other, while MP and CL tend to deviate significantly. Our value for

CL, which was calculated based on the maximum values of hardness and indentation moduli

found in our specimens (N-all)6 , (M/H)"t = 14.5, is very close to the one of pure clinker

phases [239,2] (see Tab. 4.7 with (M/H)css = 15.5, (M/H)c2 s = 16.3, (M/H)cQA = 13.4 and

(M/H)C4 AF = 13.2), which is a further validation of our indentation results. This provides a

posteriori evidence that the proposed grid-indentation technique for heterogeneous materials

6 The presence of the substrate can only reduce the indentation hardness and moduli evaluation. We therefore

assume that the maximum value of hardness and moduli contains the least error among all M [0; 50] GPa,
H [0, 1.5 GPa.
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applied with a deliberately chosen indentation depth satisfies the separation of scale condition

in Eq. (5.1), which is a pre-requisite for the application of Continuum indentation analysis.

5.5 Chapter Summary

We have raised the question of how to adapt and employ indentation techniques for highly

heterogeneous materials. The novel grid indentation technique we here propose has the premise

to extend the domain of application of classical indentation techniques to multi-phase composite

systems. The experimental basis of the method is a large series of indentation tests carried out

on a surface. Each indentation test is a single statistical event, and the properties extracted from

continuum indentation analysis, namely M and H, are considered as random variables. This

requires a careful choice of the maximum indentation depth, which must be such not to interfere

with microstructure7 . In this chapter, we propose (1) to employ a thin-film analogy to determine

the maximum indentation depth which ensures that effects of the heterogeneous microstructure

are minimal; and (2) to check a posteriori relevance by means of a dimensional analysis of

invariants. Based on this self-consistent method, it is possible to perform data modeling by

means of some elementary statistical analysis, which allows one to determine mechanical phase

properties, volume fractions and morphological arrangements. A further validation on another

composite material is given in Appendix D.

The proposed grid-indentation technique is genera and can be applied to any composite

material system. The method offers new opportunities for materials research into the intrinsic

behavior of heterogeneous materials. It is of particular interest for materials that cannot be

produced in bulk quantities and when the in-situ mechanical properties of a phase is of interest.

The ability of the technique to extract first order estimates of the volumetric proportions of

each phases becomes of value when phases present in the composite have similar (or identical)

chemical structure and cannot be decomposed by other techniques (e.g., X-ray or chemical

analysis). Such a situation arises in many multiphase particulate materials systems in which

7Instrumented indentation equipment usually operate at load control environments and as a consequence the

resulting maximum depth is a function of the imposed maximum load and the indented material's mechanical

properties. Strictly speaking one needs to impose a restriction on the maximum allowable depth of indentation

in order to avoid bias in our grid indentation technique. Such a function however is available only in some of the

commercially available indenters.
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M H f M/H
_GPa] [GPa]_I [%] 1 [1]

LEVEL I Macroporosity 9.1 ± 2.3 0.16 ± 0.07 8 56.9
LD C-S-H 18.8 ± 4.0 0.47 ± 0.17 51 40.0
HD C-S-H 31.0 t 4.0 0.87 0.08 25 35.6

CH 41.0 ± 4.9 1.19 ± 0.16 13 34.5

*CL 148 7 8.7 ± 1 3 14.5

LEVEL II] Cement Paste 21.6 3.2 0.515 ±0.07 J 100 ] 41.9

Table 5.7: Summary of grid indentation results for two different levels (I and II) obtained

after statistical analysis of the frequency diagrams: Indentation Modulus, Hardness, Volume

fractions, and Modulus to Hardness ratios for all constituent phases.*Values for C3 , from Ref.

[2391.

the difference between phases (in a mechanical sense) is primarily driven by density (packing

density, porosity, etc.) rather than by chemical composition.

The main component of all cementitious system, the C-S-H phase, is an example of such

a material. This C-S-H manifests itself in (at least) two different forms of similar (or even

identical) chemical composition, but different density. Since it is still difficult to control the

density during manufacturing, the proposed indentation method is currently the only available

technique to rigorously investigate the mechanical properties of the different C-S-H phases. The

application of the grid indentation technique to a white cement paste illustrates the robustness

of the technique, which provides access to material properties, that do not change from one

cement-based material to another as a function of mix proportions. Instead, they are intrinsic

material (invariant) properties. These values are summarized in Tab. 5.7.
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Chapter 6

Multi-scale Mechanical Performance

of CBM: Effect of Moderate Heat

Application (60'C) on C-S-H

The focus of this chapter is the investigation of the effect of moderate heat application (60 0C)

on the mechanical behavior of cement-based materials. The multi-scale structure presented in

Chapter 4, and the grid indentation technique developed in Chapter 5 provide a convenient

framework for such an investigation. Modrate temperature applications applied at an early

stage of hydration (heat curing)1 can significantly accelerate the mechanical properties develop-

ment and reduce the deformation capacity of the system. It has been found however that this

early age benefits are counterbalanced by a long term loss in strength and an increase in perme-

ability. Later experiments have shown that this problem can be suppressed by applying heat at

a later stage of the hydration (heat treatment). While both techniques-heat curing and heat

treatment-are commonly employed in practice, little is known about the actual mechanisms

that control this macroscopically observed behavior. We therefore aim in this chapter to utilize

the nanomechanical exploration equipment (nanoindentation) together with advanced analysis

techniques (grid indentation) in order to monitor the multi-scale evolution processes associated

'By heat curing we define the curing of specimens at elevated temperature (here 60 C); in contrast to a heat

treatment, which refers to the exposure of specimens to short temperature cycles at a hardened state.
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with moderate heat application to cement-based materials. In particular we focus our discussion

on two levels: 1) At Level II, we measure the macroscopic effect by doing microindentations;

2) At Level I, we attempt to identify the sources of such a macroscopic response by measuring

the mechanical behavior of the material invariant properties identified in Chapter 5 and the

microstructural evolution that the heat application induces. Special emphasis is placed on the

two types of C-S-H (Level I) where most changes are expected to take place and where little is

known regarding structure and mechanical properties.

Temperature applications coupled with a reduced w/c-ratio can provide a material with

enhanced mechanical properties, E ~ 50GPa and E, ~ 190MPa, and reduced deformation

potential [257]. There are some fundamental questions remaining however: What is the impact

of these variables on the microstructure of cement paste and in particular on the C-S-H phases?

Is the fundamental chemical formation changing? and are there ways to improve the behavior

even more? Results presented in this chapter aim at providing answers to these questions and

hopefully contribute to the better understanding of this complicate mechanical system.

6.1 Heat Curing and Heat Treatment

Cement chemistry research has established that heat curing of cementitious materials at early

ages coarsens the capillary pore system, decreases the volume of mesopores, and increases the

degree of polymerization of the silicates. Evidence for a coarser pore structure has been pro-

vided by Bentur using mercury porosimetry and H 20 and N2 adsorption [21]. These results

were confirmed and refined since by various techniques, ranging from backscattered electrons in

scanning electron microscopy [138, 79], impedance spectroscopy measuring electrical conductiv-

ity [76], and systematic studies of the pore-size distribution using methanol exchange technique

and weight-loss measurement on drying [230]. The increase of the degree of polymerization with

time and temperature has been shown by Silicon-29 Nuclear Magnetic Resonance Spectroscopy

[251, 126].

The general interest in the behavior of heat cured cementitious materials stems from the

use of high-temperature curing in concrete technology for obtaining both a high early-strength

(see Fig. 6-1) and a significant decrease ofltime dependent deformation (creep and shrinkage),
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Figure 6-1: Strength developement of normal cement paste with time for different curing tem-
peratures (adapted from [169]).

particularly in the precast concrete industry. However, it was quickly recognized that long-term

properties are often negatively influenced by elevated curing temperature, as strength and other

mechanical properties are often reduced and permeability increased [21, 79]. This paradoxical

behavior has not been explained satisfactorily. In fact, it is still not clear at which scale and to

which extent an increase of the degree of polymerization affects the mechanical performance,

and to which extent this densification of the C-S-H is cancelled out by the coarsening of the

capillary porosity, and how both phenomena contribute to the overall macroscopic mechanical

behavior: loss in long-term strength behavior and decreased creep and shrinkage behavior.

The experimental data presented above indicate that the temperature application favors

the densification of the C-S-H matrix and produces material with improved time dependent

deformation. Heat curing, however, suffers from the drawback of macroporosity generation that

impacts on the macroscopic strength (see Fig. 6-1). To overcome this problem, it is common
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practice in industry to apply heat at later stages of hydration (heat treatment) such that the

improved creep performance is obtained without the generation of macroporosity (since most

of the reaction has taken place prior to heat application). It has been experimentally found

that heat treatment significantly improves creep and shrinkage behavior while the degree of

polymerization increases. Interestingly, those benefits were not associated with a reduction in

strength and increase in permeability as observed for the heat cured specimens [187]. Delayed

heating is of interest for several reasons:

" Heat treatment is commonly applied in ultra high performance concrete (UHPC) as means

of improving shrinkage and creep performance bypassing at the same time the conse-

quences associated with heat curing.

" There are several specialized structures (nuclear reactors, batching plants, chimneys etc.)

in practice that are occasionally exposed to moderate temperatures after construction,

and it is important to know the effect of heat cycles on their mechanical behavior.

" Fundamentally, it is of scientific interest to find out whether the main hydration product,

C-S-H, can be converted after formation to yield a material with a reduced deformation

potential.

The mechanical behavior of heat cured and heat treated specimens is not yet clear. While

both techniques are commonly employed in the industry, there is still a fundamental under-

standing lacking about the physical mechanisms associated with these processes. It is readily

understood that our current lack of knowledge stems from the fact that the different phenomena

observed experimentally manifest themselves at different scales: the degree of polymerization

relates to the C-S-H which manifests itself at a characteristic length-scale of some tens of

nanometer (Level 0); while the mesoporosity of gel-porosity relates to the morphology of the

C-S-H at a characteristic length scale of 100 nm (Level I); and the macroporosity at a scale of mi-

crometers (Level II). Therefore, explaining this paradoxical behavior of thermally cured/treated

cement-based materials calls for a multiscale investigation of the mechanical nano-, micro- and

macro-properties. This will be achieved here by means of the multi-scale model proposed in

Chapter 4 and grid indentation technique developed in Chapter 5.
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6.1.1 Materials and Methods

The cement paste investigated in this study is the same as that tested in Chapter 5 for the

validation of the grid indentation technique (also the same as that tested by Thomas and

Jennings for weight-loss experiments) [230]:, White portland cement with a low aluminates

content (US Gypsum Co., Chicago, IL, cement composition given in Tab. 5.3) was cast into

plastic molds at a water/cement ratio of w/c = 0.4 and 0.5, to form bars measuring 0.25 m x

0.025m x 0.025m. The paste was hydrated under limewater at room temperature (Control

specimen, labeled 'C'), and at a temperature of 60 C for different times: 1 day (Heat-cured

specimen, labeled 'HC-l'), and continuously for 28 days (Heat-cured specimen, labeled 'HC-28').

A certain batch of the control specimens were also subjected to a 60 'C temperature for 24 hours

at the age of 28 days (Heat Treated-'HT') and then continued hydration at room temperature.

The heat curing and heat treatment were performed using the procedure described in [230]:

specimens were placed into a programmable water bath of limewater, and the temperature was

controlled using a thermometer placed next to the specimens. The maximum temperature of

60 C was chosen to avoid secondary high- temperature reactions, such as the decomposition of

Ettringite into monosulfate, which would hamper interpretation of the results. After the heat

curing/treatment, the specimens were cooled to room temperature under sealed conditions,

and kept in limewater until testing. The tested specimens, w/c-ratio, age at testing, and

indentation details are reported in Tab. 6.1.

6.2 Indentation Results

The four-level microstructure of cement-based materials displayed in Fig. 4-13 forms much of

the backbone of our investigation of heat-cured and normal cement-based materials. Levels I

and II, which is the length scale of the C-S-H matrix and of-the cement paste, respectively, are

the focus of the experimental investigation of the mechanical properties by means of nano- and

microindentation. Level 0, which is the scale of the C-S-H solid phase, will be included in the

discussion. Level III which is the scale of mortar and concrete, will not be considered in this

investigation.

Indentation tests were load-controlled: a trapezoidal load was applied, 10-5-10 s (see Section
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Specimen Control ('C') 'HC-1' ] 'HC-28' 'HT'

w/c [1] 0.5 0.4 0.5 0.5
Duration [d] 0 1 28 1

Age [mth] 5 17 5 4
Nano-Tests # 3 x 100 2 x 100 2 x 100 2 x 100

Pmax [IiN] 468.11 23.22 470.43 ± 15.18 469.86± 20.42 471.01 ± 14.14
hmax [IiN] 217.71 ± 143.40 194.82 ± 92.97 204.85 ± 125.03 190.78 ± 91.27

S [ ] 25.06 7.25 25.14 ±7.13 27.36 8.19 24.32 ± 6.75
Micro-Tests # 10 10 30 10

Pmax [pN] 996, 180 ± 6, 200 998,116 ± 1, 699 997, 955 ± 1, 637 997,153 ± 2, 134
hmax [nm] 9,873.41 ± 678.23 8220,135 ± 694.81 8, 793.89 ± 610.99 9, 863.38 ± 698.12

S [L] 965.91 ±32.40 854.19 ±16.49 1, 118.20 ±58.83 961.11 ±42.19

Table 6.1: Specimen description and experimental program. Control specimen was cured at

20'C. Heat curing temperature was 600 C. After heat-curing specimens were kept at 20'C.
Micro-Tests refer to microindentation tests operated with a maximum indentation depth of

10 x 10-6 m, Nano-Tests refer to nanoindentation tests operated with a maximum indentation
depth of 200 nm. Machines: (*) MM = MicroMaterials, (**) HYS = Hysitron.

5.3.1 and Table 5.4). The hardness and indentation moduli were extracted from the material

response based on the analysis tools presented in Chapter 5.

6.2.1 Level I: C-S-H properties and microstructural evolution

We recall that Level I is the scale of the C-S-H matrix of a characteristic size on the order of

10-6 m. Results presented in Chapter 4 and 5 suggest that the C-S-H manifests itself in (at

least) two different forms: in what follows we adopt Jennings [130] interpretation of a low-

density phase (LD) and a high-density phase (HD). According to Jennings [130], that what

distinguishes these two phases is the gel porosity of 24% for HD C-S-H, and 37% for LD C-S-H.

The gel porosity has a characteristic dimension < 10-8 m, so that an indentation test that

captures the composite behavior of the two types of C-S-H must be on the order of h > 10-7 m.

Following our discussion in Section 5.3.1 and results obtained in Refs. [2,58,60], a maximum

penetration depth of 200 nm was chosen in the present nanoindentation campaign. 200 to 300

nanoindentation tests (see Tab. 6.1) were programmed for each specimen with a grid-size of

10-5 m so to avoid interference in between single indents (see Fig. 5-5). The results are analyzed

in terms of frequency diagrams of the mechanical properties and in terms of mechanical maps

as discussed in Section 5.3.
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___ 1 MP LD C-S-H HD C-S-H CH CL
Control ('C') M [GPa] 19.1±2.3 18.8±4.0 31.0± 4.0 41.0±3.9 -

S [%] 25 21 13 10 -

f [%] 8 51 25 13 3
'HC-1' M [GPa] 4.0 ± 5.4 17.8 ± 4.3 29.8 ± 2.3 41.1± 2.7 -

a) [%] 134 24 8 6 -

f [%] 2 1 50 29 1 10 9
'HC-28' M [GPa] 5.2 ±5.0 18.0± 3.1 28.5 ±2.62 36.0 ±3.5 -

(I ) [%] 96 17 9 10 -

f [%] 16 28 31 20 5
'HT' M [GPa] 9.9 2.5 18.3 3.8 29.1± 5.3 44.9 t 5.9 -

[%j925 21 18 13 -

f [%] 6 48 j 30 12 3

Table 6.2: Nanoindentation results:
statistical analysis of the frequency
tion depth was 200 nm.

Indentation stiffness and volume fractions obtained from a
plots and cumulative distribution. The maximum indenta-

Frequency Plots of Nanoindentation Stiffness

In addition to the frequency plot for the control specimen ('C') in Fig. 5-16, Figs. 6-2 to 6-4

display frequency plots of the nanoindentation stiffness for the 1 day heat cured specimen ('HC-

1', Fig. 6-2), the 28 day heat cured specimen ('HC-28', Fig. 6-3), and the 1-day heat treated

specimen ('HT', Fig. 6-4). The frequency diagrams were prepared based on the methodology

described in Section 5.2.2, and the fitting procedure followed the technique developed in Section

5.3.2. Consistent with trends observed in Chapter 5, the figures display a clear multi-modal

distribution of the mechanical properties, and each peak corresponds to the mechanical mani-

festation of a chemical-morphological unit present-in the microstructure. The intensity of each

mechanical manifestation is representative of the intrinsic property of the phase: These are the

macro-porosity, the LD C-S-H, the HD C-S-H, and Portlandite (CH) and residual clinker phases

(CL). The global experimental curves in Figs. 6-2 to 6-4 were treated in similar fashion as in

Section 5.3.2 which makes it easy to determine graphically (from a combination of the frequency

plot and the best fitted Gaussian distributions) the intrinsic properties of the different phases,

their standard deviations, and their volume fractions. These values are summarized in Tab.

6.2:
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Figure 6-2: One-day heat cured specimen 'HC-1' (w/c = 0.4): Frequency plot of indentation

modulus determined by grid nanoindentation (No. of tests = 200).
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Figure 6-3: 28-day heat cured specimen 'HC-28' (w/c = 0.5): Frequency plot of indentation

modulus determined by grid nanoindentation (No. of tests = 200).
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Figure 6-4: One-day heat treated specimen 'HT' (w/c = 0.5): Frequency plot of indentation

modulus determined by grid nanoindentation (No. of tests = 200).
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Mean Values and Intrinsic Properties The in&ntation modulus of the LD C-S-H and

HD C-S-H remains almost unaffected by the thermal curing and treatment: the LD C-S-H

reduces only slightly for the heat cured specimens (HC-1 and HC-28) compared with the control

specimen, while the heat treated specimens appear to remain virtually unchanged. The relative

changes in mechanical properties are much smaller than the standard deviations and should

not be considered statistically representative. Same trends are observed for the HD C-S-H:

Heat curing application shifts slightly the indentatioh' modulus (MHD = 31.0 GPa for the

control specimen to MHD = 29.8 GPa, Mjfb = 28.5 GPa for the 1-day and 28-day thermally

cured specimens. Similarly, the heat treatment process has no statistically significant effect

on the elasticity, MHD = 29.1 GPa compared to MHD =~31.0 GPa for the control (no heat

treatment). It therefore appears that the application of moderate heat has little if any effect

on the elastic moduli of the individual chemical phases. Furthermore, these values are in

excellent agreement with previous reported results obtained on other cementitious materials;

see discussion in Section 5.4. The excellent agreement seems to confirm that the determined

stiffness values of the two C-S-H phases are independent not only of the mix proportions ('HC-

1' [w/c = 0.4] and DUCTALTM [w/c = 0.2]), but most likely as well of the thermal curing

('HC-1' and 'HC-28') in the considered temperature range and of thermal treatment ('HT' and

DUCTAL T M ). Instead, these properties are intrinsic to the formation process of the C-S-H

phases. Finally the elastic properties of the Portlandite phases appear to remain unaffected by

the application of these moderate heat conditions (Tab. 6.2).

Relative Volumetric Proportions In fact, thermal curing induces changes in the volumet-

ric proportions of the different phases:

C HC-1 HC-28 HT

[%] [%] [%] [%]

8 2 16 6 Macropores

f = 51 50 28 48 LD C-S-H (6.1)

25 29 31 30 HD C-S-H

13 10 20 13 CH

3 9 5 3 CL
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1. The heat curing appears to favor the formation of HD C-S-H. The relative proportion of

LD-to-HD C-S-H shifts from 51/25 = 2.0 in the control specimen to 50/29 = 1.7 in the

1-day heat cured specimen ('HC-1') and 28/31 = 0.9 in the 28-day heat cured specimen

('HC-28'). Heat curing, therefore, appears to be associated with a densification of the

C-S-H matrix at Level I. This densification is a function of the heat curing duration, with

prolonged 60'C hydrations to favor higher densifications. In return, this densification of

the matrix appears to occur at the expense of an increase in porosity at the considered

scale. If we attribute an indentation stiffness (0 - 13 MPa) to a nanoindentation into

a bulk phase dominated by this macroporosity, the volume fraction obtained from the

fitting of the Gaussian distribution in Figs. 6-2 to 6-4 increases from 8% for the control

specimen, 'C',to 16% for the 28 heat cured specimen, 'HC-28'. Any possible increase of

macroporosity for the HC-1 specimen might have been obscured by the reduced initial

w/c-ratio which tends to reduce the total porosity (see Section 4.5). Given the w/c-ratio

of the 1-day heat cured specimen, w/c = 0.4 < 0.42, one should expect little to no capillary

porosity in this material. The fact that a small proportion of macroporosity exists (2%)

in the 1-day heat cured specimen suggests that there is a certain degree of macroporosity

generated in response to C-S-H densification.

2. On the other hand, the volumetric proportions of the C-S-Hs remain almost unaffected

when heat is applied at a hardened state (heat treatment). The ratio of the LD to

HD C-S-H for the heat treated specimen, 48/30 = 1.6 is only slightly reduced (control,

51/25 = 2.0). This comes to suggest that the formation of HD C-S-H under moderate tem-

perature conditions is favoured at the early stages of hydration where the physicochemical

environment together with the 60'C temperature application promote the formation of a

HD C-S-H form. It is a HD C-S-H formation that takes place in heat cured specimens,

rather than a LD to HD conversion.

3. A further result that is evident from the frequency plots is a change in volume fraction

of a high stiffness phase M > 50 GPa. This phase corresponds to residual clinker phases

(X = C3 , C2 , C 3 A, C 4 AF), which have been reported to have nanoindentation stiffness

values of Mx > 125 GPa [2,239]; see Tab. 4.7. As it was discussed in Chapter 5, due
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to the high contrast between the moduli of clinkeriphases and the substrate (C-S-H) the

scaling conditions (5.33a) are almost never satisfied, resulting in indentation moduli in

the range anywhere from 50 - 140GPa. Provided that there is enough contrast for those

phases to be separated in the frequency plots, this phenomenon poses no restriction on

the grid indentation analysis. The values obtained however represent the clinker-substrate

composite response and should be treated with caution. The volume fraction of the clinker

phases seems to remain relatively unaffected by the heat curing process. We recall however

that the activation energy of the hydration reaction is around 400 J/g thus moderate

temperatures during curing can significantly accelerate hydration. If one could consider

the mechanical properties of the residual clinker phases at the early stages of hydration,

a more significant deviation would have been expected: The heat cured specimens are

expected to have a significantly lower volume of clinker phases, as the accelerated degree

of hydration would have consumed their largest volumetric percentage. It should be

emphasized, however, that the accelerated rate of reaction is particularly evident at the

early stages, where the rate determining step is a chemical reaction and therefore up to

1-2 days the reactions have normal temperature dependency. At later timepoints, the

rate-determining step is diffusion which is less sensitive to temperature, and as a result

the deviation in degree of hydration tends to decrease. The large values of residual clinkers

observed in the case of the HC-1 specimen (fa = 0.09) can be attributed to the reduced

w/c-ratio used for that specimen and probably the younger age (see Tab. 6.1). Finally

a comment is due on the volumetric proportions of Portlandite crystals: In general the

CH content scales with the degree of hydration for a given CBM system (see Eq. (4.5)

in Section 4.1). While such a relationship is evident from the experimental data obtained

from our indentation analysis, the high percentage of CH for the HC-28 specimen is more

significant than the others. This suggests that heat curing promotes a higher volumetric

proportion of CH phases present at Level II, in the form of large crystals.

Mapping of Nanoindentation Stiffness

As it was proposed in Chapter 5, a second way of analyzing the grid indentation results consists

in mapping the mechanical properties obtained during nanoindentation. Each indentation result
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is assigned to a point on the grid that corresponds to the center of the indent. The discrete data

points are linearly interpolated in between grid points to obtain continuous fields of mechanical

properties, with a resolution defined by the grid spacing of 10-5 m. The results are displayed

on the x - y plane in form of contour plots that capture ranges of mechanical properties. We

briefly recall the scheme used in the mapping procedure (see Section 5.3.2):

1. Macroporosity domain 0 - 13 GPa

2. Low-Density C-S-H domain 13 - 26 GPa

3. High-Density C-S-H domain 26 - 39 GPa

4. Unhydrated clinker and CH domain > 40

Figures 6-5 to 6-8 display each the results of two maps of 100 nanoindentation results for

the control specimen ('C' - Figs. 6-5), the 1-day heat cured specimen ('HC-1' - Figs. 6-6), the

28-day heat cured specimen ('HC-28' - Figs. 6-7), and the 1-day heat treated specimen ('HT'

- Figs. 6-8). The contour plots substantiate the analysis of the frequency plots: they highlight

the creation of a new pore class as a consequence of the heat curing (Figs. 6-6 and 6-7), and

provide evidence of a substantial change of percolation of the C-S-H phases (Figs. 6-6 and 6-7):

" Heat curing creates macroporosity: While almost absent in the control specimen 'C' (a

single point in Fig. 6-5 represents rather a statistical event than a morphological pattern),

the macroporosity domain becomes an identifiable morphological pattern in the maps of

the 1-day and 28-days heat cured specimens (Figs. 6-6 and 6-7), in which the macropores

occupy regions several times the grid spacing of 10-5 m.

" Heat curing changes the morphology: In the control specimen (Figs. 6-5), the continuous

(percolated) solid phase appears to be the LD C-S-H, which forms a matrix that accom-

modates residual clinker phase encapsulated into a rim of HD C-S-H. By contrast, in the

heat cured specimens (Figs. 6-6 and 6-7), there is a larger proportion of HD C-S-H present

which tends to percolate throughout the microstructure, while the LD C-S-H appears to

be disconnected and situated around the large macropores. It almost appears as if the

HD C-S-H forms a continuous matrix that accommodates the macroporosity encapsulated

into a rim of LD C-S-H.
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Figure 6-5: Control specimen 'C' (w/c = 0.5): Contour plots of the spatial distribution of stiff-

ness (in GPa) in the microstructure obtained by grid nanoindentation (grid spacing = 10-5 M).

Each grid point corresponds to a single nanoindentation test (unloading from a maximum in-

dentation depth of 3 x 10-7 m). The two figures display the spatial variability that one may

expect using this novel technique of 'mechanical mapping'. The numbers in the figure are

attributed to 1 = porosity, 2 = LD C-S-H, 3 -_ HD C-S-H, 4 = CH and clinker phases.
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Figure 6-6: One-day heat cured specimen 'HC-1' (w/c = 0.4): Contour plots of the spatial

distribution of stiffness (in GPa) in the microstructure obtained by grid nanoindentation (grid

spacing = 10-5 m). Each grid point corresponds to a single nanoindentation test (unloading

from a maximum indentation depth of 3 x 10-7 m). The numbers in the figure are attributed

to 1 = porosity, 2 = LD C-S-H, 3 = HD C-S-H, 4 = CH and clinker phases.
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Figure 6-7: 28-day heat cured specimen 'HC-28' (w/c = 0.5): Contour plots of the spatial

distribution of stiffness (in GPa) in the microstructure obtained by grid nanoindentation (grid

spacing = 10-5 m). Each grid point corresponds to a single nanoindentation test (unloading

from a maximum indentation depth of 3 x 10- m). The two figures show the creation of a

large concentrated macroporosity (a) and the percolation of the HD-C-S-H phase (b) in the

microstructure. The numbers in the figures are attributed to 1 = porosity, 2 = LD C-S-H, 3

HD C-S-H, 4 = CH and clinker phases.
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Figure 6-8: One-day heat treated specimen 'HT' (w/c = 0.5): Contour plots of the spatial

distribution of stiffness (in GPa) in the microstructure obtained by grid nanoindentation (grid

spacing = 10-5 m). Each grid point corresponds to a single nanoindentation test (unloading

from a maximum indentation depth of 3 x 10-7 m). The numbers in the figure are attributed

to 1 = porosity, 2 = LD-C-S-H, 3 = HD-C-S-H, 4 = CH and clinker phases.
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MP _LDC-S-H HDC-S-H CH
Control'C' H [GPa] 0.16± 0.07 0.47 ±0.17 0.87 ±0.08 1.19±0.16

_[%] 43 36 9 14

'HC - 1' H [GPa] 0.14 ± 0.07 0.47 ± 0.15 0.85 ± 0.07 1.20 ± 0.22

[%] 50 32 8 18

'HC - 28' H [GPa] 0.20 ± 0.10 0.45 ± 0.15 0.89 t 0.11 1.37 ±_0.07

[%] 50 33 12 5

'HT' H [GPa] 0.20 ± 0.16 0.43 ± 0.12 0.80 ± 0.15 1.29 ± 0.12

[%] 80 28 19 9

Table 6.3: Nanoindentation results: Indentation hardness, coeeficient of variations, and volume
fractions obtained from a statistical analysis of the frequency plots. The maximum indentation
depth was 200 nm.

9 No significant morphological change is induced by heat treatment: Heat treatment at

60'C has little impact in the morphological arrangement of the microstructure. A small

increase in the volume fractions of the HD C-S-H as reported by the frequency analysis

is also evident in the mechanical maps, Fig. 6-8. The LD C-S-H, however, continues to

be the percolated phase in the systems. This mapping methodology further demonstrates

the insensitive nature (at least at Level I) of the microstructure to the heat application

in the hardened state of the material.

Nanohardness Results

Frequency plots of the nanohardness values obtained by grid indentation are displayed in Figs.

5-17 and 6-9 to 6-11. Similar to the nanostiffness values, it is possible to attribute from the

frequency plots specific hardness values to the different phases. Consistent with the above

analysis (see Section 6.2.1) the hardness values of LD and HD C-S-H remain unaffected by the

heat application whether this is applied at the early stages of hydration (heat curing) or at

later hardened state (heat treatment). The hardness values of the 1-day heat cured specimen

('HC-1' - Figs. 6-9), the 28-day heat cured specimen ('HC-28' - Figs. 6-10), and the 1-day heat

treated specimen ('HT' - Figs 6-11) differ little from the control specimen hardness, ('C' - Figs.

5-14). The actual values obtained from the frequency analysis are summarized in Tab. 6.3:

The value of the MP, LD C-S-H, HD C-S-H remain almost constant at a value of HMP -- 0.16,
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Figure 6-9: One-day heat cured specimen 'HC-1' (w/c = 0.4): Frequency plot of indentation

hardness determined by grid nanoindentation (No. of tests = 200).
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Figure 6-10: 28-day heat cured specimen 'HC-28' (w/c = 0.5): Frequency plot of indentation

hardness determined by grid nanoindentation (No. of tests = 200).
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Figure 6-11: One-day heat treated specimen 'HT' (w/c = 0.5): Frequency plot of indentation

hardness determined by grid nanoindentation (No. of tests = 200).
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HLD - 0.45, HHD - 0.84, HHD ~ 1.30 respectively. A small increase in the hardness values of

the CH phase with temperature application maybe attributed to a densification process that

the material undergoes until a complete disintegration at (400 - 600 C). The increase, however,

is within the limits of the standard deviation and cannot be considered statistically significant.

Nanocreep Results

The indentation loading phase is followed by a dwelling phase, during which the maximum

load is kept constant over a specific period of time. During this phase, the displacement is

recorded as a function of time. A plot of the indentation depth vs. time allows one to assess

the creep behavior of the material under investigation. The extraction of creep properties from

indentation requires the use of an analytical model of indentation on a viscoelastic material. The

extraction process is a matter of current, intense research and a detailed exposition goes beyond

the scope of this presentation [50,237]. However, a first order estimate of the creep process of

the material can be obtained by modeling the data in a simplified way. Two possibilities are

explored to characterize this creep behavior. The first one is motivated by creep theory of

cementitious composites [18, 3], according to which the creep rate in the absence of any length-

time scale evolves with t-1 . This phenomenon is explored by using a logarithmic function to

fit the experimental data:

h (t) - h (0) = A In (Bt + 1) (6.2)

where h (0) is the penetration depth at the beginning of the dwelling period; and A, B are

fitting parameters that characterize the dimensionless indentation creep rate:

dA -_h ; h (t) - h (0) _-- = exp (-); =; t = Bt (6.3)dt A

The fitting parameter A (of dimension [A] = L) can be seen as a characteristic length scale,

and B (of dimension [B] = T- 1 ) as a characteristic rate constant, that allow characterizing the

time dependent deformation.

A second way of exploring the creep rate in an indentation test was suggested by Mayo et

al. [166], who found that the steady-state strain rate, at each point under the indenter, scales
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with the penetration rate divided by the current contact depth:

1 dh
fint = - (6.4)

he dt

While Eqs. (6.2) and (6.4) are rather qualitative than quantitative, they provide a first-order

means for comparing the creep behavior of heat-cured and normal cement-based materials. The

steady state calculations were performed only at the microindentation results were the holding

period was enough (150 s) to resolve this regime. The 5 s holding period employed for the

nanoindentation tests did not allow access to the steady state creep domain.

Figure 6-12 display frequency plots of the two creep parameters A and B that were obtained

by fitting Eq. (6.2) to the indentation depth vs. time curve during the dwelling period of roughly

5 s. We note:

1. The creep parameter A of length dimension has two characteristic peaks for the control

specimen, which reduces to only one peak in the heat cured and heat treated specimens.

The first peak situated around A = 3 - 5 nm characterizes all four materials at the

nanoscale, and can be identified as the characteristic value of A of the HD C-S-H phase.

The second peak situated around A = 8 - 10 nm is characteristic of the LD C-S-H

phase. This peak almost disappears as a result of heat curing. Although for heat cured

specimens this is consistent with the preferred formation of LD C-S-H into HD C-S-

H (see Tab. 6.2), the data seems inconsistent for the heat treated specimens which

showed no significant shift in volumetric proportions. It appears that there is a second

mechanism were temperature application operates: Apart from densifying the matrix

through enhanced HD formation it seems to operate at the interlayer level where structural

water is situated (Level 0). To get a better understanding of this confusing result we

plotted the A parameter versus the indentation modulus and hardness. Figure 6-13 shows

the intuitive result that harder and stiffer material exhibit less creep. What is of primary

importance, however, is to see the effect of heat curing and heat treatment on the scaling

behavior of A vs. H, M: The best fitted lines demonstrate a shift on the vertical axis.

Recalling that the indentation moduli and hardness of both phases remain unaffected,

such a shift suggests that the intrinsic creep capacity of the LD and HD C-S-H phases
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reduces by the application of heat, more for the heat treated specimens than for the heat

cured specimens. Using the indentation moduli values from table 6.2 into the best fitted

lines of Fig. 6-13 yields estimates of the creep coefficients A:

LD C-S-H HD C-S-H

8.Onm 4.4nm ('C')

(A) = 6.3nm 4.4nm ('HC-1') (6.5)

5.1nm 4.Onm ('HC-28')

4.Onm 3.Onm ('HT')

Results in (6.5) suggest that the effect of temperature on the A parameter is both a

function of duration and time of application. It primarily shows that heat effect initially

operates on the LD C-S-H ('HC-1') and eventually affects both LD and HD C-S-H creep

capacity ('HC-28'). It is also impressive to note that the application of heat brings the

creep capacity of the two phases very close to each other ('HC-28' and 'HT'). In particular,

heat treatment has a more drastic effect that results in a creep ratio of ALD/AHD = 4/3 =

1.33. This clarifies the fact that ALD and AHD cannot be resolved from the frequency plots

of Fig. 6-12, as they merge together into a single peak. While the actual mechanism that

leads to the reduction in A is not identifiable from the indentation techniques, this finding

suggests that temperature application improves creep behavior by affecting C-S-H phases

at the interlayer nanometer level (Level 0). Finally, a comment is due on the magnitude

of this length parameter A characterizing the creep response: A value for A of 3 - 8 nm

compares well with the globule size suggested by Jennings (-5nm) and a characteristic

length of creep deformation suggested by Wittmann (-5nm). All three values are in

favour of the interpretation that most of the deformation is on the characteristic size of

the individual C-S-H solids which suggests that the individual globules are highly involved

in the creep process.

2. The rate constant B is almost constant for all four materials. Fitted for a 5 s dwelling

duration, it is on the order of B = 1.3 - 1.5 s-1. There is a slight difference of the

peak value between HC-1 and HC-28, but this difference is smaller than the standard
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deviation. Hence, in sharp contrast to the length parameter A, the rate of the time

dependent deformation is not affected by the thermal treatment. It is impressive also to

note that the scaling of B vs. H, M shows no apjarent trend signifying the independence

of the time scale of deformation (see Fig. 6-14). Heat treatment seems to be associated

with a certain degree of disorder as the spread in the values gets more significant. The

mean value however remains the same.

3. The results on heat treated specimens suggest that the application of heat operates at

two levels: There is a conversion of LD to HD C-S-H (limited for heat treatment and

more pronounced in the case of heat curing) that tends to densify and stiffen the matrix

(Level I), and there is a second independent mechanism at Level 0 that enhances the

globule and makes it less susceptible to time dependent deformation. Associating the

creep behavior to the movement of lamellae along water occupied interfaces, indentation

results would suggest that temperature application reinforces these sites probably by

means of removing interlayer water or hydroxyl groups from that region and bringing the

lamellae closer together (for example transforming from a 1.4 nm Tobermorite to 1.1 nm

Tobermorite - the difference being 1 layer of water molecules). This is consistent with the

reported increase in polymerization of the heat cured and heat treated specimens, their

reduction in weight [230], and the reduction in the basal spacing [56].

6.2.2 Level II: Microindentation Results and Cement Paste Properties

An indentation depth on the order of roughly 10-5 m was used to access Level II. A depth

of this magnitude tends to homogenize the composite response of all phases found at Level I.

In fact this is reflected by the low standard deviation observed for our results as compared to

nanovalues. Table 6.4 summarizes the microindentation results on the control specimen ('C'),

the heat cured specimens ('HC-1', HC-28'), and the heat treated specimens ('HT'). The results

are average values and standard deviation of respectively 10 indentation tests for the control

specimen 'C', the 1-day heat cured specimen ('HC-1'), and the heat treated specimens ('HT')

and 30 indentation tests for the 28-days heat cured specimen 'HC-28' (see Tab. 6.1). The higher

number of indentation tests for the HC-28 sample was necessary because of a higher standard

deviation of the elasticity, which is due to the large macropores that interfere at the micro-
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indentation scale of 10~ m. While the mean values obtained for the control specimen allow

an interpretation as characteristic properties of the homogenized material, i.e., cement paste,

given the size of the macropores generated in heat-cured specimen, a continuous interpretation

should be handled with care. Nevertheless, some interesting trends become apparent which are

discussed below.

Indentation Modulus

The elastic indentation stiffness remains practically unaffected by heat curing; the slight increase

in mean value from 19.1 GPa for the control specimen 'C' to 19.5 GPa for 'HC-28' is smaller than

the standard deviation. It appears that the two competing mechanisms that characterize the

mechanical effect of heat curing at a scale below, that is the densification of the C-S-H matrix

and the generation of a macroporosity, cancel each other out. In return, the higher standard

deviation for heat cured specimens is. indicative of a higher degree of disorder, induced at a

scale below by the creation of the macroporosity. The slightly higher elasticity of the 1-day

heat cured specimen HC-1, is due to the lower w/c ratio of 0.4 which leaves a higher proportion

of high stiffness residual clinker phases in the material than in the w/c = 0.5 materials, and

which affects the elasticity of the cement paste. Consistent with the nanoindentation results the

indentation modulus of heat treated specimens (HT) is virtually unaffected by the thermally

applied conditions. The almost unchanged modulus reflects the insignificant modification of

the microstructure happening at a -cale below (Level I).

Hardness

The hardness which is a measure of the strength properties (see Eq. (2.15)), decreases for the

w/c = 0.5 materials ('C' and 'HC-28') by roughly 20% as a consequence of the heat curing. This

is consistent with strength data on heat cured specimens found in the literature [79]. In other

words, in contrast to the stiffness properties, the densification of the C-S-H matrix does not

compensate for the increase in macroporosity in terms of strength properties. An interesting

result is that the 1-day heat cured specimen ('HC-1') has a greater microhardness than both the

control specimen ('C') and the 28-day heat cured specimen ('C'), which is an opposite trend

to what has been observed at the scale of the individual components (Level I). The higher
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Control ('C') HC-1 HC-28 HT
(w/c = 0.5) (w/c= 0.4) (w/c = 0.5) (w/c = 0.5)

M [GPa] 19.1 ± 1.7 21.0 t 2.0 19.5 4.9 20.2 2.1
H [MPa] 498 8 780 17 406 18 495 10
A [nm] 205 25 172 14 161.7 0.5 150.2 ± 12

(150 ± 17)* (142 ± 13)* (123 ± 19)* (115 ±19)*
B [s-1] 0.39 ± 0.12 0.44 ± 0.10 0.47 ± 0.17 0.48 ± 0.15

(0.89 ± 0.14) (0.74 ± 0.10) (1.07 ± 0.31) (1.10 ± 0.10)
int [s-1 X 10-4] 2.8 2.7 2.5 2.4

p [%] 42 36 43 43

Table 6.4: Microindentation results: Indentation stiffness, hardness and creep characteristics de-
termined from indentation curves. The maximum indentation depth was approximately 10/1m.
* = creep parameters fitted for a 10 s dwelling period.

hardness for HC-1 can be attributed to the lower w/c-ratio which is known to reduce not only

the volume of the macroporosity but also its characteristic size. In addition the amount of

residual clinker left in the microstructure is known to contribute to the amplification of the

internal friction which in turn highly affects the hardness behavior of materials (see Fig. 2-9 in

Chapter 2).

Consistent with our indentation investigation at Level I the hardness of the heat treated

specimen remains relatively unchanged. This is in line with the unaffected nature of the in-

trinsic hardness of the two types of C-S-H and also the insignificant shift in relative volumetric

proportions of all phases. Parrott [187] reported uniaxial compression data on a cement paste

of w/c-ratio of w/c = 0.5 that has been normally cured and heat treated at a later stage for

24 hours. Parrott's results showed that the strength of the material was insensitive to the heat

treatment process, which is consistent with our hardness results.

Creep

The heat cured and heat treated specimens clearly exhibit a smaller time dependent deforma-

tion. This is readily depicted from Fig. 6-15 which displays the indentation creep as a function

of time during the dwelling period. To quantify this behavior, the logarithmic function of Eq.

(6.2) is fitted through the curve for the dwelling period of 150 s. A second fit was performed for

a dwelling period of 10 s, in order to check the sensitivity of the fitting parameters with respect

to the time scale of observation. The values of the two constants A and B are reported in Tab.
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6.4, together with the steady-state creep rate int fitte'd according to Eq. (6.4). It is interesting

to note that the difference in the rate constant B in between the samples is smaller than the

standard deviation, so that this rate constant seems to be not the most affected by heat curing.

Similarly, neither the initial indentation creep rate dh/dt (t = 0) = A x B (A x B = 80 nm/ s for

the control specimen 'C', A x B = 76 nm/ s for both heat cured specimen 'HC-1' and 'HC-28',

and A x B = 81 nm/ s for the heat treated specimen) nor the steady-state creep rate jnt appear

to be the quantities the most affected by heat curing.- Instead, it is the characteristic length A

that decrease from A = 205 nm for the control specimen 'C' to A = 162 nm and A = 150 nm

for the heat cured 'HC-28' and heat treated 'HT' specimens respectively, entailing a smaller

time dependent deformation of the thermally con;litioned specimens. This change of the char-

acteristic length scale A as a consequence of thermal treatment is indicative of two phenomena

taking place at two different scales: a) a change of the microstructure manifested by a shift

in the relative volumetric proportions between LD and HD C-S-H (Level I), b) reduction in

the creep capacity of the individual globules probably due to polymerization and condensation

reaction activated by thermal energy (Level 0). The significant reduction of the heat treated

specimens which show no change in the relative volumetric proportions, are in favor of this

interpretation. This is also consistent with the shift in the A parameter for the LD and HD

C-S-H observed in Fig. 6-13. We also fitted the logarithmic function to a shorter dwelling

period of 10 s. The obtained values (denoted by (x)*) show some sensitivity with respect to

the time scale of observation, but the trend remains the same: the characteristic length scale

A decreases as a consequence of heat curing while the values for the rate constant are on the

same order, and come very close to the nanoindentation rate constants derived from Fig. 6-13.

This result is an indication that, provided the same time scale of observation (dwelling period

duration), the creep rate constant is independent of the length scale.

6.3 Discussion

The results obtained are discussed here in the light of the multi-scale structure of cementitious

materials displayed in Fig. 4-13. It is compgsed of four scales that are separated by at least

one order of length magnitude, as discussed in details below.
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6.3.1 Level 0: C-S-H Solid - Globule

The lowest level we consider in our analysis is the scale of the C-S-H solid phase, which forms

at early ages by the hydration of C3 S and C2 S. We refer to this scale as Level 0, the level

at which stoichiometric arrangements and physical chemistry are linked with the mechanical

performance of the CBM systems. The colloid model proposed by Jennings (Fig. 4-8) [130, 131]

provides elementary dimensions of the C-S-H solid phase: a solid phase of a characteristic size

of 5.6 x 10-9 m, which includes a 18% intra-solid nanoporosity representative of the interlayer

space within the C-S-H. The mechanical response at this scale is dominated by the surface

properties of the C-S-H gel, and the water present at this scale is structural water. Indentation

results presented above come to suggest that heat curing causes removal of some of the interlayer

water with significant improvements on the time dependent deformation of the material. Seeing

C-S-H matrix from a gel point of view, this polymerization process can be associated with the

condensation reaction, a key reaction in the aging of silica where hydrolyzed molecules are

linked together releasing water molecules in turn. A simplified version of the condensation

reaction is given by:

- Si-OH+HO- Si <-+ -Si -O- Si-+H 20 (6.6)

A slight increase in the total water released on drying (see Tab. 6.4) and a reduction in the total

weight [230] are in favour of this interpretation. While the condensation reaction may affect

the creep behavior of the material it has little effect on the overall elastic and strength behavior

(see below). It is highly possible that the mechanical response of the individual solid particle is

much higher than the agglomerate response rendering its actual value to the composite response

of secondary importance.

6.3.2 Level I: C-S-H Matrix

The solid phase (globule) together with gel porosity yields two characteristic forms of the C-

S-H, a low density form and a high-density form, which manifests itself at a scale above. The

difference in between the two C-S-H phases is the gel porosity, respectively the packing density:

the LD C-S-H is characterized by a gel porosity of roughly OLD = 37%, and the HD C-S-H is

characterized by a gel porosity of roughly OHD = 24%.
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Invariant C-S-H Elasticity Properties and Packing Density

The difference in gel porosity, respectively in packing density (1 - OLD 63% vs. 1 - OHD =

76%) entails different composite stiffness values of the two types of C-S-H that are accessible

by nanoindentation [58]. Since the nano indentation stiffness results (see values in Tab. 6.2)

change insignificantly as a consequence of thermal curing and treatment, it is unlikely that

the gel porosity (or the C-S-H packing), and the nature of the interparticle bonds at this level

are significantly affected by heat curing or heat treatment. It is intriguing to remark that the

LD C-S-H packing density is on the order of the random packing density of spheres of 64%,

which corresponds to the maximum packing density in the random close-packed limit (known as

RCP) 2 . In return, the HD C-S-H packing density slightly exceeds the densest possible packing in

three dimensions (a problem known as the Kepler problem), which is the close-packed hexagonal

or cubic structure, and which has a packitig density of 74% (see Refs. [128 - 71]). This is

significant as it would confirm the conjecture of Jennings's colloid model: that the two-types of

C-S-H are manifestations of the same solid, the only difference being an unstructured (random)

order of the LD C-S-H vs. a highly structured order of the HD C-S-H. While the chemo-

physical origin of these structures is still not known, the universal packing density of the two

types of C-S-H is a good candidate to explain the material invariant nature of the nanoelasticity

properties, that are (almost) insensitive to heat curing and heat treatment. There is important

independent evidence that the degree of silicate polymerization in the C-S-H phase increases

with temperature application and duration (heat curing or heat treatment) as shown by Silicon-

29 Nuclear Magnetic Resonance Spectroscopy [251, 126]. This observation combined with our

experimental finding, that the indentation modulus and hardness do not change with heat

application, suggest that the mechanical properties of the material are independent of the degree

of polymerization. Also this comes to suggest that the pagking density (or relative proportion

of LD/HD) are also independent of the degree of polymerization. It can be speculated that

the degree of silicate polymerization is associated with the orientation of the chemical elements

in the C-S-H solid phase and is restricted within the globule at Level 0, where the interlayer

2 More recent concepts refer to the RCP as the maximally random jammed state (MRJ), corresponding to the
least ordered among all jammed packings, which has been shown to have a density of 63.7%, which is very close
the traditional definition of the random close-packed limit; see [71], and references cited herein.
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structure is simulated. This polymerization however has little influence on the mechanical

properties (hardness and elasticity) of the two-types of C-S-H (although creep is affected). The

overall picture that emerges is that, given the unique characteristic packing modes of these two

phases, the nanoindentation stiffness properties are true (invariant) material properties.

Nanohardness Properties of C-S-H

Similar to the indentation moduli values, the nanohardness appear to be independent of the

w/c-ratio and any moderate heat (60'C) applied to the material at an early or a hardened

state (see Tab. 6.3): We find two characteristic hardness values for the two types of C-S-H,

that have a relatively high scatter and which appear to be independent of heat curing. Some

interesting observations also emerge:

1. The nanohardness ratio of the HD C-S-H to LD C-S-H is almost constant in all three

specimens,

1.85 ('C')

HUHD _ 1.81 ('HC-1')
HLD 1.97 ('HC-28')

1.86 ('HT')

The nanohardness ratio may be attributed to the characteristic packing density of the two

types of C-S-H, and more precisely to the number of contacts required to mechanically

stabilize the packing. Indeed, it has been recently shown that the random packing of

spheres is characterized by on-average six points of contacts [71], while a high-density

packing of spheres has a maximum of twelve points of contacts [209] (that is twice as much

as the one in the random close-packed limit (RCP), which almost perfectly correlates with

the measured nanohardness ratio in Eq. (6.7)). Rather than a coincidence, we see here

a second piece of evidence (in addition to the packing density) supporting the hypothesis

of the characteristic packing patterns of the LD C-S-H and the HD C-S-H. It suggests

that the hardness (and thus the strength properties) of the two types of C-S-H is a

mere consequence of the packing density, and more precisely of the number of contacts

stabilizing each solid sphere in the system. The higher the packing and thus the number

of contact points, the greater the number of degrees of freedom along which the system
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can dissipate energy at the limit stage associated with strength, and which translates into

the measured nanohardness values.

2. The invariance of the two nanohardness values further enforces the idea that there is

little change in the morphological arrangements of the two phases (at Level I), and that

packing density and nature of bonding remains "the same. The experimental observa-

tion that the degree of polymerization is not related to the volumetric proportions of

the two phases comes to suggest that the formation of the two microstructures, or two

characteristic packing modes, is a consequence. of kinetic or other chemophysical reasons

[230]. Furthermore, this demonstrates that the LD and HD C-S-H hardness and, as a

consequence the macroscopic strength behavior, is driven by the porosity contained in

them and that changes that may be happening within the globule structure are of little

significance macroscopically.

Nanocreep Properties of C-S-H

The creep properties expressed by the constants A and B (see Figs. 6-12 and 6-13) are fitted

parameters that are qualitative in nature, rather than being physical quantities that can be used

to quantify the creep behavior of the nanocomponents of cementitious materials. Nevertheless,

the main observations obtained by nanoindentation provide a clear hint towards the scale of

the origin and the effect of microstructure on the time dependent deformation of cementitious

materials. In particular:

1. The fact that the characteristic rate constant B is the same irrespective of the density

of the C-S-H implies that the rate determining mechanism of creep is situated at a scale

below the one where the density becomes apparent in form of two types of C-S-H. It

provides some evidence that the time dependent deformation originates from the C-S-H

solid phase, i.e., from the basic building block of C-S-H at a length scale of some nanometer

(see Fig. 4-8). Further results on nano and microindentation on heat cured and heat

treated specimens are in favour of this interpretation. This conclusion, is consistent with

what has been speculated for a long time by several researchers [194, 17, 3], that the

origin of creep is situated somewhere in the 1'&nanoporosity, involving most likely the
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structural water.

2. By contrast, application of heat curing or heat treatment to cementitious materials affects

the creep magnitude expressed by the characteristic length scale A. Application of heat

tends to reduce the A parameter forthe two phases, with heat applied at a hardened state

to have more drastic results. In terms of Jennings colloidal model, creep deformation can

be visualized in two ways: 1) globules moving relative to each other with the number

of bonds remaining the same; or 2) time dependent deformation is taking place within

each globule either through a crystallization, condensation or any other aging process,

as response to stress or strain localizations. Indentation results presented in this chapter

come to suggest that probably both phenomena are at stake, although a conclusive remark

cannot be verified. Further investigation is required to elucidate these issues.

6.3.3 Level II: Cement Paste

The two-types of C-S-H plus CH and residual clinker and the macroporosity are the components

of the cement paste. Its macroscopic mechanical behavior is therefore intimately related with

the mechanical response of all these phases as well as their interactions. At this scale, it appears

that two competing mechanism are at work as a result of heat curing: (1) the densification of

the C-S-H matrix, and (2) the creation of the macroporosity. These phenomena, however, are

not mutually independent. To illustrate our purpose, we compare the total porosity of the

control specimen with the total porosity of the 28-d heat cured specimen. The total porosity

is the sum of the yo = 18% nanoporosity included in the C-S-H solid phase, the OLD = 37%

and #HD = 24% gel-porosity of the LD C-S-H and HD C-S-H, and the macroporosity 0 , hence

(see e.g. [235]):

P = [PO (1 - OLD) + OLD fLD + [s0 (1 - 'HD) + OHD] fHD + 00 (6.8)

where fLD and fHD represent the volume fractions of the LD C-S-H phase and the HD C-S-H

phase present in the cement paste. Using the values from Tab. 6.2, we obtain for the control

specimen pc = 0.41 and for the 28-day heat cured specimen PHc-28 = 0.42. The almost prefect

agreement of the total porosity of control specimen and heat-cured specimen confirms that the
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creation of the macroporosity due to heat curing is a consequence of the conversion of LD C-S-H

into HD C-S-H. In contrast, heat treatment is associated with little morphological changes. The

relative proportions of LD , HD and CH are little affected. Using the volumetric proportions

of the individual chemical constituents in (6.8) yields an estimate for the total porosity, PHT =

0.42. These estimated values of total porosity are to be compared with porosity measurements

performed on the specimens by drying them at 105'C for 24 hours (see Tab. 6.4). Several

things become apparent: a) The measured porosities are slightly overestimated suggesting that

a certain degree of chemically bound water might have been released on heating at 105'C; b) The

HC-28 and HT specimens released slightly higher propoition of water (1%) which is in favor of

the condensation reaction that tends to releas.e water inreturn; c) It is impressive to see that the

total porosity remains little affected by heat curing (densification process) and heat treatment

process. The total porosity appears to be highly dependent on the initial mix proportions (see

PHC-1 = 0.35 for 'HC-1' in Tab. 6.4) and not on the curing conditions. This suggests that

the densification process is associated with local contraction phenomena and not with global

shrinkage deformations. This conversion observed in the case of heat cured specimens reduces

the gelporosity, but is compensated by the creation of macroporosity, so that the total porosity

remains almost constant. It is this internal transformation of mesoporosity into macroporosity

that affects the mechanical properties of heat cured cement pastes. Regarding the elasticity, the

densification of the C-S-H phase appears to compensate for the increase in macroporosity. On

the other hand, the decrease in strength is a clear consequence of the macroporosity generation,

and is not compensated by the densification of the C-S-H matrix. This coarsening of the

macroporosity, as it is often referred to in the literature [21], leads to stress concentrations in

the C-S-H matrix, leading to a lower overall .material strength, particular in high w/c ratio

cement-based materials. It is noteworthy that the scater of the hardness values of the cement
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paste is quite small, when compared to the scatter of the hardness values at all scales below:

Cement Paste

1.6% ('C')

- = 2.2% ('HC-1') (6.9)

4.4% ('HC-28')

2.0% ('HT')

The small scatter, as expressed by (6.9), is not only a clear indication of the homogenized

nature of the properties obtained by indentation at the scale of the cement paste, but also a

clear indication that one detrimental phenomenon is at work governing the strength properties

of the cement paste: the coarsening of the macroporosity. This phenomenon seems to dominate

over other possible effects such as a reduced hydration degree of the allite and ferrite phase in

high temperature hydration [78], that have been correlated in the past with the observation

of a reduced strength capacity. Rather chemical in origin, the strength loss due to thermal

curing appears to us a consequence of the change of microstructure at the scale of the cement

paste. It is interesting to note that the microhardness values for the three w/c = 0.5 materials

('C', 'HC-28', and 'HT') are very close to the nano-hardness values of the LD C-S-H (see Tab.

6.3). This may not be a coincidence. In fact, regarding the control specimen, with almost non-

detectable macroporosity, the closeness of nano- and micro-hardness values would hint towards

relevance of the weakest link theory, according to which the strength behavior is governed by

the weakest phase in the material system, which is the LD C-S-H phase and which appears

to dominate the strength behavior of the cement paste. A similar argument can be made for

the 28-day heat-cured material ('HC-28'): the generation of the macroporosity leads to higher

stress concentrations in the C-S-H matrix; and in particular in the LD C-S-H surrounding

the macropores (see Fig. 6-7), which therefore becomes dominant in the strength behavior

of the cement paste. Regarding the w/c = 0.4 material ('HC-1'), despite the creation of the

macroporosity and the lowest C-S-H matrix hardness (Level I), the microhardness is greater than

the hardness of the C-S-H matrix. It is unlikely, however, that this increase in microhardness is a

consequence of the heat treatment, but should be attributed to the reinforcing effects of (almost)

rigid clinker phases present in this low w/c material. This frictional enhancement, which is
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sensed at the microindentation scale, translates into a higher microhardness value. Here, a

possible source of macroscopic strength enhancement by means of mix proportions becomes

apparent. Finally, heat treatment which neither exhibits a change in the microstructure nor a

change in the intrinsic hardness has little deviation frdin the control specimen at macroscopic

scales.

Application of heat appears to affect the macroscopic time dependent deformation in two

ways: a) by reducing the intrinsic creep capacity of the only creeping phases LD and HD C-S-H;

and b) changing the relative volumetric proportions and morphological characteristics (for early

age heating only). The smaller time dependent deformation of heat-cured specimen is a clear

consequence of the densification of the C-S-H phase. In contrast to the strength performance,

the creep behavior seems not to be affected by the macroporosity generation. It is a result of a

denser C-S-H structure dominated by a low creeping HD C-S-H phase, that confines the time

dependent deformation of LD C-S-H. Provided the same time scale of observation, the creep

rate is the same at all scales. In the case of heat treated specimens it is the reduction of the

intrinsic creep capacity of the globule that leads to a reduction in the ALD and AHD which

eventually translates into an overall macroscopic creep reduction. The reduced creep capacity

can be attributed to the condensation reaction that removes hydroxyl groups and water from

the interlayer space (within globule) and polymerizes the material. It is impressive to see that

the C-S-H phase can be converted at a hardened state to a phase with reduced creep capacity

by simply exposing it to 60'C for a few days. This comes at no expenses of strength or elasticity

reduction. Here, a possible source of improved creep performance by means of heat treatment

becomes apparent.

6.4 Chapter Summary

Experimental data presented in this chapter provides clear evidences of the C-S-H contribu-

tions at the macroscopic mechanical performance. Much of the results obtained by the newly

developed technique of massive grid nanoindentation hint towards two characteristic packing

patterns of the C-S-H, that can explain much of the macroscopically observed stiffness, strength

and creep behavior of cementitious composites. The two level experimental investigation of the
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effect of heat curing and heat treatment on white cement paste comes to suggest that the

mechanical properties of the two types of C-S-H are intrinsic material properties that do not

depend on mix-proportions, thermal conditions, age of cement, etc., but are rather intrinsic

to the chemical phases that are formed during the hydration of the C3 S and C2 S. The results

presented above demonstrate clearly that the macroscopically observed mechanical evolution is

a reflection of the changes in the relative volumetric proportions of the different phases present

in the microstructure as well as their morphological arrangement in space. In other words the

very nature of the formation products is unique, and remains unaffected by moderate heat

application, and it is only the kinetics of the chemical reaction that change. We have to note

however that heat application appears to be associated with an increase in polymerization and a

decrease in water content which is reflected as a reduced deformation potential. These changes

however, appear to be linked with Level 0 of our multi-scale structure at length scales of 10- 9 m

situated within the individual particles and, as a consequence, they have little influence on the

intrinsic C-S-H (and the macroscopic) stiffness and strength behavior. They do, however, influ-

ence the creep potential of the material, which suggests that most of the deformation behavior

takes place at the C-S-H lamellar level where water molecules and hydroxyl groups become

important. While the analysis of creep data obtained by indentation is still in its infancy, the

technique holds great promise for shedding some light on the industrially relevant deformation

processes.
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Chapter 7

Multi-scale Microporoelastic Model

for CBM Systems

This chapter is devoted to the development of a microporomechanics model for cement-based

materials. It is an extension of a previously developed model [58,60] to account for pressure

build-up inside the saturated pore space. The multi-scale structure presented in Chapter 4

and the indentation results of Chapter 5 make it possible now to upscale poroelastic properties

from very fine scales of CBM materials, where cementitious materials do no more change - in

a statistical sense - from one mix proportion to another. This scale is the scale of the C-S-H

phases, where the morphology and the mechanical properties are intrinsic, being determined by

the chemical formation process, which is deterministic by nature. With this scale in mind, it

becomes possible to employ advanced homogenization techniques of microporomechanics that

became recently available [40,73,74], and adapt them to meet the requirements of the multi-

scale microstructure of cementitious materials, starting at the scale where physical chemistry

meets mechanics. The results of this challenging endeavor are estimates of the poromechanics

properties of cementitious materials at multiple scales. This is, in short, the focus of this chap-

ter. With such a tool in hand, one can quantify the relative contribution of each constituent

on the macroscopic poroelastic performance and in knowledge of the volumetric proportions of

the different constituents present in the microstructure can translate chemical composition into

mechanical performance.
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7.1 Elements of Continuum Micromechanics Applied to CBM

Systems

There has been significant improvement in the field of micromechanics over the last fifty years.

The development of new materials with complex microstructures requires modeling techniques

to predict macroscopic properties. As the tools for microstructural manipulations at the

nanometer scale become available, the demands towards the predictive and illustrative me-

chanical techniques increase. Continuum micromechanics represents the systematic approach

to obtain mechanical properties at a larger length scale based on the properties of the material

below this length scale. Most of the developments in this field focused until recently only on the

linear elastic properties in small deformations [253]. More recent contributions extend the ap-

proach to the micromechanical analysis of porous media and strength properties. The first idea

in studying heterogeneous material systems-that is materials that are composed of different

phases-is to address them in a continuous fashion. This is often referred to as the continuum

micromechanics approach [218]. The origins of continuum micromechanics can be traced back

to the pioneering work of Eshelby [80], who solved the linear elastic problem of an elliptical

inclusion in an infinite medium (see Appendix C). That approach laid out the foundations

for a class of upscaling methods, based on volume averaging and stress-strain localization (see

Section 7.1.2).

7.1.1 Representative Element Volume (R.E.V.) and Equivalent Homoge-

neous Medium (E.H.M.)

Central to continuum micromechanics techniques is the concept of the Representative Element

Volume (R.E.V.). The R.E.V. refers to a sample material volume of the composite, which con-

tains a sufficient number of phase volumes or subvolumes V, so that it is indeed statistically

representative of the composite. Homogenization techniques aim at replacing this inhomoge-

neous complex volume by its equivalent homogeneous material body (E.H.M.) such that, from

a mechanics point of view, it behaves in the same manner. Consider now a structural element

(Fig. 7-1) characterized by a length scale A, composed of a composite material from which

an R.E.V. with a characteristic length scale L can be extracted. Provided an R.E.V. can be
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legitimately defined then the structural analysis can be followed using an E.H.M. with uniform

mechanical properties. The two following conditions must be met to guarantee the R.E.V. and

E.H.M. existence:

1. L < A, A, where A is the length scale of the macroscopic structure in which the considered

material exists, and A is the fluctuation length of the prescribed mechanical loading.

This condition ensures that the continuum mechanics techniques can be applied and the

differential tools of structural analysis for continuous stress and deformation fields can be

determined.

2. L >> 1, where I is the length scale of the heterogeneities considered in the micromechanical

analysis. This condition is necessary to assign homogeneous properties to the macroscopic

scale.

These two conditions are also called the separation of scales principle, which in summary

reads:

S< L < A; L < A (7.1)

The concept of R.E.V. and the separation of scales principle is of extreme importance as it

seems to provide a dividing boundary between continuum theories and micromechanics. For

length scales greater than L we can safely use continuum mechanics and reproduce properties

of the material as a whole. Once the scale becomes comparable with L, microstructural features

should be included in the analysis. Equation (7.1) needs to be confirmed for any application of

the upscaling schemes. The multi-scale structure of CBM presented in Fig. 4-13 was designed

to comply with this principle.

7.1.2 The Three Steps in Continuum Micromechanics

The continuum micromechanics procedure can be summarized in three steps which are detailed

below [253]:

Representation

The representation deals with the description of the considered system. Usually some simpli-

fications in the geometrical description are necessary to deal with complex microstructures.
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L

A

EHM

Figure 7-1: A structural element which is made out of a composite materials characterized by

its representative element volume (R.E.V.). Homogenization techniques aim in replacing the

complex R.E.V. element with an equivalent homogeneous medium (E.H.M.) to assist further

analysis using the tools of continuum mechanics.
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Different phases need to be identified with their mechanical properties and their geometrical

nature. A phase, in continuum micromechanics, as will become clearer in following devel-

opments, is not necessarily a distinct material but rather a subdomain of the overall matter

characterized by an on-average constant stress or strain state. The classical poromechanics

theory is based on a two-phase representation of a porous medium as a solid-fluid composite.

As we will see, such a representation falls short in representing a multi-scale porous material

such as concrete. Finally, the volume fractions and the mechanical properties of the considered

phases are important parameters. An alternative to the use of volume fractions can be the

statistical representation of different equivalent R.E.V.s. Then the probability to find a certain

mechanical property at a point in space becomes the descriptive variable of the representation.

An underlying hypothesis that is made during the analysis is the ergodicity [141], that is the

equivalence between spacial and ensemble averages1 . Averages are therefore all denoted like

the following average of for example the elasticity moduli (see also Section 5.3.3):

(C) = j C (z) dV (7.2)

with C being the fourth order elasticity tensor.

Localization

Localization establishes the link between a macroscopic strain (or stress), prescribed at the

boundary OV of the R.E.V., and the microscopic strain (or stress) in the individual (homoge-

neous) phases composing the R.E.V. With the representation of the R.E.V. at hand, the next

step is the mechanical analysis of this representation. Two types of boundary conditions are

generally considered, called Hashin conditions:

9 Homogeneous stresses applied on the boundary. In this case, the tractions Td = E.n are

applied where E is the macroscopically applied stress tensor and n is the outward normal

vector on the considered R.E.V. V with boundary &V. With these boundary conditions,

The ergodicity hypothesis is further explored in Chapter 5, where we aim in comparing experimentally
obtained spatial averages and ensemble averages. The probability of touching a phase with an indenter appears
to be very well correlated with its volumetric proportions.
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the stress average is then:

(0') = yJ -(z) dV = E (7.3)

where or is the microscopic stress tensor. The average macroscopic deformations are then

defined as:

E = (e) = -- e (z) dV (7.4)

where e is the microscopic deformation tensor.

Homogeneous deformations applied on the boundary. The displacement d = E.z is ap-

plied on 9V with E being the homogeneous macroscopic strain and z the local coordinate

vector. The average of the microscopic strains then follows:

(e) = I/e (z) dV=E (7.5)

and in which case one defines the macroscopic stress as:

E = (or) =_ -11o (z) dV (7.6)

Equations (7.3) and (7.5), which are commonly referred to as the average stress and aver-

age strain theorems respectively [1], can be rigorously proven provided the homogeneous

boundary conditions are applied at the boundary. The assumption of homogenous bound-

ary conditions which itself produces homogeneous field in the body is valid far enough

from the boundary, i.e. almost everywhere in the R.E.V. provided the scale separation

conditions presented in Eq. (7.1) is respected. The localization then consists in deter-

mining the microscopic stresses and strains as functions of the macroscopically applied

boundary conditions. In the simplest case, that is for linear elastic problems, the micro-

scopic and macroscopic stresses and strains are linked through the localization relations

of the type:

e(z) = A: E (7.7)

0(z) = :E (7.8)
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where A and B represent the fourth order stress and strain localization tensors, or concen-

tration tensors, respectively. They provide a direct link between micro (e(z), a(z)) and

macro (E, E) properties. In some special cases these tensors can be evaluated through the

solution of elastic boundary value problems (B.V.P.). In other cases they can be bound

through average relations.

Eshelby's Solution An analytical expression of the strain concentration tensor A can be

obtained in the particular simple case of a composite consisting of one ellispsoidal inclusion

perfectly bonded to an infinite isotropic matrix, subjected to uniform strains E 0 at infinity. In

this case, Eshelby (1957) [80] showed that the strains in the inclusion are uniform and read:

E, = [ff+ IP : (Cp - C0)]4 EO (7.9)

where C, is the stiffness of the inclusion, and C0 the one of the matrix. The tensor PO depends

on the shape of the inclusion, and on the stiffness properties of the matrix. Analytical forms

of these tensors are provided for specific shapes of the inclusion. The spherical inclusion case

which is of particular interest to this thesis is detailed in Appendix C.

The case of an inclusion in an infinite matrix can be extended in several manners to real

composites, first by playing with the shape of the ellipsoid. For instance, cylindrical or penny-

shaped inclusions can be used to model cylinders or cracks; second, by assigning an arbitrary

stiffness C0 to the heterogeneous environment of an inclusion, different homogenization schemes

are obtained. Finally, the strain E0 experienced locally by the inclusion may be different from

the overall boundary condition E.

Dilute Scheme For a composite containing very few non-interacting inclusions denoted by

r > 1 in a matrix of stiffness C1 , the strains inside the inclusions are directly given by Eq.

(7.9), where E0 coincides with the uniform strain E applied at the boundary of the R.E.V. This

dilute estimate of the strain concentration tensor Ad in the inclusions is obtained in the form:

ArZ = [I + P' : (Cr - C')] (7.10)
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In the matrix, Ai' is obtained from the compatibility relation (A) = I in the form:

A = I Zfr [R+ : (C, Cl)] (7.11)
r>1

Interactions Between Phases The analytical dilute case can be extended to a real mul-

tiphase composite by considering the interaction between inclusion phases: the strain in each

phase r is assumed to be the one in an inclusion of stiffness Cr embedded in a fictitious matrix

of stiffness C0 , subjected to a uniform strain E0 :

Er = [I + P : (Cr - C0 )] E (7.12)

The strain average combined with Eq. (7.12) yields the following expression of E0

E 0  {Z fr [ + P : (Cr - C)] :E (7.13)

where E is the strain applied to the R.E.V. From Eqs. (7.7), (7.9) and (7.13), the estimated

expression of the strain concentration tensor becomes:

Arst = [R +Pr : (Cr -Co)]l : fs [I+ PO : (CS - C0)] (7.14)

Mori-Tanaka Scheme In a matrix/inclusion morphology let index 1 correspond to the

matrix, and r > 1 to the inclusion phases. If we replace the reference stiffness C0 by the stiffness

of the matrix C1, we obtain an explicit expression of the localization tensor which takes into

account particle interaction, called the Mori-Tanaka estimate [172]:

ArT [I + Po: (Cr - C1  S [E + Po : (Cs - C1)] (7.15)

Self-Consistent Scheme For polycrystals where all phases play similar roles in the mi-

crostructure, the self-consistent estimate uses as a reference stiffness C0 , the unknown homog-

enized stiffness CSC. In such a scheme the localization tensor is now obtained in an implicit
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fashion:

A'c~[ ps~c: (C -- CSC -1: fs [I+ PC: (C8 - CSC 1 (7.16)

The validity of this scheme was confirmed for polycrystals for which the phase volume

fractions do not differ much from each other [253].

Homogenization

The final step is homogenization, which is based on volume averaging over the R.E.V. of the

constitutive relations defined at the scale of the phases. Homogenization delivers the macro-

scopic poroelastic properties of the E.H.M. as a function of the microscopic phase properties,

their volume fractions, and their specific morphologies. This means expressing the macroscopic

strains and stresses as functions of the microscopic stresses and strains. An important relation

that is used in this procedure is the Hill-Mandel lemma (see Ref. [253]) which guarantees the

equivalence of the macroscopic work and the spatial average of the microscopic work. While in

general the average of the product is different from the product of the averages it is impressive

to see that homogeneous boundary conditions (see Section 7.1.2) yield:

(o : E) = (a) : (e) = E : E (7.17)

where a has to fulfill the equilibrium conditions and e has to be compatible, but both do not

have to be associated. In addition, either a has to fulfill the homogeneous stress condition on

8V or e the homogeneous deformation condition, both mentioned above.

7.2 Micromechanical Representation of CBM

The detailed homogenization process as applied to cementitious materials requires a multi-scale

homogenization process for each level of the microstructure defined in Fig. 4-13, and detailed

below.
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7.2.1 Level 0: Nanoparticle-Solid Phase

We start our micromechanical modeling of the complex microstructure of cement-based mate-

rials at a length scale at which the material properties do not change from one cement-based

material to another. This is the scale where physical chemistry meets mechanics; that is, the

mechanical properties are solely defined by the physical chemistry of the formation process of

the material. In what follows, we will adopt Jennings interpretation of the C-S-H microstruc-

ture as discussed in Section 4.5.2: an amorphous colloidal structure of the C-S-H, organized in

'globules' (see Fig. 6-6), composed of basic building blocks and an intra-globules porosity. The

way by which the porosity can be assessed, at this scale, is from mass density measurements.

This porosity which manifests itself at a scale smaller than the characteristic solid dimension

of 2.2 x 10-9 m, is Po = 18% irrespective of the type of C-S-H. Instead, it is intrinsic to the

C-S-H solid phase, and can be associated with the nanoporosity filled by structural water (and

not bulk water). Above this scale, there is a second type of porosity, the gel porosity, but

which was found to differ from one type of C-S-H to another, as detailed below. Hence, from

a poromechanics point of view, it is appropriate to consider this solid phase ('globules' in Jen-

nings terminology) which includes a 18% intra-solid porosity filled by structural water, as the

elementary solid phase of a poromechanics representation of cement-based materials. Current

experimental methods are unable of providing mechanical properties at this small scale, and

as a consequence little is known about the mechanical behavior of this solid phase. A layered

representation assumed in some of the models found in the literature suggests an anisotropic

mechanical behavior for the solid phase. Nevertheless, the random orientation of the particles

in space suggests that an equivalent isotropic solid phase can be legitimately employed.

7.2.2 Level I: C-S-H phases - Gel Porosity - C-S-H matrix

Volume Fractions

The solid phase of Level 0 together with gel-porosity forms different types of C-S-H phases.

These phases manifest themselves in units larger than 16.6 x 10-9 m [131], as sketched in Fig.

6-6. We refer to this level as Level I, as it represents the smallest material length scale that

is presently accessible by mechanical testing, i.e.; nanoindentation (see Chapter 5 and Refs.
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Figure 7-2: Micromechanical representation of C-S-H phases. The particluate nature of C-S-

H phases is replaced by an equivalent system of solid phase intermixed with various volume

fractions of porosities.
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[59, 60]). At Level I, the C-S-H exists in at leastftwo different forms, a low density (LD)

and a high density (HD) form (Fig. 6-6). The difference between the two types of C-S-H

relates to the gel porosity of roughly 24% for HD C-S-H, and 37% for LD C-S-H [130], due

to the different packing density of the C-S-H solid of the two types of C-S-H; in addition to

the 18% nanoporosity within the C-S-H solid phase at Level 0 (Fig. 6-6). In contrast to the

nanoporosity, the gel porosity has a characteristic dimension of the solid phase, i.e., on the

order of 5.6 x 10-9 m, in which the water present can be considered as a bulk water phase - in

the sense of poromechanics theory. The gel porosity can be defined in a standard manner:

4LD - _D =0 3 D _ Vf,HD = 0.24 (7.18)
VLD VHD

where Vf,j is the pore volume, and Vj the reference volume (J = HD, LD). The gel porosity

values are also intrinsic to all cement-based materials: they are a consequence of the formation

process of C-S-H in the course of hydration. That what changes from one cement paste material

to the other is the volumetric proportion of HD C-S-H and LD C-S-H, within the C-S-H matrix.

From a poromechanics point of view, an averaging quantity characterizing the pore space that

is occupied by bulk water is:

00 =#LDfLD + /HDfHD (7.19)

where fLD and fHD are the volumetric proportions of the LD and HD C-S-H defined as:

VL D H D
fLD - vLD fHD -HD fLD+fHD=l (7.20)

VI' V1

Morphological Arrangement

Most of the experimental data on C-S-H suggests that the load bearing phase of CBM systems

is essentially a colloidal system of C-S-H particles (i.e., globules), in which repulsive forces

are in equilibrium with cohesive bonds. While the very nature of the bonding continuity in

between particles is not currently known, it is most likely that the deformation behavior in the

agglomerate system originates from the deformation in the pore space. In such a scenario, it is

not the globule elasticity that is of primary importance but rather the contact regions in between

particles, i.e., the interparticle porosity, that governs deformation. In fact deformation in the
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crystalline structure vis-A-vis deformation at the interface between C-S-H particles involves

much higher forces, energies and stiffness. The simplest continuous representation of such a

discrete system comes to replace an assembly of grains by a continuous solid phase intermixed

with some porosity (Fig. 7-2). The exact morphological arrangement is still hard to resolve and,

as a result, several micromechanical schemes will be considered in parallel. The assumption of

continuity provides a convenient way to localize the total elastic deformation in a conceptual

continuous C-S-H solid phase, which physically occurs both in very stiff, solid particles and in

contact regions between them.

7.2.3 Level II: Cement Paste - Capillary Porosity - n Solid phases

Level II refers to the cement paste, which manifests itself at a characteristic length scale of

10-6 - 10- 4 m (Fig. 6-5). At this scale, the porous C-S-H matrix (composed of two types)

together with the unhydrated cement products (clinker phases denoted here as CL), large

Portlandite crystals (CH = Ca(OH)2 ), aluminates (AFm, AFt) and the macro-porosity #0

(which is often referred to as capillary porosity, and which is generally present only in high

w/c-ratio materials) form the cement paste. For purposes of poromechanical modeling, we

will concentrate our efforts on the C-S-H phase that dominates in volumetric proportions,

neglecting any secondary solid phases (CH, AFm, AFt see section 4.1) that seem to play only

minor role in macro-poro-elasticity due to their low volume fractions and insignificant contrast

in mechanical elastic properties with the C-S-H matrix. The volume fractions of the considered

phases at this level can be defined in the usual manner:

fr = -- for r = CSH, MP,CL (7.21)
VI

In contrast to previous levels, Level II is a clear case of a matrix-inclusion morphology. The

total porosity p1i of a cement paste is the sum of the nanoporosity, the gel-porosity and the

capillary porosity [235]:

p"I = [(S0 (1 - OLD) + OLD) LD + (Po (I - OHD) + qHD) fHD fCSH + 0 (7.22)
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where fLD and fHD represent the volume fractions of the LD C-S-H phase and the HD C-S-H

phase present in the cement paste. The total porosity is the relative change of mass that is

measured by means of weighting experiments on a fully saturated and a dried cement paste

oven dried at 105'C. By contrast, other techniques such as poromercury intrusion (PMI), do not

allow to assess the total porosity, as the technique typically fails for pore throat radii smaller

than 7 x 10-9 m. From a poromechanics point of view, the porosity which is filled by a bulk

water phase is the total porosity minus the nanoporosity (filled by structural water):

0= LDfLD + OHDfHD + 00 (7.23)

The dominating phase, at this scale, is the porous C-S-H matrix, which can occupy up to 90%

of the volume of a cement paste.

7.2.4 Level III: Mortar and Concrete

Level III of a characteristic length scale greater than 10-3 m refers to mortar and concrete;

that is a composite material composed of a porous cement paste matrix (CP), and sand particle

inclusions (i) in the case of mortar, and additional aggregate inclusions in the case of concrete.

Some authors consider in addition the Interfacial Transition Zone (ITZ) between inclusions

and matrix, which has been focus of many micromechanical modeling attempts (e.g., Refs.

[90, 117]). From a poromechanics point of view, the cement paste matrix is a porous matrix,

while - except for special applications - any porosity contained in the aggregates is rather of

occluded nature. The total porosity at Level III, that can be assessed by weighting experiments,

is:

p" = (1 fi)pI + ('kITz - p") fITZ (7.24)

where fi and fITz represent the volume fractions of the inclusions and of the ITZ, while OITZ

is the porosity of the ITZ, which has been argued to differ (in some cases) from the porosity

of the cement paste. A lower bound of the inclusion volume fraction is obtained by letting

#ITZ = PII-

Figure 7-3 summarizes the model structure of CBM systems that will serve as the basis

for the forthcoming upscaling relations. This suggested microporomechanics representation
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Figure 7-3: Summary of the proposed micromechanical representation for CBM systems.

of CBM systems is certainly reductionist, reducing the complexity of such materials to an

isotropic solid phase. It allows however to reduce the macroscopically observed variability to a

few invariant material properties that have been accessed by nanoindentation (see Chapter 5)

and volumetric proportions that are readily available either from nanoindentation (see Chapter

5) or from chemical reaction models (see Chapter 4 and further developments in Chapter 8).

7.3 Localization and Homogenization

7.3.1 Level 0: Invariant Properties of C-S-H

The two phases of C-S-H are composed of a solid phase and a saturated pore space. This solid-

fluid interaction is captured by microporomechanics theory. The theory of micromechanics

applied to porous systems, called microporomechanics, is now well established (Dormieux et al.
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[40,73,74]). It assumes that a porous medium (R.E.V.), here the C-S-Hj phase (J = LD, HD),

is composed of a biconnected solid and pore space. From a macroscopic point of view, the

classical relations of poroelasticity applied to isotropic media read [26,62]:

E = K Ev1+ 2GOEd - bopJ1 (7.25a)

(0 - 00) = bPE + (7.25b)
J

where superscript 0 indicates that the quantity is defined at Level 0, and subscript J = LD, HD

indicates that the quantity is defined in R.E.V. J = LD, HD. K is the bulk modulus, G is the

shear modulus, b the Biot coefficient and N the solid Biot modulus. (# - 00) is the change

of porosity where 00 is the C-S-Hj (J = LD, HD) porosity given in Eq. (7.18), and pj the

fluid pressure. In addition, E, is the macroscopic stress tensor and E, is the macroscopic strain

tensor which may be decomposed in its deviatoric, Ed, and volumetric parts, E,:

1
E = Ed + E1 (7.26)

3

In the macroscopic poroelasticity theory, solids and fluids coexist at the same location. From

a microscopic point of view, solid and fluid phases are dissociated. For a zero applied strain

E, bo relates the fraction of pore pressure rise to a stress increase AE = -b'Api, while No

translates it into a porosity change: (0 - q00)J = pj/NO. In this case, pj and E are independent

loading conditions to which the R.E.V. is subjected:

= E - z (OV) (7.27)

o -n = -P n (7.28)

where OV is the external surface of the R.E.V., and sf the interface between solid and fluid

phases.

Within the framework of microporomechanics theory, it is convenient to apply a continuous

description of the microscopic stresses:

(VzEV) in V0 : kz) = (z) - 2 c (z) 1 + 2g (z) eij (z) + (_) (7.29)

304



4=E.z

p
o

I

+

pIp

Figure 7-4: Linear decomposition of the poromechanical problem in two sub-problems.

where o-(z) and e(z) stand for the local stress and strain tensors, f = eri is the microscopic

volume strain; and eij = 6ij - coij is the microscopic deviator strain. (k (z) , g (1)) and .P(z)

are respectively the isotropic stiffness properties and an eigenstress whose spatial distribution

within the R.E.V. is given by:

(f 0

(ks, gs)

(V)

(VS)
aP(z)=

-p 1

0

(Vp)

(V)
(7.30)

where V and V, stand for the domains occupied by pores and solids respectively, and (k8 , g,)

are the stiffness properties of the assumed isotropic C-S-H solid phase.

We now attempt to link macroscopic quantities (Ks, GO) , b3 and Nj with microscopic

quantities such as (ks, gs), #0. Given the linearity of the mechanical problem with respect to

stress o and strain E we decompose the problem in two particular load cases (see Fig. 7-4):

In the first one (denoted by ') the fluid pressure is zero (p = 0), and the R.E.V. is loaded as

a skeleton with empty pores. In the second load case (denoted by ") the fluid is pressurized

under the strain boundary condition E = 0.

First Sub-Problem: Drained Conditions (p = 0)

The first load case corresponds to a classicai micromechanics problem in which a composite

material composed of a solid and empty inclusions is subjected to a uniform boundary condition
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Eq. (7.27). In this case, following classical rhicromechanids (see Ref. [253]), the local strain

e'(z) is related to the macroscopic strain E by means of a forth order localization tensor A,

defined in Eq. (7.7) (see Section 7.1.2):

E'(z) = A(z) : E (7.31)

Application of the average strain theorem, Eq. (7.5) to Eq. (7.31) suggests that the localization

tensor should satisfy the compatibility condition:

(A(z)) = R (7.32)

Using Eq. (7.31) in Eq. (7.29) together with Eq. (7.30), the stress volume average E' in this

load case is:

E'= ('(z_)) = (C(z) : A(z)) : E (7.33)

and the change of porosity:

(#-0)' = #1 :K e'(z))v = 0001 : (A(z))v : E (7.34)

Finally, a comparison of Eqs. (7.33) and (7.34) with Eqs. (7.25a) and (7.25b) allows to identify

the homogenized stiffness tensor and the Biot coefficients:

CO = (C"z) : A(z)) (7.35)

bo = 0 1 :(A)v (7.36)

Note that the isotropic forms of Eqs. (7.35) and (7.36) yield the classical estimates of porome-

chanics, that involve the homogenized bulk modulus, kj, and the solid phase stiffness properties,

(ks, gS)-

kj = (1 - #0) Av"k,; gj = (1 - #0) Adg8  (7.37)

bo = bj 1 with bj = 1 - (7.38)

306



Second Sub-Problem: Undrained Conditions (E"= 0)

In the second load case, the macroscopic state Eqs. (7.25a) and (7.25b) read:

E" = >2P = -bI& Pz (7.39)

(0 - -0)" = (7.40)

From a micromechanics point of view, the second subproblem corresponds to a micro-to-macro

eigenstress problem. This problem is conveniently solved using Levin's theorem (Ref. [253]):

EP = (aP(z) : A(z)) (7.41)

Levin's theorem can be readily derived by applying Hill-Mandel Lemma (see Eq. (7.17)) to the

strain field, 6', and to the stress field, o":

(a": e') = E" : E (7.42)

where the left hand side of Eq. (7.42) reads:

(u": e') = (e": C(z) : e') + (Up : 6') (7.43)

By a second application of Eq. (7.17) to the strain field , e", and stress field , a', and observing

that for the specific load case (e") = 0, yields (e": C(Z) : E')= 0. A comparison of Eq. (7.42)

with Eq. (7.43) yields Levin's theorem as defined in Eq. (7.41). Using Eq. (7.30) in Eq. (7.41),

and combining this result with Eq. (7.39), we obtain:

El"= E= -boj pj = -00 1 : (A)y pi (7.44)

A straightforward comparison of Eqs. (7.44) and (7.36) shows that the Levin theorem provides

a second means to determine the Biot coefficient tensor. Furthermore, the porosity change in

this subproblem needs to be counterbalanced by an opposite change in the solid matrix in order
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for the zero strain boundary condition to be satisfied:

(0-0j)" = 001 : (e"2)), =(1 -~o)1 : -p 0

If we use in Eq. (7.45) the compatibility condition and Hooke's law, we obtain:

Furthermore one needs to get an estimate of the strain in the pore phase, which can be achieved

by employing the stress average theorem of Eq. (7.3) in Eq. (7.29):

"= (a"(0)) = (1 - # It) (o"(z))V, - #pJ1 (7.48)

Finally, using Eq. (7.44) in Eq. (7.48), and substituting this result in Eq. (7.46), the porosity

change in the subproblem reads:

(0- /00)"= ((Av)yV - 1)pj (7.49)

Last, from a comparison of Eq. (7.49) with Eq. (7.40), the solid Biot modulus is obtained by:

1
i (v k8 - 1)pj (7.50)

Note that the isotropic form of Eq. (7.50) yields the classical estimate of poromechanics:

b - 0___
(7.51)

Equations (7.35), (7.36) and (7.50) give the expression of the homogenized material poroelastic

properties as a function of stiffness of the solid, (k8 , g,), and the components of the strain

concentration tensor (AV, Ad), A (z)

A(j) = Av(z_)J+Ad(z)K (7.52)
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where Jijkl=1/3 (6 iJgkl) and K = E - J are the spherical and deviatoric projections of the forth

order identity tensor Ijkl = (3iki + 6iI6 jk), and 6 ij is the Kronecker delta. While the local-

ization tensor can be estimated using developments shown in Section 7.1.2, the solid stiffness

properties (k,, g,) are still not experimentally determined. The mechanical response will there-

fore need to be resolved in an alternative way.

7.3.2 Level I: Poroelastic Properties of C-S-H Matrix - Double Porosity

Model

The C-S-H matrix is composed of two porous materials, the LD C-S-H phase and the HD C-S-H

phase, each of which is described by poroelastic constitutive equations of the form of Eq. (7.25).

To derive the poroelastic constitutive equations of the C-S-H matrix, we adopt a continuous

description of the stress field in the heterogeneous R.E.V.:

in VI : u-(z) =k (j) -2 g (z) E (1) 1 + 2g (z) eij (z) + ul (z_) (7.53)

together with the distributions of the elastic properties (k (1) , g (1)) and the eigenstress oP (1):

(kLD,9LD) in LD -bLDP1 in VLD
(k (z) , g (z)) = LgD) VD Op(z) = (7.54)

ikD D n VHD -bHD P2 in VHD

where c = cii is the microscopic volume strain; and eij = cij - -E6ij is the microscopic deviator

strain. (kj, gj) , (j = LD, HD) are the elastic properties of the LD- and HD C-S-H phases that

occupy domains VLD and VHD in the R.E.V. For purpose of argument, we will assume that the

fluids present within the two types of C-S-H are not at the same pressure.

Following the linear microporomechanics already applied in Section 7.3.1 [74],we decompose

the problem in two sub-problems:

First Sub-Problem: Drained Conditions (p = 0)

The first sub-problem corresponds to overall drained conditions, for which p, = P2 = 0. We

assume that the R.E.V. is subjected to a uniform displacement boundary condition, so that the
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solid boundary conditions to which the solid phase is subjected read:

onOV : '(z)=E-z (7.55a)

onTf : o -n = 0 (7.55b)

Here, 9V stands for the boundary of the R.E.V., and If represents the solid-fluid interfaces.

'(z) stands for the microscopic displacement field, and E is the macroscopic strain tensor,

which is related to the microscopic strain by an isotropic strain localization condition:

e' (z) = e' (z) + c' (z),6.= ad (z) Ed + 1 a' (z) E,6 (7.56)

where ad (z) and av (z) are the deviator strain and the volumetric strain localization factors.

Equation (7.53) together with the elastic distribution Eq. (7.54) yields after volume averaging

the macroscopic stress:

1:= ') = KIEv; KI = fLDkLDALD + fHDkHDAYHD (7.57a)

S' (s') 2GIEd; GI fLDgMA d + fHD9HDAH D (7.57b)

where Av = (av (z)) V and A d = Kad (1)) V stand for volume averages of the localization

factors over the C-S-H subdomains, and fj Vj/V represent the volume fractions satisfying

fLD + fHD = 1. On the other hand, the change -of the gel-porosity in the subproblem reads

(J = LD, HD):

(- ) = f[(- )5 = bIEv (7.58a)

b = fjboAv, (7.58b)

where superscript 0, I indicates the scale ('Level') at which the quantity is defined. For instance,

b' stands for the Biot coefficients given by Eq. (7.36).
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Second Sub-Problem: Undrained Conditions (E"= 0)

The second sub-problem we consider is the zero-displacement boundary problem, while the

gel-porosity is pressurized. From linear microporoelasticity, it is known that the problem is

conveniently solved using Levin's theorem, delivering a relation between the macroscopic and

the microscopic eigenstresses [40,74]:

E"l = (o () A (z)(7.59)

where A (z) is the forth-order strain localization tensor. Application of the eigenstress distrib-

ution Eq. (7.54) in Eq. (7.59) yields the macroscopic mean stress in this subproblem:

E" = -bIp1 - b'Dp2 (7.60)

where we verify that bD = fLDbD AD and HD = fHDbHD AHD obtained in the first sub-

problem Eq. (7.58) are the Biot coefficients associated with the pressures in gel-porosity of the

two type of C-S-H. Because the constitutive equation for the change of the porosity in each

subdomain is given by Eq. (7.25b), the change of porosity reads:

(# -#') = f ( b 1 Ke")V + (7.61)

We need to eliminate (E")Vy in Eq. (7.61). To this end, we determine the stress average in this

sub-problem on account of Eqs. (7.53) and (7.54):

E" = fLD y -D fHD )VHD 7.62)

= fLDkLD )VLD + fHDkHD (6")VD - fLDb2DP1 - fHDbHDp2

Then, we use Eq. (7.60) in Eq. (7.62) to express the average strain in the porous matrix (t),

as a function of pj:

(fLDbLD - bID) P1 + (fHDbHD - bHD P2 = fLDkLD E ")VLD + fHDkHD KEII) (7-63)
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which suggests, using Eq. (7.58) or (7.60):

bo
(c") = (1 - A (7.64)

with no summation on repeated subscripts. Finally, use of Eqs. (7.64) and (7.61) yields:

[(0 ~ ~ _ 0111 fj r_(b(# -#e) ; + fi (1 - Avg) (7.65)

Lastly, a superposition of the two subproblems yields the macroscopic state equations of the

C-S-H matrix:

Em = M + Em" = KIEV - bLDp - bHDp2 (7.66a)

(# - #0), = bIEJ + J = LD, HD (7.66b)

The resulting state equations are recognized as the state equations of a double-porosity material

without interaction of the fluid pressures on the deformation of the solid part of the porous

subdomains (i.e., Eq. (7.64)). Given the similar size of the porosity in the LD- and HD C-S-H,

as defined by the packing densities, it is reasonable to anticipate little difference in pressure

between the two types of C-S-H. In this case, the poroelastic state equations of the C-S-H

matrix reduce to:

EM = KIEV - bp (7.67a)

(0 - 00)' = b'EV + (7.67b)N'

and the poroelastic constants are given by:

K'= fLDkLDALD + fHDkHDAvHD (7.68a

GI= fLDM d + fHD9HDAd (7.68b)

= bLD + H LDbL DALD + fHDbHD HD (7.68c
1 _ 1 1

= +N (7.68d)
NI NLD NHID
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7.3.3 Level II: Poroelastic Properties of Cement Paste

Let us turn now to cement paste: a composite of a porous C-S-H matrix (C-S-H) and macro-

porosity (MP), in addition to some inclusion phases (residual clinker (CL)). For purpose of

clarity we derive the poroelastic state equations of cement paste for two particular cases:

a) Macroporosity embedded in a C-S-H matrix, which is the case of cement pastes with

w/c > 0.42 and

b) A C-S-H matrix reinforced by clinker inclusions, which is the microstructure prevailing

in low w/c-ratios w/c < 0.42 (see Section 4.5.1).

Two-scale Double Porosity Model (w/c > 0.42)

In contrast to the C-S-H matrix (Level I), the main feature here at Level II is that the porosity

manifests itself at two different scales: a microporosity situated within the porous matrix, and

macroporosity. The constitutive equations of the porous matrix are assumed to be defined by

Eq. (7.67). Given the difference in size of the porosities involved, we assume a different pressure

in the micro- and macroporosity. Proceeding as before, we adopt a continuous description of the

stress field in the heterogeneous R.E.V., of Eq. (7.53), together with the following distributions

of the elastic properties (k (z) , g (1)) and the eigenstress oP (z):

(k () , g (z_)) (KI, GI) in VM aP -bIpj in VM (7.69)
(0,0) inV 2  -P2 in V2

where VM stands for the volume occupied by the porous matrix in the R.E.V., and V 2 for the

macroscopic pore space. We decompose the problem into two sub-problems:

First Sub-Problem: Drained Conditions (P1 = P2 = 0)

The first sub-problem corresponds to overall drained conditions, for which p, = P2 = 0. The

boundary conditions are still defined by Eq. (7.55), and an isotropic strain localization condition

of the form of Eq. (7.56) is applied. This yields after volume averaging the macroscopic stress
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in the form:

l = K,Ev; KII = (1 - #02) K'AvM (7.70a)

S = 2GIIEd; GII = (1 -# 0 2 ) GIAM (7-70b)

where A, = (av (z))v and Ad = Kad (z))V; 1 - #O2 = VM/V is the volume fraction of the

porous matrix in the R.E.V. KII and G"' are recognized as the macroscopic drained elastic

stiffness properties of the cement paste. On the other hand, there are two associated changes

of porosity; the microporosity and the macroporosity. The microporosity is defined per unit

of (undeformed) matrix volume VM so that the change of porosity at the macroscale in the

considered subproblem is:

( 00)- ]' = (1 - #02) [(0 1 - 001)1 b",Ev (7.71a)

bI = (1 - 0 02 ) bAv, (7.71b)

In return, the change in macroporosity reads:

[(#2 - 02)1 = blIEv (7.72a)

b A2 (7.72b)

where A2 = (av (z))y,. Herein, bW' and bW' are the Biot coefficients associated with the micro-

and the macroporosity, respectively.

Second Sub-Problem: Undrained Conditions (E"= 0)

The second sub-problem we consider is the zero-displacement boundary problem, for which

Levin's theorem of Eq. (7.59) applies. Application of the eigenstress distribution Eq. (7.69) in

Eq. (7.59) yields the macroscopic stress in this subproblem:

E"= - (1 - 02 ) b'AvMP - 02AV2P2 = -b{p 1 - bW'P2 (7.73)
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There are two changes of porosity to be considered: the change in microporosity,

0(1 - 02) (bM (")V M

and the change in macroporosity:

[(2 - 002)] "- 002 = - (1 - q 0 2 ) (C")VM (7.75)

We need to eliminate (E")VM in Eqs. (7.74) and (7.75). To this end, we determine the stress

average in this sub-problem on account of Eq. (7.69):

E"m = (1 - # 02 ) (K'" )vM + 002 (0~" )Vp2 (7.76)

(1 - #02) KI (E")v - (1 - 02) b'pi - 002P2

Then, we use Eq. (7.73) in Eq. (7.76) to express the average strain in the porous matrix (E")M

as a function of pi and P2:

(1 - 02) KE")VM (7.77)
[

- I[E'" + (1 - 002) bIpi + 002P2

= [((1 - #02) b - bI) pi + (02 - bI) p2]

Finally, substitution of Eq. (7.77) in Eqs. (7.74) and (7.75) yields the change of the microp-

orosity:

N1

N12

= Pi P2
-N 11 N12

(1-02) ( bI W - bI) +

bi W
KI(#02 1 i)

NI1 )

(7.78a)

(7.78b)

(7.78c)
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and the change of the macroporosity:

(02 - 02)" = P + P (7.79a)
N 21  N 22
1 . (b' - (1 - 02) b) (7.79b)

N1 1I
1b1 ( -- (7.79c)

The symmetry of the skeleton Biot moduli N 12 = N 21 is readily shown, by substituting Eq.

(7.72b) into Eq. (7.78c) and Eq. (7.71b) into Eq. (7.78b):

1 b

N12  O2 K (1 - Ap 2 ) (7.80a)

1 b_ b'

N 21  = (1 -02) KI(AM - 1) (7.80b)

Then use of the strain localization compatibility condition in one of the two relations yields

the solution of the other moduli. For instance, replacing #02 A02 01 - (1 - 402) AVM in (7.80a)

gives:
1 bi 1

N 12  02) (A - 1) = N 21  (7.81)

Last, a superposition of the two subproblems yields the macroscopic state equations of the

isotropic double-porosity system:

Y m=E' + E3" = K E - b{'p1 - bi'p 2  (7.82a)

01 - 0 = bE + + P2 (7.82b)
N1 N 12

#2 - #2 = b PE i + + (7.82c)02-002 2 N21 N22

where all seven poroelastic constants are known here as functions of the poroelastic properties

of the porous matrix, and of two strain localization factors, AV. 2 (or AV ) and A'. An estimate

of these factors provided, for example, by a Mori-Tanaka [172] scheme reads:

4G'- + 3KI V - 002 A02A4 =;- Am = (7.83a)
<2 3# 02KI + 4GI M 1 -002

1 - #02 A $2  
8GK + 9K'

M 1-002 60(2GI +KI) +8GI +9KI(78b
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For purpose of comparison of the poroelastic properties, it is useful to evaluate the poroelas-

tic constants for the same pressure in both meso- and macroporosity, pi = p2 = p, for which

the state equations are given by:

EM= KIEv - VIp (7.84a)

(0 - 0)1= bI"Ev + (7.84b)

with the poroelastic constants:

KII = (1 - 02) K'Avm (7.85a)

G = (1 - 02 ) G'AM (7.85b)

b" -b + bW' (7.85c)

b" = b' + (1 - b') # 02Av2  (7.85d)

1 '1 2 1
--- = -+ +(7.85e)

NII N11  N12  N2 2

=i (1-0#02) (b - b + ) N+ (7.85f)

1 b
N1 2 - (1- 0 2) KI- (A'- 1 ) (7.85g)

1 1N12  - M78g

N22  ~ I (b' - 02) (7.85h)

Inclusions in a Porous Matrix (w/c < 0.42)

We now consider the case of CBM systems of low w/c-ratios, which eliminate the capillary

porosity and favours the presence of residual clinker phases. Following previous developments

we consider an heterogeneous stress distribution in the porous C-S-H matrix VM and the clinker

inclusion, V:

in VI : a z k (z) - 2 (Z) E (z) 1 + 2g (z) eij (a) + a' (a) (7.86)
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together with the following distributions of (k () , g (z))' and the eigenstress -P (z):

(k(), g (z)) = -(K1,G) inVM UP P in M (7.87)
(ke, ge) in V 0 in V

where VM stands for the volume occupied by the porous matrix in the R.E.V., and V for the

residual clinker phase. Again we decompose the problem in two sub-problems:

First Sub-Problem: Drained Conditions (p = 0)

The first sub-problem corresponds to overall drained conditions, for which p = 0. The boundary

conditions are still defined by Eq. (7.55), and an isotropic strain localization condition of the

form of Eq. (7.56) is applied. This yields after volume averaging the macroscopic stress in the

form:

E/, = KII Ev; KII 1 - fc) KI AvM (7.88a)

S = 2G"-'Ed; GII (1 - fc) GIAM (7-88b)

Furthermore, the change of porosity in this subproblem is:

- 0oi)"] = (1 - fc) [(01 - 0oi)] ' = Ev (7.89)

bI = (1 - f.) b' Ay (7.90)

Second Sub-Problem: Undrained Conditions (E"= 0)

The second sub-problem considers, as usual, that the space is pressurized, while the R.E.V.

is subjected to a zero macroscopic displacement on the boundary which preserves the original

volume of the R.E.V. Levin's theorem applied to this sub-problem yields

E" = - (1 - fc) b'Av pi = -b"lpi (7.91)
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The change in porosity in the porous matrix also reads:

= (1 - fc) (b (E" (7.92)

This must be complemented by the compatibility condition which ensures zero displacement on

the boundary:

(1 - fA) (c" (z)VM = -fC (El ()c = -fc (-"M) /kc (7.93)

The average stress theorem provides additional information to the problem:

E"l = fc(-")C+ (1-fc) (al)vM

= fc + (1 - fc)KI K'')vM - (1 - fc)b'p

(7.94)

(7.95)

Finally, a combination of Eqs. (7.91), (7.93) and (7.94) yields an estimate for (c")VM

Sb'(1 - Av)
Vu =(k, + KI)

(7.96)

which with the help of Eq. (7.92) provides an estimate of the Biot skeleton modulus:

1 (1-fA) (b') 2 (1- A)
NII N' +(1-fc) (kc+KI) (7.97)

These completes the estimates of the poroelastic properties at this level which are summarized

below:

K"I = (1 - fc) KIAv

GII = (1 - fc)GIAdM

b"l = (1 - fc)b' Ab

N" - [ ) + (1 - fc) , )2 1
1N7 k, (kc+K I)

(7.98)

7.3.4 Level III: Poroelastic Properties of Mortar/Concrete - Inclusions in a

Porous Matrix

At Level III, the material is composed of a porous matrix (the cement paste) and non-porous

inclusions of approximately spherical shape that are assumed to be randomly distributed. From
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a morphological point of view, the porosity belongs to the phases at a level below (cement

paste). Given the separability of scale condition, the porosity does not enter the Level III, but

is already included in the poroelastic properties of the cement paste that serve as input. We

adopt a continuous description of the stress field in the heterogeneous R.E.V.:

in VII, : o (z) = k (z) - g (_)) e (z) 1 + 2g (1) eij (z) + (z) (7.99)

together with the following distributions of the elastic properties (k (z) , g (z)) and the eigen-

stress oP (z):

(K",G"I ) in Vu P --b0 P in V(

(ki, gi) inVi 0 in Vi

where (K", GII) are the elastic properties of the porous cement paste Eq. (7.98), (ki, gi)

are the stiffness properties of the (assumed isotropic) aggregate inclusion phase; and bM =

b" is the Biot coefficient of the porous cement paste of Eq. (7.98). Following the linear

microporomechanics approach, we decompose the problem in two sub-problems:

First Sub-Problem: Drained Conditions (p = 0)

The first sub-problem corresponds to drained conditions, for which p = 0. We assume that the

R.E.V. is subjected to a uniform displacement boundary condition, so that the solid boundary

conditions to which the solid phase is subjected read:

on OVII, : $' (z) = E - z (7.101a)

on If : - _n = 0 (7.101b)

The macroscopic strain tensor E is related to the microscopic strain by the strain localization

condition:

e' (z)=A (z) : E (7.102)
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A (z) satisfies the compatibility condition:

E=e'(z) 11 Kl= (1 - fi) (A)VM + fi (A)v (7.103)

where fi = VI / I VIrI = 1 - fm is the inclusion volume fraction. Use of Eq. (7.102) in Eq.

(7.99) together with the elastic distribution Eq. (7.100) yields after volume averaging, the

macroscopic stress, and the homogenized stiffness of the composite:

E/ = K"'IEv; K"'1 = (1 - fi) K"1Ay(M II~d(7.104a)
S = 2G 17 Edj; G"'I = (1 - fi) G A

The change of the porosity in the subproblem reads:

[ (0 - 00)"] 1 = (1- fi) [(01 - 0 01)"] = b"'IEv (7.105)

b" = (1 - fi) b,Am (7.106)

where b"' is the homogenized Biot coefficient.

Second Sub-Problem: Undrained Conditions (E"= 0)

The second sub-problem we consider is the zero-displacement boundary problem, where the

porosity is pressurized. For the eigenstress distribution of Eq. (7.100), we obtain the macro-

scopic stress and the homogenized Biot coefficients from Levin's theorem in Eq. (7.41):

E" = (oP (z) : A (z)) = -bI'p"'II; b"'I = bI"'1 (7.107)

b" = - (1 - fi ) b"IAv (7.108)

The change of the porosity in the subproblem is:

[( - 00)"'J 1 - fi) (bI ( V + (7.109)

where NM = N". We eliminate (" (z))VM in Eq. (7.109) to the benefit of pressure p, by

considering the stress average in this sub-problem, in which E" = (e" (i)) = fi (e" (z))y, +
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(1 - fi) (e" (z))V, = 0:

= (1- fi) KU")v + f " (7.110a)

= fi (- 4)>, + (1 - fj)K' K" - (1 - fi)bp (7.110b)

Thus, from the equality of Eqs. (7.107) and (7.110):

- (1 - A") (7.111)(V')m (ki + KII)

Finally, use of Eq. (7.111) in Eq. (7.109) yields:

$ - N 'II'
1 (1-f) +) (b",)2 (1 - Av)

N N + (1 - fi) (ki + KII) (7.112)

In summary, a superposition of the two subproblems yields the macroscopic state equations of

the mortar/concrete material:

3Cyn = K'Ev - b'Ip (7.113a)

N'= E + N (7.113b)

together with the poroelastic constants:

KI' = (1 - fi) KIAvm (7.114a)

GIII = (1-fi)GIIA (7.114b)

bII = (1 - fi) b'Avm (7.114c)

NIII = + ( - fi) (bI)2 (A ) 1(7.114d)
[ N"I (ki + K"I) (1d

The input to this homogenization step are the poroelastic properties of porous cement paste,

(KII, GI) b"I, NM = NII, the inclusion volume fraction fi, and an estimate of the volume av-

erage of the matrix strain concentration tensor (A)vM. Given the matrix-inclusion morphology,

such an estimate is suitably provided by the Mori-Tanaka scheme stated in Eq. (7.15).
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Undrained Poroelastic Properties

In order to assess the undrained properties, at Level III, one needs to find the relation between

macroscopic stress and strain when the fluid mass m = pfl4 stays constant in the R.E.V. Here,

pf, stands for the fluid density and varies with the pore pressure. In the linear case:

p = pO 1 + (7.115)

where Kf, is the fluid bulk modulus and po is the reference fluid density (for water Kfj = 2.3

GPa). Then the change of fluid mass contained in the R.E.V. is such that:

mn - mo P
r n + 00 (7.116)
pfi Kfj

With Eq. (7.116), the two poro-elastic states Eqs. (7.113a) and (7.113b) are written in the

form:

E= om : E - BIIIr m 0 O (7117)
Pfl

Mr MO = bII: E+ M (7.118)0 m

where:

" MI"' is the Biot modulus for the porous solid and is defined by:

1 1 #
NI"' 0 N' (7.119)

" CIHm is the macroscopic undrained stiffness tensoru,hom

uhor - CI4o + MII b 0 b"' (7.120)

* B"'1 is the second order tensor of Skempton coefficients

BIII=MI'(CIom)-1 : b"' (7.121)
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In the isotropic case, CU = 3Khoml + 2 GhomK and B = B1, with

Khom = Khom + Mb2 B = Mb (7.122)
Khom

7.4 Chapter Summary

We have presented a microporomechanics model that can provide poroelastic properties pre-

dictions at multiple scales, provided the knowledge of the intrinsic properties of the individual

components and their volumetric proportions. While the intrinsic drained properties of the LD

and HD C-S-H have been obtained through indentation testing (see Chapter 5) their poroelastic

counterparts have to be resolved in a reverse analysis formulation. This calibration procedure

will be detailed in Chapter 8. With those material invariant properties in hand one can calculate

the poroelastic response of any material system independent of mix proportions and conditions

of testing:

1. Given the elastic properties of the solid phase and the packing modes of the two types of

C-S-H, one can calculate with the use of Eqs. (7.37) and (7.51) the poroelastic constants

of the two types of C-S-H.

2. The predicted poroelastic estimates of Level 0 along with the volume fractions of the two

types of C-S-H are incorporated in Eq. (7.68) that determine the poroelastic constants of

the C-S-H matrix.

3. The homogenized values of the C-S-H matrix are incorporated in Level II (Eq. (7.85)

or Eq. (7.98)) which yields, with knowledge of volumetric proportions of the clinker and

capillary porosity the poroelastic constants of Level II (cement paste).

4. In the case where aggregates are present in the microstructure, then the cement paste

estimates serve as input in Eq. (7.114) that, along with the elastic properties of the sand

particles, yields the poroelastic estimates of the mortar composite (Level III).

5. Finally, the predicted values with the pore fluid bulk modulus are used in Eqs. (7.119)-

(7.122) to predict the undrained poroelastic estimates of CBM systems.
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Figure 7-5 summarizes the multi-step microporomechanics model now in place. The pro-

posed model reduces the complexity of cement-based materials to 14 parameters: they are the

elastic properties of the C-S-H solid phase (k8 , gs); the elastic properties of the clinker phase

(kd, gez); the elastic properties of the aggregates (kg, gg); the bulk modulus of the fluid phase,

kf1; the volume fractions of the two types of C-S-H, (fLD, fHD); the volume fractions of the

C-S-H matrix, (fCSH); the volume fractions of the clinker phase, (fc); and the pore space at

each level, i D, c/HD, fcp. The elastic properties of the C-S-H solid phase, the clinker phase,

the aggregates, and the pore fluid, together with the porosities of the two types of C-S-H, are

assumed to be constant (9 parameters). Thus for each cement-based material of given mix

proportions, only the four parameters describing the volumetric proportions at each level are

required: !LD, fCSH, fci, fg. The remaining volume fractions of the HD C-S-H and the capillary

pore space, and cement paste matrix are obtained by employing the compatibility condition,

E fi = 1, at each level: fHD = 1 - fLD, and fcp = 1 - fCSH - f, fm = - fg -
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LEVEL III f9, f-
Mortar, (kg, gg)

Concrete (k,, =khm

> 10- 3 m

LEVEL II
Cement Paste
< 10-4 m [JCSH, fcp, fal

(ka, g')

CkSH " hom , gCSH = 9 hom

LEVEL I
C-S-H matrix
< 10-6 m

LEVEL '0'
C-S-H solid
10-9-10-10 m

Figure 7-5: Details of the parameters involved

this chapter.

fs,f,,~

(k,,gs)

in the multi-scale poroelastic model proposed in
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Chapter 8

Microporoelastic Model Calibration

and Validation

This chapter is devoted to the calibration and validation of the microporoelastic model presented

in Chapter 7. In a first step, we calculate the C-S-H solid stiffness using the indentation results

of the two types of C-S-H and an inverse micromechanical approach. With an estimate of the C-

S-H solid stiffness in hand, one can calculate the poroelastic properties of any CBM specimen

using the microporoelastic model of Chapter 7 and the methodology summarized in Section

7.4. The predictive capabilities of the model will firstly be compared with a set of experimental

data on cement paste and mortar for validation purposes. It will be shown that the drained

and undrained micromechanical predictions are within close agreement with experimental data.

Furthermore, as a second validation step, we apply the model to experimental data presented on

thermally (Chapter 6) and chemically [58, 60] treated specimens. It is shown, that provided the

volumetric proportions of the specimens are reliably predicted, then the macroscopic poroelastic

estimates can be well-predicted independently of the mix design of the specimens, environmental

conditions or testing conditions.
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8.1 C-S-H Solid Stiffness: Model Calibration

8.1.1 Current state of knowledge

The information that is available about the two types of C-S-H are the porosities determined by

mass density measurements (see Tab. 4.8), and composite stiffness values determined indepen-

dently by nanoindentation (see Tab. 5.7). The overall picture that emerges from a combination

of these independent measurements is that the difference in mechanical performance of the

two types of C-S-H is a consequence of their ,packing density, while the solid phase is the

same, having the same mass density and as a consequence same mechanical properties. These

nanomechanical properties are currently still out of reach of direct mechanical measurements;

what is measured experimentally are the homogenized properties of the two types of C-S-H.

The determination of the nanomechanical properties (k., g.), therefore, can only be achieved

by an inverse application of the homogenization relations. As input we have values for the

indentation modulus, MHD and MLD, and for the porosity, #O'D and OHD. The unknowns are

the stiffness properties of the C-S-H solid phase, k, and go, and one homogenized property per

type of C-S-H, e.g., the Poisson's ratio, VHD and VLD-

8.1.2 Matrix-Inclusion vs. Polycrystal Morphology

We found in Chapter 5 that the indentation modulus of HD vs. LD C-S-H is:

MHD _ 31.0
- =1.65 (8.1)

MLD 18.8

We have heretofore explained such a difference using the Mori-Tanaka localization scheme (see

Eq. (7.15)). However, such a high ratio may well be at the limit of what this classical localization

scheme can predict. To show this, let us recall:

E 3E-G
M = 1-v 2 = 4G (8.2)

where (K, G) stand for bulk and shear modulus. In the case of a porous material, (K, G) are

related to the properties of the matrix (g., k,) and the volume fraction of the porosity 00 by
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(application of the MT-scheme, Eq. (7.15) in Eq. (7.35)):

K = 4ksg, (1 - # 0 ) (8.3a)
3qoks+4gs

G -g (1 - 0 ) (8gs + 9ks) (8.3b)
-0 gs#(2gs +ks) +8gs +9ks

Use of Eq. (8.3) in Eq. (8.2) yields:

M _ 1 (7 - 5vs) (-13#0 + 2 0ov, + 150 0v2 - 14 + 10v,) (1 - #c) (8.4)

mS 2 (7 - 5vs + 5 00 + 5q 0 vs) (-8 00 + 10#Ov, - 7 + 5v,)

where ms = Es/ (1 - v2) is the plane stress modulus of the solid phase, and v, is the solid

Poisson's ratio. It should be noted that the effect of the Poisson's ratio does not strongly affect

the M/m, relation, as Fig. 8-1 shows. It may therefore be most appropriate to consider the

two limit cases when analyzing indentation results of a porous material:

3 (1 - 00) (1100 + 12) . M M M 7 (1300 + 14) (1 - 0)-(= lim - < - < lim -=(8.5)
4 (3 + 5#0) (2#0 + 3) v=0.5 mS - ms v=0 mS 2 (7+ 5 0 ) (8q0 + 7)

For the porosity of the two types of C-S-H (#LD = 37.3%; OHD = 23.7%), assuming the same

m. value, the Mori-Tanaka scheme of Eq. (8.5) allows capturing the following limits:

1.4 lmMHD MHD .MHD1.34 = lim < < lim MD= 1.38 (8.6)
v=O MTJD - MLD - v=0.5 MLD

These values are somewhat below (or at the limit of) the indentation modulus ratio of Eq.

(8.1). Another approach which captures different morphologies may be more appropriate to

explain the indentation results. The limitation of the Mori-Tanaka model could be related to

the underlying matrix-inclusion morphology captured by the scheme. It is interesting to explore

another morphology; here, the polycrystal morphology embedded in the self-consistent scheme.

In the case of a self-consistent scheme (SCS), (K, G) for a porous continuum are given in the

implicit form:
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#0 3K
K = ks 1 a = (8.7a)1 -J a 3K +4G

G = gK + 4G) (8.7b)
1 -#55(3K + 4G)

which yields the explicit form:
K 4G (1-0 0) (8.8)
ks 4G+3ks~o

G 1 5 3
G 1 - 0 0- 3 r (3 - ) (8.9)

+ V(64 - 320 0 + 400q$ + r8 (144 - 168# 0 - 12002) + r2 (81 - 540 0 + 9#)

where r. = ks/g, = 2 (1 + v,) /3 (1 - 2v5 ). The previous relations yield:

M _ G (3r, + 4) (12r, + 4G/gs - 9r,90 0 ) (8.10)
mS 4g8  (3r, + 1) (3r, + 4G/g,)

Note that M/m, > 0 requires q0 < 1/2, as the SCS has a percolation threshold. Further-

more, M/m, is undefined for an incompressible solid (v, = 1/2) but, similar to what we have

observed experimentally, the Poisson's ratio plays a minor role on the M/m, ratio (see Fig.

8-1). For evaluation purposes, we evaluate Eq. (8.10) for v. = 0 (r, = 2/3):

M 3 45 - 480 +11 + (3 - 5#0) (49 - 11400 + 81#02)
lim - = (8.11)
v8=o mS 8 5 - 900 + (49 - 1140 + 81#02)

For the porosity of the two types of C-S-H (OLD 37.3%; OHD = 23.7%), assuming the same

m. value, we then obtain:

2.03 = lim MHD < HD
v=O MLD - MLD

The self-consistent scheme (or polycrystal) allows one to capture higher MHD/MLD values

than the Mori-Tanaka scheme. Recall that the self-consistent scheme represents a polycrystal in

which each phase could play the role of the solid phase, while the Mori-Tanaka scheme represents

a matrix-inclusion morphology where the inclusion is the porosity. Hence, our MHD/MLD-ratio
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Figure 8-1: Evolution of the M/m, ratio for various Poisson's ratios as a function of porosity
as predicted by the Mori-Tanaka (a) and the Self-Consistent-Scheme (b).
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suggests that the two types of C-S-H are more representative of a polycrystal structure than

of a matrix-inclusion porosity. Furthermore, it is also useful to evaluate the MHD/MLD -ratio

by assuming that the LD C-S-H represent a random close packing (RCP) 1 - n = 0.637, and

the HD C-S-H a face-centered cubic lattice (FCCL) 1 - n = 7r/v 15= 0.74. By letting 00 = n

in Eq. (8.11), we obtain the following MHD/MLD ratio associated with these limit packing

schemes:

. MHD MHD (n = 0.260) (8.13)1.73 = im <K8.3
vs=O MLD MLD (n = 0.363)

Remarkably, the lower bound value of 1.73 is within 5% of the experimental ratio of 1.65 (Eq.

(8.1)). Note that for v, = 1/5, we obtain, with the self-consistent scheme, MHD/MLD = 1.76,

and for v, = 1/4 we obtain MHD/MLD = 1.77. By contrast, the Mori-Tanaka estimate of Eq.

(8.4) yields for the packing limit cases 1.25 < MHD/MLD 5 1.28. This confirms our previous

suggestion that the structure of C-S-H comes much closer to a polycrystal structure than to

a matrix-pore space morphology. It is on this basis that it is possible to evaluate an order of

magnitude of the solid stiffness in:

MLD (1 - n = 0.637) < lim MLD = 0.28539 m m, (LD) > 65.9 GPa (8.14a)
m8 v5=0 mS

MHD I - n = 7r/VY1) < lim MHD 0.49323 a m. (HD) > 62.9 GPa (8.14b)
MS ( vS=0 m8

The values obtained with MLD = 18.8 GPa and MHD = 31.0 GPa are surprisingly close,

suggesting that m, (LD) = m, (HD). While (8.14) define a lower bound corresponding to

VS = 0, we should note that the Poisson's ratio does not strongly affect the value of m, and

weakly affects E, = m8 (1 -- V) in the range 0 < v 1/4. For instance, for v, = 1/4 we obtain

ms (LD) = 66.1 GPa and m8 (HD) = 63.6 GPa, which correspond to a Young's modulus of

Es (LD) = 62.0 GPa and E (HD) = 59.6 GPa. The effect of the Poisson's ratio on E, becomes

strong close to incompressibility of the solid phase (which is a case not defined by SCS), as shown

in Fig. 8-2, displaying E (LD) and E, (HD) in function of the Poisson's ratio v,. Given the

way how MLD and MHD are determined from statistical analysis, the closeness of LD- and HD-

stiffness is remarkable. Finally, the previous analysis also applies to the indentation stiffness

values of previously published values, in which we found MLD = 19.7 GPa and MHD = 32.5

GPa, hence a ratio of MHD/MLD = 1.65. The ratio is just 5% smaller than the one predicted
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Figure 8-2: Effect of the Poisson's ratio v on the invesre calculation of the solid Young's modulus

Es.

by Eq. (8.13), and yields m, (LD) > 69.1 GPa and m, (HD) 2 65.9 GPa, which is 10% higher

than the values given by Eq. (8.14). Hence, the trend is clearly towards a polycrystalline

structure of C-S-H. This is not in contradiction with the fact that C-S-H is organized around

two limiting packing densities, which characterizes granular materials. In fact, the SCS predicts

a zero stiffness at a packing density of 1 -<00 = 0.5 (see Fig. 8-2) which is not so far of the

random loose-packed limit (RLP)1 of 1 - n = 0.56. This underlines the consistency between

the polycrystalline model and the mechanical behavior of granular materials. Indeed, the self-

consistent model of Hershey (1954) and Krbner (1958) is based on averaging the stress and

strain in a spherical grain over all orientations (cited from Ref. [141]). A more rigorous test

of the specific LD and HD structures specified by the colloid model of C-S-H can be obtained

by making a forward application of the micromechanical prediction of the indentation modulus

of an aggregated system of particles (here approximated by the self-consistent scheme) with

The random loose-packed limit (RLP) corresponds to to the loosest random packing that is still mechanically
stable under a given applied load.
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an intrinsic solid stiffness of m, = 65 GPa (average value of the two estimates). Figure 8-3

shows the predicted indentation modulus of such a system as a function of the packing density.

The value of the solid spheres is recovered for a packing density of 1, whereas a complete loss

of mechanical performance is predicted at a packing density of 0.5. The value of the C-S-H

solid is to be compared with atomic level simulations reported in [189]. The Young's modulus

of Hamid's structure (Ca/Si= 1) calculated from the matrix of elastic constants, was found

to be EAS = 57.1GPa at 0 K very close to the values calculated from our inverse analysis

(E (LD) = 62.0 GPa and E. (HD) = 59.6 GPa). It is impressive to note that atomistic

simulations which neglect the presence of any defect in the system suggest stiffness values

which are in close proximity to estimates calculated from nanoindentation input data. This

further enforces the solid phase assumption and that the polycrystal morphology is a suitable

representation for this class of material systems at this level. Finally, the experimental modulus

values for the two types of C-S-H are also plotted in Fig. 8-3, using the random jam-packed

density (64%) for the LD C-S-H and the close-packed density (76%) for the HD C-S-H. These

are in very good agreement with the predicted values, providing more explicit and detailed

support for the colloid model of C-S-H suggested by Jennings [130].

Intrinsic Poro-elastic Constants of the Two Types of C-S-H

With the solid phase stiffness in hand and the classical estimates of poroelasticity, (7.37) and

(7.51), one can calculate the poroelastic constants of the two types of C-S-H:

bH = 0.54 NH = 133.43 GPa
HD HD(8.15)

b2D = 0.72 N2D = 114.37 GPa

As it was expected the low density C-S-H with a higher fraction of porosity has a higher Biot

coefficient. Given the intrinsic nature of the two C-S-H phases, these poroelastic constants can

be considered to be universal constants for all cementitious materials. Table 8.1 summarizes

the poroelastic constants of the C-S-H solid and two packing modes.
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Figure 8-3: Micromechanical predictions and experimental values of the indentation modulus

vs. the packing denisty of colloidal C-S-H particles.

I Globule LD C-S-H HD C-S-H

Elastic Constants F [GPa] 60.8* 17.7 28.9
" [-] 0.25 0.24 0.24

g [GPa 24.3 7.1 11.7
1 k [GPa] 40.5 11.3 18.5

Poroelastic Constants [GPa] 18.4 29.4
k' [GPa] - 14.3 20.3

VU [-1 - 0.29 0.26

b [-1 - 0.71 0.54
N [GPa] - 114.4 133.4
M [GPa] - 5.9 6.0

| B I [-] I
*Average value between E(LD) and Es(HD)

0.29 0.16

Table 8.1: Elastic and poroelastic constants obtained by indentation and inverse analysis, re-

spectively.
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RESONANT FREQUENCY AND PILSE VELOCITY METHODS

The elastic properties of a material can be measured by 1) determining the
resonant frequency of a specimen (Resonant frequency technique - RF) or
2) determining the velocity at which short pulses of vibration travel through
the specimen (Ultrasonic Pulse Velocity method - UPV). These two methods
require as input parameter the density of the material which needs to be independently
measured. The UPV method requires in addition an estimate of the Poisson's ratio.
The mechanical load applied to the specimens during these dynamic testing is limited
and the mechanical degradation is therefore minimal, which makes the techniques of
non-destructive nature.

Table 8.2: Dynamic methods for measuring elasticity properties.

8.2 Model Validation

We aim in this section to quantify the predictive capabilities of the model in terms of drained

and undrained poroelastic properties. In doing so, we compare micromechanical predictions

with a set of macroscopic mechanical data obtained on Level II (cement paste) and III (mortar)

simulating drained (RF testing) and undrained (UPV testing) conditions, (see Tab. 8.2).

8.2.1 Materials

Mix Proportions

The materials we consider here are a cement paste afid mortar prepared at a water:cement

ratio of w/c = 0.5, using an ordinary Type I Portland cement. The mortar composition is

characterized by a water-cement-sand mass ratio of w/c/s = 1/2/4, using a fine Nevada sand

of density p' = 2,650 kg/m 3 , d60 = 0.23 mm and d30 = 0.17 mm. These materials have

been under investigation at M.I.T. for several years, and are well characterized by mechanical

testing at multiple scales, from nanoindentation [60,58,59], ultrasonic measurements of the

elastic properties [60,58], to triaxial strength and deformation properties [115, 233, 116,117],

and creep properties [22].

Volumetric Proportions

The volumetric proportions of the hydration products &an be calculated based on the Powers

model described in Section 4.5.1: Given the initial w/c-ratio, w/c = 0.5, and assuming com-
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plete hydration = 1 (commonly employed for mature cement pastes of w/c > 0.42, see Section

4.4.2) one can calculate the volumetric proportion of the hydration products, C-S-H matrix and

capillary porosity, from (see Section 4.5.1):

00 = _ _ _ - 1.32 1 - / C= 0.10 (8.16)
W/c + p.7_pc (W/C+ p./pc

fCSH = 2.12 1 W/C 1 - 0 =0.90 (8.17)
W/C + pw /P )c

From mass density measurements of the hardened cement paste and mortar (see Tab. 6.1),

it is possible to determine the sand inclusion volume fraction (Level III):

~* ~M
p* =(p)v 4 fI = M = 0.36 + 0.03 (8.18)

p - p

where pM stands for the density of the porous matrix (cement paste, Level II), and p* for the

density of the inclusion-matrix composite (mortar, Level III). The obtained values are consistent

with mass measurements of saturated and dried specimens which yield (see Tab. 8.3):

h = 1 - m 0.31 + 0.03 (8.19)

where Am* and AmM represent the change in mass content due to drying of the composite

(mortar) and porous matrix (cement paste), respectively:

Am* As*at - Md., A M Mt - MM (
V fi(8.20)

PPo po V

where V stands for the specimen volume, Ma,*t = pa*,tV*, MM = pm VM and Md,,, MM for

the actual measured masses of the saturated and dried materials, and p f = 1, 000 kg/M 3 is the

water mass density.

8.2.2 Level I: LD + HD C-S-H -- C-S-H matrix

The C-S-H matrix (Level I) is composed of two porous materials, the HD C-S-H phase and the

LD C-S-H phase. The poroelastic properties of the C-S-H matrix are determined from Eqs.
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(7.68a), (7.68b), (7.68c) and (7.68d):

Ko = (kAv)vCsH = kHD + (ikLD - kHD) LD ALD

nV :) Gom = (gAd) CSH = 9HD + (9LD - 9HD) LDALD

inVI hom g VCS LD(8.21)bio = (bAv)vcsH = bHD + (bLD - bHD) fLDALD

hl/Nimom= /NLDH +1/NkD

where we employed the consistency condition fLDALD + fHDAHD = 1 and fLD - fHD 1.

Given this compatibility condition, it is readily undersood that the poroelastic properties of

the C-S-H matrix are all situated in between the values of the low-density and the high density

C-S-H phase, i.e.,

E LD < E < E HD

inV 1 : bLD < bom <bHD (8.22)

1/NID _< 1/Nhom < 1/NHD

where ELD = 21.7 GPa and EHD = 29.4 GPa are the drained stiffness properties of the low-

density and the high-density C-S-H phases, which are determined directly from nanoindentation

[58]. Between these bounds, the poroelastic properties depend on the w/c-ratio, which affects

the volume fractions fHD and fLD of the two types of C-S-H (see Fig. 9-5). These volume frac-

tions are also directly measurable, either by nanoindentation (see Chapter 5), or by hydration

models (see Section 4.5). In this case, the determination of the poroelastic properties requires

estimates for the concentration factors A'D and A D in (8.21). Using the estimate given by the

Mori-Tanaka scheme (see Eq. (7.15) and Appendix (C)), in which we choose the low density

phase as matrix, gives:

AV =AV, MT _ 1+aLD(I-1)
fLD [1 + OLD (K- 1)] + fHD

AD = Ad,MT _ + 1 3 LD ( 1)

fLD [1 + /LD -1)] fHD

where K = kHD/kLD, 'q = 9HD/9LD, and where aLD and #LD are given by (C.13).

The outcome of this homogenization step are the stiffness parameters of the C-S-H matrix,

kg' and g 7 SH , and the poroelastic constants. For a w/c = 0.5 cementitious material, for

which fLD = 0.7 and fHD = 0.3, we obtain kS' = 15.2 GPa and gC' = 9.6 GPa, thus an
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elastic stiffness of E = 23.8 GPa, and the poroelastic constants:

w/c = 0.5 : biom = 0.67 NIom =131.1 GPa M = = 6.6 GPa BI = 0.24 (8.25)

The outcome of this homogenization step is summarized in Tab. 8.3.

8.2.3 Level 11: C-S-H matrix + MP -+ Cement Paste

At Level II, the composite material is composed of a porous C-S-H matrix, and an additional

capillary porosity. This case is covered by relations (7.85), developed for the double porosity

model. The homogenized value from Level I (Kom, Gor, bom, N om) will serve as input data

for this homogenization step. The volume fractions of the phases are also known from Power's

model as detailed before. For a w/c = 0.5 cement paste, for which all clinker phases are

consumed in the hydration reactions, the problem reduces to a composite material composed

of a porous matrix (C-S-H matrix of volume fraction fCSH = VCSH VII = 0.90, stiffness

kcSH = KIjom';csH = GIom), and a pore space 0 = 1 - fCSH = 0.10, for which:

* The drained bulk modulus and sheax modulus are given by Eqs. (7.85a) and (7.85b)

respectively:

. Kitr = fCSHkCSHACsH
in V11 : (8.26)

GIom = fCSHgCSHACSH

By estimating the concentration factors with a Mori-Tanaka scheme, the drained stiffness

properties of the w/c = 0.5 cement paste are kWim = 13.0 GPa, gIIm = 7.9 GPa, thus

a drained Young's modulus of EIm = 19.6 GPa. We also note that the undrained bulk

modulus is K;'m = 15.9 GPa, and the associated Young's modulus E'm = 20.2 GPa.

" The Biot coefficient is derived from Eq. (7.85c), by adding to the Biot coefficient associ-

ated with the capillary porosity the contribution of the porous matrix:

in V11 : b b'= b +bW =#0Av + fCSHb~omAvCSH (8.27)

For the w/c = 0.5 cement paste, for which the capillary porosity is relatively small

(0 = 10%), the Biot coefficient associated with this capillary porosity is small as well,
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b1I = eAv = 0.17, and the overall Biot coefficient is dominated by the contribution of the

porous C-S-H matrix, b i = fCSHb'QmA, SH = 0.55; which yields a total of horn 0.72.

* The skeleton Biot modulus is derived from Eq. (7.85e), where the contributions of the

porous matrix and the one of macroporosity are incorporated:

in VII : Nlm (1 -40) V bW -bI) + + 2(1 _#0) V(AV - 1)+ (b -0

(8.28)

For the w/c = 0.5 cement paste, we obtain Njmrn = 102.1 GPa. The overall Biot modulus

is then determined from Eq. (7.119), by considering as effective porosity the sum of the

capillary and the weighted gel porosity, i.e. # 0' = 0 + fCSH X #CSH; thus in summary

for the w/c = 0.5 cement paste, for which #1 = 0.34:

w/c = 0.5: blm =0.72 Nhijrm = 102.1 GPa MI = 5.4 GPa BI = 0.24 (8.29)

8.2.4 Level III: Cement Paste + Inclusions -+ Mortar/Concrete

At Level III, the material is composed of a porous matrix (the cement paste) and non-porous

inclusions. From a morphological point of view, the porosity belongs to the phases at a level

below (cement paste). Given the separability of scale condition, the porosity does not enter the

Level III, but is already included in the poroelastic properties of the cement paste that serve

as input. Consequently, the drained elastic properties are obtained from the application of Eq.

(8.21) to the two-phase system (porous matrix and inclusions), neglecting any interface zone

around the aggregates; i.e.:

in K[ = kM + (k1 - kM) (8.30)
Ghom4 = gM + (gI - gm) fA

where km = Kim and gm = Gl'm are the elastic properties of the cement paste matrix, kj and

g, the elastic properties of the aggregate inclusions of volume fraction fi = V/V,1 , given by

mass density measurements (see Eqs. (8.18) and (8.19)), while A ' and Aq are strain localization
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factors. For this case, the Biot parameters, b and N, are given by Eqs. (7.114c) and (7.114d):

bhif -(1 -fi) A" = (1 - fiAh) 1
in Vii,: N" + (1 - ) (b )2 (- 1 (8.31)

For the w/c = 0.5 mortar with a sand volume fraction of roughly fi = 1/3 and known elasticity

properties (Ei = 62.5; vi = 0.21), we obtain KII[ = 17.3 GPa, G1If = 11.0 GPa, thus a

drained Young's modulus of EI4 = 27.2 GPa, an undrained Young's modulus E" I = 27.9

GPa, along with the following poroelastic properties:

w/c = 0.5: b, = 0.59 N1/1 = 293.6 GPa MII = 7.3 GPa BIII = 0.22 (8.32)

where we employed 01"1 = (1 - fi) #1 = 0.23 for the determination of the overall Biot modulus.

8.2.5 Discussion

The developed upscaling scheme delivers estimates of the poroelastic properties of cementitious

materials at multiple scales, that are difficult to assess experimentally. Particularly, static

tests in which simultaneously the mean stress and the pore pressure are monitored are difficult

to perform in the purely elastic range, and involve very early on plastic deformation. The

static stiffness that is reported from such tests is often much smaller than the dynamic stiffness

measured on the same material. By way of example, Tab. 8.3 reports the dynamic Young's

modulus determined by Ultrasound Pulse Velocity (UPV) and Resonance Frequency (RF) of the

cement paste and mortar we consider in this study, together with the static stiffness obtained

from the unloading branch of a uniaxial compression test. From this table, it is readily seen that

the static modulus is some 10 - 20% smaller than the dynamic stiffness. Hence, a consistent

comparison with the estimated stiffness values obtained by upscaling should be made with the

dynamic stiffness values. More precisely,

* In UPV-tests, the stiffness is determined from the velocity with which a wave travels

through the saturated sample (for details see e.g., Ref. [58]). Given the high frequency

(in the 500 kHz - 1, 000 kHz), it is unlikely that liquid mass can escape the sample; and the
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II Level I~~~ LvlILelII

Measured C-S-H Matrix Cement Paste Mortar

Psat [kg/m 3 ] 1, 898 ± 9 2, 171 ± 15
1nm
f ( [%] - 39.7 ± 1.1 27.5 ± 0.4

Estatic [GPa] - 18.6 ± 0.6 21.6 ± 0.4

ERF [GPa] - T-71.7 ± 0.1 25.2 ±0.1
Eupv [GPa] - 22.8 ± 0.5 26.5 ± 1.8

Predicted

Ehom [GPa] 23.8 19.6 27.2
1'hom [1] 0.24 0.25 0.27
EUom [GPa] 24.4 20.2 27.9
Vhom 1 0.28 0.29 0.28
bhom I1 0.67 0.72 0.59
Nhom [GPa] 131.1 102.1 293.6
Mhom [GPa] 6.6 5.4 7.3
B [1] 0.24 0.24 0.22

Table 8.3: Measured versus predicted properties of a w/c = 0.5 cement paste and mortar:
PAat = mass density of saturated sample;
A m = change in mass content due to drying at 105 C;
Eupv = Young's modulus determined by Ultrasonic Pulse Velocity;
ERF = Young's modulus determined by Resonance Frequency;
Estatic = Young's modulus determined from uniaxial unloading tests.
Predicted (MT = Mori Tanaka; SCS = Selfconsistent Scheme):
Ehom drained Young's modulus;
Vhom = drained Poisson's ratio;
EKom = undrained Young's modulus;

Vhom undrained Poisson's ratio;
bhom = Biot coefficient;
Nhom = Skeleton Biot modulus;
Mhom = overall Biot modulus;
B = Skempton coefficient.

conditions can be assumed to be approximately undrained. Hence, UPV-measurements

are suitably compared with the undrained stiffness values.

In RF-tests, a sample is brought into vibration, and-the stiffness is determined from the

frequency response (for details see e.g., Ref. [58]). Given the time it takes to reach a

constant frequency, it is likely that the conditions are not completely undrained, and

in a first approximation the values obtained can be associated with drained stiffness

values, which explains that RF-stiffness are generally 1 - 1.5 GPa smaller than UPV-

measurements.
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Table 8.3 also summarizes the stiffness values (and poroelastic constants) obtained by up-

scaling. It is interesting to note that the undrained stiffness values of the cement paste is

within 10% of the UPV-stiffness (EIi = 20.2 GPa versus E -'' = 22.8 ± 0.5); and alsohorn _LUPV

the drained stiffness values is within 11% of the RF-measurements (EIm = 19.6 GPa versus

E-"/F = 21.7 ± 0.1). This good agreement is a clear indication of the predictive capabilities of

the homogenization scheme for the cement paste, that is the capability of the model to capture

the strain localization in the solid phases. Since the strain localization is intimately related to

the Biot coefficient and Biot moduli, we may infer that the stiffness validation includes the vali-

dation of b[m and Nm (calculated values reported in (8.29)). The small discrepancy observed

between measured and predicted values may be attributed to the presence of Portlandite crys-

tals which have been neglected in the Level II homogenization, and which might be responsible

for an additional 10-11% stiffness contribution.

By contrast, the stiffness values obtained by homogenization of the mortar are slightly

greater than the experimental values for both the undrained, +5%, (Ef',m = 27.9 GPa versus

EI/JV =26.5 ± 1.8) and the drained case, +7% (E 1I = 27.2 GPa versus Ej{F = 25.2 ± 0.1).

This is an indication of an additional micromechanical feature which adds a compliance to the

composite material of non negligible magnitude (difference on the order of 10%), and which has

not been taken into account in our upscaling scheme. Several contributions in the literature

suggest the existence of an Interfacial Transition Zone (ITZ) between the inclusions and the

cement paste matrix, which may well explain this difference. This zone is known to be -

on average - a zone of a higher porosity than the cement paste matrix. The Biot coefficient

determined by neglecting the ITZ, therefore, appears as a lower bound of the actual Biot

coefficient of the mortar.

8.3 Thermally and Chemically Treated Systems

The micromechanical model presented in Chapter 7 is general and can be equally applied to any

cement based material provided the knowledge of the volumetric proportions of all constituents

and their elastic properties. In the validation section of this chapter (Section 8.2) we have

estimated the volume fractions through the Powers model. When it comes to chemically affected
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systems, the predictive capabilities of the model breaks down and one needs to proceed in an

alternative way.

8.3.1 Heat Curing and Heat Treatment

This section investigates the use of our microporomechanics model to thermally affected sys-

tems: heat cured and heat treated specimens investigated in Chapter 6. The input requirements

for all levels are summarized in Tab. 8.4. The volumetric proportions of all constituents were

evaluated from the deconvolution technique developed in Chapter 5. For purposes of microporo-

mechanical analysis the effect of Portlandite crystals is lumped into the volumetric proportions

of the C-S-H constituent treating it all as one single phase (similar to Powers model). Further-

more one needs estimates of the elastic moduli of the involved constituents. The elastic moduli

of the two types of C-S-H were obtained using the indentation analysis tools presented in Chap-

ter 2 and 5. As it was shown in Chapter 6 the elastic properties of the two types of C-S-H remain

almost unaffected by the thermal process and it is only the volumetric proportions that are sig-

nificantly affected. The input data, which is summarized in Tab. 8.4, is incorporated in relation

(7.35) that provide predictions of cement pastes elasticty (KIm, Gum). The Young's modu-

(9K" "GII.J
lus can then be readily obtained using standard relations of elasticity, Er' - r hom

The predicted values are compared with experimental macroscopic data (EeXP) obtained by

microindentation (see Section 6.2.2). It is impressive to see that the micromechanical predic-

tions are in close agreement with experimental values (±10%). Slight discrepancies observed

between experiments and predictions should be attributed to inaccurate determination of the

volumetric proportions of the individual chemical constituents.

8.3.2 Calcium Leaching

An interesting case study of our micromechanical model is the scenario where cementitious

materials are subjected to the dissolution of calcium fr=n their solid skeleton. Such a scenario

arises when the calcium concentration in the saturated pore solution falls below the chemical

equilibrium of the solid phases bound in the solid skeleton leading to the progressive decal-
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Young's Modulus LD C-S-H 18.8 17.8 18.0 18.3 3.0
HD C-S-H 31.0 29.8_j 28.5 29.1 12.0

Volume Fractions fLD 67 63 47 62 70

fHD 33 37 53 38 30
fCsH 89 89 79 92 86

fe _ 8 2 16 5 14

fCL 3 9 5 3 0

Predictions
vs.

Measurements

EPre 18.7 21.6 17.2 19.5 3.5
EexP 18.0 19.7 18.3 19.0 3.6

E--4 -10 +6 -3 +3

Table 8.4: Input and Output properties of several thermally and chemically affected sys-

tems. Measured versus predicted Young's moduli. 'C'=Control, 'HC-1'=1-day heat cured,
'HC-28'=28-days heat-cured, 'HT'=Heat-treated, 'CL'=Calcium leached.

cification of the different minerals. The resulting material is one of increased macroporosity 2

and reduced mechanical performance of the two C-S-H types. In contrast to thermally treated

systems the elastic modulus of the two types of C-S-H (ELCD = 3 GPa, EiL = 12 GPa) reduces

significantly due to the decalcification process (see Tab. 8.4). It is interesting to note that while

the intrinsic properties of the two types are significantly reduced the volumetric proportions

remain unchanged from the degradation process (fLD = 0.70, fHD = 0.30). Substituting the

input data into Eq. (7.35) yields macroscopic estimates of the calcium leached material. It is

impressive to note that the predictions of the micromechanical model (EP"e = 3.5 GPa) are

within 3% of the experimentally obtained (UPV) values (Em" = 3.6 GPa).

The applicability of the model to thermally and chemically affected CBM systems verifies

the robust predictive nature of the model, which provides reliable macroscopic estimates in

light of knowledge of three crucial parameters: a) Morphological arrangement at all considered

levels; b) Elastic properties of all involved constituents; and c) Volumetric proportions of all

phases.

2 Portlandite crystals dissolve into Calcium ions and water leaving in return empty spaces which manifest
themselves as macroporosity present at Level II, equivalent of capillary porosity.
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8.4 Chapter Summary

Continuum micromechanics and advanced microstructural modeling of cement chemistry to-

gether with advanced micromechanical testing (such as nanoindentation) provide a rational

means to estimate the elastic/poroelastic properties of highly heterogeneous materials such as

cement-based materials, and to confirm that cement-based materials are poromechanics mate-

rials that are sensitive to the pore pressure that manifests itself at multiple scales.

If we admit that the gel porosity is the smallest pore space in cement-based materials in

which water occurs as a bulk water phase, the poromecpanical effect of this porosity dominates

over fluid pressure effects. The gel porosity of 24% and 37% in high-density and low-density

C-S-H, which is the same for all cement-based materials, confines the Biot coefficient within

0.54 < b0 < 0.72 (see Fig. 8-4). Except for the case of an excessive capillary porosity, this

base Biot coefficient decreases gradually at larger scales, because of the addition of non-porous

solid phases (Portlandite,aggregates, etc.), but is generally expected to be larger than twice

the (bulk water) porosity. This relatively high value of the Biot coefficient indicates that the

deformation of cementitious materials is not only governed by the deformation of the solid

phases, but also by a change of the porosity, particularly of the gel porosity in the C-S-H, which

is on the same order as the macroscopic deformation. In a similar way, a pressure build-up

or a pressure decrease (e.g., capillary pressure) also entails a non-negligible change of this gel

porosity, resulting in swelling or shrinkage of these materials.

The Skempton coefficient B, which is a measure for the sensitivity of porous material to

drained and undrained conditions, is almost constant over several orders of magnitude, starting

from the scale of the LD- and HD C-S-H (Level 0),, to the scale of the cement paste (Level II),

and mortar or concrete composite (Level III) (see Fig. 8-4). It is on the order of B = 0.20 -0.25,

which is a rather small value for a porous material with such a high porosity. In turn, this rather

small value explains the little difference between drained and undrained elastic properties, and

may well explain the little consolidation effect that cement-based materials generally experience.
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Chapter 9

Development of an Engineering

Poroelastic Prediction Tool

This chapter is devoted to the development of an engineering model that can predict the

poroelastic properties of any CBM system at multiple scales. To this end, we couple the

microporoelastic model presented in Chapter 7 with a chemical reaction model that can predict

the volumetric proportions of CBM constituents for a given mix design. The resulting product

is an engineering tool that can deliver the macroscopic poreelastic behavior of all cement-based

materials irrespective of initial w/c-ratio, degree of hydration, type of testing (drained or

undrained), etc. The engineering tool is then used to demonstrate the effect of w/c-ratio on

the multi-scale mechanical performance of cementitious materials. It is shown that the mi-

cromechanical estimates are in excellent agreement with available experimental data, further

validating not only the used localization schemes but also the obtained intrinsic properties

values, chemical reaction models, and assumed morphological arrangements.

9.1 Development of an Engineering Model

We attempt in this section to devise an engineering model that can provide predictions of the

elastic properties of cementitious materials for a given set of commonly known information

(mix design parameters). The central theme of this model will be a balance between ease of

utilization and accuracy of predictions. The developed four-level upscaling scheme requires, at
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Volume Fractions I Properties Mor. Properties Scheme

fL D f LD k est est

LEVEL 'O' fHD D s P kL gLD C
______ fHD f 9D kgp gg ks g2est

7s fq 29P HD SHD

LEVEL 'I' fLD kLD -9LD MI keH 9s H MT
fHD kHD 9HD

fCSH kCSH 9CSH

LEVEL 'II' fCH kCH 9CH MI kest g te MT
fCL kCL 9CL

fcP kMp gMP

LEVEL 'III fp kp gp MI kt ortar MT
fi ki gi Mortar eat MT

Table 9.1: Input-Ouput parameters involved in the three level upscaling scheme for CBM
materials. * PC=Polycrystal, MI=Matrix-Inclusion **SC=Self- Consistent, MT=Mori-Tanaka

each level, input of two of the elastic constants (i.e., bulk and shear moduli ki, gi), and of the

volume fractions, fi, of the involved phases, i. Finally one needs to assume a morphological

arrangement of the involved quantities which will define the choice of the localization scheme.

Table 9.1 summarizes the input-output structure of the proposed model. The following section

proposes a way such that the input requirements of the micromechanical model can be directly

determined from the mix design proportions.

9.1.1 Volumetric Proportions

Quantification of the relative volume of the different constituents present in cement-based ma-

terials microstructure can be achieved either experimentally (nanoindentation, see Chapter 5,

or Mass-density measurements, see Section 8.2) or theoretically, by modeling the chemical re-

actions of cement particles (Section 4.5.1). In what follows, we will use the chemistry models

presented in Section 4.5.1 that can provide the volumetric proportions of CBM constituents for

a given mix proportion. A simple set of equations was proposed by Powers - see Eq. (4.12) -

which can be applied to all Portland cements (Type I to V) and which avoids the more rigorous

and complex calculations of the stoichiometric relations. The separation of the C-S-H into its

two types, however, needs to be done with the help of J-T model that proposes a simple rela-

tion fitted on experimental results of surface area and nitrogen-accessible porosity (see Section

4.5.2).
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The critical mix parameter that provides some control over the microstructure is the initial

w/c-ratio. Depending on the initial w/c-ratio the resulting microstructure will have different

volumetric proportions of the hydration products that are allocated in different levels of our

4-level structure. The compatibility condition, E f/ = 1 must be satisfied at all levels, J

0, I, II, IIl.

Level III: Mortar/Concrete

Typical mix parameters provided by the manufacturer are the mass percentages of water, cement

and sand denoted here by w, c, s respectively. Given this initial mix design (w/c/s) one can

calculate the volume fractions at Level III:

s/ps
fi = S/ (9.1)

=w/p,+c/pc+s/p 8  91

f = 1- fi (9.2)

where pw, pc, p, are the densities of the raw materials; water, cement and sand. While the

density of water and cement are generally constant (pW = 1000 kg/m 3 , pc = 3150 kg/m 3 ) the

density of sand particles will vary depending on the type of sand particles used. It should be

noted that Eq. (9.1) assumes that the volume of the mixture remains constant during hydration,

an assumption which is generally supported by experimental results [180].

Level II: Cement Paste

Power's model provides a simple set of equations (Eq; (4.12)): for a given degree of hydration,

the relative volumetric proportions of the clinker, macropores and gel phases as a function of

w/c-ratio. The gel phase is representative of the C-S-H, CH and any other minor compounds

(see Section 4.2.3) formed during hydration. It can be estimated from the chemical reactions

(see Section 4.5.2) that the majority of the volumetric proportions of the gel (close to 90%) is

composed of C-S-H independently of the degree of hydration and initial w/c-ratio. For the

purpose of simplicity we will therefore assume that the gel phase described in Powers model

corresponds solely to the C-S-H component.
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Figure 9-1:
model.

0.4 0.6

w/c-ratio

0.8 1

Maximum possible degree of hydration , vs. w/c-ratio as predicted by Powers

Maximum degree of hydration, (max It has been experimentally found by Powers [194]

that complete hydration cannot occur if the w/c-ratio is below a certain value (see Chapter 4).

Even though the exact value of this critical w/c-ratio is a function of the cement composition

and cement particle distribution an average value for all cements can be calculated using Pow-

ers model: For a given w/c-ratio the degree of hydration progresses provided there is space

available for the hydration products to precipitate (VC, > 0). In cases where the space is filled

(VCP -- 0) then the hydration should stop ( ~ (max) An estimate of the maximum degree of

hydration, max, can be calculated from Eq. (4.12), by letting the capillary porosity go to zero,

VC -+ 0. The resulting ,max vs. w/c relation is shown in Fig. 9-1. The calculated relationship

may well be approximated by:

max = 2.38 ()
max = 1

for 0 < 1 < 0.42

for E > 0.42C
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Figure 9-2: An Avrami type evolution characterizing the kinetics of degree of hydration Of C3 S
vs. time.

Clinker Phases a lb [c

C3S 0.25 0.90 0.70
C2 S 0.46 0.00 0.12
C3 A 0.28 0.90 0.77
C4 AF 0.26 0.90 0.55

Table 9.2: Experimentally obtained constants used ih Avrami equations, from Ref. [226].

Generally speaking, the degree of hydration can be linked to the age of the sample, t - in days,

by assuming that the kinetics of the chemical reaction follow the Avrami equation:

= 1 - exp (-a (t - b)) (9.4)

where a, b, and c are empirical constants that need to be fitted by experiments. Taylor [226]

provided experimental values for these constants that are given in Tab. 9.2.

Given that Power's model does not separate the different cement compounds but rather

considers cement as one phase, we will assign a global degree of hydration following the kinetics

of C3 S which is the dominant cement compound in most commercial cements (i.e., see Tab.

4.1). Figure 9.2 shows the degree of hydration of the C3 S as a function of time t in days. It is
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readily understood that most of the reaction occurs after a few weeks with 92% of the cement

being consumed by 28 days and 99% by two months. In what follows, we will be concerned

with mature pastes (> 4 months) where the effects of age (i.e., degree of hydration) becomes

negligible. In such a case the degree of hydration can be approximated by 'max which becomes

a function of only the w/c-ratio and can be calculated by (9.3)1. Given the existence of this

relation, ( = E (w/c), the volumetric proportions of all constituents present in cement paste

microstructure become unique functions of the initial w/c-ratio (see Eq. (4.12)).

Water (CP), Cement (CL) and Reaction Products (C-S-H) The gross space available

for the products of hydration consists of the absolute volume of the dry cement together with

the volume of the added water. This volumetric space is occupied by the different constituents

depending on the w/c-ratio. The w/c-ratio defines the total volume of porosity left in the

system after hydration as well as the maximum degree of hydration that can be achieved. Figure

9-3 shows the Powers model predictions (4.12) for the volumetric proportions of all phases where

the maximum possible degree of hydration (see Fig. 9-1) has been used for a given w/c-ratio.

The required volume fractions for Level II of the micromechanics model (fCSH, f, f 0)

can be readily obtained either from Eq. (4.12) or from Fig. 9-3. For w/c > 0.42, complete

hydration is always possible. In contrast, w/c < 0.42 provides insufficient water to completely

hydrate all cement present in the microstructure, with subsequent residual clinker phases left

in the system. In what follows, we will concentrate on mature pastes (age > 1 month) where

hydration effects become negligible. As we have seen in the experimental part of this thesis,

the C-S-H phase is composed of two types. Powers model does not provide a separation of the

two C-S-H phases and this need to be done in an alternative way.

Level I: Separating the 2-types of C-S-H

Estimates for the relative presence of the two types of C-S-H has been provided by Jennings and

Tennis [130, 227] who fitted experimental data of surface area and porosity measurements in an

attempt to quantify the relative presence of the two. Their model, which has been presented in

'Strictly speaking, the degree of hydration of a given cement paste is a complicated function of the w/c-ratio,
time after mixing, cement composition, cement particle distribution etc. Nevertheless the dominating factor that

prevails over all other parameters is the initial w/c-ratio.
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Section 4.5.2, provides a quantification of the two types of C-S-H. Combining Eqs. (4.18) and

(4.19) yields an estimate for the LD volume fraction:

M D _Mr (9.5)fLD - Mt(1-Mr) Mr + (1 - Mr)
PLD PHD PHD

where we recall that Mr is the mass of LD C-S-H over the total C-S-H mass. Fitting the ex-

perimental data shown in Fig. 9-4, Tennis and Jennings [227] provided an analytical expression

of Mr as a function of the degree of hydration and the initial w/c-ratio, see Eq. (4.17):

Mr = 3.017- - 1.347 + 0.538 (9.6)
C

Combining Eqs. (9.6) and (9.5) one can get the relative proportions of LD C-S-H and HD C-S-H

for any w/c-ratio and degree of hydration. Figure 9-5 shows fLD as a function of the w/c-ratio

for the maximum degree of hydration (see Eq. (9.3)) that can be achieved in each case. The

experimental data obtained by nanoindentation in Chapter 6 is also shown for comparison. The

very good agreement between experiments and Eq. (9.6) validates the function provided by

J-T, Eq. (9.5). It should be noted, however, that the range of applicability of Eq. (9.5) is

within 0.25 < w/c < 0.5, the range for which the experimental data was fitted. The tendency

of the function to show a minimum at around w/c = 0.22 and to even extend at values higher

fLD > 1 for w/c > 0.6, should be considered as artifact of the fitting process. In order to get

a function that can provide estimates for w/c-ratio 0.25 > w/c > 0.5 we extracted from Fig.

9-4 the experimental Mr corresponding to the maximum degree of hydration for the different

w/c-ratios for which the function was initially fitted (w/c = 0.25,0.33,0.44,0.5) and replotted

the calculated fLD (from Eq. (9.5)) on a separate graph (Fig. 9-5a). The experimental points

obtained by nanoindentation are also included. It can be seen that a linear function, which

minimizes the least square error, provides an excellent fit to the data:

fLD = 2.12 (I) - 0.36 0.17 < w/c < 0.64

fLD =c <0.17 (9.7)

fLD = 1 w/c > 0.64
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Using the compatibility condition Zfi = 1, one can estimate the volumetric proportion of HD

C-S-H from fHD = 1-- fLD. Figure 9-5 and Eq. (9.7) suggest that the higher the w/c-ratio the

higher the percentage of LD C-S-H. The two limiting cases (fLD = [0,1]) are obtained when

the water-cement ratio reaches the values (w/c E [0.17, 0.64]):

" The best fitted line suggests that for w/c > 0.64 all C-S-H formed is LD C-S-H. This result

is consistent with mercury porosimetry results presented in Section 4.4.2 that suggest a

uniform microstructure for w/c > 0.6 (see Fig. 4-11).

" At the other extreme, the LD C-S-H is eliminated from the microstructure provided the

w/c-ratio is less than 0.17. It is interesting to note that this value is close to the one used

for most Ultra High Performance Cementitious (UHPC) materials (w/c = 0.15 - 0.20),

which are generally known to have a uniform microstructure and superior mechanical

performance [2].

Figure 9-5 shows the relative proportions of the C-S-H phases present in CBM as a function

of w/c-ratio. The two C-S-H phases have been separated based on the scheme presented in

Eq. (9.7).

Level 0: LD and HD C-S-H

The required volumetric proportions at Level 0 are the porosities, fj =/, and packing

densities, fj, of the two types of C-S-H, J = LD, HD:

fLD 0.37, f =D 0.24 (9.8a)

fLD = 0.63, fHD =-0.76 (9.8b)

where the consistency condition fJ = 1 - f was used. We recall that the relative volumetric

proportions at this scale are a consequence of two different packing modes of the C-S-H particle.

We will therefore assume for the rest of this chapter that the values proposed in Eq. (9.8) are

independent of the cement composition, degree of hydration, and w/c-ratio. With this relation

we complete the volumetric proportion requirements for the micromechanical model.
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9.1.2 Morphological Arrangement

The morphological arrangement is assumed to be independent of degree of hydration and

w/c-ratio. The morphology of the phases is indirectly incorporated in our model through

the choice of the used localization scheme. Level 0 which appears to have a colloidal gel na-

ture is here approximated by the Self consistent scheme initially developed for polycrystalline

materials. Levels 1, 11 and III are simulated as matrix-inclusion geometries which is reasonably

modeled with a Mori-Tanaka scheme. The assumed morphologies and corresponding localiza-

tion schemes used for each level are summarized in Tab. 9.1.

9.1.3 Intrinsic Elastic Properties

The final informations required for microporomechanical upscaling are elastic properties of all

constituent phases. We recall that a phase in micromechanics is not necessarily a chemical

phase but rather a region with an on average uniform stress/strain. The upscaling model was

designed to originate at the lowest level where chemical phases can be identified so that me-

chanical phases correspond to chemical phases. Such an approach provides a coupling between

physical chemistry and mechanics, arising from multi-scale modeling and micromechanical the-

ory. Strictly speaking, the LD/HD C-S-H phases are not distinct chemical phases, they appear

however to have a distinct chemical-morphological arrangement which gives them properties

that are independent of the degree of hydration and initial w/c-ratio. Table 9.3 summarizes

the intrinsic properties of all constituents used in our modeling procedure:

" The values of LD and HD C-S-H were found to be a weak function of cement composition.

In fact, white cement exhibited elasticity values which were on average 5-10% lower than

other Type I cements. We have to note that, in practice white cement is the exception

rather than the rule and as a consequence the majority of the data found in the literature

is based on Type I-IV cements. A value of ELD = 21 GPa and EHD = 31 GPa was

therefore chosen for the development of this engineering model.

" Power's model does not separate between the different cement phases but rather considers

it as one phase. Generally speaking, the C3 5 phase dominates in volumetric proportions

and the elastic properties of this phase will be used as the elastic properties of cement.
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LEVEL E [GPa] V [1]
0: C-S-H solid

Basic Building Block NA. N.A.

Globules 60.8[.A.](_) 0.25 [I.A.](a)
I: C-S-H matrix

C-S-HLD 21 [58] - 0.24 [1 4 5 ](b)

C-S-HHD 31 [58] 0.24 [145 ](b)

II: Cement paste

C3 S-Clinker 135 [239] 0.3

CH 38 [58] 0.305 [171](c)

III:_Mortar_________________

Nevada Sand 62.5 [116t" 0.21 [116]

Table 9.3: Intrinsic mean properties of cement paste and mortar constituents II: Elastic prop-
erties determined by Nanoindentation;
a [I.A.] = determined by Inverse Analysis, includes nanoporosity (intra-globular porosity) filled by structural
water;
b Poisson's ratio estimated from Ref. [145];
c Poisson's ratio determined by extrapolation to zero porosity, from Ref. [171].

9.2 Micromechanical Predictions

In what follows, we couple the micromechanics model with cement chemistry models (Pow-

ers and J-T models, see Section 4.5) that can predict the volumetric proportions for a given

w/c-ratio and degree of hydration . To demonstrate its general use, we will confront the model

with experimental data on cement paste (Level II) -and mortar/concrete (Level III) found in

the literature. The upscaling approach can be summarized as follows:

w/c/s -+( max -

Level I

Level II

Level III

fLD, fHD

fCSH, fCL, fMP

fCP, fi

Level I

-+ Level II

Level III

KI, GI, b', N'

K", G", bi, NII

KII', GII, b", N'

For a given mix design, w/c/s, the maximum degree of hydration can be calculated, see Eq.

(9.3). Given the w/c/s proportions and an estimated value of one can calculate the volumetric

proportions of all involved constituents using Eqs. (9.1), (4.12) and (9.7) (see also Figs. 9-3

and 9-5). These input data is then incorporated in Eqs. (7.68), (7.85) - for w/c > 0.42-,

Eq. (7.98) - for w/c < 0.42-, and Eq. (7.114) that can deliver the homogenized properties
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of C-S-H (Level I), Cement Paste (Level II), and Mortar (Level III) respectively. Given the

intrinsic nature of the two types of C-S-H the homogenization step at Level 0 can be omitted:

it is the same for all CBMs.

9.2.1 Level I and II: Effect of w/c-ratio

In this section we take advantage of the coupled chemoporomechanical model to investigate the

effect of w/c-ratio on the poromechanical behavior of CBM systems. It is generally agreed

that the w/c-ratio is the most important parameter controlling the macroscopic mechanical

behavior. Controlling the w/c-ratio is a means of manipulating the microstructure. Increasing

the w/c-ratio tends to increase the total porosity of the system: we recall that the hydration

reaction takes place at (almost) constant volume and as a consequence the amount of initial

water is directly proportional to the total pore space left in the system. As a consequence, the

lower the w/c-ratio the less the total porosity. We recall that there are two types of pores

in the system: gel porosity and capillary porosity. Reducing the w/c-ratio tends to eliminate

the capillary pores. In fact a w/c-ratio of w/c < 0.42 produces enough C-S-H, CH, etc. to

fill all the space available, the area initially occupied by water. In turn, as the space becomes

restricted the hydration cannot be completed in full. Figure 9-1 shows the maximum possible

degree of hydration as a function of the w/c--ratio. As the hydration reduces below w/c = 0.42

there is a significant amount of clinker left in the system. In the range of w/c = 0.1 - 0.2 where

most high performance concretes operate there might be a 74% - 62% of clinker (compared to

the initial value) left inside the material. The large volumetric proportions of the the residual

clinker coupled with their excellent mechanical performance (Ecss = 135 GPa) can significantly

contribute to the macroscopic composite mechanical response.

Drained Response

Figure 9-6 shows the drained elastic properties of C-S-H (Level I) and cement paste (Level II)

as a function of the w/c-ratio. At low w/c-ratio the C-S-H homogenized value approaches

the one of the HD C-S-H; in turn, for high w/c-ratio the C-S-H response approaches that of

the LD C-S-H:
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Figure 9-6: Micromechanical predictions of the elastic constants for different w/c-ratios at

two different levels (Level I (a) and Level 11 (b)). The Poisson's ratio scale is shown on the
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E HD 31 KHD = 19.87 GPa GHD = 12.50 GPa vHD = 0.24 (9.10)

ELD = 21 KLD = 13.46 GPa GLD = 8.47 GPa vLD = 0.24 (9.11)

This can be attributed to the shift of the relative proportions between LD- and HD C-S-H as

a function of w/c-ratio: the lower the w/c-ratio the higher the relative proportion of HD

C-S-H to LD C-S-H and vice versa (see Fig. 9-5 and Eq. 9.7). A different picture arises

at the macroscopic Level (Level II), where cement paste exists. The macroscopic stiffness

monotonically decreases as the w/c-ratio increases. For values of w/c > 0.42, the drop in

elasticity can be attributed to the increase of capillary porosity, which appears to be detrimental.

For w/c < 0.42, the drop in elasticity is due to the consumption of clinker phases and the

increase of the LD C-S-H. Of great interest is the evolution of the Poisson's ratio at these two

levels. While it remains constant over the whole investigated range of w/c-ratios at Level I, in

Level II it shows a minimum at around w/c = 0.42. It appears that the presence of inclusions,

whether pores or clinker phases, tends to increase the Poisson's ratio of cement paste.

Undrained Response

Similar trends are observed for the undrained constants with the values of the undrained bulk

modulus, KUn, elastic modulus, Eun, and Poisson's ratio, VUn , to be shifted on the positive

y-axis. This is due to the pressure build-up inside the saturated pore space that generates

a higher composite elasticity in return. Figures 9-7 and 9-8 show the predicted poroelastic

constants for the two levels (Level I and Level II) as a function of the w/c-ratio:

* Biot Coefficient: As was suggested by the compatibility condition, fLD ± fHD = 1,

the predicted Biot coefficient of Level I gradually shifts from the HD C-S-H values (for

0 < w/c < 0.17) to the LD C-S-H as the w/c-ratio increases (w/c > 0.64). At a higher

level (Level II) the Biot coefficient monotonically increases: for 0 < w/c < 0.42 the

increase is due to the consumption of the clinker phases and the presence of additional

LD C-S-H phase as compared to the HD C-S-H phase, while for values greater than 0.42

the increase is primarily due to the capillary porosity which makes its appearance at

w/c = 0.42 and increases in volume with increasing w/c-ratio. For values of w/c = 1 the

Biot coefficient gets values on the order of bI = 0.9 signifying that the majority of the
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deformation is localized within the pore phases present in all levels below (0, I, and II)

rather than the solid phases.

e Undrained Bulk and Young's moduli: The sensitivity of the material to the fluid phases

present in the pore spaces of Level I and II is shown in the calculated properties of

the undrained Bulk KUf and Young's Eun moduli. The evolution shown in Fig. 9-7

while similar to the drained behavior of Fig. 9-6 is shifted on the vertical axis. To fur-

ther demonstrate the effect of pore pressure we calculated the percentage increase of the

undrained elastic moduli versus their drained counterparts, defined as (Aun - Adr) /Adr

where A = E, K. This is shown in Fig. 9-8. As expected, the percentage increase in

poroelastic response is a function of the pore space which scales with the w/c-ratio. At

Level I the percent-difference reaches a plateau for a w/c = 0.64, corresponding to the

point where all C-S-H formed is LD C-S-H. At Level II the percent-difference monoton-

ically increases with a change in slopp pbserved at w/c = 0.42 due to additional contri-

butions coming from the capillary porosity. These results demonstrate the sensitivity of

the material to undrained saturated conditions. It is impressive to note that, while the

bulk modulus is significantly affected, reaching undrained values which are 40% higher at

w/c = 1, the Young's modulus remains relatively unchanged. This is due to the fact that

the Young's modulus is a strong function of the shear modulus which remains unaffected

by the poroelastic state.

9.2.2 Level III: Effect of Volume of Inclusions

The additional contribution of elastic behavior at Level III comes from the aggregates which

are assumed to be spherical and randomly dispersed within the cement paste matrix. The

only parameter that one can control at this Level is the initial mass of sand inclusions which

will eventually define their volumetric proportions, fi, in the composite, mortar. The effect of

volume fractions of inclusions on the mortar elastic response is shown in Fig. 9-9. In order to

demonstrate the effect of inclusions on the poroelastic response of CBM materials we consider

cement pastes of two different water cement ratios (w/c = 0.2 and 0.6) with varying volumetric

proportions of Nevada sand (E = 62.5 GPa, v = 0.21). The results which are shown in Fig.

9-9 suggest that:
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Figure 9-7: Micromechanical predictions of the undrained elastic constants for different

w/c-ratios at two different levels (Level I (a) and Level II (b)). The Poisson's ratio and

Biot coefficient scales are shown on the secondary axis (right).
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A = E, K and the superscript un and dr denote undrained and drained properties respectively.
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* The percentage contribution of the inclusions on the homogenized bulk and shear moduli is

very similar, i.e., bulk and shear moduli benefit in similar fashion indicated by the parallel

evolution of the homogenized properties with volume of inclusions. This observation is

also consistent for both cases of w/c-ratios considered.

* Figure 9-9 demonstrates the intuitive result that the elastic contribution of the sand

particles becomes less important the lower the w/c-ratio. For w/c < 0.42, the residual

clinker phases serve as natural reinforcement at a level below (Level II) which makes

the contribution of sand particles almost zero. It is in fact suggested that for very low

w/c-ratios, the sand particles can even reduce the composite elastic response.

" The addition of sand particles in cementitious materials tends to alleviate the porome-

chanical response. In fact, a plot of Biot coefficients for the two w/c-ratios demonstrates

that there is a significant reduction in these coefficients occurring with increasing volume

of sand particles.

The presentation of poroelastic properties of mortar completes our discussion on the coupling

between chemistry, saturated porosity and elasticity. In the following section we will compare

these predictions with experimental data found in the literature.

9.3 Comparison with Experimental Data

The results of our micromechanical model are compared with drained measurements 2 on cement

paste and mortar specimens of varying mix compositions:

1. The results of Level II are confronted with elastic modulus measurements performed on

cement paste specimens of varying w/c-ratios. We refer to the results of Helmulth and

Turk reported in Ref. [113]. The elastic moduli of mature pastes (age>1 month) and

of varying water cement ratios have been measured using a resonant frequency method.

The fundamental resonance frequencies in flexure and torsion were used for calculating

the Young's modulus, Eme", and shear modulus, Gme", respectively. Details of the exper-

imental data and the corresponding micromechanical predictions are given in Tabs. 9.4

2Drained tests constitute the bulk of experimental values in the literature.
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and 9.5. Figure 9-10a shows a comparison between the micromechanical predictions (Fig.

9-6) and the experimental data of Helmuth and Turk. It is impressive to note the ex-

cellent agreement between the measured quantities (Emea, Gme") and the predicted ones

(EPre, GPr). Using standard relations of elasticity one can calculate the bulk modulus,

K = GE and Poisson's ratio, v = E - 1, of the material. These are shown in
3(3G-E)' I 2G

Fig. 9-10b. The agreement continues to be very good but not as high as the measured

quantities. It appears that the calculated quantities (especially the Poisson's ratio) are

very sensitive to the exact values of E and G. In any case, the predicted values are in

very close agreement suggesting the validity of the proposed model.

2. To further demonstrate the predictive capabilities of the model at the lower end of

w/c-ratio, we compare our predictions with a results on an ultra high performance mate-

rial, Ductal. The degree of hydration of Ductal was found experimentally to be = 45%

[2]. Use of this value in Eq. (9.3) suggests a w/c-ratio of w/c ~ 0.18 which is on the

order of the reported values used for these materials, 0.17 < w/c < 0.24 [2]. Use of these

values in Power's model yields estimates of the volume fractions of unhydrated cement

particles and C-S-H matrix: fci = 0.37, fcsH = 0.63. Use of the volumetric proportions

in Eq. (4.12) yields an estimate of Ductal's elastic properties: EDgctal - 50.0 GPa and

assuming a Poisson's ratio of vDfctal = 0.25 gives a Bulk modulus of KDuctal = 33.3 GPapire pre

and a shear modulus of GDUIal = 20.0 GPa. Young's modulus values reported in Ref.

[257] of EDuctal ~_ 50.0 GPa are in excellent agreement with our predictions. In some

cases, the material is combined with steel fibers and higher values up to 58 -60 GPa have

also been reported [2].

3. The predictions of Level III were compared with experimental measurements reported by

Hashin and Monteiro [109]. The specimens were mortars composed of cement paste with

varying volume of sand inclusions (see Tab. 9.6) with mean diameters of 850[tm. The

elastic properties of the cement paste and the aggregates were reported in Ref. [109]:

k= 22.5 GPa gcp = 11.8 GPa (9.12)

k= 44.0 GPa g, = 37.0 GPa

369



_II Measured ] Predicted
Age w/c Emea j mea ' Epre GPre

[mths] [-] [GPa] [GPa] [GPa] [GPa]
8 0.641 14.34 5.62, 13.73 5.65
8 0.622 15.09 5.96' 14.31 5.92
8 0.579 17.15 6.79 15.91 6.56
8 0.554 18.25 7.20 17.03 6.96
8 0.389 28.60 11.24 27.14 10.43
8 0.368 30.04 12.07 28.73 11.03

14 0.300 36.56 13.92 34.52 13.40
14 0.298 36.08 13.78 34.71 13.48
14 0.295 36.97 14.54 35.00 13.60
14 0.858 6.92 3.15 10.83 3.66
14 0.853 6.92 2.74 10.94 3.68
14 0.668 11.04 4.52 13.07 5.29
14 0.664 11.38 4.32 13.15 5.34
14 0.479 20.57 8.02 21.10 8.32
14 0.478 20.16 8.16 21.16 8.34
14 0.376 28 12 10.76 28.12 10.79
14 0.361 28.74 10.76 29.28 11.24
6 0.67 11.38 4.59 13.02 5.26
6 0.645 12.0 4.66 13.62 5.59
6 0.623 13.30 5.14 14.27 5.90
6 0.566 15.43 6.03 16.48 6.77
6 0.565 16.05 6.24 16.52 6.78
6 0.56 16.59 6.51 16.75 6.86
6 0.556 16.53 6.37 16.93 6.93
6 0.556 16.05 6.31 16.93 6.93
6 0.482 21.05 8.64 20.92 8.26
6 0.467 21.53 8.29 21.84 8.57

Table 9.4: Experimental
various w/c-ratios.

data of Helmuth and Turk versus micromechanical predictions for
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III Measured Predicted

Age w/c Emea Gmea Epre Gpre

[mths] [-] [GPa] [GPa] [GPa [GPa
6 0.46 22.08 8.84 22.28 8.72
6 0.45 21.88 8.57 22.92 8.93
7 0.624 13.71 5.21 14.24 5.89
7 0.608 13.92 5.41 14.78 6.12
7 0.591 14.74 5.76 15.42 6.37
7 0.544 17.28 6.79 17.51 7.13
7 0.543 17.21 6.92 17.56 7.15
7 0.541 17.21 6.79 17.66 7.18
7 0.457 22.36 8.64 22.47 8.78
7 0.449 22.36 8.71 22.99 8.96
7 0.448 22.36 8.50 23.05 8.98

24 0.702 10.90 4.39 12.46 4.87
24 0.693 11.18 4.11 12.59 4.98
24 0.68 11.24 4.66 12.82 5.14
24 0.509 19.89 8.09 19.36 7.75
24 0.494 21.19 8.29 20.21 8.03
24 0.479 21.53 8.50 21.10 8.32

Table 9.5: Experimental data
various w/c-ratios.

of Helmuth and Turk versus micromechanical predictions for

Figure 9-11 shows experiments versus modeling values. For small volume fractions of

inclusions the micromechanical predictions are within 2% starting to deviate (not signif-

icantly, though, with a maximum of 15%) at higher proportions. This can be attributed

to the presence of the interfacial transition zone that is known to provide additional

compliance to the system.

9.4 Chapter Summary

The coupled chemoporoelastic model presented in this chapter provides a direct link between

physical chemistry and mechanics and can predict the poroelastic properties of any CBM ma-

terial independent of initial w/c-ratio, curing temperature, testing conditions (drained vs.

undrained, etc.) and over several orders of magnitude in length scales. Since the model incor-

porates all chemical constituents, it provides a direct quantification tool for the contribution

of each individual phase to the macroscopic mechanical response. It might as well serve as
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IIIMeasured Predicted

fi 11 Kmea I Gmea Kpre IGpre

[%] [GPa] [GPa] [GPa] [GPa]
15 24.14 13.35 24.69 13.82
27 26.81 14.87 26.62 15.68
40 27.69 16.91 28.94 18.00
52 29.96 19.26 31.31 20.57
65 30.12 20.23 34.98 23.84

Table 9.6: Measured versus predicted properties of a mortar with varying volumetric proportions
of sand.

an optimization tool for tailoring the microstructure to deliver specific macroscopic properties.

Figure 9-12 summarizes the predictive capabilities of the model as compared with experimental

measurements for all the cases considered in this chapter. The excellent agreement between

experimental data and micromechanical predictions validates several hypotheses:

" The volumetric proportions as suggested by the Powers model and the separation of the

C-S-H phases proposed in Fig. 9-5 are accurately predicted.

* The intrinsic properties of all constituent phases suggested in Chapter 5 are reliable.

* The used micromechanical schemes (self-consistent scheme and Mori-Tanaka) provide

reliable estimates of the mean stress/strain localization within each phase.
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Part V

STRENGTH ASSESSMENT AND

UPSCALING
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Chapter 10

Indentation Estimates of C-S-H

Strength

This last part of the thesis deals with the strength properties, their assessment by means

of nanoindentation and their upscaling from the nano level to the macro scale. In previous

chapters of this thesis, we have concentrated our efforts on the elastic properties of CBM. We

have shown that a few invariant material properties, proposed in Chapter 5, are sufficient to

upscale the poro-elastic macroscopic behavior of a range of CBM and capture their diversity

which is generally attributed to volumetric mismatches. The focus of this part of the thesis

is to summarize the salient features larned from this newly developed approach and lay the

foundations for the upscaling of strength properties. Similarly to the upscaling of elasticity one

has to first obtain the intrinsic mechanical properties of all constituents. This is the focus of

this chapter. To this end, we use the dual indentation technique which has been proposed in

Section 2.3.4, and validated in Section 3.4.3. Utilizing the hardness dependency on the indenter

angle we will use two indenter geometries in back calculating the two parameters required to

represent the strength envelope of C-S-H, which is a cohesive-frictional material. With these

invariant mechanical properties in hand, we will develop in Chapter 11 a multi-scale mechanical

model for the strength behavior of CBM systems. Finally, the proposed model will be calibrated

and validated in Chapter 12 on a wide range of CBM materials found in the literature.
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10.1 C-S-H Strength Properties

It is generally understood that the cohesion of cement based materials arises from the compli-

cated interactions between the colloidal sized C-S-H particles. However the exact mechanisms

that develop this cohesive properties are yet to be decoded. Quoting Pellenq and Van Damme

[189]: "Unlike other porous materials such as sandstone, brick, or porous glass, the interatomic

bonding continuity of cement-based materials like concrete is far from obvious. When scruti-

nized at the micro- or nanoscopic level, the continuity of the ionic-covalent bonding in the solid

phase is interrupted almost everywhere by water molecules or liquid water films. The same

situation is found in set plaster. Yet, plaster and cementitious materials are able to withstand

stresses of the same order of magnitude as rocks." There is an increasing body of experimental

evidence that suggests that the short and medium range surface forces mediated by ionic corre-

lation forces, with some minor additional contributions from Van der Waals and capillary forces

are the essential components of C-S-H strength. While there is still some way to go regarding

complete understanding of the nature of C-S-H bonding, there are no experimental data to aid

this aim. We attempt in this section to provide a first order estimate of the C-S-H cohesion.

Macroscopic experiments suggest that cement paste material can be reasonably represented, in

compression, by a pressure dependent criterion of the Mohr-Coulomb or Drucker-Prager type

[116]. It is therefore a fair assumption that the main component of cement paste, the C-S-H

phase which dominates in volumetric proportions, follows such a criterion. Given the intrinsic

nature of the two types of C-S-H we expect that mechanical properties extracted from the

experimental tests will be intrinsic to all CBM systems.

This section is devoted to the extraction of strength estimates of the two types of C-S-H.

We have presented in Chapter 2 a way of converting hardness data of a cohesive-frictional

material to strength properties. The method, which has been validated in Section 3.4.3 on the

model cohesive-frictional material of Bulk Metallic Glass, requires the input of hardness from

two significantly different indenter geometries. In what follows, a Cube Corner and a Berkovich

indenter is used. The dual indentation technique will now be used in order to get estimates of

the strength properties of the two types of C-S-H.
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Series Berkovich Cube Corner

# 300 300

P* ax [pN] 476 8 451± 18
hmax [Inm] 155 41 319 115

S [pN/ nm] 25.97 5.08 26.89 5.66

TL Is) 10 10

TH [s] 5 5
Machine** - HYS HYS

Table 10.1: Experimental program and mean ± standard deviation of indentation results:
(*) The deviation of the maximum force from the applied number is due to the spring force
correction (see Section 3.1.2). (**) Machine: HYS = Hysitron.

10.1.1 Materials and Methods

The material investigated in this chapter is a white cement paste made from a White Portland

cement (composition given in Tab. 5.3) and a water/cement ratio of w/c = 0.5. It is the

same material tested by Thomas and Jennings in [2301 and the one used in Chapter 5 as a

model material for developing the deconvolution technique. The specimens were hydrated un-

der limewater at room temperature and kept in such conditions until testing. The preparation

procedure prior to testing and the calibration details prior to indentation testing were presented

in Sections 5.3.1 and 3.1, respectively. A series of 300 Berkovich and 300 Cube Corner inden-

tations were performed. The tests were load control with a maximum prescribed load of 500

pN. A small variation from the prescribed values is due to the spring constant compensation,

which hold the capacitance plates in place (see Section 3.1). Both test series were performed

with the Hysitron indenter located in the Nanomechanical Technology Laboratory of at M.I.T.

Experimental details are shown in Table 10.1 and the specifications of the Hysitron machine

can be found in Tab. 3.1.

10.1.2 Indentation Estimates of C-S-H Strength

In order to get an estimate of the strength behavior of the two types of C-S-H, we employ

the dual indentation approach presented in Section 2.3.4. We recall that the dual indentation

technique requires the input of indentation results of two indenter geometries (here Berkovich

and Cube Corner) in order to provide an estimate of the strength parameters characterizing

the indented material. We make the assumption a priori that both C-S-H phases are described
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Berkovich Cube Corner
LD C-S-H] HD C-S-H LD C-S-H HD C-S-H

P [pN] 476 ± 8 476 ± 8 451±18 451±18
M [GPa 18.8 ± 4.0 31.0 ± 4.0 26.7 ± 4.1 38.3 ± 4.0
H [GPa] 0.47 ± 0.17 0.87 ± 0.08 0.825 ± 0.27 1.169± 0.02

Table 10.2: Indentation modulus and hardness of the two types of C-S-H for the Berkovich and
cube corner indentation

by a pressure sensitive failure criterion of the Mohr-Coulomb type:

Fj = or(1 + sin(pj)) - ujjj(1 - sin(oj)) - 2 cj cos(pj) < 0 (10.1)

where clj > ali aii are the principal stresses, cj is the cohesion and pW the friction angle

of the low density and high density C-S-H, J = LD, HD.

Figures 10-2 and 10-3 show the frequency plots of the Cube Corner results for the indentation

modulus and hardness respectively. The corresponding Berkovich indentation results have been

presented in Section 5.3, namely in Figs. 5-16 and 5-17. Similar to Section 5.3 properties for

each phase were extracted using the deconvolution technique: minimizing the error between

the experimentally obtained frequency distribution and the corresponding global distribution

for two different bin sizes, m = 12 and 18. A summary of the indentation moduli and hardness

for the two types of C-S-H is provided in Tab. 10.2.

Consistent with the BMG behavior, the material exhibited higher elastic modulus and

hardness values than the ones observed in the Berkovich indentation (see Tab. 10.2), which

is indicative of the pile-up around the Cube Corner indenter. The Cube Corner values will

therefore need to be corrected prior to applying the dual indentation technique. To this end,

we use the elasticity corrector method proposed in Section 3.5.4. The method which is based on

the validity of BASh formula, Eq. (2.2),provides an easy means of correcting the Cube Corner

results. Following the developments in Section 3.5.4, one could employ directly the mean values

of the Berkovich and Cube Corner indentation modulus estimated with the Oliver and Pharr

method (i.e., Eqs. (3.32) and (3.33)) to correct the Cube Corner contact area from Eq. (2.88):

[Ac Mest (2 ) ) 2 f LD C-S-H 2.02 (10.2)
ACs t I MexP() Jest HD C-S-H 1.53

381



I~~j~J '- - - rJ

jR

MPA
wV

m=12

HD C -S -H

0 10 20 30 40 50

- - - - LD CSH

- e- -Cmjulate

(a) Indentation Modulus, [GPa]

MP

m=18

WDC-S-H
I!U C - S-

)< C

- 1 2 -- 5

0 10 20 30 40 50

-- Tol -Experimerndt - - -- Pore - -h--LDCSH

-- X- -HDCSH -- )K--CH - e- -Curndatixe

(b) Indentation Modulus, [GPa]

Figure 10-2: Frequency distributions for the cube corner indentation modulus of white cement

paste, w/c = 0.5 for two different bin sizes: m = 12 (a) and 18 (b). The best fitted normal

distributions were obtained after minimizing the average fitting error of the two distributions.
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distributions were obtained after minimizing the average fitting error of the two distributions.
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and to correct the Cube Corner hardness accordingly:

M2p 2- J B 2- j
Hj = Hest BI c; =

M Pues

LD C-S-H

HD C-S-H

409 MPa

764 MPa

Since this elastic corrector method is based on the assumption that the Berkovich indentation

modulus and hardness MB = ,B. and HB -H'. determined with the Oliver and Pharr

method are accurate values, we can employ the dual indentation technique using the corrected

value of the Cube Corner hardness shown in Eq. (10 3):

HB est B (CC M 2 

HCC - Cc B
ILH-t (IMest

LD C-S-H

HD C-S-H

1.15

1.14
(10.4)

Use of the estimated hardness ratios (10.4) in Fig. 2-10

of C-S-H:

est
S0LD

est
S"HD

yields friction angles for the two types

= 12.20

= 11.6

(10.5)

(10.6)

It is interesting to note that the angle of friction of the two phases is approximately the same,

est = Oes," ~ - H~ 12. Substitution of these angles of friction in Eq. (2.38) allows us to

determine the hardness-to-cohesion ratios:

LD C-S-H tan eS' = 0.22 =

HD C-S-H tan gest = 0.21 =

(HB/C)est = 9.32

,(HCC/C)es
t = 8.15

(H B/C)e,9= 8.96

(HCC/c)est = 7.92

In order to calculate the cohesion, we will assume that the Berkovich indentation hardness

384

(10.3)

} c= ?

C =?

(10.7)



derived with the Oliver and Pharr method is the correct indentation result; i.e., from (3.32):

HB d pef = 870 MPa HB es = 470 MPaH =bHC=8 Ma H He

4 .(10.8)

cet - 870 = 97 MPa est = 4 = 50 MPa
CHD - 9.22 CHD 8.96

The extracted cohesions and angles of friction for the two C-S-H phases are summarized below:

CLD = 50 MPa SLD = 12' (10.9a)

CHD =97 MPa WHD 1 2  (10.9b)

Within the assumption that the two phases follow a Mohr-Coulomb criterion, the two extracted

properties (angle of friction, pj, and cohesion, cj) are sufficient to define the whole failure enve-

lope in the three-dimensional stress domain. These failure envelopes are graphically represented

in Fig. 10-4. Owing to the same friction angle the failure envelopes of the LD C-S-H can be

viewed as a shift on the vertical axis, yielding in the process a reduced cohesion strength. The

values reported in Eq. (10.9) are the first direct measurements of the strength behavior of the

C-S-H phases. To the best of our knowledge, no other experimental data of the strength of

C-S-H exists in the literature. Some estimates by extrapolation will be discussed.

10.1.3 Discussion of Results

The dual indentation technique provides first order estimates of the cohesion and angle of

friction of the two types of C-S-H. The accuracy of the values, however, reflects the assumptions

made in the process. We recall that the method excludes any hardening phenomena and is also

subjected to possible errors from the exclusion of indenter-material friction. It can be stated

however that both assumptions in the model tend to underestimate the angle of friction and

overestimate the cohesion. These can be considered as upper bound values of the cohesion and

as lower bound values of the angle of friction [93].

Given the Berkovich indentation hardness values presented in Tab. 10.2, the maximum

cohesion that the two types of C-S-H can obtain are for a frictionless material , - 0, where
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Figure 10-4: Representation in the r - a, plane of the Mohr-Coulomb failure envelope of the
two types of C-S-H.

the relation between hardness and cohesion reduces fo (see Eq. (2.18)):

H CLD=84M 1a
5.6 (10.10)

c cHD = 155 MPa

These values provide an upper bound solution to the two C-S-H cohesions. The values obtained

from indentation analysis of the dual indentation technique (see Eq. 10.9) constitute a signif-

icant improvement. Unfortunately there is no alternative technique to validate or invalidate

the experimentally obtained values. In the absence of any other estimate, we will assume their

validity, returning to this subject in Chapter 12.

Given the Berkovich indentation data for. the two types of C-S-H (see Tab. 10.2) and the

H= -'H(p) given in Eq. (2.38), one can calculate the evolution of the C-S-H cohesions as a

function of the angle of friction. This is shown in Fig. 10-.5. It is readily observed that as the

angle of friction increases, the cohesion of the two types of C-S-H decreases. Similar behavior

is observed for the equivalent uniaxial compressive strengths of these two phases. Figure 10-6

shows in addition that the ratios of the cohesions and uniaxial compression values for different

angle of friction. It is impressive to see that while the properties of both phases evolve with
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internal friction, their ratios of cohesion and strength remain almost unaffected. The values

reported in Eq. (10.9) require further attention.

C-S-H Frictional Behavior

The results testify towards the frictional behavior of the C-S-H. The difference between Berkovich

and Cube Corner hardness validates the assumption of the pressure dependency of the C-S-H

phases made a priori. This further suggests that the frictional dependency of the material at

larger scales is a consequence of the C-S-H phase. It is impressive to see that the material

at the 100 - 300 nm scale can be described by a Mohr-Coulomb frictional law. The observed

pressure sensitivity, even at that length-scale, is a remarkable observation. It goes against dis-

location mechanisms, commonly observed in metallic materials, and hints towards other forms

of deformation, driven by surface effects where local hydrostatic pressure becomes an important

parameter.

The experimental observation that the pressure dependency of the two C-S-H phases is the

same - that is the angle of friction does not scale with the porosity of the C-S-H phase - is

in contradiction with knowledge in soil mechanics. This hints towards a different origin of the

frictional response. While in clays and sands the frictional behavior is primarily due to the

frictional contact and interlocking of adjacent solid particles, this might not be the case for

the C-S-H phase. The high values of cohesion (compared to clays and sands) obtained above

suggest that there is a chemical bond between the colloidal particles. Macroscopic failure of

the material will involve deformation within those interfaces and slippage along planes defined

by the nature of the chemical/secondary bonding. In such a scenario where the amorphous

interface dominates microscopic response, the angle of friction may indeed not be a function of

the particle packing. Furthermore, the same pressure dependency suggests that the nature of

the bonding is the same for LD and HD C-S-H, the difference in strength lying in the number

of bonds rather than the nature of it.
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Equivalent Uniaxial Compression

Using the measured cohesions and angle of friction, the (currently non-accessible) uniaxial

compression strength of these two phases can be calculated:

EHD _ 2 CHD cOS PHD = 244MPa (10.11)
C(1 -sin HD)

ECLD CLD cOS LD = 128MPa (10.12)(1 - sin pLD)

The ratio of the uniaxial compression, 12=8L = 1.91, follows closely the ratios of cohesion,

hardness, and creep intensity parameter A, suggesting that all these properties depend on the

same factors; probably on the number and nature of bonding in the nanogranular assembly.

While it is tempting to extend the estimates to the tensile regime, we suggest that the results

indicated in Fig. 10-4 are restricted to the compressive regime where most input data was ob-

tained'. Failure in the tensile regime involves localized phenomena around stress concentration

and scaling with the defect size that needs to be taken into account.

Inverse Analysis of C-S-H Solid Cohesion

It is readily understood that the primary difference between the C-S-H phases lies in the cohesive

strength of the material, which clearly scales with the porosity. In fact the ratio of the two

cohesions is on the same order as the hardness and creep parameters, f - 2 = 1.94. This

hints towards the relation of all these parameters with the number of bonds, which in turn scales

the dissipation capacity of the system. In order to get first order estimates of the C-S-H solid

(0 porosity material) cohesion, c8 , we take advantage of the LD and HD C-S-H which provide

two points on the c/cs = C (#) scaling relation. We assume in addition that a percolation

threshold exists for # = 0.5. This is motivated by the self-consistent scheme which predicts

zero cohesion at a porosity fraction of 0.5 and which it was found in Section 7.3.1 to be the

preferred scheme for the given morphology at that scale. The data point and the best fitted

straight line is shown in Fig. 10-7. While there are no theoretical arguments that a straight

line should fit the behavior for small porosities, the extrapolation of a linear fit to zero porosity

'During an indentation test the material is subjected to a highly compressive triaxial stress state.
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provides convenient first order estimates of the C-S-H cohesion: c. = 187 MPa. The very origin

of this cohesion is still a matter of intense research. In particular, colloid chemists have found

that many if not most colloids consist of crystalline particles but, these being extremely small,

have a large surface area which give them what appears to be different properties from the

usual solids. Thus colloidal behavior is essentially driven by the surface area rather than by

the non-regularity of the internal structure of the particles involved. It is therefore expected

that the estimated C-S-H cohesion is representative of the nature of the bond in between solid

particles rather than the ionic-covalent bonding binding the crystal structure itself. A refined

analysis of this estimated cohesion is given in Appendix F.

The measurement of the cohesion and angle of friction of the two types of C-S-H completes

the mechanical characterization of these two phases. Elastic, poroelastic, strength, creep and

physical parameters (porosity, density, surface area) where obtained for these two phases that

appear to be intrinsic in nature.

10.2 Chapter Summary

We have presented in this chapter the first estimates of the strength behavior of the C-S-H

matrix. We have shown experimentally, with the tise of the newly developed dual indentation

technique, that the two types of C-S-H exhibit pressure sensitivity that can be well described

by the Mohr-Coulomb failure criterion. The strength properties of the two types of C-S-H

are summarized in Tab. 10.3. These first order indentation estimates of the C-S-H strength

rely on several assumptions that were included during the development of the dual indentation

technique: The technique neglects the effect of friction between indenter and indented mate-

rial on the P - h response and the effect of any hardening/softening or dilating/contracting

phenomena that the material might exhibit. These values will serve as input data to the micro-

poromechanical model for strength that is presented in the following chapter. Their accuracy

remains to be determined through the macroscopic performance of the micromechanical models.
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[ [ a1
[P EC

[MPa]

LD C-S-H 50 12 128
HD C-S-H 97 12 244
C-S-H solid 187 N/A N/A

Table 10.3: Indentation estimates of the strength behavior of the two types of C-S-H.
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Chapter 11

Multi-scale Modelingsof CBM

Strength

This chapter is devoted to the development of a microporomechanics model for the strength

behavior of cement-based materials. The multi-scale structure presented in Chapter 4 and the

indentation results of Chapter 10 make it possible now to upscale strength properties from very

fine scales of CBM materials, where cementitious materials do no more change - in a statistical

sense - from one mix proportion to another. Following our poroelastic developments in Chapter

7, we start our modeling at the level of the two types of C-S-H, where the morphology and the

mechanical properties are intrinsic, being determined by the chemical formation process. With

this scale in mind, it becomes possible to employ advanced non-linear homogenization tech-

niques of microporomechanics [218, 14, 253], and adapt them to meet the requirements of the

multiscale microstructure of cementitious materials, starting at the scale where physical chem-

istry meets mechanics. The results of this challenging endeavor are estimates of the strength

properties of cementitious materials at multiple scales. This is in short the focus of this chap-

ter. With such a tool in hand, one can quantify the relative contribution of each constituent on

the macroscopic strength performance and in knowledge of the volumetric proportions of the

different constituents present in the microstructure one can translate chemical properties into

mechanical behavior.
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11.1 Existing Literature: Empirical Models

Some of the factors that determine the macroscopic compressive strength of cement paste

include: a) cement composition, b) w/c-ratio -and air content, c) mixing and curing conditions

(especially temperature and relative humidity) d) the age or degree of hydration, etc. Careful

consideration of the aforementioned variables affecting macroscopic behavior indicates that

they all have a particular impact on the microstructural development during hydration. It is

therefore expected that a chemistry model that can predict the microstructure (in particular the

volumetric proportions of all constituents) for all scenarios presented above can serve as input

for our micromechanical model. In what follows, we will concentrate our effort on developing a

micromechanical model for strength assuming that the volumetric proportions of all constituents

are known. We will return to the evaluation of the chemical constituents in the validation of

the strength model in Chapter 12.

11.1.1 Strength-Porosity Models

The majority of the models reported in the literature concentrate on the effect of porosity on the

macroscopic mechanical behavior. Several researchers attempted to relate functions obtained on

other porous materials to cement-based systems. The majority of the models, however, involve

empirical constants and data fitting. In particular we acknowledge the work of Balshin [10],

Ryshwekitch [201], and Hasselman [110] who proposed relations linking the residual strength

capacity of a variety of porous materials s = E, (0) /Ec (# = 0) to the volume fractions of the

pore spaces q:

Balshin s = (1 - O)A (11.1a)

Ryshkewitch s = exp (-AO) (11.1b)

Hasselman s = 1 - AO (11.1c)

As should be expected, Eqs. (11.1) are all inversely proportional to the volume fractions of the

porosity. Figure (11-1) shows the evolution of the normalized strength s with porosity 4, as

predicted by the three different models for several values of the empirical constants A. Balshin's

relation of Eq. (11.1a) seems to us the most reasonable representation of reality. The relation
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satisfies the two asymptotic conditions:

s -1 asq#- 0
(11.2)

s -+ 0 for # - 1

for all values of the empirical constant, A. In addition- the parabolic evolution of the composite

strength (see Fig. 11-1) is typical to that observed in most experiments [180]. Equation (11.1a)

was obtained on an experimental investigation of a porous metal-ceramic material. Similarly,

Ryshkewitch equation was the result of an experimental investigation on a porous sintered

alumina and zirconia [2011. While Eq. (11.1b) follows similar trends to Balshin's function,

Eq. (11.1a), it tends to overestimate experimental results for high volume fractions of porosity.

In fact, the proposed exponential decay, asymptotically approaches a zero strength as the

volumetric proportions of porosity goes to infinity. While a volume fraction of porosity greater

than 1 has no physical significance, an empirical relation of this form was found to fit the

experimental CBM data (which usually ranges in # = 0.1 - 0.4) with significant accuracy.

Finally, Hasselman [110] suggested the existence of a linear relationship between strength and

pore volume. His investigations were concentrating on polycrystalline refractory materials. For

values of the empirical constant less than A < 1, Eq. (11.1c) satisfies the asymptotic conditions

of Eq. (11.2). In fact, for values of A < 1 the proposed relationship predicts a percolation

threshold for porosity values less than 1. Such a phenomenon is commonly observed in many

materials, in particular in materials of granular nature.

11.1.2 Power's Model: Gel/Space Ratio

All of the empirical relationships presented in Eq. (11.1) that were originally found to hold

for other porous materials have been applied to cement-based systems (for a review see Ref.

[200]). The most well known example is the model of Powers and Brownyard (PB). As it will be

later discussed in Section 12.2.2, the PB model can be considered as an application of Balshin's

equation. In their classic work published in 1946-47, Powers and Brownyard attempted to relate

the strength of CBM to the concentration of the solid products of hydration. In particular, they

stated that the increase in compressive strength in Portland cements is "directly proportional to

the increase in the gel/space ratio regardless of age, original w/c-ratio, or identity of cement."
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The gel/space ratio was defined as the ratio of the volume of the solid hydration products to

the volume of the available for these products to reside:

Volume of Gel
r = (13

Volume of Gel + Volume of Capillary Pore

all quantities being defined as in Section 4.5.1. In other words, the gel/space ratio is repre-

sentative of the capillary porosity in the system. Before hydration begins, the gel/space ratio

equals to zero, and according to Powers, hydration stops once there is no more space for hy-

dration products to precipitate, i.e., the gel/space ratio approaches 1. Given the empirical

microstructural chemistry model proposed by Powers (see Section 4.5.1) the gel/space ratio can

be expressed in terms of the w/c-ratio and degree of hydration, (:

0.68(
r = (11.4)

0.32 + w

Experimental data presented by Powers and Brownyard [194] indicates a strength to gel/space-

ratio relationship of the form:

EC = Arm (11.5)

where A is a constant representing the intrinsic strength of the cement gel, (i.e., the strength

at r = 1) and m is a constant that it was experimentally found to have values between 2.6 - 3.

Estimated values of the empirical constant A show significant scatter varying in the range

A = 110 - 235 MPa. It is interesting to note that the range of experimentally obtained values

of the uniaxial compressive strength of the C-S-H is consistent with the bounds provided by

the two C-S-H phases: D = 128 MPa < Ecsh < EID = 244 MPa. Constants extracted by

fitting Eq. (11.5) to the experimental data presented in [194] yield:

EC= 235r 3  (11.6)

There is a question remaining however: What is the origin and physical relevance of such

empirical constants: A and m ?

The model of Powers and Brownyard is regarded as the best representation of reality and is

generally accepted among the cement research community. Closer consideration of Eq. (11.5)
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reveals that:

1. The macroscopic strength of the material is intimately related to the volume fraction

of the pore spaces, in particular the capillary porosity. The volume fraction of the gel

porosity is considered as an integrate part of the gel which gives its unique/intrinsic

mechanical performance A. Experimental data show a significant scatter for A (see Fig.

11-2) indicating that this empirical "constant" might itself be a function of the w/c-ratio

and/or degree of hydration .

2. The effect of residual clinker is not explicitly considered. In fact, the Powers and Brown-

yard model suggests that once the capillary porosity is eliminated then there should be

no change in the macroscopic mechanical response. This is shown in Fig. 11-2 where the

PB model is plotted versus the w/c-ratio for the two extreme values of A, 110 MPa and

235 MPa. It can be seen that for w/c < 0.38 the strength predictions remain constant

due to the fact that the capillary porosity is consumed in that range. This is in contradic-

tion with experimental data which suggest that the strength of the material even below

w/c < 0.38 continues to increase even though some of the cement does not hydrate [226].

It therefore becomes apparent that even the most well accepted model in the literature

suffers from a few limitations and relies on empirical constants and fitted relations. In what

follows, we will attempt to give a micromechanical interpretation of Eq. (11.5) and eventually

propose a multi-scale model that does not rely on empirical constants but on material (invariant)

properties. But first an extension of the linear micromechanics tools to the non-linear case is

in order.

11.2 Micromechanical Approach to Strength of Composites:

Non-Linear Homogenization

The micromechanical approach to linear elastic systems has been presented in Chapter 7 and

employed in the upscaling of CBM systems, with significant success, in Chapter 8. While the

elastic approach appears as a well established area, the application in the non-linear domains is

a more recent attempt and several important issues are still under development [218]. We aim
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Figure 11-3: Graphical representation of a Drucker-Prager failure envelope in the Vr/7 - 11

plane. The geometrical parameters characterizing the response are shown.

in this section to present the necessary changes required to apply the linear micromechanics

approach to the strength of composites which is simplified as a non-linear elastic behavior.

The three step approach discussed in Section (7.1.2) will continue to serve as a framework:

representation, localization and homogenization. The presentation below is inspired by the

recent developments of Dormieux and coworkers [73,74,13,75].

11.2.1 Representation

For the homogenization of strength properties, the representation of the phases has to include,

in addition to the volume fractions, geometry and elastic properties, information about the

strength. For each phase a microscopic strength criterion is applied:

f (ox) 0 (11.7)

For the cement-based materials considered in this study, this local strength criterion is ap-

proximated by the Drucker-Prager frictional law. The Drucker-Prager criterion of a phase, x,

reads:

f (UX) = Vf' + JX CrX - CX < 0 (11.8)

f(ax) = V/3 + (OX - pX) 0
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where J2 = Is : s is the second invariant of'the deviatoric stress sx = - -X1, with o the

microscopic mean stress; SX and cX are the friction coefficient and cohesion; p is the cohesion

pressure defined as p = cx/Sx. A graphic repr-sentation of the Drucker-Prager criterion in the

VJ - -M plane is shown in Fig. 11-3. Moreover, microscopic nonlinear stress-strain relations

need to be specified. A common way of describing local nonlinear behavior in the context of

strength homogenization is the nonlinear elastic representation [218]:

a = kX (Ex, ev) v 1+ 2px (Ex, ev) ex (11.9)

where Ev = trek is the volumetric microscopic strain, ex = X - je31 is the microscopic

deviatoric strain tensor and cX = V/T7E:x is the invariant of the deviatoric strain tensor.

gx (cx, ev) and kx (Ex, e) are strain dependent shear and bulk secant moduli which give this

approach the name "secant method" [218]. The non-linearity of the stress strain relationship is

taken into account through the dependence of gx (cxse") and kg (cs, e") on cx and e". For this

reason the classical homogenization schemes cannot be directly applied because they only deal

with homogeneous phases. The idea consists of reducing the problem to an equivalent linear

one that can take advantage of the homogenization schemes presented in Chapter 7.

11.2.2 Localization and Homogenization

The general idea of the localization, that is, determining the microscopic stresses and strains

as a response to the macroscopic load, remains unchanged. However, the material represen-

tation with a nonlinear stress-strain relation changes the determination of the local strains.

The boundary conditions to which the R.E.V. is subjected, induce a nonhomogeneous strain

field in the matrix phase. Given the secant representation of the solid phase, the matrix now

appears as a heterogenous material. Phases, however, as defined in linear micromechanics are

domains of constant mechanical properties. This po es a difficulty in the application of linear

homogenization schemes. The problem can therefore be addressed in a two-stage approach:

1. A common way to account for locally varying strains, ex (cx, e"), is to replace them by

an equivalent homogenous strain, the so called effective strains, Eeff, a concept due to

Suquet [218]. This will allow us to replace the spatially variable gX (Ex, ev) and kx (cx, sv)
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with an equivalent value which will be assumed constant within the matrix:

keq = keq (Ceff, E6vf) ;geq = feq (Ceff, -evff) (11.10)

The effective strain invariants, eff and -ev, are defined as moments of the microscopic

strains per phase, and are expected to give a realistic approximation of the strain energy

prevailing in the matrix.

2. With the definition of the equivalent modulus in place via Eq. (11.10) one can readily

employ the schemes of linear micromechanics presented in Section 7.1 to get an estimate

of the overall non-linear response, Yhom and khom as a function of the equivalent linear

elastic ones:

khom = khom (keq, 9eq) ; ghom = ghom (keq, 9eq) (11.11)

Homogenized values of the overall response can be obtained with any of the microme-

chanical schemes presented in Section 7.1.2. Given the morphological arrangement of

the microstructure, application of the Mori-Tanaka (matrix-inclusion geometry) or Self-

Consistent (polycrystal geometry) scheme can provide reliable links between macroscopic

and microscopic constants.

While the application of linear homogenization is a straight forward procedure, the key

to a successful non-linear homogenization lies in the choice of effective strains. This is an

arbitrary selection and several possibilities exist. The most natural choice corresponds to the

first moment, which is the strain localization used in the classical linear homogenization of

elastic properties, that is:

e*f = (ex) = JV ex (x) dQ (11.12)

where VX is the volume of phase X. This first-order moment definition carries the name "clas-

sical" method. Definition (11.12) leads to the following invariants of the "effective" strains:

eff = (Ex) : )v (11.13)

ef = ( (11.14)6 -6 (tr (Ex))v 1.4
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For isotropic materials, Eqs. (11.13) and (11.14) can be expressed as functions of the localization

factors:

X= AiE (11.15)

where Ed = VEd : Ed is the macroscopic deviatoric invariant Ed = E - }Ev,, and Ev = trE

is the macroscopic volumetric strain. The single horizontal bar indicates the first moment

definition1 . The localization coefficients then need torbe specified for a given scheme, given in

Chapter 7. The use of effective strains has been questioned in the literature as it was generally

considered as a crude approximation due to its inability to capture strong variations in the

real strain domain. A first refinement of the "classical" theory consists in considering a second

moment definition for the effective strains which is referred to as the modified secant method

[218]. The effective shear strain invariant reads in the'second moment definition:

6ef E KEX )V = (EX:Ex)V (11.17)

or, equivalently: = (11.18)

2 = A j E2 + AX E2 (11.18)

where AX stands for concentration factors. In contrast to the classical method, the modified

method involves a priori a coupling in the localization between shear and volume strain. The

use of of second order moments for the estimation of effective strains has been considered as

a considerable improvement [218]. In homogenization solutions of different problems, it is not

unusual to use a combination of the classical and modified approaches, the so-called mixed

'The localization factors in the "classical" method obey the consistency condition: E 0foAo = 0. f4.
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approach [149]. A summary of the effective strain approaches is given below:

Classical e'ff eff (11.19)

Modified ef f = 6 ef f - (11.20)
Mie 6X = e

Mixed e 6 x eff X (11.21)

With the effective strain concept in hand, the linear localization schemes can be used and the

strength properties can be upscaled. The non-linear elastic representation of the real behavior

of the material allows to link the macroscopic deviatoric Ed and hydrostatic stress EM of the

composite to Ed and E, by:

Ed = 2ghomEd Em = khomEv (11.22)

where ghom and khom are the macroscopic secant moduli (i.e., the one of the cement paste)

estimated by homogenization theory. Finally, the shear strength can be seen as an asymptotic

value in a deviatoric compression stress. Such an approach allows the macroscopic strength

properties to be linked to microscopic phase quantities.

11.3 Multi-scale Strength Model for CBM Systems

This section is devoted to the development of a novel multi-scale micromechanics model for

mature cement based materials. The model will be developed within the non-linear microme-

chanical framework presented above. By considering mature CBM systems we set aside the

effect of hydration degree (and time) which is now purely defined by the initial water/cement

ratio. We have shown in Section 9.1.1 that mature cement pastes can be divided into two

regimes:

1. w/c < 0.42 : The initial water provided to the system is insufficient to hydrate all cement

particles leaving some residual clinker in the microstructure. Such a microstructure can

be considered as a matrix with rigid inclusions from a micromechanical point of view.

2. w/c > 0.42 : For such high water/cement ratios complete hydration is always possible.
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In fact, the volume of hydration products is insufficient to fill the whole available space

leaving behind some residual capillary porosity. A micromechanical representation of such

a system can be considered as a matrix with p6re inclusions.

These two cases will be separately considered below. The homogenization behavior of these

two cases has been recently addressed by Barthelemy and Dormieux [13,14]. Their results,

which are essential for our micromechanical model development, will be detailed below.

11.3.1 Level 0: LD and HD C-S-H Strength

The mechanical behavior of the two types of C-S-H has been experimentally obtained in Section

10.1.2 of this part. The analysis was based on the premise that the two phases obey to the

Mohr-Coulomb frictional criterion. For further developments we will use the Drucker-Prager

criterion which offers better mathematical tractability for upscaling operations. The two criteria

are essentially the same differing in minor points. The main feature which is the dependency of

the shear strength on the pressure is present in both criteria. In the case of the Mohr-Coulomb

criterion, the pressure is the one on any material surface, which in the Drucker-Praguer criterion,

the pressure is the hydrostatic pressure. In this way, the Drucker-Prager criterion can be viewed

as a smooth approximation to the Mohr-Coulomb criterion. As a consequence, the two can be

made to match in specific regions by adjusting the size of the cone (see Fig. 11-4). Given the

fact that our modeling attempt relies on highly compressive input data (indentation tests) we

make the Drucker-Prager circle to match the outer apices of the Mohr-Coulomb hexagon, i.e.,

the two surfaces are made to coincide along the compression meridian. Then the constants J

and cDP are related to the constants p and cMC; see i.e., [42]:

2 sinp DP 6cMC Cos O

v4/3 (3 - sin o)' C /3 (3 - sin o)(1.3

Using Eq. (11.23) one can translate the Mohr-Coulomb failure envelope of the two types of

C-S-H to their Drucker-Prager counterparts:

LD C-S-H : f(aLD) = \/ + 0.094 ULD - 61 < 0 (11.24a)

HD C-S-H : f(OrHD) V-72 + 0,094.HD -118<0 (11.24b)

406



ker-Prager

r3

lomb

02'

ia)

Figure 11-4: Equivalence between Mohr-Coulomb and Drucker-Prager criteria when matched

along the compressive meridian. (a) Principal stress space; (b) Deviatoric plane (image from

Ref. [42]).

where [cDP = 61 MPa;3LD = 0.094] and [c DP = 118 MPa;6HD = 0.094] are the Drucker-Prager

parameters of the LD C-S-H and the HD C-S-H respectively. For the rest of this thesis the

symbol c will correspond to the cohesion of a material as defined by the Drucker-Prager criterion

shown in Eq. (11.8) dropping the superscript of DP.

11.3.2 Level I: Voigt-Reuss estimates of C-S-H matrix

The homogenization of a frictional matrix with frictional inclusions is a very complicated prob-

lem that prohibits detailed analytical solutions. We therefore attempt in this section to bound

the exact behavior with simple lower and upper bound solutions using the bounding theorems

of limit analysis (see i.e., Ref. [119]). 'n following developments we will be concerned with the

uniaxial strength that CBM materials can obtain. To this end we consider a fictitious uniaxial

compression test performed on Level I, for which:

E = -Ee3 0 e3 (11.25)

where E > 0 is the uniaxial compression strength. We consider an R.E.V. composed of the two

types of C-S-H that both obey to i. 'rucker-Prager strength criterion of the form presented in
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Eqs. (11.24). The dissipation function of a Drucker-Prager material is [204]:

(z) trd if trd <> o d: d-1 (trd) 2

in Q :r (d) = (trd (11.26)

where p (z) = c (z) /a (z) is the cohesion pressure.

The simplest lower bound consists in considering a. uniform microstress throughout the het-

erogeneous microstructure. Such a simplified stress field, o' satisfies the equilibrium conditions:

f (z) = to(z) 1
Vz E Q: div o (z) = 0 (11.27)

[[o (z) -n (z)]] = 0

Use of this statically admissible stress field in Eq. (11.8) yields:

f Z) 0 E 3c Ec (z) (11.28)
03 - J (z)

The simplest upper bound consists in considering a uniform strain field throughout the

heterogeneous microstructure, D' = d'

D'

D- D' (11.29)

D' =-MD'
.3 3 #-v'r/21_

where 0 <3 < / can be seen as a macroscopic dilatation coefficient. In order to ensure the

finiteness of the dissipation in Eq. (11.26) it must be:

0 < 6 (z) < /3 \/F (11.30)

The local dissipation capacity reads:

7r (d') = -p(z) 33 D3 (11.31)
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Within the limits of Eq. (11.30) we realize that 7T (d') = -p (2) E, (z_) D' where 6 (z) = #, while

7r (d') -p (1) E. (z) D' for any 6 (z) < /. The maximum local dissipation capacity, which

satisfies Eq. (11.30) is obtained for 0 = max 6(z), and yields after integration the following

upper bound:

-ED3 sup 7r (d') = -p (z) sup (D (11.32)
p (Z)

Finally, a combination of the lower bound, (11.28), and the upper bound, (11.32), yields the

following Voigt-Reuss bounds for the effective uniaxial compressive strength of the C-S-H matrix

composed of the two Drucker-Prager microhomogeneous C-S-H phases:

min E. z)sE5p(z) max '(11.33)
p (Z)

Equation (11.33) provides first order bounds which a) are consistent with asymptotic values,

fLD -+ 1; ECSH C4 D, fHD -. S'CSH _ D, and b) provide convenient first order means

for interpolating the homogenized strength for a given mixture. To summarize, the homogenized

failure envelope of the C-S-H matrix continues to be a Drucker-Prager matrix which can be

represented by the following parameters:

Smin [Ci c0 C ] Lower Bound
C = f m [ UpLer Bound (11.34a)

fLD CLD + fHDCHD Upper Bound

61 = JO fD OU6' = 6D=6D (11. 34b)

The homogenized C-S-H values will serve as input information for our next homogenization

step.

11.3.3 Level II-(w/c > 0.42): Effect of Capillary Pores

For w/c > 0.42 the hydration products do not fill the whole available space and a residual pore

volume is retained in the system. We consider an R.E.V. V composed of two phases: a C-S-H

solid, s, surrounding some capillary pore spaces, p (see Fig. 11-5). In what follows, # denotes

the volume fractions of the porosity, q = z, and 1 - # the volume fraction of the solid phase.

The strength in the C-S-H matrix is characterized by a Drucker-Prager criterion of the form of
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Figure 11-5: Representative element volume (R.E.V.) of a solid matrix containing some pore

inclusions.

Eq. (11.8):

f(0S) = j/2 + [ O-"M - C, <; 0 (11.35)

where 6, is the pressure sensitivity coefficient and c, is the cohesion of the solid matrix, as

defined by the Drucker-Prager criterion. The non-linear boundary value problem on the R.E.V.

then becomes:

div or = 0

a = C (Z) : E (11.36)

=E-z (DV)

where the homogeneous displacement boundary condition has been imposed and the spatial

variation of the stiffness tensor is described by:

C 0 in Vp (11.37)
Cs (e(z)) in V

The non-linear homogenization problem posed in Eq. (11.36) has been recently solved by

Barthelemy and Dormieux [13]. We briefly recall their result. Following the tools of non-linear

homogenization we make use of the secant representation of the elastic tensor of the solid phase
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(11.8):

CS(e) = 3kS (e,) I + 2 p (c5, e') K (11.38)

Using Eqs. (11.38) and (11.36) yields:

Us = ks (E,, e") e1 + 2Mp9 (E, e') E, (11.39)

where -tro = kS (E,, e') e" and V7I = 2p (E8, e') Es. We now introduce the effective strain

invariants which allow one to translate the non-linear representation of the local stress tensor

into an equivalent linear one:

k' = kefq (6 |f, E ff) e,1 + 2 p1q (eqff, E eff ES (11.40)

In the presence of such an effective strain in the matrix, we can now employ the linear homog-

enization step and relate the macroscopic elastic properties to local quantities:

Chom 3khomj +2homK (11.41)

khorn e F(q)q(ES' -- ) (11.42)
khorn 4_

ghom F2 ()geq (Es,6 8 ) (11.43)

Estimates of the coefficients F1 (0) and F 2 (/) can be given for different localization schemes:

Mori-Tanaka: jFMT - 4(1~4) yMT - (1--)
1 34 2 1+2/30 (11.44a)

Self-Consistent: .Fsc 4(1-0)(1-24) 7sc 3(1-20)
1 95(3-0) (32

where the incompressibility condition, g8 /ks < 1, was used. We recall that in the non-linear

homogenization approach the strength is asymptotically reached for large deviatoric strains,

such that:

fS -(lim 0) = 0 (11.45)
E8 -*OO

411



Equation (11.35) together with Eq. (11.45) yields:

geq (eeff ff) ' (6  (11.46)
2 ff2 e

Finally one needs to relate the effective strain in the matrix with macroscopic quantities. We

start our discussion of effective strains considering a secant approximation to the effective

strains defined by Eq. (11.12). Using the microscopic state equation, we can calculate the

average strain field in the solid phase:

-Es CS-l : -& (11.47)

Combining Eq. (11.47) with the stress average rule, E = (1 - #) F, we relate the strain function

in the solid phase with the macroscopic stress and strain:

(1 = C-i 1 : E (11.48a)

(1 - )s8  = C-I : Chom : E (11.48b)

Given the isotropic nature of the solid phase and the absence of any morphological anisotropy,

Eq. (11.48) can be decomposed into its deviatoric and volumetric components:

(1 - )v= khom trE (11.49)
ks

(1 v )hom Ed (11.50)
9s

We have commented in Section 11.2 that the first order moment estimates of the effective strains

are a crude approximation to reality. For additional accuracy we consider the higher moment

definition presented in Section 11.2 which is based on an energy approach in which the effective

strains are obtained as the derivatives of the macroscopic elastic strain energy [140,14]. The

elastic energy of the R.E.V. is:

2= (e:C : e)=E: Chom : E (11.51)
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Assuming isotropic behavior of the phases we have:

E = Kk(6)2 + ge : E (11.52)
2~ )Q

Following Kreher [140] displacements . and strains are considered functions of the elastic mod-

uli. This leads to expressing the derivatives of the elastic energy in the form:

as 1--2 196
= (1 2 )( + o O: ) (11.53a)

as 1-2 a,-
= (1 )ES + o :- (11.53b)

where V = Q - w8. This expression serves as a definition for e2 and =2. In the case of our two

phase system Eq. (11.53) reduce to:

1 )2 khom l + I9hom Ees(~)6 E= E (11.54)
2 nks 2 0ks

(1 -)=2 akhom 2 1 Oghom E(
(-)CS = g -E +- as (11.55)

98 s 2 0g8

or in terms of the macroscopic stress invariants:

2 ( ) - )2 E (11.56)Z _a )F
2( e (iks khom &gs gom d (11.56)

_ ~ 1) 2 _a(I) 2_4 1 )E
4(1 -gs (i2m M ags ()m) Ed (11.57)

In solving the non-linear problem posed in Eq. (11.36) we will use a mixed formulation of

the secant effective strains where the volumetric component is related to the first moment,

6 e - , and the deviatoric component to the second moment, rX1 X - . To summarize, the
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following relations form a closed set of equations that have to be solved for the Em - Ed space:

(1- ) 2 = EM8 ks

4 ( - a) ( 1 ) 12 F24(1 CS as khom, M gs ghom d

khom = i1 g6 (ESe ES)

ghom 2 s )

1s (eff, eff\ _effp -ke CSE S C

g 8", (,eff ef)qf 6

2 f

(11.58a)

(11.58b)

(11.58c)

(11.58d)

(11.58e)

Finally Eqs. (11.58) yield an estimate of the homogenized yield criterion:

F (Em, Ed) c 2 1 P2 P2 (1
: (Em EM)2  )+ E <(1.59)

) (1-() 21(6) 0

:ECm = (11.60)M I 2

It is impressive to see that the plastic envelop a of macroscopic stress states is now an ellipse

which provides a boundary closed on the hydrostatic axis (see Fig. 11-6). The ellipse which is

non-symmetric, has its center around (E' , 0) in the (Em, Ed) -plane. The uniaxial compressive

capacity E, of a porous material characterized by Eq. (11.59) can be evaluated by considering

a uniaxial compression test in which the maximum capacity is obtained at the limit:

2

EC ( _ 2 PI

(3p)
2 (1 )2

1-#- (6j)2 T 0

(1) E2 1
F1Q(O) -(1 -q) 3 F2(0)

where the functions F1 (#) , F2 (#) depend on the chosen localization scheme. The Mori-Tanaka

and self-consistent estimates are given in Eq. (11.44). Figure 11-7 shows the normalized

uniaxial compressive strength of a Drucker-Prager solid as a function of the volume fraction

of the pore spaces, and this for the two localization schemes presented in Eq. (11.44). It is
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readily observed that the macroscopic strength vanishes for # -+ 1 in the Mori-Tanaka scheme

and for # -- 0.5 in the self-consistent scheme. The choice of the localization scheme is therefore

of crucial importance and relates to the morphological details of the microstructure. It has to

be carefully specified for all level considered in our analysis.

11.3.4 Level II-(w/c < 0.42): Effect of Rigid Inclusions

In cases where the w/c-ratio is less than w/c < 0.42, cement-paste is composed from a C-S-H

material surrounding some clinker phases. From a micromechanical point of view we consider

cement paste (w/c < 0.42) as an R.E.V. V composed of two phases: a C-S-H solid matrix s

surrounding some clinker particles cl (see Fig. 11-5). The clinker phases are approximated

as rigid spheres. Given their elasticity and hardness values which are one order of magnitude

higher than the C-S-H matrix the rigid inclusion approximation is a fair assumption. In what

follows, fc denotes the volume fractions of the clinker, fd = 2, and 1 - fc the volume fraction

of the solid phase. The strength in the C-S-H matrix is characterized by a Drucker-Prager

criterion of the form of Eq. (11.8):

f(as) = N/j + 5s O- - cs < 0 (11.63)

The non-linear boundary value problem on the R.E.V. then reads:

div u = 0

e = S (z) : a (11.64)

t=E ._n (V)

where the homogeneous traction boundary condition has been imposed and the spatial variation

of the compliance tensor is described by:

0 inVd (11.65)

SW (s (z)) in V,

The non-linear homogenization technique presented in Section ?? has also been employed to

the case of a Drucker-Prager matrix reinforced by rigid inclusions (see Ref. [149]). It has been
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Figure 11-6: The Drucker-Prager criterion characterizing the solid failure envelope is trans-

formed into an elliptical domain through the introduction of pores.
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argued however that such an approach applied to this system does not satisfy the normality

rule with respect to the matrix strength criterion [14]. To overcome this limitation, Barthelemy

and Dormieux [14] used the mathematical equivalence between the limit analysis problem to

be solved and a fictitious non-linear viscous problem. In their derivation presented in Ref. [14],

two mechanical models have been considered for the matrix/inclusion interfaces, namely perfect

bonding and non-frictional contact. For both types of interfaces, the macroscopic strength

criterion takes the form of a Drucker- Prager criterion with scaled strength properties (see also

Fig. 11-8):

Apb

/+3/2 f 3 ( PS) < 0 (11.66a)
1 - 2 / 3fd (3)

Afr

/ 2 + (1 + 3/5fd) (1 - h') 6s (Em - p) K 0 (11.66b)
( - 2/3fcl (,)2) (1 - 2/5fcl)

It is impressive to see that the micromechanical model predicts that the macroscopic strength

criterion of a Drucker-Prager matrix reinforced by rigid inclusions continues to be a Drucker-

Prager material with enhanced friction angle (and cohesion) but unchanged cohesive pressure,

p.. In fact, the predicted homogenized yield envelope rotates around the tensile pressure point.

The amplification of the frictional capacity is both a function of the volume of inclusions and the

nature of the interfacial properties. To further demonstrate this point we consider the uniaxial

compressive strength of the homogenized material. This can be evaluated by considering Ed =

Ec/\/d, Em = -EC/3 in Eqs. (11.66):

EC = 3A) (11.67)

where A is the macroscopic pressure dependency coefficient which depends on the interface con-

ditions. For a perfectly bonded (pb) and frictionless (fr) response the homogenized properties
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are:

APb = + 3 / 2 f is (11.68)
1- 2 / 3 fc (6)28

fr (1 + 3/5fcl) (1 - fc)

1 (I - 2/3fcj (6)2) (1 -
2 / 5 f,)

Figure 11-9 shows the uniaxial compressive strength evolution as a function of the volume

fractions of the inclusions for the two cases of interface conditions. The results were evaluated

for two sets of solid material properties: (6, ='0.1; cf = 100 MPa) and (6, = 0.7, cDP = 100

MPa). In the case of perfect bonding between matrix and inclusions, rigid inclusions lead to

a reinforcement of the matrix. This phenomenon is further amplified with increasing volume

of clinkers. The reinforcing effect is significantly lower and, in some cases, the strength of the

material can even decrease if the interface is non-frictional (i.e., the matrix cannot transfer shear

stresses to the inclusions). The result, which might seem surprising at first, is a phenomenon

commonly observed in practice where the incorporation of inhomogeneities in uniform matrices

introduces interfaces that constitute weak links in the systems. Furthermore, the reinforcing

effect appears to be a function of the frictional capity of the matrix, with higher values of 6

giving a higher amplification effect. It should be noted, however, that in the range of 0-40%

of inclusion, the range for most CBM systems, and for small 6 (6 ~- 0.1) the effect of rigid

inclusions (clinker phases in Level II) is expected to be of secondary importance as the uniaxial

compressive strength is only slightly modified. Figure 11-9 shows that the uniaxial compressive

strength of all volume fractions of inclusions is within 25% of the uniaxial compressive strength

of the matrix.

Given that estimates of 6, and p, are suggested by the previous homogenization level, the

homogenized quantities at Level II can now be summarized:

PII I (11.70a)

(1+3,2f~ 61 6

(1+3/c(6)(1--fci) 6' _6 110
F 1-2/3fr (6j2 (1-2/5f,, ) -nb
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Figure 11-9: Scaling of uniaxial compressive strength with volume fractions of inclusions as

predicted by equation (11.66) and (11.67). The case of a perfectly bonded interface and a

frictionless interface is shown for two sets of solid parameters: (is = 0.1, c, = 100 MPa) and

(is = 0.7, c, = 100 MPa)
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The uniaxial compression can then be evaluated with:

'II - I 1(11.71)

11.4 Chapter Summary

We have shown in this chapter that current strength models for CBM systems pose several

limitation and rely on empirical constants and data fitting. Motivated by this observation,

we have proposed a new multi-scale model for the strength behavior of CBM systems within

the framework of nonlinear microporomechanics. The model presented in Section 11.3 provides

strength estimates of CBM at multiple scales, provided the knowledge of the intrinsic properties

of the individual components and their volumetric proportions. The intrinsic strength properties

of the two types of C-S-H (LD and HD C-S-H) have been obtained through indentation testing

(see Chapter 10). With this material invariant properties in hand one can calculate the strength

response of any cement-based material system independent of initial mix proportions:

1. The estimated cohesion and angle of friction of the two types of C-S-H along with their

volumetric proportions are incorporated in Eq. (11.34) that predicts the strength of the

C-S-H matrix.

2. The homogenized values of the C-S-H matrix are incorporated in Level II (Eq. (11.70) or

(11.61)) which yields, with the help of volumetric proportions of the clinker and capillary

porosity the strength of Level II (cement paste). In the case were aggregates are present

in the system one can use the micromechanical developments of Section 11.3.4 to provide

homogenized values for concrete.

Figure 11-10 summarizes the multi-step microporoplastic model now in place. The proposed

model reduces the complexity of cement-based materials to 10 parameters. These are the

strength properties of the C-S-H solid phase (c8, 6,) - (the clinker phase and aggregate phases

being considered as rigid particles with infinite strength), the volume fractions of the two types

of C-S-H, (fLD, fHD), the volume fractions of the C-S-H matrix, (fosH), the volume fractions

of the clinker phase, (fc), the volume fraction of the'aggregate phase (fg) and the pore space
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at each level, O5D, #/HD, fp. Consistent with the poroelastic model, the strength properties of

the C-S-H solid phase, together with the porosities of the two types of C-S-H are assumed

to be constant. Thus for each cement-based material of given mix proportions only the four

parameters describing the volumetric proportions at each level are required: fLD for Level I,

fcsH and fci for Level II, and fg for Level III. The remaining volume fractions of the HD C-S-H,

the capillary pore space, and cement paste matrix are obtained by employing the compatibility

conditions, E fi = 1, at each level: fHD = 1 - fLD, and fp = 1 - fCSH - fd, fm = 1 - fg.
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Figure 11-10: Summary of model parameters required for upscaling of CBM strength.
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Chapter 12

Model Calibration, Validation and

Application

This chapter presents details about the calibration and validation of the four-parameter model

summarized in Section 11.4. Theoretical developments presented in Chapter 11 suggest that

the macroscopic strength behavior relies on the exact nature of the bonding between cement

particles and cement hydrates. Experimental data is compared with micromechanical predic-

tions of Section 11.3 in an attempt to quantify the nature of C-S-H-clinker bonding in CBM

systems. Following this calibration procedure, the model is validated on a set of macroscopic

uniaxial compressive strength data found in the literature. The investigated cement pastes had

different water/cement ratios ranging within w/c = 0.17 - 1.0. Finally, with this powerful tool

in hand we move forward in optimizing the material response and provide an estimate for the

maximum strength capacity that CBM systems can develop.

12.1 Input Parameters: Volumetric Proportions

The major conclusion of Chapter 11 is that the macroscopic mechanical performance of any

CBM system can be estimated with the help of the micromechanical model presented in Section

11.3 provided the volumetric proportions of the different constituents present in the four-level

think-model are known. Over the past few chapters, we have outlined several possible ap-

proaches for such an endeavour. In particular, the volumetric proportions of all constituents
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can be calculated either experimentally (with the help of nanoindentation and the deconvo-

lution technique presented in Chapter 5) or theoretically (by modeling the chemical reactions

between the different cement constituents; see Section 4.5). In what follows we will make use

of the chemistry models (theoretical approach) presented in Chapter 4. In particular, we will

use the simplified microstructural representation of Powers in which cement paste is composed

of a C-S-H matrix with some capillary porosity and residual clinker phases. An estimate of the

volume fractions of these phases is provided by Powers model for a given w/c-ratio and degree

of hydration (:

0.36"
fcp + C .32 (12.1a)

w0.32. -(

fue = 0,32 (1- (12.1b)
w+ 0.32

fCSH = 1 - fcp - fuc (12.1c)

The decomposition of the two types of C-S-H will then be approximated with the Jennings and

Tennis model:

LD r + (1 r (12.2a)
fHD

fHD = - ALD (12.2b)

where we recall that Mr is the mass of LD C-S-H over the total C-S-H mass and is given by:

W
Mr = 3.017- - 1.347 + 0.538 (12.3)

C

The output of this combination of Powers and J-T models are estimates of the volumetric

proportions of all constituents which are allocated thfoughout the four-level microstructural

think model, depending on length scale. With this knowledge in hand, we can then employ the

micromechanical model of Chapter 11, summarized in Section 11.4, to provide predictions of

the mechanical behavior of any CBM system. 'The procedure which will be detailed below is

shown schematically in Fig. 12-1.
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Figure 12-1: Schematic representation of the input-output procedure used for the prediction of

macroscopic strength.

12.2 Model Calibration

12.2.1 Micromechanical Bounds for Mature Cement Pastes Strength

In order to demonstrate the predictive capabilities of the proposed strength model, we consider

the mechanical behavior of mature cement pastes. By considering mature cement paste we

assume that the material is at a state of chemical equilibrium at which the microstructure

remains constant with time (we exclude here any aging effects) and the degree of hydration has

achieved the maximum possible value, = max. The major parameter controlling the maximum

degree of hydration is the initial wai er/cement ratio, max - max (w/c). An empirical relation

relating max to w/c has been proposed in Section 9.1 (see Eq. (9.3)) and will also be used

below.

Given the w/c-ratio and the maximum degree of hydration, the volumetric proportions

of all constituents can be calculated from Eqs. (12.1)-(12.3). The volume fractions together

with the intrinsic plastic properties of the two types of C-S-H are inserted in Eqs. (11.34) and

(11.61) which yield the macroscopic strength properties of cement pastes. The procedure is

shown schematically in Fig. 12-1. Figure 12-2 illustrates the evolution of the failure envelope

of mature cement pastes as a function of the w/c-ratio. For w/c-ratio< 0.42 the macroscopic
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Figure 12-2: Schematic of the evolution of the failure envelope with the w/c-ratio.

strength envelope continues to be of the Drucker-Prager type with enhanced frictional behavior.

This is attributed to the residual clinker phases retained is the system. For w/c-ratios> 0.42,

there will always be a certain amount of capillary porosity which gives cementitious materials

a yield envelopes closed on the hydrostatic axis. The yield envelopes provide estimates of

the limiting stress states in the three dimensional domain that any CBM material can obtain.

Of particular interest is the uniaxial compressive strength which is commonly employed in

practice. The micromechanical predictions of the uniaxial compressive strength as a function

of the w/c-ratios is shown in Fig. 12-3. The upper bound consist of the combination of upper

bounds in the Level I and Level II, respectively the lower bound consists of the combination of

lower bounds in Level I and Level II. While the bounds in Level I results from the theorems of

yield design, the bounds in Level II are a consequence of the state of bonding between C-S-H

and clinker phases.

It becomes apparent that for small values of w/c-ratios, the model predictive capabilities

are restricted within a range of values rather than a single absolute value. To refine our bounds,

we will attempt to determine with the help of experimental data the nature of bonding between

C-S-H matrix and the residual clinker phases.
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Figure 12-3: Micromechanical bounds for the uniaxial compressive strength of cement pastes.

The results are for mature cement pastes plotted as a function of the initial w/c-ratios.

12.2.2 C-S-H-Clinker Bonding: Interface Effect

In what follows, we propose a series of arguments that the clinker phases present in the mi-

crostructure of cement-based materials do not contribute to the macroscopic strength capacity

of the considered system. The physical mechanism behind this observation is not clear and

potential sources will be discussed below.

Compressive Strength of DuctalTM

To answer the question regarding the nature of bonding in the interface between C-S-H matrix

and clinker inclusions, we consider a highly filled cement-based material with known microstruc-

ture and known macroscopic mechanical properties, DuctalTM. DuctalTM is an ultra high per-

formance cementitious material with exceptionally high mechanical properties: a macroscopic

uniaxial compressive strength of ED = 190 MPa and a Young's modulus of Ex - 50Z i. Ductal tca

GPa. From a microstructural point of view the material has almost zero capillary porosity

and a significant amount of residual clinker [2]. Experimental measurements indicate a de-

gree of hydration of = 43% [2] which translates with the use of Powers model (see Eq.
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(12.1b)) into a volume fraction of clinker of fcj = 0.37 and a volume fraction of C-S-H matrix

of fosH = 1 - fA = 0.63. In order to eliminate the capillary porosity and maintain such a high

proportion of residual clinker, the material uses very little initial water. Typical mix designs

operate at a w/c ~ 0.19. Use of this w/c-ratio in Eq. (9.7) gives an estimate of the volumetric

proportions of LD and HD C-S-H in the C-S-H matrix: fAD = 0.04, fHD = 1- fLD = 0.96. Use

of these volumetric proportions in equations (11.34) yield bounds for the macroscopic uniaxial

compressive strength:

LEVEL I: ECSH = 188 MPa (12.4)

LEVEL II: 161 MPa < EDuctal < 208 MPa (12.5)

Equation (12.4) assumes that the mechanical behavior of the C-S-H composite matrix is char-

acterized by the upper bound estimate proposed in"Eq. (11.33). This is a fair assumption,

as the high volume fractions of the HD C-S-H phase suggest that the strength of the compos-

ite it is very close to the one proposed in HD C-S-H rhase. It is impressive to see that the

experimentally obtained value of DuctalT M , which is on the order of EDuctal = 190 MPa lies

within the two bounds proposed by the micromechanical model, (12.5). We recall that the up-

per bound estimate was calculated on the premise that the C-S-H-clinker interface is perfectly

bonded, in the sense that there is continuity of the stress vectors. On the contrary the lower

bound allows for an imperfect interface, i.e., with no transfer of shear stress in the interface

which allows eventually a discontinuity on the displacement field. The experimentally obtained

value of DuctalTM suggests an average performance in terms of the interface bonding and stress

continuity. It can therefore be concluded that the nAture of bonding between hydration prod-

ucts and the clinker phases allows partial transfer of the shear stresses in the interface, part of

them contributing to local discontinuities of the displacement fields. From a micromechanical

modeling point of view, it is worth noticing that the estimate of the C-S-H matrix at Level I,

E1CS = 188 MPa is in fact in close agreement (within 1%) with the Ductal strength value,-

ED a= 190 MPa, suggesting that the 37% of residual clinker present at Level II has little

influence on the macroscopic uniaxial compressive strength.
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Figure 12-4: Experimental data on DuctalTM lies within the two micromechanical bounds

(perfectly bonded vs. frictionless interface).
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Microhardness Data of Igarashi et al.: H/E, vs. ( , w/c)

Experimental evidence presented by Igarashi et al. [125] suggest that the ratio of hardness to

uniaxial compression is independent of the initial water/cement ratio and degree of hydration.

Recall that the volumetric proportions of the clinker phases and pore volumes are strong func-

tions of these two variables, (w/c, ). Given the fact that the normalized strength to cohesion

and hardness to cohesion are functions of the angle of friction:

H/c = 'Hi ( o) (12.6)

Ec/C = H2 (O) (12.7)

it becomes apparent that their ratio, H/E., is a unique function of the angle of friction,

H/EC = 7H3 (O) . The experimental observation that H/Ec is a constant leads to two important

conclusions:

1. The angle of friction is unaffected by the volume of clinkers present in the system. This

supports our hypothesis that the volumetric proportions of the residual clinker phases do

not contribute to macroscopic strength response;

2. The angle of friction is independent of the pore volume. This further supports our initial

observation, stated in Section 10.1.2, that the angle of friction does not scale with the

volume of porosity.

Regression Analysis

A multi-regression linear analysis of the factors influencing the strength behavior of concrete was

reviewed in [144]. It was concluded that the volume fractions of porosity shows the strongest

correlation with macroscopic mechanical performance rendering the effect of other components,

including the volumetric proportions of residual clinker of's&condary importance.

A Reinterpretation of Powers-Brownyard Model

A final argument towards the inert mechanical nature (in terms of uniaxial compressive strength)

of residual clinker phases is the predictive capability of the PB model. It is clear from experi-
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mental data presented in Ref. [194] that the PB model can predict with significant accuracy

the macroscopic mechanical behavior of any cement based material, which was found to scale

with the gel/solid ratio, r. A closer look on the definition of this gel/solid ratio reveals that the

effect of clinker phases is excluded from the analysis. In fact, the definition of a representative

element volume used in the PB model is one which excludes the volume fractions of the clinker

phases, QPB = 1 - fci. Such an R.E.V. definition does not respect the compatibility condition,

Eft = 1, fCSH + fcp = 1 - fcl -# 1. For consistency with micromechanical representation we

will consider an R.E.V. composed of the C-S-H matrix and capillary porosity. In such a case

the volume fractions of C-S-H is consistent with the gel/space ratio, r, defined in (11.3). Re-

spectively the volume fractions of the pore space, #, is equal to 4 = Vep/(Vcp + V1i) = 1 - r. In

such a case the PB model takes the form of the Balshin Eq. (11.1a):

EC = Ar' = A (1 - 0)' (12.8)

Such a definition excludes the mechanical contribution of the clinker phases in the macroscopic

strength response. The excellent predictive capabilities of the PB model suggest that the clinker

particles do not significantly contribute to the uniaxial compressive strength.

Summary of Model Calibration

From the above discussion, it can be concluded that the presence of clinker does not significantly

affect the uniaxial compressive strength of cementitious materials. To model this phenomenon

we will make use of the micromechanical interpretation of the PB model, which is equivalent

of a two-step homogenization process:

1. We first consider an R.E.V. composed of C-S-H matrix and capillary porosity. The homog-

enized response of such a system is treated in Section ?? and the resulting homogenized

yield envelope is described by Eq. (11.61). The volumetric proportions of the two phases

can be estimated from the Powers-Brownyard model after excluding the clinker phases:

VCSH VC P
kSH = VCSH + VCP; f = VCSH + VCP fCSH (12.9)
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2. The homogenized material then serves as a matrix for the rigid cement particles. Although

an analytical solution to such a problem does not exist the experimental data of Powers

and Brownyard suggest that the yield envelope (or at least the uniaxial compressive

strength) changes little (if any). This suggests that the contribution of the clinker phases

to macroscopic strength response is insignificant and can be excluded from our analysis.

The homogenized value from step 1 can be equated to the macroscopic response.

12.3 Model Validation

This section investigates the predictive capabilities of the calibrated micromechanical model.

The predictions are compared with the experimental data of Alexander et al. [5], Pann et al.

[186], and Rbssler and Odler [200].

12.3.1 Data of Alexander et al. [5]

Alexander et al. [5] considered the uniaxial compressive strength of cement paste specimens

hydrated for 28 days with different w/c-ratios ranging within w/c = 0.3 - 0.9. Unfortunately,

the degrees of hydration were not measured experiiheitally. One can get an estimate of the

degree of hydration by considering the kinetics of the chemical reactions. An empirical estimate

which circumvents the complicate calculations of the different forms of kinetic reactions was

proposed in Ref. [186]. The experimentally obtained degree of hydration was correlated with

initial water/cement ratio using a non-linear regression analysis. The experimental data which

has been presented in Ref. [186] are shown as a function of both the w/c-ratio and time elapsed

after mixing. The recommended best fitted relation for the 28-day specimen is:

= -44.028 + 621.42 (w/c) - 1144.053 (w/c) 2 + 696.890 (w/c) 3  (12.10)

The third column in Tab. 12.1 was calculated by considering the initial w/c-ratio of each

specimen in Eq. (12.10). Given the w/c-ratio and degree of hydration one can calculate

the volumetric proportions of the different phases and eventually obtain an estimate of the

macroscopic mechanical response (see Fig. 12-1). The results as a function of the w/c-ratio

are shown in Fig. 12-5. In the range of 0.4 < w/c < 0.6, the experimental data is in very good
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11 Measured

Age w/cJ Emea
[days [-] [-] [MPa]

28 0.3 0.58 100
28 0.4 0.66 63
28 0.5 0.68 42
28 0.6 0.67 31
28 0.7 0.69 21
28 0.8 0.78 14
28 0.9 0.97 10

Table 12.1: Experimental data of Alexander et al. vs. micromechanical predictions for various
w/c-ratios.

agreement with the lower bound micromechanical estimate, suggesting that the LD C-S-H phase

dominates the mechanical response of the C-S-H matrix in that particular range. Consistent

with the theorems of yield design, the experimental value of uniaxial compression for w/c < 0.4

lies in between the two bounds. In contrast, for w/c > 0.6 the values lie ahead. In fact, the

two bounds collapse to a single curve as the w/c-ratio gets higher than w/c = 0.62: the C-

S-H phase is now purely composed of LD C-S-H. The underestimation of the micromechanical

predictions in this range can be attributed to the localization scheme used. The self-consistent

estimate predicts a percolation threshold for porosities of 0.5, while it seems that materials

retain the strengths up to porosities of 0.6.

12.3.2 Data of Pann et al. [186]

A compilation of 28 data sets found in the literature is presented in Pann et al. [186]. The

chosen data was for specimens that were 28 days old and their w/c-ratios ranged within

0.30 - 0.80. Details of the experimental data is provided in Tab. 12.2. The degree of hydration

for each specimen was once again estimated from Eq. (12.10). The predictions which are

shown in Fig. 12-5 testify towards the relevance of the lower bound estimate in modeling the

macroscopic strength response. The micromechanical predictions are in close agreement with

the experimental data with deviation getting greater for high values of w/c-ratios (see Section

12.3.1).
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Measured Measured

Age IW/C IcmIea Age [w/cE M ea

[days] [- [-] [MPa [days] [-] [-] [MPa]
28 0.30 0.58 67 28 0.40 0.66 56
28 0.30 0.58 71 28 0.41 0.66 52
28 0.30 0.58 74 28 0.47 0.68 47
28 0.30 0.58 73 28 0.48 0.68 45
28 0.30 0.58 72 28 0.50 0.68 41
28 0.30 0.58 73 28 0.55 0.68 40
28 0.31 0.60 66 28 0.55 0.68 32
28 0.33 0.61 65 28 0.60 0.67 28
28 0.33 0.61 61 28 0.60 0.67 30
28 0.34 0.62 60 28 0.60 0.67 29
28 0.35 0.63 65 28 0.70 0.69 22
28 0.36 0.64 57 28 0.75 0.73 18
28 0.40 0.66 54 28 0.75 0.73 18
28 0.40 0.66 54 28 0.80 0.78 16

Table 12.2:
w/c-ratios.

Experimental data of Pann et al. vs. micromechanical predictions for various

12.3.3 Data of R~ssler and Odler [200]

A series of experiments has been presented by Rossler and Odler [200] in which they system-

atically changed the w/c-ratio and measured the uniaxial compressive strength for 2 different

specimen age, 28 days and 180 days. The volume fractions of the capillary porosity was mea-

sured by Mercury Intrusion Porosimetry (MIP). The experimental values of the capillary poros-

ity and uniaxial compressive strength for the different specimens are presented in Tab. 12.3. It

is evident that the more mature specimens have a reduced capillary porosity and an increased

compressive strength. This might be attributed to the continued hydration which continues

long after mixing and has the tendency to fill space and reduce porosity. The micromechanical

predictions of the lower bound estimates are also shown for comparison. The experimental and

micromechanical strength values are plotted in Fig. 12-6 as a function of the capillary porosity.

In order to quantify the accuracy of our model we computed the error between measured and

predicted values: e = ( - Erea) /Cmea x 100. The percentage errors which are shown in

the last column of Tab. 12.3 verify the predictive capabilities of the model. Individual errors
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Measured Predicted] Error
Age [w/c ]j mea ] e ]

[days] [-] [-] [MPa] [MPa] [%]
28 0.22 0.10 101 93 -8
28 0.27 0.10 117 93 -20
28 0.32 0.09 108 94 -13
28 0.37 0.13 108 89 -18
28 0.42 0.16 87 84 -4
28 0.47 0.15 71 85 +20
28 0.52 0.14 84 87 +4

180 0.22 0.04 102 103 +1
180 0.27 0.05 118 102 -13
180 0.32 0.06 110 100 -8
180 0.37 0.09 113 95 -15
180 0.42 0.10 89 94 +6
180 0.47 0.09 90 94 +5
180 0.52 0.10 105 94 -11

Table 12.3: Experimental data of Rossler
w/c-ratios.

and Odler vs. micromechanical predictions for various

vary from +20% to -20%, with an average value of 10%1.

12.4 Model Application

The strength model developed so far quantifies the relative contribution of each constituents

present in CBM microstructure. This is a powerful tool for modeling any CBM system, provided

knowledge of the volumetric proportions of each constituent. For demonstration purposes, we

apply the model to two cases of industrial interest: a) The mechanical response of the thermally

affected systems considered in Chapter 6; and b) The ojtimization of cementitious composites.

12.4.1 Thermally Treated Systems

Given our microporomechanics model, we can now estimate the macroscopic mechanical re-

sponse of the thermally cured and thermally treated cement-based materials studied in Chapter

'This is the average value of the absolute values of the errors, ccmputed as: E V(cnea - ZEP) 2 /N,where N

is the number of tests.
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6 of this thesis. The volumetric proportions of the individual constituents are summarized in

Tab. 8.4 and the micromechanical predictions are now given:

[MPa] %' [-

96 0 'C,
(12.11)

107 +4 'HC-1'

83 -14 'HC-28'

101 +5 'HT'

The estimates given in Eq. (12.11) are based on the lower bound scheme which has been

found to be in excellent agreement with experimental data. The predicted values are in com-

pliance with the trends observed in practice. That is, the heat cured specimen (HC-28) shows

a reduced mechanical performance compared with the control specimen. The micromechani-

cal model which can capture this behavior suggests that the macroscopic drop in strength is

due to the increase in the volume of the capillary porosity. Any densification of the C-S-H

matrix contributes little to the macroscopic strength given the fact that the LD C-S-H (lower

bound) generally dominates. In the case of heat-treated specimens, the results remain relatively

unaffected, given the limited change of the microstructure.

12.4.2 Strength Capacity of CBM Systems and Material Optimization

In this section, we consider an optimized version of CBM materials in order to evaluate the

efficiency of existing cement based composites and propose ways of improving their performance.

We consider the case of a matrix that is composed of only HD C-S-H and a significant proportion

of unhydrated clinker phases. Such a scenario represents the cases of extremely low w/c-ratio

on the order of 0.1-0.2. DuctalTM which is a high performance concrete operates in this regime,

and will serve as means of monitoring the relevance of the model. The mechanical properties

of the two types of C-S-H will serve as input data to the model and as a consequence Level 0

of the multi-scale model can be neglected.
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Level I: C-S-H Matrix

As the water/cement ratio decreases, there is a significant increase in the volumetric proportions

of HD C-S-H. Coupled with temperature treatment techniques the material at Level I can be

considered as a purely densified matrix in which only HD C-S-H exists. In fact, we have shown

in Section 9.1.1 and Fig. 9-5, that a w/c-ratio of w/c < 0.17 is sufficient to completely densify

the C-S-H matrix. Therefore the mechanical performance of an optimized version of CBM

material at this level will be driven by the mechanical response of the HD C-S-H phase:

fHD - 1; C -CHD HD (12.12)

Level 1I: Cement Paste

Level II is the level where the C-S-H matrix is reinforced by the rigid inclusions present in

the system. At such low w/c-ratios, an extremely low hydration degree is achieved and a

significant portion of clinker phases is left in the system. In fact for a w/c-ratio of 0.19

(DuctalTM ) fci = 0.37 of clinker phases is left unhydrated (see Section 12.2.2). Theoretically,

the maximum amount of clinker phases that can exist in the C-S-H matrix is the value for

which the C-S-H matrix remains percolated, since this is the only phase that has cohesive

properties 2. Percolation thresholds for spherical particles are on the order of fi ~ 0.50 and

will be considered for our simplified analysis. The effect of rigid inclusions on the macroscopic

strength of a Drucker-Prager material can be calculated from Eq. (11.66). The micromechanical

estimates for the two particular cases of a perfect bonding and a non frictional contact between

inclusions are:

CH = 106 MPa < cii < cI = 156 MPa (12.13)

6" = 0.085 < I < 6JI, = 0.125 (12.14)

2 We exclude here any sintering phenomena and we restrict ourselves to the simple scenario of matrix with

spherical inclusions.
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The uniaxial compressive strength can then be calculated as:

3k"
EM = 166MPa < EI = I- < EI 262 MPa

The consideration of the two extreme cases, the one of perfect bonding and the one of non-

frictional contact provide the means of estimating an upper bound to the strength of CBM

systems (EII = 262MPa) and a measure of the effective bonding between the phases respec-

tively. There are several conclusions to be drawn from this analysis:

e The upper bound to the strength is an estimate of the maximum allowable strength that

a CBM system can obtain provided that the globular structure is respected, i.e., there is

no chemical change of the intrinsic globule by the application of chemicals, pressure or

high temperatures. This upper bound Can therefore serve as a means of estimating the

efficiency of a given mix and further optimizing our material. It is impressive to note

that DuctalTM is within 190/262 = 73% of the maximum capacity of the system. The

remaining improvement will probably rely on the imperfect bonding and may be due to

the possibility that not 100% of the matrix is HD C-S-H. It should be noted, however,

that this is a significant improvement in contrast to normal cement pastes that operate

at 10 - 15% of material efficiency (in terms of strength).

9 It is impressive to note that empirical approaches have enabled significant optimization

of the material. A moderate improvement is to be expected from optimizing the C-S-H

matrix. Further improvement should require influence of the cement chemistry at the

level of the C-S-H globule. We have in fact shown in Section 10.1.2 that eliminating the

gel porosity is one means of further improving the mechanical response.

12.5 Chapter Summary

In this chapter the micromechanical model developed in Chapter 11 has been calibrated and

validated on a set of uniaxial compressive strength specimens reported in the literature. The

main conclusions are summarized:

* A series of arguments put forward in Section 12.2.2 suggests that the macroscopic uniaxial
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compressive behavior of CBM materials is relatively unaffected by the volume fractions

of the residual clinker present at any time in the system. This phenomenon may be

attributed to a poor bonding between clinker and hydration products.

9 The LD C-S-H phase was found to dominate the strength behavior of the C-S-H matrix.

This phenomenon may be related to the fact that the LD C-S-H surrounds most of

the capillary porosity, and as a consequence is subjected to stress concentrations which

eventually induce failure. This observation is also in line with the weakest link theory.

These two observations/calibrations have been incorporated in our micromechanical model,

which was found to predict macroscopic experimental data with high accuracy. In fact, the lower

bound estimate of the C-S-H matrix was found to comply best with macroscopic data. The

lower bound micromechanical predictions which are summarized in Fig. 12-7 underscore this

agreement. The model was then used for design purposes in optimizing the material response

and provide an estimate of the strength capacity that CBM materials can theoretically achieve.

It has been found that existing cement-based materials operate at the 10-60% of material

efficiency and that there is still room for improvement. While additional contributions are to

be expected by eliminating the LD C-S-H phase and maximizing the clinker proportions in the

matrix, significant impact is expected from the elimination of the gel porosity by manipulating

C-S-H phases at the nanometer level and breaking down the globular structure.
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Chapter 13

Summary of Results and Future

Perspectives

We asked at the outset of this thesis if it was possible to break our understanding of cement-

based materials down to a scale where constituent material properties do not change from

one sample to another and if we could then upscale the behavior from the nanoscale to the

macroscale. The experimental data, analysis, and interpretation, along with the theoreti-

cal modeling and prediction developed in this thesis, provide an affirmative answer to these

questions. This chapter presents a summary of the multi-scale investigation of cement-based

materials. Based on these findings, some future research is proposed and perspectives on the

micromechanical modeling of CBM are given.

13.1 Summary of Main Findings

Continuum micromechanics coupled with advanced experimental techniques provide a reliable

framework for modeling the macroscopic mechanical behavior of cement-based-materials, while

incorporating their large heterogeneity in the model. Models are predictive over several orders of

magnitude and for a variety of compositions, chemical conditions etc. The following conjectures

are made:

Conjecture 1 Level 0: There exists a unique C-S-H solid phase at level '0' (the 'globules' in

Fig. 4-8) composed of several C-S-H sheets of a characteristic size in the nanometer range, and
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a nanoporosity of 18%. The 18% hints towards a very dense packing of the sheets, which could

be a consequence of the chemophysical nature of the interlayer structural water. Estimates of the

mechanical properties of this phase were estimated by inverse analysis of the indentation data:

ECSH - 61 GPa, CCSH = 187 MPa. The nanoindentation creep results allow us to identify

this scale as the scale of the rate determining mechanism of the time dependent deformation

of cementitious materials. Application of moderate heat (60 C) tends to polymerize the chains

within this solid releasing water in the process which appears to reinforce the material against

creep and shrinkage deformations. The packing density of LD and HD C-S-H is associated with

the random packing limit and the cubic or hexagonal close packing, respectively. The strength

of this solid phase, which is most probably governed by attractive correlations forces at very

short separation distances [101], should be some order of magnitude greater than any strength

at larger scales. Further work from the atomistic modeling point of view is required to reinforce

our understanding at this scale.

The question remains about the physical state of the water in the structural porosity, and

related surface properties at the scale of the C-S-H sheets forming the C-S-H solid phase. They

appear to be of great importance for the creep behavior.

Conjecture 2 Level I: The diversity of cementitious materials starts at the scale where the

solid phases form two different characteristic packing patterns that are present in different vol-

umetric proportions in different cementitious materials. While the two packing patterns are still

universal, their respective volume proportions depend on mix proportions, thermal curing, aging,

etc. The difference in packing density per se suffices to explain intensive material properties

that govern the deformation behavior of cementitious materials: elastic properties and strength

properties. Estimates of these properties were provided by the grid indentation and dual in-

dentation techniques developed in this thesis: [ELD = 21 GPa, cLD - 50 MPa, LD 12

E D 128 =a, 31 GPa, =97 MPa, P LD = 224 MPa]. It is most

likely that the individual properties are a mere consequence of the number and nature of contact

points between solid phases, 6 vs. 12 in LD C-S-H and HD C-S-H. The higher the number of

contact points the more degrees of freedom to restrain the deformation and to dissipate energy.

When it comes to creep intensity, cne needs to acquire information from a length scale sepa-
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rated by (at least) one order of magnitude.' The creep mechanism which has been identified to

lie within the globule (or layered) structure has been found to be sensitive to the heat application

and duration. A correlation between the silicatb polymerization and creep intensity appears to

be consistent.

The question remains as to what triggers the creation of a highly ordered or disordered

structure, and why thermal curing leads to the creation of more ordered elements in the material

system. A mechanical explanation would be a thermal compaction: shaking up randomly

distributed spheres leads to a higher probabihly of formation of ordered structure. On the

other hand, the observation that the degree of silicate polymerization increases hints towards

a chemical origin of this orientation.

Conjecture 3 Level II: The macroscopic behavior at Level II is an amalgamation of all the

phenomena taking place below. For the heat-cured specimens, two competing mechanisms are

at work at the scale of a cement paste: One is creation of a net macroporosity as a result of

the conversion of LD-C-S-H into HD-C-S-H in the course of heat curing. The second is the

change of percolation of the governing C-S-H phase in the material system: the percolated C-

S-H phase in normal cementitious materials is the LD-C-S-H phase, while it is the HD-C-S-H

phase that is percolated in heat cured specimen. The crecation of the macroporosity is detrimental

for macroscopic strength properties of cementittous materials; while the change in percolation

may well explain the lower creep intensity (but not the rate) of the heat-cured specimens. The

loss in elasticity can be partly compensated by a) residual clinker phases reinforcing the cement

paste and b) densification of the C-S-H matrix. In contrast, those compensating mechanisms

do not productively work for strength. An 18% reduction in. strength is observed in the case of

heat cured specimens. Heat treatment offers a'coAvenient framework were the benefits of time

dependent deformation can be acquired without the drawbacks of the reduction of strength. Heat

treatment operates at Level 0 only, without any detrimental effects for strength and elasticity.

13.2 Research Contributions

Several new elements have been developed in this study, which are listed below:
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1. Indentation testing has been extended to cohesive-frictional materials. A novel way of

extracting strength properties of cohesive-frictional materials is proposed. The dual in-

dentation technique which has been presented in Section 2.3.4 and Ref. [92] is the first of

its kind. It takes advantage of the hardness dependency on indenter geometry to back cal-

culate the cohesion and angle of friction of the material. The tools of indentation analysis

on cohesive-frictional materials, together with the dual indentation technique have been

validated in Section 3.4.3 on a Bulk Metallic Glass. We have proposed in addition a new

way for accounting for the pile-up present in most cube-corner indentations (Elasticity

corrector method, Section 2.5.4).

2. The multi-scale structure of CBM has been reconstructed in Chapter 4 (see also Ref. [58]).

This has been done using the extensive data reported in the literature, i.e., microscopy

investigations (SEM, ESEM, AFM etc.), porosity measurements, X-ray diffraction tech-

niques etc., and the experimental investigations reported in this thesis. The resulting

four-scale think-model forms the backbone for experimental and modeling attempts that

followed in the rest of this thesis.

3. A way to extend indentation methods to multiphase composite systems has been presented

in Chapter 5. The proposed grid indentation technique, which has been validated in

Section 5.3 and Appendix D, provides easy access to the intrinsic mechanical properties

of all involved phases, their volumetric proportions and morphological arrangement in

space. These are all input requirements for any micromechanical modeling attempt.

4. We have identified two intrinsic packing modes of the C-S-H elementary block with cor-

responding intrinsic mechanical behavior. The elastic, poroelastic, creep and strength

estimates of the two C-S-H phases have been measured experimentally for the first time.

We have also provided intrinsic estimates for the rest of the individual phases present in

cement-based systems. A summary of the results is reported in Tab. 13.1.

5. The multi-scale mechanical behavior of heat cured and heat treated specimens has been

studied in detail. Results presented in Chapter 6 are in favour of a densification process

that takes place at the C-S-H level s a consequence of early heat application during
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C-S-HLD IC-S-HHD Globule

Physical
Porosity- [%1 37 24 18

Density (Sat/Dry) -Psat/Pr' [kg/m 3 ] 1,930/1440 2, 130/1750 2, 800

Poroelasticity I I I
Skempton coefficient-B [-] 0.25 0.24 -

Biot coefficient-b [-] 0.72 0.54 -
Biot skeleton modulus-N [GPa 114 133 -

Biot Modulus-M [GPa] 5.9 6.0 -

Elasticity

Elastic Modulus-E [GPa] 21 31 61
Poisson's Ratio-v 0.24 0.24 0.25

Strength _
Cohesion-c [MPa] 50 97 187

Angle of Friction- p [-] 12 12 -
Uniaxial Compression-E [MPa 128 224 -

Creep

A [nm] 10 5 -

B [s] 1.3-1.5 1.3 - 1.5 -

Table 13.1: Summmary of intrinsic mechanical properties of C-S-H phases.

curing. The resulting material is one of reduced gel porosity but increased macroporos-

ity, giving heat cured specimens their reduced macroscopic strength performance and

increased permeability.

6. The material invariant properties proposed in Chapter 5 were used in a novel microp-

oroelastic model that can deliver the poroelastic properties of a variety of cement-based

materials over several orders of magnitude in length scales (Chapters 7 to 9).

7. The dual indentation technique was applied in Chapter 10 on a white cement paste to

provide the first experimental estimates of C-S-R strength.

8. A novel micromechanical model for CBM strength is developed in Chapter 11. It pro-

vides a physical interpretation to the link between compressive strength and w/c-ratio

and investigates the effect of porosity and clinker phases on the macroscopic mechanical

performance.

9. The materials science approach developed in this thesis is general and can be equally
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applied to any other natural composite, whether geological or biological. The approach

which has its origin at the level of the individual components, provides a direct link

between physical chemistry and mechanics.

13.3 Current Limitations and Future Perspectives

The experimental and analytical developments presented in this thesis exposed areas of future

scientific interest and industrial importance. The following are possible extensions for future

research:

13.3.1 Continuum vs. Discrete

Modeling of CBM has been performed within the framework of continuum micromechanics.

Their discrete nature has been ignored and their colloidal matrices have been replaced by

an equivalent continuum medium. This representation has provided the means for mechanistic

models, but a more rigorous approach that takes the discrete nature of the material into account

may prove to be useful in the future. The analysis presented in this thesis has stretched the

limits of continuum mechanics and reached length scales low enough allowing researchers from

atomistic simulations and quantum mechanics to bridge to the CBM continuum.

13.3.2 Nature of Globule and Origin of Cohesion

Much of our discussion in this thesis culminated in a few material invariant properties which

are intrinsic for a given a material system, with our starting point being the single particle

level. It becomes apparent that the individual solid units considered in this thesis are not

the individual C-S-H sheets but crystallites thereof. Some fundamental questions of extreme

scientific and industrial interest remains: What determines the exact shape and morphology of

the individual solid particles? What is the nature of their bonding and the origin of the cohesion

with neighboring particles? The physicochemical processes that define these features are still

at embryonic stages. To emphasize the importance of these questions on the mechanics side it

suffices to note that the exact shape and size is intimately related with the surface forces and

packing arrangement (therefore porosity) that is at the heart of the macroscopic mechanical
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behavior. Much of the advancement in the last 50 years has been concentrating on improving

the packing arrangement of cement particles at the level of a few micrometers eliminating in

the process the capillary porosity. We dare to forecast that future improvements will be at the

level of the individual globules, with significant consequences for material development.

13.3.3 C-S-H Creep

The C-S-H phases in CBM materials have been shown to exhibit some time dependent defor-

mation. As a consequence a portion of the displacement recorded during an indentation test

is due to the creep phenomena which has not been explicitly considered into our analysis. We

have demonstrated in Chapter 6 that a measure of the time dependent deformation behavior

of a material at the nanoscale can be obtained from nanoindentation by employing a soaking

period at maximum load, as any increase in indentation depth at constant load will be a result

of creep. We have so far provided first order estimates of the creeping process of the material

by fitting the time dependent deformation during the swelling period to a logarithmic function,

see Eq. (6.2). A more rigorous approach would be to consider analytical models of indentation

on a viscoelastic or viscoplastic solid [50]. One such model has been proposed by Vandamme

and Ulm [237] and its application to cementitious materials is the matter of current research.

While the analysis of creep data obtained by indentation is still in its infancy, the technique

holds great promise for shedding some light on the mechanisms of creep deformations.

13.3.4 Indentation on Cohesive-Frictional Material and Dual Indentation

Technique

The extension of indentation analysis to cohesive-frictional materials presented in Chapters 2

and 5 has been performed within the framework of yield design approaches. This reductionist

approach offers easy determination of the angle of friction and cohesion of the indented material

through the dual indentation technique. A refined analysis through finite element simulation

can incorporate the effects of elasticity, friction between indenter and indented material, hard-

ening phenomena, time dependent phenomena, and provide additional information about the

indentation response of such a system. Potential master curves of dimensional quantities can

provide a similar framework to our dual indentation technique which will also incorporate the
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effect of friction, and the non-associative flow rule and will reduce by design the sensitivity of

the inverse analysis procedure on the input data.

13.3.5 C-S-H and Concrete Strength

From the analysis of the material properties at the three levels of microstructure, it emerged

that the description of strength at Level 0 can be improved. The first order indentation esti-

mates of strength at Level I are limited by the assumptions involved in the computational yield

design approach presented in Chapter 2: time dependent and hardening phenomena have been

neglected from our analysis. It remains uncertain whether the concept of hardness will remain

to be valid in the presence of such phenomena. Further work in clarifying these issues and

refining the first order indentation estimates of the C-S-H phases is required. In the absence

of any other experimental determination the indentation strength estimates of C-S-H phases

cannot be directly validated/invalidated but they can be tested against macroscopic experimen-

tal data. Alternative means of measuring their mechanical response can be of intense interest.

The C-S-H strength was linked to macroscopic mechanical behavior with the use of analytical

micromechanical schemes. Localized deformations such as fracture and damage that might take

process during the loading to failure have not been explicitly considered in our analysis. At

present, clearly the non-consideration of fracture is a limiting factor for the application of the

model. This challenging endeavour needs to be accompanied with careful fracture experiments

that will provide measurements for the C-S-H phases. Fracture testing at small scales has not

been extensively discussed in the literature, but it would certainly prove to be of immense

interest to analysis of this materials once developed.

13.4 Concluding Remarks

We have presented in this thesis a systematic procedure for upscaling mechanical properties

of cement-based materials. We have verified the existence of a few material invariant prop-

erties that exist in all CBM systems, and shown through micromechanical modeling that the

macroscopic diversity is essentially a consequence of volumetric mismatches between specimens

composed of the same species. Modeling attempts initiated at the level of the individual con-
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stituents essentially provide a direct link with physical chemistry. It is our hope that the current

developments provide a refined understanding of the most widely used material on Earth, and

a bridge between the cement-chemistry and mechanics communities, and serve as a showcase

for modelling other complicated porous composites. Finally it is our hope that the results

presented in this thesis will stimulate the interest for research to follow. The influx of new

nanoscale information that become available through experimentation and advanced modeling

are about to revolutionize our understanding of CBM and natural composites.

.454



Appendix A

Bibliography

1. Aboudi J, (1991) 'Mechanics of composite materials: A unified micromechanical ap-

proach', Elsevier.

2. Acker, P., (2001) 'Micromechanical analysis of creep and shrinkage mechanisms', In F.-J.

Ulm, Z.P. Bazant, and F.H. Wittmann, editors, Creep, Shrinkage and Durability Mechan-

ics of Concrete and other quasi-brittle Materials, (Proc. Int. Conf. CONCREEP-6@MIT,

Cambridge, MA, August 2001), Elsevier, Oxford UK, 15-25.

3. Acker, P., and Ulm, F.-J., (2001) 'Creep and shrinkage of concrete: physical origins,

practical measurements', Nuclear Engineering and Design, Vol. 203(2-3), 143-158.

4. Aitcin P.C., (2000) 'Cements of yesterday and today - Concrete of tomorrow', Cement

and Concrete Research, 30(9):1349-1359.

5. Alexander K.M., Wardlaw J., and Gilbert D.J., (1968) 'Aggregate-cement bond, cement

paste strength and the strength of concrete' in Proceedings of an international conference

'Structure of Concrete' edited by Brooks A.E., and Newman K., London.

6. Anderheggen, E., Knopfel, H. (1972) 'Finite element limit analysis using linear program-

ing' International Journal of Solids and Structures, 8, 1413-1431.

7. Ang, A.H-S., and Tang. H.W., (1975) 'Probability concepts in engineering planning and

design' New York, Wiley.

455



8. Ashby, M. F. (1999) 'Materials selection in mechanical design', Oxford, Boston: Butterworth-

Heinemann.

9. Atri R.R., Ravichandran K.S., and Jha S.K., (1999), 'Elastic properties of in-situ processed

Ti-TiB composites measured by impulse excitation of vibration', Materials Science and

Engineering A271, 150-159.

10. Balshin, M.Y. (1949), 'Dependence of mechanical properties of metal powders on porosity

and limiting properties of metal - ceramic materials (in Russian)', Dokl. Akad. Nauk

UzSSR 67 (5) 831- 834.

11. Barenblatt, G. I. (1996). 'Scaling, Self-Similarity and Intermediate Asymptotics', Cam-

bridge, Cambridge University Press.

12. Barenblatt, G. I. (2003) 'Scaling' Cambridge University Press.

13. Barthelemy J.F., Dormieux L., (2003), 'Determination of the macroscopic strength crite-

rion of a porous medium by nonlinear homogenization ' IComptes Rendus Mecanique 331

(4): 271-276.3

14. Barthelemy J.F., Dormieux L., (2004), 'A micromechanical approach to the strength

criterion of Drucker-Prager materials reinforced by rigid inclusions' International Journal

for Numerical and Analytical Methods in Geomechanics 28 (7-8): 565-582.

15. Bary, B., Bournazel, J.-P., and Bourdarot, E., (2000) 'Porodamage approach applied to

hydrofracture analysis of concrete', Journal of Engineering Mechanics, 126(9), 937-943,

2000.

16. Bathe, K.J., (1996) 'Finite element procedures'., Prentice Hall, Upper Saddle River, NJ.

17. Bazant, Z.P. (1972), 'Thermodynamics of interacting continua with surfaces and creep

analysis of concrete structures', Nuclear Engrg. and Design, 20, 477-505, 1972.

18. Bazant, Z.P., Hauggaard, A.B, Baweja, S., afid Ulm, F.-J., (1997) 'Microprestress-solidification

theory for concrete creep. I: Aging and drying effects', Journal of Engineering Mechanics,

ASCE, 123(11), 1188-1194.

456



19. BBC News, http://www.che.utexas.edu/~truskett/news-items/bbc.htm.

20. Beaudoin J.J., (1983), 'Comparison of mechanical properties of compacted calcium hy-

droxide and portland cement paste systems', Cement and Concrete Research, 13:319-324.

21. Bentur, A., (1980) 'Effect of curing temperature on the pore structure of tricalcium silicate

pastes', Journal of Colloid and Interface Science, Vol. 74 (2), 549-560.

22. Bernard, 0., Ulm, F.-J., Germaine, J.T., (2003) "Volume and Deviator Basic Creep of

Calcium Leached Cement-Based Materials", Cement & Concrete Research, Vol. 33(8),

1155-1173,.

23. Bernard, 0., Ulm, F.-J., Lemarchand, E., (2003) 'A multiscale micromechanics-hydration

model for the early-age elastic properties of cement-based materials', Cement & Concrete

Research, Vol. 33(9), 1293-1309.

24. Berryman, J.G., (2002) 'Extension of Poroelastic Analysis to Double-Porosity Materials:

New Technique in Microgeomechanics', Journal of Engineering Mechanics, 128(8), 840-

847.

25. Bhattacharya A. K. and Nix W. D., (1988) 'Analysis of elastic and plastic deformation

associated with indentation testing of thin films on substrates' International Journal of

Solids and Structures, 24(12), 1287-1298.

26. Biot, M.A., (1941) 'General theory of three dimensional consolidation." Journal of Applied

Physics, 12, 155-164.

27. Birchall J.D., Howard A.J., and Kendall K., (1981) 'Flexural strength and porosity of

cements', Nature, 289, 388-390.

28. Bishop, R.F., Hill R., and Mott N.F. (1945), 'The theory of indentation and hardness

tests', Proceedings Physics Society, 57 (147), 172.

29. Bonaccorsi E., Merlino S., and Taylor H.F.W., (2004) 'The crystal structure of jennite,

Ca 9Si 6O1 (OH) 6.8H 20.' Cement and Concrete Research 34:1481-1488, 2004.

457



30. Borodich F. M., Keer L. M. and Korach C.S. (2003). 'Analytical Study of Fundamental

Nanoindentation Test Relations for Indenters of Non-Ideal Shapes'. Nanotechnology 14,

803-808.

31. Borodich F. M. and Keer L. M. (2004). 'Evaluation of elastic modulus of materials by

adhesive (no-slip) nano-indentation'. Proc. R. Soc. Lond. A, 460, 507-514.

32. Bottero, A., Negre, R., Pastor, J., Turgeman, S. (1980) 'Finite element method and limit

analysis theory for soil mechanics problems', Computer methods in applied mechans and

engineering, 22, 131-149.

33. Boussinesq, J. (1885) 'Applications des potentials a I' 6tudede 1' equilibre et du mouvement

des solides elastiques' Gauthier- Villars.

34. Brown, R. J. S., and Korringa, J., (1975) 'On the dependence of the elastic properties of

a porous rock on the compressibility of a pore fluid', Geophysics, 40, 608-616.

35. Bruck HA, Christman T, Rosakis AJ, Johnson WL. (1994) Quasi-static constitutive be-

havior of Zr41.25Ti13.75Ni10Cul2.5Be22.5 bulk amorphous alloys' Scripta Metallurgica

et Materialia 30 (4): 429-434.

36. Brinell, J. A. (1901). 'Memoire sur les epreuves a bille en acier'. In Congres International

des Methodes d Essai des Materiaux de Construction, Paris, Tome 2, 83-94.

37. Bucaille J.L, Stauss S., Felder E. ,Michler J. (2003) 'Determination of plastic properties

of metals by instrumented indentation using different sharp indenters', Acta Materialia,

51:1663-1678, 2003.

38. Buckle H in Westbrook J.W. and Conrad H., eds (1973) 'The Science of Hardness Testing

and its Applications', American Society for Metals, Metal Park OH, pp. 453-491.

39. Bulychev, S.I., Alekhin, V. P., Shorshorov, M. Kh., Ternovskii, A. P. and Shnyrev, G.

D., (1975) 'Determination of Youngs modulus according to an indentation diagram' Ind.

Lab. , Transl: Zavodskaya Laboratorip),41,1409-1412, cited from [30].

458



40. Chateau, X. and Dormieux, L., (2002) 'Micromechanics of saturated and unsaturated

porous media', International Journal of Numerical Analysis Methods in Geomechanics,

26, 830-844.

41. Chen J.J., Thomas J.J., Taylgr H.F.W., and Jennings H.M., (2004) 'Solubility and struc-

ture of calcium silicate hydrate.' Cement and Concrete Research 34:1499-1519.

42. Chen W.F., and Han D.J., (1988) 'Plasticity for Structural Engineers', Springer-Verlag,

New York.

43. Chen X., Vlassak J.J., (2001) 'Numerical study on the measurement of thin film me-

chanical properties by means of nanoindentation' Journal of Materials Research 16 (10):

2974-2982.

44. Cheng, L., Xia, X., Yu, W., Scriven, L. E. and Gerberich, W. W. (2000). 'Flat-Punch In-

dentation of Viscoelastic Material.' Journal of Polymer Science Part B: Polymer Physics

38, 10-22.

45. Cheng, L., Xia, X., Scriven, L. E. and Gerberich, W. W. (2004). 'Spherical-tip indentation

of viscoelastic material.' Mechanics of Materials. In press.

46. Cheng C.M., Cheng Y.T., (1997). 'On the initial unloading slope in indentation of elastic-

plastic solids by an indenter with an axisymmetric smooth profile', Applied Physics Letters

71 (18): 2623-2625, 1997

47. Cheng, Y.-T. and Cheng, C.-M. (1998). 'Relationships between hardness, elastic modulus,

and the work of indentation.' Applied Physics Letters 73(5), 614-616.

48. Cheng, Y.-T. and Cheng, C.-M. (1998). 'Scaling relationships in conical indentation of

elastic-perfectly plastic solids.' International Journal Solids Struct. 36(8), 1231-1243.

49. Cheng, Y. T. and Cheng, C. M. (2000). 'What is indentation hardness?', Surface and

Coatings Technology 133-134, 417-424.

50. Cheng, Y. T. and Cheng, C. M. (2004).'Scaling, dimensional analysis, and indentation

measurements.' Materials Science. and Engineering R44, 91-149.

459



51. Chitkara, N.R., and Butt, M.A. (1992) 'Numerlial Construction of axisymmetric slip-

line fields for indentation of thick blocks by rigid conical indenters and friction at the

tool-metal interface', International Journal of Mechanical Science, 34(11):849-862.

52. Chollacoop, N., Dao, M. and Suresh, S. (2003). 'Depth sensing instrumented indentation

with dual sharp indenters', Acta Materialia, 51, 3713-3729.

53. Christensen R.M., (1979), 'Mechanics of composite materials', John Wiley and sons, New

York.

54. Christensen R.M., (1990), 'A critical evaluation for a class of micromechanics models.'

Journal of the Mechanics and Physics of Solids 38(3):379-404.

55. Conner RD, Dandliker RB, Johnson WL (1998) 'Mechanical properties of tungsten and

steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites',

Acta Materialia 46 (17): 6089-6102.

56. Cong X., Kirkpatrick R.J., (1995) 'Effects of the temperature and relative humidity on

the structure of the CSH gel' Cement and Concrete Research 25(6):1237-1245.

57. Cong X., Kirkpatrick R.J., (1996) '2 9Si MAS NMR study of the structure of calcium

silicate hydrate' Advanced Cement Based lVPterials 3:144-156.

58. Constantinides, G. and Ulm, F.-J., (2002) 'The elastic properties of calcium-leached ce-

ment pastes and mortars:a multi-scale investigation', MIT CEE Report R02-01, (MS

Thesis), Cambridge, MA.

59. Constantinides, G., Ulm, F.-J., and van Vliet, K.J. (2003). 'On the use of nanoindenta-

tion for cementitious materials', Materials and Structures 205 (Special issue of Concrete

Science and Engineering) RILEM, 191-i96--

60. Constantinides, G., and Ulm, F.-J. (2004). 'The effect of two types of C-S-H on the

elasticity of cement-based materials: Results from nanoindentation and micromechanical

modeling.' Cement and Concrete Research, Vol. 34 (1), 67-80.

460



61. Constantinides, G. and Ulm, F.-J. (2004). 'Stiffness, strength and creep behavior of heat-

cured cement pastes: a multiscale indentation investigation.' MIT Research Report to

Lafarge, Cambridge, MA, June 2004.

62. Coussy, 0., (1995) 'Mechanics of porous continua', J. Wiley & Sons, Chichester, UK.

63. Coussy, 0., Eymard, R., Lassabatere, T., (1998) 'Constitutive modelling of unsaturated

drying deformable materials', Journal of Engineering Mechanics, 124(6), 658-667.

64. Coussy, 0. (2004). 'Poromechanics', J. Wiley & Sons, Chichester, UK.

65. Dalgleish B.J. and Ibe K., (1981) 'Thin foil studies of hydrated cements', Cement and

Concrete Research 11:729-739.

66. Dao, M., Chollacoop, N.,Van Vliet, K.J.,Venkatesh, T.A. and Suresh, S. (2001) 'Compu-

tational modeling of the forward and reverse problems in instrumented sharp indentation',

Acta Materialia 49, (19): 3899-3918

67. Delafargue, A. and Ulm, F.-J. (2004). 'Material invariant properties of shales: Nanoin-

dentation and microporoelastic analysis.' MIT-CEE Research Report (SM-Thesis).

68. Diamond S. and Bonen D., (1993) 'Micostructure of hardened cement paste - A new

interpretation', Journal of American -Ceramic Society, 76 (12), 2993-2999.

69. Diamond S., (1999) 'Aspects of concrete porosity revesited', Cement and Concrete Re-

search 29(8):1181-1188.

70. Doerner M. F. and Nix W. D. (1986). 'A Method for Interpreting the Data from Depth-

Sensing Indentation Instruments. Journal of Materials Research 1, 601-609.

71. Donev, A., Cisse, I. Sachs, D., Variano, E.A., Stillinger, F.H., Connely, R., Torquato,

S., Chaikin, P.M., (2004) 'Improving the density of jammed disordered packings using

ellipsoids', Science, Vol. 303, 990-993.

72. Donovan P.E. (1989) 'Plastic-flow and fracture of Pd 40Ni4OP 2 0 metallic-glass under an

indentor.' Journal of materials science (2): 523-535.

461



73. Dormieux, L., Molinari, A. and Kondo, D., (2002) 'Micromechanical approach to the

behaviour of poroelastic materials', Journ. Mechanics and Physics of Solids, 50, 2203-

2231.

74. Dormieux, L. and Bourgeois, E., (2003) 'Introduction A la micromecanique des milieux

poreux, Presses de l'Ecole nationale des ponts et jhaussees, Paris, France.

75. Dormieux, L., Kondo, D., Ulm, F.-J., 'Microporomechanics' in preparation.

76. Dotelli, G., and Mari, C.M., (2001) 'The avodlution of cement paste hydration process by

impedence spectroscopy', Materials Science and Engineering, A303, 54-59.

77. Durst K, Goken M, Vehoff H, (2004) 'Finite element study for nanoindentation measure-

ments on two-phase materials' Journal of Materials Research 19 (1): 85-93.

78. Escalante-Garcia, J.I., and Sharp J.H., (1998) 'Effect of temperature on the hydration

of the main clinker phases in portland cements: Part I, Neat Cements', Cement and

Concrete Research, Vol. 38 (9), 1245-1257.

79. Escalante-Garcia, J.I., and Sharp J.I.:,'( 2 0 0 1) 'The microstructure and mechanical prop-

erties of blended cements hydrated at various temperatures', Cement and Concrete Re-

search, Vol. 31, 695-702.

80. Eshelby, J.D., (1957) 'The determination of thebelastic field in an ellipsoidal inclusion',

Proceedings of the Royal Society of London, A 241, 376-392.

81. Evans A., San Marchi C., and Mortensen A., (2003) 'Metal matrix composites. An intro-

duction and a survey', Kluwer Academic Publisher.

82. Famy C., Scrivener K.L., Atkinson A., Brough A.R., (2002) 'Effect of an eraly and late

heat treatment on the microstructure and composition of inner CSH product of Portland

cement mortars', Cement and Concrete "Research 32:269-278.

83. Faucon P., Delagrave A., Petit J.C., Richet C., Marchand J.M., and Zanni H., (1999)

'Aluminum incoporation in calcium silicat'e hydrates' (C-S-H) depending on their Ca/Si

ratio.' Journal of Physical Chemistry B, 103:7796--7802.

462



84. Fauchet, B., Coussy, 0., Carrere, A., Tardieu, B., (1991) 'Poroplastic analysis of concrete

dams and their foundations', Dam Engineering , Vol. 11(3), 165-192.

85. Feldman R.F. and Sereda P.J., (1970) "A new model of hydrated cement and its practical

implications," Engineering. Journal Canada 53, pp. 53-59.

86. Fischer-Cripps, A. C. (2002). 'Nanoindentation'. Springer Verlag, New-York.

87. Fremond, M., and Salencon J. (1973) 'Limit analysis by finite elemnt methods' In A.C.

Palmer, editor, Proceedings of teh symposium on role of plasticity in soil mechanics,

Cambridge, UK.

88. Futakawa M, Wakui T, Tanabe Y, Ioka I (2001) 'Identification of the constitutive equation

by the indentation technique using plural indenters with different apex angles', Journal

of Materials Reserach 16 (8): 2283-2292.

89. Galin, L. A. (1951). 'Contact Problems in Theory of Elasticity', translated by H. Moss.

In: Sneddon, I. N. (Ed.), North Carolina State College.

90. Garboczi, E.J., (1993) 'Computational materials science of cement-based materials', Ma-

terials and Structures, 26(2), 191-195.

91. Gatty L., Bonnamy S., Feylessoufi A., Clinard C., Richard P., Van Damme H., (2001)

'A transmission electron microscopy study of interfaces and matrix homogeneity in ultra-

high-performance cement-based materials' Journal of Materials Science 36:4013-4026.

92. Ganneau, F.P., Constantinides G., and Ulm, F.-J. (2004). 'Dual-Indentation technique

for the assesment of strength properties of cohesive-frictional material',will submited to

International Journal of Solids and Structures (in press).

93. Ganneau, F.P. and Ulm, F.-J. (2004). 'From nanohardness to strength properties of

cohesive-frictional Materials - Application to shale materials', MIT-CEE Research Re-

port (SM-Thesis).

94. Gao H.J., Chiu C.H., Lee J., (1992) 'Elastic contact versus indentation modeling of mul-

tilayered materials' International Journal of Solids and Structures 29 (20): 2471-2492.

463



95. Gartner E., (2004), 'Industrially interesting approaches to "low-CO2" cements', Cement

and Concrete Research, 34(9), 1489-1498.

96. Gassmann, F., (1951) 'Uber die elastizitat por6ser medien', Vierteljahrsschrift der Natur-

forschenden Gesellschaft in Zurich, 96, 1-23 (in German).

97. Giannakopoulos, A.E. and Larsson, P. L. and Vestergaard, R. (1994) 'Analysis of vickers

indentation', International Journal of Solids and Structures, 31(19):2679-2708.

98. Giannakopoulos, A.E. and Suresh, S. (1999) 'Determination of elastoplastic properties by

instrumented sharp indentation', Scripta Matehriai, 40(10):1191-1198.

99. Gibson, L.J. and Ashby, M.F., 'Cellular Solids: Structure and Properties', Second Edition,

Cambridge University Press, Cambridge, U.K, 1997.

100. Gilbert CJ, Schroeder V, Ritchie R.O., (1996) 'Mechanisms for fracture and fatigue-crack

propagation in a bulk metallic glass' Mettalurgical and materials Transactions APhysical

Metallurgy and Materials Science 30 (7): 1739-1753.

101. Gmira, A., Zabat, M., Pellenq, R.J.-M., and Van Damme, H., (2004) 'Microscopic physical

basis of the poromechanical behavior of cement-based materials', Materials and Structures

(Special issue of Concrete Science and Engineering), Vol. 37 (265), 3-14.

102. Goodman L.E. (1962) 'Contact stress analysis of normally loaded rough spheres', Journal

of Aplied Mechanics 29, 512-522.

103. Gorsse S., Le Petitcorps Y., Matar S., and Rebillat F., (2003) 'Investigation of the Young's

modulus of TiB needles in situ produced in titanium matrix composite' Materials Science

and Engineering A-Structural Materials Properties Microstructure and Processing 340

(1-2): 80-87

104. Gregory, J.R. and Spearing, S.M., (2005), 'Nanoindentation of neat and in situ polymers

in polymer matrix composites.' Composite Science and Technology, 65, 595-607.

105. Groves G.W., (1987) 'TEM studies of cement hydration', Materials Reserach Society

Symposium Proceedings, 85:3-12.

464



106. Hamid S.A., (1981) 'The crystal structure of 11 A natural tobermorite, Ca 2.25 [Si 3 0 7. 5(OH) 1 5 ].1H 20.'

Z. Kristallogr. 154:189.

107. Harding, J. W. and Sneddon, I. N. (1945). 'The elastic stress field produced by the

indentation of the plane surface of a semi-infinite elastic solid by a rigid punch'. Proc.

Cambridge Phil. Soc. 41, 16-26.

108. Hansen T.C., (1986) 'Physical structure of hardened cement paste. A classical approach.'

Materials and Structures, 19(114):423-436.

109. Hashin, Z., and Monteiro, P.JM., (2002) 'An inverse method to determine the elastic

properties of the interphase between the aggregate and the cement paste', Cement and

Concrete Research, 32(8), 1291-1300.

110. Hasselman, D.P.H., (1963) 'Relation between effects of porosity on strength and on

young's modulus of elasticity of polycrystalline materials, Journal of the American Ce-

ramic Society 46 (11) 564-565.

111. Hay J.C, Bolshakov A, Pharr GM, (1999) 'A critical examination of the fundamental

relations used in the analysis of nanoindentation data' Journal of Materials Research 14

(6): 2296-2305.

112. He Y, Schwarz RB, Mandrus D, and Jacobson L. (1996) 'Elastic moduli, density, and

structural relaxation in bulk amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy', Journal of

non-crystalline solids 207: 602-606 Part 2.

113. Helmuth R.A., and Turk D.H., (1966) 'Elastic moduli of hardened portland cement and

tricalcium silicate pastes: effect of porosity', Symposium on structure of portland cement

paste and concrete (special report 90), Highway research board, Washington DC.

114. Hertz, H. (1881) 'On the contact of elastic solids (in german), zeitschrift fur die reine und

angewandte mathematik', English translation in miscellaneous papers (translated by D.E.

Jones and G.A. Schott):99.146-62. Macmillan, London, UK, 1986, 92:156-71.

.465



115. Heukamp, F. H., Ulm, F. J. and Germaine, J. T., (2001) 'Mechanical properties of calcium-

leached cement pastes: Triaxial stress states- and the influence of the pore pressures',

Cement and Concrete Research, 31(5), 767-774.

116. Heukamp, F.H., Ulm, F.-J., (2002) 'Chemomechanics of calcium leaching of cement-

based materials at different scales: The role of CH-dissolution and C-S-H degradation

on strength and durability performance of materials and structures', MIT-CEE Report

R02-03 (D.Sc.-Dissertation), Cambridge, MA.

117. Heukamp, F.H., Ulm, F,-J., Germaine, J.T., (2003) 'Poroplastic properties of calcium

leached cement-based materials", Cement & Concrete Research, Vol. 33(8), 1127-1136.

118. Heukamp F.H., Lemarchand E., Ulm F-J., (2005) 'The effect of interfacial properties

on the cohesion of highly filled composite materials' International Journal of Solids and

Structures 42 (1): 287-305.

119. Hill R. (1950), 'The Mathematical Theory of Plasticity', Oxford University Press, Oxford,

120. Hill R., (1952) 'The Elastic Behavior of a Crystalline Aggregate', Proceedings of the

Physical Society of London A, 65, 349-354.

121. Hopkins, H.G., Cox A.D., Eason, G. (1961) 'Axially symmetric plastic deformation in

soils', Philosophical Transactions, Royal Society, A264, 1-45.

122. Houlsby, G.T., Wroth,C.P. (1982) 'Determination of undrained strengths by cone pene-

tration tests. In Proc. 2nd Europena Symposium on Penetration Testing, Amsterdam,

NL.

123. Hutchinson J.W. (2000) 'Plasticity at* the micron scale' International Journal of Solids

and Structures, 37(1-2):2225-2238.

124. Hysitron Inc (2001) 'Triboindenter users mwnual', Minneapolis, MN.

125. Igarashi, S., Bentur, A. and Mindess, S., (1996) 'Characterization of the microstructure

and strength of cement paste by microhardness testing' Advances in cement research,

8(30):877-92.

466



126. Ishida, H., Sasaki, K., Okada, Y., and Mitsuda, T., (1992) 'Highly reactive b-Dicalcium

silicate: III, Hydration behavior at 40-80 C', Journal of the American Ceramic Society,

75 (9), 2541-2546.

127. ISO 14577 (2002)'Metallic Materials - Instrumented indentation test for hardness and

materials parameters'

128. Jaeger, H.M., and Nagel, S. R., (1992) 'Physics of granular state', Science, Vol. 255, No.

5051, 1523-1531.

129. Jennings, H. M., and Tennis P.D., (1994) 'A model for the developing microstructure in

portland cement pastes', Journal of American Ceramic Society, 77 (12), 3161-72.

130. Jennings, H. M., (2000) 'A model for the microstructure of calcium silicate hydrate in

cement paste', Cement and Concrete Research, 30 (1), 101-116.

131. Jennings, H. M., (2004) 'Colloid model of C-S-H and implications to the problem of

creep and shrinkage', Materials and Structures (Special issue of Concrete Science and

Engineering), Vol. 37 (265), 59-70,.

132. Johnson, K. L. (1985) 'Contact mechanics', Cambridge University Press.

133. Jonsson B., Wennerstrom H., Nonat A., amd Cabane B., (2004) 'Onset of cohesion in

cement paste', Langmuir 20:6702-6709.

134. Kaplan, M. F. (1989) 'Concrete Radiation Shielding', Longman Scientific and Technical,

Concrete Design and Construction, New York.

135. Kawamura Y., Kato H., Inoue A., and Masumoto T., (1996) 'Effects of extrusion con-

ditions on mechanical properties in Zr-Al-Ni-Cu glassy powder compacts', Journal of

Materials Science and Engineering, A219, 39-43.

136. Kholmyansky, M., Kogan, E. and Kovler, K., (1994) 'On the hardness determination of

fine-grained concrete', Materials and Structures, 27(174):584-587.

137. King, R.B, (1987) 'Elastic analysis of some punch problems for a layered medium', Inter-

national Journal of Solids and Structures, 23:1657-1664.

467



138. Kjellsen, K. 0., (1996) 'Heat curing and post-heat curing regimes of high performance

concrete: influence on microstructure and C-S-H composition', Cement and Concrete

Research, Vol. 26 (2), 297-307.

139. Kozola BD, Shen YL, (2003) 'A mechanistic analysis of the correlation between overall

strength and indentation hardness in discontinuously reinforced aluminum' Journal of

Materials Science 38 (5): 901-907

140. Kreher W. (1990), 'Residual stresses and stored elastic energy of composites and poly-

crystals' Journal of the mechanics and physics of solids 38 (1): 115-128.

141. Kroner E., (1971) 'Statistical continuum mechanics', CISM, Courses and Lectures - No

92.

142. Lambe W.T., and Whitman R.V., 'Soil mechanics', Series in soil engineering, John Wiley,

New York, 1969.

143. Landau, D. (1943) "Hardness", The nitralloy corporation, New York.

144. Hewlett P.C., editor (1998) 'Lea's chemistry of cement and concrete' John Wiley & Sons

Inc., Ney York.

145. Le Bellego, C., (2001) 'Couplage chimie-mecanique dans les structures en beton attaquees

par l'eau: etude experimentale et analyse numerique', PhD.-Dissertation, ENS de Cachan,

France.

146. Lee, E.H., (1955). 'Stress analysis in visco-elastic bodies'. Quarterly Applied Mathematics

13, 183-190.

147. Lee, E.H., Radok, J.R.M., (1960). 'The contact problem for viscoelastic bodies'. Jounal

of Applied Mechanics 27, 438-444.

148. Leggoe JW, (2004) 'Determination ofthe elastic modulus of microscale ceramic particles

via nanoindentation' Journal of Materials Research 19 (8): 2437-2447.

468



149. Lemarchand, E., Ulm, F.-J., and Dormieux, L., (2002) 'Effect of inclusions on friction

coefficient of highly filled composite materials, Journal of Engineering Mechanics, ASCE,

Vol. 128(8), 876-884, 2002.

150. Lesko S., Lesniewska E., Nonat A., Mutin J.C., Goudonnet J.P., (2001) 'Investigation by

atomic force microscopy of forces at the origin of cement cohesion' Ultramicroscopy 86

(1-2).

151. Lewandowski J.J., Lowhaphandu P. (2002) 'Effects of hydrostatic pressure on the flow and

fracture of a bulk amorphous metal.', Philosophical Magazine A 82 (17-18): 3427-3441.

152. Li, G.Q., Zhao, Y., Pang, S.S. and Li, Y.Q., (1999) 'Effective Young's modulus estimation

of concrete", Cement & Concrete Research, 29(9), 1455-1462.

153. Li, G.Q., Zhao, Y., and Pang, S.S., (1999) 'Four-phase Sphere Modeling of Effective Bulk

Modulus of Concrete', Cement & Concrete Research, 29(6), 839-845.

154. Liu CT, Heatherly L, Easton DS, Carmichael CA, Schneibel JH, Chen CH, Wright JL, Yoo

MH, Horton JA, Inoue A (1998) 'Test environments and mechanical properties of Zr-base

bulk amorphous alloys' Metallurgical and Materials Transactions A-Physical Metallurgy

and Materials Science 29 (7): 1811-1820.

155. Li J, Chou TW, (1997) 'Elastic field of a thin-film/substrate system under an axisym-

metric loading' International Journal of Solids and Structures 34 (35-36): 4463-4478.

156. Locket F.J. (1963) 'Indentation of a rigid/plastic material by a conical indenter', Journal

of the Mechanics and Physics of Solids, 11(5), 345-355.

157. Love, A.E.H. (1939). 'Boussinesq's problem for a rigid cone'. Quart. Journal Math., 10,

161-175.

158. Lu J. and Ravichandran G. (2003) 'Pressure-dependent flow behavior of Zr 4 1.2Ti 13.8 Cu 12.5 NiioBe 22 .5

bulk metallic glass' Journal of Materials Research 18(9), 2039-2049.

159. Lund A.C., Schuh C.A. (2003) 'Yield surface of a simulated metallic glass.', Acta Mate-

rialia 51 (18): 5399-5411.

469



160. Lyamin, A.V., Sloan, S.W., (2002), 'tower bound limit analysis using non-linear pro-

gramming.' International Journal of Numerical Analysis Methods in Geomechanics, 26,

181-216.

161. Lyamin, A.V., Sloan, S.W., (2002), 'Upper bound limit analysis using linear finite el-

ements and non-linear programming.' International Journal of Numerical Methods in

Engineering, 55, 573-611.

162. Lysmer, L. (1970) 'Limit analysis of plane problems in soil mechanics.' ASCE Journal of

the soil mechanics and foundation division, 96, 1311-1334, 1970.

163. Martin B.R., Burr D.B., and Sharkey N.A., "Skeletal tissue mechanics", Springer, New

York, 1998.

164. Maso J.C., (1996) 'Intrefacial transition zone in concrete', Report 11, RILEM.

165. Matar, M. and Salengon, J. (1982). 'Capacit6 portante des fondations superficielles cir-

culaires.' Journal de Mechanique Theorique et Appliqu6e, 1(2), 237-267. Available in

English in 'Foundation Engineering, Volume 1, Soil properties-Foundation design and

construction', Presse de l'Ecole Nationale des Ponts et Chauss6es, France.

166. Mayo, M. J., Siegel, R. W., Narayanasamy, A., and Nix, A. D., (1990) 'Mechanical

properties of nanophase TiO as determined by nanoindentation', Journal of Materials

Research, 5(5), 1073-1082.

167. Mehta P.K. and Monteiro P.J.M., (1993) 'Concrete: structures, properties and materials'

Prentice Hall, 2nd edition.

168. Meschke, G., and Grasberger, S., (2003) 'Numerical modeling of coupled hygromechanical

degradation of cementitious materials', Journal of Engineering Mechanics, 129(4), 383-

392.

169. Mindess S., Young J.F., and Darwin D., (2002) ' Concrete', 2nd Edition, Prentice Hall,

Upper Saddle River, NJ, USA.

170. Micromaterials Ltd. (2002) 'Micromaterials nanotest user manual', Wrexham U.K.

*470



171. Monteiro, P.J.M., and Chang, C.T., (1995) 'The elastic moduli of calcium hydroxide',

Cement and Concrete Research, 25(8), 1605-1609.

172. Mori, T. and Tanaka, K., (1973) 'Average stress in matrix and average elastic energy of

materials with misfitting inclusions', Acta Metallurgica, 21(5), 1605-1609.

173. Moser B., (2004) Personal Communication.

174. Mossakovskii V.I. (1954) 'The fundamental mixed problem of the theory of elasticity for

a half-space with a circular line seperating the boundary conditions' Jornal of Applied

Mathematics and Mechanics 18, 187-196 (in Russian).

175. Mossakovskii V.I. (1963) 'Compression of elastic bodies under conditions of adhesion (ax-

isymmetric case)' Jornal of Applied Mathematics and Mechanics 27, 630-643 (in Russian).

176. Mukai T., Nieh T.G., Kawamura Y., Inoue A., and Higashi K., (2002) 'Dynamic response

of a Pd40Ni4OP20 bulk metallic glass in tension', Scripta Materialia, 46(1), 43-47.

177. Munro, R.G., (2000) 'Material Properties of Titanium Diboride', J. Res. Natl. Inst.

Stand. Technol. 105, 709-720 (2000)]

178. Mura, T.(1982) 'Micromechanics of Defects in Solids', Martinus Nijhoff, Publishers.

179. 'The concrete microscopy library', http://sftp.cee.uiuc.edu/research/dlange/micro/

180. Neville A.M., (1995) 'Properties of Concrete', 4th Edition, Longman Group Limited,

Essex, England.

181. Nix WD, Gao HJ (1998) 'Indentation size effects in crystalline materials: A law for strain

gradient plasticity' Journal of the Mechanics and Physics of Solids 46 (3): 411-425.

182. Nonat A., and Lecoq X., 'The structure, stochiometry and properties of C-S-H prepared

by C3S hydration under controlled solution.' in: P.Colombet, A.R. Grimmer, H. Zanni,

P.Sozzani (Eds), Nuclear Magnetic Resonance Spectroscopy of Cement Based Materials,

Springler, Berlin, 1996, 197-207.

183. Nonat A., 'The structure and stochiometry of C-S-H.' Cement and Concrete Research

34:1521-1528, 2004.

471



184. Oliver, W.C. and Pharr, G.M. (1992).- 'An improved technique for determining hard-

ness and elastic modulus using load and displacement sensing indentation experiments.'

Journal Mater. Research, 7(6), 1564-1583.

185. Oliver, W.C. and Pharr, G.M. (2004). 'Measurement of hardness and elastic modulus by

instrumented indentation: Advances in understanding and refinements to methodology.'

Journal Mater. Research, 19(1), 3-20.

186. Pann K.S., Yen T., Tang C-W, and Lin T.D., (2003), 'New strength model based on

water-cement ratio and capillary porosity' A CI Materials Journal, Technical Paper, 311-

317.

187. Parrott L.J., (1977). 'Basic creep, drying creep and shrinkage of a mature cement paste

after a heat cycle' Cement and Concrete Research, 7:597-604.

188. Pastor J. (1976) 'Application de l'analyse limite a l'etude de la stabilite des pentes et des

talus' Ph.D. Dissirtation, USMG, Grenoble, France.

189. Pellenq R.J.M., Van Damme H., (2004) 'Why does concrete set?: The nature of cohesion

forces in hardened cement-based materials' MRS Bulletin 29 (5): 319-323.

190. Perriot A, Barthel E, (2004) 'Elastic contact to a coated half-space: Effective elastic

modulus and real penetration' Journal of Materials Research, 19 (2): 600-608.

191. Pharr, G. M., Oliver, W. C. and Brotzen, F. R. (1992). 'On the generality of the rela-

tionship among contact stiffness, contact area, and elastic modulus during indentation'.

Journal Materials Research, 7(3), 613-617.

192. Plassard C, Lesniewska E, Pochard I, Nonat A., (2004) 'Investigation of the surface struc-

ture and elastic properties of calcium silicate hydrates at the nanoscale.', Ultramicroscopy

100 (3-4): 331-338.

193. Porteneuve, C. (2001) 'Characterisation des betons par resonance magnetique nucleaire:

application a 1"etude de l'alteration par l'eau' PhD thesis, Universite Paris VI, France,

(in French).

472



194. Powers T.C. and Brownyard T.L., (1948) 'Studies of the Physical Properties of Hardened

Portland Cement Paste', PCA Bulletin 22.

195. Rice, J. R., (1975) 'On the stability of dilatant hardening for saturated rock masses',

Journal of Geophysics Research, 80, 1531-1536.

196. Richardson I.G., Rodger S.A., Groves G.W., (1989) 'The porosity and pores structure of

cement paste as revealed by electron microscopy', Materials Reserach Society Symposium

Proceedings, 137:313-318.

197. Richardson I.G. and Groves G.W., (1992)'Models for the composition and structure of

calcium silicate hydrate (C-S-H) gel in hardened tricalcium silicate pastes' Cement and

Concrete Research, 22:1001-1010.

198. Richardson I.G., (1999) 'The nature of C-S-H in hardened cements' Cement and Concrete

Research, 29:1131-1147.

199. Richardson I.G., (2004) 'Tobermorite/jennite- and tobermorite/calcium hydroxide-based

models for the structure of C-S-H:applicability to hardened pastes of tricalcium silicate,3-

dicalium silicate, Portland cement, and blends of Portland cement with blast-furnace slag,

metakaolin, or silica fume.' Cement and Concrete Research, 34:1733-1777.

200. Rosler M. and Odler I., (1985) 'Investigations on the relationship between porosity, struc-

ture and strength of hydrated portland cement pastes I: Effect of porosity', Cement and

Concrete Research 15:320-330.

201. Ryshkewitch, E. (1953) 'Compression strength of porous sintered alumina and zirconia',

Journal of the American Ceramic Society, 36 (2) 65- 68.

202. Sahay S.S., Ravichandran K.S., Atri R.R., Chen B., and Rubin J., (1999), 'Evolution of

microstructure and phases in in situ processed Ti-TiB composites containing high volume

of whiskers' Journal of Materials Research 14(11) 4214-4223.

203. Saito T., Furuta T., Yamaguchi T., 'Development of low cost titanium matrix composite'

in: 'Recent advances in titanium metal matrix composites': proceedings of a symposium

held during Materials Week, (1994), in Rosemont, Illinois, edited by F.H. Froes, J. Storer.

473



204. Salengon, J. (1983) Calcul 'a la rupture et analyse limite. Presses de l'Ecole nationale des

ponts et chauss6es, Paris, France.

205. Scherer G.W. (1999), 'Structure and properties of gels', Cement and Concrete Research

29:1149-1157.

206. Schuh C.A. and Nieh T.G., (2004). 'A sfArvey of intrumented indentation studies on

metallic glasses' Journal of Materials Research 19(1), 46-57.

207. Scrivener K.L., Patell H.H., Pratt P.L., and Parrott L.J. (1985), 'Analysis of phases in

cement paste using backscattered electron images, methanol adsorption, and thermogravi-

metric analysis', Materials Reserach Society Symposium Proceedings, 85:67-76.

208. 'Construction materials: From innovation to conservation', Editors: Scrivener K. and Van

Damme H.V., MRS Bulletin, 2004

209. Sloane, N. J. A. (1998), 'Kepler's conjecture confirmed', Nature, Vol. 395, 435-436.

210. Sloan, S.W., (1988), 'Lower bound limit analysis using finite elements and linear pro-

gramming' International Journal of Numerical Analysis Methods in Geomechanics, 12,

61-77.

211. Sloan, S.W., (1988), 'A steepest edge active set algorithm for solving sparse linear pro-

gramming problems' International Journal of Numerical Analysis Methods in Geomechan-

ics, 12, 2671-2685.

212. Sloan, S.W., Kleeman, P.W., (1995), 'Upper bound limit analysis with discontinuous

velocity fields' Computational Methods in Applied 'Mechanics and Engninnering, 127, 293-

314.

213. Sneddon, 1. (1965) 'The relation between load and penetration in the axisymmetric boussi-

nesq problem for a punch of arbitrary profil , International Journal of Engineering Sci-

ence, 3:47-57.

214. Sneddon, I. editor (1977). 'Application of Integral Transforms in the Theory of Elasticity.'

Springer Verlag, Wien-New York.

474



215. Spence, D.A. (1968) 'Self similar solutions to adhesive contact problems with increamental

loading' Proceeedings of Royal Society of London A 305, 55-80.

216. Stillwell, N.A., and Tabor D. (1961), 'Elastic recovery of conical indentations', Proceedings

of Physical Society, 78 169-179.

217. Subhash G, Dowding RJ, Kecskes L. (2002) 'Characterization of uniaxial compressive

response of bulk amorphous Zr-Ti-Cu-Ni-Be alloy', Materials Science and Engineering

A-Structural Materials Properties Microstructure and Processing 334 (1-2): 33-40.

218. Suquet, P., (1997) 'Effective properties of non-linear composites' In: Suquet, P., Editor,

Continuum Micromechanics, number 377 in CISM Courses and Lectures, pages 197-264,

New York, Springer.

219. Suresh, S. and Giannakopoulos, A.E. (1998) 'Report Inst 2/98', Massachusetts Institute

of Technology.

220. Suresh, S., Giannakopoulos, A.E. and Alcala, J. (1997) 'Spherical indentation of compo-

sitionally graded materials: Theory and experiments', Acta Materialia, 45(4):1307-1321.

221. Swaddiwudhipong S, Tho KK, Liu ZS, Zeng K. (2005) 'Material characterization based

on dual indenters', International Journal of Solids and Structures 42 (1): 69-83.

222. Swadener, J. G. and Pharr, G. M., (2001). 'Indentation Modulus of Elastically Anisotropic

Half-Spaces by Cones and Parabolae of Revolution.' Philosophical Magazine A, 81, 447-

466.

223. Tabor, D. (2000) 'The hardness of metals'. Oxford classical texts in the physical sciences-

First published 1951.

224. Taplin J.H., (1959) 'A method for following the hydration reaction in Portald cement

pastes', Australian Journal of Applied Sciences, 10:329-345.

225. Taylor, H.F.W., (1984) 'Studies on the chemistry and microstructure of cement pastes'

Proceedings of British Ceramic Society, 35:65-82.

226. Taylor, H.F.W., (1997) 'Cement Chemistry', 2nd Edition, Thomas Telford, London.

475



227. Tennis, P.D. and Jennings, H.M., (2000) 'A model for two types of calcium silicate hydrate

in the microstructure of portland cement pastes', Cement and Concrete Research, 30(6),

855-863.

228. Terzaghi, K., (1925) 'Principles of soil mechanics. A summary of experimental results of

clay and sand', Eng. News Rec., 3-98.

229. Thomas J.J, Jennings H.M., and Allen A.J., (1998) 'The surface area of cement paste

as measured by neutron scattering: Evidence for two C-S-H morphologies', Cement and

Concrete Research 28(6):897-905.

230. Thomas, J.J., and Jennings, H.M., (2002) 'Effect of heat treatment on the pore struc-

ture and drying shrinkage behavior of hydrated cement paste', Journal of the American

Ceramic Society, 85 (9), 2293-2298.

231. Troczynski, T., (2004) 'Bioceramics - A concrete solution', Nature Materials 3 (1): 13-14.

232. Ulm, F.-J. and Coussy, 0. (2003). Mechanics and durability of solids. Vol. I: Solid

Mechanics. Prentice Hall, Upper Saddle River, New Jersey.

233. Ulm, F.-J., Heukamp, F.H., Germaine, J.T., (2002) 'Residual design strength of cement-

based materials for nuclear waste storage systems', Nuclear Engineering and Design, Vol.

211(1), 51-60.

234. Ulm, F.-J., (2003) 'Chemomechanics of concrete at finer scales', Materials and Structures,

Vol. 36, 426-438.

235. Ulm, F.-J., Constantinides, G. and Heukamp, F.H., (2004) 'Is concrete a poromechanics

material? - A multiscale investigation of poroelastic properties', Materials and Structures

(Special issue of Concrete Science and Engineering), Vol. 37 (265), 43-58.

236. Vaidyanathan R., Dao. M., Ravichandran G., and Suresh S., (2001). 'Study of the

mechanical deformation in bulk metallic glass through instrumented indentation' Acta

Materialia 49(18), 3781-3789.

237. Vandamme, M. and Ulm, F-J., (2005) 'Viscoelastic solutions for conical indentation'

accepted for publication in International Joafdnal of Solids and Structures.

476



238. Van Vliet, K.J., Prchlik, L., and Smith J.F. (2004), 'Direct measurement of indentation

frame compliance', Journal of Materials Research, 19(1) 325-331.

239. Velez, K.,Maximilien, S., Damidot, D., Fantozzi, G. and Sorrentino, F., (2001) 'Deter-

mination by nanoindentation of elastic modulus and hardness of pure constituents of

portland cement clinker', Cement and Concrete Research, 31 (4), 555-561.

240. Vichit-Vadakan W., and Scherer G.W., (2002) 'Measuring Permeability of Rigid Materials

by a Beam-Bending Method: III. Cement Paste', Journal American Ceramic Society

85(6), 1537-1544.

241. Wegst U.G.K. and Ashby M.F., "The mechanical efficiency of natural materials", Philo-

sophical Magazine,Vol. 84 (21), 2167-2181, July 2004.

242. Wei Y. and Hutchinson J.W (2003) 'Hardness trends in micron scale indentation' Journal

of the Mechanics and Physics of Solids, 51(11-12), 2037-2056.

243. Weitz, D.A., (2004), "Packing in the Spheres", Science, vol 303, 968-969.

244. Weisstein, E.W., 'Packing Density', From MathWorld-A Wolfram Web Resource.

http://mathworld.wolfram. com/PackingDcnsity. html

245. Williams, S.R. (1942) 'Hardness and hardness measurements', American society of metals,

Cleveland, Ohio.

246. Wittmann, F.H., (1974) 'Bestimmung physikalischer Eigenschaften des Zementsteins',

Deutscher Ausschuss fuer Stahlbeton, Heft 232, W. Ernst & Sohn, Berlin, Germany, 1-63

(in German).

247. Wittmann, F.H., (1986) 'Estimation of the modulus of elasticity of calcium hydroxide'

Cement and Concrete Research 16(6):971-972.

248. Wittmann, F.H., (1988) 'Creep and shrinkage mechanisms in concrete', In Z.P. Bazant

and F.H. Wittmann, editors, Creep & Shrinkage of Concrete, J. Wiley & Sons, New York.

249. Wright, W.J., Saha, J., and Nix W.D. (2001) 'Deformation mechanics of the Zr 4oTi14Cu12Bi 24Nijo

bulk metallic glass', Materials Transactions, 42(4):642-649.

477



250. Yang C.C., and Hunag R., (1996) 'Double inclusion model for approximate elastic moduli

of concrete material' Cement & Concrete Research, 26(1), 83-91.

251. Young, J. F., (1988) 'Investigations of calcium silicate hydrate structure using silicon-29

nuclear magnetic resonance spectroscopy', Journal of the American Ceramic Society, 71

(3), C-118-C120.

252. Yu H.Y., Sanday S.C., Rath B.B., (1990) 'The effect of substrate in the elastic properties

of films determined by the indentation test - Axisymmetric Boussinesq problem' Journal

of the Mechanics and Physics of Solids 38 (6): 745-764.

253. Zaoui, A., (2002) 'Continuum micromechanics: survey', Journal of Engineering Mechan-

ics, 128(8), 808-816.

254. Zhang ZF, Eckert J, Schultz L. (2003) 'Difference in compressive and tensile fracture

mechanisms of Zr 59 Cu 20AlioNi 8Ti3 bulk metallic gliss.' Acta Materialia 51 (4): 1167-

1179.

255. Zimmerman R.W., King M.S., and Monteiro P.J.M, (1986) 'The elastic moduli of mortar

as a porous granular material', Cement & Concrete Research, Vol. 16, 239-245.

256. Zohdi T.I., Monteiro P.J.M., and Lamour V., (2002) ' Extraction of elastic moduli from

granular compacts', International Journal of Fracture 115:L49-L54.

257. Technical Library of Lafarge: http://www.ductal-lafarge.com/

478



Appendix B

Notations

In this chapter we introduce the notations that we use throughout this thesis.

B.1 Tensor Notations

z = Vector.

a = Second order tensor.

E = Uniform second order tensor.

1 = Second order identity tensor.

Eij, -ij = Second order tensor components. i, j E {1, 3}.

C = forth order tensor.

I = Forth order identity tensor.

Cijk1 = forth order tensor components. i, j, k, 1 E {1, 3}.

'-' refers to scalar products, and single tensorial contractions.

':' refers to tensorial double contractions.

For operations on tensors written with the index notation, summation is performed on

repeated indices, i.e., aijbjk = cik.
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B.2 Average Operators

The volume average of the field quantity A(z) defined in a domain Q of volume VQ reads:

(A)Q = A(z)dQ (B.1)

The mean value of a quantity B defined in a statistical sense will be denoted by PB:

N

AB =(B.2)
i=1

where N is the number of tests.

B.3 Levels of Material Representation

For purposes of material modeling we break the cement-based microstructure representation

into four characteristic levels which are separated by at least one order of magnitude in length

scale.

" Level 0: This is the atomic scale level characterizing the crystal structure of individual

components composing the heterogeneous material. In the case of the C-S-H, this is

the level were the crystal structure characterizes the response of the individual particles.

Homogenization of colloidal particles with porosity yields estimates of the two types of

C-S-H.

" Level I: This is the level where the individual colloidal particles agglomerate to form two

distinct types of C-S-H. Homogenization of this level yields the C-S-H matrix.

" Level II: This is the level where the C-S-H matrix accommodates the capillary pores and

residues of unhydrated cement. Homogenization of this level yields properties of cement

paste.

" Level II: This is the level were cement p'aste is reinforced by sand or aggregates. Homog-

enization of this level yields mortar or concrete.
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Appendix C

Eshelby's Solution

Eshelby in a series of papers (see Ref. [80] and citations in Ref. [178]) set the foundations for

what is now known as micromechanics. An ellipsoidal inclusion is considered in an isotropic

infinite body subjected to a uniform strain at infinity. It is remarkable to see that his solutions

suggests that the strain and stress fields inside the inclusion are uniform. Through his analysis

he managed to link microscopic strains within the inclusion, ep, with macroscopic strains applied

in the boundary, E0 , in the form':

= [i + PO : (CP - C)] : E (C.1)

where I, 'ijkl = 1/2 (OikOjI + hjtokj), is the fourth-order unity tensor, Jij is the Kronecker delta,

C, is the stiffness of the inclusion, and C0 the one of the matrix. The fourth order tensor,

P0 , defined by Eshelby characterizing the interaction between the inclusion and the matrix.

depends on the shape of the inclusion, and on the stiffness properties of the matrix, and can

be obtained from the matrix Green's function GO:

p,ijkl _- (2 Go k(z - Z)dV oxaxi (C.2)
\JV / (ij)(kl)

'Expressions for the solution are different for points inside the inclusion and points outside. For pur-
poses of micromechanical analysis we are particularly interested in the strain and energy stored within the
inclusion/inhomogeneity.
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where (ij) (kl) stands for the symmetrization with respect to (ij) and (kl). The Green's function

G - z') expresses the displacement at point z in the direction i in a linear elastic solid of

stiffness C0 subjected to a unit force 6(z - Z') applied in direction k at point z'. 6(z - Z') is

such that 6(0) = oo, 6(z # z') = 0 and fv 6(i - Z)d(z) = 1. The analytical expressions of

tensor P and the Eshelby tensor are defined by:

S = P : C0'- 1  (C.3)

where C,--1 is the inverse of the matrix stiffness tensor. Analytical forms of PO and So were

given for ellipsoidal inhomogeneities lying in an isotropic medium subjected to homogeneous

boundary conditions at infinity (see Eshelby, 1957 [80], and Mura, 1982 [178]):

Sijkl = Sikl = Sijik (C.4)

3 1 - 2v
S -1 = a2i1 + = 2222  (C.5)

8ir(1 - v) 87r(1 - v)

S1122 = a 2I1 2 + 1- 2v = S2211
8ir(1 - V) 8ir(1 - v)

S1133 - I1 a2 13 + 1 - 2v
87r( V) 3 +87r(1 - v)

1 1- 2v
S3311 = 13 + - 13 S3322

87(1- v) 87r(1 - v)
1 1 - 2v.

S1212  = 87r(1 - v) 112 167r(1 - v)(I1 ±12)

a2 + a2 1 - 2v
S2323 = 2 113 + T-- (11 +1I3)

167r (1 - v) 16 (1 - v)

The integrals in (C.5) are expressed in their elliptical form and for al > O2 > a3,

11 = 47raia2a3 )c2 {F (0, k) - E (9, k)}, (C.6)

13 = 47raia 2a3  a2 (al -C / - E (0, k)
a 2 ) (a2 - C,2)1/2 aia3
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Figure C-1: Geometrical characterstics of particles for which the ellipsoidal shape considered

in eshelby's solution can converge. The general mathematical expression of ellipsoid yield the

spheroid and oblate spheroid for two special cases. Other limiting geometrical cases of interest

are also possible.

where

( 2dw , W)1/ E ( , =
( -k2sin2

(1 k2 sin2w)1/ 2 dw
, 0

0 = sin- 1 ( 2a 1/2 (2 - a2) 1/2
a2 k = 2

The integrals of Eq. (C.6) become elementary functions for special shapes of inclusions. The

ellipsoidal shape can take several convenient forms for specific limited cases (prolate spheroid,

oblate spheroid, cylinder, sphere). The spherical one which is of interest is detailed below:
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* Sphere (ai = a 2 = a3 = a): In the case of a spherical inclusion embedded in an isotropic

matrix the elliptical integrals and the Eshelby tensor reduce to:

47r
I1 =-12 = 13 =3

Il = 122 = 133 12 = I23 = 31 = a2

S1111

S11 2 2

S1212

7- 5v
2 = S3= 15(1 - v)

= S2233 = S 3 3 1 1

= S2323 = S3131

=1133 = S221 = S3322= 15(1 - v)
4 - 5v

15(1 - v)

In tensorial format the Eshelby solution for spherical articles reads:

sEsh = s + 3estK

(C.8)

(C.9)

(C.10)

(C.11)

(C.12)

with

est 3koao =k -g
3ko + 4go'

est 6 (ko + 2go)
5 (3ko + 4go)

In this case, the localization tensors presented in Section 7.1.2 reduces to2

(A(x))v = A 'J+ A dK (C.14)

in which the volumetric, AV, and deviatoric, Ad, strain localization coefficients are estimated

2 We recall that Jijkl=1/3 (
6

i3
6

kl) and K = R- J are the spherical and deviatoric projections of the forth order
identity tensor Iijkl = '(6ikj1 + 6

Ji
5ik), and Jj is the Kronecker delta.
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eat (kr

+ a3s (--

+" --s L

r
1 [Zfr

)[E fr

1+ aest

1+ est

L- -1k
ko

g--
-go

For Mori-Tanaka estimates we let ko = kM and go = gM whereas for Self-Consistent estimates

we let ko = khom and go = ghom in (C-13), (C.15) and (C.16). For purpose of clarity we illustrate

the approach in the case of a solid matrix of elastic properties (k., gs) and a certain fraction of

pore spaces, 0. The homogenized properties are:

khom k,(1 - b)ksAsest (C.17a)

ghom = (1 - O)g 89A"'*es (C. 17b)

where A'st, A '***

localization factors,

are given by (C.15) and (C.16). Using a Mori-Tanaka estimate of the

the homogenized bulk and shear properties reduce to:

(I -a MT) (I ks

(1 - aMT + aMTO)

(1 -3 M T )(I_) gs
(1 - MT ± 3 MTo) I

MT 3ks
3ks + 4gs

MT_ 6 (ks + 2gs)
5 (3ks + 4gs)

Similarly, using a self-consistent estimate of the localization factors relations in Eq. (C.17) now

give:

khom

9hom

(1 - ) ks . sc _ 3khom

1 + aSC (ks - khom) /khom 3khom + 4gs

( )01- _ ) . SC= 6 (khom + 29hom)
(1 -,8 + 13) ' 5 (3khom + 49hom)

(C.20)

(C.21)

It is interesting to observe that the homogenized bulk and shear moduli estimated by both

localization schemes are coupled as both localization coefficients depend on k and g accordingly.

485

by:

A,est

Adest

= (i

= (i
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Appendix D

Experimental Validation of Grid

Indentation

This chapter is devoted to a further validation of the grid indentation approach proposed in

Chapter 5. To this end, we investigate a series of discontinuously reinforced titanium alloys

containing titanium boride (TiB) whiskers in different distributions. The microstructural details

and volume fractions of the different phases have been studied in detail in Refs. [202] and [9],

respectively.

D.1 Materials and methods

D.1.1 Specimen preparation

In situ Ti-TiB composite plates with various volume fractions of TiB (see Tab. D.1) reinforce-

ments were fabricated by hot pressing Ti and TiB2 powders. The specimens were fabricated in

the Department of Metallurgy, University of U1ah, by the group of Prof. RaviChandran and

delivered polished to M.I.T. Details of the specimen preparation and microstructural investiga-

tions are presented in Refs. [202] and [9].
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Powder Mixture Composite

[%] [%]
Ti/TiB2  Ti TiB TiB2

1.000/0.000 1.00 0.00 0.00
0.882/0.118 0.70 0.30 0.00
0.763/0.237 0.45 0.55 0.00
0.526/0.474 0.08 0.86 0.06

Table D. 1: Volumetric proportions of power mixture and resulting composite solid composition.

D.1.2 Indentation parameters

We have suggested in Section 5.1.2 that the elastic properties of the individual components can

be accessed by indentation experiments with maximum indentation depths hmax/D ; 1/10,

where D stands for the characteristic size of individual phases or microstructural elements:

do << hmax < D/10. (D.1)

Hence, in order to obtain the properties of Ti and TiB, do and D represent the character-

istic sizes of respectively the heterogeneity within Ti and TiB, and D the microstructure of

TiB. The crystalline nature of titanium and titanium boride imply do on the order the lat-

tice parameters of the underlying crystal structures (Angstroms). Certainly, the characteristic

size of the microstructure D is more difficult to estimate, as the size and shape of the TiB

whiskers depend directly on initial composition and heat treatment (temperature, duration,

etc.). Scanning electron microscopy images of Ti-TiB [202],[103] suggest that a length scale

of D, - 1 - 3 tim is characteristic of the TiB whiskers; we adopt this limit herein. Hence, an

appropriate indentation depth that allows access to the Ti and TiB phases by nanoindentation

is:

hmax e [100, 300] nm (D.2)

In the case of 45Ti-55TiB specimen, the TiB whiskers exhibited a refined morphology and the

indentation depth was reduced further to access the individual constituents, hmax es 40 nm.For

smaller depths, issues related to imperfect geometry at the indenter apex may become significant

(see Section 2.2.3 and Ref. [86]), and for larger depths the "substrate effect" related to the

proximity of other phases will prohibit access to intrinsic properties of the TiB (see Section
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10OTi 70Ti-3OTiB 45Ti-55TiB 8Ti-86TiB-6TiB 2

# 1 x 100 2 x 100 2 x 100 2 x 100

P*ax [pN] 3,481 ± 2 3,484 ± 2 493 ± 2 3,995 ± 1
hmax [nm] 179 18 137 33 40 11 89 8

S [pN/ nm] 79.94 ± 10.38 81.69 i 55.82 47.11 ± 5.52 142.25 t 7.36
rL/TH/rU [s] 10/5/10 10/5/10 10/5/10 10/5/10

Table D.2: Experimental program and mean ± standard deviation of indentation results: (*)
The deviation of the maximum force from the applied number is due to the spring force cor-
rection (see [124]).

5.1.2). We should emphasize, however, that Eq. (D.1) is only satisfied in an average sense,

and that the presence of experiments within a massive array that violate these conditions is

inevitable. For instance, the length and width of TiB whiskers has been determined previously

to vary within a specimen, with a fraction of the whisker population exhibiting widths D < 1

pm [103]. The error induced by indentation on such phases that do not satisfy Eq. (D.1) is

expected to be random in nature, and should be captured by the statistical analysis method

(see Section 5.2.2).

Finally, we must relate the target indentation depths to the massive array of identical

experiments (or grid indentation) conducted on a highly heterogeneous material (see Fig. 5-

6). A convenient way to achieve on-average indentation depths of the magnitude specified

by Eq. (D.2) is to employ a series of load-controlled indentation experiments. This requires

some experimental iteration. For the present material system, we found that a maximum load

of Pmax = 3, 500fpN yields an average maximum indentation depth of hmax E [80, 170] nm.

Experiments were conducted using the Hysitron, Triboindenter described in Section 3.1. In all

indentation experiments within an array, a trapezoidal load history was prescribed, defined by

a loading segment duration rL = 10 s, a holding period at Pmax of TH = 5 s, and an unloading

segment duration 'ru = 10 s. In addition, a holding period of 10 s subsequent to the initiation

of contact facilitated correction for thermal drift within the load train of the instrumented

indenter. Table D.2 summarizes the details of the experimental program.
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Figure D-1: Typical P - h curves of indentations on Ti and TiB. Indents span within this range

depending on the degree of ineteraction between the two phases.

D.2 Indentation Results and Statistical analysis

Indentation results were analyzed both individually and globally according to the procedure

described in Chapter 5: An individual test gives access to mechanical information of the in-

dented region, and a series of tests describes the composite material behavior. Typical load -

depth (P - h) responses for indentation on the two phases (Ti and TiB) are illustrated in Fig.

D-1. The complete set of indentations varied in terms of the maximum indentation depths all

across the region defined by these two extreme scenarios, depending on the degree of interac-

tion between the two phases. The majority of the responses, however, were centered around

these two mean values. This will be further exemplified through the statistical analysis of the

indentation moduli presented below. Individual tests were analyzed based on the methodology

presented by Oliver and Pharr [184], also outlined in Section 2.5. Scanning probe microscopy

images of residual indentations (Fig. D-2) demonstrate that there is no visible pile-up in the

Berkovich indentation of the Ti-TiB composites, suggesting that the Oliver and Pharr method

would yield reliable estimates of the area of contact. The large amount of analyzed indentation
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400 nm

(a) (b)

Figure D-2: An atomic resolution scanning probe microcopy image of a residual indent on a

Ti-TiB-TiB 2 specimen in a gradient (a) and three-dimensional (b) mode.

data was then treated in a statistical fashion:

D.2.1 Mechanical Response Distributions

Mechanical response distributions represented as frequency plots are used to analyze indentation

data on a composite material. For small indentation depths, h << D, such plots give rise

to multimode distributions, each peak corresponding to the mechanical manifestation of a

phase1 . In order to extract elastic properties of the relevant phases, the deconvolution technique

presented in Section 5.2.2 is employed. For indentation depths much greater than the largest

characteristic length scale of heterogeneities, h >> D, the mechanically distinct phases tend

towards a single peak value, which is the mechanical manifestation of the composite material

(here Ti-TiB alloys).

Figure D-3(a) shows the distribution of indentation modulus on a pure titanium matrix,

10OTi. In this case, n = 1 and the data can be fitted by a normal distribution of the form

(5.9), where the mean value and the standard deviation are MiooT = 134 ± 5 GPa (see Eq.

'In the case of nanoindentation on Ti-TiB systems, the mechanical phases coincide with a chemical phase.

Such a scenario provides a direct link between physical chemistry and mechanics.
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(5.10)). The resulting frequency plot shows a relatively small scatter and high repeatability,

underscoring the microstructural and mechanical homogeneity of this elemental matrix and

the robustness of the indentation experiments and analysis. Figures D-3(b)-(d) depict the

frequency plots of M for three Ti-TiB alloys; 70Ti-3OTiB (n = 2), 46Ti-54TiB (n = 2), 8Ti-

86TiB-6TiB 2 (n = 3). It is evident from the results that a second peak increases in intensity as

the boron content increases, indicating the presence of a new phase, TiB. In the case of 8Ti-

86TiB-6TiB 2 a small percentage of residual, unreacted TiB2 remained in the matrix. This was

detected by our indentation results and is manifested as a peak in the frequency plot of Fig. D-

3(d) with an indentation modulus of: MTiB2 = 394 ± 13. The extracted indentation moduli and

volumetric proportions of the different phases are summarized in Tab. D.3. In order to quantify

the effect of the phases surrounding the RVE of indentation on the calculated M of each phase,

we will use as reference for MTi and MTiB the results obtained on 100% Ti and Ti-86TiB-6TiB 2

specimens accordingly. The indentation moduli obtained for Ti and TiB in the two intermediate-

volume specimens, Ti-30%TiB (MTi = 144 ± 12 GPa, MTiB = 330 ± 147 GPa) and Ti-54%TiB

(MTi = 141 ± 10 GPa, MTiB = 280 ± 70 GPa) are within 10 % of the independently measured

values reported in the literature (MTi = 134 ± 5 GPa) and MTi-86TiB-6TiB2 = 306 ± 22 GPa).

This is in line with the restrictions posed by finite element calculations for the specific choice

of indentation depth (see Fig. 5-2). Furthermore, this agreement with independent measures

or computationally simulated estimates of M for these phases supports the accuracy of the

current approach in composite analysis. That is, given a careful choice of the indentation depth

and a large number of well-designed indentation experiments, the intrinsic elastic properties of

individual phases can be extracted. This is a consequence of the choice of the indentation depth

h, which was deliberately chosen to be small enough compared to the characteristic length of the

heterogeneities D, such that an indentation test that is situated on an inclusion phase satisfies

the h/D << 1.

The relatively high standard deviation observed for the TiB phase should be noted. This is

a consequence of the "substrate effect" due to proximity of non-TiB phases in close proximity

to the RVE that includes TiB. It is in fact evident from Fig. 5-2 that this hard-on-soft

material scenario is more vulnerable to proximity effects than the reverse case. Since the whisker

width varies significantly, the condition h/D << 1 is likely violated in a significant number of
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Figure D-3: Frequency plots of the indentation

30TiB, 45Ti-55TiB, and 8Ti-86TiB-6TiB 2-

modulus for the four specimens: 10OTi, 70Ti-

492

(a)

C

LL

(C)

C

U-

LA 
A A i V

1.0%-

0.5%-



Indentation Modulus, M Volume Fraction, f
[GPa] _ _ [%]

Ti TiB TiB 2  Ti TiB] TiB2

10OTi 134±5 - - 100 0 0

70Ti-3OTiB 144± 12 330± 147 - 74 26 0
46Ti-54TiB 141 10 280 70 - 44 56 0

8Ti-86TiB-6TiB 2  136 ± 15 306 ± 22 394 ± 13 5 92 3

Table D.3: Indentation Moduli and Volumetric Proportions of the different phases (Ti and TIB)

obtained from the deconvolution of the experimentally obtained frequency plots.

individual experiments within the massive array. In principle, this experimental obstacle could

be overcome by further reducing the maximum indentation depth, but was beyond the limits

of the current experimental capabilities due to geometric imperfections at the indenter apex for

h < 40nm. The proximity effect is also demonstrated by the decrease in the standard deviation

with increasing volumetric proportions of TiB. It has been shown that the characteristic size

of the TiB, D, increases with increasing volumetric proportions of the phase [9], and thus the

condition h/D is better satisfied as fliB increases.

D.2.2 Volumetric proportions

The volumetric proportions of the two phases Ti and TiB have been measured previously in Ref.

[9] by quantitative X-ray diffraction analysis and are reported in Tab. D.1. These values are

to be compared with the volumetric proportions estimated from the deconvolution procedure

of the cumulative frequency plot (see Section 5.2.2 and Eq. (5.11)). The resulting values after

deconvolution of the four alloys are provided in Tab. D.3, and demonstrate the capacity of

massive array indentation to quantify the relative presence of different phases. Importantly,

herein these volume fractions are determined not by the differential chemical composition of

these phases, but by the differential mechanical properties of these phases. It should be noted

that this criterion immediately implies that the volume fractions estimated by the indentation

approach increase in accuracy as the mechanical dissimilarity between any two phases increases.
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D.2.3 Mechanical Mapping of Microstructure

Instrumented indentation facilitates controlled spatial distribution among indents in patterns

such as regularly spaced arrays. In the nanoindentation arrays employed herein, a square grid

of 10 ptm inter-indentation spacing was chosen. The analysis of each indentation P - h response

provides information about the mechanical properties such as M at each array coordinate (x, y).

These properties are, strictly speaking, representative of a material domain of characteristic

length scale max(h, a) that defines the R.E.V. Hence, provided that the array spacing is larger

than the characteristic length scale of the material sampled in each experiment, mapping of the

properties over the grid region indicates the morphological arrangement of the phases comprising

the microstructure. This is a second result of the proposed grid indentation approach. A

convenient and simple way to generate these maps is by transforming the discrete data system

into a continuous distribution of mechanical properties by linearly interpolating the grid point

values over the grid region. The result of this mapping can be displayed as contour plots in plan

view (see Fig. D-4). Such a contour depiction of mechanical properties requires the selection

of minima-maxima limits between different phases. As the frequency plots in Figs. D-3(b) to

(d) show, there is some overlap in the distribution between different phases, which complicates

the definition of clear boundaries between phases. As a first order approach we choose equal

size domains centered around the mean values of each phase:

1. 0 - 200 GPa: Values situated in this range are associated with regions for which the

mechanical response is dominated by the titanium matrix.

2. 200 - 400 GPa: Values situated in this range are contained within the second peak in

the frequency plots of Figs. D-3(b) to (d), and are associated with regions in which the

mechanical response is dominated by the TiB whiskers.

Figure D-4 shows plan views of contour plots of the indentation modulus for the Ti-30%TiB

specimen. An SEM image from Ref. [9] is also shown in Fig. D-4, and demonstrates the corre-

lation of these mechanical maps with electron microscopy images of the microstructure. Hence,

the mechanical maps provide a means to characterize the morphology of the microstructure at

the scale defined by the chosen indentation depth, and enables visualization of the mechanically

distinct features. In particular, for the Ti-TiB composite, the contour plots provide a snapshot
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Figure D-4: Mechanical mapping of the indentation results on 70Ti-3OTiB (b-c) as compared

with an SEM image (a) of an etched mirostucture at a similar magnification. 1 = Titanium

(Ti), 2 = Titanium monoboride (TiB)

of the formation process of the composite: TiB whiskers and particles are embedded in a per-

colated matrix of Ti (see Fig. D-4). The morphological characterization of the microstructure

provided by this mechanical mapping completes the characterization of the properties and mor-

phological arrangement in space. As it will be further discussed in Section D.3.2, these data is

a piece of the puzzle for the development of micromechanical models for upscaling of composite

mechanical performance.

D.3 Elastic properties of Ti, TiB, and TiB2

The indentation moduli M determined from the grid indentation experiments for the Ti, TiB,

and TiB 2 phases are insensitive to spatial location, number of experiments, and specimen prepa-

ration procedure. The extracted values can therefore be considered as mechanical properties

characteristic of each phase. To further investigate the intrinsic nature of these properties,

we compare our results with values reported in the literature. Since the TiB phase cannot be

reproduced in macroscale physical dimensions, data on the elastic constants of this phase are
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scarce. In fact, the only information regarding E of this phase is provided by atomistic simu-

lations [103] or by extrapolating macroscopic experiments on composites comprising different

volumetric proportions of TiB, fTiB, to fTiB = 1 [9].

D.3.1 Elastic Modulus in Terms of M

The indentation moduli can be converted to the elastic properties of the individual phases

by considering Eq. (2.68) and assuming a Poisson's ratio for each phase. It is interesting to

decompose the effect of the indenter deformation and the Poisson's effect on the magnitude of

E calculated from a given M. To this end, we start by calculating the material plane-stress

elastic modulus M, which does not include any assumption on the Poisson's ratio. Figure D-5

shows the contribution of the indenter deformation on the elastic properties extracted thereby.

The horizontal axis corresponds to the measured (composite) M which implicitly includes the

deformation of the indenter, and the vertical axis quantifies the effect of indenter deformation

on M, calculated as a function of M for a given indenter stiffness. It is impressive to note

that as the stiffness of the indented material increases, the indenter deformation becomes more

significant and should be accounted in our analysis. In the following calculations, we will rely

on the Hertz solution of the contact between two isotropic solids of Eq. (2.68), and the isotropic

assumption of the diamond indenter suggested by ISO [127].

Given the plain-stress elastic modulus of the indented material, the Young's or uniaxial

elastic modulus, E, = M, x (1 - v 2 ) can be determined, provided a reasonable estimate of the

Poisson's ratio. However, it is not necessary to know the value of the Poisson's ratio with great

precision to obtain a reasonable estimate of the Young's modulus. In fact, a Poisson's ratio of

0.1 - 0.4, representative of the range including most engineering metals and ceramics, induces

an error on E of less than 10%. Assuming a value of v = 0.32 [81], 0.16 [9], 0.17 [177] for Ti ,

496



0-

0
.- a

0

Ca)

90

80

70

60

50

40

30

20

10

0

0 100 200 300 400 500 600

Indentation Modulus, M [GPa]

Figure D-5: Error induced by the deformation of the indenter, defined as (M, - M) /M x 100.
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TiB, and TiB2 , respectively, the elastic moduli of the three phases can be calculated:

M Ms (Ms - M)/Ms Es

[GPa] [GPa] [%] [GPa]

M= 140 159 14 138 Ti

305 416 36 406 TiB

394 600 52 585 TiB 2

The elastic moduli of Ti and TiB (ETi = 138 GPa, ETiB2 = 585 GPa) are in excellent

agreement with macroscopic properties reported in the literature: Eit = 110 - 120 GPa [81],

EiB2 = 565 GPa [177]. The elastic properties of the TiB, however, remain a matter of current

debate. This material exhibits crystalline anisotropy (orthotropic unit cell), but the 9 elastic

constants required to describe the stiffness tensor have never been measured experimentally, due

chiefly to the inability to prepare appropriate samples. Estimates of ETiB that assume isotropic

behavior vary widely (E = 232 - 622 GPa). A value of ElJt =371 GPa was suggested

from inverse analysis of the composite elastic modulus [9], whereas a value of Elit - 485 GPa

was estimated from ab-initio atomistic simulations [103]. Some estimates from indentation

experiments have also been reported [103], but the experimental scatter was quite significant.

Thus, validation of the magnitude of ETiB obtained herein by recourse to existing data is

difficult.

D.3.2 Micromechanical Modeling and Macroscopic Composite Behavior

To investigate the accuracy of our extracted ETB, we will use Ex = 406 GPa as input

in a composite model that predicts the macroscopic (homogenized) response, and compare

this prediction with reported macroscopic data. The Ti-TiB composite can be conveniently

modeled with the Mori-Tanaka micromechanical scheme, which is suitably applied for matrix-

inclusion geometries [172] (see Section 7.1.2). In the case of a titanium matrix with isotropic

spherical inclusions of TiB, the Mori-Tanaka scheme yields the following homogenized response
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(Khom, Ghom):

Khom = KTj ± (KTiB - KTi)fTiB

1+ a (1 - f ( B -

Ghom = GTi + (GTiB - GTi)fTiB (D.4)
1+ b (1 - fTiB) ( -1)

where KTj and KTiB) are the bulk modulus of the titanium matrix and TiB inclusion, respec-

tively, and GTi and GTiB are the shear modulus of the titanium matrix and titanium boride

inclusion, respectively. The variables a and b in Eqs. (D.3) and (D.4) are stated as:

3KTi 6 KToi+2GTi
a = -Kj b = 6-~ +2~ (D.5)

3KTj + 4GTo' 5 3KTi + 4GTi

Equations (D.3) and (D.4) simplify the elongated whisker morphology of the titanium composite

by equivalent isotropic spheres. It has been found however that, given the random orientation

of the fibers in the matrix, the experimentally observed isotropic behavior of a macroscopic

composite can be well approximated by a spherical assumption [541,[9]. Finally, given the

homogenized values of the bulk and shear moduli, the Young's modulus and the Poisson's ratio

can be calculated using standard relations of elasticity theory:

Ehom = (9KhomGhom) / (3Khom + Ghom); 1 hom = (3Khom - 2Ghom) / (6Khom + 2 Ghom)

(D.6)

The mean elastic values of titanium boride (ETiB = 406 GPa, VTiB = 0.16) and volumetric

proportions thereof, as extracted from the indentation analysis (see Tab. D.3), are incorporated

in Eqs. (D.3)-(D.4) to calculate the micromechanical predictions of E for a series of fTiB. The

micromechanical predictions of the E and G, together with experimental data found in the

literature (Refs. [9],[103],[81]), are reported in Fig. D-6. The accuracy of the predictions

validates the extracted elastic modulus of the TiB phase, as well as the use of the Mori-Tanaka

scheme to capture the strain localization within TiB inclusions.

This verification of ETiB completes the validation of the proposed massive array or grid

indentation approach. This methodology is of particular importance for materials for which

the properties of constituent phases are measurable only in situ. As such, grid indentation rep-

499



resents the only currently available approach for measuring the intrinsic mechanical properties

of phases as required for micromechanical modeling of composite response. Application of this

approach to cementitious composite is detailed in Chapters 5 and 6.
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Micromechanical Predictions
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Figure D-6: Experimental data and micromechanical predictions of composite modulus versus

the volume fractions of the reinforcing TiB. Source of Macroscopic data: Resosnance Frequency,

[9]; Uniaxial Tension, [9]; 3 Point Bending, [103].
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Appendix E

Packing of Monosize Spheres

This chapter gives a short overview of the extensive literature on the packing of particles. We

restrict ourselves to the simplest geometrical representation of three dimensional geometries,

the sphere, returning to geometries issues at the end-of our discussion. The presentation given

below follows in parts the short reviews given in [243] and [19].

E.1 Random Close Packing

Packing of particles has been of great interest for shippers, packagers, merchants, grocery stores,

and more recently physicists, mathematicians and materials scientists. There is a broad range of

problems that involve the geometrical arrangement in space of discrete three dimensional parti-

cles, ranging from atomic structure of solid materials to packaging of oranges and candies. Even

though the problem might seem trivial our understanding is limited to the simple geometrical

case of sphere. It is commonly accepted by researchers in the field that, given enough stirring

and shaking, a random collection of particles will always settle to a maximum packing density

of, o ~_ 0.64, a state known as Random Close Packing (RCP). This is the highest volumetric

solid fraction that spheres can pack while retaining a random configuration. The definition of

random configuration is ill-defined and is currently the topic of intense research. In the RCP

state all particles are jammed in space and cannot move under gravity. The RCP state has

been verified by several researchers experimentally and by numerical simulations using several

different algorithms, all yielding the same value p ~ 0.64 (see refs in [243]). While this value
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was long believed to be universal, there are no analytical derivations to this problem. The RCP

is not the only packing arrangement that solid spheres can achieve and two more packing states

that are of extreme interest for our work will be discussed below.

E.2 Face Centered Cubic Packing

Scientists and researchers have long been concluded that the most efficient way to put particles

in packages in not to randomly throw them in cases but rather to pack them in order in a non-

random way. In fact if we take a jar of randomly distributed candies and start shaking it hard,

allowing particles to loose contact slightly and rearrange themselves in space, '...then they begin

to order, forming layers of spheres packed in a hexagonal lattice, with each layer nested in the

hollows formed by the layer beneath it.' cited from [243]. This kind of arrangement corresponds

to the crystalline structure taken by the atoms in many metals, and forms the highest volume

fraction packing of spheres, with e ~, 0.74. An analytical derivation of this problem, also

known as Kepler's conjecture became only recmntly available and the FCC packing can now be

considered as a well established fact, e = 7r/Vi8= 0.74048.

E.3 Random Loose Packing

Another important configuration that spheres can achieve when they are gently packed, is

an arrangement even looser than the.RCP. Such a scenario can be obtained when particles

precipitate from a fluid suspension where gravitational forces are minimal. Particles have been

reported to have densities as low as o ~ 0.56. Such an arrangement is called the Random

Loose Packing (RLP) and corresponds to the loosest mechanically stable arrangement that an

agglomerate network can exist. However as it was reported by Weitz [243], this form of packing

is somewhat controversial and a consensus on an absolute values does not exist!

So far we have been discussing the packing arrangement of spheres which is the simplest geo-

metrical representation and the one used in the colloidal model for the C-S-H employed in this

thesis [130]. However other geometrical shapes can significantly change the packing arrange-

ments reported above and their link with cementitious materials may require reinterpretation

once a definite shape is reported for the single C-S-H colloidal particle.
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Appendix F

Micromechanical Estimates of C-S-H

Cohesion

Level '0' is the scale where the C-S-H particles form porous spaces of varying proportions (LD

and HD C-S-H). The cohesion and angle of friction of such systems was experimentally obtained

with the dual indentation technique (see Chapter 2). An estimate of the C-S-H solid cohesion

was given using an interpolation to zero porosity values. We attempt in this section to provide

a better estimate of the C-S-H cohesion based on micromechanical modeling.

F.1 Von-Mises Assumption

It is unclear a priori whether the C-S-H solid exhibits a cohesive-frictional behavior of the

Drucker-Prager type or whether it can be considered Es a crystalline solid following Von-Mises

yield criterion. We here make the assumption that the material follows a Von-Mises yield

criterion of the form:

j2 - k 2 < 0 (F.1)

In such a case the secant formulation of the nonlinear problem for large deviatoric strains yields:

Following the same procedure as in Section 11.3.3 one can calculate the homogenized yield
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envelope [13]:

1 (Zm 2  1 ( 2
-)+ (-- (F.3)

71 (E 2 () C

where F1 (q) and F 2 (#) are defined in Eq. (11.44) [75]. In the case of a Mori-Tanaka and

Self-consistent estimates of the localization relations we have:

MT Estimate (1- #)2 c2 + (F.4)

SC Estimate (1 - 20) (1 - #) c2 ( 2 + 1 - ) E2 (F.5)
4 (1-0#) m3 d

The two surfaces are elliptic in nature and closed on the hydrostatic axis which is different from

the assumption we made in evaluating the LD and HD C-S-H in Section 10.1.2. In order to get

an estimate however of the C-S-H solid strength we make the two criteria match for uniaxial

compressive strength. In fact the uniaxial compressive strength of the two yield envelopes can

be calculated by substituting Ed = Ec//3, Em = E,/3 in Eqs. (F.4) and (F.5):

MT Estimate Ec/c = V36 (1 - #)2 / (12 + 114) (F.6)

SC Estimate Ec/c = 36 (1 - 2q) (1 - #) 2 / (4 2 - 90+ 7) (F.7)

The LD and HD C-S-H phases have an intrinsic porosity of OLD = 37.3% and 4 HD = 23.7%

which yield for the Von-Mises model with porosity a uniaxial compression to cohesion ratio of:

e[c/c]LD = 0.69 <==, C, = 137 MPa E. = 237 MPa
MT Estimate I (F.8)

[YE/c]HD = 1.10 <-> c, = 204 MPa E, = 353 MPa

SC Estimate [ZC/c]LD = 0.69 c, = 138 MPa E, = 240 MPa (F.9)
[Ec/c]HD = 1.10 <-> c, = 166 MPa E, = 287 MPa

The two values (for the Self-consistent scheme) differ by 17% further enforcing what was earlier

suggested, that the nature of the bonding between C-S-H particles is the same for both LD and

HD C-S-H. What appears to differ between the two phases is their internal porosity (or packing
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density) which in turn defines the number of bonds (or bond sites) in the agglomerate network.

F.2 Drucker-Prager Assumption

In this section we assume that the C-S-H solid phase is characterized by a Drucker-Prager

criterion of the form (11.35). We will be using the uniaxial compression estimates for the two

types of C-S-H in an attempt to get an estimate of the cohesive-frictional properties of the C-S-

H solid phase. In particular we pay special attention to the pressure dependency coefficient in

attempt to evaluate whether the C-S-H solid at the scale of a few nanometers can be regarded

as a pressure dependent material. The uniaxial compression of porous Drucker-Prager matrix

is given by (11.59):

62p 2 (1 _ )2 ( 2 2 Z 2  1 "F+O
0 ~ -- - 3' + F2( (F.10a)

1 -q- 62Y 1 () 3 ~m) 1j() -(1i-q ) 3 2 (4) \a

EC =2 6 (F.10b)

771() ~ (1-0)

We intend to calculate the cohesive-frictional behavior of the solid matrix by evaluating the

yield criterion (F.10) for the two types of C-S-H at their uniaxial compression points:

ELD = 128 OLD = 37.3% (F.11)

EHD = 244 OHD = 23.7%

and solve the system for the two unknowns (6, p):

MT Estimate J = 0.0005 ;p = 46, 667MPa (F.12)

SC Estimate J = 1.6 x 10- 5 ; p = 46, 667MPa (F.13)

The problem had to be solved using the solver function in Excel. It is interesting to note that

the solutions were converging towards very small values of 3 suggesting that the C-S-H phase at

the nanometer scale has limited pressure dependency. A more detailed investigation is required

to test this hypothesis. For the moment being, the above observation comes to suggest that a
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pressure independent criterion like Von-Mises better describes the C-S-H solid phase. Strength

properties estimated using the Von-Mises assumption are therefore retained.
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