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Abstract

In this thesis, we use a semidefinite relaxation based branch-and-bound method
to solve nonconvex quadratic programming problems. Firstly, we show an inter-
val branch-and-bound method to calculate the bounds for the minimum of bounded
polynomials. Then we demonstrate four SDP relaxation methods to solve nonconvex
Box constrained Quadratic Programming (BoxQP) problems and the comparison of
the four methods. For some lower dimensional problems, SDP relaxation methods can
achieve tight bounds for the BoxQP problem; whereas for higher dimensional cases

(more than 20 dimensions), the bounds achieved by the four Semidefinite program-
ming (SDP) relaxation methods are always loose. To achieve tight bounds for higher
dimensional BoxQP problems, we combine the branch-and-bound method and SDP
relaxation method to develop an SDP relaxation based branch-and-bound (SDPBB)
method. We introduce a sensitivity analysis method for the branching process of
SDPBB. This sensitivity analysis method can improve the convergence speed sig-
nificantly. Compared to the interval branch-and-bound method and the global op-
timization software BARON, SDPBB can achieve better bounds and is also much
more efficient. Additionally, we have developed a multisection algorithm for SDPBB
and the multisection algorithm has been parallelized using Message Passing Interface
(MPI). By parallelizing the program, we can significantly improve the speed of solving
higher dimensional BoxQP problems.
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Chapter 1

Introduction

1.1 Motivation and literature review

Quadratic optimization is one of the most important areas in nonlinear programming,

both from the mathematical and application viewpoints. Numerous real world prob-

lems such as the problems in planning and scheduling, game theory, economies of

scale, engineering design, and microeconomics are naturally expressed as Quadratic

Programing (QP) problems. Moreover, QP problems encompass all the Linear Pro-

gramming (LP) problems since QP problems with linear constraints can be viewed

as a generalization of the LP problem with a quadratic objective function.

In general, QP problems can be classified into convex QP problems and nonconvex

QP problems. For convex QP problems, there exists several algorithms that can solve

the problems in polynomial time [12]. However, nonconvex problems are often NP-

hard, which means that the problems cannot be solved in polynomial time. Nonconvex

QP problems can be classified into three types: bilinear, concave quadratic and in-

definite quadratic. The indefinite quadratic problems, in particular, have been arous-

ing lots of researchers' interests for decades. Other than Semidefinite Programming

(SDP) methods, most efforts are focused on firstly reducing the indefinite quadratic

problem to either a bilinear or a concave minimization problem. There are only a

few algorithms that directly solves the indefinite quadratic problem which includes

the branch-and-bound method raised by Hansen et al. [9]. Gould and Toint [7] pre-

13



sented a survey on nonconvex QP problem solution methods using nonlinear program-

ming techniques such as active-set or interior-point methods. Detailed introduction

about quadratic optimization can be found in the survey presented by Floudas and

Visweswaran [4]. Some global optimization softwares, such as BARON [18], can be

used to solve nonconvex QP problems.

Since Goemans and Williamson [6] proposed a SDP relaxation for the quadratic

maximization formulation of the max-cut problem, lots of work have been focused on

solving the nonconvex QP problems using SDP relaxation methods. Goemans and

Williamson [6] showed that SDP relaxation could yield a very good approximation

algorithm. Fujie and Kojima [5] presented an SDP relaxation for a general non-

convex QP having a linear objective function and quadratic inequality constraints.

Nesterov [15, 16], Ye [25, 26, 16] , Nemirovski et al. [14] and Zhang [27] further ex-

tended Goemans and Williamson's model to other cases of nonconvex QP problems.

Tseng [21] presented an approximation bound for the SDP relaxation of quadrati-

cally constrained quadratic optimization problems. Huang and Zhang [10] presented

approximation algorithms for indefinite complex quadratic maximization problems.

The SDP techniques have been proven to be powerful both in theory and practice

in the past decade. SDP problems can be solved by a number of solvers such as

SeDuMi, SDPA, Yalmip, SDPT3, CSDP and SOSTOOLS. Two authoritative surveys

about SDP techniques have been written by Todd [20] and Vandenberghe and Boyd

[22].

In this thesis, we discuss the branch-and-bound method and SDP relaxations for

nonconvex Quadratic Problems with Box constraints (BoxQP). BoxQP problems, as

the simplest form of global nonconvex optimization, appear frequently in the solution

of partial differential equations, discretized continuous time optimal control problems

and linear least square problems. Vandenbussche and Nemhause [24, 23] presented a

branch-and-cut algorithm based on first-order or second-order Karush-Kuhn-Tucker

(KKT) conditions to solve BoxQP problems. Burer and Vandenbussche [2] expanded

Vandenbussche and Nemhause's approach and presented a branch-and-bound method

using SDP relaxation to solve BoxQP problems. In this thesis, we present a different

14



SDP method for BoxQP problems.

1.2 Problem statement and solution strategy

The general form of QP can be shown as follows:

minx xTQx + 2b x + c

subject to Ax < d,

where x E Rn is the variable and (Q, A, b, c, d) E Rnf x R'mxn x R' x R x R~n are the

data. In particular, the problem is called concave QP problem when Q has all the

eigenvalues to be negative; it is called indefinite QP problem when Q has both positive

and negative eigenvalues; both concave QP problems and indefinite QP problems are

nonconvex QP problems. The problem (1.1) is called BoxQP when A = [I; -I] and

b = e. The BoxQP problem is shown as the following:

fBoxQp = minx xTQx + 2bTx + c
(1.2)

subject to -e < x < e

We denote the optimal value of (1.2) as fBOxQP. The BoxQP problems we consider in

this thesis are all nonconvex. It is obvious that all the QP problems in the following

form can be scaled into BoxQP problems:

min xTQX + 2bTx + c (1.3)

subject to xL < x < xU

where xL and xU are the lower bound and upper bound of x respectively.

We present several solution strategies for the above BoxQP problems. The first

strategy is an interval branch-and-bound algorithm for minimization of polynomial

over bounded regions. Another solution strategy is called the SDP relaxation method.

In this thesis, we present four SDP relaxation methods for BoxQP problems. For

some lower dimensional (< 20) BoxQP problems, some of the SDP relaxation meth-

15



ods can achieve tight bounds on fBOXQP. For larger dimensional BoxQP problems, a

combination of the first two strategies, the SDP relaxation based Branch-and-Bound

(SDPBB) method, is used. The branch-and-bound algorithm splits the feasible do-

main of x into sub-domains, and the SDP relaxation method is used to calculate

the bounds for the global minimum over every sub-domain. This process is iterated

until the branch-and-bound method converges, and tight bounds for the object value

fBoxQP can be achieved. To make the SDPBB method more efficient, we parallelize

SDPBB. Multisection method is used in the parallel approach, where one subproblem

is split into more than two subproblems during the branching process.

1.3 Structure of the thesis

The rest of the thesis is organized as follows. In Chapter 2, we explore the interval

branch-and-bound method and its convergence. In Chapter 3, we present four SDP

relaxations for BoxQP problems and compare their relative advantages and disad-

vantages. In Chapter 4, we combine the branch-and-bound method and the SDP

relaxation techniques to solve higher dimensional BoxQP problems; and we present

a sensitivity analysis to improve the convergence speed of the SDPBB method. In

Chapter 5, we describe the parallel approach for the method in Chapter 4, and show

the computation result for the parallel approach. In Chapter 6, we present conclusions

and future directions.

16



Chapter 2

Interval Branch-and-Bound

Method

In this chapter, we consider the

bounded regions:

minimization of a multivariate polynomial over

f =min E pxaz
(2.1)

X C In,

where x' = x" x... x, and ao < m, m is the degree of the polynomial, n is the

dimension of x, I is an n-dimensional closed real interval. We denote the objective

function as f in this chapter. All the intervals are denoted in capital letters, while

other variables are denoted in lowercase letters.

2.1 Implementation

We use a branch-and-bound algorithm to find the objective value of problem (2.1). As

shown in Figure 2-1, we have the following steps for the branch-and-bound algorithm.

Step 1. Initialize the list of active subproblems with the original given interval, and

calculate the bounds for the minimum over this interval. Active subproblems

are the subproblmes that may contain the global optimizer.

Step 2. Select one subproblem to split. This subproblem is either the one with the

17



smallest lower bound (best-bound-first strategy) or the one with the largest

interval size (largest-size-first strategy).

Step 3. Split the selected interval along the longest edge of the interval. Update the

list of active subproblems with the two newly generated subproblems. Calculate

the new bounds over the two newly generated sub-intervals.

Step 4. Prune the active list by deleting invalid intervals whose lower bound are

larger than the minimum upper bound of all the subproblems in the active list.

We keep iterating Step 2 to Step 4 until the convergence criteria is satisfied. Two

phases of branch strategies are used in this algorithm: 1)best-bound-first strategy

and 2)largest-size-first strategy. The first stage of the program uses the best-bound-

first branch strategy, which provides the best lower bound of the global minimum.

The second stage of the algorithm uses the largest-size-first branch strategy, which

provides the estimation of the interval that provides the best lower bound. The first

stage of the algorithm stops when the subproblem with the best bound has an interval

of very small size and the improvement of the lower bound between the last iteration

and the current iteration is very small. The second stage of the algorithm stops when

all the active subproblems have intervals of very small size. The acceptable small size

for the algorithm to stop is called tolerance for interval branch-and-bound method.

Interval analysis [8] is used to find the lower bound of the minimum of the polynomial

over one interval; the value of the polynomial over the mid-point of the interval is used

as the upper bound of the minimum. A simple description of the interval arithmetic

is shown in section 2.2.

2.2 Interval arithmetic

In this section, we present a finite interval arithmetic that we used to calculate the

lower bound of the polynomial. This arithmetic is presented by Hansen in [8].

Let x and y be two real numbers. If * denotes the operations of addition, sub-

traction and multiplication, we have the operation of two interval numbers X and Y

18
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Figure 2-1: Flow chart of interval branch-and-bound method

as

X .Y = { fX y E X, y E Y}.

Let X = [a, b] and Y = [c, d], for addition, we have

X +Y = [a+c,b+d].

For subtraction, we have

X -Y = [a - d,b - c].
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For multiplication, we have

[ac, bd]

[bc, bd]

[bc, ad]

[ad, bd]

[min(bc, ad), max(ac, bd)]

[be, ac]

[ad, bc]

[ad, ac]

[bd, ac]

Another operation on one interval

nonnegative integer n as

[1, 1] if

[an, bn] if

[b , a"n if

[0, max(an, bn)] if

if

if

if

if

if

if

if

if

if

K

K

<

<K

<K

and

and

and

< b

< b

< b

and

and

and

c > 0

c < 0 < d

d < 0

and c> 0

and c < 0 < d

and d K 0

c > 0

c < 0 < d

d < o.

number X is power, which can be defined for

n = 0

a > 0 or if n is odd

b < 0 or if n is even

a K 0 < b and n > 0 is even.

2.3 Convergence of the method

In this section, we show that the interval branch-and-bound method converges to the

optimal value of f at the first stage, and converges to the optimizer x at the second

stage. The notations we use in this section are shown in Table 2.1.

For the first stage of our algorithm, the following assertion holds.

Theorem 2.3.1 [17] If w(Y) -+ 0 implies w(F(Y)) -- 0 or w(Y) 0 implies

w(F(Y)) - w(f (Y)) -+ 0, then the Moore-Skelboe algorithm converges to the global

minimum: minyeA lbF(Y) -- f(x*), where x* denotes one of the global minimizers.

The Moore-Skelboe algorithm [13, 19, 17] is the same as what we have implemented

in our first stage of interval branch-and-bound algorithm. Therefore, by the end of

20
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Notation Description

[] The set of all closed one dimensional real intervals

[]n The set of all closed n-dimensional real intervals
F: []f - {] Interval function of the object function f,

where for VY E ] , Vy E Y has f(y) E F(Y)
A The union of the intervals for all the active subproblems
ibY, ubY Lower bound and upper bound of the interval Y
w(Y) Width of the interval, which is max(ubY - lbYi)

Table 2.1: Notations for section 2.3

the first stage, we can get an optimal lower bound of f. The minimizer is contained

in A at the end of the first stage. In the worst case, A could be larger than half of the

original interval I' in size. Therefore, we need to reduce the size of A in the second

stage of our algorithm.

In the second stage of our algorithm, we keep splitting the active subproblems

with the largest interval size until the interval size for the active subproblems are all

very small. In this way, we can reduce the range of the optimizer. If the union A we

obtained at the end of the second stage is small, we can have a well-defined optimizer.

If the union A is large, we know that there is a wide choice of parameters that yield

near-optimal function values.

The second stage of the algorithm will not change the value of the lower bound

obtained from the first stage, because the interval that generates the optimal lower

bound is very small and will not be further split in the second stage. For other active

intervals, in the second stage, they can only have tighter bound than that at the end

of the first stage, which means the lower bounds over these intervals can only become

larger in the second stage.

2.4 Sample problem

Polynomial p = 4x2 21x4 + 6 + xy - 4y 2 + 4y 4 harbors four local minimums

in the box specified by the four vertices (-2, -1), (-2, 1), (2, -1) and (2, 1). We

set the tolerance for the first stage and second stage of the interval branch-and-

bound algorithm as 0.01. The interval branch-and-bound method converges in 4670

21



0.33333'x6 - 2.1 x4 + 4*X + x*y + 4y4 - 4*Y
2

- lower bound first
..... large size first

1000 2000
iteration

3000 4000

Figure 2-2: Convergence for the global minimum of the polynomial in Section 2.4

iterations as shown in Figure 2-2. The first stage finishes in 3567 iterations, and the

second stage finishes in 1103 iterations. The run time for this problem in Matlab is

577.95 seconds. The lower bound for the problem is -1.0829, and the upper bound

for the problem is -1.0306. The area with the active boxes when the method stops

is shown in Figure 2-3 as the shaded part of the contour plot.
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Figure 2-3: Plot for the converged result for the polynomial in Section 2.4
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Chapter 3

Semidefinite Relaxation Methods

In this chapter, we show four SDP relaxation methods to solve BoxQP problems.

These four SDP relaxation methods are called diagonal method, full method, block-

matrix method and tridiagonal method. We shall discuss the diagonal method and

full-matrix method in detail. The block-matrix method and tridiagonal method are

derived from the first two methods. The diagonal method is the cheapest compu-

tationally but it achieves the loosest bounds. The full-matrix method is the most

expensive computationally but it achieves the tightest bounds.

3.1 Diagonal SDP relaxation method

First we show the diagonal SDP relaxation method. The BoxQP problem can be

rewritten as

x A b x
min

b T C_-y 1 (3.1)

subject to x2 <1, z=1,2,...,n.

25



We can convert the problem (3.1) to the SDP form by introducing an (n + 1) x (n+1)

symetric matrix X, for which we have

' ,I -[T
(3.2)

Xii 1, i = 1, 2, .. , n

Xn+,n+I

rank(X)
(3.3)

X > 0

By discarding the constraint rank(X) = 1, we can get an SDP relaxation as

A b
min

X b T C_-Y

subject to
I

Xn+1 ,n+ 1 1

Xii < 1, i = 1, 2, ... , n

X > 0.

The dual of the problem (3.4) is:

max y

subject to
A

bT

b

C - y -An

En, Ai

By multiplying the first constraint of the problem (3.5)

TIand

26
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I
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X=
1

= I

Xi,i 1, z = 1, 2, ... , n.



left and right respectively, we obtain the expression

n

X TAx +v 2b TX + C _ _Y X2Z),1 (3.6)

in which the right hand side is nonnegative when A is nonnegative and xi is bounded

by -1 and 1. The optimal value of -y from (3.5) is a lower bound of fBOxQp in (1.2).

An upper bound of fBOxQP can be calculated from a primal feasible solution of

(1.2). When the SDP relaxation provides a very close approximation of the original

problem, we can have rank(X) ~~ 1, which means

X 1 x

X1

X1 X2

X2 X2

Xn.T2

X2

... XlXn

... X2Xn

XnXn

... X1n

X1

Xn

Therefore, if the SDP relaxation is good enough, the minimizer x* extracted from

the last column of X (x* = [X1,n+ 1 , X 2 ,+ 1 ... , X 1 +]') will give us a very close

upper bound of f&oxQp.

If rank(X) is not close to one, x* is still feasible accroding to the diagonally

dominant property of the positive semidefinite matrix X. We can always use the

value of x*TAx* + 2x*Tb + c as an upper bound for fBoxQp.
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3.2 Full-matrix SDP relaxation method

An alternative expression for BoxQP is

min
]

I

T -[A bl

bT c-y _

subject to (1 + Xi)(1 + Xi) 0,

(1 + xi)(1 - xj) > 0,

(1 - Xi)(I - Xj) > 0,

-[-

(3.7)
which is equivalent to

min
A

bT

subject to

b

c -

Xn+l,n+1

rank(X)

SX

=-1

=-1

1 + Xi,n+l + Xi,n+l + XiJy > 0, i=1 .. ,j=i+1 ,..

I + Xi,n+l - Xi,n+l - XiJy > 0, Z, J = 1, 2, ..., n

I - Xi,n+l - Xn+I + XiJ, > 0, i= 1,2,...,n i

X 0.

(3.8)

Relaxing the constraint rank(X) = 1, we can have a rank one SDP relaxation for

equation (3.8). The dual of the rank one relaxation is shown as follows:

max A

subject to

[A

bT

b

c - A

I

-I

e

e J
T

Af ul, I

-I

e]
(3.9)
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where

Af u =-

A1,2n

0 A2n-1,2n

A2n-1,2n 0

Here, I is the n x n identity matrix

- T -

By multiplying and

the expression

and e is an all-one vector with dimension n.

on the left and right respectively, we can get

XTAx + 2bix + C - 7 ; [
1-

-IT

F+ 
Afs .,

X-
(3.11)

The right hand side of equation (3.11) is nonnegative when -1 < x < 1 and A,, >

0, Vi, j. The optimal -y from equation (3.9) is a lower bound of fBoxQP. We can

calculate an upper bound for fBoxQP the same way as in the diagonal SDP relaxation

method.

The full-matrix SDP relaxation method is a full version of the diagonal SDP

relaxation method. The diagonal SDP relaxation method could be written in the

same format as that of the full-matrix relaxation method by replacing the matrix

Afsa with the matrix Adiag, where

Adiag =

0

A1,1

A~n,n

0
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The full-matrix relaxation method has more Lagrange multipliers (Al,) than the

diagonal relaxation method. The full-matrix relaxation method has n x (2n - 1)

entries in the matrix A 11 while the diagonal relaxation method has only n entries

in the matrix Adiag. The full-matrix relaxation method takes longer time to solve

the SDP problem, and it achieves better approximation to BoxQP at the same time.

Detailed comparisons and examples are shown in Section 3.5.

3.3 Block-matrix SDP relaxation method

A third relaxation for

rank one relaxation is

BoxQP is derived

shown as follows:

from the first two relaxation methods. The

A b
min CU

b V c -

Xn+1 ,n+1 =

1 - Xi,n+1 + X,n+1 - X >

X e

30

subject to

X

1

0, z = 1,2, ... , n, J = 1,2, ... , n

0.

(3.12)



The dual of the problem (3.12) is shown as follows:

max A

A bl

bT c - A

> 0

AbIock

I

-I

i,j

T1
e I e

Ablock

e j-I e

= 1, 2, ... , n,

A1,1

0

An, 1

0

The block-matrix relaxation method has n x n entries in its

number of entries in matrix Ablock is between that of the Adiag in

ation method and the A1 11 in the full-matrix relaxation method.

Ablo0 k matrix. The

the diagonal relax-

3.4 Tridiagonal SDP relaxation method

In the fourth SDP relaxation, we reduce the number of entries in matrix Ablock to

make it linear in the dimension of the QP problem. The rank one relaxation is shown

as follows:

A b
min

X b T C-

Xn+l,n+1

1 - Xi,n±i + Xi,n+l - XiJ

X

SX

= 1

;> 0, z 1, 2, ...,I n, j 1 1, t*, Z + 1

>-0.
(3.14)
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The dual of the problem (3.14) is shown as follows:

max A

subject to -[

where

Atridiag _

The

number

method

A

bT c-A

>0

0

A1,1 A1,2

A2,1 ' -

-T

Ice
Atridiag

-I e

=1,j =1,2

i 72 j 2- 1,7n,

I

-I
-

e1
e J

1,i,i+I-1

A1,1 A1,2

A2,1 **

An-,n

0

(3.15)

tridiagonal relaxation method has 3n - 2 entries in its Atridiag matrix. The

of entries in the matrix Atridiag is between the Adiag in the diagonal relaxation

and Abl,,k in the block-matrix relaxation method.

3.5 Comparison of the four relaxation methods

Figure 3-1 and Table 3.1 show the average computation time for the four relaxation

methods. The computation time is averaged from 20 randomly generated BoxQP

problems of dimensions 2, 5, 10, 15 and 20. From Figure 3-1 and Table 3.1, we can ob-

serve that the computation time for the diagonal method and the tridiagonal method

32

An--1,n

An,n -1 A n,n



In 3

x- diagonal
- - tridiagonal
-* block-matrix
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dimension of the problems

Figure 3-1: Comparison of average computation time for the four SDP relaxation
methods

are short and increase relatively slowly as the dimension of the QP problem increases.

The computation time for the block-matrix method and full-matrix method are longer

and increase relatively fast as the dimension of the QP problem increases. The full-

matrix method takes the longest computation time and it increases fastest as the

dimension of the QP problem increases. Table 3.1 also shows that the computation

time increases as the number of entries in the matrix A increases, and the rate of

increase in computation time is higher than the rate of increase in the number of

entries.

Figure 3-2 and Figure 3-3 show the relationship between the computation time

and the quality of the lower bound achieved using the four relaxation methods. Each

figure shows the results of the four randomly generated BoxQP problems. We observe

that the tridiagonal method achieves better bounds than the diagonal method with
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dimension diagonal tridiagonal block-matrix full-matrix
method method method method

2 2.42 2.77 2.62 3.50
5 2.74 3.38 3.44 11.39

time 10 2.99 3.78 4.64 38.28

(sec.) 15 3.83 4.78 11.05 106.80
20 5.30 6.78 32.38 302.97

# of entries
in A n 3n - 2 n 2  n x (2n - 1)

Table 3.1: Computation time for the four relaxation methods

diagonal tridiagnal block-matrix full-matrix
instance 1 lower bound -315.9689 -311.9894 -308.582 -308.582

upper bound -242.1424 -254.0224 -308.582 -308.582
instance 2 lower bound -273.0769 -264.9856 -252.1098 -249.15

upper bound -116.2217 -117.1016 -73.5387 -87.7108
instance 3 lower bound -332.8964 -331.6831 -327.3333 -326.4389

upper bound -276.3527 -292.4958 -286.4482 -326.4387
instance 4 lower bound -284.6661 -277.9293 -268.9722 -262.1849

upper bound -175.3825 -212.4848 -211.5864 -221.4125

Table 3.2: Bound results for the 10-dimensional instances

approximately the same computation time. The full-matrix method takes much longer

time than the block-matrix method while the improvement of the quality of the bound

may not be very obvious. Therefore, for a single BoxQP problem, the tridiagonal

method is better than the diagonal method in terms of relative computation time

and quality of the bound, and the block-matrix method is better than the full-matrix

methods in the same aspects. Table 3.2 and Table 3.3 show the bounds for the

diagonal tridiagnal block-matrix full-matrix
instance 1 lower bound -941.9511 -937.7298 -912.1942 -908.7084

upper bound -679.8002 -665.3004 -580.8613 -582.4111
instance 2 lower bound -799.8424 -786.4626 -771.7601 -763.6481

upper bound -493.0752 -463.6194 -403.9468 -264.3009
instance 3 lower bound -818.9348 -808.105 -795.2391 -784.9429

upper bound -503.2527 -580.6928 -426.708 -244.5714
instance 4 lower bound -704.393 -697.8788 -683.015 -678.4359

upper bound -487.8156 -455.3614 -394.4857 -343.2326

Table 3.3: Bound results for the 20-dimensional instances
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Figure 3-2: Time vs. bound quality for
BoxQP instances

four randomly generated 10-dimensional

problems shown in Figure 3-2 and 3-3 respectively. We can see that the block-matrix

method and full-matrix method obtain tight bounds for the first instance of the 10-

dimensional BoxQP problems.
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Chapter 4

Semidefinite Relaxation based

Branch-and-Bound Method

In the previous chapter, we provide four SDP relaxation methods to achieve the

lower bound and upper bound for the minimum of nonconvex BoxQP problems. In

this chapter, we use the combination of these SDP relaxation methods and branch-

and-bound method to achieve the exact value of the minimum for large dimensional

BoxQP problems. This Semidefinite Relaxation based Brach-and-Bound method is

referred to as SDPBB. We present a sensitivity analysis method that can improve

the convergence of SDPBB significantly. We show the reason why the branch-and-

bound works for SDP relaxation methods as follows. Consider the QP problem over

an arbitray box:

min xTAx + 2b'x + c

XL' < x, < x, z = 1, 2, ..., In,

we have the expression for diagonal method as

n

AxTA + 2b TX + C > Ay A(xY - -i (x X)' (4.2)
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and the expression for full-matrix method as

T

xT Ax + 2b x +c_ -1 ;+ Afull [XL+ . (4.3)
xU _- X U _

We can observe from expressions (4.2) and (4.3) that the right hand side of these two

equations may become close to zero when the bounds of variables, xL and x , are

close enough. Therefore, the bounds become tighter when we split a big box to several

small boxes and calculate the bounds over small boxes, and this is why the SDPBB

method works. By carefully consider the As and x, we can choose one dimension

which, when split, can provides the most improvement of the bounds. This method

of choosing the best dimension to split is called the sensitivity analysis method.

4.1 Branch-and-bound scheme for semidefinite re-

laxation methods

The branch-and-bound scheme of SDPBB is similar to that of the interval branch-

and-bound method. Figure 4-1 shows the flowchart for SDPBB. The main difference

is that the SDPBB method only uses best-bound-first strategy during branching. The

following shows the strategies used in SDPBB:

" Branching criteria: we choose the subproblem to split using the best-bound-

first strategy, which means that the subproblem with the smallest lower bound

will be chosen to be split in each iteration. After choosing the subproblem, we

choose one dimension to split according to the interval size of the dimension or

sensitivity of the dimension. The sensitivity analysis method we use is shown

in the Section 4.3.

" Pruning criteria: we search for the smallest upper bound in the list of active

subproblems. We prune the subproblem whose lower bound is bigger than the

smallest upper bound.
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Initialize

Split the subproblem with
the best bound

Calculate bounds for the
splited subproblems

Prune

Stop

CD

Stop

Figure 4-1: Flow chart for branch-and-bound based semidefinite relaxation methods
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* Stopping criteria: the algorithm stops once the subproblem with the smallest

lower bound achieves tight bounds, which means that the upper bound and

lower bound for the problem are close enough. We call the biggest acceptable

difference between tight bounds as tolerance in SDPBB.

Since the SDP relaxation method can provide tight bounds when the box size for

one subproblem is small enough, and the minimizer is achieved once the tight bound

is achieved, we only need the best-bound-first strategy in SDPBB. Since several active

subproblems may achieve tight bounds during the branch-and-bound process, we need

to handle the subproblems with tight bounds carefully. It is unsafe to stop once we get

a subproblem with tight bound, because the algorithm may stop at a local minimum

in this way. It is also unsafe to delete the subproblem with tight but not the lowest

bound directly from the list of active problems, because this subproblem can still be

the one with the global minimum: this tight bound may not be the smallest at that

time because the lowest bound may happen to be loose at that time. Therefore, for

every calculated subproblem, we keep a sign of whether it achieves tight bounds or

not. When we search over the list of active subproblems for the one to be split, we

only consider the active subproblems whose bounds are not tight. It is only safe for

SDPBB algorithm to stop when the subproblem with the smallest lower bound is

tight.

4.2 Scaling the QP problem over arbitrary box to

the BoxQP problem

In the SDPBB method, the subproblems generated in each iteration are no longer

standard BoxQP problems. To solve these subproblems, we need to scale the QP

problem over an arbitrary box to the standard BoxQP problem.

We denote the box bounded by xL XL in the problem (4.1) as B. For any x* E B,

when f is scaled to a standard box bounded by l's and -I's, its corresponding
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coordinate y* is

XL U

y; (X.Z -x 2..., n. (4.4)
2 X2 X

Therefore, we have

X y + ,i = 1, 2,..., n. (4.5)
2 2

Denote ki = x'-2-X 1, t = -X-- , K diag(k) and t = [ti, t2 ,...,]T. We have

the objective function of the problem (4.1) as

xT Ax + 2xTb + c
-T

k1y1 + ti k 1y 1 + ti k1y1 + ti

= k 2y 2 + t 2  A k2y 2 + t 2  + 2bT k2y 2 + t2 +C (4.6)

Lknyn + tn knyn + tn knyn + tn

YT KAKy + 2yT Kb + tT At + 2tT b + c,

Therefore, we have the corresponding BoxQP problem for (4.1) as

min yT KAKy + 2yT Kb + tT At + 2tT b + c (4.7)

-1 Yi , z = 1, 2, ... , n.

4.3 Sensitivity analysis for the four semidefinite

relaxations

Adopting sensitivity analysis while branching can speed up the convergence of SDPBB.

For multivariate BoxQP problems, the domain of x is a multi-dimensional unit box.

To split the box into two, we need to choose one dimension to split. By carefully

choosing the most sensitive dimension to split, we can achieve more improvement on

the lower bound within one step of the branch-and-bound method.

In this section, we call the BoxQP problem to be solved "the original problem".
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Once we split the unit box in dimension i, we will have two subproblems whose ranges

of xi are changed to the intervals [-1, 0] and [0, 1] respectively. We call these two

subproblems S(il) and S(i2). In sensitivity analysis, we examine the improvement of

the lower bound achieved by every possible subproblem (i = 1, 2, . .. , n) and choose

the dimension providing the most improvement. The sensitivity analysis methods for

the four SDP relaxations is shown in the subsections below.

4.3.1 Sensitivity analysis for diagonal method

From the expression derived from the diagonal method: xTAx + 2bTx + c - Y >

( X - ), we can see that the lower bound -y is tight when the right hand side

of this equation is zero, and the improvement of the lower bound -y is equal to the

reduction of the right hand side value of this equation. In subproblem S(il), since

the range of x, has been changed from [-1, 1] to [-1, 0], if xi E [-1, 0], we have the

improvement of the lower bound from the original problem to S(ii) as

\j(i - X2) - Ai(0 - xj)(1 + Xj)
i (4.8)

- \j(1 + x)

Similarly, the improvement of the lower bound for S(i2) when xi E [0, 1] is

A\(i - x ) - \i(1 - X,)(0 + xj)
i (4.9)

- A(1 - Xj)

Since xi should be either in [-1, 0] or in [0, 1], only one of the results from equations

(4.8) and (4.9) makes sense. It is obvious that the subproblem with the smaller

improvement is the one that contains xi. Therefore, we have the formulation for the

sensitivity analysis as

max min {improvement of S(iH), improvement of S(i2)}
i (4.10)

max min {\ (I + xi), Ai(I - xi)

We can get the most improvement of the lower bound by splitting in the optimal
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dimension i.

4.3.2 Sensitivity analysis for full-matrix method

For the full-matrix method, we have the expression:

XT Ax + 2bTx + C -- -1+ ]

-X

T

Afull[
1+x

l-x
1- (4.11)

Therefore, for S(il), we have the improvement of the lower bound when x C [-1, 0]

as

improvement of S(il)
T

1 +xi

1+xn
= Afull

1 -1

1

I

-xi

- £n7

1+ Xi

1+ xi

1+ X£

1

1

1

-£1

- Xi

- £7

f I

1+ X1

0 + Xi

1+ x,

1 - X1

1-Xi

1 - £72

T

1+ X

0 + xi

1+ X

1-

1 -Xi

1 - X"

(4.12)
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Similarly, we have the improvement of the lower bound for S(i2) when x E [0, 1] as

improvement of S(i2)
e T I

1+ X1

1+ xi

1 + X,

1-

1X-i

1 - X"'

Aful

= 2A+n,1 , Ai+n,2 ,

1+ ,

1+ Xi

L

1 + x"

1- i

1-

- +n,n]

1+ X1

1+ xi

1 + x",

1 - XI

0- i

1 - Xn

T

1+xi

1 + xi

1 + x,

1 -X

0- i

1 -X

(4.13)

Therefore, we have the formulation to calculate the most sensitive dimension i as

max min {improvement of S(il), improvement of S(i2)}

_ e X e X (4.14)
max min Ai , +n

where i is the ith row of the matrix A 1211 .

4.3.3 Sensitivity analysis for block-matrix method

We can do the sensitivity analysis for block-matrix method in the same manner as

that for the full-matrix method. The formulation to calculate the most sensitive
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dimension i is

max min {improvement of S(il), improvement of S(i2)}

x _ z(4.15)
- maxmin Ai[-Ie] Ai [I e]

where Ai is the ith row of the matrix Ablock-

4.3.4 Sensitivity analysis for tridiagonal method

Similar to the full-matrix method and block-matrix method, we can have the sensi-

tivity analysis formulation for the tridiagonal method as

max min {improvement of S(il), improvement of S(i2)}

max min [Ai,i_1 Ai,i Ai,i+,1 1 , [Ai,i- Ai,i Ai,i+ 1 ] 1 -

1 i,i+1 1 i,i+1
(4.16)

4.4 Result and comparison

4.4.1 Comparison of SDPBB with various SDP relaxation

and splitting methods

The performance of SDPBB using different SDP relaxations and different splitting

methods is compared in this section. The two instances tested are from the box-

constrained QPs introduced by Vandenbussche and Nemhauser [23]. The comparison

of results for a 20-dimensional instance is shown in Figure 4-2 and Table 4.1. The

comparison of results for a 30-dimensional instance is shown in Figure 4-3 and Ta-

ble 4.2. The four SDP relaxation methods are tested with and without sensitivity

analysis. The stopping criteria for the methods are set as the absolute error for the

objective value is less than 0.1. The programs are written in Matlab. Yalmip and
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Figure 4-2: Comparison of SDPBB for a 20-dimensional QP problem

SeDuMi are used to solve the SDP relaxations.

w/o sensitivity analysis w/sensitivity analysis

total time time for total time time for
each iteration each iteration

diagonal method 52.12 1.02 10.81 1.08
tridiagonal method 68.34 1.55 13.81 1.72

block-matrix method 90.54 4.52 17.28 5.76
full-matrix method 174.96 34.99 47.34 47.34

Table 4.1: Computation time for the 20-dimensional QP problem using SDPBB

From Figure 4-2 and Figure 4-3, we can observe that convergence speed for the

methods with sensitivity analysis is much faster than those without sensitivity anal-

ysis. Table 4.1 and Table 4.2 also show that the computation cost for sensitivity

analysis is relatively small compared to the cost for calculating bounds. Therefore,

splitting using sensitivity analysis is very effective for SDPBB.

Additionally, the SDP relaxation method with better bound quality always makes
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Figure 4-3: Comparison of SDPBB for a 30-dimensional QP problem

w/o sensitivity analysis w/sensitivity analysis
total time time for total time time for

each iteration each iteration
diagonal method 78.31 0.85 29.45 0.86

tridiagonal method 83.96 1.25 34.45 1.32
block-matrix method 182.46 36.49 84.01 42.00
full-matrix method 792.68 792.68 807.29 807.29

Table 4.2: Computation time for the 30-dimensional QP problem using SDPBB
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the SDPBB method converge faster. However, the SDPBB method using the SDP

relaxation method with better bound quality always takes longer time to finish. From

Table 4.1 and Table 4.2, we can observe that the larger the BoxQP problem is, the

higher the extra cost of achieving bounds of high quality. Therefore, it is more

economic to calculate a large number of bounds of lower quality than to calculate

very few bounds of higher quality for SDPBB method.

From the above comparison, we can conclude that SDPBB using diagonal SDP

relaxation and sensitivity analysis is most efficient. Figure 4-4 shows the number

of active subproblems for each iteration when SDPBB with diagonal method and

sensitivity analysis is used. The 20-dimensional and 30-dimensional dense BoxQP

instances from Vandenbussche and Nemhauser [23] are tested. We can observe that

for most of the instances, the number of active subproblems keeps increasing for the

first half of the iterations.

4.4.2 Comparison of SDPBB and interval branch-and-bound

method

We use interval branch-and-bound method and SDPBB to test some lower dimen-

sional BoxQP instances. The results are shown in Table 4.3. We can see that the

SDPBB method achieves much better bounds in a much shorter time, especially when

the dimension of the BoxQP problem is larger.

4.4.3 Comparison of SDPBB and BARON

We use BARON [18] and SDPBB to test some 10- to 30-dimensional instances.

BARON is a global optimization software which uses a branch-and-reduce optimiza-

tion navigator to solve nonconvex global optimization problems to global optimality.

The branch-and-reduce optimization navigator uses the combination of interval anal-

ysis and duality for "reduce" and adopts branch-and-bound concepts to accelerate

the convergence. We test Baron on NEOS server. For the SDPBB method, diagonal

relaxation method with sensitivity analysis is used. The results are shown in Table
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Figure 4-4: Number of active problems for each iteration during convergence pro-
cess. Top row: three 20-dimensional instances; Bottom row: three 30-dimensional
instances.

dimension SDPBB Interval branch-and-bound
time(s) 0.89 33.24

4 lower bound -66.694 -69.068
gap 0.000 4.382

time(s) 0.9063 57.074
4 lower bound -67.276 -67.427

gap 0.000 5.130
time(s) 2.33 .7073.42

10 lower bound -365.105 -383.110
gap 0.000 113.754

time(s) 1.69 5735.33
10 lower bound -233.445 -327.367

gap 0.000 243.527

Table 4.3: Comparison of SDPBB and interval
randomly generated instances of different sizes

branch-and-bound method on four
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dimension SDPBB BARON
time(s) 0.068 0.17

10 lower bound -365.104 -405.675
gap 0.000 40.567

time(s) 1.5938 545.71
20 lower bound -866.670 -962.967

gap 0.000 96.297
time(s) 12.34 5.38

20 lower bound -1713.000 -1903.333
gap 0.001 190.333

time(s) 16.06 1000.03
30 lower bound -2454.300 -3875.922

gap 0.000 1421.672

Table 4.4: Comparison of SDPBB and BARON on four randomly generated instances
of different sizes

4.4. We can observe that the SDPBB is more efficent and can achieve much better

bounds.
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Chapter 5

Parallelization of Semidefinite

Relaxation based

Branch-and-bound Method

The SDPBB method works very well for those BoxQP problem that are not very

large, but it takes a long time to solve large dimensional (> 50 in dimension) BoxQP

problems. In this chapter, we use a parallelization of the SDPBB method to increase

the computational speed for large dimensional BoxQP problems. A multisection

method that can be used for parallelization is introduced. In the parallel version of

the SDPBB method, the SDP solver CSDP [1] is used to solve the SDP relaxations,

and the Message Passing Interface(MPI) is used for the communications between

different processors.

5.1 Multisection in SDPBB

Instead of splitting one box into two and solving the two newly generated problems

during one iteration (bisection algorithm), we present a multisection algorithm which

splits one box into several subboxes and solves them during one iteration. We use the

multisection algorithm to parallelize the SDPBB method, and the parallel version of

SDPBB is referred to as Parallel Semidefinite Relaxation Based Branch-and-Bound
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(PSDPBB) method.

The idea of multisection on interval branch-and-bound method has been investi-

gated by Csallner et. al. [11] and Casado et. al.[3]. In the multisection algorithm,

more than one bisections are made in a single iteration step, which means that larger

boxes in the search tree are skipped, and smaller boxes are investigated directly.

We compare the efficiencies of multisection algorithm and bisection algorithm

using the following example. Assume the original box is B and we split according to

the longest edge. There are three cases in which the multisection method may have

advantages or disadvantages:

" In the first case, B is split into subboxes B, and B2 in the first iteration of the

bisection algorithm. If none of them are pruned in the first iteration, B1 and B2

could be split into subboxes B11, B12 and B2 1 , B22 at the end of third iteration.

Six subproblems are evaluated for the bisection algorithm. In the multisection

algorithm, B is split into subboxes Bi 1 , B 12, B21, B22 in the first iteration.

While splitting according to the longest edge, the four subproblems obtained

from the first splitting of the multisection method are the same as the four

subproblem obtained from the third splitting of the bisection method. For the

multisection method, only four subproblems are evaluated to achieve the same

information as the bisection method. Therefore, the multisection algorithm has

advantages in this case.

" In the second case, if one of the subproblems, say B2, is pruned within the first

two iterations of the bisection method or B2 is not chosen to be split in the

third iteration of the bisection method, there are still four subproblems B1 , B2 ,

B11 and B12 to be evaluated in the bisection method. In these two cases, the

two algorithms have almost the same efficiency.

" In the third case, if the bisection method stops at the first iteration, the bisection

method could have less subproblems to evaluate. The multisection method has

disadvantages in this case.
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We can see from the previous chapter that for most large dimensional QP prob-

lems, none of the generated subproblems are pruned during the first half of the iter-

ations. Therefore, for most large dimensional QP problems, the first case takes place

most of the time, and thus the multisection method may have more advantageous

than disadvantages.

One additional cost of multisection is to decide on which dimensions to split. For

the bisection method, only one dimension needs to be calculated; for the multisection

method, multiple dimensions may be required. Figure 5-1 shows two ways of split-

ting described by Csallner et. al. [11]. One is the multibisection method in which

we choose multiple dimensions and then bisect each dimension. The other is the

multisplitting method in which we choose one dimension and do multiple splitting on

the chosen dimension. The multibisection method requires additional computation

for calculating the dimensions to be split. The multisplitting method requires the

same splitting information, the dimension to be split, as the bisection method. In our

case, we choose the multibisection method because the multisplitting is more likely

to generate trivial subproblems. For our method, the additional computation cost for

choosing dimensions is trivial, but the cost of computing the subproblem is high.

Multisection method can be easily parallelized. The parallelization scheme of the

multisection method is shown in section 5.2. A detailed comparison of the multisection

method and the bisection method is shown in section 5.4.

3 3-

2 2- 7 1 AI

0 0

-3 -2 -1 2 3 -3 -2 0 2 3

Figure 5-1: Two multisection methods. Left: multibisection; Right: multisplitting
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5.2 Parallelization scheme

In our parallelization scheme, processor 0 works as a master processor who keeps all

the information of active problems. Other processors work as slave processors, who

only keep the original coefficients of the QP problem. As shown in Figure 5-2, the

master processor initialize the program, sort and prune the list of active problems,

and solve one SDP problem during one iteration. The slave processors only work as

SDP solvers: they receive interval information from the master processor, calculate

the SDP subproblem according to the received interval, and return the result to the

master processor. The shaded steps in Figure 5-2 means that the processors are doing

communications at that time; otherwise, the processors are doing computation. The

number of processors decide the number of subproblems to be generated during one

iteration. On one processor, only one SDP problem is solved during one iteration.

Therefore, for multisection method with multibisection, the number of processors to

be used cannot exceed twice the number of dimension of the QP problem.

In our parallelization scheme, communication cost is low: every slave processor

receives 2n double numbers, and send 2 + n double numbers and 5 integer numbers

during each iteration. We also know that the time for choosing one problem to split,

splitting the intervals and pruning the list of active problems is much shorter than the

time to compute a large-dimensional SDP problem. According to the efficiency for-

mulation of parallel computation: Efficiency = comtota t ime , our parallelization

scheme is efficient for large-dimensional SDP problems.

5.3 Implementation of the PSDPBB method

We use C/C++ and Message Passing Interface (MPI) to implement the PSDPBB

method. We use the class Actlist to store the information of the active subprob-

lems. The information includes the interval box, the bounds, the minimizer, and

the sensitive dimensions of the subproblem. All the subproblems are stored in a

doubly-linked list of Actlist objects.
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processor 0 prcessor I processor 2 preessor 3
Read QP problem from input file

Initiate the list
of active
problems

Chose one
problem and

split it

Distribute the intervals of the generated subproblems

Calculate Calculate Calculate Calculate
subproblem 1 subproblem 2 subproblem 3 subproblem 4

Gather results: bound, sensitive directions, minimizer

Prune the list
of active
problems

Check stop
criteria

Broadcast stop siganal

stop stop stop stop

Figure 5-2: Parallelization scheme for PSDPBB

The file qpcsdpsolver. c is written to use the CSDP subroutines to solve the

diagonal SDP relaxation and the full-matrix SDP relaxation for the BoxQP problem.

To solve these SDP relaxations in CSDP, we need to convert these SDP relaxations

into standard form. The conversions are shown in Section 5.3.1. The constraint

matrices are stored in a two-dimensional linked list structure of sparse matrices. The

structure of our constraint matrix is shown in Figure 5-3.

LAPACK, BLAS, math and CSDP libraries are used for our programs. We have

written a makefile that compiles the C program using the command mpicc and com-

piles the C++ program using the command mpicxx; the object files are linked using

the command mpicxx. We have written an sge file that submits the executable file to
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the computer cluster. The number of processors to be used, the name of the input file

specifying the coefficients of the QP problem, and the method to be used are specified

in the sge file.

constraint I constraint 2 constraint 3 . constraint n

block 1 ------ > block 1- ---- > block 1 -> ------ -> block 1 -- > NULL

NULL

block 2 ------ > block 2 - ------- -> block 2 - > NULL

NULL NULL NULL

~- ~ ->nextbyblock block > next block

Figure 5-3: Two-dimensional linked list for constraint matrices in both diagonal and
full-matrix method

5.3.1 Standardized SDP problems for CSDP solver

As we are using MPI, Yalmip and SeDuMi can no longer be used to solve SDP

problems. Instead, we use the solver CSDP [1] to solve the SDP problems. CSDP

is written in C, and it provides a standalone solver, Matlab routine and subroutine

interface. We use the subroutine interface to solve our problem. To solve an SDP

problem in CSDP, we need to convert the SDP problem into the standard form:

(P) max tr(CX) (5.1)

X >_o
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where

tr(AIX)

A(X) tr(A2X) (5.2)

tr(AmX)

(D) min ay

AT(y) - C Z (5.3)

z>_0

where
m

A T(y) = yiAi. (5.4)
i= 1

The standard form of diagonal SDP relaxation method and full-matrix SDP re-

laxation method are shown below.

For the diagonal method, we have the standard form

A b

bT c

-max - 0 *X

(5.5)

0

Ai X = 1,i = 1, 2,...,In +1

where n is the dimension of the QP problem, A1 is a sparse matrix with only the

entry (n + 1, n + 1) to be 1; Ai, i = 2,3, ..., n + 1 are the sparse matrices with only

the entries (i - 1, i - 1) and (i+ n, i+ n) to be 1; X is a (2n + 1) x (2n + 1) variable

matrix.
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For the full-matrix method, we have the standard form

- max

A

iT

b

0 C

0

0

A 1 X= 1

X > 0,

where there are in total
2n

(2 )= 1 + n(2n - 1) constraints. A1 is a

(n + m) x (n + m) sparse matrix with only the entry (n + 1, n + 1) to be 1. Aij can

be calculated in the following manner.

The constraints of the full-matrix method, as shown in 3.7, can be converted as

(1 + xj)(1 + x) > 0

* -Xi - xj - XiXj + Sg(i,j) 1

=> -2xi - 2xj - 2xixj + s2(i,j) = 2

. Aij [
where Zij is a sparse matrix with the entries (i, j), (j, i), (i, n+1), (n+i, i), (J, n+ 1),

(n + 1,j) to be -1; the entry (i, j) has the value -2 if i equals to j. Therefore, we

have

1

The entry of the element 1 is (g(i, j)+An +1, g(i, j) +in +I-1), where g(i, j) represents
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solver splitting method # of iteration time (sec.)
processors

SDPBB w/o sensitivity analysis 1 6515 2864.01
w/ sensitivity analysis 1 1765 764.34

PSDPBB w/o sensitivity analysis 2 4044 1208.99
4 2553 778.78
8 2066 657.10

16 1595 514.86
w/ sensitivity analysis 2 1770 547.21

4 876 217.94
8 492 322.19

16 393 127.33

Table 5.1: Convergence comparison for PSDPBB using different number of processors
for solving the 50-dimensional instance

the sequence number of Aij among all the constraint matrices.

5.4 Results and comparison

In this section, we test a series of problems to show the efficiency of our methods. All

the problems are tested on a 64-node computer cluster.

To compare the number of processors used and the convergence, we test a ran-

domly generated 50-dimension BoxQP problem using diagonal relaxation method.

The precision requirement is set such that the absolute error is to be less than 0.1.

The result is shown in Figure 5-4 and Table 5-4. We can see that the more processors

used, the faster the method is. Among the multisection methods without sensitivity

analysis, multibisection on one dimension (2 processors) solves the fewest subprob-

lems. Among the multisection methods with sensitivity analysis, multibisection on

two dimensions (4 processors) solves the fewest subproblems.

To compare the diagonal method and the full-matrix method, we present the time

and iteration comparison in Figure 5-5. Ten randomly generated 10-dimensional

instances are tested. From Figure 5-5, we can see that the full-matrix method usually

finishes in fewer iterations, but it takes much longer time.

To show the efficiency of the PSDPBB method for problems of different dimen-
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Comparison for the multispliting diagonal relaxation method using differect processors
-3150

-3200- 4 i ,-

-3250 
-

-3300

-3350
0

-3400 ... 2 processors w/o sensitive anaylisis
-2 processors w/ sensitive anaylisis

-3-50 4 processors w/ sensitive anaylisis
-3450. - - -4 processors w/o sensitive anaylisis

- - - 8 processors w/ sensitive anaylisis
-3500 - - - 8 processors w/o sensitive anaylisis

--- 16 processors w/ sensitive anaylisis
-16 processors w/ sensitive anaylisis

-3600'
0 500 1000 1500 2000 2500 3000 3500 4000 4500

iteration

Figure 5-4: Convergence comparison for using different number of processors on a
50-dimensional instance

sions, we tested the PSDPBB method on the BoxQP problems introduced by Van-

denbussche and Nemhauser [23] and Burer[2]. The dimensions of the instances from

Vandenbussche and Nemhauser range from 20 to 60, and the dimensions of the in-

stances from Burer range from 70 to 80. For each problem, 16 processors are used.

Sensitivity analysis is always used in this section. Figure 5-6 shows the comparison

of computation time and number of iterations for instances of different sizes.
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Iteration comparison for the two methods

_00

E

E

:3

8

6

4

A.
0 0.5 1 1.5 2 0

diagonal method
2 4 6 8
diagonal method

Figure 5-5: Comparison of diagonal and full-matrix methods for 10-dimensional in-
stances

Time vs. dimension # of iterations vs. dimension
;nnn.

C
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a,
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40 60 80 0 20 40 60
dimension

Figure 5-6: Computation result for instances of dimensions 20 to 80
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The SDPBB method has been shown to be an accurate and effective method for

nonconvex BoxQP problems. By adopting different SDP relaxation methods to the

SDPBB method, we have found the best SDP relaxation method for SDPBB: diagonal

relaxation method. By comparing different splitting methods, we have found the best

splitting method for SDPBB: splitting using sensitivity analysis. The parallel version

of SDPBB method, PSDPBB, improves the speed of solving nonconvex BoxQP prob-

lems by using multibisection method. Two software packages are developed using

SDPBB and PSDPBB methods. The software packages are developed in C/C++

language based on the SDP solver CSDP, and can be easily installed and used as a

standalone solver. A user's guide for the software packages is given in Appendix A.

6.2 Future work

The speed of the SDPBB method may be improved by dynamic SDP relaxation

method, which means that for the full-matrix SDP relaxation method, if we can

choose some of the most important entries in the matrix Afull, we can get bounds of

good quality within a relatively short time. One possible way of doing that is the

dynamic method described below.
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From the expression:

where

we denote

-- (.)

As we have discussed in Section 4.3, the lower bound for the QP problem, -y, will

be tight if the right hand side of the equation is very close to zero. Therefore, if

the bound is tight, for the entries in X that have large values, the corresponding

entries in A should be close to zero. Therefore, these entries in A can be ignored.

For implementation, we can start with the diagonal relaxation method to get an k

and then calculate the valuable entries in A. After that, we can recalculate the SDP

relaxation using the new A. We call this SDP relaxation method the dynamic method.

We have tested on lower dimensional instances (< 20 in dimension). The results show

that the lower bound achieved from the dynamic method using n2 entries in A has

almost the same quality as the full-matrix method.

Another advantage of the dynamic method is that during the branch-and- bound

process, the information of the last iteration can be used when forming A in the

current iteration. We can calculate a new -i by scaling the Jc obtained from. last

iteration and use the new Jc to calculate the important elements of A.

The problem of this method is that the x can not give much information about the

importance of the entries in A when the the bounds calculated by ' are very loose.

More work needs to be done to improve the dynamic method for higher-dimensional

QP problems.
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Appendix A

SDPBB and PSDPBB User's

Guide

A.1 Introduction

SDPBB and PSDPBB are two software packages that solve BoxQP problems in the

format:

fBoxQP mi TAx + 2b TX + C
X ~(A. 1)

subject to -I < i < 1, i* = 1, 2, ..., In,

where A, b, c are coefficients for the QP problem: A is an n x n matrix, b is an

n-dimensional vector and c is a scalar; x is an n-dimensional vector of variables;

and the dimension of the problem is n. The algorithm for the two softwares is the

semidefinite relaxation based branch-and-bound method. SDPBB is a sequential

version and PSDPBB is a parallel version to be run using MPI. For each version, four

methods of solving BoxQP problems are provided, which are

1. diagonal relaxation method without sensitivity analysis

2. diagonal relaxation method with sensitivity analysis

3. full-matrix relaxation method without sensitivity analysis

4. full-matrix relaxation method with sensitivity analysis
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A.1.1 SDP relaxation methods and sensitivity analysis

Both the diagonal relaxation method and full-matrix relaxation method are SDP re-

laxation methods. The diagonal relaxation method solves the following primal-dual

SDP relaxation.

(P) min
A

bT

subject to

b

c-

Xn+i,n+ 1

-X

(A.2)

Xio < 1, z = 1, 2, ... , n

X >_ 0.

(D)

subject to

where

A

bT

max -y

b]

C - 7

A = diag(Ai),

-A
(A.3)

trA]

i 1,2,...,n.

The full-matrix relaxation method solves the following primal-dual pair:

A

bT

b

c - 3
Xn+l,n+1

1+Xi,n+1 + Xi,n+l + Xi~J I zi 1,2 2... , n, J = Z'+ Z,' + 2, ... , n

I + Xi,n+l Xi,n+l - Xi~J 0, Z, J = 1, 2, ..., n

1 - Xi,n+l Xi,n+l + Xiy ;> 0, 1 1, 2, ...,I n, j ,i+2, ..., n

X >_ 0

(A.4)
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(D) max A

subject to

A bI e e

bT c fu-Ie I

_ 0 i 1, 2,..., 2n,

= i + 1, ... 2n. (A.5)

where

0 A1,2 .. ,2

A1,2  0

Afu11

0 A2n-1,2n

1,2n *... A2 n-- 1 ,2 n 0

The diagonal relaxation method takes shorter time for each iteration, and takes more

iterations to solve the problem. The full-matrix relaxation method takes longer time

for each iteration but it requires fewer iterations. To sum up, the diagonal relaxation

method is usually quicker than the full-matrix relaxation method.

The sensitivity analysis decides the splitting dimension for branch-and-bound

method. The algorithm splits the box along the most sensitive dimension of the

box if sensitivity analysis is used. Without sensitivity analysis, the algorithm splits

along the longest edge of the box. Sensitivity analysis requires slightly more compu-

tation cost for each iteration, but the method with sensitivity analysis always finishes

in much fewer iterations. Therefore, the method with sensitivity analysis is always

faster than that without sensitivity analysis.

The rest of this document describes the installation procedure and usage of the

two solvers.
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A.2 Installation of SDPBB and PSDPBB

The source codes for SDPBB and PSDPBB can be found in the folder SDPBBsolver.

The source code for SDPBB can be found in the folder SDPBBsolver/SDPBB, while

the source code for PSDPBB can be found in the folder SDPBBsolver/PSDPBB. The

software package CSDP should be installed in advance. The version CSDP5.0 is

recommended. A guide for CSDP5.0 can be found in (1].

The following steps show the installation procedure of SDPBB:

1. In the file Makef ile under directory SDPBBsolver/SDPBB, specify the directory

of CSDP in the section "environment parameters to be specified during instal-

lation". If LAPACK and BLAS are available, specify the directory of these

software in the same section, and uncomment the line for LAPACK and BLAS

in the section "The library and the link options".

2. Use the command make under directory SDPBBsolver/SDPBB to generate exe-

cutable file SDPBB.

3. Run the test file using command ./SDPBB . ./testprob/randQP4.txt -diag

-sens. If the result is printed on the screen, the solver has been successfully

installed.

For PSDPBB, the software mpich is required. The version mpich v1.2.7 is rec-

ommended. Installation for PSDPBB is the same as SPDBB for the first two steps

except that everything is done under folder SDPBBsolver/PSDPBB. The third step of

installing PSDPBB is

* Run the test file using the command qsub testpsdpbbsge. sh. An id will

be given after submitting the SGE file. Use the command cat psdpbb. o<id>

to see the output file. If no error is displayed, the solver has been successfully

installed.
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A.3 Usage of SDPBB

After installation, a standalone SDPBB solver can be used in the following format:

./SDPBB inputfile <relaxation method>

[>outputf ilel

The option <relaxation method> could be

-diag diagonal relaxation method

-full full-matrix relaxation method

The option <sensitivity analysis> could be

-noSens do not use sensitivity analysis

-sens use sensitivity analysis

The inputfile specifies the coefficients Q, b, c of

shown in figure A-1.

<sensitivity analysis>

BoxQP. The format of inputfile is

4 -- dimension of the problem

-16.359574 -1.943416 -1.910960 -4.029852

-1.943416 13.542050 9.425036 8.156076 A

-1.910960 9.425036 -12.484713 1.502217

-4.029852 8.156076 1.502217 4.976934

6.676918 -6.663029 -6.772794 0.967719 bi

-1.146471 C

Figure A-1: Input file for SDPBB and PSDPBB

User can specify the name of the output file. If no output file is specified, the

result will be printed on the screen.

Additionally, the maximum splitting number (maxsplit), the accuracy of the

result (relerror/abserror) and the print level (printlevel) can be set in the file

param.sdpbb. This file should be in the directory SDPBBsolver/SDPBB. Two sample

param.sdpbb files are shown as follows:

69



maxsplit 5000 maxsplit 5000

abserror 0.1 relerror 0.01

printlevel 1 printlevel 0

For the case on the left, since abserror is used, the algorithm stops when the differ-

ence between the upper bound and the lower bound is less than 0.1. For the case on

the right, since relerror is used, the algorithm stops when the difference between

the upper bound and the lower bound is less than 1% of the value of lower bound.

If the print level is set to 1, converting the output file to .m file and running

directly in Matlab generates a vector called boundRecord which records the upper

bound and lower bound on the best interval (the one with the smallest lower bound) of

each iteration. If the print level is set to 0, the bounds information for each iteration

will not be printed in the output file. If there is no param.sdpbb file, the algorithm will

use the default parameters as maxsplit = 5000, abserror = 0.1, and printlevel =

1.

A.4 Usage of PSDPBB

The usage of PSDPBB is mostly the same as that of SDPBB except that the exe-

cutable file is submitted to the cluster through an SGE file. A sample SGE file is

shown in figure A-2.

The SGE file is submitted to the cluster by the command

qsub -N <outputfile> -pe mpich <number of processors to use>

qpbb-sge.sh.
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Figure A-2: Sample SGE file: qpbb-sge.sh

71

# ibin/sh

##$ -N psdpbb

#$ -S /bin/sh

#$ -cwd
#$ -V

##$ -pe mpich 4

progName=psdpbb

machineFileLocation=/home/sna5232/hydrainfo/computenode

mpiun -np $NSLOTS -machinefile $TMPDIR/machines $progName <inputfile> <relaxation
method> <sensitivity analysis>
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