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Abstract

In this thesis, the reduced-basis method is applied to nonlinear time-dependent convection-diffusion
parameterized partial differential equations (PDEs). A proper orthogonal decomposition (POD)
procedure is used for the construction of reduced-basis approximation for the field variables. In the
presence of highly nonlinear terms, conventional reduced-basis would be inefficient and no longer
superior to classical numerical approaches using advanced iterative techniques. To recover the
computational advantage of the reduced-basis approach, an empirical interpolation approximation
method is employed to define the coefficient-function approximation of the nonlinear terms. Next,
the coefficient-function approximation is incorporated into the reduced-basis method to obtain a
reduced-order model of nonlinear time-dependent parameterized convection-diffusion PDEs. Two
formulations for the reduced-order models are proposed, which construct the reduced-basis space
for the nonlinear functions and residual vector respectively. Finally, an offline-online procedure
for rapid and inexpensive evaluation of the reduced-order model solutions and outputs, as well as
associated asymptotic a posterior error estimators are developed. The operation count for the online
stage depends only on the dimension of our reduced-basis approximation space and the dimension
of our coefficient-function approximation space. The extension of the reduced-order model to a
system of equations is also explored.
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Chapter 1

Introduction

1.1 Motivation

As modern engineering design and optimization problems become progressively sophisticated both

in depth and breadth, the role of mathematical modeling and numerical simulation of these prob-

lems becomes increasingly important. Often, system behavior or component attributes are modeled

using governing partial differential equations (PDEs) which are in line with the underlying physics

principles. Typically, the quantities of primary concern can be the solutions to certain field vari-

ables, - e.g., velocity, density, and pressure - or in addition, certain outputs which are defined as

functionals of the field variables, - e.g., energy, flowrate, and temperature. These outputs serve to

identify a certain configuration of the system parameters, or inputs - e.g., geometry, loads, and

material properties - and are therefore modeled as functions of corresponding inputs.

While the solutions and outputs of the PDEs are of great importance to us, the analytical

solutions to these governing equations are generally not available due to the complex nature of the

systems considered, numerical procedures are sought to this end. Virtually all classical numerical

approaches - e.g., finite element method (FEM)/ finite difference method (FDM)/ finite volume

method (FVM) etc. - are adequate to solve the most common PDEs to the desired engineering

accuracy. However, there are still problems with these standard approaches. Since they consider

very dense approximation subspaces of the PDEs, the computational time for a particular input-

output query is rather long despite the continual advance of computer speeds and expansion of

hardware capacities; typical engineering design and optimization problems require considerable
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number of input-output evaluations in realtime, which are not feasible to be addressed under such

response time. Consequently, it is inefficient to perform any system design and optimization, robust

parameter estimation of properties and states, or control of missions and processes.

Hence, the objective of this thesis is to develop a numerical approach that permits efficient

real-time evaluation of the solutions and outputs of the PDEs and produces certifiable good results

as compared to the classical PDE solution ("truth") approximation.

1.2 Problem Statement

Convection and diffusion arise in various engineering applications such as turbomachinery, gas and

thermal dynamics, laminar and turbulent flows, viscoelastic flows, shallow water transport, and

transport of contaminant in porous media. Numerical methods for convection-diffusion problems

are of considerable interest in computational fluid dynamics (CFD).

In this dissertation, we will address the parameterized non-linear time-dependent convection-

diffusion PDE of the following type:

u + V. f(u) -vV 2u = 0, in Q x (0, T] , (1.1)

with appropriate initial condition u(x; v, t = 0) = uo(x) and boundary conditions, here Q is the

closed physical domain in R d with Lipschitz boundary &Q; and f(u) = (fi(u),... , fd(u)), where

fg(u) - a nonlinear function of the field variable u - is defined as the flux in the direction of

gth coordinate. To generalize the parameter-dependence of the problem considered, the viscosity

constant v is denoted by a general parameter y, which varies within a prescribed parameter domain

'D C R. The field variable of interest u(x; p, t) is thus a function of the spatial coordinate x, the

parameter v, as well as the time t. Moreover, we are also concerned with certain output of the

PDE, defined as a functional of the field variable, hence, also a function of the parameter y and

time, s(Y, t) = f(U(Y, W))

In actual practice, due to infinite dimensionality, the exact solution of u(p, t) and s(y, t) are

not obtainable. Instead, we calculate what is known as "truth" solution and output, which are

the approximation of the "exact" solution and output. We henceforth introduce X C Xe, a

"truth" finite element approximation space of finite but very large dimension K. The finite element

14



approximation of the "exact" problem can then be restated as: given P E D, our "truth" finite

element solution is now uh(P, tk), tk = kAt, 0 ; k < K = T/At, which resides in the pth-order finite

element approximation space XP of very large dimension A( -At is a constant timestep ; thus our

"truth" output becomes sh(P, tA) = (uh(P, tk)). We shall assume that XP is sufficiently rich and

At is reasonably small such that uh(P, tk) (respectively, sh(p, tk)) is sufficiently indistinguishable

from u(p, t) (respectively,s(p, t)) for all p c D at the accuracy level of interest.

Typically, the required dimension g to satisfy this assumption is very large, - even with

the application of appropriate adaptive mesh generation/refinement schemes - and in fact too

large to perform real-time design and optimization queries effectively. The reduced-basis (RB)

approximation is therefore needed and shall be built upon the "truth" finite element approximation.

The evaluation of the RB approximation should also be conducted based on the comparison with

this "truth" approximation.

We shall explore both finite element methods, and reduced-basis methods, as well as several

model order reduction techniques in the following sections.

1.3 Literature Review

1.3.1 Finite Element Methods

Finite element methods (FEM) are most frequently used for solving PDEs that govern many engi-

neering problems whose exact solutions by analytical techniques are very hard or even impossible

to find. FEM, as a numerical method, is hence used to obtain an approximation solution. The

point of departure for the FEM is a weighted-integral statement of a differential equation, called

the weak formulation.

In the FEM, we seek the approximate solution over a discrete spatial domain known as trian-

gulation Th of a physical domain Q : Q = hJr Th, where Th, k 1,...,K, are the elements;

Xi, i 1,...,A are the nodes, and the subscript h denoting the diameter of the triangulation Th is

the longest edges of all elements. We define a finite element "truth" approximation space XP C Xe

as

X = V Xel VI>, c PP(Th), VTa e T } (1.2)

where PP(Th) is the finite element space of polynomials of order up to pth over element Th.
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To obtain the discrete equation of the weak formulation, we express the field variable u(p) C X

in terms of the nodal basic functions ,o E X( , pi(xj) = j such that

Xh span{Cpi,.. . , pg}, (1.3)

u~)=2u~~ioEXP. (1.4)
i= 1

here ui(p), i = 1, ... , K, is the nodal value of u(p) at node xi.

The spatial discretization (Triangulation) technique described above is the general approach of

FEM. Depending on the connectivity of the neighboring elements and its nodes, the projections

of the governing equation from "exact" space to "truth" space can be categorized into continuous

Galerkin (CG) and discontinuous Galerkin (DG) methods. A large amount of works [11, 12, 7, 31]

has been devoted to the development of DG methods for linear and nonlinear convection-diffusion

problems recently. DG methods are highly parallelizable and can easily handle complicated geome-

tries and boundary conditions. They are also locally conservative, high-order accurate, and are

well-suited to complicated geometries and boundary conditions [12]. All these attractive properties

are the main reasons for our choice of the DG methods for the numerical solution of equation (1.1).

1.3.2 Reduced-basis Methods

The reduced-basis method was first introduced in the late 1970s in nonlinear structural analysis for

single parameter problems [1, 29], and subsequently abstracted and analyzed [3, 6, 16, 34, 37] and

extended [19, 20, 32] to a much larger class of parameterized PDEs, and further developed more

[16, 32, 34] to include a priori error analysis.

The reduced-basis approach is local in parameter space in both practice and theory. Later

work [25, 26, 46, 28, 35, 42, 22, 13] differs from these earlier efforts in several important ways [21]:

firstly, global approximation spaces are developed; secondly, rigorous a posteriori error estimators

are introduced; thirdly, offline/online computational decompositions are exploited [3]. These three

ingredients enable us to reliably decouple the generation and projection stages of reduced-basis

approximation, thereby improving the computation cost by several orders of magnitude.

Progress has also been made in a posteriori error estimation for reduced-basis approximations.

In particular, a posteriori error bounds have been successfully developed for (i) linear [25, 26, 46, 35,
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21] and (ii) at most quadratically nonlinear [28, 42, 22] elliptic partial differential equations that are

affine in the parameter. These enable the development of very efficient offline-online computational

strategies relevant in the many-query and real-time contexts. The operation count for the online

stage - in which, given a new parameter value, we calculate the reduced-basis solution and output

- depends only on the parametric complexity of the problem and on the dimension of the reduced-

basis space (typically much smaller), but is independent of the dimension of the underlying "truth"

finite element approximation space (typically very large).

1.3.3 Model Order Reduction

Generally, the model order reduction (MOR) approaches can be categorized into three types: (i),

techniques using Karhunen-Loeve expansion (or Proper Orthogonal Decomposition); (ii), algo-

rithms based Krylov subspace methods; (iii), methods based on Hankel norm approximants and

balanced truncations. The need for efficient simulation tools for dynamical (time-varying) sys-

tems arising in circuit simulation, structural dynamics and micro-electro-machanical systems is a

driving force behind the development of MOR approaches. The basic idea applied by all of the

approaches is a projection from high-dimensional state space to very low dimensional state space,

which results in the reduced-order model of the original system. In the POD approach, probably

the most popular model-order reduction technique, time is considered as the varying parameter,

and "snapshots" of the field variable at different times are obtained from either a numerical or

experimental procedure. The optimal approximation space is constructed by applying the singular

value decomposition to these vectors, and keeping only the N vectors corresponding to the largest

singular values. Since the singular values are related to the "energy" of the system, only the modes

preserving the most energy are preserved. The reduced-order model is then obtained by a Galerkin

projection onto the space spanned by these vectors. POD has been successfully applied in many

fields: turbulent flows [24], fluid structure-interaction [14], non-linear structural mechanics [30],

and turbo-machinery flows [44].

A great deal of attention has also been devoted to Krylov subspace-based methods for efficient

modeling, effective realization, and fast simulation. The basic idea of these methods is to approxi-

mate the transfer function of original systems by orthogonal basis functions and projecting original

systems onto that subspace [18]. Owing to their low computational cost and robustness, the Krylov

17



subspace-based methods have been proven very attractive for producing reduced-order model of

many large-scale linear systems and have been broadly used in engineering applications: structural

dynamics [2], optimal control of fluid flows [23], circuit design [10, 43], and turbomachinery [45].

In balanced truncation approach, the Hankel Singular Values (HSV) of the controllability and

observability gramians of the system are computed. The state-space dimensions with low HSV are

truncated, leading to a reduced-order model. For high-dimensional systems, computation of the

required gramians is very expensive; combining POD and balanced truncation can overcome this

limitation.

A large number of model-order reduction techniques has also been developed in particular to

treat nonlinear time-dependent problems [2, 9, 8, 27, 33, 36, 40, 13]. Linearization approaches [13],

for example, usually suffer from a lack of efficient representation of the nonlinear terms, whereas

polynomial approximation approaches [9, 33] usually exhibit a fast exponential growth of compu-

tational complexity with the degree of the nonlinear approximation order. These two methods

are thus quite expensive and do not address strong nonlinearities efficiently; other approaches for

highly nonlinear systems (such as piecewise-linearization) have also been proposed [36, 39] but also

at the expense of high computational cost and little control over model accuracy.

It is noted that most model-order reduction techniques focus mainly on reduced-order modeling

of dynamical systems in which time is considered the only "variable;" the development of reduced-

order models for parametric applications is much less common [41, 15].

1.4 Approach

The goal of this thesis is the rapid and reliable computations of the solution and output for non-

linear time-dependent convection-diffusion PDEs. To achieve this goal, we pursue the reduced-basis

method with appropriate model reduction techniques. In our problem, both time and viscosity

in equation (1.1) are treated as parameters. For convenience below, we introduce time-discrete

sampling set T {to, ... tt}, parameter-time space D = D x T, and parameter-time variable

1L (pu, tk) C . The foundation of the reduced basis method is the realization that the set of

all solutions uh(l), as A varies, resides in a finite and low dimensional solution manifold W) /

{Uh([) I 1dE b}. Hence, Uh(A) can be approximated very well by its projection uN(P) on a finite

vector space of N vectors WK = span{cn Uh(in4), 1 < n < N}, where Uh(Gi), 1 < n < N, are

18



the finite element (discontinuous Galerkin) solutions of equation (1.1) at N selected points in the

sample S ={ (P', tk-) E A, . . . , = (py, tky ) E D}.

The reduced-basis approximation approach proposed here will first build a reduced-basis ap-

proximation for the field variable. Instead of the classical Lagrangian basis (n uh(ft), 1 < n < N,

we shall use a POD basis, DN = span{On ,1 n < N}. In the framework of this thesis, we view

POD as a "procedure" that generates a set of optimal basis functions rather than a "technique"

that establishes reduced-order models.

Next, an empirical interpolation method is used to obtain inexpensive approximations for the

nonlinear terms of the PDE, which then allows an efficient offline-online computational paradigm.

Two different reduced-basis formulations are then derived for the nonlinear time-dependent

convection-diffusion equations. Asymptotic a posterior error estimators are proposed as a means to

quantify the reduced-basis approximations.

The thesis begins in Chapter 2 with a description of Runge-Kutta discontinuous Galerkin

(RKDG) numerical method for our nonlinear time-dependent convection diffusion PDE in equation

(1.1). In Chapter 3, we present the ingredients of reduced-basis approximations, namely, the POD

procedure, the Galerkin approximation, and the empirical interpolation procedure; followed by two

reduced-basis formulations - function approximation and residual approximation. Extensions of

the approach for the compressible Euler equations are finally discussed in Chapter 5. Numerical

examples will also be presented in each chapter to access the accuracy and capability.
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Chapter 2

Runge-Kutta Discontinuous Galerkin

Method

In this chapter, we describe a Runge-Kutta discontinuous Galerkin method for obtaining solutions

of nonlinear time-dependent convection-diffusion PDEs, upon which our reduced-basis approach is

built and compared with. Two steps are involved in this method, namely, finite element space dis-

cretization by a discontinuous Galerkin approximation scheme, and a Runge-Kutta time integration

scheme.

2.1 The DG Space Discretization

We first introduce a triangulation, Th, of the domain Q consisting non-overlapping elements Th,

such that Q UThET Th; for a typical element Th, the set of its boundary edges is denoted by

E(Th).

Before proceeding to derive the weak formulation for DG discretization, an auxiliary variable

q = Vu is introduced. The problem in equation (1.1) is rewritten as follows

U+ V -f(u) - PV 4= 0, in Q x (0, T],
Ot (2.1)

q = Vu, in Q x (0, T].

Next, we define two spaces in which the DG solutions (uh, qh) to our finite element approxima-
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tion reside,

X= {v e L2 (Q) v IT, e PP(Th), VTh c Th}, (2.2)

Yh {r E (L2(Q))d I rgIT,, E PP(Th), VTh E Th, 1 < g < d}, (2.3)

where PP(Th) is the finite element space of polynomials of order Up to pth over element Th, and

L2 (Q) is the Lebesgue space of square-integrable functions over the domain Q C Rd.

By multiplying the two equations in (2.1) with test functions Vh E XP and rh C Y§ respectively,

and integrating by parts, we obtain the weak formulation of the problem: find (uh, qh) EXh x Yh

such that VTh e Th,

/ f h f f(uh)-Vh + i(fh, ny)vh
it at Th -YEE(T) 'h

- - vh -V /h - j h ' nYh Vh = 0, Vh E XP, (2.4)
h -YhES(Th) ly

qh ' rh + uhV.rh- f f hrh nlYh = 0, rh C1 . (2.5)
Th Th -hME(Th) h

where f(Uh, ny), 4h and uh are called numerical fluxes, and are approximations to the values

of the respective functions on the boundaries Yh E S(Th) of the element Th. In DG methods,

different schemes are used to evaluate these terms. For the numerical flux f(uh, n-0, a simple local

Lax-Friedrichs flux scheme can be used,

f(uh, nY) = (f(u+) + f-(u)) - C(uh, ny)(u+ - u-) (2.6)

and

1 af(\
C(uh, nYh) - max f(uT) - a (iT 1

h (2.7)

where UTh and uT' are the means of the numerical solution of elements Th and Th' sharing the same

edge yh.

For the numerical fluxes 44h and uh, the local flux formulae proposed in [12] are used, which

gives rise to what is known as the local discontinuous Galerkin (LDG) method, and allows the
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variable qh to be eliminated locally within each element. The local fluxes are defined as follows:

fh =-U

4h =+~

(2.8)

(2.9)

where (ut, q) (respectively, (u-, q-)) are the traces of (uh, qh) on -yh from the interior (respec-

tively, the exterior) of element Th. That is, we are taking the exterior and interior limits for the

numerical fluxes of uh and qh. Of course, the other pair - interior limits of uh and exterior limits

of qh - could have also been taken. To eliminate the auxiliary variable, we introduce a linear

operator L : X' -* Y' such that VWh E X', L(wh) E Y' is the solution to

Th
(2.10)L(wh) .rh = WV - r S + hrh -n, Vrh E Y.

Th YhE(Th) Ih

It thus follows from (2.5) that qh = L(wh), and q = L(wh). Hence the weak formulation from

(2.5) can be rewritten in terms of the solution Uh only:

M( , Vhat' IT f ( h ) - VVh
ThE h h

(2.11)
- fT ( h, n-h)vh - pa(Uh, vh), VVh C X'.

vn ) b f a aTh d as

m(w, v) and a(w, v) are two bilinear forms and are defined as

m(w, v) = Th Th

Tw E Th

a(w, V) = EfhL(w) - Vv

Th E Th

Note the weak form

discretization.

in (2.11) is defined over the whole domain Q. It remains to address the time

23
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2.2 The RK Time Discretization

To begin, we define the residual r as

r (Wh, Vh; P) -- E f (W) - Vo--

Tl r ET
Z J f(wh, nfl,)Vh - pa(wh, Vh), VVh C XP. (2.14)

YhE(Th) h

The weak formulation (2.11) can thus be written as

m ( , Vh - r (uh (0, t), vh; P), VVh E X, in(0, T]. (2.15)

We consider the fourth-order accurate explicit Runge-Kutta scheme for time integration. We use a

constant timestep At and discretize the time tk = kAt, 0 < tk < T. The problem can be restated

as: find Uh(P, tk) c X, 1 < k < K such that VVh E X,

m(Uh(P, tk), vh) = m(Uh(P, tk_1), vh)
- A r(h (I , t k .1), v h; P)

- 2r(uh(Ptk-1) + AtUk-1

2 UhJ Vh; Pi)
+ 2r(h(pt,tk_1) + t U k-v1I; P)

+ r(Uh(P, tk_1) + AtUh-,3 IVh; [0),

where the intermediate solutions of the field variables -h h,21 Ih,3 k1 r omue s
hJ h,2 xp

m(uJ 1 , vh) = r(Uh (P, tk-

m(uh 3 ,2vh) = r (U(P, t_

mh(~,3 V) = r (U (ft, tk_

-1), vh; P),

+At Uk-i
2 Uh 1, V; P)

) At k-1
4)2 h,2 ;P

Note that, the initial value used for time integration is uh(P, to) - UhO(X), which is the L2 projection

of uo(x) on the DG discretized space XP.
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VVh C Xh

VVh C X[h

VVh C Xah

(2.17)



Chapter 3

Reduced-Basis Methodology

In this chapter, we describe the reduced-basis methodology used to solve the nonlinear convection-

diffusion problems defined in Section 1.2. The method first applies the proper orthogonal decom-

position (POD) procedure to build a reduced-order basis for the field variables. For the parameter-

dependent non-linear terms that arise in the PDE, it relies on the empirical interpolation procedure

developed in [5, 17] to provide inexpensive coefficient-function approximation and allow efficient

offline-online computational decompositions. We then discuss the reduced-basis formulation, which

is based on the coefficient-function approximation for the non-linear functions. We will also briefly

introduce another simpler formulation, which is based on the coefficient-function approximation

for the residual vector. Asymptotic a posterior error estimators are then developed to quantify the

accuracy of the models.

3.1 POD Procedure

We apply the POD procedure to generate basis functions for the field variables {qn(x), 1 < n < N}

from a set of linearly independent "snapshots" {Uj(x) u h(x; ft), Aj C , 1 < j < P}; here

Uh (x; Pj),1 < j < P, are discontinuous Galerkin solutions at different parameter-time values Ap;

recall that Aj is defined in section 1.4, as a parameter-time variable f = (P, tk) E D. Often, a large

number of snapshots P will be chosen to describe the behavior of the system as comprehensive as

possible; hence, the associated computational cost can be expensive. Given the set of snapshots, a
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two-point spatial correlation function can be defined as

(X, X') = E U7 (X) U (X') ,(3.1)
j=1

which accepts the following spectral decomposition

P

IC(x, x') = Aj O (x) Oj(x') .(3.2)
j=1

Here the set of basis functions Oj, 1 < j < P, are orthonormal (i.e., (0j, 5j) ij) and ordered in

such a manner that the associated eigenvalues

P

AJ Oj (x), U(x) (3.3)

satisfy Aj > Aj+l.

For a given N < P, the POD procedure determines On, 1 < n K N, so as to maximize the

captured energy
N P N

EN=E n .(X), U1~x -W An .(3.4)
n=1 1=1 n=1

The first few basis functions thus represent the main energy-containing structures in the snapshots,

with their relative importance quantified by Ak. Typically, the number of basis functions needed

N(< P) is chosen as the smallest integer satisfying EN 1 An/ EP 1 Aj > 0.99. It can be shown

that maximizing EN amounts to solve the eigenfunction equation

(K(x, x'), O(x')) = A#(x) (3.5)

for the first N eigenfunctions.

The method of snapshots [40] expresses the empirical eigenfunctions O(x) as a linear combination

of the snapshots
P

O(x) = a U1(x) (3.6)
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Inserting this representation and (3.1) into (3.5), we immediately obtain

Ca = Aa , (3.7)

where C is given by Cij = (Ui(x), Uj(x)) , 1 < i, j < K. The eigenproblem (3.7) can then be

solved for the eigenvalues and eigenvectors from which the POD basis functions O4(x), 1 < n < N

are constructed by appealing to (3.6).

We denote by -M the approximation space spanned by these basis functions, i.e., 4'

span{11(x), .O., 4(x)}. A reduced-order model for the field variables might be derived through a

Galerkin projection onto this approximation space as described below.

3.2 Galerkin Approximation

Galerkin approximation of the non-linear terms refers to applying a standard Galerkin projection

method and evaluating the non-linear terms of the PDEs from the reduced-basis of the field variables

already established.

Applying a Galerkin approximation to our equation (2.15), using the associated reduced-basis model

would give: find uN(Y, t) E Ib such that

m(i'N(P, t), VN) = r(uN(P, t), VN; Y), VVN E 'MN, in (0, T] . (3.8)

where for any WN E c, r(wN, vN; P) is defined similarly as in (2.14),

r(wN, vN; Y f(WN)'VVN- (wN, )vN -pa(WN, VN), VVN C b. (3.9)
ThETh -YhhE-(T) 

and the numerical flux function f is defined in (2.6).

Observe that if the function f consists of low order polynomial functions, we could substitute

WN = j=1 WN,JjJ into f(WN) = (fl(wN), - - , fd(wN)) and f(wN, n), and easily expand them as

the summations of products of the coefficients WN,j and basis functions Oj [42, 20]; the evaluation

of the residual r(wN, VN; P) would then be inexpensive and readily implemented by an online-offline

procedure.

Unfortunately, this strategy does not work for high-order polynomials or non-polynomial nonlinear-
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ities: r(wN, VN; Y) can only be evaluated by explicitly constructing WN WNjdj, f(WN), and

f(wN, n) in the online stage; the operation count for the online stage will therefore scale as some

power of jV - the dimension of the underlying finite element approximation space. Due to this

0(.) dependence, it is no longer ingenuous to interpret (3.8) as a reduced-order model since the

resulting computational advantage relative to classical approaches using advanced iterative tech-

niques may only be modest. Hence, the nonlinear problems raised here require a special treatment

such that the incurred computational cost depends only on the dimension of reduced-basis approx-

imation space, but not on M. Towards this end, we develop a collateral reduced-basis expansion

for the nonlinear terms using the empirical interpolation procedure [5, 17] reviewed below.

3.3 Empirical Interpolation Procedure

For a general parameter-dependent nonlinear function g(wh(x); x; A) with wh E X', the idea here is

to construct an inexpensive approximation gM (x; f) to g(wh(x); x; A) via an approximation space

TI' = span{4'm(x), 1 m < M} and associated set of interpolation points T = {zi,..., zu}. In

particular, ggh (x; XP) 'EM which is known as the coefficient-function approximation [5, 17] to

g(wh(x); x; f) is given by
M

yM (; (A) )@m(x), (3.10)
m=1

where the coefficients /3m (A), 1 K m K M, satisfy

M

Y, Om(zi) Om (A) = g(wh(zi); zi; A), 1 5i K M. (3.11)
m=1

Of course, the quality of our approximation depends crucially on the basis functions and interpola-

tion points. Here Tg and Tg are determined so as to provide good approximation to g(wh(x), x; )

for wh close to the manifold WVh {Uh(I) I A E D}. Our attention is thus directed to the manifold

Wh, not the entire function space XP. The construction of Tg' and T' are as follows.

The approximation space, '1% span{4'm(x),1 K m K M}, is constructed upon the set of

snapshots {g(uh(i); .; ft3), t E ,1 < j < P} by using the POD procedure described earlier;

recall that Uh(ft) is the discontinuous Galerkin solution at Aj. Hence, although the coefficient-

function approximation gM (x; P) is defined for general Wh c XP, we expect good approximation
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only for Wh close to the manifold Wh on which ' is constructed.

Once the basis set 4'm(x), 1 m < M, are available, the set of interpolation points, T' =

{zi,. .. ,zM}, can then be constructed. We first set zi = arg ess supQ li(x)1, B 1 = 4 1 (zi).

Then for m 2, ... , M, we solve the linear system EZ77 o7-1 4(zi) = Om(Zi), 1 < i m - 1,

and set rm(x) = 4m(x) - E Lm-1 o7j <(x), zm = arg ess supQ Irm(x)l, and Br = Oj(zi),

1 < i,j m. It can be shown that the matrix By (zi), 1 < i,j M, constructed in such way

is invertible [5, 17].

Theoretical and numerical aspects of the empirical interpolation have been analyized in great

detail in [5, 17]. Note however that the presented procedure slightly differs from the procedure

outlined in [5, 17] in the choice of basis functions: rather than forming the basis with a greedy

selection process as in [5, 17], we choose to use the POD procedure; and the orthonormalization of

the basis set becomes unnecessary as our POD basis set is already orthonormal with respect to the

L 2 inner product. We are now ready to incorporate this empirical interpolation into the Galerkin

approximation for the efficient evaluation of the reduced-order model.

3.4 Reduced-Basis Formulation

3.4.1 Formulation I: Function Approximation

Fully Discrete Equations

To begin, we first define the necessary approximation spaces and the associated interpolation points

for nonlinear terms:

* field variable u, <bU = span{# 1 (x),.. .,N()

* nonlinear functions fg, 1 < g < d, 'I', = span{,. . . , g}, T,= {z,. .. z

" nonlinear numerical flux function I, 'I span{1,..., iP,}, Tj = { 21, .... , }

For simplicity, we assume that Mg = M M, 1 < g < d, throughout this section. Note that the

coefficient-function approximations are defined on Th for the nonlinear function fg (UN), 1 < g < d,,

but on F(Th) for the nonlinear numerical flux function j.

Next, by replacing the nonlinear terms fg(UN(,u, t)), 1 < g < d, and f(UN(11, t), n) with the

coefficient-function approximations fgjM (x; p, t), 1 < g d, and fTN,M (x; p, t), we obtain the
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reduced-basis model: given p C D, we are to evaluate

SN,M(P, ) (UN,M (P, t)),

where UN,M C 4)" is solved by

m(iLN,M(1, t), VN) = i(uN,M (P, t), VN; ), VVN C 'D'N, in (0, T] . (3.13)

For the reduced-basis model, the residual vector f(wN, vN; P) is defined as

VVN E Iy , (3.14)

where ff ,1 g < d, and fwN are computed by

M

fWN (x) = S (x),
m=1

M
fWN (X) mm(X),

m=1

M

E Lmg(zg) g = fg(WN(Zj),
m=1

M

E m(2j)f m
m=1

1 < g < d, 1 <j < M

(3.15)

1 <j KM.

Again, using the fourth-order accurate explicit Runge-Kutta scheme, we integrate the reduced-basis

system (3.13) in time and obtain uN,M(ft, tk), k 1.., K, from

At
m(uN,M (,, tk), vN) =m(uN,M (P, tk-1), vN) + 6 (i uN,M (1, tk-1), VN; P)

At k1At
+ 2f(uN,M (tk-1) + 2 UN 1, VN; ) + 2f(UN,M (P, tk-1) + 2 uN ,2, VN; P)

+ i (UN,M (t, tk--1) + AtUN ,3, vTN; P) )
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in (0, T], (3.12)

f (WN, vN; P)
9 Og

- E f f7(X)vN -a(WN,vN),

'YhEE(Th) TYh

d

ThElh 9=1T

(WN ( j), n1( j)), I

VVN E 4)N , (3.16)



where intermediate solutions of the field variables - uN , u k-, 2, and uk, 3 -

m(uk-1 2 , VN) i(UN,M(P, tk-1) + U N ,VN;P),

m(UN, ,3,v N) = i(uN,M(P, tk- + 2 N 2 ,vN; i),

VVN E 4N

VVN C 4%

VVN C bN

(3.17)

The RB output at a discrete time instance will then be calculated as

SN,M (Y, tk) = f(UN,M(Y) tk)) 1 < k < K . (3.18)

In what follows, we develop a computational procedure which allows to solve the linear system in

(3.16) and evaluate our RB output efficiently.

Offline-Online Procedure

We first need to express the field variable as a linear combination of the basis functions

N

UN,M (P, tk) = , aj (P, tk)j -i (3.19)
j=1

Substituting this representation into (3.16) and using the same bases for VN, i.e. VN Oi, 1 < i < N,

we have the following linear system for the coefficients aj(P, tk), 1 < j < N,

13 m(qj, Oi)aj (Y, tk) = m(0, 9i)aj (y, tk_1) + (uNM(, k-1

j=1

+2i (uN,M (P, tk-1) + 1 10; [) + 2f(UN,MA(tL tk-1) + At U k-,
2 ( / j 1 ) + 2u N ;N) , M , . . ; .L)

(3.20)

The initial coefficient aj (p, to) needs to satisfy

aj(P, to) = (0j, Uh(P, to))
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(3.21)

are solved from

mn(u k- 1, N) (UN, M (I-, tk -1), VN; P)

AN

j=1



Here 'uk,1 =a 1  , ukI k- _ N 1#j , and Uk-1 EN 1 ak-0 d, and the coeffi-Her uM 1=:Ejl ll Oj UM2 E=10',jN,M,3 j= 3jJ

cients ak-i ak-1 7 1 < j < N need to satisfy

N

Z m(j, 05t)a 1 -- f (uN,M(P, tk-1), Oi; [L), 1 < i < N
j=1

N
mN~ j k-1a~ At k-i1 <<m i UN,M(P, k-1) - 2 N 1, Oi; P , 1 < i < N (3.22)

j=1

N

N -1  U N ,M (P , t k - ) ± u N ,2 , 1 A;t k, 1 < i < N .
j=1

For any WN = N1 WNJj inxI the reduced-basis residual can now be evaluated as

d M

f(wN, ;) 31 5 J X) 0i
g=1 m=1 Th ET, Th Xg

M N

- f m  I f m(X)Oi-lP WN,ja(Oj,Oi), (3.23)
M=1 ythEg(Th ) Yh =1

where the coefficients /31, /m, 1 < f < d,1 g < M, are calculated from

M N

5f(Z (Zg)f =m fg wN,j j(z) , 1 g < d, I < i < M
m=1 j=1

M N

S <m(2i)fm =f WNj j(i), n(i)), 1 < i < M
m=1 j=1

We have now successfully decomposed the residual f (wN, /i; P) into a summation of products of

parameter- dependent coefficients and parameter-independent quantities, the approximation proce-

dure thus admits an offline/online computation decomposition [26, 35, 4, 20, 28]. For practical

implementation purposes, we rewrite the equations (3.20) - (3.24) in the form of vector-matrix

products. Let's first introduce the following parameter-independent matrices and vectors.

A' = m(j , A a j),L = (uAo, , 5 ), 1 < ij < N

ij Ci YKfOj) e~ (h5j, g dl <N 1j MBq- = Oq(zq), Eij = <js) g < d, 1 < i, j < M

Cj =x 7r y f, ,8,j = F-EE(Ths fM 4210 < g < d, I < i < N, 1 < j < M

D = j(z ), j= #j( j), i = n(2j), 1 g d, 1 j < N, 1 < i < M.
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It thus follows that the reduced-basis output can be calculated as

SN,M(P, tk) = LTa(, tk), 1,. . , K , (3.25)

where a(P, tk) E RN is the new unknown of interest in our reduced-basis approximation model,

instead of u(P, tk) c RA, and is the solution of

a(P, tk) = a(P, tk_1) - A ((a(, tk_1)) + 2(a(p, tk1) + Atak)

+- 2R(a(p, t_) + At2k~1) + a1 t__) + Atak-1) , k = 1 . K . (3.26)

From (3.22), the coefficients ak-1a k-1I and a - 1 can be calculated from1 2 ca

I 4 R(a(p, tk_1))

+ a(p, tk_1) - Aak-1) (3.27)

-1 =(a(P, tA) + 'ta21)

and from (3.23), for any a E RN, the reduced-basis residual vector can be calculated as

R(a) = Elfi (DYo) + E2 f 2 (D 2a) + Ef (b, ii) - pEo, (3.28)

where E' = (A)-Cl (B')-, E 2 = (A1 )-1C2 (B2)- 1 , P = (A)- 1 C(B)- 1 , and E = (A 1 )- 1 A 2 .

Finally, the offline/online procedure for the efficient evaluation of sN,M(p, tk) is implemented

as follows:

- In the offline stage, (performed once)

" First, solve for the DG solutions of the field variable, which consist the snapshots set {uh(X; p),

p, C b, 1 < p < P}

" Next, apply the POD procedure to construct the approximation space of the field variable

N, and the approximation space of the nonlinear terms T', '±M, 1 g _ < d.

" Then use the empirical interpolation procedure to obtain the sets of interpolation points

Tmg, TM, 1 < g < d, for the nonlinear terms.
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* Finally form and store the parameter-independent quantities D9, fi, E, E9, P, h, and ao, 1 <

g < d.

- In the online stage (performed many times), we simply perform the sum (3.26) to obtain

a(P, tk) C RN, and evaluate SN,M(P, tk) from (3.25).

With this decomposition, the cost of our reduced-basis approach is determined by the operation

count for the online stage: computing E(-) takes O(6MN + N 2) function evaluations; performing

the sum in (3.26) requires four evaluations of R(o); moreover, the output evaluation in (3.25) takes

O(2N) operations. In summary, the total operation count is O(4K(6MN + N 2 )). Not surprisingly,

the complexity of online stage is independent of K. To expect significant savings relative to the

DG approximation sh(P, tk), it is required that M, N < .

3.4.2 Formulation II: Residual Approximation

Another reduced-basis formulation, which is simpler in implementation, but less stable than the

previous formulation, will be briefly introduced in this section. This second formulation aims

to form a reduced-basis model via the coefficient-function approximation for the residual-vector

directly, instead of for the nonlinear functions in the first formulation.

Fully Discrete Equations

To begin, we write the Galerkin approximation (3.8) in the following form

<bTMOUN(P,t) =TR(uN(P, t); P), in (0,T] - (3.29)at

Here <b = [01, ... , ON] is the matrix of N basis vectors; M is the mass matrix and is calculated as

Mi = m(pj, (pi), 1 < i, j < K; and the residual vector R(w; p), Vw C RV is calculated as

d K A
R(w;[z-) g=Te f9(O(~ 3 W& W(X

g =1 Th E Th f7/ =1 i1 9

M K
f 5j Jf5 (x) wj,n) Y. i( )vi

-YhEE(Tjh) _=_ i=1

- ia ( EOj(x)wj S pW(x)vi), VVE RPA, (3.30)
j=1 i=1
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where yo (x), 1 j < AN, are the finite element basis functions associated with the space X(.

Similarly as before, besides the approximation space for the field variable, we also need an approx-

imation space for the nonlinear terms. In this case, it is the residual function R(w; p) in (3.30).

We denote the approximation space by kR = span{'{,... , } E RIxN, and the associated set

of interpolation points by T = {z,.. , ; moreover, we denote the nonlinear term approxima-

tion space evaluated at the interpolation points by a square matrix, Bim = OR (zY),1 i m < M.

It then follows that our coefficient-function approximation R'(x; P, t) to R(w(p, t); p) for any

w(p, t) e R is given by

R'(x; p, t) = '1 3(y, t), B/(x; p, t) = bw(y, t) , (3.31)

where bw(p, t) c RM with b'm(p, t), 1 < m < M, are the values of R(w(P, t); At) evaluated at the

zM. By writing uN,M(P, t) = a(p, t) and replacing R(uN(P, t); P) of (3.29) with RN'M (x;Apt) of

(3.31), we can reach the reduced-order model: given A C D, we are to compute the output

SN,M(P, tk) = La(pu tk), in 1 < k < K, (3.32)

where a(P, tk) e RN is the solution of

At / Atk
a(P, tk) = a(P, tk _1) + A E b(uNM (f, tk-1)) + 2b(uNM(P, tk-1) ± Uk-,

+2b(uNM (P, tk-1) + Uk, 2 ) + b(uNM(P, tk-1) + Atu , 3 )) (3.33)

here ukN 1  ,ak-l uk-1 bak-1 and uk1 3 k and the coefficients ak-i ak- and

a3 -1 are calculated from

k-i = Eba1 Eb(UNM (P, tk -1,)),

a-12  Eb (UNM (P, tki) 2 A UNk1M) (3.34)

-1 = Eb(UNM (P, tk-1) + A ,

and A = )TMG, C = IbT, E = A- 1CB 1 , and L C RN with Lj = f(Oj), 1 < j < N.
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Offline-Online Procedure

The reduced-basis model in (3.32) - (3.34) is now ready for offline-online decomposition. Similarly

to the first formulation,

- In the offline stage, (performed once)

" First, solve for the DG solutions of the field variable, which consist the snapshot set {Uh (x; p),
/P C 'D, 1 < p < P}

" Next, apply the POD procedure to construct the approximation space of the field variable

4, and the approximation space of the nonlinear residual vector T.

" Then use the empirical interpolation procedure to obtain the set of interpolation points TM

for the residual vector.

" Finally form and store the parameter-independent quantities b, T, and E.

- In the online stage (performed many times), we simply perform the sum (3.33) to obtain

a(h, tk) e RN, and evaluate SN,M(P, tk) from (3.32).

The online operation count in this formulation is O(4K(MN + KM)) to solve for the reduced-

basis coefficients a(P,tk),0 < k < K, and O(KN) to compute the output sN,M(P,tk) at tkO <

k < K. Note that to compute buN,M (y, tk) means to compute the residual vector R(4a(p, tk); P)

at the M interpolation points, which costs O(KM) operations; the factor r, depends on the

dimensionality of the problem d and polynomial order of approximations p.

3.5 A Posterior Error Estimator

The reliability of very low-dimensional reduced-basis approximations of parametrized partial dif-

ferential equations can only be assured by a posteriori error estimation procedures. To ensure that

our RB approximation satisfies the accuracy level of interest, we hence need to develop associated a

posterior error estimators. Following [35], we define asymptotic output upper and lower estimators

respectively as

sN,M(Y, tk) = SN,M(Y, tk) ± AN,M(/, tk), (3.35)
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where A',(, tk), the output error estimator, is given by

1
ANM (11, tk) - 1S2N,2M (P, tk) - SN,M (P, tk) I (3.36)

T

for some T E (0,1). In addition, we define the asymptotic error estimator for the error norm

Uh(Ap,tk) - UN,M(Y,tk)I

AN,M(P, tk) = U2N,2M(P, Itk) - UN,M(P, tk) (3.37)
T

Here s2N,2M(P, tk) and U2N,2M(P, tk) are the RB output and solution associated with the "twice-

richer" approximation spaces {<2N, X2M' 2M I (for function approximation formulation), or { D2N,

'2IM} (for residual approximation formulation). Hence, in terms of computational cost, A'NM(P, tk)

will be four times more expensive than SN,M(P, tk).

To measure the sharpness of our error estimators, the effectivities are introduced,

AS, M(1, tk) ANM_ 1, _k)

TIN,M (P, tk) Sh (, tk) - SN,M (P, tk) ?IN,M (Pt, k h(, kM) - UN,M(P, tk) 8

It thus follows that

1 1 1 1
- (I - 0") <- 7N,M(P, tk) <- -(1 +-ES)--(I u) <- ?N,M (P, tk) <- -(1 + C) - (3.39)
T T T T

where

SIsh (P, tk) - S2N,2M(P, tk) _ fI u (, tk) - U2N,2M(P, tk)

|Sh(P, tk) - SN,M (P, tk) I Uh(PWk) - UN,M(P,tk) (

Hence, under the hypothesis that e' - 0, as N --* o, M - oc, there exist finite integers N* and

M* such that (/', tk) * 1, VN> N* VM > M*. In general, our error estimator AN,M(P, tk)

is not quite a rigorous upper bound. However, if 0 -S 0 very fast, we expect that the effectivity

TN,M(P, tk) shall be close to 1/T. A similar argument applies for ANM(A, tk)-

In the following section, we will apply the the two RB approximation formulations developed so

far to two problems, namely, 1D viscous Burger problem and 2D Buckley-Leverret problem. The

a posterior error estimators described in this section will be applied to certify the results.
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3.6 Numerical Examples

3.6.1 One-Dimensional Viscous Burger's Equation

The first example we present here is the one-dimensional viscous Burger's equation

IJU 12
+u 2 2 _ 'V 2U = 0, in Q x (0, 0.3] (3.41)at 2

with initial data uo(x) = 1/4+sin(7r(2x - 1))/2 and periodic boundary condition on boundary &Q.

Here Q ]0, 1[, the viscosity v varies in the range D = [0.01,0.1]. The output s(p, t) is evaluated

as s(f, t) = f(u([, t)) for f(v) = fQ v.

The purpose of this simple 1D nonlinear problem is to illustrate and compare two different

reduce-basis treatment for the nonlinear term "Iu2", namely, Galerkin approximation and empirical

interpolation procedure. As described in Section 3.2, Galerkin approximation can be used for the

low order polynomial present in viscous Burger's equation. However, note that this does not apply

to the numerical flux term f that arises in the RKDG method; hence, continuous Galerkin (CG)

space discretization has to be used for this purpose, as there is no numerical flux term involved in

this method.

In this time-dependent problem, we define the maximum relative error of solution as

N,M,maxrel max Iu(P) - UN,M(A IX/ fU(L) IIX (3.42)

and maximum relative output error as

6N,Mmaxrel= max s(f) - SN,MI1)S(I) (3.43)

In Figures 3-1 to 3-4, we present the convergence of solution and output of the two approximations,

namely, Galerkin approximation and empirical interpolation approximation.

From these four figures, it is observed that the errors in both solution and output converge

as the dimension of the reduced-basis model increases. Eventually, the empirical interpolation

approximation method (with sufficient interpolation points, i.e. larger M) is able to achieve a

comparable accuracy level as the Galerkin approximation method1 .

'Note that the convergence of Galerkin approximation only depends on N.
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Table 3.1: Effectivites of Galerkin approximation for One-Dimensional viscous Burger's equation
N AS,2N KUJN N, 2 N INM
2 1.8835 x 10-1 2.0353 2.3381 x 10-1 1.9006
4 2.2233 x 10-2 4.0924 3.0029 x 10-2 1.8342
7 5.3567 x 10-' 1.2784 9.4860 x 10-3 1.2737

10 6.2330 x 10-3 1.6392 9.4688 x 10-3 1.4006

Table 3.2: Effectivites of empirical interpolation approximation for One-Dimensional viscous
Burger's equation

N A'N, 2 N [7NM AN,2N IJN=,Ml
2 1.8862 x 10-1 1.9991 2.3378 x 10-1 1.8990
4 2.2249 x 10-2 3.8922 3.0193 x 10-2 1.8324
7 5.3516 x 10-3 1.2886 9.4548 x 10- 3  1.2737
10 6.9435 x 10-3 1.6399 9.4026 x 10-3 1.4011

To verify that both our RB approximations satisfy the accuracy level of interest, we use the a

posteriori error estimators introduced in Section 3.5, and r = 0.5. The effectivities are presented

in Table 3.1 and 3.2, and they are of order 0(1) as e -- 0.

The empirical interpolation approximation method has shown as good performance as the direct

Galerkin approximation method. Moreover, the online stage computational time cost (normalized

with respect to CG approach) tabulated in Table 3.3 reveals that the empirical interpolation ap-

proximation is more efficient than Galerkin approximation, as it provides special treatment and

construct reduced-basis for the nonlinear terms as well.

3.6.2 Two-Dimensional Buckley-Leverett Equation

Problem Description

Our second example is the two-dimensional Buckley-Leverett equation

+-V- f(u) - VV2 u = 0, in Q x (0, 0.5] (3.44)at

with the initial data uo(x) e-(X2+y 2 )/O.025 and homogeneous Dirichlet boundary condition on

the boundary &Q. Here Q - - 1.25, 1.25[ x ] - 1.25, 1.25[, the viscosity v varies in the range
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Table 3.3: Online computational time for One-Dimensional viscous Burger's equation

N I Galerkin Approx. NI M Empirical Interp. Approx. CG

2 8.5498 x 10- 3  2 4 4.1173 x 10-3 1

4 8.6896 x 10-3 4 8 4.2184 x 10- 3  1

8 9.7093 x 10-3 8 16 4.4452 x 10- 3  1

16 1.0625 x 10-2 16 32 5.0195 x 10- 3  1

20 1.0876 x 10-2 20 40 5.0564 x 10- 1

0.51-

-0.5 -

-1

-1 -0.5 0 0.5

Figure 3-5: Contour plot

T = 0.5

of the DG solution for Two-Dimensional Buckley-Leverett equation at

D = [0.05, 0.1], and the flux vector f(u) = (fi(u), f 2 (u)) is given by

U
2

fi(u) = 2 1-U)2 f2(u) = fi(u)(1 - 5(1 - u)2) .

The output s(p, t) is evaluated as s(t, t) = f(u(p, t)) for £(v) = fov. The contour plot of the

computed DG solution at the final time T = 0.5 is shown in Figure 3-5. The solutions is obtained

with fourth-order finite element approximation space Xpr--4 of dimension N = 12,000, and v = 0.05.
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Figure 3-6: Approximation accuracy of nonlinear terms for Two-Dimensional Buckley-Leverett
equation

Numerical Results-Function Formulation

The three nonlinear terms, fi, f2, f, in the 2D Buckley-Leverett equation have to be specially

approximated by the empirical interpolation method. Before this method is incorporated to the

reduced-basis model of the whole system, its approximation accuracy has to be justified. In Figure

3-6 we compare the accuracy of the functions and their approximates. All the three functions can

be approximated more accurately with more and more interpolation points being used.

Following the definitions in (3.42) and (3.43), we plot EMmaxrel in Figure 3-7 as a function

of N and M, and c'max ret in Figure 3-8. The two figures show the same behavior: the errors

converge as N increases, and level off at smaller and smaller values as we increase M. This is

because when N is small, the dominating error is caused by the field variable UN; when N is large

enough such that the field variable is approximated more accurately, the errors in the nonlinear

terms start to dominate. The final error level of a particular M is determined by the accuracy of

the corresponding empirical interpolation approximation.

To verify that our RB approximation satisfy the accuracy level of interest, we use the a posteriori

error estimator introduced in Section 3.6, and T = 0.5. The effectivities are presented in Table 3.4.
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Table 3.4: Effectivites for Two-Dimensional Buckley-Leverett equation

LN M  AN, 2 N 7N , N,2 N 'INM

10 20 2.0255 x 10-2 2.2322 2.3682 x 10-4 1.8748
20 30 4.5120 x 10 - 2.7415 3.6648 x 10-5 1.9501
30 30 3.9822 x 10- 3 2.0399 2.3300 x 10-5 2.0425

40 40 1.4793 x 10-3 2.1870 3.6034 x 10-6 2.0102

50 40 1.2819 x 10-3 2.1897 3.3151 x 10-6 2.0217
60 50 7.2419 x 10-T 3.1641 2.4356 x 10-6 2.0579

Table 3.5: Online computational times (normalized) for Two-Dimensional Buckley-Leverett equa-

tion
N M RBA DG]

10 10 3.8905 x 10- 3  1

20 20 4.3953 x 10- 3  1
30 30 4.4730 x 10- 3  1
40 40 6.1853 x 10- 3  1
40 60 6.4143 x 10- 3  1
60 60 7.3889 x 10-3 1

The mean effectivities are of order 0(1) as e -+ 0.

The efficiency of the reduced-basis system is measured by the online computational times of each

timestep. The values are normalized with respect to the computational time of direct calculation of

the truth approximation output, i.e. DG approach. Significant saving has been achieved: A factor

of more than 100 saving for the largest reduced-basis system in our experiments. Most significantly,

it is also possible to use a much larger timestep in our RB system, without incurring any accuracy

loss, which further speeds up the calculation of output SN,M(P, tk)-
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Chapter 4

Extension to The Euler Equations

So far we have considered reduced-basis approximations for time-dependent parameterized PDEs

of up to two-dimensional scalar problems. In this chapter, we will continue to extend the approach

developed to systems of equations, and consider RB approximations to unsteady compressible

Euler equations. We present here the function approximation formulation for the one-dimensional

problem. The derivation of the residual approximation formulation and generalization to multi-

dimensional problems is straightforward.

4.1 Problem Formulations

The one-dimensional Euler equations of compressible flows in conservative form are

Ou DF(u)
+ = 0, in Q x (0, T]

at 9Ox
(4.1)

with appropriate boundary conditions and initial condition u(x, t

vative state u and the inviscid flux vector F(u) are given by

U 1

S2

33

U = I p

pv

Pe
I fi(u)

f2 (u)

f3(u)

0) = uo(x). Here, the conser-

pv

pv2 + p

v(pe + p)

(4.2)
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where p is the fluid density, v is the velocity, p is the pressure, and e is the total internal energy

per unit mass. The perfect gas equation of state relates the static pressure p to components of the

state vector u as

p = (-Y - 1)p(e - v 2 /2), (4.3)

where -y is the ratio of specific heats of the fluid. The parameters we consider is the static pressure

variation at outflow, which shall be denoted as p and varies in the parameter space D.

We now define the DG weak formulation for the governing equations (4.1) - (4.3). We assume

that we are given a decomposition T of the domain Q and associated function space XP defined

in Section 2.1. In addition, we introduce

h fo- E (L2 Q)) 3  o-i ITh E PP(Th), VTh E Th, 1 < i < 3} (4.4)

The weak formulation then takes the following form: find uh = (u U2, ,) E ZP such that

a h-f F(uh)Vv +f F(un~v ,VaEZ 4

Th h h h

T'U~ I h n FU)hf (h,n)Vh} 0, VVhG c (4.5)

where F(uh, n) is the numerical flux. The Roe flux function [38] is used here to define the numerical

flux as

F(uh, n) = [F(ut) + F(u-)] - n - JA| (u+ - u-) , (4.6)

where A = [{Fi(u )/Ou] - n is the Jacobian matrix evaluated at the Roe average state uR, and

AI = SIAIS- 1, S being the matrix of the right eigenvectors of A and JAI being the diagonal matrix

of the absolute eigenvalues of A.

Finally, by decomposing F(uh, n) [fl(uh, n), f2(uh, n), f3(uh, n)]T , we can write (4.5) more ex-

plicitly as: for all vh E XhP, find Uh= (U1 U2, 3) E X x X x X such that

h {ffl(uh)Vvh-j 1(Uh,n)Vh
T h Th a h t Th

J Vh - f 2 (uh)Vvh- f 2 (uh, n)vh (4.7)
ThETh Th E Thh 4.7Th

e h' h = 3(Uh)Vh -- 3(uh, n)vh}
Th6 Th Th E Th h

48



with the initial conditions uh~r;,u;t = 0) = uho(x), u'(x; p; t = 0) = u'o(x), and u'(x; /; t = 0)

u 0 I(x); here u ho(x),uao(x), and uhO(x) are the L2-projection of u'(x), uh(x), and u,(x) on

respectively. The FE approximation output is then given by

Sh (Y' 0,=) (4Uhj~,t()) . (4.8)

We use the fourth-order explicit RK scheme described in Section 2.2 to integrate the system (4.7)-

(4.8) in time, thereby obtaining the truth approximations uh(Y, tk) and sh(Y, tk), k 1,..., K.

4.2 Fully Discrete Equations

We begin by introducing several approximation spaces constructed upon the set of snapshots

{Uh(JAp), Ap E '), 1 < p < P}. We first apply the POD procedure to construct RB approxi-

mation spaces = span{#, .. . , } for ui, 1 N2 = span{, ... ,2} for U2, and 4I

span{#0,..., 33} for u3. We then use POD and empirical interpolation procedures to construct

collateral RB interpolation spaces Q"2 = span{, ... , ?2}, 93,3 = span{3/, ... , $1)}, and as-

sociated sets of interpolation points TN2  {zi,...,Zb2}, Tz= {z3 , ... M,3z} for the nonlinear

functions f2(uh), f3(uh), respectively; note that fi (uh) =u is linear and does not need the empiri-

cal interpolation treatment. Finally, in a similar manner, we build collateral RB interpolation spaces

S1 = span{$j, ... . 0g }, = span{ , . . ., 2 , j2/J3 = span{f/, ... , if}, and associated

sets of interpolation points T = { ,...,2 }, T 2  {Z ,. ., 22}, §3 = 0 - -..I3

for the nonlinear functions fl(uh, n), f2(uh, n), f3(Uh, n), respectively; these functions are defined

on the edges E(Th). For notational convenience, we assume that N _ N' = N 2 = N 3 and

M = M1 = M2 = M 3 
_ jI~l _ Y2 M 3 .

Applying a Galerkin projection to the system (4.7) and replacing the nonlinear functions by the

coefficient function approximations, we obtain the reduced-order model: for any p C 'D, we evaluate

sN,M (P, t=fUN,M (P,t),(49
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where uN,MK(M, t) - (UNI, ) , M(fM (,))T 0 1 N N x & satisfy

ThET,

ShE j
IT,,

ITh MtVN

N,MVVN - / N,

f2 U N -- M VN}

ThETh Th 0Th

S J UNMV JUNM}
-- f3 TN -- iTN
Th CT TI h' M V

VVN CbN

VVN N

VVN N-

(4.10)

Hee Nl(/M fUNM UNUNM ,UUNHeref", ) 3, M 7 ,M, f 3M are the coefficient function approximations to the nonlin-

ear functions f2(UN,M), f3(UN,M), f1(UN,M), 2(UN,M, n), f3(UN,M, n), respectively.

To arrive at the matrix-vector form for the system (4.9)-(4.10), we first expand the RB approxi-

mations UNM\p, N UNMpt), N, and UNM ,) N as

N

UN,M. n n,
n=1

N N

UN,M (It,, UN,M(/, - n (4.11)
n=1 n=1

It then follows that our coefficient function approximations fu M f M f M fM Mare

given by

fUN M M / n n

u t) m z 1  n(p t)2(x),

w fo1i m P1 1 n NUN2 M /53 p t ,3( )

Ahr fU r M M Am , A 5N

B2 32(p, t) = f2(D 12 a1 (p, t), D22a 2(u, t), D 32 aS(p, t))

B 3 3 (p, t) = f3(D 13 al (p, t), D23a2 (b, t), D33 a3

B1/31 (p, t) -- f (bhcJi, t), D 21
)a2 b 31 3  t 3 1

22 (/_t, t) 2( 12 a1 (1 i, t), f 2 2a 2  t),b 3 2ae(I, t), h 2 )

$ 3/3 (, t) = f3(b 3 al(t, t), ) 23 0 2 (/_, t), b 33Ce3(P t), ii 3)

Bim = 2(z), Din = #i(z), Di = 4(z), Di =

B )3 = Wz), DR =3 0 #(Z3), D 2 = o2(z2), D =3 0 #(z ),
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$im (W ),

$32 2 W ),

in' = n( ')

h3 = n(23).

(4.14)

(4.15)

(4.16)

Inserting the representations (4.11) and our coefficient-function approximations into (4.10) yields

I (p t)

11T (p, 0)ITh (

Ih

N

=E E
k=1 ThETh

M

k=1 ThETh

M

k=1 ThETh

ITh

ITh

ITh

~/V~Ia!(pt) -

kV ik (p1,t) -

03,73,3k ([,, t) -

m=1 Th ETh

m=1 ThETh

m=1 Th E h Th

m=1 ThETh T

in terms of which the RB output can be subsequently calculated as

N

SN,M(fl, 0 np, W (01)
n=1

It remains to develop the offline-online procedure for the rapid evaluation of SN,M (P, t).

4.3 Offline/Online Procedure

Let us first introduce the following matrices

A'i
ThE Th

Th
A 2

Th ETh

A 3I

Th E TITh

ThE h Th

Cim V J 02,
ThETh h

ThETh 

ThE Th

$m
ThE Th

ThET
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j=1 ThETh

j=1 ThETh

N

S E
j=1 ThGTh

1 < i < N

1 < I < N

1 < i < N

(4.17)

(4.18)

/ T h

ATh
2 o (4.19)

Lw,.3

b1 ( 01 ), n (n, i

f)2 0 (2), f)22 2 W), M2 ( o3 ), A2 = n ( 2)

f)1 ( ol ), f)2 #2( 3), f)3=0 ( 3),

oi) ,(pt, t),

2O 2(, t,

(p t),



for 1 i n<N, 1 K m KM; and

El = (A1 )- 1 (Cl), E2 = (A2 )- 1 (C2 )(B 2 )-l, E3 = (A3)- 1 (C3 )(B 3 )-1 (4.20)

F1  (A'))()()-, A2  (A2 )- 1 (C2 )(B2)-- _k3 = (A3)- 1(0 3)(f 3)- 1 . (4.21)

It thus follows from (4.17) and (4.12)-(4.16) that we obtain the ODE system

61(p, t) =Fa 2 _ Ai (b 11 1a, f 21a 2, 31a 3 h 1)

&2 (_, t) = E2 f2 (D 12 Z, D22a 2, D 32a3 ) _ A 2f 2 (b 12 1 , b 22 2, f 32 3 , 2 ) (4.22)

u3 (p, t) = f3 (Disa1 , D 23a 2, D 33a3 ) _ A 3 (b13 a1 , 6 23a2, b3 3ai,3 ),

with the initial conditions a1((pt = 0) = al, a 2 (P,t = 0) a2 , and a3 (p, t = 0) = 3, where

agi(#',ul), a = (h ,u,), a = (03, u30 ), 1 K i K N . (4.23)

The RB output is thus calculated by

SN,M(p, t) LTal(,ut) (4.24)

where Li = f(01), 1 K i K N. By using the 4 th order RK scheme to solve the system (4.22), we

obtain the RB approximations sN,M(P, tk) to sh(P, tk) for k = 0,... , K. The procedure for the

rapid evaluation of SN,M(P, tk), 0 K k K K, is described below.

In the offline stage - performed once - we form and store the parameter-independent quantities

Ce 1,1 a ,n 2, n3, D 12 , D 22 , D 32, D 13 , D 23, D 33, fu f u21 , 3 12 , f 22 , f 32, D i, f23, 33
El, E 2, E 3, Ai, A2, A3. In the online stage - performed many times, for each new value of P E D

- we simply solve (4.22) for a1 (P, tk), a 2 (p, tk), a3 (p, tk) at cost 0 (4 (20MN + N 2 )), and evaluate

SN,M(P, tk) from (4.24) at cost 0(N); (note that the 4th order RK scheme requires four evaluations

of the right-hand side of (4.22) and each of evaluation takes 0 (20MN + N 2)). The operation count

for the online stage is thus 0 (4K (20MN + N 2 )). The online complexity is again independent of

M.

Finally, the a posteriori error estimator A',M(b, tk) can be obtained from (3.25), which in turn
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necessitates calculation of S2N,2M(it, tk). The overall computational cost is thus increased by a

factor of 4.

4.4 Numerical Examples

4.4.1 Problem Description

We solve a quasi-1D Euler equations for unsteady flow in a duct of cross-section a(x), on the domain

Q =]0, 1[, defined as

+u 8-axF~) da(x)a()Ou + a (a(x)F(u)) -d p = 0, in Q x (0, 1] (4.25)

with the conservative state u and the inviscid flux vector F(u) as shown by (4.2), and p = (0, p, O)T.

The geometry of the duct is defined by

1,

a(x) 1 - 0.3 cos 2 (7r(X - 0.5)/0.8),

1,

0 < x < 0.1

0.1 < X < 0.9

0.9 < x < 1 .

The initial conditions are given by

pO(x) = a(x), vo(x) = 1, eo(x) = 20.3413 .

The boundary condition is the static pressure at outlet Pex = 7.9365 + J sin(27rt), where 3 is the

magnitude of a small sinusoidal perturbation of the static pressure at outlet. Here [ = 6 is the

only parameter of interest and varies in the range D [0, 0.5]. Note that the case 6 = 0 results in

steady flow. The output s(p, t) is evaluated as s(p, t) = (p(p, t)) for f(v) fs v.

The Mach number of the DG solutions at different time instances t (0.2, 0.4, 0.6, 0.8, 1) is

shown in Figure (4-1). These solutions are obtained with fifth-order finite element approximation

space Xp= 5 of dimension A/= 1000, and for several 6 = (0,0.2,0.4, 0.5).
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Figure 4-1: DG solution for One-Dimensional Euler equation at T = 1.0

Table 4.1: Maximum relative errors of output and solutions for One-Dimensional Euler equation

[7]M ENMmaxrel N,Mmaxrel N,M,max,rel N,M,max,rel

10 20 3.3013 x 10-4 3.6795 x 10-3 8.5286 x 10-3 3.9197 x 10- 3

15 24 8.5233 x 10-5 1.5534 x 10-3 2.7204 x 10-3 1.7041 x 10-3

20 28 4.2908 x 10-5 8.5071 x 10- 4  1.6375 x 10-3 8.8667 x 10- 4

20 32 4.1637 x 10-5 8.1511 x 10-4 1.4605 x 10-3 8.6825 x 10- 4

25 40 1.8822 x 10-5 4.4571 x 10- 4  7.6843 x 10-4 4.5668 x 10- 4

30 44 1.1642 x 10-5 3.5110 x 10-4 6.8175 x 10-4 3.7008 x 10-4

4.4.2 Numerical Results-Function Formulation

We now present the numerical results of reduced-basis method for unsteady quasi-1D Euler equa-

tions. The convergence of the reduced-basis approximation of output and field variable solutions

are tabulated in Table 4.1, note that the (N, M) pairs roughly correspond to the "knees" of what

would have been observed in the N-M-convergence curves. Not surprisingly, again the output

converges faster than that of the field variable solutions. Moreover, the three variable solutions

converge at almost the same rate.

Next, the a posterior error estimators and the effectivities of the output approximation as well

as solution approaximations are tabulated in Table 4.2. As e -+ 0,the mean effectivities is of order
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Table 4.2: Error estimators of output and solutions for One-Dimensional Euler equation

[N[IM A , j N,M NAM [ AM j
10 20 4.1570 x 102 5.5542 x 10-3 1.8432 x 10-2 1.4738 x 10-1
15 24 1.1829 x 10-2 2.2608 x 10-3 6.2198 x 10-2 6.1518 x 10-2

20 28 5.6966 x 10-3 1.3240 x 10- 3.4746 x 10-3 3.4020 x 10-2

20 32 5.5078 x 10-3 1.3197 x 10-4 3.4706 x 10- 3  3.3864 x 10-2

25 40 2.9277 x i0 3  7.6268 x 10- 4  1.8912 x 10- 3  1.9222 x 10-2

30 44 1.8947 x 10- 3 6.4576 x 10- 4  1.6698 x 10- 3  1.6713 x 10-2

Table 4.3: Effectivities of output and solutions for One-Dimensional Euler equation

N IM N,M UN,M UNM UN,M

10 20 2.3444 2.4053 2.4988 2.3711
15 24 2.1692 2.2511 2.2440 2.2583
20 28 2.5113 2.4178 2.5411 2.9331
20 32 2.9992 2.5743 2.7865 3.0169
25 40 2.8828 3.0672 3.3748 4.1792
30 44 5.1459 3.1014 2.9913 2.9692

0(1).

The computational savings obtained by the use of the reduced-basis approximation in one

dimensional problem are not significant. In fact, the offline cost of the reduced basis approach makes

it uninteresting in this case. This situation will be clearly different when we consider the two and

three dimensional problem, or one dimensional problem with larger finite element approximation

space (i.e. larger /V). Moreover, since a larger timestep can be used in the RB approximation, the

total online computational saving can be more significant.

Table 4.4: Online computational times (normalized) for One-Dimensional Euler equation (per

timestep)
N [M JRBA DG

10 20 0.5099 1
15 24 0.5280 1
20 28 0.5584 1
20 32 0.5586 1
25 40 0.6124 1
30 44 0.6626 1
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Chapter 5

Conclusion

5.1 Summary

The goal of this thesis has been the development of reduced-basis approximations of the solution and

output of nonlinear time-dependent parameterized convection-diffusion equations and a posterior

error estimators to certify the approximated results. The developed method has also been extended

to the quasi one-dimensional Euler equations for unsteady flow.

We began by introducing the primary numerical method used to solve our targeted PDEs, i.e.,

Runge-Kutta Discontinuous Galerkin (RKDG) method. While pursuing high-order accuracy, local

conservativity, and high parallelizability, the RKDG method introduces additional highly nonlinear

numerical flux terms to the weak formulation, on top of the existing nonlinear functions of the

PDEs. Conventional Galerkin approximation methods can no longer handle these nonlinear terms

efficiently. To this end, we proposed an empirical interpolation approximation method to tackle

this problem. For a general parameter-dependent nonlinear function, the empirical interpolation

method aims to construct an inexpensive approximation via reduced-basis space and associated set

of interpolation points, known as cofficient-function approximation, which further enables efficient

offline-online decomposition.

Instead of using Lagrangian bases selected by a greedy algorithm procedure for the field variable

approximation, we used the POD approach which is known to concentrate the most information

within the fewest number of basis vectors, at the same time, produces a basis which is already

orthonormal. The empirical interpolation approximation for the nonlinear terms of the field variable
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is then incorporated into our reduced-basis model.

The two numerical examples presented in Chapter 3 served two purposes: (i) The one-dimensional

viscous Burger's equation, which contains low order nonlinear function, justifies the accuracy and

efficiency of empirical interpolation method while handling nonlinear terms, as compared with con-

ventional Galerkin approximation method; (ii) The two-dimensional Buckley-Leverett equation,

which contains high order nonlinear functions and complicated nonlinear numerical flux terms

while solved with RKDG method, can be efficiently handled by reduced-basis model incorporated

with empirical interpolation approximation. A posteriori error estimators proposed for the non-

linear time-dependent parameterized convection-diffusion problems certified that our reduced-basis

model could achieve the desired accuracy level.

We further extended our reduced-basis model to handle systems of equations. We targeted the

quasi one-dimensional unsteady compressible Euler equations, and the numerical results verified

the accuracy of the reduced-basis approximation.

5.2 Future Work

The successful development and implementation of the reduced-basis model for nonlinear time-

dependent parameterized convection-diffusion equations in this thesis suggests another topic of

research, i.e., to further extend the model to handle problems with higher dimensions and more

degrees of freedom, for example, unsteady Navier-Stokes equation.

The two reduced-basis formulations proposed in this thesis - function formulation and residual

formulation - are both proven to be numerically accurate, while the residual formulation is believed

to be simpler in terms of implementation but less stable for certain configuration of dimensions of

the reduced-basis model. This suggests another direction of improvement for future work.

So far, the choice for the size of the reduced-basis model for a particular problem is purely

empirical, which might depend on many factors, for example, initial condition, geometry, parameter

space, and time span. The optimal dimensions for the reduced-basis models are hardly obtainable

beforehand. An interesting question is thus to find the "best" choices for N and M which minimize

the computational cost for a desired approximation accuracy.

For complicated parameterized PDEs, it is always of great interest to solve the inverse problem.

Efficient and accurate reduced-basis models make it possible and lay the groundwork for this
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problem. However, a lot of practical issues still needed to be addressed.
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