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Abstract

The pricing problem in a multi-period setting is a challenging problem and has at-
tracted much attention in recent years. In this thesis, we consider a monopoly and an
oligopoly pricing problem. In the latter, several sellers simultaneously seek an optimal
pricing policy for their products. The products are assumed to be differentiated and
substitutable. Each seller has the option to set prices for her products at each time
period, and her goal is to find a pricing policy that will yield the maximum overall
profit. Each seller has a fixed initial inventory of each product to be allocated over
the entire time horizon and does not have the option to produce additional inventory
between periods. There are no holding costs or back-order costs. In addition, the
products are perishable and have no salvage costs. This means that at the end of the
entire time horizon, any remaining products will be worthless. The demand function
each seller faces for each product is uncertain and is affected by both the prices at
the current period and past pricing history for her and her competitors.

In this thesis, we address both the uncertain and the competitive aspect of the
problem. First, we study the uncertain aspect of the problem in a simplified setting,
where there is only one seller and two periods in the model. We use ideas of robust
optimization, adjustable robust optimization, dynamic programming and stochastic
optimization to find adaptable closed loop pricing policies. Theoretical and numerical
results show how the budget of uncertainty, the presence of a reference price, delayed
resource allocation, and feedback control affect the quality of the pricing policies.
Second, we extend the model to a multi-period setting, where the computation be-
comes a major issue. We use a delayed constraint generation method to significantly
increase the size of the problem that our models can handle. Finally, we consider
the pricing problem in an oligopoly setting. We show the existence of solution for
both the best response subproblem and the market equilibrium problem for all of the
models we discuss in the thesis. We also consider an iterative learning algorithm and
illustrate through simulations that an equilibrium pricing policy can be computed for
all of our models.
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Chapter 1

Introduction

1.1 Motivations

In recent years, there has been a rising interest in revenue management in many in-

dustries such as the airline, the supply chain, and the retail industry. Many firms

have realized that the profitability of a firm is critically affected by decisions such

as pricing and inventory control. They invest more resources or even hire special-

ized consultants to help them to optimize their revenue management. Pricing is a

critical factor in revenue management. A study by McKinsey and Company on the

cost structure of Fortune 1000 companies in 2001 ([2]) shows that pricing is a more

powerful lever than variable cost, fixed cost or sales improvement. This reveals that

an improvement of 1% in pricing will yield an average of 8.6% in operating margin im-

provement. Therefore, a firm's ability to design a good pricing model will determine

its performance in today's competitive market.

1.1.1 Demand uncertainty

The traditional approach to the dynamic pricing problem assumes that the input data

is known exactly (that is, it always takes a nominal value). However, uncertainty is

inherent in nature and any forecast into the future will involve a certain level of ran-

domness. In addition, the demand model may not represent the relationship between
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demand and price accurately. In fact, any demand model is just an approximation

of the true relationship between demand and price, as there are many more factors

that exist in reality and are not considered in this relationship in order to simplify

the modeling. Furthermore, even if the demand model is exact, it is still difficult to

determine the exact values of its parameters. One way to determine these parameters

is to learn them from the historical data. Still, it just gives an estimation of the

parameters, as the future cannot be inferred from the past in general.

One possible way of dealing with uncertain parameters is to assume that they

follow a certain probability distribution. With this assumption, dynamic program-

ming (DP) and stochastic optimization can be used to maximize the expected overall

profit effectively. DP is an attractive and powerful technique to address problems

with uncertainty. It models the overall dynamic decision process as a sequence of

simpler optimization problems. This feature makes it possible to reveal the theo-

retical structure of the optimal policy for simple systems. However, DP also has its

limitations. The main drawback is that the complexity of the underlying recursive op-

timization problem can explode with the number of state variables. This phenomenon

is commonly known as the "curse of dimensionality."

Stochastic optimization is another leading approach to problems with uncertainty.

Stochastic optimization takes advantage of the known probability distribution and

finds a pricing policy that maximizes the expected overall profit. The strength of

stochastic optimization is that recourse decisions can be made in the later stages in

order to compensate for any bad effects that might have been experienced as a result

of the decisions made in the earlier stages. Furthermore, stochastic optimization

does not suffer from the curse of dimensionality in the state variables. However, it

is limited to solving problems with few periods, as the number of possible scenarios

that it considers grows exponentially with the number of periods.

The assumption made by dynamic programming and stochastic optimization on

the probability distribution of the uncertain parameters being known in advance is

controversial. Similar to the problem in determining the exact value for the parame-

ters in the demand model, many researchers also question the validity of determining

18



the probability distribution from historical data. Thus, the need arises for a new

optimization methodology that can address uncertainty without making specific as-

sumptions on a probability distribution and that is computationally tractable.

Robust optimization has emerged as another popular approach to handling prob-

lems with uncertainty. Contrary to DP and stochastic optimization, it does not need

to assume any probability distribution on the uncertain parameters. The only as-

sumption it requires is that the uncertain parameters reside within a deterministic

uncertainty set with some known nominal values. Robust optimization adopts a min-

max approach to maximize the objective value in the worst-case scenario. It addresses

data uncertainty by guaranteeing the feasibility and optimality of the solution against

all possible instances of the parameters within the uncertainty set. Robust optimiza-

tion is also computationally attractive, and it has been successfully applied to some

large-scale and highly complex engineering problems. However, as it is maximizing

___ the objective value in the worst-case scenario, it has also been criticized as being too

conservative. To address this problem several robust optimization approaches have

been proposed recently. These include adjusting the level of conservativeness through

the notion of budget of uncertainty ([7]) or incorporating the idea of feedback control

into the robust model ([4]).

1.1.2 Oligopoly and competition

In a monopoly setting, each seller's objective is to find an optimal pricing policy

subject to her resource constraints. Her decision is not affected by other sellers'

strategies in the market. The pricing problem is essentially a constrained optimization

problem. However, in an oligopoly setting, competition among sellers arises, and one

seller's pricing policy is influenced by the pricing policies of other sellers in the market.

The fact that the pricing problem involves considerations about the pricing policies

of competitors causes these models to take the form of a game. A game-theoretic

framework may be required to study the pricing problem under these circumstances.

There are many ways of modeling competition in an oligopoly setting. For exam-

ple, sellers in the market can be cooperative and work together to achieve a global
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optimal solution of the whole system. In this case, a seller may sacrifice her own

profit in order to work towards a global optimal solution. The strength of this model

is that it is able to achieve a better global solution. However, this is usually at the

cost of some sellers' own benefits. How to ensure that policies are fair to every seller

so that they are willing to stay cooperative in the game is an issue that needs to be

addressed in such a setting. In contrast, sellers can also be selfish by maximizing

their own profits without worrying about the global performance of the system. In

this model, a global optimal solution is unlikely to be obtained. However, fairness

can be easily achieved, as each seller is free to make her own decision and not forced

to sacrifice her benefit for others. This model is perhaps more realistic compared to

the previous model.

In this thesis, we consider an oligopoly setting with non-cooperative sellers, as we

believe it is a better model of reality Each seller competes with other sellers in the

market and seeks to optimize her own profits.

1.1.3 Closed-loop pricing policy

In an open-loop framework, the value of data over the entire time horizon is known

in advance. Under such a setting, each seller is able to find an optimal pricing policy

at time zero and commit to her decisions over the time horizon. However, when the

value of data is unknown or allowed to vary over time, an open-loop pricing policy

may perform very poorly, as it cannot adjust its decisions with respect to the changes

in the system. In contrast, in a closed-loop pricing policy, the decisions for prices can

be postponed until the last possible moment. It takes advantage of the fact that not

all decisions have to be made at time zero. For example, the price for the last time

period can be made at any time before the start of the last period. By postponing

the decisions for prices until the last possible moment, sellers are able to collect more

information about data and therefore, adjust their decisions to yield a higher overall

profit.

A closed-loop pricing policy is not interested in finding the optimal price for each

period but rather an optimal rule for setting a price for each period based on the
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information that is available at that moment. For example, DP generates a look-up

table of optimal prices for each value of the state variable. Stochastic optimization

finds the optimal prices for every scenario that may occur. The robust optimization

paradigm has been recently extended to incorporate this aspect. This is termed as

affinely adjustable robust counterpart (AARC). The main feature in AARC is that

some of the decisions can be made after a portion of the uncertain data is realized.

1.2 Literature review

There is a huge literature on revenue management and pricing. In (23], Talluri and

van Ryzin provide an overview of the revenue management and pricing literature. In

this section, we focus on literature on three aspects of the pricing problem. First,

we review research that handles the uncertainty aspect in the pricing model. Then

we discuss papers related to oligopolistic competition. Finally, we discuss literature

relevant to the closed-loop policy and the notion of a reference price.

1.2.1 Demand uncertainty

The problem of demand uncertainty has motivated a significant amount of literature

in the field of revenue management. Various models have been introduced to model

demand uncertainty. In [26], Zabel introduces two models of demand uncertainty:

a multiplicative and an additive demand model. In the multiplicative- 'Model, the

demand at time t, denoted by dt, is defined as dt = qtu(pt), where pt is the price at

period t, rt is the uncertain factor that is assumed to follow either an exponential or

a uniform distribution with E[?I] ;> 0, and u(pt) is a decreasing function of pt. In

contrast, in the additive model, dt is defined as dt = u(pt) + 9 t.

In the Operations Research literature, there are several different ways of treating

demand uncertainty. For example, the uncertain parameters are sometimes assumed

to be deterministic first, and subsequently a sensitive analysis is performed to study

the stability of the solution with respect to the small perturbations of the parameters.

When the probability distribution of the underlying uncertain parameters is known,

21



stochastic optimization can be used to find a solution that either has a high expected

objective value or a low constraint violation. DP is also commonly used to handle

demand uncertainty, and it seeks to find an optimal solution for every value of the

state variable.

Unlike stochastic optimization or DP, robust optimization does not assume any

probability distribution of the uncertain parameters. Instead, it only requires the

parameters to reside within an uncertainty set with some known nominal values,

and uses a min-max approach to find an optimal solution in the worst-case scenario.

Robust optimization was first considered by Soyster (22]) in a linear optimization

problem, where the data is uncertain within a convex set. This work adopts a worst-

case approach, which, as a result, significantly decreased the performance of the

solution. To address the problem of over-conservativeness, Ben-Tal and Nemirovski

([5],[6]) consider an ellipsoidal uncertainty set. This approach applies to linear pro-

gramming and general convex programming. They show that the robust counterpart

of many convex optimization problems with data within an ellipsoidal uncertainty set

can be solved exactly or approximatively by polynomial-time algorithms. However,

the transformation required for this type of uncertainty set is complex. The robust

counterpart of a linear programming problem is reformulated as a second-order cone

programming (SOCP), and a SOCP is then reformulated as a semidefinite program-

ming (SDP), and the robust counterpart of SDP is NP-hard to solve. Bertsimas and

Sim ([7]) introduce a robust optimization model in which the robust counterpart of

linear optimization remains a linear optimization problem. They also introduce an

attractive way of adjusting the level of conservativeness through the notation of a

budget of uncertainty.

The robust optimization paradigm has been applied to a number of areas such as

the pricing problem. Perakis and Sood ([17]) and Perakis and Nguyen ([18]) study

a multi-period oligopolistic market for a perishable product setting with demand

uncertainty. They address competition and demand uncertainty using ideas from

robust optimization and quasi-variational inequalities. Nevertheless, the lack of feed-

back control in this model can make the robust approach overly conservative. In [15],
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Goldfarb and Iyengar apply robust optimization to portfolio selection problems. They

introduce an uncertainty set that allows them to reformulate the robust counterpart

as SOCP.

1.2.2 Competition

Oligopolistic competition in the field of pricing has become a popular topic to research

in recent years. In [25], Vives presents several pricing models in an oligopoly market.

Fudenberg and Tirole ([12]) review a number of game theoretic models for pricing

and capacity decisions. Gaimon ([14]) studies both the open- and closed-loop Nash

equilibria for two firms and a single product setting, where the price and capacity

are determined to maximize the net profits. Kirman and Sobel ([16]) develop a

multi-period model of oligopoly with random demand. They show the existence of

equilibrium pricing strategies for the firm. In [20], Rosen shows existence of the

equilibrium solutions under concavity of the payoff to a seller with respect to its own

strategy space and convexity of the joint strategy space. Uniqueness is shown under

strict diagonal dominance of the Hessian matrix of the payoff function. Perakis and

Sood ([17]) and Sood ([21]) study the competitive multi-period pricing problem for a

single perishable product, while Perakis and Nguyen ([18]) study the same problem

for many perishable products sharing capacity. They use results from variational

inequality theory and robust optimization to establish the existence of the pricing

equilibrium policy and comment on the uniqueness of the pricing equilibrium policy.

Perakis and Adida ([1],[17]) present a continuous time optimal control model for

studying a dynamic pricing and inventory control problem with no back-orders. In

many cases, the equilibrium point is obtained by solving the differential form of the

Kuhn-Tucker optimality conditions in these applications.

Quasi-variational inequalities in finite dimension have been widely studied to

model dynamic systems of conflict and cooperation, where the decisions are made over

a time horizon. Cavazzuti and others ([8]) introduce some relationships among Nash

equilibria, variational equilibria and dynamic equilibria for non-cooperative games.

Cubiotti ([10]) and Cubiotti and Yen ([11]) prove the existence of a solution for gener-
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alized quasi-variational inequalities in infinite-dimensional normed spaces under some

conditions.

Relaxation algorithms are powerful methods for computing Nash equilibrium poli-

cies when the problem is not tractable enough to solve the necessary conditions of

optimality. These iterative algorithms rely on averaging the current solution iterate

with the solution of the best response problem each player solves. Uryas'ev and Ru-

binstein ([24]) study the convergence of such algorithms in finite dimensions. They

find the equilibria of a non-cooperative game for some payoff function on a closed,

compact space.

1.2.3 Closed-loop policy and reference price

A closed-loop policy usually performs better than an open-loop policy when solving

problems with data uncertainty. Especially in the area of robust optimization, which

is often criticized for being overly-conservative, researchers are interested in bringing

the ideas of closed-loop policies or feedback control into this area in order to improve

its performance. In [4], Ben-Tal et al. introduce an affinely adjustable robust counter-

part (AARC) to model linear programs with uncertain parameters. They introduce

the notion of adjustable variables in order to refer to those variables that can be

chosen after the realization of the uncertain parameters. They show that AARC is

significantly less conservative than the usual robust counterpart and is tractable in

most cases. However, the demand is assumed to be exogenous in order to simplify the

problem. This is not realistic in the pricing problem. Researchers also look at stochas-

tic optimization to make this method more realistic and computationally tractable.

Chen and others ([9]) introduce a unified framework of approximating multi-period

stochastic optimization with safeguarding constraints, using ideas of robust optimiza-

tion. They have shown that the framework is computationally tractable in the form

of second order cone programming and scalable across periods.

Traditional economic marketing and operational models view the customers as

rational agents who make decisions based on the current prices and market conditions.

However, in a market with repeated interactions, customers' purchase decisions are
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also determined by past observed prices. In [19], Popescu and Wu study the dynamic

pricing problem of a monopolist firm, where demand is sensitive to the firm's past

pricing history. The consumers form a reference price based on the pricing history,

and their purchasing decisions are made by assessing prices as discounts or surcharges

relative to the reference price. The model considered in this paper is a deterministic

model, where all the parameters are known to be some nominal values.

1.3 The pricing problem and outline of the thesis

In this thesis, we consider a monopoly as well as an oligopoly pricing problem. In

the latter, several sellers simultaneously seek a pricing policy for their products. The

products are usually assumed to be differentiated and substitutable. Each seller has

the option to set prices for her products at each time period, and her goal is to find

a pricing policy that will yield the maximum overall profit. Each seller has a fixed

initial inventory of each product to be allocated over the entire time horizon and does

not have the option to produce additional inventory between periods. There are no

holding or back-order costs. In addition, the products are perishable and have no

salvage costs. This means that at the end of the entire time horizon, any remaining

products will be worthless. The demand function is a linear function of the prices,

and the parameters in the function are uncertain.

In order to address the demand uncertainty, some researchers have recently adopted

ideas from robust optimization to solve the pricing problem in which the demand is

only known to be within an uncertainty set rather than some nominal value. In order

to simplify the problem, most papers such as [4] have assumed that the demand un-

certainty is given exogenously and will not be affected by the seller's price. However,

in practice, the demand for a product will usually be affected by the seller's price and

her competitors' prices. In this thesis, we address demand uncertainty by modeling it

as a function of all sellers' prices for the current period, and the past pricing history.

We use the notation of reference price to model the past pricing history.

The main contributions of this thesis are as follows:
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1. We describe various dynamic pricing models with demand uncertainty. We use

ideas of robust optimization, adjustable robust optimization, dynamic program-

ming and stochastic optimization to find adaptable closed-loop pricing policies.

We study the tractability of solving these problems.

2. We study how the budget of uncertainty, the presence of a reference price,

delayed resource allocation, and feedback control affect the quality of the pricing

policies.

3. We address computational issues of these models in a multi-period setting.

4. We prove existence of solution for the best response subproblem as well as of

the market equilibrium problem for all of the models we discuss in this thesis.

5. We discuss an iterative learning algorithm and illustrate computationally its

convergence to an equilibrium pricing policy.

The thesis is outlined as follows. In Chapter 2, we introduce the notations that

are used throughout the thesis. We formulate a number of models for the pricing

problem. In Chapter 3, we consider a simplified setting, where there is a single seller

and two time periods in the model. We compare different models in this setting and

provide both theoretical and computational results regarding the effect of budget of

uncertainty, the presence of a reference price, delayed resource allocation and the

feedback control on the quality of the pricing policy. In Chapter 4, we extend the

problem to a monopoly and multi-period setting. We discuss how to address the

computational issues with the increase of time periods. In Chapter 5, we consider

an oligopoly market where the competition among sellers affects each seller's deci-

sion. We study the existence of Nash equilibrium of these models. In Chapter 6, we

conclude the thesis and discuss some possible future work in this research area.
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Chapter 2

Model formulation

In this chapter, we introduce the notations and assumptions that will be used through-

out the thesis. We discuss how to address the issue of uncertainty in demand and

what we mean by robust policies. Each seller faces the problem of finding a pricing

policy that maximizes her total profit from the sale of her inventory over the entire

time horizon. We call this pricing problem that each seller faces the best response

problem and the resulting pricing policy the best response policy. We focus on formu-

lating the best response problem for each single seller and leave the competition issue

aside in this chapter. Both the robust demand and stochastic demand are considered,

and the robust optimization, stochastic optimization and dynamic programming are

used to formulate the best response problem.

2.1 Notations

We denote the set of all sellers by I and a single seller by i E I. The set of all

competitors of seller i is denoted by -i. The time horizon is divided into a finite

number of time periods. We denote the ordered set of all time periods by T and a

single time period by t E T.

At the beginning of the time horizon, each seller i starts with a given inventory of

the products, denoted by Ci, and competes with her competitors by setting her price

p at each period t. We denote the prices set by the competitors of seller i at period
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t by pt i. Seller i's pricing policy over the entire time horizon consists of the prices

(pf, p , ... , pf) and is denoted by pi. The pricing policy for all the sellers consists of

the price vectors (p 1 , P2 , ... p) and is denoted by p. The demand function faced by

seller i, at period t, is denoted by hI.

2.2 Demand model

The demand function can assume various forms, depending on the assumptions we

make on the model. In a monopoly market, if the seller's past pricing history does not

have an impact on her demand function at the current period, the demand function

is simply a function of her price at the current period, i.e., h (p'). In contrast, when

the past pricing history is assumed to affect the current period's demand, the demand

function is of the form h (p , ri), where r is the reference price of seller i at period t.

The reference price r could be just the previous period's price pt 1 or an aggregated

value of all the past prices, depending on how long we assume that the past pricing

history can affect the future demand. Similarly, in a duopoly market, seller i's demand

function will also be affected by her competitors' prices.

2.2.1 Demand function with uncertainty

In this thesis, we adopt a common demand model where the demand is a linear

function of the price. For example, when we consider a monopoly setting and neglect

the effect of the reference price, the demand of seller i at time t can be written as:

ht = Dt - atpt

In practice, it is usually very difficult to determine the exact values of the pa-

rameters D' and ac. In this thesis, we assume that each of these parameters falls

into allowed ranges with some known nominal values. For instance, we denote the

nominal value of D by Dt and the deviation by UDt. The realization of D' belongs to
t- - -t

an interval centered around D~ with half-length 9D±, , DOC[D D , Dt + JrDJ
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We use cj to denote the uncertainty factor in seller i's demand at period t.

2.2.2 Various demand functions

Assumption 1. When the reference effect is not considered, the demand function

faced by seller i, at time period t, is only dependent on the prices set by all the sellers

at period t. That is,

ht(plpi,) = D - atp + /3 p _ , (2.1)

where ( = (Dj, ac, Of) denotes the uncertainty parameters and take any value in an

uncertainty set Ut.

Assumption 2. When the reference effect is considered, the demand function faced

by seller i, at period t, is dependent on the prices set by all the sellers at period t and

the past pricing history. The latter is represented by a reference price that is denoted

by rl. In this case, the demand function is defined as:

jr)= Dt -c apt +/3p (2.2)

where ci = (D', a', Of, 'y,) denotes the uncertainty parameters and takes any value in

an uncertainty set Ut.

Assumption 3. The demand function of seller i is a strictly decreasing linear func-

tion of her price, and an increasing linear function of her competitors' prices and her

reference price. Mathematically, D , ac, Of3, -yj are strictly positive real values.

Assumption 4. We model the reference price as r = gi(pt~1 , r- 1 ), where gi is a

linear function of p'~1 and r- 1. Furthermore, gi increases with respect to pt 1 and

with respect to rt- 1.

29



2.2.3 Budget of uncertainty

One problem with the robust optimization paradigm is that it may lead to an overly

conservative solution that would allow uncertain parameters to be at the value cor-

responding to the worst-case scenario at all times. Nevertheless, such a scenario is

highly unlikely to occur. To overcome this drawback of robust optimization, litera-

ture often introduces a budget of uncertainty F to bound the cumulative dispersion

of the realized parameters around the nominal values over time (see [7]).

The budget of uncertainty is a very effective way to measure the trade-off between

performance and conservativeness. A small budget of uncertainty gives less protection

against data perturbation, but it gives better objective values. In contrast, a high

budget of uncertainty gives better protection, but at the cost of performance.

The budget of uncertainty is chosen by seller i to reflect his attitude towards

uncertainty and is data to the problem. When J is zero, seller i is considering a

deterministic pricing problem, where all the uncertainty parameters are forced to

take their nominal values. On the other hand, when Vi is large, seller i allows more

variation or uncertainty on the parameters. In this case, seller i is considering the

worst-case scenario, and the robust formulation becomes more conservative (i.e., risk-

averse).

With the notation of budget of uncertainty, we can define the uncertainty set as

follows:

* when the reference price effect is not considered, the uncertainty set Uj is defined

as:

U> + +

where D, -i, and O3 are the nominal values of the uncertainty parameters,

(D, J a, and uot are the deviations of the uncertainty parameters around the

nominal values, and FIt is the budget of uncertainty. All these parameters are

data to the problem.

30



* when the reference price effect is considered, Uj becomes:

{il (D'~{3vD cY Ua U

2.3 Best response problem

In this section, we formulate the best response problems for both the robust demand

model and the stochastic demand model. In the robust demand model, the parameters

in the demand function are uncertain and only known to belong to some uncertainty

set. For this demand model, we have formulated four different robust optimization

models, which are labeled as Robust-Mi, Robust-M2, Robust-M3 and Robust-M3-

AARC respectively. In these four robust optimization models, each seller adopts a

pricing policy that is robust to all the possible realizations of the uncertain parame-

ters. However, in the stochastic demand model, the parameters are assumed to follow

a known probability distribution, and each seller adopts a policy that maximizes her

expected total profit.

2.3.1 Robust demand model

Robust-Mi

In this robust formulation, we do not consider the reference effect in the demand

function. Furthermore, the decisions that each seller needs to make are both the

price and amount of resource allocated for sale at each period. Let i = (Di, a, 0j).

The mathematical formulation is as follows:

T

max p1 x min (D' - acpt + /3 tpti)
t=1 EU

T

s.t. min (D - acpt + #t_.) <0C,

p >Ot= 1,2, ... T
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where Ut=) =(Dt, cef, O) : + + I~' , t = 1, 2, ..., T.
ZOD1at O ot

As can be seen in the model above, the amount of resource allocated for sale at

period t has been implicitly fixed to be min tUt (D - czp +,tpt + ). This means

that the demand is no longer determined by nature (i.e., by the actual realization of

uncertain parameters), but by the value of parameters corresponding to the worst-

case scenario within the uncertainty set. In other words, we price considering the

worst possible scenario of demand that might occur. The strength of this formulation

is that it reduces the side effect caused by uncertainty, as the amount of resource

allocated for sale at each period is decided at time zero and it is guaranteed to

be sold out. Therefore, each seller can optimize and determine her profit at time

zero, without worrying that her prices may cause a violation of the resource capacity

constraint. Nevertheless, the drawback of this model is that the objective value is

fixed and will not increase even when the actual realization of parameters are not

corresponding to the worst-case scenario. Next, we will compare this model with

other robust optimization models.

Robust-M2

This robust optimization model is the same as Robust-Mi except that we consider

the reference price effect in the demand function. The mathematical formulation is

as follows:

T

max p x min (Dt - cept + Oi3pti + yit r )

T

s.t. min (Dt - o pt + p_ + ytrt) < C,
t=1

p >0 t = 1 2..., T

where U = =(D)++ + , <J741 ,t =

1, 2, ... ,) T, and rl = 0.
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Robust-M3

This robust optimization model differs from Robust-Mi in the sense that it allows

nature decide the demand rather than pre-allocating the amount of resource for sale.

Each seller only needs to decide her price set at each period. However, the prices

have to be chosen such that the cumulative demand over the time horizon does not

go beyond the total capacity the seller has for all the possible realizations of uncertain

parameters. The reference price effect is not considered in this model. In addition,

we cannot set D - alp + >3pt_ > 0 as a constraint for all the possible values in

the uncertainty set in order to ensure the non-negativity of the demand, as this may

make the price overly constrained and solution sub-optimal or even infeasible. In

fact, the demand is only required to be non-negative for the realization of uncertain

parameters that corresponds to the optimal solution. To address this issue, we use

max{p (D - acp + O3tp'), 0} to represent seller i's demand at period t in our model.

In this case, seller i can set any price for her product. If the price chosen leads to

a negative demand, a zero demand (rather than negative demand) is used in the

objective function and the resource capacity constraint. By doing this, an optimal

solution to the model can be found, as the seller is given freedom to set her prices,

and the "correct" amount of demand is always used in the model. The mathematical

formulation is as follows:

max z
z,p

T

s.t. z < Z max{p'(D' -apE+ tpt ), 0}, V(Dt , c , ) E U
t=1

T

max{Dt - ap + 3pti, 0} C , V(Dt , a ,3#) E Ut
t=1

p >Ot =1,2, ..., T

where U = = (D ,a,3): D +, t + ,t=12...IT.
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Robust-M3-AARC

This model is a modification of Robust-M3 by adding some feedback control into the

model. When the feedback control is considered, seller i's decision for her price at

period t is postponed to the end of period t-1. This is achieved by modeling p as an

affine function of the uncertainty parameters D , O realized by the end of period

t-1. That is,
t-1 t-1 t-1

gi7T t +o D±Zwk ik+ZAfi (2.3)
k=O k=1 k=1

This idea is inspired by the Affinely Adjustable Robust Counterpart (AARC) in-

troduced in [4], where the robust formulation with the feedback control has been

proven to be less conservative than the traditional robust formulation. The mathe-

matical formulation of this model is as follows:

max z

T

s.t. z < Z max{p'(Dt - atp + ) E
t= 1

T

max{Dt - apt + p} C , V(Dt, c Ei U
t= 1

t-1 t-1 t-1

Pi 7i + 5 9Di + 5 ic + E A i

k=O k=1 k=1

where = = (D ,oa,Ofl) : + -- &i + 1 1,2...T, and

D9 = 0, ao = 0 # = 0.

2.3.2 Stochastic demand model

In this section, we consider a stochastic demand model, where the uncertain parame-

ters are assumed to follow some known probability distribution. In the computational

part of this thesis, we assume the uncertain parameters follow a uniform distribution.
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Dynamic programming formulation

In the dynamic programming formulation, the state variable is the remaining inven-

tory at the start of each period, which is denoted by s'. As the uncertain parameters

are assumed to follow a uniform distribution, we discretize them into a finite number

of values with equal probabilities. Let fj(s ) denote the optimal expected profit seller

i can make from period t until the end of the time horizon with remaining inventory

si. The reference effect is not considered in the demand function. The mathematical

formulation is as follows:

fi(s') = max E{pt -min(s', D' - cept + /3 p_) + fj+1(s|+1)}
Pi

st+1 = st - min(st, D' - atpt + )

ff+1(S[+1 ) = 0

Stochastic optimization formulation

In the stochastic optimization formulation, as before, we discretize the uncertain

parameters into a finite number of values with equal probabilities. Each combination

of these parameter values corresponds to a single scenario. Let w index these scenarios,

and let N denote the total number of scenarios we consider. Obviously, each scenario

has a probability of I to occur. The mathematical formulation is as follows:
N

N T ti(i a ,P , + 3 wpt i g )max E 
-

P" Nw=1 t=1
T

s.t. 5 (Dt, - apP + Tp-i w) ; C, w = 1, 2, ...N
t=1

p, ;> 0, W = 1,2, ... , N and t = 1, 2, ...,T

2.4 Analysis of the robust best response problem

In this section, we study the existence of a solution to the robust optimization mod-

els that we have formulated in the previous section for a given competitor's price
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p-i. We start by listing some assumptions that are assumed on the problem. These

assumptions will be used to establish the existence of the solution.

2.4.1 Assumptions

Assumption 5. The price at period t for seller i is only allowed to vary between a

minimum, denoted by p ,min, and a maximum allowable level denoted by pmax. We

require pmin to be strictly positive and Plmax to be a level at which the demand for

seller i vanishes irrespective of her competitors' prices at that period. Mathemati-

cally, we require that PA,min > 0 and supt (hi(p,max, pi, ()) = 0 for all t E T.

Assumption 6. At any period t, for any fixed p'i and Q U , seller i's demand

function ht(p , pti, ) is decreasing with respect to p over the set of feasible prices.

Assumption 5 ensures that the space of allowed prices is bounded, which is

achieved by constraining the prices between some allowable upper and lower limits.

With this condition, we eliminate strategies involving infinitely high price levels.

Assumption 6 ensures that the demand at any period for any seller does not

increase with an increase in her price. In our demand model, as the demand is a

linear function of prices, this condition is automatically satisfied.

2.4.2 Existence of solution

Proposition 1. Consider a fixed price for competitors, i.e., p-i. Then there exists

a solution to the best response robust optimization model.

Proof. For Robust-Mi and Robust-M2, it is easy to show that the feasible space is

non-empty and compact under Assumption 5. Since the demand function is a linear

function of the price, the objective function is in fact a quadratic function of the price,

pl. This function is continuous and concave. Under these conditions, there exists a

solution according to Weierstrass theorem (see [3]).
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For Robust-M3 and Robust-M3-AARC, the presence of maxjp }(D -azp +Ojp)

makes the robust formulations non-convex. However, we can eliminate this problem

by introducing a Mixed Integer Problem (MIP) formulation to replace max{p (D -

alp +s3ipti), 0}. Details about this MIP formulation are shown in the next chapter.

The outcome of this MIP formulation is that the resulting models of Robust-M3 and

Robust-M3-AARC are still convex formulations, if we neglect the integral require-

ment on variable K, which is used in the MIP formulation and can only take a value

of either 0 or 1. One value of , is required for each time period. Therefore, for an

n-period pricing problem, there are a total of 21 possible ways of assigning values

to n. For each of the value assignments of K, the resulting models get rid of K and

become similar to Robust-Mi and Robust-M2, for which we have proven the existence

of a solution. Therefore, to find the solution to Robust-M3 and Robust-M3-AARC,

we just try all the 2' possible ways of assigning values to K, and the one that gives

the best result will be a solution to these models. This shows that a solution exists

for Robust-M3 and Robust-M3-AARC as well. El
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Chapter 3

Uncertain data in a monopoly and

two-period setting

We first consider a simplified pricing problem, where there is only one seller and two

time periods in the model. The reason for studying this setting is that a single-

seller, two-period problem is relatively easier to formulate and study, and yet, gives

us insight into the pricing problem in a more general equilibrium setting. We discuss

the approaches to solving all the best response models, which are the foundation of

the equilibrium problem, presented in the previous chapter in this setting.

In this chapter, we study the six models we have formulated in the previous chap-

ter, which are Robust-Mi, Robust-M2, Robust-M3, Robust-M3-AARC, dynamic pro-

gramming and stochastic optimization models. We provide both theoretical insights

and computational results to show the effects of budget of uncertainty, reference price,

delayed resource allocation and feedback control on the quality of the pricing policy.

3.1 Simplified notations

Since we only consider one seller and two periods in this chapter, to simplify the

notations, we drop the seller's index i. Now, let pt denote the seller's price at period

t, where t E {1, 2}. If the reference effect is not considered, the seller's demand at

period t is defined as ht(pt, t) = Dt -atpt, where &e = (Dt, at) denotes the uncertainty
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parameters and takes any value in the uncertainty set Ut. Set Ut is defined as:

Ut = = (D t, at) : D , ,+ a 't .
Dt Jat

Similarly, if the reference effect is considered, the demand function at the second

period is affected by the price at the first period, and it is defined as h2 (P1 ,P 2 , 2) =

D2 - a2P2 + 02P1, where 2 = (D 2 , a 2 ,/2) can take any value in the uncertainty set

U2. Set U2 is defined as:

2 D2 - D2 + 02 - 2 + 2 - 2
UD2 Ua2 OrO2

Note that U1 remains unchanged, as there is no past pricing history available at the

start of the first period.

3.2 Solving the six monopoly models

In this section, we discuss the solution of the six models we considered in the previous

chapter. In particular, we show how to transform the robust optimization models

to their corresponding robust counterpart problems in order to solve these models

efficiently. The dynamic programming and stochastic optimization models are solved

through discretizing the parameters.

3.2.1 Robust optimization models

In the robust formulation, the capacity constraint has to be enforced for every possible

realization of the uncertain parameters in the uncertainty set specified by the budget

of uncertainty. Clearly, there is an infinite number of possible realizations of the

parameters. This leads to an infinite number of constraints in the model. Clearly, we

need to reformulate the original robust optimization model to a new problem with a

finite number of constraints. The resulting robust representation is called the robust

counterpart to the original robust optimization model.
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Proposition 2. The minimum of the uncertain demand over the uncertainty set, de-
noted by min ,Eu, (Dt - atpt), where Ut = { t = (Dt, ct) D- + 0a < £9>,

miOeu Dt + at-t

will only occur at two extreme points, which are (Ut - 9D, x Itt, Zt) and (t, t +o-c, x

rt). When the reference effect is considered, the minimum of the uncertain demand,

denoted by min 2Eu 2 (D 2 - a2P2 + fl2Pl) will only occur at three extreme points, which

are (D2 - o'D2 X r2, 2, 02), (D 2 , 2 + a2 X 1F2, /32) and (D 2 , T 2 , 32 - O-02 X 1'2) , where

U2 = {2 = (D2, if2,02) : D2 52 1 + 2- 2  2-+1, 2 -1
Pa + r' 01 + 32

Proof. The proof follows due to the linearity of the demand function. E

Robust counterpart of Robust-Mi

Let St denote the set of extreme points specified in Proposition 2. The robust coun-

terpart of Robust-Mi in a monopoly and two-period setting becomes:

2

max Pt x min (D - atpt)
t=1 (Dt,at)ESt

2

s.t. min (Dt - atpt) C,
SA =1 (D ,at)ESt

pt > 0,t = 1,2,

where D - + at' t, t = 1, 2.

The robust counterpart of Robust-Mi can be implemented using any optimization

tool such as ILOG.
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Robust counterpart of Robust-M2

Similarly, the robust counterpart of Robust-M2 becomes:

2

max E Pt X min (Dt - oapt + ytrt)
t=1 (Dt,at)ESt

2

s.t. min (Dt - atpt + trt) C,
SA =1Y (D te ct)ESt

pt Ot = 1,2

where Dt-t a t-zt -+ L-t, t = 1, 2, and r1 = 0.

Robust counterpart of Robust-M3

There is a problem with the representation of max{pt(Dt - atpt),O} in Robust-

M3: if we introduce a slack variable zt to replace max{pt(Dt - atpt),0}, where

zt pt(Dt - atpt) and zt 0, this formulation becomes unbounded, as it is a

maximization problem.

In order to solve this problem, we adopt ideas from mixed integer programming

(MIP) to represent max{pt(Dt - atpt), 0}.
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Proposition 3. The robust counterpart of Robust-M3 can be represented as:

max z
2

s.t. z < E zt
t=1

2

E d, < C
t=1
t-1 t-1

Pt =1rt + EOkDk + WOak
k=O k=1

zt pt(Dt - atpt) + M(1 - ), V(D, at) E St

Zt < MK

Dt - atpt MK,V(Dt, at) E St

Dt - atpt + M(I - n) > 0, V (Dt, at) E St

dt Dt - atpt, V(Dt, at) E St

dc 0, t = 0, 1

n E {0, 1},

where Dt - +t t Zit2.
1 Dt I+ IactI<Flt=1

Proof. To prove this result, we need to illustrate that we can replace max{pt(Dt -

atpt), 0} by zt with the following additional constraints:

zt pt(Dt - acpt) + M(1 - K)

zt < Mr,

Dt - atpt Mn

Dt - atpt + M(1 - r,) > 0,

m E {0, 1}

(1)

(2)

(3)

(4)

(5)

where M denotes a very large number.

We examine the following three cases to ensure that this is a correct representation:
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1. If Dt - atpt > 0, then K = 1. Subsequently, it follows that zt pt(Dt - atpt)

from constraint (1) and zt M from constraint (2). Since M is a very large

number, zt < M becomes redundant, and we have zt pt(Dt - atpt) as the

final result.

2. If Dt - atpt = 0, then , = 0 or 1. In either case, it follows that zt < 0 from

constraint (1) and (2).

3. If Dt - atpt < 0, then r = 0 due to (4). Subsequently, it follows that zt

Pt(Dt - atpt) + M from constraint (1) and zt 0 from constraint (2). Since

M is a very large number, zt < 0 is a tighter constraint and becomes the final

result.

As we are maximizing z in the model, zt is forced to be equal to max{pt(Dt -atpt), 0}.

In contrast, we can safely replace {Dt - atpt, 0} with a dummy variable dt in the

resource capacity constraint, as dt is bounded by capacity C.

Based on the analysis above, this MIP representation is equivalent to Robust-M3.

More importantly, Robust-M3 remains a convex optimization problem, if we relax

the integral requirement on r,. El

Robust counterpart of Robust-M3-AARC

Robust-M3-AARC has the same problem as Robust-M3 in the representation of

max{pt(Dt - actpt), 0}. We use the same MIP formulation to resolve this problem. In

addition, as the price is modeled as an affine function of the uncertain parameters

realized in the past periods, the objective function becomes a quadratic function of

uncertain parameters. Therefore, the realized values of uncertain parameters that

lead to the worst-case scenario may not only occur at the two extreme points as we

explained before. Instead, they can be any of the four extreme points, or points that

make the resource capacity constraint tight. In this thesis, we make an approximation

by only considering the four extreme points for each uncertain parameter. We study

how good this approximation is through simulation at a later chapter. Let St denote
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the set of four extreme points, which are (D - xDt x Ft, t), (D - aD+ X t, TO

(Dt, t + ac, x Ft), (D, Zt - aet x Ft). The robust counterpart becomes:

max z

2

s.t. z < E zt
t=1

2

Z dt < C
t=1
t-1 t-1

Pt t + ZOkDk +Z Wkak
k=O k=1

zt _ p(Dt - atpt) + M(1 - rz), V(Dt, at) E St

zt < Mr,

Dt - acpt M,,V(Dt, at) E St

Dt - atpt + M(l - r) 0, V(D, at) E St

dt Dt - atpt, V(Dt, at) E St

dt > 0, t = 0, 1

n E {0, 1},

where Dt -Dt < - t) t = 17 2.
O'Dt q

3.2.2 A heuristic approach to solving the dynamic program-

ming model

In the dynamic programming model, the state variable, denoted as st, is the inventory

left at the start of period t. As the state variable can take any value between 0 and

the total capacity C, it is an infinite-state dynamic programming problem. Our

approach to handling the infinite-state problem is to discretize the state variable into

a finite number of discrete values. When the discretization becomes fine, the dynamic

programming model gives solutions equal or close to the optimal solution.

Similarly, we assume that the uncertain parameters follow a uniform distribution
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and discretize them into a finite number of values. The dynamic programming model

in a monopoly and two-period setting becomes:

ft(st) = max E{pt - min(st, Dt - atpt) + ft+1(st+1)}
Pt

st+1 = st - min(st, Dt - atpt)

fT+1(ST+1) = 0

In order to solve the dynamic programming model at each stage, we need to decide

the optimal way of splitting the remaining inventory st between the resource used at

the current period and the resource carried over to the next period. We denote the

amount of inventory used at period t by se, and the amount of inventory carried over

to period t+1 by sl, i.e., st = su + s1. Clearly, su can take any value between 0 and

st. To find the optimal value for su, we discretize st into a finite number of values.

We try each of these values for su and solve the problem. By doing this, we try all

the possible ways of splitting the inventory between the current stage and the next

stage. The optimal solution corresponds to the split that gives the highest expected

profit. Both Dt and at are discretized into N values. We index the values of (Dt, at)

by k. There are N2 ways of discretizing (Dt, at) in total. Each has a probability of

1 to occur. We first ignore the resource capacity constraint and solve the dynamic

programming model at each step as follows:

ft(st) = max E{pt -min(st, Dt - atpt) + ft+1(st+i)}
Pt

N
2

ft(st) = max pt - (Dk - a. pt) - + ft+i(st+i)
Pt t t r t t

k==1

Next, we choose pt that makes the derivative of the current stage's profit equal to
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zero.

N
2  N

2

Vpt( pt - (D' - acpt)) = S(D - 2acpt) = 0
k=1 k=1

4

zk=1 D

Based on pt derived above, the expected demand, denoted by E(D), is computed

using the nominal value of D and a:

E(D) = D - atpt

The optimal decision for the price at the current stage, denoted as pt"t, depends on

the following two cases:

1. If E(D) < se, the resource allocated for the current stage is sufficient for setting

opt
pt as the optimal price for the current stage. Therefore, pt = pt, and ft(st) =

opt
Pt ' E(D)+ ft+(st - E(D)).

2. If E(D) > su, the demand determined by pt is greater than the amount of

resource being allocated. As it is a quadratic function, the optimal price will

make the determined demand equal to su, i.e., pt =t" and ft(st) =

P -t s + ft+1 (St - sU).

3.2.3 Stochastic optimization model

Stochastic optimization is another framework for modeling optimization problems

that involve uncertainty. In the robust formulation, the parameters are assumed to

be known only within bounds, and the goal is to find a solution which is feasible for all

such data and optimal in some sense. Stochastic optimization models are similar in

style but take advantage of the fact that probability distribution governing the data

are known or can be estimated. The goal here is to find some policy that is feasible
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for all (or almost all) the possible data instances and maximizes the expectation of

some function of the decisions and the random variables.

We assume the uncertainty parameters follow a uniform distribution. For a two-

period pricing problem, we discretize each of uncertain parameters into four values.

Therefore, we have (4 * 4)2 = 256 possible scenarios in total.

3.3 Comparison of six models

In this section, we examine all six models we presented and study how the effect

of a reference price, budget of uncertainty, delayed resource allocation and feedback

control affect the pricing policy.

3.3.1 Test instances

Five test instances, labeled from testI.dat through test5.dat, were designed for testing.

All the input parameters were generated randomly, and the budget of uncertainty Ft

was randomly chosen as long as both Dt - FrtED, 0, and -t - FtE, 0 hold.

3.3.2 The effect of reference price

Proposition 4. The presence of the reference price improves the objective value

of the resulting pricing policy. In other words, the objective value of Robust-M2 is

higher than that of Robust-Mi.

Proof. Let z1 and z2 be the optimal objective values of Robust-Mi and Robust-M2,

respectively, and let (p*, p*) be the optimal prices in Robust-MI. There are two

possible cases:

1. If (p*, p2) satisfies the resource capacity constraint in Robust-M2, it is also a fea-

sible solution to Robust-M2. Let z1' be the objective value of Robust-M2 with

solution (p*, p*). Clearly, zi' is greater than z1, as min 2EU 2 (D2 - a2P + 32P*)

min 2EU 2 (D 2 - a 2p2 ). Hence, z2 > z1' > zl.
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2. If (p*, pA) violates the resource capacity constraint in Robust-M2, increase p* to

p*+Ap2 such that min 1 EU, (D 1 - ap*)+min 2 Eu 2 (D 2 - a2(P* + Ap2) + /2p*) =

C. Note that the price and demand at the first period remain the same,

which implies that the profit obtained at the first period remains the same

in both models. However, in Robust-M2, the demand at the second period is

min 6eU 2 (D 2 - a2(P2 + AP2 ) + /2p*), which is equal to C-min ,EUi (D 1 - alp*),

while in Robust-Mi, the demand at the second period is C-min 2 EU2 (D 2 - a2P*),

which is less or equal to C - minni eu 1 (D 1 - alp*). This shows that the demand

at the second period in Robust-M2 is at least equal to that in Robust-Mi. As

a result, the profit obtained at the second period in Robust-M2 is greater than

that in Robust-Mi. Therefore, z2 > zl.

Computational results

As can be seen in Table A.1, the profit obtained in Robust-M2 is greater than that

in Robust-Mi for all the five test instances.

3.3.3 The effect of the budget of uncertainty

Proposition 5. The increase in the budget of uncertainty will decrease the objective

value in the resulting pricing policy.

Proof. The proof follows easily: for the same set of uncertain parameters, a higher

budget of uncertainty leads to a larger uncertainty set in the sense that it is a superset

of the uncertainty set corresponding to a smaller budget uncertainty. As we consider

the worst-case profit with respect to the uncertain parameters within the uncertainty

set, for fixed prices, the profit obtained with a larger budget of uncertainty will always

be less or equal to that obtained with a smaller budget of uncertainty. El

However, the robust optimization model is designed so that there is no violation

of constraints for any realization of uncertain parameters that lie within the budget of
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uncertainty. Since the actual realizations of uncertain parameters may not satisfy the

budget of uncertainty, it is possible that the resource capacity constraint is violated

by the robust solution. We expect that the higher the budget of uncertainty, the

less likely that the robust solution violates the resource capacity constraint, since the

protection level increases with the budget of uncertainty.

Computational results

In order to study how the budget of uncertainty affects the quality of the pricing

policy, we increase the budget of uncertainty in test4.dat, which is 0.1 for both peri-

ods, using a step of 0.1 and obtain eight new test instances, which are labeled from

test6.dat through testl3.dat. We run Robust-M3 on all these nine test instances to

see how the budget of uncertainty affects the profit obtained by the robust solution.

We also assume the uncertain parameters follow a uniform distribution. We generate

a large number of sample points of the actual realization of uncertain parameters and

compute the probability of constraint violation for each budget of uncertainty.

The profits obtained by these nine test instances are shown in Table A.2, and

the corresponding plot is shown in Figure B-1. We can see that with the increase of

the budget of uncertainty from 0.1 to 0.9, the profit obtained decreases from 137.603

to 0.45. However, the probability of constraint violation also drops from 45.05% to

3.98%. This shows that an increase of budget of uncertainty has double effects on the

robust solution. On the one hand, the profit obtained decreases, as the seller adopts

a more conservative attitude towards uncertainty. On the other hand, the probability

of constraint violation decreases too, as the protection level increases.

3.3.4 The effect of the delayed resource allocation

In this section, we compare Robust-Mi (this model determines the amount of re-

sources for sale at time zero) with Robust-M3 and Robust-M3-AARC (these models

let nature decide the demand based on the price set for that period and the actual

realization of the uncertain parameters). We are interested in knowing which way of
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determining the resource allocation leads to a better pricing policy, and what are the

advantages and disadvantages with each type of resource allocation.

Computational results

The profits obtained by Robust-Mi, Robust-M3 and Robust-M3-AARC for five test

instances are shown in Table A.3. As can be seen in the table, the worst-case profits

obtained by Robust-Mi are higher than those of Robust-M3 and Robust-M3-AARC

for test2.dat and test5.dat, and the same for the rest of the three test instances. An-

other interesting observation is that the profits obtained by Robust-M3 and Robust-

M3-AARC are the same for all the five test instances.

This result is not surprising. Although Robust-Mi determines the resource al-

location at time zero (which may appear to be less flexible than Robust-M3 and

Robust-M3-AARC), it actually gets rid of the risk of violating the resource capacity

constraint by the realization of uncertain parameters. In Robust-Mi, the resource

allocated at each period is pre-fixed to be min(Dt,at)Es (Dt - atpt). As set St only

contains the two extreme points, we know exactly where the worst-case scenario can

happen, and therefore, we can do a better optimization and achieve a higher profit.

In contrast, although Robust-M3 and Robust-M3-AARC have the flexibility of let-

ting nature decide the demand based on the actual realized value of parameters, they

have to be better protected for whatever might occur in the future. In Robust-M3

and Robust-M3-AARC, the prices are chosen so that the sum of the highest possible

demands is still less than the total capacity C. With this constraint, the prices have

to be chosen relatively high, as otherwise, the sum of corresponding demands may

exceed the total capacity. However, in the calculation of the objective value, the

worst-case scenario is still considered in these two models. In contrast, as Robust-Mi

pre-fixes the resource allocation to the worst-case demand, it allows the prices to be

more flexible, and the sum of demand will not exceed the total capacity. Therefore,

when we maximize the worst-case profit, Robust-Mi gives a better objective value

than that of Robust-M3 and Robust-M3-AARC.

However, the advantages of Robust-M3 and Robust-M3-AARC lie in the flexibility
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of the demand being determined by the actual realization of uncertain parameters,

and this makes these two models work better on the actual realization of uncertain

parameters. In contrast, as both the price and demand are pre-determined in Robust-

M1, the profit obtained will not change with respect to the actual realization of

uncertain parameters. In order to see the effect of the delayed resource allocation,

we compare the total profits obtained by these three models on the first five test

instances. A Matlab code was written to randomly generate a substantially large

number of sample points of the actual realizations of uncertainty parameters, and

compute the total profits obtained by these three models.

The comparison of the profits obtained by these three models for five test instances

are shown from Figure B-2 to Figure B-6. From these figures, we can see that for

testl.dat, test3.dat and test4.dat, since the worst-case profits obtained by these three

models are the same, the profits obtained by Robust-M3 and Robust-M3-AARC for

all the sample points are above or just cutting the profit obtained by Robust-Mi.

Even for test2.dat and test5.dat, although the worst-case profit of Robust-Mi is

higher than those of the other two models, we can still see that for the majority of

sampling points, the actual profits obtained by Robust-M3 and Robust-M3-AARC

are higher than that of Robust-Mi. These results show that although Robust-M3

and Robust-M3-AARC may "lose" to Robust-Mi in the worst-case scenario, they, in

general, outperform Robust-Mi.

We also count the percentage of sample points for which the profit of Robust-Mi

is greater than that of Robust-M3 and Robust-M3-AARC, respectively. The result

is shown in Table A.4. We can see that even for test2.dat, there are only 0.55% and

1.46% from the total sample points for which Robust-Mi outperforms Robust-M3

and Robust-M3-AARC, respectively. For test5.dat, the ratios are higher, but still,

there are only 13.21% of sample points for which Robust-Mi has a higher profit than

the other two models.

From these comparisons, we conclude that determining the resource allocation at

time zero has the advantage of reducing the difficulty caused by the uncertain param-

eters, and therefore, improves the performance in the worst-case scenario. However,
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the cost associated with this early resource allocation is that it loses the flexibility of

adjusting to the actual realization of parameters. Hence, the actual performance of

Robust-Mi is not as good as that of the other two models in general.

3.3.5 The effect of feedback control

Robust-M3 and Robust-M3-AARC are exactly the same, except that in Robust-M3-

AARC, we incorporate the idea of feedback control by modeling the price at the

second period as an affine function of the uncertainty realized at the first period. In

this section, we compare Robust-M3 with Robust-M3-AARC to see how the feedback

control affects the pricing policy.

We can see from Table A.3 that the worst-case profits obtained by these two models

on all the five test instances are the same. This is as expected: if we look closely at the

formulations of these two models, the only difference is that the second period's price

is modeled as an affine function of D1 and a, in Robust-M3-AARC. This should not

cause any difference to the worst-case profits. For any optimal price to Robust-M3,

we can always find coefficients for the affine function such that the second period's

price in Robust-M3-AARC is the same as that in Robust-M3. Conversely, for any

set of coefficients of the affine function in the optimal solution of Robust-M3-AARC,

we can always set the second period's price in Robust-M3 to the value of that affine

function in Robust-Mi. Therefore, the profits obtained in the worst-case scenario

should be the same for both models.

However, the affine function gives Robust-M3-AARC the ability to adjust its prices

based on the uncertain parameters realized before. We can treat this as a tuning

effect that adjusts the prices, most likely, towards an increase of the overall profit.

The tuning effect of the affine function can be intuitively seen as follows: according

to the affine function, P2 increases if D1 increases or a 1 decreases. When D1 increases

or a, decreases, it is usually a sign that the realized demand at period 1 is higher

than what the seller has estimated. Therefore, considering the total limited amount

of resources the seller has, the resources left for sale at period 2 might be less than

she has expected to sell. The best response now is to increase the price at the second

53



period so that the demand at period 2 will decrease, and the profit obtained in period 2

can be maximized. We can see from Figure B-2 to Figure B-6 that the profit obtained

by Robust-M3-AARC is, in general, above that of Robust-M3.

It is worth pointing out that the affine function does not guarantee the improve-

ment in the objective value. Sometimes, it may even cause the profit to be lower

than that obtained in Robust-M3 for some realization of uncertain parameters (see

Table A.5). This is reasonable. The affine function may not be a good modeling of

the relationship between the price and parameters realized before. A higher order

function may be a better modeling tool; however, it will introduce much more com-

plexity to the model. Nevertheless, we still expect that with the introduction of the

affine function, Robust-M3-AARC will outperform Robust-M3 for most of the sample

points. To see this, we count the percentage of sample points for which the profit of

Robust-M3 is higher than that of Robust-M3-AARC, which is shown in Table A.5.

We can see from the table that the highest percentage of such points is still less than

25%. This shows that the affine function does help to improve the pricing policy on

average.

3.3.6 Comparison of the dynamic programming model with

the robust optimization models

In this section, we compare the profits obtained by Robust-Mi, Robust-M3-AARC

and the dynamic programming model for all five test instances.

The comparison of the profits obtained by these three models for five test instances

are shown from Figure B-7 to Figure B-11. We can see from these figures that the

profits obtained by Robust-M3-AARC and dynamic programming are very close for

most of the sample points, and both of these models have a higher profit than that

of Robust-Mi, in general. Taking a close look from Figures B-7 to Figure B-11, we

observe that the curve obtained by the dynamic programming model is just slightly

above that of Robust-M3-AARC. For some of sample points, Robust-M3-AARC even

outperforms the dynamic programming model. The percentage of points for which the
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dynamic programming "loses" to the other models may be caused by the discretization

of uncertain parameters and the state variable we have performed in order to solve the

dynamic programming model. As as result, this only provides an incomplete look-up

table. A finer discretization will help to improve the performance of the dynamic

programming model.

We count the number of sample points for which the profit obtained by Robust-

M3-AARC is greater than that of the dynamic programming model, which is shown

in Table A.6. We can see from this table that for most of the test instances, for more

than 10% of the total sample points, Robust-M3-AARC has a higher profit than

that of the dynamic programming model. Specially for test5.dat, the percentage of

such points is as high as 28%. This comparison shows that although the dynamic

programming model does give the best pricing policy among all these models, Robust-

M3-AARC gives a result very close to that of the dynamic programming model or

even outperforms it for some of sample points.

3.3.7 Comparison of the stochastic optimization model with

the robust optimization models

In this section, we compare the profits obtained by Robust-Mi, Robust-M3, Robust-

M3-AARC and the stochastic optimization model.

The profits obtained by these models for five test instances are shown in Table

A.7. As can be seen in the table, the stochastic optimization model gives a higher

profit than the rest of the models for all the five test instances. This is because the

stochastic optimization model is maximizing the expected profit, while the rest of

models are maximizing the worst-case profit.

3.3.8 Evaluation of the four-point approximation in Robust-

M3-AARC

We have mentioned above that we only consider four extreme points of the uncer-

tain parameters to represent the worst-case scenario. As the objective function is a
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quadratic function of uncertain parameters in Robust-M3-AARC, this approximation

may not be sufficient to represent the worst-case scenario. In this section, we examine

how good this approximation is through simulation.

We randomly generate a large number of sample points of (Dt, at) within the

uncertainty set. We use the pricing policy returned by Robust-M3-AARC to compute

the actual profit for each of the sample points we have generated. We compare the

actual profit against the worst-case profit obtained by Robust-M3-AARC. If the actual

profit is lower than the profit obtained by Robust-M3-AARC, we find a sample point

that leads to a lower objective value than that obtained by the four extreme points

we consider in the model. We compute the percentage of such sample points to see

how effective the four-point approximation is in representing the worst-case scenario.

In the simulation, we generated 10,000 sample points. The results obtained for all

the five test instances are shown in Table A.8.

As we can see from the table, the percentages of such sample points are zero for

testl.dat, test3.dat and test4.dat. For test2.dat and test5.dat, the percentages of

such sample points are only 2.5% and 0.015%, respectively. Based on these results,

we conclude that the four-point approximation is very effective in representing the

worst-case scenario in Robust-M3-AARC.
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Chapter 4

Uncertain data in a monopoly and

multi-period setting

One of the challenges faced in the multi-period extension of the pricing problem is

that the size of the problem grows exponentially with the number of periods. This

problem applies not only to the dynamic programming and stochastic optimization

models, but also to all the four robust optimization models we considered. In this

chapter, we examine how to address the computational issues in the multi-period

setting.

4.1 Dynamic programming model and stochastic

optimization model

As discussed before, dynamic programming suffers badly from the "curse of dimen-

sionality." This drawback makes dynamic programming inappropriate for solving

large-scale problems. In our pricing problem, we have to discretize not only the state

variable, but also the uncertain parameters in order to solve the problem at each

stage. For instance, even if we just discretize the state variable into 100 intervals and

the uncertain parameters into 10 intervals (this may not be big enough for an accurate

estimation), the computational complexity will become of the order of (100* 10 * 10)1
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for an n-period pricing problem. Clearly, the computational complexity explodes with

the number of periods.

We conduct an experiment to record the running time required to solve the dy-

namic programming model for different time periods. We start with two periods and

increase the number of time periods by 1 at each step. The results are shown in Table

A.9. We can see that the running time explodes with the increase of the time period.

From two periods to three periods, the running time increases by almost 200 times.

When the number of periods is four, it takes more than 30 minutes to complete. This

shows that although the dynamic programming model gives the best result, it is not

easy to extend to the multi-period setting.

Similarly, although stochastic optimization does not suffer from the curse of di-

mensionality in the state variables, it is usually limited to problems with very few

periods. When the number of periods increase, the running time explodes due to the

exponential explosion of the event tree.

In conclusion, neither the dynamic programming model nor the stochastic opti-

mization model extends easily to the multi-period setting.

4.2 Robust optimization models

The robust optimization modeling has been successfully applied to some large-scale

and highly complex optimization problems. In our problem, as the demand is a

linear function of the uncertain parameters, we identify that the value of uncertain

parameters that leads to the worst-case scenario can only happen at the extreme

points. As a result, the total number of constraints we need to consider for an n-

period pricing problem is of the order of 2' for the first three robust optimization

models and 4' for Robust-M3-AARC. In addition, as we only had access to the trial

version of AMPL, we are limited to solve a problem with at most 300 constraints.

However, for a eight-period pricing problem, the total number of constraints we have

is about 900 constraints for the first three robust models, and more than 200,000

constraints for Robust-M3-AARC.

58



Thus, the main challenge faced in extending these models to a multi-period setting

is how to handle the potentially exponential number of constraints as the number of

periods grows. In particular, we have to first find a convenient way to generate the

large number of constraints. Second, we need to find strategies to solve the problem,

which is large-scale quadratic optimization problem with quadratic constraints, and

is even non-convex for Robust-M3-AARC.

4.2.1 Approaches

A constraint generator is written to generate all the extreme points and write them

to a file. This file can later be read by the main program to generate constraints as

needed.

For the first three robust models, we use delayed constraint generation to solve the

problems. By using this technique, we can solve a smaller problem at each time and

yet, still be able to guarantee the optimal solution. For Robust-M3-AARC , as the

formulation is not convex, we try two methods to solve the problem. The first method

is to try different initial points and choose the best solution among all the solutions

found as the optimal solution, assuming we have tried a substantially large number

of initial points. The second method is to transform the non-convex problem to a

convex problem with the MIP formulation, and then solve it with integer relaxation

and branch-and-bound techniques.

4.2.2 Delayed constraint generation for solving Robust-Mi

and Robust-M2

In the delayed constraint generation, we first choose a subset of the constraints that

will be considered in the problem. The selected set of constraints are called active

constraints and the set is called the active set, while the rest of the constraints are

called inactive constraints. The smaller version of the original problem is solved to

optimality and the obtained solution is then checked for feasibility among the inactive

constraints. Any of the inactive constraints that are violated is added back to the
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active set. The problem is then solved again for the new active set, and the obtained

solution is checked against all the inactive constraints. This procedure repeats until

a solution has been found to satisfy all the inactive constraints.

As the total number of constraints our solver can handle is limited to 300, we can

not allow the size of the active set to grow without control. To maintain the size of

the active set within a certain range, we remove any constraint which is not tight

from the active set once some new constraint is added to the set.

4.2.3 Approaches to solving Robust-M3-AARC

Robust-M3-AARC is a non-linear, non-convex optimization problem with a huge

number of constraints. A non-convex optimization problem cannot guaranteed to be

solved to global optimality. Nevertheless, it is possible to find a close enough local

optimum. To solve this non-convex problem, we tried two methods: the first method

is to try different initial subsets of constraints and solve each of them using delay

constraint generation individually; the best solution found among them is used as the

optimal solution. The second method is to use the MIP formulation to transform the

problem to a convex formulation, and solve it with integer relaxation and branch-

and-bound techniques.

In the first method, we consider various starting points and solve the problem to

optimality. A starting point refers to the active set in this case. It can be shown that

each active set gives a different optimal value. A random subset generation algorithm

is used to generate various starting points and identify the optimal solution from the

given pool.

In the second method, we considered the MIP formulation of the original model.

The new formulation is convex, if we relax the integrality constraints on the variable

K, and it can then be solved using AMPL. The solution obtained from this relaxed

problem will become an upper bound of the original problem. A branch-and-bound

technique is then applied to make each ui either 0 or 1 and find the optimal solution.
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4.3 Computational results

In this section, we show that the conclusions we have drawn about the effect of the

reference price, the budget of uncertainty, the delayed resource allocation, and the

feedback control in the previous chapter still apply in a multi-period setting.

We randomly generated three test instances and labeled them as test8-1.dat, test8-

2.dat and test8-3.dat, respectively.

The effect of the reference price

In this section, we compare the profits obtained by Robust-Mi and Robust-M2 for

the 8-period test instances. The results are shown in Table A.10. We can see from

the table that the profits obtained by Robust-M2 are higher than that of Robust-Mi

for all the test instances.

The effect of the budget of uncertainty

In this section, we choose test8-1.dat, for which the budget of uncertainty is 0.1 for

all the time periods, and increase the budget of uncertainty using a step of 0.1 to

generate another eight test instances. The profits obtained by Robust-Mi on these

nine test instances are shown in Figure B-12. Clearly, we see the profit obtained

decreases when the budget of uncertainty increases.

The effect of the delayed resource allocation and feedback control

In this section, we compare the profits obtained by Robust-Mi, Robust-M3 and

Robust-M3-AARC on test8-1.dat to see whether the delayed resource allocation leads

to a better pricing policy for most of the realizations of the uncertain parameters.

Similar to what we have done in the 2-period case, we randomly generate a large

set of sample points, where each of the sample points contains one set of realized

values for the parameters, and compare the profits obtained by these three models on

these sample points. The result is shown in Figure B-13. We can see from the figure

that although the worst-case profit obtained by Robust-Mi is higher than that of the
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other two models, it has a lower profit for most of the sample points. This shows that

the delayed resource allocation has the strength of achieving higher profit even in a

multi-period setting.

To see the effect of feedback control, we compare the results obtained by Robust-

M3 and Robust-M3-AARC. We can see from Figure B-13 that the curve obtained by

Robust-M3-AARC is slightly above that of Robust-MI. In fact, for 38% of the total

sample points, Robust-M3 has a higher profit than Robust-M3-AARC.
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Chapter 5

Uncertain data in an oligopoly

setting

In this chapter, we consider the pricing problem in an oligopoly setting. We show

that a market equilibrium pricing policy exists for all of our models. An iterative

learning algorithm is studied for computing market equilibrium prices.

5.1 Existence of Nash equilibrium policy

Definition (Nash equilibrium policies). The pricing policies for each seller are

Nash equilibrium pricing policies if no single seller can increase her payoff by unilat-

erally changing her policy.

Theorem 1. If an integer solution n exists in the MIP best response formulations of

Robust-M3 and Robust-M3-AARC, then there exists an equilibrium policy to these

two models

Proof. If an integer solution K exists in the MIP best response formulations of Robust-

M3 and Robust-M3-AARC, we can eliminate K from these two models. Thus, Robust-

M3 and Robust-M3-AARC become similar to Robust-Mi and Robust-M2 in the sense

that the feasible space is a non-empty, compact and convex set. As the objective

63



function is continuous and concave, there exists an equilibrium policy to these two

models according to the Glicksburg-Fan-Debreu theorem (see [13]). El

Although a Nash equilibrium exists for all of our models, we may not be able

to compute the equilibrium pricing policy for all of them as easily. In fact, only

for Robust-Mi, where both the price and demand are decided at time zero, is the

equilibrium pricing policy computable, while for the rest of models, it may not. A

detailed discussion follows:

Case 1: In Robust-Mi, as the price and demand are decided at the start of the

first period, the profit of each seller can be determined at the beginning of the game.

In an oligopoly setting, the profit of each seller is only affected by the prices of her

competitors, but not other factors such as the actual realization of the uncertain

parameters. As in this robust model, the demand function is concave and continuous

in all arguments, the joint strategy set is closed, convex, bounded, a Nash equilibrium

can be computed easily(see [20]).

Case 2: For the rest of our formulations, either the price is determined at time

zero and the actual realization of uncertain parameters determines the demand, or

the decision for the prices are delayed until the realization of uncertain parameter at

early periods are known. In both cases, the actual realization of uncertain parameters

plays a crucial role in determining the profit that each seller can have. In other words,

in an oligopoly setting, each seller's profit is no longer only affected by her own prices,

but also by the actual realizations of the uncertain parameters in her model. In this

case, a convergence to the equilibrium pricing policy may not be easily computed.

One would need to compute an equilibrium pricing policy that is optimal for every

possible realization of uncertain parameters. For different realizations of the uncertain

parameters, the equilibrium pricing policy will change accordingly.

Although the equilibrium pricing policy may not be computable for some of our

models, it is still likely to be achieved under certain assumptions. These are discussed

in the following sections.
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5.2 Iterative learning algorithms

In this section, we use the iterative learning algorithm as introduced in [17] to compute

the market equilibrium prices. The basic idea for the algorithm is as follows. Consider

a market where none of the sellers is aware of the equilibrium policies for the current

round of the game. Each seller solves the best response problem by observing her

competitors' prices from the previous realization of the game and adopts a policy

that maximizes her payoff. No seller has information about the inventories of her

competitors except the prices realized in the previous round of the game. The entire

multi-period game is repeated for a number of times until the market approaches an

equilibrium state. We denote the best response problem seller i solves with respect

to her competitors' strategies from the kth round of game by BRi((p_,)k). The

equilibrium prices are denoted by p*. The iterative learning algorithm is formally

presented as follows:

Iterative Learning Algorithm:

1: for i E I do

2: (p 0 Pt

3: end for

4: for i E I do

5: (pi)1 <- BRi((p-i)o)

6: end for

7: k <- 1

8: while (p.)k = (pi)k-- do

9: for i E I do

10: (pi)k+1 <- BRi((p_i)k)

11: end for

12: k <- k +1

13: end while

14: p* +- (p)k
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15: RETURN p*

5.3 Implementation issues

We implement the iterative learning algorithm for both a two-period and a three-

period pricing problem. We use the dynamic programming model to solve the best

response problem at each iteration. However, as the dynamic programming model in

our pricing problem generates a look-up table of optimal prices for each discretized

inventory value, and the inventory is affected by the actual realization of the uncertain

parameters, we need to generate realized values for the uncertain parameters in the

simulation in order for each seller's competitors to observe her prices at the previous

iteration. This introduces a problem: if we randomly generate realized values for the

uncertain parameters, the pricing policy each seller adopts based on her look-up table

generated by the dynamic programming model will be random too. Therefore, each

seller's pricing policy is not only affected by her competitors's prices from the previous

iteration, but also by the realized values of the uncertain parameters at previous

iteration we have simulated. If the realized values of the uncertain parameters are

generated randomly, sellers' prices can hardly converge to a steady state. This implies

that the market equilibrium can never be reached using this algorithm.

In order to address this problem, we try to generate a large number of realized

values for the uncertain parameters, find the deterministic pricing policy for each of

them, and take the average of all the pricing policies as the policy that will be observed

by her competitors at the following iteration. When the number of realized values we

generated for the uncertain parameters at each iteration is very large, the resulting

pricing policy becomes less affected by the uncertain parameters, and therefore, the

market equilibrium may be computed. Our computational results (from Figure B-14

to FB-17) show that 10 realized values generated for the uncertain parameters at

each iteration are good enough to ensure the convergence of the iterative learning

algorithm.
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5.4 Computational results

First, we consider a duopoly market and study if the iterative learning algorithm

converges to an equilibrium pricing policy. We use test1.dat as the test instance in

this case. We tried different number of realized values generated for the uncertain

parameters at each iteration. Therefore, we can compare how the number of realized

values generated will affect the convergence of the prices. We also try four different

initial prices to see how sensitive the iterative learning algorithm is to the initial

prices chosen. We can see from Figure B-14 to Figure B-17 that the prices converge

when the number of realized values generated for the uncertain parameters is large.

Furthermore, for all the four initial prices, the equilibrium prices are around (1.7, 6.2)

for seller 1 and (2.7, 3.3) for seller 2. Note that even when the initial price we choose is

(7,8) for seller 1 and (4,7) for seller 2, which are both higher than the converged price

of these two sellers respectively, the iterative learning algorithm is able to compute

the equilibrium prices. This shows that the iterative learning algorithm is not very

sensitive to the choice of initial prices.

Next, we consider a market with three sellers. Similarly, we try a different number

of realized values generated for the uncertain parameters at each iteration. We try

four different initial prices to see how sensitive the iterative learning algorithm is

to the initial prices. We can see from Figure B-18 to Figure B-21 that the prices

converge when the number of realized values generated for the uncertain parameters

is 10. Furthermore, for all the four initial prices, the equilibrium prices are around

(1.6, 6.2) for seller 1, (2.4, 3.3) for seller 2 and (3.1, 3.1) for seller 3.

5.5 Convergence of the iterative learning algorithm

The reason that the iterative learning algorithm converges to a Nash equilibrium

for Robust-Mi is that Robust-Mi fixes the demand to be the worst-case demand,

but not the demand decided by nature (i.e., the demand function with the actual

realization of uncertain parameters). As we can identify that the worst-case scenario
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can only happen at an extreme point, we, in fact, transform the robust demand

model to a deterministic demand model. In other words, we get rid of the side effect

of uncertainty on the profit in this model. Therefore, a Nash equilibrium exists and

is computable, as the uncertainty factor no longer affects the solution.

For the rest of the models, such as the dynamic programming formulation, the

iterative learning algorithm can still reach a Nash equilibrium policy if we take enough

actual realizations of uncertain parameters, and use the average of them to decide

the prices. This is, in fact, another way to minimize the effect of uncertainty on the

solution. Numerical results show that a Nash equilibrium can be computed if the

number of actual realizations of uncertain parameters is large enough (such as 10 sets

of realizations).
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Chapter 6

Conclusions

In this thesis, we formulated a multi-period pricing model for a monopoly and an

oligopoly market. Each seller has a fixed starting inventory, and the products are

perishable. The demand function faced by each seller is uncertain and is dependent

on all the sellers' prices at the current period and the past pricing history. Our

focus was to address two of the main issues in the pricing model: uncertainty and

competition.

To address the issue of uncertainty in demand, we first studied the pricing problem

in a monopoly setting. We used robust optimization, adaptable robust optimization,

dynamic programming and stochastic optimization to formulate various dynamic pric-

ing models, and find an adaptable closed pricing policy for each of these models. We

examined the effect of budget of uncertainty, reference price, delayed resource allo-

cation, and feedback control on the quality of the pricing policy. We later extended

the robust models to a multi-period setting and show that the results found in a

monopoly and two-period setting are still valid.

We addressed the issue of competition by studying if a market equilibrium exists in

our models. We also used an iterative learning algorithm to compute the equilibrium

prices. We showed through numerical results that the algorithm computes the market

equilibrium prices if we generate a significantly large number of realized values for

the uncertain parameters at each step of the iterative learning algorithm.

There are a number of interesting findings from this research, which are discussed
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as follows:

1. Through the comparison of Robust-Mi and Robust-M2, we found that the

consideration of the reference price in the demand function has a positive effect

on the quality of the resulting pricing policy. Thus, the presence of the reference

price not only makes the demand function a better model of customers' attitudes

towards purchasing, but also increases the overall profit that can be obtained.

2. For the same robust optimization model, an increase in the budget of uncer-

tainty will cause a decrease in the objective value. This is because a higher

budget of uncertainty corresponds to a bigger uncertainty set, which will make

the worst-case solution even worse. However, an increase in the budget of un-

certainty also causes a decrease in the probability of constraint violation, as the

protection level increases.

3. From the comparison of Robust-Mi with Robust-M3 and Robust-M3-AARC, we

found that there are both advantages and disadvantages of the delayed resource

allocation adopted in Robust-M3 and Robust-M3-AARC. The advantage of

the delayed resource allocation is to give models the flexibility to change their

policies with respect to the actual realization of uncertain parameters. As a

result, the objective values of Robust-M3 and Robust-M3-AARC are higher

than that of Robust-Mi on average. However, the disadvantage is that it leads

to a lower objective value in the worst-case scenario, as the choices of prices are

more restricted in these two models in order to protect the resource capacity

constraint against all possible realization of uncertain parameters.

4. By comparing Robust-M3 with Robust-M3-AARC, we found that a closed-loop

policy outperforms an open-loop policy in general. The feedback control in

Robust-M3-AARC acts as a tuning effect that tries to tune the current decision

based on the uncertain parameters that have realized. However, this tuning

effect is just an estimation of what could happen in reality, and it does not

guarantee an increase in the objective value at all times.
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5. We compared the dynamic programming model with robust optimization mod-

els and found that the dynamic programming model performs better than robust

optimization models in general. However, when a feedback control is used in the

robust formulation, the results obtained by the dynamic programming model

and Robust-M3-AARC are very close. In fact, we have shown in Chapter 3

that Robust-M3-AARC even outperforms the dynamic programming model for

as high as 28% of the total sample points in our simulation. This is a very

promising result. It shows that a robust formulation with feedback control can

achieve almost as good results as a dynamic programming formulation. More-

over, Robust-M3-AARC is computationally tractable and, yet, produces good

results in a multi-period setting.

6. The stochastic optimization model gives a higher profit than that of robust

optimization models. Similar to the robust optimization model, the stochas-

tic optimization model also benefits from the pre-computation of the optimal

solution for each scenario.

7. In a multi-period setting, dynamic programming and stochastic optimization

lose to robust optimization, as they either suffer from the curse of dimensionality

in the state variable or the increase in the number of periods. In contrast, robust

optimization is able to solve the large-scale optimization problem. We used a

delayed constraint generation method to solve the robust optimization models

in the multi-period setting.

8. We studied a Nash equilibrium in an oligopoly setting. We showed the existence

of solution for both the best response subproblems and the market equilibrium

problem for all of our models. However, for all of our models except Robust-

M1, as the profit obtained by each of them is affected by the actual realization

of uncertain parameters, an equilibrium pricing policy may not be as easily

computable. We considered an iterative learning algorithm and made some

assumptions to minimize the effect of uncertainty on these models. We showed

using simulation how this algorithm computes a Nash equilibrium policy.
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Appendix A

Tables
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Table A.1: Effect of reference price: comparison of the profits obtained by Robust-Mi
and Robust-M2.

test1 test2 test3 test4 test5
Robust-Mi 109.37 7 107.48 137.603 109.37
Robust-M2 112.79 8.4426 116.18 152.83 112.79
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Table A.2: The profit obtained and the ratio of constraint violation for different
budget of uncertainty

test4 test6 test7 test8 test9 testlO test11 test12 test13
Profit 137.6 79.9 49.9 18 12.4 7.9 4.4 1.7 0.4
Ratio 45.0% 41.7% 36.8% 24.6% 23.1% 12.3% 11.1% 4.7% 3.9%
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Table A.3: The profits obtained by Robust-Mi, Robust-M3 and Robust-M3-ARRC
for different test instances.

test 1 test2 test3 test4 test5
Robust-Mi 109.37 7 107.48 137.603 109.375
Robust-M3 109.37 2 107.48 137.603 75
Robust-M3-ARRC 109.37 2 107.48 137.603 75
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Table A.4: The percentage of sample points for which Robust-Mi has a higher profit
than Robust-M3 and Robust-M3-AARC respectively.

testi test2 test3 test4 test5
Robust-M3 0% 0.55% 0% 0% 13.21%
Robust-M3-AARC 0% 1.46% 0% 0% 13.21%
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Table A.5: The percentage of sampling points for which Robust-M3 has a higher
profit than that of Robust-M3-AARC.

testi test2 test3 test4 test5
% of sampling points 21.1% 8.62% 14.49% 24.77% 0%
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Table A.6: The percentage of sample points for which Robust-M3-AARC has a higher
profit than that of the dynamic programming model.

test1 test2 test3 test4 test5
% of sampling points 19% 2% 13% 12% 28%
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Table A.7: The profits obtained by Robust-Mi, Robust-M3,
stochastic optimization model for different test instances.

Robust-M3-ARRC and

test 1 test2 test3 test4 test5
Robust-Mi 109.37 7 107.48 137.603 109.375
Robust-M3 109.37 2 107.48 137.603 75
Robust-M3-ARRC 109.37 2 107.48 137.603 75
Stochastic programming 182.759 197.64 131.226 177.35 182.75
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Table A.8: The percentage of sample points that lead to lower objective values than
that obtained by Robust-M3-AARC.

testi test2 test3 test4 test5
Percentage 0% 2.5% 0% 0% 0.015%
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Table A.9: The running time required by the dynamic programming model to solve
the pricing problem for various numbers of time periods.

Period CPU Time
2 1.26s
3 235.43s
4 >30min
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Table A. 10: Effect of the reference price: comparison of profits obtained by Robust-
MI and Robust-M2 on the eight-period test instances.

test8-1 test8-2 test8-3
Robust-Mi 654.29 439.23 275.36
Robust-M2 692.38 482.15 314.83
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Appendix B

Figures
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Figure B-1: Effect of budget of uncertainty: The profits obtained and the probability
of constraint violation for different budget of uncertainty in a monopoly and two-
period setting.
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Comparison of Profits of Model 1, Model 3(Worst Case), and Model 1 Ref
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Figure B-2: Effect of delayed resource allocation: The profits obtained by Robust-Mi,
Robust-M3 and Robust-M3-AARC for various realizations of uncertain parameters
on testl.dat in a monopoly and two-period setting.
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Figure B-3: Effect of delayed resource allocation: The profits obtained by Robust-Mi,
Robust-M3 and Robust-M3-AARC for various realizations of uncertain parameters
on test2.dat in a monopoly and two-period setting.
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Figure B-4: Effect of delayed resource allocation: The profits obtained by Robust-Mi,

Robust-M3 and Robust-M3-AARC for various realizations of uncertain parameters

on test3.dat in a monopoly and two-period setting.
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Figure B-5: Effect of delayed resource allocation: The profits obtained by Robust-Mi,
Robust-M3 and Robust-M3-AARC for various realizations of uncertain parameters
on test4.dat in a monopoly and two-period setting.
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Comparison of Profits of Model 1, Model 3(Worst Case), and Model 1 Ref
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Figure B-6: Effect of delayed resource allocation: The profits obtained by Robust-Mi,

Robust-M3 and Robust-M3-AARC for various realizations of uncertain parameters

on test5.dat in a monopoly and two-period setting.
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Figure B-7: Comparison of the profits obtained by Robust-Mi, Robust-M3-AARC
and dynamic programming model for various realizations of uncertain parameters on
testl.dat in a monopoly and two-period setting.
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Figure B-8: Comparison of the profits obtained by Robust-Mi, Robust-M3-AARC

and dynamic programming model for various realizations of uncertain parameters on

test2.dat in a monopoly and two-period setting.
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Figure B-9: Comparison of the profits obtained by Robust-Mi, Robust-M3-AARC
and dynamic programming model for various realizations of uncertain parameters on
test3.dat in a monopoly and two-period setting.
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Figure B-10: Comparison of the profits obtained by Robust-Mi, Robust-M3-AARC

and dynamic programming model for various realizations of uncertain parameters on

test4.dat in a monopoly and two-period setting.
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Figure B-11: Comparison of the profits obtained by Robust-Mi, Robust-M3-AARC
and dynamic programming model for various realizations of uncertain parameters on
test5.dat in a monopoly and two-period setting.
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Figure B-12: Comparison of the profits obtained by Robust-Mi by varying the budget

of uncertainty on test8-1.dat in a monopoly and eight-period setting.
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Figure B-13: Comparison of the profits obtained by Robust-Mi, Robust-M3 and
Robust-M3-AARC on test8-1.dat in a monopoly and eight-period setting.
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for the uncertain parameters.
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Figure B-15: The pricing policies of two sellers at different iterations of the iterative
learning process. The initial price is (2,5) for seller 1 and (2,2) for seller 2, and a
different numbers of sets of realized values are generated for the uncertain parameters.
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Figure B-16: The pricing policies of two sellers at different iterations of the iterative

learning process. The initial price is (2,3) for seller 1 and (1,2) for seller 2, and a

different numbers of sets of realized values are generated for the uncertain parameters.
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Figure B-17: The pricing policies of two sellers at different iterations of the iterative
learning process. The initial price is (7,8) for seller 1 and (4,7) for seller 2, and a
different number of sets of realized values are generated for the uncertain parameters.
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Figure B-18: The pricing policies of three sellers at different iterations of the iterative

learning process. The initial price is (0,0) for all the sellers, and a different number

of sets of realized values are generated for the uncertain parameters.
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Figure B-19: The pricing policies of three sellers at different iterations of the iterative
learning process. The initial price is (2,5) for seller 1, (2,2) for seller 2 and (3,3)
for seller 3, and a different number of sets of realized values are generated for the
uncertain parameters.
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Figure B-20: The pricing policies of three sellers at different iterations of the iterative

learning process. The initial price is (2,3) for seller 1, (1,2) for seller 2 and (2,2)

for seller 3, and a different number of sets of realized values are generated for the

uncertain parameters.
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Figure B-21: The pricing policies of three sellers at different iterations of the iterative
learning process. The initial price is (7,8) for seller 1, (4,7) for seller 2 and (6,6)
for seller 3, and a different number of sets of realized values are generated for the
uncertain parameters.
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