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Abstract
Interactions between physical and biological processes in the Southern Ocean have
significant impacts on local ecosystems as well as on global climate. In this thesis,
I present evidence that the Southern Ocean circulation affects the variability of zoo-
plankton and sea surface temperature, both of which are involved in air-sea exchanges
of carbon dioxide. First, I examine the formation of spatial patterns in the distribu-
tion of Antarctic krill (Euphausia superba) resulting from social behavior. Turbulence
of the flow is found to provide favorable conditions for the evolution social behavior in
an idealized biological-physical model. Second, I analyze observations of sea surface
temperature variability in the region of the Antarctic circumpolar current. Results
suggest that propagating anomalies can be explained as a linear response to local
atmospheric forcing by the Southern Annular Mode and remote forcing by El-Nifio
southern oscillation, in the presence of advection by a mean flow.

Thesis Supervisor: Glenn R. Flierl
Title: Professor of Oceanography
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Chapter 1

Introduction

Interactions between physical and biological processes in the Southern Ocean have

significant impacts on local ecosystems as well as global climate. The production of

organic carbon by photosynthetic plankton drives fluxes of CO2 through the air-sea

interface and cold, sinking waters carry a fraction of this carbon to the deep ocean,

effectively sequestering it from the atmosphere. Plankton are, in turn, affected by

the variability of the flow near the sea surface.

In this thesis I examine the mechanisms controlling the distribution of zooplank-

ton and sea surface temperature in the Southern Ocean. Although the mechanisms

involved are different, both large-scale temperature anomalies and smaller scale plank-

ton patches contribute to the inhomogeneity of air-sea fluxes of carbon dioxide. Plank-

ton patchiness is not explicitly resolved in global biogeochemical numerical models;

however it is known to affect the oceanic productivity and its effect can be parame-

terized [Pascual et al., 2001].

In Chapter 2, I present a coupled biological-physical model of zooplankton com-

peting for resources in a turbulent environment. Results from numerical simulations

suggest that the tendency to form social aggregations can represent an advantage or

a disadvantage for zooplankton, depending upon the flow conditions. I discuss how

turbulent stirring and mixing, by supplying phytoplankton to clustered organisms,

11



Figure 1-1: A simplified representation of the Antarctic ocean food web. The diagram
highlights the central role of krill, which is the principal source of food for various
species of whales, seals, fish and birds [Ward, 2005].

favors the evolution of grouping behavior. Antarctic krill, which are a central part

of the Southern Ocean ecosystem (Figure 1-1), exhibit grouping behavior as well as

response to large-scale and mesoscale ocean circulations. Recent observations have

revealed the existence of aggregation patches of Antarctic krill with horizontal scale of

100 m to 1 km, and densities on the order of 100 individuals/m 3 . These densely pop-

ulated patches are found mostly in turbulent circulation features such as small-scale

jets and eddies which supply food to the krill.

In Chapter 3, I investigate the role of mean ocean circulation in the generation and

propagation of temperature anomalies at the sea surface. The Antarctic Circumpolar

Current (ACC) is the principal dynamical feature in the Southern Ocean (Figure 1-

2); flowing eastward around Antarctica, it advects water properties under a stormy

atmosphere. This stochastic forcing is found to induce low-frequency variability in

sea surface temperature (SST). Observational data shows that SST anomalies are

12
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Figure 1-2: A map of the Southern Ocean, showing the location of the Antarctic
Circumpolar Current. The boundaries of the current are indicated by dashed lines.
The map also shows the position of the Subantarctic front (SAF), polar front (PF)
and southern ACC front (ACC). From Whitworth [1988

generated mainly in the South Pacific basin through heat fluxes driven by the El-

Nifio-Southern Oscillation and the Southern Annular Mode. I present a simple model

of SST forced by the observed heat fluxes and advected by the mean geostrophic

flow of the ACC, and show that it reproduces well the first-order features of observed

temperature variability.
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Chapter 2

Evolution of grouping behavior in

krill

Verdy, A. and G. Flierl

Deep-Sea Res. II, submitted (2006)

Turbulent motions in the ocean affect the distribution of zooplankton. Despite

the dispersion resulting from stirring and mixing by the flow, coherent groups are ob-

served in populations of organisms with social behavior, notably Antarctic krill. We

employ a biological-physical model to investigate the evolutionary advantages associ-

ated with the formation of social aggregations, under different flow conditions. The

model simulates the transmission and slow mutation of a gene controlling the aggre-

gation behavior; natural selection determines whether the grouping or non-grouping

type becomes dominant. It is found that grouping behavior can evolve when repro-

duction is strongly density-dependent and mixing occurs rapidly enough for resources

to remain available to the clustered organisms. Turbulent advection prevents the

grouping type from becoming dominant if the flow shear is strong enough to disrupt

the patches; otherwise the aggregated zooplankton benefits from enhanced diffusion

of resources by the turbulent flow.

15



2.1 Introduction

Zooplankton aggregation occurs as the result of both biological and physical processes.

In the ocean, the density distribution of plankton is influenced by circulation patterns

such as mesoscale vortices [Abraham, 1998; Flierl and McGillicuddy, 2002; Levy and

Klein, 2004; Pasquero, 2005] and fronts [Epstein and Beardsley, 2001; Franks, 2002;

Genin et al., 2005]. The behavior of individuals responding to their environment

also plays a significant role in the generation of dense, quasi-horizontal patches of

zooplankton commonly called swarms [Folt and Burns, 1999]. Physical and chemical

cues can trigger collective movements in a population, or the cue can be the density

of conspecifics, in which case the tendency to form groups is referred to as social

behavior.

A variety of mathematical models have been employed to describe the mechanisms

responsible for the development of swarms in populations of organisms with social

behavior. Mechanisms involving a balance between attractive and diffusive forces lead

to the formation of cohesive groups [Okubo, 1980; 1986; Flierl et al., 1999; Zhou and

Huntley, 1996]. Even in the absence of environmental variability, groups can form

spontaneously when swimming velocities are, on average, directed up the gradient

of density and are strong enough to overcome dispersion by the flow and by the

randomness of individual motion. Schools develop when organisms also tend to align

their orientation with close-by neighbors [Flierl et al., 1999].

From an evolutionary point of view, the reasons for self-organized patchiness are

not well known. The dynamics of groups have important ecological consequences

[Levin, 1994; Parrish and Edelstein-Keshet, 1999]; however the nonlinear nature of

predator/prey and competitive interactions makes it hard to predict whether grouping

will increase or decrease individual fitness. In some cases, aggregation is thought to be

an anti-predator strategy [Hamilton, 1970]. Other advantages include improvement

of foraging success and mating probability; these benefits are traded-off with the costs

of competition for resources between group members [Parrish and Edelstein-Keshet,

16



1999]. Persistent groups are also observed to attract predators [De Robertis, 2002].

The costs and benefits of grouping will depend on environmental conditions. In

this paper. we examine the effects of turbulent stirring and mixing on the com-

petitive abilities of organisms with social behavior. Turbulent flows are associated

with horizontal and vertical transport of resources in the euphotic zone, thus affect-

ing ecosystem dynamics. Turbulence also causes merging and splitting of plankton

aggregations [Flierl et al., 1999].

We employ a biological-physical model to investigate under what flow conditions

does social behavior represent a favorable adaptation, and therefore can evolve in

the population. The model simulates the transmission and slow mutation of a gene

controlling aggregation behavior; natural selection determines whether the grouping

or non-grouping type becomes dominant.

Our work is motivated by observations of Antarctic krill (Euphausia superba),

which are a central part of the Southern Ocean ecosystem. These animals clearly ex-

hibit aggregative and schooling behavior [e.g. Marr, 1962; Miller and Hampton, 1989]

and, despite their large size, respond to large- and meso-scale circulations [Ashjian

et al., 2004]. The observed variance spectrum of krill in the Southern Ocean is

significantly flatter than that of phytoplankton or temperature in the same region,

indicating the presence of fine-scale structure in the density distribution of krill [We-

ber et al., 1986]. Smaller zooplankton have variance spectra that lie between those of

krill and phytoplankton [Mackas and Boyd, 1979].

The layout of the paper is as follows. The model equations are presented in

Section 2.2, and analyzed in Sections 2.3.1-2.3.2. The impact of turbulent flow on the

development of patches is investigated numerically in Section 2.3.3. In Section 2.4,

we investigate the environmental conditions leading to the invasion of a non-grouping

population by a grouping mutant. Conclusions are presented in Section 2.5.
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2.2 Model formulation

The biological dynamics and motion of a single species of zooplankton is simulated in

a 2-dimensional, periodic horizontal plane which represents the oceanic mixed layer.

A continuum approach is used, where modeled fields are biomass densities rather

than discrete numbers of individuals. In order to capture the effects of resource

limitation, the dynamics of a phytoplankton are also simulated. Density-dependence

of the zooplankton reproduction is taken into account, but predation by higher trophic

levels is parameterized as independent of the zooplankton density.

2.2.1 Genetic model

We adopt a one-locus, two-allele model to simulate the transmission of a gene control-

ling social behavior. Of the three possible genotypes 00, 01 and 11, only the last one

exhibits grouping behavior. Mendelian breeding is assumed (Table 2-1), although the

possibility of spontaneous changes in the offspring's genotype is considered. These

mutation events occur at a slow rate, with equal probability for both alleles, and

affect a single allele at the time. If genetic differences did not affect survival, the

population would thus slowly equilibrate to a 1:2:1 ratio of genotypes.

Expression of the genotype will presumably influence fitness, however, and affect

the genotype frequencies. It is expected that grouping will enhance reproduction,

while decreasing the availability of resources; the overall fitness is dependent on the

Table 2.1: Genotypes of offsprings
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balance between these two effects. In our model, fitnesses are not explicitly speci-

fied; the relative success of the grouping and non-grouping types is determined by

numerical simulations.

2.2.2 Ecosystem dynamics

A system of coupled differential equations describes the interactions between zoo-

plankton (Z) and their food resource, phytoplankton (P):

dZ = ag(P)ZH(Z)-mZ _ Rz (2.1)
dt

dP _ P\
dt - rP 1-K) -g(P)ZH(Z) _ Rp (2.2)

where the mating probability is density-dependent:

Z
H(Z) - (2.3)c±Z

Phytoplankton is assimilated with efficiency a, and grazed at a rate g(P), which

we choose to be a Holling type II functional response: g(P) = where P0 is theP+Po'

half-saturation constant. We assume linear mortality rate m for the zooplankton and

logistic growth for the phytoplankton, with r the growth rate and K the carrying

capacity.

There is a positive correlation between the mating probability and the zooplankton

biomass. The positive constant c ensures that the mating probability is always less

than 1. For sparse populations, the zooplankton growth term ZH(Z) behaves like a

quadratic function; for large populations the growth term becomes a linear function

of Z. Thus as the population decreases, its growth slows down, further decreasing

the population density. This positive feedback, known as the Allee effect, can induce

stochastic extinction of small populations [Boukal and Berec, 2002]. It may also

provide an advantage to the grouping organisms.

19



In the case of Antarctic krill, mating involved direct contact between male and

female organisms, thus it is likely that the process is density-dependent. The rectan-

gular hyperbolic form of H that we choose emerges from considerations of probabili-

ties of encounters during the reproductive period, competition for mates, or fecundity

that depends on the mating frequency [Boukal and Berec, 2002].

2.2.3 Advection and diffusion

The equations describing the movements of organisms in the continuum approxima-

tion are derived in Flierl et al. [1999]. Zooplankton motion driven by attractive forces

is expressed as an advection term, representing average swimming velocities, and a

diffusion term representing randomness of individual displacements. Mixing occurring

on small scales that are not resolved by the model is also parameterized as diffusion,

and affects both the phyto- and zoo-plankton fields. For simplicity we will consider a

unique value for the diffusivities of both species; this is equivalent to making the as-

sumption that the random component of zooplankton motion is small. These diffusive

and advective effects are added to the reaction terms given by equations (2.1-2.2).

The spatial distributions of biomass, Z(x, t) and P(x, t), are given by

ozaz =Rz-V [uZ- VZ] (2.4)
09t

Rp + V [ VP] (2.5)
O9t

V being the horizontal laplacian, u the swimming velocity, the diffusivity.

The average swimming velocity of zooplankton at a given location results from

social behavior; for non-grouping organisms (genotypes 00 and 01), the movements

are random and vanish on average (u=0), but the grouping type 11 has a velocity

20



which depends on the local gradient in density:

u = V (2.6)

:= J W(x')Z(x + x')dx' (2.7)

The function +(x) represents the desirability of being at location x; it is a weighted

average of the density of zooplankton within the sensing radius of an individual.

The weighting kernel W has a characteristic horizontal scale of L, and a magnitude

proportional to the swimming speed. We choose a function that is negative at short

distance, becomes positive, has a maximum at L and then vanishes as the distance

increases; this geometry accounts for the finite area of attraction and the repulsion

at short distances (Figure 2-1).

It should be noted that (2.4) is computed for each of the zooplankton genotypes,

with advection and diffusion acting only on the type considered; but the density in

(2.7) refers to the total zooplankton population, as organisms with social behavior

are attracted not only to their type but to all conspecifics. The system described

above is solved numerically using a finite-differences scheme.

2.2.4 Turbulent stirring

To represent turbulent advection, we use a formalism akin Pierrehumbert [2000].

The grid underlying the numerical model is viewed as a lattice, whose elements are

displaced by a non-divergent flow. Displacements are constrained to be equal to a

multiple of the grid size (Ax) so that the lattice isn't deformed under the flow. With

this constraint, the turbulent advection scheme does not contribute to diffusion. The

stirring will induce sharper gradients in the fields, though, and thus enhance diffusion

at small scales which is included in the differential equations (2.4-2.5). The algorithm

is iterated in two steps. Every odd time step, the zonal displacement (x) is applied

21
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Figure 2-1: Weighting factor accorded to neighboring organisms as a function of their
distance from zooplankton located at x=0, as they adjust their velocity to move up
the gradient of neighbors density: W(x) = exp(-x 2/2) - exp(-2x 2). Distances are
expressed in units of L, the characteristic perception length scale. The sensing radius
has an approximate value of 2; individuals within the sensing radius are perceived by
zooplankton with social behavior. Positive weighting indicates attraction to neigh-
bors. Repulsion at short distance prevents over-crowding.

and every even time step, the meridional displacement (,) is. The equations are

6x = rund 6 sin ( 2 +o) ]A x (2.8)Ax~ ]A

5y =round[ 7A sin +e) l Ax (2.9)

where the phase Au (similarly for Or) has a random component

Ou(t + 2At) - Ou(t) + R (2.10)

with W the width of the domain, 60 the magnitude of the displacements, R a random

number varying between 0 and 27r; the terms between brackets are rounded to the

nearest integer.

At is the time step for the turbulent advection scheme, and might differ from the

22



time step used to solve the partial differential equations. The velocity of the flow

is proportional to the ratio 60o/At, and can be controlled by varying either of these

parameters.

2.3 Development of patches

In this section we will examine the conditions leading to the formation of zooplankton

patches. First, we will adimensionalize the model equations, to facilitate the stability

analysis. We will then proceed to numerical simulations.

2.3.1 Non-dimensional system of equations

We scale time by r -1 , lengths by L, phytoplankton and zooplankton biomass by P0

and Por/g, respectively. Some non-dimensional numbers are introduced to replace

the parameters in the reaction terms: y = ag/r, = m/r, X = K/Po; A is simply

the constant c redefined. Following Flierl et al. (1999), we scale X by , velocities by

n/L, and W by Wo ff W/L 2.

The non-dimensional equations are

at at = YG -Z - TV.[UZ - VZ] (2.11)

at = P - -G +TV [VP] (2.12)

where

P Z2
G p+1A+Z (2.13)

23



and, for individuals with social behavior,

u= V (2.14)

= J W(x')Z(x + x')dx' (2.15)

Two important non-dimensional parameters appear. The first one is e, the Peclet

number, comparing movement rates to diffusive rates [Flierl et al., 1999]. Defining the

characteristic swimming speed ubio = gPoWoL/r, we have uubiL/;; this parameter

is a measure of the strength of social behavior. The second parameter is T, the ratio

of the timescale inherent to the movements to the biological timescale: -= -I/L 2r.

In this study, we choose the biological parameters to be y = A = 1, X = 0.5

and , = 0.1. These values are somewhat arbitrary, and have been chosen because

they are associated with stable and steady coexistence of phyto- and zoo-plankton.

In the absence of motion, the P and Z concentrations at equilibrium are found by

equating (2.11) and (2.12) to 0, with T = 0. For the parameter values above, there is

a single stable equilibrium for which both species coexist, and the equilibrium values

in non-dimensional units are

P*, Z* = {0.22,1.22} (2.16)

If the distribution of plankton were uniform in space, it would remain at equi-

librium. However, spatial patterns will appear in the zooplankton distribution when

the tendency to swim up the gradient of neighbor density is sufficient to compensate

diffusion resulting from the flow.

2.3.2 Self-organized patchiness

We now examine the linear stability of the dynamical system (2.11-2.15) around the

equilibrium biomass (2.16). Instability implies that groups will form spontaneously
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Figure 2-2: Linear growth rate of small perturbations around the equilibrium biomass
versus the wavenumber of the perturbations, for e = 1.4 and for different values of
r. In a uniform distribution of zooplankton, random variations will spontaneously
lead to the formation of patches, if there is positive growth somewhere along the
wavenumber spectrum. The gray line shows the case where zooplankton motion is
decoupled from biological activities, as calculated in Flierl et al. (1999). Rates are
normalized by 1/r. When biological and movement occur at similar rates, the stability
condition can be changed from considering biological activities; this is the case here
for T- = 1 (growth rate always negative). As the motion becomes faster, the growth
rates for the cases with and without biology are almost indistinguishable in the region
of instability (positive growth).

in a population of zooplankton that is initially uniformely distributed in space. Small

perturbations in the density field will be damped if the system is stable, but will grow

in time and become dense patches if it is unstable. Perturbations can be expressed

in terms of Fourier modes: Z'= Z'exp(ik. x) and P' = P'exp(ik. x), where k is the

horizontal wavemumber.

In order to find an expression for the stability criterion, turbulent advection will

be neglected in this analysis. We begin with the assumption that the zooplankton

population is composed entirely of individuals with social behavior. The jacobian of

25



(2.11-2.12) evaluated at (2.16) is then

J= [yN-T-Trlk2(eWZ *- l) M (2.17)
N 1 2P* M

L ~~ ~x -

where we have defined

MG(p i ) (2.18)

N G( Z A+Z*) (2.19)

and the Fourier transform of W is

JW = W(k) J Weikx'dxl (2.20)

Eigenvalues of the jacobian matrix give the linear growth rate of perturbations;

if at least one of them is positive, the system is unstable. Rather than writing the

complicated expression for the eigenvalues, we have computed them numerically. The

leading eigenvalue is plotted in Figure 2-2 as a function of the wavenumber.

In the limit T oc, all but one term in (2.17) become negligible; when motion

is very fast compared to growth and mortality, coupling to phytoplankton can be

ignored. The system is reduced to a 1-dimensional equation, for which the stability

criterion is derived in Flierl et al. [1999, section 4.4]. Instability occurs for eZ*W > 1,

where Z* is the mean zooplankton concentration ( in Flierl et al. [1999]). Biological

terms increase the stability (Figure 2-2).

Assuming now that only a fraction of the population exhibits social behavior, what

is the condition for the development of patches? In the linear stability problem, the

presence of non-grouping organisms does not come into play and can thus be ignored.

It is sufficient to multiply Z* in (2.17) by f, the fraction of grouping type, to find the

new stability criteria. For a given value of e, there is a minimum density of grouping
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Figure 2-3: Stability of the ecosystem model as a function of the wavenumber of
perturbations, and the fraction of grouping organisms in the population. Parameters
are = 3, = 10. The shaded zone indicates positive growth of the perturbations,
and thus instability which will lead to the formation of self-organized patches. Low
numbers of individuals with social behavior are more stable. We note that there is a
critical fraction (fc) below which patchiness does not form.

organisms fZ*required for instability. Constraining Z* to its value (2.16), we define

fc as the critical fraction below which there is no spontaneous formation of patches.

An example of the stability of the ecosystem versus f and the wavenumber is shown

in Figure 2-3. Because of linearity, f varies with the grouping parameter such as to

keep their product fce constant.

The total population size does have an effect on the stability, but only via higher

order terms. These nonlinear effects are noticeable in the numerical simulations.

To minimize discrepancies with our analytical predictions, we initialize the model

with spatial perturbations in the 11-type zooplankton only, neutralizing the effects

of non-grouping organisms on the development of patches by making them perfectly

homogeneously distributed.
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2.3.3 Numerical simulations

Linear growth rates calculated above apply to perturbations when their amplitude is

small. As the perturbations get larger, nonlinearities become increasingly important;

eventually they contribute to stopping the growth mechanism. The final distribution

of biomass is obtained more easily numerically than analytically. For the simulations

we consider a square grid of non-dimensional width W = 30 and grid space Ax 0.25;

the time step varies between 10- 3 and 10- 4 depending on the parameters.

For = 1.4, T = 10 and f = 1, the condition for instability is satisfied so that

patches are expected to form (Figure 2-1); indeed, numerical simulations show that

small deviations from the equilibrium zooplankton biomass grow into well defined

groups, as illustrated in Figure 2-4. Initially, the scale of patchiness is determined

by the wavenumber that has the highest linear growth rate, but as they get denser

patches tend to merge, so the patchiness shifts to larger scales.

The fully developed groups have peak densities of roughly 30 times the mean

density, and a diameter of 3- 4L. These characteristics vary slightly for different

values of e, larger values leading to the formation of denser, narrower patches.

Numerically, we can also investigate the impacts of turbulence on the development

of patches. When the zooplankton field is advected by a turbulent flow, the resulting

streakiness enhances diffusion, which acts against the formation of social aggregations.

A strong flow will thus prevent groups from forming. Patchiness can develop if the

flow is weak, however, as shown in Figure 5a. Turbulent advection in that case is

sufficiently slow that zooplankton with social behavior can overcome the diffusion

resulting from the flow.

Besides slowing down the initial growth of perturbations, we observe that turbu-

lent flow induces collisions between patches. When two patches come near to each

other, they permanently merge; after a finite amount of time there is only one dense

patch in the domain. In our model, shear associated with the flow does not break

fully-developed groups apart. When the shear is strong, patches simply do not form,
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Figure 2-4: Zooplankton density in the horizontal plane. Biomass is initially uniformly
distributed, with small perturbations (left); patches form spontaneously (right). In
the left panel, contour interval is 0.005; the equilibrium density Z* = 1.22 is shown
by a thicker contour. In the right panel, the contour interval is 5; the zero contour is
thicker. Patches have a horizontal scale proportional to the length L, which scales the
spatial dimensions. All units are non-dimensional; parameters are e = 1.4, T = 10.

as shown in Figure 5b. In that case, the zooplankton field eventually becomes uni-

formly distributed in space.

To quantify the patchiness, we define an index

ff (Z(x) ff 1 Z(X + x')dx') dx

4 (ff Z(x)dx) 2 /W 2 -1 (2.21)

which compares the density of individuals within an area L2 to the density expected

if organisms were uniformly distributed.

The index vanishes for a well-mixed field; its value increases as patches form and

merge (Figure 2-5a). In the strongly-turbulent environment of Figure 2-5b, the index

is small at the beginning of the simulation and further decreases as the density is

mixed by the flow. However, the zooplankton field remains spatially more intermittent
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than a passive scalar field under the same flow conditions, as indicated by comparison

of their respective patchiness indices.

2.4 Conditions for dominance of the grouping type

In this section, we examine the conditions that determine whether the grouping or

non-gouping type will be a better competitor. We proceed through numerical simu-

lations. The scenario we consider is the following: in a population of non-grouping

homozygotes (genotype 00), a mutant allele is introduced. The reproductive and com-

petitive abilities of the grouping and non-grouping types determine the final ratio of

genotypes in the population.

Initially, the abundance of the new genotypes 01 and 11 increases through muta-

tions only since the number of grouping organisms is below the critical fraction for

patch formation. All types then have the same fitness. When the fraction of individ-

uals with social behavior reaches fc, however, patchiness starts appearing. Instead of

simulating the mutation process, we start the simulation with a fraction f of type

11 in the population; the fraction of other genotypes is chosen accordingly so that,

without mutations, the ratio of types would be constant. It is assumed that ecological

processes occur much faster than mutations, which can therefore be neglected in the

simulations.

2.4.1 Mixing and stirring effects

Once again it is useful to consider first a case without turbulent advection, in order to

get a sense of what parameters are influencing the competitive abilities of both types.

Figure 2-6 shows the two possible outcomes of the competition. For the parameters

e = 5, = 10, the non-grouping type is dominant; but increasing the value of r leads

to replacement of the resident population by the grouping type. Simulations with

different parameters consistently show that there is a critical value of above which
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Figure 2-6: Frequency of zooplankton genotypes versus time; = 5. Left: -r = 10,
the grouping types does not invade, but remains in the population at low frequency.
Right: = 25, the grouping type invades, and non-grouping types disappear from
the population. Thin gray and black lines show the genotypes 00 and 01 respectively,
while the thick gray line shows the sum of non-grouping types; thick black line shows
the grouping genotype, 11. Initially the grouping type represents a fraction f of the
population.

the grouping type dominates; moreover, we find that this critical value is independent

of the grouping parameter.

These results highlight the importance of food availability for the survival of ag-

gregated zooplankton. In our model, increasing r has the effect of enhancing mixing,

by increasing diffusion rates while keeping biological rates constant. Thus resources

are supplied faster to clustered organisms whose grazing rate is unchanged, partially

relieving the food limitation.

Varying does not affect the stability criterion, since there is a simultaneous

change in fc (Section 2.3). By definition of fC, instability occurs for a single value of

k. This wavenumber, which determines the scale of growing patches, is the same for

all pairs of values of eft. The density profile in aggregations is thus almost unaffected

by the parameter e; as a result, the availability of food is also unaffected.

Turbulent advection affects the competition between the grouping and non-grouping

types, by contributing to supplying resources to clustered organisms. Strong stirring

has been shown to prevent patches from forming (Section 2.3), but when zooplankton
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Figure 2-7: Contours of zooplankton biomass, black lines, superimposed on the phy-
toplankton field, gray shades. This shows stirring of resources by the turbulent field,
for parameters = 5, T 10, 60 = 1 and At = 10-2.

groups form in a weakly turbulent flow, they resist the shear of that flow. Shear af-

fects the distribution of phytoplankton, however; grazing creates regions of depleted

resources, coinciding with the location of the zooplankton patches. In the model,

phytoplankton is passively advected, thus depleted areas are subject to deformation

by the flow. The resulting elongation enhances the gradient in phytoplankton density,

which accelerates diffusion of resources toward aggregated zooplankton, as shown in

Figure 2-7.

Comparison of Figures 2-6a and 2-6b reveals differences in the time evolution of

the ratio of genotypes during the competition. When the grouping type wins the

competition, the types 00 and 01 are eliminated from the population; only the mu-

tant allele remains in the gene pool. In cases where the non-grouping type dominates,

however, the type 11 does not disappear from the population. Since the mutant het-

erozygote does as well as the resident, both alleles remain in the gene pool; grouping

offsprings are produced from mating between heterozygotes (Table 2-1). After a tran-
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Figure 2-8: Bifurcation diagram showing the outcome of the competition between
grouping and non-grouping types, when the mutant allele is introduced at low density
in a resident population of non-grouping organisms. The grouping parameter and
strength of turbulent flow are varied; r is kept constant (r = 10). Except in the region
labeled "no patchiness", zooplankton with social behavior spontaneously assemble in
dense groups. Without turbulent advection (o/At = 0), they are outcompeted by
the non-grouping types and remain a small fraction of the population. Weak flows
do not affect the outcome of the competition, but under more turbulent flows the
grouping type becomes a better competitor and replaces the non-grouping resident
organisms. Black dots indicate parameter values for which numerical simulations
were performed.

sient increase in the number of grouping zooplankton, their frequency decreases until

they constitute only a small fraction of the total population; however that remaining

fraction is still found in aggregations.
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2.4.2 Bifurcation analysis

We limit the size of the domain such that only one group can form in the absence

of turbulent stirring. Merging of patches resulting from collisions in a turbulent

environment reduces the competitive ability of the grouping type, for the width and

density of groups increases and consequently resources are depleted faster.

Numerical simulations show that turbulent stirring and mixing can lead to invasion

by the grouping type, for parameters that would not have allowed for invasion in the

absence of flow. For example, with e = 5, T 10 and 60 = 0 the non-grouping

type wins the competition, see Figure 2-6a; but when 60 = then the grouping type

dominates.

The outcome of the competition is examined in parameter space (Figure 2-8).

For small values of or large values of the flow strength, the critical fraction for the

formation of patches is larger than 1/4, so it will not be reached by mutation alone;

all types will be uniformly distributed in space and the final ratio of types will be

1:2:1 in these cases. When the social behavior is strong enough for patchiness to

develop, the winning type depends on the conditions.

Figure 2-8 shows the positive impact of turbulent stirring and mixing on the in-

vasibility by the grouping type. For the parameters chosen, the grouping type does

not invade in the absence of advection, and weak flow does not change the outcome

of the competition. As the strength of the flow is increased, grouping becomes an ad-

vantageous strategy. These results suggest that turbulent environments can promote

the evolution of social behavior in a zooplankton population.

2.5 Conclusions

In aquatic environments, the spatial distribution of zooplankton is controlled by the

behavior of individuals and by the variability of the flow. Here we have studied how

the interplay between behavior and physics affects the survival of organisms that tend
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to form social aggregations. This issue is important for understanding the distribution

of krill, which exhibit social behavior as well as response to large-scale and mesoscale

circulations in the ocean.

We have examined under what environmental conditions grouping behavior rep-

resents an advantage for zooplankton, when the factors to balance are competition

for resources and mating success. Our biological-physical model explicitly includes a

phytoplankton population, in order to capture the effects of resource limitation on

the competition between organisms with and without grouping behavior. It is found

that disadvantages associated with depleted resources within zooplankton aggrega-

tions can be balanced by the abundance of mates. When there is an Allee effect in

reproduction, that is when probability of mating is positively correlated with den-

sity, the grouping type dominates if phytoplankton diffusion is sufficient. Turbulent

environments are thus favorable to the evolution of the social behavior, as stirring

and mixing by the flow provides resources to the clustered zooplankton. When the

turbulent advection is larger than a critical value, however, patches cannot develop

and, as a result, the behavior does not evolve.

Many processes contributing to krill patchiness have not been considered in this

study. Diurnal cycles of vertical migration keep organisms at a common depth and

help maintaining coherent groups [Zhou and Dorland, 2004]. Predation by whales,

penguins, and other large animals is likely to be density-dependent and to play a role

in the evolution of social behavior. If the probability of being preyed upon decreased

with the local density, then aggregation would positively affect the survival rate,

leading to the possibility of the grouping type outcompeting non-grouping organisms

even in the absence of an Allee effect in the reproduction function. An improved

version of the model would also account for the tendency of individuals to align their

orientation with their neighbors, a behavior responsible for the formation of schools,

as opposed to "patches", in adult Antarctic krill.
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Chapter 3

Sea Surface Temperature

Variability Along the Path of the

Antarctic Circumpolar Current

Verdy, A., J. Marshall and A. Czaja

Journal of Physical Oceanography, in press (2006)

The spatial and temporal distribution of sea surface temperature (SST) anoma-

lies in the Antarctic Circumpolar Current (ACC) is investigated, using monthly data

from the NCEP-NCAR Reanalysis for the period 1980-2004. Patterns of atmospheric

forcing are identified in observations of sea level pressure and air-sea heat fluxes. It

is found that a significant fraction of SST variability in the ACC can be understood

as a linear response to surface forcing by the Southern Annular Mode (SAM) and

remote forcing by ENSO. The physical mechanisms rely on the interplay between

atmospheric variability and mean advection by the ACC. SAM and ENSO drive a

low-level anomalous circulation pattern localized over the South Pacific, inducing sur-

face heat fluxes (Fs) and Ekman heat advection (Fek) anomalies. A simple model of

SST propagating in the ACC, forced with heat fluxes estimated from the Reanalysis,
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suggests that Fs and Fek are equally important in driving the observed SST variabil-

ity. Further diagnostics indicate that SST anomalies, generated mainly upstream of

Drake Passage, are subsequently advected by the ACC and damped after a couple of

years. We suggest that SST variability along the path of the ACC is largely a passive

response of the oceanic mixed layer to atmospheric forcing.

3.1 Introduction

In the Southern Ocean, sea surface temperature (SST) anomalies are observed to

propagate eastward; it has been suggested that the signal encircles the globe 8 to

10 years [White and Peterson, 1996]. This low-frequency variability arises from me-

chanical and thermodynamic forcing at the air-sea interface. Mechanisms controlling

the spatial and temporal scales of SST variability in the Southern Ocean are not well

understood, nor is the extent to which coupled ocean-atmosphere interactions play a

role.

Remote forcing by El Nifio-Southern Oscillation (ENSO) has been proposed as a

trigger of SST variability [White and Peterson, 1996; Cai and Baines, 2001], through

teleconnections with the tropics. ENSO has also been linked to sea ice extent vari-

ability around Antarctica [Yuan and Martinson, 2000]. In contrast, based on the

result of their numerical model, Hall and Visceck [2002] have argued that much of

the variability in the Southern Ocean, including SST, is forced locally by the Southern

Annular Mode (SAM), a dominant source of atmospheric variability in the Southern

Hemisphere.

The role of ocean dynamics in the generation and maintenance of SST anomalies

has also been examined (see, for example, Haarsma et al. [1999]). The presence of the

Antarctic Circumpolar Current (ACC), a strong eastward flow in a zonally periodic

domain, can lead to interesting dynamics. Away from the frontal jets, the speed of

the flow in the ACC is similar to the propagation speed of SST anomalies, and it is
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tempting to believe that the ACC is involved in carrying the anomalies. However,

whether the signal will propagate significant distances depends on the rates of advec-

tion and damping. Decay of SST anomalies through interaction with the atmosphere

typically occurs over a period of a few months [Frankignoul,1985]. This implies that

visual propagation of the signal would not be possible without a mechanism that

maintains the anomalies in the face of damping.

Two explanations have been put forward for the observed persistence of SST vari-

ability: the first is based on the interplay between stochastic atmospheric forcing

and ocean advection [Haarsma et al., 2000; Weisse et al., 1999], while the second

relies on the growth of coupled modes of the ocean-atmosphere system [Qiu and Jin,

1997; White et al., 1998; Talley, 1999; Goodman and Marshall, 1999; 2003] that

act against damping processes, thus increasing the longevity of SST anomalies. The

main difference between the two mechanisms lies in the role of the ocean, whether pas-

sively responding to atmospheric forcing or actively involved in the ocean-atmosphere

coupling.

The hypothesis of an active role for the ocean was motivated by the observation

of a phase-locked propagation of sea level pressure (SLP) and SST anomalies [White

and Peterson, 1996]. The phenomenon was dubbed the Antarctic Circumpolar Wave

(ACW) by White and Peterson [1996] due to the apparent periodicity of the signal.

SLP anomalies are observed to lag SST anomalies by 1/4 wavelength. This con-

figuration suggests that atmospheric circulation is dynamically affected by oceanic

feedbacks, in such a way that the anomalies grow in time. Following the idea of mid-

latitude ocean-atmosphere coupling of Latif and Barnett [1994], White et al. [1998]

proposed a mechanism in which SST anomalies are amplified by meridional advection

of warm / cold air resulting from vortex stretching over warm / cold water. In the

two-layer ocean model of Qui and Jin [1997], the equivalent barotropic response of

the atmosphere induces a wind stress curl downstream of SST anomalies, which are

then reinforced though Ekman pumping in the ocean. Such scenarios involving ocean
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feedbacks are controversial, as there is little observational evidence for extra-tropical

coupled modes. Cases where the oceanic feedbacks have a considerable impact on the

local climate are more commonly found in the tropics [Kushnir et al., 2002].

Mechanisms which do not require ocean-atmosphere coupling have also been put

forward to interpret interannual SST variability. The analytical model of Saravanan

and McWilliams [1998] shows that in the presence of a mean oceanic flow, it is

possible to obtain decadal variability and propagation in the SST signal as a passive

response to atmospheric forcing. The theory is based on the idea of stochastic climate

model proposed by Hasselmann [1976]: low-frequency variability arises in the ocean

from a slow response to random atmospheric forcing. If an advective ocean interacts

with a spatially fixed forcing which is stochastic in time, a preferred timescale will be

excited in the ocean, determined by the ratio of the length scale of the forcing and

the speed of the mean flow. Saravanan and McWilliams [1998] explained decadal

variability in the North Atlantic as a result of this "advective resonance" mechanism,

where SST anomalies advected by the Gulf Stream interact with a dipole pattern

of atmospheric forcing, identified with the North Atlantic Oscillation (NAO). In the

Southern Ocean, one can think of a similar set of circumstances, in which advection

by the ACC combined with standing patterns of atmospheric forcing associated with

-for example- ENSO and SAM, lead to decadal signals.

The advective resonance mechanism can explain the ACW-like variability in the

models of Weisse et al. [1999] and Haarsma et al. [2000]. In these numerical experi-

ments, it is found that SST variability is excited by the dominant modes of variability

in the atmosphere, which appear to have a wavenumber 2 or wavenumber 3 spatial

pattern. The authors do not specifically identify the source of atmospheric variability

behind these forcing patterns. Stochasticity of the forcing is a key element of the

mechanism: there exists a frequency for which, by the time it takes an SST anomaly

to travel from one pole of the forcing to the next, the forcing has reversed polarity,

so that the anomaly created initially gets amplified. This process competes against
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damping of the anomalies, and is responsible for their apparently long persistence. It

results in a visual propagation of the SST signal, in the direction of ocean advection.

Advective timescales become amplified in the SST spectrum; the spectrum is easily

found analytically for a sinusoidal spatial pattern [Saravanan and McWilliams, 1998];

Scott [2003] solved it for a periodic domain.

The motivation for the present study is to understand the physical mechanisms

leading to observed interannual SST variability in the Southern Ocean. Our goal is

to assess the role of ocean dynamics and atmospheric forcing; in particular we focus

on the role of ENSO and SAM, the former because of its well-documented role in

oceanic variability especially in the tropical Pacific but also in the tropical Atlantic

[Czaja et al., 2002] and North Pacific [Alexander et al., 2002]; the latter because

it is dynamically similar to the NAO, which also is known to drive variability in the

ocean [Marshall et al., 2001]. We wish to put forward the view that SST variability

along the path of the ACC can simply be understood as a passive response of the

ocean mixed layer to SAM and ENSO forcing. Mechanisms involve primarily mean

oceanic advection and anomalous surface heating/cooling through surface heat flux

(Fs) and Ekman advection (Fek).

The layout of the paper is as follows: observations of the variability in the ACC

are described in Section 3.2. In Section 3.3, a simple model of SST propagating in

the mixed layer is forced with observed heat fluxes (Fs+Fek), in order to identify

which components of the heat fluxes are important to explain the observed SST

variability. The relevance of ENSO and SAM in driving those heat fluxes is presented

in Section 3.4. In Section 3.5, the physical mechanism is related to the resonant

advection mechanism of Saravanan and McWilliams [1998], and the spectral response

of the ocean to ENSO and SAM forcing is examined. Ocean-atmosphere coupling is

discussed in Section 3.6, and the main results are summarized in Section 3.7.
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Figure 3-1: Two geostrophic streamlines encircling the globe, delimiting the region
of the ACC, plotted over the data grid points (from NCEP-NCAR Reanalysis); for
clarity only half the points are shown in the zonal direction. Shaded areas represent
land masses and sea ice.

3.2 Observed variability in the ACC

3.2.1 Methodology

We use the dataset from the National Centers for Environmental Prediction and the

National Center for Atmospheric Research (NCEP-NCAR) Reanalysis [Kalnay et al.,

1996] over the period 1980-2004. This period is chosen because it incorporates satel-

lite based SST estimates: from 1982 onward, the Reanalysis employs Reynolds SST

(analyzed data from the Advanced Very High Resolution Radiometer, AVHRR). Prior

to the 1980s, SST observations were limited to ship and buoy measurements. Other

fields used in this study, such as heat fluxes, are not directly constrained by observa-

tions and thus are subject to larger inaccuracies; for the more recent period, however,

the modeled variables show similar statistics to that of the ECMWF Reanalysis [Sterl,

2004], suggesting reasonable reliability.

Surface data is provided on a grid with a resolution of approximately 2°x2°; here we

consider monthly averages. All time series are linearly detrended, but otherwise not
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filtered. The variability is computed by removing the mean seasonal cycle, calculated

at every grid point. Departures from the seasonal cycle are defined as "anomalies".

The variability is analyzed along the path of the ACC. For this purpose, we

estimate the position of the current using sea surface height data from the TOPEX-

Poseidon altimeter. Following Karsten and Marshall [2002], the 4-year averaged dy-

namic sea surface height is compared with a reference geoid to evaluate the geostrophic

streamfunction ():
: gh (3.1)

f
where f is the Coriolis parameter, g is the gravitational constant, and h is the sea

surface height. The geostrophic flow is given by the gradient of A:

(Ug, vg) = x VI (3.2)

where z is a unit vector in the vertical direction.

The mean path of the ACC is defined here as the region bounded by the two

circumpolar streamlines that flow around the globe without intercepting land (Figure

3-1). Observations are averaged over the width of the current. This procedure is

justified by the fact that the dominant structures of anomalous SST and surface heat

fluxes, obtained from empirical orthogonal function (EOF) analysis, exhibit little

variations across the ACC (not shown). Data falling on sea ice is excluded. Land

masses and sea ice are shaded on Figure 3-1.

3.2.2 Along-stream variability of SST

First we examine the distribution of SST anomalies in time and space. In Figure

3-2, the variance of surface temperature anomalies along the path of the current is

presented as a function of calendar month. Monthly SST anomalies have typical mag-

nitudes of 1K; the interannual signal is thus not negligible compared to the seasonal

cycle, which has a total amplitude of approximately 3K (not shown). Most of the
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variability occurs in the central Pacific, between 200E and 300E. At those latitudes

the current flows closest to sea ice (Figure 3-1). It also coincides with the end of the

storm track [Nakamura and Shimpo, 2004], associated with enhanced wind variabil-

ity. For these two reasons, the heat fluxes are expected to be more variable in this

region, driving anomalous SST.

Seasonal variations are evident in Figure 3-2; the variance is strongest during the

austral summer months (January through March). This time dependence is thought

to result from variations in mixed layer depth: unlike in the Northern Hemisphere,

atmospheric forcing in the Southern Hemisphere exhibits little seasonal variation; the

amplitude of anomalous heat fluxes at the sea surface being constant throughout the

year, the resulting SST anomalies are less important when the mixed layer is deep,

which happens in the winter when mode waters are forming [Levitus and Boyer,

1994].

The dominance of SST variability in the Pacific was also observed by Cai and

Baines [2001] , who relate it to the location of the Pacific-South America pattern, a

surface pressure anomaly. Yuan and Martinson [2000] notice that sea ice variability

is strongest in the Pacific.

3.2.3 Along-stream covariability of SST and SLP

The SST variability is now related to sea level pressure (SLP) fluctuations through

a maximum covariance analysis (ca) of streamline-averaged anomalies. This tech-

nique also called singular value decomposition is used to identify the orthogonal modes

of variability in two covarying fields [Bretherton et al., 1992]. It is performed here

on monthly data; for the 24 year period considered, the analyzed time series have 288

data points.

Figure 3-3 shows the patterns and their associated time series for the two leading

modes of covariability, accounting for 63% and 21% of the squared covariance, re-

spectively. The first mode accounts for 20% of the SST variance, and 24% of the SLP
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Figure :3-2: Variance of SST anomalies along the ACC (x-axis is longitude), as a
function of calendar month. The variability is greatest in the Pacific sector (200E to
300E); it is enhanced dluring the Austral summer when the mixed layer is shallowest.

variance (as a reference the first EOFs of streamline-averaged SST and SLP explain

22% and 27;[ of their respective variance). The time series associated with the first

inca nlodle will be sub)sequently referred to as SST-mca and SLP-mca. rThe second

mode, which has weaker amplitude, accounts for 11%, and 21Cc of SST and SLP vari-

ai-ce, respectively. These spatial patterns are essentially localized in the Pacific basin,

both for temperature and pressure anomalies.

For both modes, the SLP maximum is slightly to the east of the SST maximurnl;

in the Pacific they are separated by roughly 45 degrees in longitude. A simple expla-

nation is that the advection of air around the high p)ressure center is reinforced by ad-

vection of air around the low pressure anomaly at 200E; both drive ocean-atmrosphere

exchanges of heat around 250E, which i the location of the SST-mca maxinum. The

spatial configuration supports the idea that heat fluxes induced by anomalous low-

level atrnosplheric circulation is involved in the eneration of SS'I anomralies. Similar

analysis with covarying SST anrid meridional winds show that the position of maxim1um
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Figure 3-3: First and second modes of variability of SST (black) and SLP (gray)
showing the maximum covariance along the ACC. The spatial patterns for mode 1
and 2 are presented in a) and b) respectively. Mode 2 is upstream of mode 1 and
has weaker amplitude. The amplitude shown corresponds to a typical change in SST
(in K) or SLP (in Pa) for a 1 standard deviation of the associated time series. The
normalized time series associated with the spatial patterns are presented in c) and
d).

winds does indeed coincide with the SST maximum (not shown).

We also find that the covariance between SST-mca and SLP-mca is a maximum

when the pressure signal leads by one month. This time lag is consistent with the

scenario of a passive response of the ocean to atmospheric forcing, the ocean taking

a few weeks to adjust to the change in heat fluxes. This result suggests that SST is

driven by the SLP mode, and not vice-versa. Based on these observations, we claim

that SST variability in the ACC is forced by a low-level atmospheric pattern localized

in the Pacific.
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3.2.4 Propagating modes of SST variability

From the mca, we find that the SLP signal is essentially standing; its autocorrelation

has an e-folding timescale of only month. For this reason it is hard to obtain evidence

for the propagation of SLP anomalies, and indeed our analysis revealed no significant

indication of propagation. On the other hand, we find that SST modes 1 and 2 are not

independent, but correspond to a single propagating mode. The second mode leads

the first by approximately year (correlation not shown here). The propagation of

the SST anomalies is highlighted by performing a lagged correlation of the SST-mca

mode with the time series of observed SST at every longitude, along the path of

the ACC (Figure 3-4). On the figure, shaded regions indicate where correlations are

significant at the 95% level; we take 3 months as a null hypothesis for midlatitude

SST decorrelation time, and thus consider Nt/3 degrees of freedom for a time series

containing Nt data points.

At zero lag, following the horizontal dashed line, the pattern of Figure 3-3 is re-

trieved: the amplitude of the signal is greatest in the central Pacific. As the lag

increases, the peak correlation moves to the right, indicating that the pattern of

anomalous temperature has moved eastward. From the slope of the correlation bands

on Figure 3-4 we infer the propagation speed to be 8 cm/s. This value coincides with

the mean geostrophic velocity of the ACC, estimated from the geostrophic stream-

function defined in (3.2). The meridional gradient of calculated from the two

circumpolar streamlines shown in Figure 3-1, gives the geostrophic velocity averaged

across the current; the average of this velocity along the current is 8 cm/s. This

suggests that the SST anomalies are passively advected by the current.

Significant correlations appear to be centered around the Pacific basin and limited

to ±2 years lag. The fact that higher correlations are found downstream (positive

lag) than upstream of the Pacific suggests that anomalies originate from that region

and are then advected away. In addition, a superposition of wavenumbers and 2

appear to dominate the spatial structure. In the next section, we show that these
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Figure 3-4: Lagged correlation of observed SST with the first SST-mca mode (from
Figure 3-3). At zero lag, following the horizontal dashed line, the pattern of Figure
3-3a is retrieved. Lighter shades of gray indicate positive correlations and darker
shades, negative correlations; only values that are significant at the 95% level are
shown. The location of the maximum correlation ( 210E at zero lag) is displaced to
the right as lag increases, indicating eastward propagation of the signal. The speed
of propagation is estimated from the figure to be 8 cm/s, which coincides with the
mean advection velocity of the ACC. If they persisted, anomalies propagating at that
speed would encircle the globe in approximately 10 years.

characteristics can be understood as a response of the mixed layer to mean oceanic

advection and anomalies in surface heat flux and Ekman advection. In sections 4 and

5 we will argue that the wavenumbers 1 and 2 reflect SAM and ENSO forcing.
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3.3 A diagnostic model of SST anomaly

In order to study the extent to which the observed SST variability can be explained

by observed heat fluxes, we employ a 1-dimensional model of SST propagating in the

ACC. It is forced by observed heat fluxes.

3.3.1 Heat flux variability

Turbulent surface heat fluxes occur via exchange of latent and sensible heat at the

air-sea interface. The sensible heat flux and latent heat flux are obtained from the

Reanalysis, and summed. As a preliminary diagnostic, we calculated the surface

heat fluxes from the linearized bulk formulae, and found the calculated values to be

very similar to those of the Reanalysis. The two components of the linearized bulk

formulas contributing to heat flux variability have similar magnitude; one is due to

anomalous wind and the other is due to anomalous temperature and moisture at the

sea surface. Together the two components add up to surface anomalous heat fluxes

with a standard deviation of 12 to 28 W/m 2, depending on the position along the

current.

In addition, we also consider heat fluxes resulting from anomalous Ekman ad-

vection in the upper ocean, acting on mean temperature gradients (especially in the

meridional direction). We estimate Ekman fluxes from wind stress anomalies from

the Reanalysis:

Fek pCp ('ek VT) (3.3)

where U'ek =-p ( x T) is the anomalous Ekman transport in the ocean; -' is the

wind stress anomaly and VT is the seasonally varying SST gradient; f is the Coriolis

parameter; p and cp are the density and heat capacity of seawater, respectively.
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3.3.2 Description of the model

The model is set-up in a similar fashion as the stochastic model with ocean advection

of Saravanan and McWilliams [1998], but in our case the random forcing is replaced

by the observed heat fluxes described above. Here we consider oceanic advection

along the x-axis, which we choose to be parallel to the path of the ACC defined in

Section 3.2. Heat flux data is averaged meridionally over the width of the current.

The temperature equation in the mixed layer, linearized around the mean seasonal

cycle, is:
o a ~1

T'+ U a T' = h [-aT'+ (Fek + F')] (3.4)at ax pcph

For the advective velocity, we take the mean geostrophic velocity of the ACC, i =

8 cm/s. This value was determined as the temporal and spatial average of the along

ACC velocity calculated from TOPEX-Poseidon data (section 3.2.1). The depth of the

mixed layer, h, is assumed constant with a value of 100 m. From Levitus climatology,

we know that h is spatially inhomogeneous, and that it varies seasonally from about

50 m in the austral summer, to more than 500 m in the winter in convective locations;

however we found that taking a constant value does not qualitatively affect the result

of the simulation. Similarly, choosing a different value for h (still constant) affects

the magnitude but not the patterns of simulated SST anomalies. By considering

uniform velocity and uniform depth, we ensure that the transport is constant along

the current, assuming that the bounding streamlines separation does not vary.

The damping parameter, a, represents the terms that are not explicitly included

in (3.4): vertical entrainment and horizontal diffusivity. We choose a value of a = 20

W/m 2 /K for this tunable parameter, which corresponds to a damping timescale of

9 months for a mixed layer depth of 100 m. This value gives the most realistic

persistence of SST anomalies. The temperature equation is integrated numerically;

it is discretized using a forward in time, upwind in space scheme. This scheme leads

to numerical damping, but we find it to be negligible compared to the timescale of
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damping to the atmosphere ( -1 ). Initially, the anomalous SST field is set to observed

values for January 1980.

3.3.3 Simulated SST variability

The simulated SST is presented in Figure 3-5 as a function of longitude and time.

It was obtained by introducing the observed heat flux and Ekman advection of heat

into (3.4). The high-frequencies of the forcing are filtered out by the model; this is

explained by the slow oceanic response (causing the reddening of the SST spectra

in Hasselmann's theory). For comparison, the observed SST field is also presented

in Figure 3-5 as a function of longitude and time. A visual examination of the

two diagrams reveals that the model captures the propagation and timing of the

observed basin-scale SST. Eastward propagation in the modeled field occurs at the

prescribed velocity (8 cm/s). The agreement between simulated and observed fields

is particularly good in the Pacific and Western Atlantic.

A quantitative comparison of the simulation with the observations is obtained by

cross-correlating their respective EOFs. The first mode of variability of the observed

SST is strongly peaked around 230E (in the Pacific) and accounts for 22% of the

variance. For the simulated SST, the first EOF, accounting for 32% of the variance,

has a different spatial pattern; the peak centered in the Pacific is retrieved in the

second EOF, which accounts for 27% of the variance. The correlation between EOF1

of the observations and EOF2 of the simulation is p = 0.48.

Differences between the two fields can be explained by the simplicity of the model,

which does not represent uncertainties in the forcing, eddy turbulence, vertical en-

trainment and other ocean dynamics. These processes are responsible for spatial and

temporal small-scale variability, not captured by the model.

Figure 3-6 shows that both the simulated and observed fields exhibit more vari-

ability in the Pacific basin. Since the model's mixed layer depth is constant in space,

this enhanced variability must arise from spatial inhomogeneity of the surface forc-
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Figure 3-5: Time-longitude diagrams of a) the SST simulated from the heat fluxes,
estimated from the Reanalysis and introduced in Equation 3.4; b) observed SST
from the Reanalysis. The simulated field captures the propagation and timing of the
observations.
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Figure 3-6: Variance of SST as a function of longitude (along the path of the SST).
Gray line: observations; dotted line: simulated from Ekman heat fluxes; dashed line:
simulated from surface heat fluxes; black solid line: simulated from Ekman + surface
heat fluxes.

ing. Inspection of the heat fluxes does indeed reveal that their variance is greater in

the Pacific than in other basins, consistent with the analysis of Section 3.2.3. The

amplitude of the simulated variance is sensitive to the choice of a; stronger damp-

ing induces weaker variability. The value a = 20 W/m 2 /K leads to simulated SST

variance which is similar to the observations.

The relative importance of the surface heat fluxes versus Ekman advection can

be assessed by performing simulations with each component separately. SST driven

from Ekman fluxes alone, as well as SST driven from surface fluxes alone, have more

variability in the Pacific (Figure 3-6). In both cases, SST variance is considerably

less than when the total heat flux field is used. This indicates that Ekman and

surface fluxes reinforce rather than cancel one another. The magnitude and variance

of simulated SST anomalies is similar in both cases, suggesting that Ekman and

turbulent fluxes are each responsible for approximately 50% of the SST variability.
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3.4 Mechanisms of external forcing

3.4.1 SAM and ENSO

Since we have demonstrated in section 3.3 that Fs+Fek is the main driver of SST

variability along the ACC, we now investigate what physical mechanisms drive the

observed heat fluxes. From the maximum covariance analysis presented in Section 2,

a coupled system seems unlikely, since the SLP variability tends to lead in time the

SST variability. The other possible scenario is one in which the ocean reacts passively

to the forcing. In this case one can ask: what are the primary sources of atmospheric

variability?

We examine two sources of atmospheric forcing: ENSO and SAM. ENSO is a cou-

pled ocean-atmosphere phenomenon originating in the tropics. It is thought to reach

the ACC via atmospheric teleconnections: possible mechanisms include propagation

of the signal by atmospheric Rossby waves [Karoly, 1989], and changes in the Ferrell

cell [Liu et al., 2002]. We use Nifio3 as an index for ENSO-related variability [Cane

et al., 1986]; it is calculated from the SST averaged between 5S and 5N, from 150W

to 90W. Most of its energy is in the 3 to 7 years period band [Wunsch, 1999].

SAM is an important source of monthly and interannual variability in the atmo-

sphere, also referred to as the Antarctic Oscillation (AAO). In its positive phase it

is characterized by a contraction of the polar vortex [Thompson and Wallace, 2000],

which is expressed at the sea surface by an enhancement of the westerlies in the re-

gion of the ACC. A measure of the strength of SAM is given by the "SAM index",

calculated from the principal component of the first mode of variability of the 850

hPa field between 20S and 90S [Thompson and Wallace, 2000]. On timescales of a

month or longer, it has a white spectrum.

The two indices are found to be strongly correlated with the SST signal. The

SAM and Nifio3 indices are plotted in Figure 3-7, along with the time series of SST-

mca. One observes a close correspondence between all time series, with the lagged
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Figure 3-7: Time series of SST-mca, black line, in both panels. a) Nifio3 (gray line)
and b) SAM index (thin gray: monthly data, thick gray: seasonal averages). Each
index is normalized.

cross-correlations peaking when SAM and ENSO lead in time; this is consistent with

an atmospheric driving of SST variability. It is found that the correlation with Nifio3

has a coefficient of 0.53, when the temperature lags by 1 month. The correlation with

SAM has a coefficient of -0.38, when the temperature lags by 1 month; the correlation

is -0.47 when seasonal averages are considered. Together ENSO and SAM explain

approximately 45% of the leading mode of SST covarying with the atmosphere (the

fraction of variance explained is given by the square of the correlation coefficient).

In such estimates, we have assumed that the annular mode is independent of ENSO.

This hypothesis seems reasonable as they have very different dynamics, and we were

unable to show any dependence of one index upon the other.

The SLP-mca mode is also found to be associated with SAM and ENSO. The

correlation coefficient between SLP-mnca and ENSO is 0.33, and with SAM it is -0.58
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a) ENSO

Figure 3-8: Correlation of SLP with a) Nifio3 index and b) SAM index; solid (dashed)
contours indicate positive (negative) correlations. The contour interval is 0.1; the zero
contour is not drawn. Thick black lines show the mean position of the ACC as defined
in Section 3.2. In the ACC band, both signal exhibit a strong pressure anomaly in
the South-East Pacific.

(0.43 and -0.65 for seasonal averages).

ENSO and SAM are both found to affect the low-level atmospheric circulation in

the South Pacific. The patterns can be seen in Figure 3-8, showing the correlations

of monthly SLP anomalies (from the Reanalysis) with the Nifio3 index and the SAM

index. In both cases SLP variations are found along the path of the ACC, allowing

for possible interactions between ocean dynamics and atmospheric forcing pattern.

The geostrophic flow induced by the anomalous pressure is expected to drive SST

anomalies by advecting cold / warm air across the temperature front of the ACC.

The surface pressure pattern associated with SAM has an annular shape, but it

is not exactly zonally symmetric: it extends to lower latitudes in the Pacific sector

(Figure 3-8). In that same region, the ACC streamlines bend toward the continent as

the current flows through Drake Passage. As a result, the ACC intercepts a zone of

strong pressure gradients, which will affect the heat fluxes in the ocean. In contrast,

the ENSO teleconnection is more localized to the eastern Pacific sector. E Nifio
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events are associated with a high pressure center (low pressure during La Nifia).

3.4.2 SAM and ENSO heat flux patterns

Here we analyze the spatial patterns associated with heat fluxes induced by ENSO

and SAM, in order to illuminate their role in the generation of SST anomalies. This

is done by regressing the heat fluxes onto the SAM index and Nifio3 index. The

resulting spatial patterns are shown in Figure 3-9. These patterns correspond to the

heat fluxes occurring during an anomalous index with an amplitude of 1 standard

deviation (,). The spatial pattern multiplied by the index time series, gives the

actual observed heat fluxes.

As evidenced in Figure 3-9, the heat flux variability induced by ENSO occurs

principally in the Pacific sector, which is consistent with the location of the ENSO-

driven low-level circulation pattern (Figure 3-8). In an E Nifio year, anomalous

meridional advection along the path of the ACC leads to surface warming in the

central Pacific, and cooling in the western Pacific and downstream of Drake Passage.

At the same time, Ekman advection in the ocean induces warming in the Pacific

sector. The signs of the fluxes are reversed during a La Ninia episode. Surface heat

fluxes and Ekman heat fluxes interact constructively in the central Pacific; this region

coincides with the location where SST variance is observed to be maximum.

SAM displays a similar pattern of surface heat fluxes, with a tripole structure in

the Pacific sector. This is superimposed on a zonally symmetric signal associated

with Ekmnan heat fluxes. The latter is efficient in driving cooling of the upper ocean

in the ACC band during a positive phase of the annular mode. Once again, the two

patterns of simultaneous variability enhance each other in the central Pacific.
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Figure 3-9: Regression of monthly heat fluxes anomalies (in W /m 2 ) onto Nifio3
and the SAM index. a) and d) show the surface turbulent heat fluxes (sensible +
latent); b) and e) show the Ekman heat fluxes; c) and f) show the sum of the two
components (surface + Ekman). Heat fluxes are defined as positive when into the
ocean. Continued on the next page.
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Figure 3-9 (continued): See caption on previous page.
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3.4.3 SAM and ENSO impact on SST

We now assess the relative importance of the heat fluxes driven by ENSO and SAM,

in explaining the observed SST. The heat fluxes regressed on ENSO and SAM are

introduced in the flux model of Section 3.3. We construct a matrix of the forcing:

spatial patterns, seasonally varying, multiplied by the index time series (SAM-index

and Nifio3). Note that here, the spatial patterns are calculated for each of the four

seasons, to account for the fact that heat fluxes are different in the summer than in

the winter (Figure 3-9 showed the annual mean patterns).

Simulated SST are presented in Figure 3-10. The simulation with both fields is

simply the sum of the simulation with ENSO and the simulation with SAM, since the

model is linear. The simulation with ENSO reproduces the strong events of 1982-83

and 1997-98. However, it seems as though most of the higher frequency variability is

induced by SAM. Both sources of external forcing are associated with SST variability

in the Pacific basin.

We can test the relevance of the simulated field to the observations, by compar-

ing their first EOF. The correlations between the time series are: p = 0.57 for the

ENSO-only simulation, p = 0.63 for the SAM-only simulation, and p = 0.70 for the

simulation with both fields. The best simulations are obtained with both SAM and

ENSO induced heat fluxes, which means that they are both important in creating the

observed SST variability.

In all three cases, the correlation is higher than that obtained for the simulation

with the total heat fluxes (Section 3.3.3). This implies that the mode of variability

along the ACC which has a spatial pattern centered in the Pacific sector is better

reproduced with ENSO and/or SAM induced forcing. It suggests that other compo-

nents of the forcing reduce the quality of the simulation. These results support our

hypothesis, that SAM and ENSO are two drivers of SST variability along the ACC

(Section 3.4.1) and that their effect is concentrated in the Pacific basin (Figure 3-8).
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3.5 Spectral response of SST to stochastic forcing

Having identified SAM and ENSO as the dominant sources of atmospheric forcing,

we now relate their impact on SST to the advective resonance mechanism proposed

by Saravanan and McWilliams [1998], which can be extended in periodic domains

such as the ACC region [Weisse et al. 1999; Scott 2003]. We begin by reviewing some

important concepts of the mechanism; a more complete discussion is found in Weisse

et al. [1999].

3.5.1 Resonant advection mechanism

The ocean's response to stochastic forcing, in the presence of a mean oceanic flow,

depends on the advection speed and the timescale for the dissipation of SST anoma-

lies. In the model of Section 3.3, we introduced a damping term, ; that term did

not include the dissipation of temperature anomalies via air-sea heat fluxes, which

was already accounted for in the F' term of (3.4) (F' includes both the effects of at-

mospheric forcing and oceanic feedbacks). The total damping, including air-sea heat

fluxes, will be represented by the symbol A; it is equivalent to the Aeff of Equation 9

in Saravanan and McWilliams [1998].

The temperature equation (3.4) can be rewritten (dropping the primes)

(3.5)-T + aT = -AT + F (3.5)at ax

where F represents the surface and Ekman heat flux forcing, F'k and F ' in (3.4); the

factor pcph is absorbed in the variables A and F.

From (3.5) we can relate the SST spectrum (ET) to the spectrum of the forcing

(EF),
E (k EF(, k) (3.6)

where the (k, ) spectrum Ex is defined as Ex =< XX* >; i s the mean advective
where the (k, w) spectrum Ex is defined as Ex =< XX" >; Ut is the mean advective
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velocity, k is the spatial wavenumber, w is the angular frequency and brackets denote

ensemble average.

If the forcing is a white noise, then EF = EF(k); it does not depend on the

frequency. In that case, (3.6) predicts a peak in the ocean kw spectrum at the

frequency w = ki. If the forcing has a dominant wavenumber k0 , the peak is located

at w = k, corresponding to an advective timescale of

27r
Tadv = k2o (3.7)

This timescale appears as the preferred period of oceanic variability, even though

the atmospheric forcing is white. It corresponds to the Fourier mode for which the

reversal of the polarity of the forcing (half a period) takes the same time as the

advection of SST anomalies between two poles of the sinusoidal forcing pattern (half

a wavelength); anomalies created under one pole thus get amplified under the next

pole. This results in SST anomalies that are long-lived, propagate at the speed of

the ocean current and have a preferred timescale in the SST spectrum. All other

frequencies (Fourier modes) interact destructively with the ocean.

In a periodic domain such as the Southern Ocean, the resonance mechanism would

lead to infinite SST response if there were no damping or friction; the original scenario

of anomalies propagating in a bounded domain [Saravanan and McWilliams, 1998] is

a "finite resonance", since the SST response would remain finite even if the damping

vanished.

In the ocean, is rather small, typically a few centimeters per second. k is also

small when large-scale forcing is considered. Thus Tadv is large, which means that the

oceanic variability induced by stochastic forcing has a low frequency, ranging from

interannual to decadal variability.
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Figure 3-11: Wavenumber-frequency spectrum for SST, as predicted from Equation
3.4, assuming a white-noise forcing with the spatial pattern of a) the heat fluxes
regressed on ENSO, as shown in Figure 3-9c; and b) the heat fluxes regressed on
SAM, as shown in Figure 3-9f. Both spectra are normalized by the peak value of
the SST spectrum in b). The ocean response is expected to be at low wavenumbers,
with a dominant period of 10 years. Note that the spectrum is continuous in w but
discrete in k. The spectra were calculated with A = a _ (9 months)-1 .

3.5.2 Spectral response to ENSO and SAM

To relate SAM and ENSO forcing to the advective resonance mechanism, we have

recontructed the (k, w) forcing spectrum of SAM and ENSO, from the heat flux

patterns shown in Figure 3-9. To do so, we have written the forcing spectrum as a

product EF(W, k) = EF(w)EF(k), in which EF(k) is simply obtained from a Fourier

transform of the (streamline averaged) pattern shown in Figure 3-9c,f, and in which

EF(w) is taken as a white noise (with amplitude determined from a linear regression).

The latter procedure is justified from a study of the time series associated with the

patterns in Figure 3-9c,f which have a decorrelation timescale of about a month (not

shown).

The resulting spectra are presented in Figure 3-11. In both spectra, most of the
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variability occurs at low wavenumbers; this reflects the spatial pattern of the total

heat fluxes, for which k = 1, 2 are the dominant Fourier components. Both ENSO

and SAM spectra show enhanced power at a timescale of about 10 yr for k = 1 and

5yr for k = 2 (note that the spectra are continuous in w but discrete in k), both being

in agreement with (3.7). It appears that SAM and ENSO contribute equally to the

SST variability.

The short dataset does not warrant a direct comparison with observed spectra

but the results obtained in Figure 3-11 are in qualitative agreement with the spatio-

temporal characteristics of SST discussed in Section 3.2.3. Decadal variability at low

wavenumbers also appears to characterize the SST simulated with ENSO and SAM

heat fluxes (Figure 3-10). In particular, a k = 1 feature is evident.

3.6 Ocean-atmosphere coupling

In agreement with the modeling results of Weisse et al. [1999] and Haarsma et

al. [2000], the present analysis suggests that low-frequency SST variability in the

ACC can arise from the resonant response of the ocean to stochastic atmospheric

forcing. Such a mechanism does not require ocean-atmosphere coupled dynamics. The

identification of ENSO and SAM as drivers of anomalous low-level circulation further

supports this hypothesis; SAM exists independently of ocean-atmosphere coupling,

and the ENSO signal in the Southern Ocean is not affected by local ocean dynamics.

Since ENSO and SAM are the main generators of temperature anomalies along the

path of the ACC (Section 3.4), we suggest that SST variability in the Southern Ocean

results primarily from a passive response of the oceanic mixed layer to atmospheric

forcing, ocean-atmosphere coupling playing a second-order role.
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3.7 Summary and conclusions

The spatial and temporal distribution of SST anomalies in the ACC is studied using

observations and conceptual models. Low-frequency variability in the ocean is related

to fixed patterns of variability in SLP and anomalous surface forcing: turbulent heat

fluxes (Fs) and Ekman advection (Fek).

In summary, our main results are:

(i) A simple model of SST including mean advection and driven by observed anoma-

lous surface forcing (Fs + Fek) provides a zero order picture for SST anomalies

along the ACC;

(ii) SAM and ENSO have a strong signature in Fs and Fek over the eastern Pacific,

and act as generators of SST anomalies in that sector. The SST anomalies are

subsequently advected by the mean current;

(iii) The damping of anomalies is large enough that they can be followed for only a

couple of years. We found no indication of global propagation along the ACC.

The mechanisms investigated do not rely on ocean-atmosphere coupling. The

generation, propagation and damping of SST anomalies can be understood as a pas-

sive response of the ocean mixed layer to stochastic atmospheric forcing. Coupled

ocean-atmosphere models might shed further light on the role of air-sea interactions

in Southern Hemisphere climate variability, although our results suggest that the

teleconnection with ENSO and the subtle asymmetry in the surface pattern of SAM

need to be reproduced accurately in order to simulate the surface heat fluxes in the

Pacific basin.

Examination of the heat fluxes along the ACC reveals that the air-sea interaction

occurs mainly in the Pacific sector. In this region we also observe mode water forma-

tion. Subantarctic Mode Water (SAMW) results from deepening of the mixed layer

in the winter; in the Southeast Pacific it is exported as Antarctic Intermediate Water
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[Sloyan and Rintoul, 2001] and plays an important role in the meridional overturn-

ing circulation. Rintoul and England [2002] have argued that SAMW variability in

driven principally by Ekman transport, as opposed to local air-sea fluxes. The present

study suggests that both mechanisms are important sources of oceanic variability.

Temperature variability also has implications for the interannual variability of

CO2 fluxes in the Southern Ocean. Heat fluxes affect the air-sea exchanges of gas by

changing their solubility in seawater; because of its reaction with seawater, oceanic

CO2 equilibrates slowly with atmospheric concentrations. Decadal variability in CO2

fluxes is detected in data from the high resolution global model of biogeochemical

cycles of McKinley et al. [2003]; it is likely that it arises from stochastic heat fluxes,

as in the case of SST. This could be investigated using the framework proposed in

this study.
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