
A Mobile Robotics Development Platform

by

Karl E. Keppeler

Submitted to the Department of Electrical Engineering and

Computer Science in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering in Electrical

Engineering and Computer Science at the Massachusetts

Institute of Technology

May 28, 1996

Copyright 1996 Karl E. Keppeler. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author

Certified by

Accepted b3

Departnn{'of Electrical Engineering and Computer Science
May 28, 1996

"ichard D. Thornton

Thesis Supervisor

F. R. Morgenthaler
Chairman, Dkpartment Committee on Graduate Theses

OF TECNIL..;G'

SEP 17 1996

LIBRARIES

- ·· -- ·



A Mobile Robotics Development Platform

by

Karl E. Keppeler

Submitted to the Department of Electrical Engineering and
Computer Science

May 28, 1996

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and

Computer Science

ABSTRACT

The field of mobile robotics has evolved a great deal since its early days. In the beginning,
people were happy to get a control circuit to make a robot move. Now people are doing
sophisticated work in robot navigation and programming. People who have a plan for an
advanced navigation scheme often need a robot with a powerful computer and rarely have
the time or desire to build one from scratch in order to test their ideas. The Mobile
Robotics Development Platform was designed for just such a purpose.

The robot described in this paper is a solid basis for the development of advanced robotic
concepts. As presented, the robot has an 80386 processor core and 1 Mbyte of memory
for computing. It has a solid drivetrain and a microcontroller to handle low level motor
control. And it has an expansion bus which is compatible with most 16 bit ISA cards.

Thesis Supervisor: Richard D. Thornton
Title: Professor of Electrical Engineering
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1.0 Introduction

The idea for the Mobile Robotics Development Platform was sparked by a project I did

for one of my classes. The class was on machine vision and every student had to do a

semester project based on one of the topics covered in the class. I chose to explore a

technique for using a video camera and image digitizer for robot navigation. The room in

which a robot was to find its bearings would have multiple infrared beacons, each with a

known location in 3 dimensional space. Each beacon flashed with a distinctive pattern.

The robot had an infrared filter so the beacons could be easily recognized in the image as

bright spots amid a sea of darkness. The robot would determine the angles between the

beacons in the image and use a type of triangulation technique to determine its position in

the room.

For my paper, I developed the math for the location calculating technique. I also explored

some of the issues involved with actually getting useful data from the image and

recognizing the beacons in the image. After all of that development, I thought it would be

fun to try out the idea. Of course, there was one hitch: no robot. In this case, the

experiment could have been done with a video camera and a computer, without an actual

robot. But putting the technique to use in part of a larger scheme would require one.

Also, I realized that there must be many other people out there who have ideas for novel

robot experiments and no robot on which to try them out. Thus, the idea of my Mobile



Robotics Development Platform was born. I set out to build a solid basis to make it easy

for people to perform robotics experiments.

1.1 Design Considerations

The first step in designing a useful platform is to develop constraints for the project. One

must determine which features are necessary for a useful project and which ones simply

create unnecessary work with minimal gain. One of the first requirements set forth was

the need for a fast, modern processor, with a respectable amount of memory (MB range).

Given the state of robot development today, most robotics experiments will be fairly

sophisticated. This means that a processor needs to be able to handle floating point math

and must be relatively fast. Large memory is required for storing maps of rooms, large

control programs, or data to be processed. If a processor is to use video data, it must be

able to store and process thousands of bytes of data in a timely manner. If it takes too

long to process an image, then the movement of the robot is hampered by navigation

overhead.

In addition to a fast processor, the control board needs expansion capability. The

processor needs to be able to sense the robot's environment in order to interact with it in a

meaningful way. For example, to use video data, a processor needs to be able to interface

to a video digitizer board. The computer may also need to gather information from touch

sensors, light sensors, or ultrasonic rangers.



Beyond the control computer, the robot has other requirements. It should be entirely self

contained. It should have a battery for power and power supplies to regulate the voltage

supplied to the computer circuitry. It should have built in capability to control its drive

motors and to collect distance and speed feedback information from them. The control

circuitry of the robot should be able to regulate the robot's speed and monitor its progress

with minimal control overhead visible to the programmer. The robot should be able to

carry enough weight to move itself and whatever sensors or supplementary computers are

needed.

1.2 Possible Additions

With all of the basic fundamental requirements for the robot in place, there are many

extras which could expand the usefulness and versatility of the robot. The video circuitry

mentioned above could be built into the robot for ease of use. An arm could be added.

An arm would make the robot more useful by allowing it to manipulate objects and

perform meaningful tasks. Sensors for monitoring the environment could be built in.

Practical examples would be touch sensors and rangers around the perimeter of the robot.



2.0 Mechanical Construction

Many of the aspects of the mechanical design are derived the way in which the robot is

expected to operate. For example, there are several possible configurations for the wheels

and power transmission. One possibility is two driving wheels and two steering wheels,

like a car. For robotics, the behavior of such a design turns out to be difficult to model.

The layout that was chosen for this robot is the differential steering configuration. This is,

perhaps, the most common robot configuration. The robot has one driven wheel on each

side. The wheels are driven independently by separate motors. To move the robot

forward, both wheels turn forward. To turn, one wheel reverses. This type of behavior is

easy to model and makes for a more maneuverable robot (Jones, 1993).

It is beneficial to have a round perimeter to the robot. If the robot encounters a narrow

channel, it can turn in place, without having any protrusions hit the wall. Path planning is

simplified because the robot does not have to back up to turn. The robot presented here

does not have a circular perimeter. But, very little of the robot protrudes past the circle

which is centered on the middle of the rear axle and goes around the rear wheels. As a

result, if the robot bumps a wall, it is usually the wheels or the opposite end that hits first.

The robot can usually turn without striking the wall with another part of its body.



The design of this robot is a rugged and stable platform. The chassis is built to protect the

electronics and mechanics inside. The wheels are large and durable in order to handle

rough terrain. The robot is designed to have a wide, stable base and a low center of

gravity. Having such a rugged design allows the person using the robot to ignore many

practical issues which might otherwise complicate the design. For example, the large tires

allow the robot to roll over transitions in the floor, carpet, and small objects on the floor,

all of which might stop a robot with smaller wheels. The user does not have to be

concerned with dealing with stalls caused be small, unforeseen objects. The stability of the

platform allows the robot to roll over uneven ground without danger of tipping over.

Two important challenges involved in designing the robot are the chassis and the

drivetrain. The chassis has to be able to support a great deal of weight from the battery,

motors, and anything the user might add on. It has to protect the electronics inside, and

be economical. The drivetrain has to be able to move and accelerate as much weight as

the robot is expected to carry. It has to be smooth and efficient in order to prevent waste

of battery power.

2.1 Chassis Design, Layout, and Construction

The chassis is the basic structure on which the entire robot is built. It provides mechanical

support for the drivetrain, the battery, and the electronics. The chassis is constructed of

pieces of 1/8 inch sheet aluminum. The pieces are shown in figures 1 and 2 in exploded

and assembled form respectively. The individual pieces are held together at the corners



with machine screws. The material is rigid enough to support the weight of the battery

and the stresses caused by tension on the drive chains. The metal provides a protective

barrier for the electronics, which are entirely contained inside, and forms a removable lid

for easy access. Casters are mounted under the front of the robot to support the weight of

the front end and to move freely as the robot rotates. On the rear, blocks of metal are

formed to bolt to the chassis and clamp the rear axle. Inside, bent aluminum clips hold the

battery in place, and the electronics boards are mounted to the lid and front end piece.

The exact dimensions of the chassis were determined once the bulk of the large parts were

obtained. With all of the parts on hand, the chassis could be designed so it is large enough

to have room for everything, without weighing or costing too much.

Figure 1: Exploded View of Chassis
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Figure 2: Assembled View of Chassis

2.2 Motor Requirements and Selection Process

The motors for the project are selected based on the desired specifications for the robot's

weight, speed, and acceleration. Permanent magnet DC motors were chosen for their low

cost and good power to weight ratio. Most PM-DC motors develop the most power in

the range of a few thousand RPMs. Because the wheels of the robot turn much more

slowly, gearing must be used to reduce the speed and increase the torque. The high gear

ratios needed (approximately 100:1) require the use of a multi-stage gear box. For the

sake of efficiency and reliability, motors with built in gearboxes were chosen over home

made gearboxes. As a result, the motor selection involves finding a motor with the

correct RPM range, power, and voltage rating.

The requirements for the motor specifications were derived using simple kinetics. It

would be difficult to accurately determine the friction that the motor must overcome.

Therefore, the motors were sized based on their ability to accelerate the mass of the robot



to the desired speed in the desired time. It is assumed that if the acceleration is great

enough, the acceleration force is much greater than the friction force, and the friction

force can be neglected. Also, the desired performance characteristics were chosen

arbitrarily, so they are not critical.



The chosen performance specifications were:

Max Speed: 3 ft/sec

Gross Weight: 120 lb

Time to reach max speed: 1 sec

Wheel Diameter: 8 inch

Calculations:

Acceleration = Max Speed / Time to reach max speed

Acceleration = 3 ft/sec2

Mass = Weight / g

Mass = 3.75 Slug

Accelerating Force = Weight * Acceleration

Accelerating Force = 11.25 lb

Torque = Accelerating Force * Wheel Radius

Torque = 45 inch*lb = 720 oz*in

Torque at each wheel = 360 oz*in

Rotational Velocity = Linear Velocity / Circumference

Rotational Velocity = 1.43 RPS = 86 RPM

Therefore, the motors must provide 360 oz*in torque at 86 RPM or an equivalent power.

The wheels are driven by the motor shaft through sprockets and chains. As a result, the

motor must have an output RPM that is fairly close to the desired wheel RPM. An



acceptable RPM range for the motor was determined to be one half to two times the

desired wheel RPM in order to keep sprocket sizes within a 2:1 ratio.

The search for the motors was narrowed to a given torque and RPM range and the voltage

was set to be either 12V or 24V, which could easily be obtained with one or two batteries.

The motors that were finally chosen were 12V models. They have a maximum RPM of 55

and a torque of 480 oz*in at 40 RPM according to the distributor. The sprockets used in

the drivetrain are 32 and 18 teeth. The drive increases the wheel speed by 1.78:1. The

resulting max wheel RPM is 98 and wheel torque is 270 oz*in. The speed is a bit higher

than the desired maximum, but given friction in the system, it will probably not reach the

maximum. The torque is a little lower than desired, but because it is not the stall torque,

the motor could actually produce more. Also, the torque is 75% of the arbitrarily chosen

desired value, so the performance will not be significantly reduced.

2.3 Drivetrain Description

The basics of the drivetrain are mentioned above in the motor specification section. The

motor has a built in gearhead to reduce the RPM and increase the torque. The motor

drives the wheels through a sprocket and chain setup. The axles for the rear wheels could

have either been live axles or dead ones. Live axles turn. like those are a car, dead ones

do not. A dead axle was chosen for this robot because the motors have to be able to turn

independently in order for the robot to turn. With live axles, there would have to be two

separate axle halves, each independently supported. The result is that the axle is



supported in the middle of the robot. Each axle must withstand the torque created by the

weight on the robot and any side to side loads. The dead axle design was chosen for the

strength it imparts. The axle is continuous from one wheel to the other. The result is that

the weight of the robot tries to bend the axle, but does not torque the mounts. Also, side

to side loads are not a problem because the axle is clamped in place. The bearings for the

wheels are actually part of the wheels themselves. The wheels turn freely on the axle and

are held on by collars. The drive sprockets for the wheels are bolted directly to the wheel

hubs and do not touch the axles.

2.4 Shaft Encoder Construction

The final major element of the mechanical construction is the shaft encoders. They are

shown in figure 3. The encoders are home made and attach to the motors. There are two

parts to the shaft encoders, the encoder wheels and the optical sensors. The optical

sensors consist of an emitter and detector pair. The light from the emitter is direct at the

detector across a small gap. The detectors can sense when the light beam is broken by an

opaque object. The encoder wheels are mounted on the motor shafts. The wheels are

disks with alternating opaque and clear areas. There are four opaque and four clear areas

on the encoder wheels for this robot. As a motor turns, the light beam is alternately

interrupted and allowed to pass by the encoder wheel. The microcontroller is set up to

detect transistions from light to dark and from dark to light. The gearhead on the motor

has a 110:1 ratio, so 8 light-dark/dark-light transitions on the motor translate to 880

transitions on the output shaft. Therefore, high resolution in position measurement is



possible. Because of the sprocket gearing, the 880 pulses per output shaft rotation

translate to 497 pulses per wheel revolution. With a wheel circumference of 25 in, the

robot moves 0.05 inches per pulse. Therefore, the robot can monitor its position within

0.05 inches. Using a 16 bit number to represent the number of counts to move (i.e.

distance), the robot can move 276 feet with 0.05 inch resolution in one command. Of

course, error will become a factor as the wheels slip slightly or the ground becomes

uneven.

Figure 3: Motor and Shaft Encoder
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3.0 Power Electronic Design

When one thinks of designing a robot, probably the first things that come to mind are

mechanical construction and the computer design. One design aspect which may be easily

neglected, but is extremely important is the power electronics. The two specific concerns

are the power supply for the system and the motor drive circuitry.

3.1 Power Supply

The source of all of the power for the robot is its battery. In this robot, the battery is a

12V, 26AH gel cell. Depending on the state of charge, the battery voltage can range from

about 11 volts to 14 volts. It is easy to regulate a +5V supply from the battery, any of

several common regulators may be directly attached. But, the computer boards need

+12V and -12V supplies as well. While converters can be designed to convert the battery

voltage to the desired voltages, there were several constraints influencing the design. A

converter could be built from scratch, but it would be difficult to build and not as reliable

as a commercial product. A commercial product could be used, but there was not one

available from the sources at hand. Instead, a commercial regulator which converts +5V

to +12V and -12V was used. Two separate LM323 3A, +5V regulators were used for the

robot. One supplies +5V for the logic, the other supplies power to the 12V regulator.

The schematic of the power supply is shown in figure 4.
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Figure 4: Power Supply Schematic

3.2 Motor Drive

The most complicated power electronics circuitry in the robot is the motor drive. The

drive circuit must enable a 5V, low current signal from the microcontroller to control a

12V motor which may draw up to 5A. The microcontroller drives the motors with a pulse

width modulation (PWM) signal through an H-bridge. The motor scheme used in the

robot is a switching technique, as opposed to a linear technique. In a linear speed control

technique, the power transistors supply current to the motor while dropping a significant

portion of the supply voltage. Linear regulators are not very good for this type of design

because they waste a great deal of power. A large percentage of the battery energy is

wasted as heat, resulting in shorter battery life and more heat to get rid of. Switching

regulator, like the PWM H-bridge are much better for this application. In switching

schemes, the power transistors are either completely on or completely off. When they are

off, the current flowing through them, and therefore the power they dissipate is nearly



zero. When they are on, the only voltage drop is the small drain to source voltage, which

also results in little power loss. While some power is wasted during the switching

transitions, switching motor drives are, as a whole, much more efficient than linear ones.

3.2.1 Concept of PWM

The H-bridge applies the full battery voltage to the motor in either the positive or negative

direction by turning on one of two pairs of transistors. The the bridge switches the motor

voltage between positive and negative at a constant rate, which is much faster than the

time constants of the mechanical system. Because the switching is much faster than the

mechanical system can respond, the motor speed only depends on the average value of the

voltage across its terminals. The controller varies the average value of the voltage by

varying the duty cycle of the switching waveform. If the waveform is positive for more

than half of the cycle, the average voltage will be positive. If the waveform is negative for

more than half of the cycle, the average is negative. It the voltage is positive for a fraction

D of the switching period and negative for a fraction (1-D) of the switching period then

the average voltage can be obtained through integration. Vavg = +V * D + (-V) * (l-D) =

2*V*(D-0.5). If D = 0, Vavg = -V; if D = 1, Vavg = V; and if D=0.5, Vvg = 0. Varying D

from zero to one gives an average voltage anywhere from -V to V, where V is the battery

voltage. Figure 5 shows examples of three switching waveforms. The solid line

represents the motor voltage. It swings between the positive battery voltage and the

negative of the battery voltage. The switching period in this example is time T. Because

D represents the fraction of the time that the signal is positive, the positive portion of the



cycle lasts for a time DT. For the remainder of the time, (1-D)T, the voltage is negative.

In the top example, D is less than 0.5, so the average voltage, represented by a dashed

line, is negative. In the middle example, D is greater than 0.5, so the average voltage is

positive. In the bottom example, D is equal to 0.5, and the average voltage is zero, as

predicted by the equation.

Figure 5: Some PWM Waveforms

3.2.2 Circuit

The schematic for the motor control portion of the robot is shown in figure 6. The

diagram represents the control circuitry for one motor. The circuitry for the other motor

is exactly the same. The bridge of transistors, in this case MOSFETs, is in the middle.



The MOSFETs are being driven by a pair of International Rectifier IR2110 MOSFET gate

driver IC's. The drivers perform several important functions. First, they allow the logic

signal, which is in the 5V range to control the gate drive signals, which are about 12V for

this circuit. Second, they are able to drive the high side MOSFET. The complication in

driving the high side transistors is that their gate voltage needs to be relative to their

source voltage. For the low side devices, the source is at ground, but for high side

devices, the source is floating. On the left side of the bridge, Q1 is the high side transistor.

When Q1 is on and Q2 is off, Ql's source is near the positive supply voltage. When Q1 is

off and Q2 is on, Q 's source is near ground. The drive IC's are able to take a logic input

which is relative to ground and use it to control the floating gate drive. Finally, the driver

IC's are able to supply 12V above the high side source, which may be at 12V at the time

when it needs to be applied. This voltage step up is accomplished by charging a capacitor

to 12V through the positive supply while the high side source is at OV. For Q1, the

source is at OV when Q1 is off and Q2 is on. The IC then uses the charge from that

capacitor to drive the high side gate when the source is at 12V, when Q2 is off and Q1

turns on. The same situation holds true for Q3 and Q4 on the other side of the bridge

(Clemente, 1990).



Figure 6: Motor Drive Circuitry

The schematic also shows the logic which controls the gate drive signals. The control

signals are pulled up by 10K ohm resistors connected to the +5V supply. The pull-up

resistors are required because the MOSFET driver IC's require higher current than TTL

ICs can source. The controller outputs a PWM signal, which switches on and off at high

frequency to drive the bridge. It also supplies an enable signal to turn the motors on and

off. The inverter insures that the low side and high side transistors are always in opposite

states. If one is on, the other is off. This insures that the 12V supply is never shorted to

ground through the two devices, a condition known as "shoot through". The enable signal

and XOR gates determine whether the right side transistors switch on and off in phase

with the left ones or 180 degrees out of phase with them. It the right side switches out of



phase with the left side, current will flow out the positive supply and through the motor,

causing the motor to turn. If the right side switches in phase with the left side, the motor

is always shorted to itself and no voltage is applied, effectively turning the motor off.



4.0 Control Electronics

Now that there is a motorized chassis and the motor drive to control it, a control

computer is needed. As described in the introduction, there are several desired

specifications governing the design of the control computer. It must be modern, fast, and

have a respectable amount of memory. Also, it must be able to control the motors in the

background, with minimal effort for the user. The resulting design is a two controller

system. At the higher level is a board based on the Inte1386' EX embedded controller.

The processor has the core of an Intel 80386 as well as several built in peripheral circuits.

The board has 1 Mbyte of memory, which is expandable to 16 Mbytes. It also has a

connector which is compatible with the industry standard 16-bit ISA bus. The controller

board can run software written for an IBM PC compatible computer or use its own

operating system.

On the other end of the control story is an Intel 87C51FA microcontroller. This is an 8 bit

microcontroller core with built in peripherals and memory. The microcontroller is used

for the low level control of the motors. The Intel386 board sends commands to the 8751

over a serial link. The 8751 then controls the motors to carry out the specified instruction

and reports back to the Inte1386 when it has completed its job or failed. The

11Inte1386 is a trademark and iRMX is a registered trademark of Intel Corporation



microcontroller is responsible for regulating the motor speed with a shaft encoder based

feedback loop and monitoring the distance the robot travels.

4.1 Description of the Inte1386 Board

The high level control board for the robot is an Inte1386 EX evaluation board. The board

has an Inte1386 EX processor, ROM, RAM, and various "glue" chips. The "glue" chips

include a DRAM controller and a bus driver. The processor runs at 25 MHz and is

connected to 1 Mbyte of RAM. The processor itself has an 80386 core and all of the

capabilities of the 80386, including multitasking support (Inte1386 Hardware Reference,

1994). The board can run DOS software or it can run multitasking software with its

iRMX operating system. Some modifications to the BIOS or drivers may be necessary in

order to run some DOS applications. The processor has built in I/O ports, UARTs, DMA

controller, and interrupt control. Through one UART, the board is able to communicate

with a terminal or host computer in order to download software to Flash ROM or to

debug programs. At the same time, it can communicate with the 8751 through the other

serial port.

The board has one pair of connectors which is compatible with the PC/104 standard. The

connectors are logically equivalent to the 16 bit ISA bus, allowing cards for IBM PC

compatible computers to be attached if mating connectors are provided. The restrictions

are that there is no -5V supply, only one (jumper selectable) DMA channel may be used at

once, certain IRQ lines may not be used, and PC/104 bus master mode is not available.



Another connector on the board allows easy access to the rest of the Inte1386's

capabilities, which are not part of the ISA bus (Inte1386 Evaluation Board, 1994). In

addition to DOS software, the board will run programs written in C and compiled on any

of several popular compilers. The ability to use a high level language makes the board

very flexible and easy to use. Because the microcontroller handles motor control,

commanding the robot to move is as easy as sending a move command, the desired speed,

and the desired distance over the serial port.

4.2 87C51FA Microcontroller

The 87C51FA microcontroller, 8751 for short, is the workhorse of the robot. It handles

all of the low level control of the motors. It uses its PWM outputs to drive the motors

and its Counter/Timer inputs to measure the motor speed and distance traveled. The 8751

communicates with the Inte1386 through its serial port. It receives commands for

controlling the motors, then performs the desired operations.

4.2.1 Overview

The 87C51FA is an almost entirely self contained microcontroller system. It has 3 timers,

a programmable timer/counter array with 5 counters, a serial port, an interrupt controller,

data RAM, and program EPROM, all on one IC (Intel MCS51, 1994). The timer/counter

array is the most important part for the robot. It has five counters, each driven from a

common timebase. The time can either come from the microprocessor clock, divided by 4

or 32, one of the timers, or an external source. Each counter can be configured for



compare/capture, software timer, high speed output, or pulse width modulator. One of

the counters may also be used as a watchdog timer. The program must continually reset

the watchdog timer. If the timer reaches a specified count, it is assumed that the program

has gotten stuck because of some unforseen condition, and the processor is reset. The

robot uses two of its counters as compare/capture modules for measuring motor speed

and two as PWM outputs for controlling motor speed.

The compare/capture modules operate as follows. There is one counter for all of the

timers, which continuously counts in a 16 bit register. For each compare/capture module

there is a separate 16 bit counter. A transition on a counter's input bit latches the value

from the main counter into its own register and triggers an interrupt. The interrupts are

maskable, but they are set to active for this application. The module can be triggered by a

rising edge, a falling edge, or both. For the robot, it is set to trigger on both, giving twice

the resolution of just triggering on one. The trigger input is the output from the shaft

encoder. As the motor rotates and the light beam is allowed to pass or is blocked, the

signal goes high and low, causing rising and falling edges on the counter inputs. Each

rising or falling edge causes another interrupt. The interrupt service routine measures time

between consecutive interrupts and compares it to the expected time for the desired speed.

If the time is more or less, the motors are sped up or slowed down accordingly.

Two modules are used as PWM outputs for the motors. The PWM counters act as 8 bit

counters. They are run off of the common timer for the modules and consequently have a



fixed rate of operation. The program loads a register in the timer with an 8 bit value, the

desired PWM duty cycle. The output pin is low at the beginning of the cycle and goes

high when the count value reaches the value in the register. This process repeats every

cycle. The motor average voltage can then be regulated simply by changing the number in

the register.

4.2.2 Connection

The connection of the 8751 in the circuit is very simple. As mentioned above, it is almost

entirely self contained. Simply connecting a crystal, two capacitors, and a reset capacitor

is enough to have a working micro. As shown in figure 7, the 8751 is connected to a 32

Kbyte static RAM IC. On the 8751, the data lines are multiplexed with the lower 8

address bits. The 8751 outputs the lower address bits on the first half of an instruction

cycle, then reads or writes data on the second half. During the first half of the cycle, the

8751 places the lower half of the address on the bus lines. The falling edge of the ALE

signal is used to clock the address lines into an external register. For this circuit, a

74LS374 register is used to hold the address. The ALE signal is inverted in order to give

a rising edge to clock the 74LS374. After the address is latched, the micro will assert

/WR to write to the RAM or /RD or /PSEN to read data or program memory. The RAM

was added to ease development. With a simple shell program, programs may be loaded

over the serial port, stored in memory, and executed. The shell program eliminates the

need for programming an EPROM for every program change. While the RAM is not

needed in the final circuit, it is kept there in case changes are to be made to the low level



software. The RAM will allow easy development and is available in case the processor

has a need for more storage than the internal RAM can provide. The RAM is mapped to

the upper 32K on memory by inverting the A15 output of the microcontroller and using it

as the chip select, /CS, for the RAM. The /WR pin of the microcontroller directly controls

writes to RAM through the /WE pin on the RAM. The /RD and /PSEN signals from the

microcontroller are ANDed together to control the /OE pin of the RAM, causing all reads

to come from the same RAM.

The /EA pin is used to tell the 8751 to run from either internal or external program

memory. In this circuit, it is strapped to Vcc so the boot program is run from internal

ROM. If the /EA pin were strapped to Vss, the micro would fetch all of its instructions

from external program memory. In the configuration used in the robot, fetches to the

lower 8K of program memory are directed to the micro's internal EPROM. The memory

that is out of range of the internal ROM (above 8k) is still mapped to the external RAM.

A capacitor is tied from the RESET pin to Vcc. Because of an internal pull-down circuit,

the capacitor is all that is needed to hold the RESET pin high during the first clock cycles

at power up. Once the capacitor is charged, the RESET pin drops to zero volts and the

processor is started. A reset switch is added across the reset capacitor to allow manual

reset. A toggle switch to ground and a pull-up resistor are added to port 1.7 as a control

input. The shell program uses the input to determine whether to run its boot loader code

or to run the code which it has loaded into RAM. When the user selects the option of



running the code in RAM, the shell program jumps to location FFOOh to run the program.

Interrupts at locations 00xxh are vectored to Ffxxh.

Figure 7: 87C51FA Connection

There are not many other support chips for the microcontroller. The IR2110 MOSFET

drivers are connected to drive the H-bridge. Also 1488 and 1489 line drivers and

receivers are connected to the micro to allow the serial port to communicate with standard

RS232 devices. The detectors for the shaft encoders are Opto-Logic devices. With the

help of a pull-up resistor, they produce a TTL compatible output with no external signal

amplification. Therefore, the shaft encoders connect directly to the inputs of the

microcontroller.



5.0 Control Software

Software for the robot is broken down into two levels. One is the high level control code,

which the end user writes for a specific application. This code takes care of navigation,

path planning, and task organization. The high level code all resides on the Inte1386

board. Commands sent from the high level program to the microcontroller are abstract

commands, like "go forward at some speed".

The other software level is the lower level. Is is handled by the 8751. It gets commands

from the Inte1386 board and breaks them down into the most basic control steps. It tells

the motors to start turning by enabling them and setting a certain PWM duty ratio. It then

monitors the speed and varies the duty ratio to regulate the speed. In some cases, the

microcontroller counts the number of shaft encoder pulses to measure or verify the

distance traveled. One of the highest level functions the microcontroller does is to vary

the desired speed of the motors to allow smooth acceleration and deceleration, rather than

jerky stops and starts, which may induce slipping. It must also regulate the speeds of the

two motors to insure that the robot goes is a straight line when it is supposed to.

5.1 Inte1386 Software

It is difficult to describe the software for the Inte1386 board in much detail because it is

almost entirely dependent on the particular application. The following is a brief example



of what the software might do in one application. One typical use of the robot might be to

deliver mail around an office, following a route which depends on who has is going to

receive mail. The robot might use the video navigation scheme described in the

introduction. The Inte1386 board would have a map of the entire office stored in its

memory. When given input about what mail it is carrying, it would go through the list of

destinations and plan a route around the office that would go to each one. The Inte1386

would then take an image and use the navigation scheme to find its location and heading.

Next, the Inte1386 board would determine how far the robot needs to turn or move

forward in order to follow the desired path. It will then send the turn or move command

to the 8751 and wait for a reply to indicate that the action is finished. The Inte1386 would

then determine the next move to make in order to follow the desired path, and pass it on

to the microcontroller. Occasionally, the robot has to recompute its location, to make

sure there was no slippage in the wheels which would throw off the location reading.

After the Inte1386 establishes the robot's location, it can make corrections to its

preplanned path, as necessary. Also, while following the path, the robot may sense

obstacles, such as people it the way. They might be detected with an ultrasonic ranger.

The Inte1386 board would then have to modify the planned path and give the new

movement instructions to the 8751. Through all of the movements, the 8751 is simply

accelerating and decelerating the motors, regulating their speed, and keeping track of the

distance traveled.



5.2 87C51FA Software

The software for the 8751 is more easily explained, because in general, it will not change.

It is at the user's discretion to change the 8751 program to make it more versatile or more

complicated, but the basic function can be described here. The general tasks of the 8751

are to interface to the Inte1386 board in order to receive commands and to control the

motors

5.2.1 Interface to Inte1386

The easy part of the 8751's job is to communicate with the Inte1386. The 8751 has a built

in serial port, which makes it simple to directly connect the micro to the other board. The

8751 controller basically initializes itself, then waits for interrupts. When an interrupt is

triggered, indicating data in the serial port, the 8751 runs an interrupt handler which reads

the data and decides how to act on it. If the data is a command to move forward, the

8751 will wait until it gets information about the desired speed and distance. Each

command that the Inte1386 sends to the 8751 is similar to an assembly language

instruction. It describes a certian action to be taken. The instructions are always followed

by a fixed number of operands, the number of which depends on the particular instruction.

Once an instruction and its operands have been received, the 8751 will run the motor

control routines. The motor control routines set up the motor outputs, enable the motors,



and enable the shaft encoder interrupts. Once the desired distance has been reached, the

micro sends a message to the Inte1386, indicating that it has completed its task.

5.2.2 Motor Control and Feedback Design

The heart of the 8751's mission is to control the robot's drive motors. The PWM output

can control the speed of the motors over a wide range and in both directions. A technique

for using feedback from the shaft encoders to regulate the motor speed is described below.

For the sake of simplicity, feedback was not used in the current motor control design. In

the current design, the controller recieves control signals from the Inte1386 to run the

motors. The signal can be either the value 65 or 66, meaning to turn on motor zero or

motor one respectively. The values are arbitrarily set. They were chosen to be the letters

"A" and "B" in ASCII to allow easy manual control during troubleshooting. The

command it followed by three bytes: the speed and the high and low bytes of the distance.

The distance is the number of counts on the shaft encoder. As the data is received, it is

stored in the appropriate variables. Once all of the data is in, the controller jumps to a

motor initialization routine. The routine sets the motor speed, enables the shaft encoder

interrupt, and starts the motor. The shaft encoder interrupt routine decrements the value

of the distance counter every interrupt. When the distance counter reads zero, the routine

shuts off the motor and notifies the Inte1386 by sending a 65 or 66 to tell it which motor

finished.



The motor control routines describe above are very simple. It would not be difficult to

add other features. Other commands could be added to the vocabulary. For example, the

Inte1386 could the the microcontroller to stop the motors and return information about

how far it has traveled. There could be a command which does not specify the distance to

be traversed. Instead, the robot continues until instructed to stop.

As mentioned above, a feedback system would be helpful in regulating the motor speeds.

Without feedback, the motor speed is affected by the battery voltage, the load imposed on

the motor, and other undefinable factors. The shaft encoders may be used as speed

feedback, as the basis for regulating the motor speed. They each cause an interrupt in the

microcontroller every time the robot moves forward 0.05 inch. The timer clock is running

at one fourth of the processor clock speed, or 3 MHz. If the motor output shaft is turning

at 60 RPM or 1 RPS, the motor shaft is turning at 110 RPS. At 8 transitions per

interrupt, the micro gets 880 interrupts per second from each motor. This means that

there are 1.14 mS or 3410 counts between interrupts. So, every time the robot moves

0.05 inch, it can tell how long it took and therefore how fast the robot is going, to three

decimal places. When the pulse is received, the controller either increases or decreases the

PWM duty cycle in proportion to the error in the time measured. If the time is too long,

the robot must be moving too slowly. The period of the PWM signal is increased in order

to speed up the motor. The calculations above represent the motor turning as fast as it

possibly could. If the motor is rotating more slowly, the reading is even more accurate,

because there are more counts between pulses.



While the basic feedback scheme seems simple, there are several complications to deal

with. For example, if the motor is stalled, there will never be an interrupt. The pulse

width will never change and the robot will not move. If the motor stalls near the edge of

an encoder transition, vibrations can make it appear as if the motor is rotating very rapidly,

interfering with the operation of the circuit. As an added complication, many of the values

that must be dealt with are 16 bit. The microcontroller is an 8 bit device, and 16 bit

operations can be tricky at times. While all of these factors do not make it impossible to

implement a feedback system, they do present a programming challenge.

The control scheme that the microcontroller implements is currently very simple. The

speed of each motor is unregulated, and depends on the power of the motor to give

consistant speed. In many cases, such a scheme is acceptable. However, one situation in

which problems may arise is when both motors are supposed to be going the same speed,

so the robot travels in a straight line. In general, the motor speeds are well enough

matched that there is not a problem. But, if one motor is so loaded down that it cannot

maintain speed, even and maximum duty cycle, there will be a speed mismatch between

the motors. The robot will not travel in a straight line. The basic approach of

independently regulating the speed of each motor will be insufficient. The microcontroller

has not way of knowing that both motors should be turning at the same speed. If the

robot were set up to travel in a curve, the motors would intentionally be moving at



different speeds. If one motor cannot maintain the expected speed, there is a question

about what the other motor should do.

In the current implementation of the robot, there is no built in solution to the problem of

motors not turning at the desired speed. One can generally avoid the problem by

programming the robot to move at a significant amount less than its maximum speed. If

the robot is programmed to move at half speed, it would take a serious obstacle to prevent

the robot from maintaining the desired speed. Such an object would likely be detected by

the robot's navigation scheme.

A more elegant solution, but one which require considerably more programming, would

be to implement a "go forward" command. If the robot were instructed to go forward

through this command rather than by separately setting both motors to forward, the

controller would know that it must keep them going at the same speed. The controller

could use separate routines to implement a feedback system in which the motors' speeds

affect each other.

Another complication to the motor control scheme is acceleration and deceleration. The

robot is very heavy and consequently cannot instantly change speed. In the current

scheme, acceleration is not controlled. The robot is heavy enough that instantly changing

the pulse width to the desired level does not make the tires slip. The robot simply

accelerates as quickly as it can and the specified pulse width. Deceleration, on the other



hand, cannot be neglected. Because of the high gear ratios on the motors, it is very

difficult to turn the motors from the output shaft. If the motors are stopped instantly, the

robot will try to stop instantly. In most cases, the pins holding the sprockets to the motor

output shafts will be sheared off. A simple scheme was developed to deal with the

problem of deceleration.

In order to handle deceleration, an independent routine inthe program monitors the status

of the distance to be traveled. When the distance remaining becomes less than 512 counts,

the deceleration routine intervenes. The distance remaining is divided by four. The result

is a number from 0 to 127. The number is in the indicated range because pulse widths are

either 0 to 127 or -1 to -128. The division result is compared to the current duty cycle

driving the motor. If the result is less than the current value, the duty cycle is changed to

the new value. Therefore, the speed decreases from the desired speed to zero as the

distance approaches zero. In actuality, a constant, 32, is added to the result before it is

used as the new duty ratio. The reason for changing the value is to set a minimum. If the

ratio is allowed to go to zero, the motor will stop turning before the destination is

reached. In this scheme the value is at 32 when the destination it reached. The value is

large enough to keep the robot moving, but small enough that the deceleration at the stop

is not to harsh. The resulting deceleration occurs over the last 25 inches traveled, if the

robot is moving at maximum speed and proportionally less otherwise.



More sophisticated acceleration control is obviously possible. If a feedback system were

used, the minimum pulse width for deceleration could go to zero, because the robot would

be guaranteed to keep moving. Control of acceleration could be added to smooth out the

starts. In a really complex system, the top speed could be manipulated to account for

acceleration so the average speed would match the desired speed.



6.0 Conclusions

The end result of all of this planning and construction is a very simple, yet rugged robot.

The robot has a strong chassis to protect the electronics inside and provide solid mounting

for any equipment which will be added later. The 87C51FA board provides the capability

for fairly simple low level feedback control of the motors. The microcontroller makes it

easy for the user to drive the motors and control the robot with minimal effort. Through

the feedback system, one can make the robot travel in a straight line at a known speed and

for a specified distance. The robot can just as easily be turned or backed up. The

EPROM in the 87C51FA and the RAM attached to it make it easy for the user to develop

new motor control routines for a custom interface or more sophisticated control. The

8751 has enough extra capacity that it could be connected and programmed to handle

other tasks, in addition to motor control. The 8751 has several I/O ports and timers free

which could at least be used to monitor touch switches or to connect to an A-D converter.

While the robot is rugged and robust, it is very simple. There is plenty of room for

expansion. The end user may use his or her own discretion in adding sensors or actuators.

The robot may be outfitted with an arm or some type of application specific appendage.

The ISA compatible bus on the Inte1386 board makes it easy to add any of a number of

commercially available boards. One could add a video digitizer, a board with multiple A-

D converters and I/O ports, or even a disk drive controller board.



This robot was designed to be the basis for advanced robotic experiments. It provides a

basic platform, motor control and computing power. Hopefully the next time someone

has an idea for a robotic experiment, they can use this platform to try it out with minimal

effort.
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Appendix A 8751 Motor Control Program

; MotorDrv.A51
; Program to handle low level control of the drive motors
; and communication with the control computer
; Karl Keppeler

;5/24/96
;---------------------------------------- -------
$NOMOD51
$INCLUDE (d:\thesis\c5 l\asm\reg51 f.inc)

NAME MotorDrv

PROG
SER_seg
PCA_seg
STACK
VAR1

RSEG
DS

SEGMENT
SEGMENT
SEGMENT
SEGMENT
SEGMENT

STACK
10H

CSEG AT
USING

0000h
0

CODE
CODE
CODE
IDATA
DATA

; 16 byte stack

; reset vector for the processor
; register bank 0

jmp START ; jump to program

; main body of the program, initializes everything
RSEG PROG

START:
mov
call
mov
mov
mov
mov
mov

SP, #Stack- 1
SERINIT
CMOD, #00000010b
CCAPMO, #01000010b
CCAPM1, #01000010b
CCAPM2, #00110000b
CCAPM3, #00110000b

initialize stack pointer
initialize serial port
set PCA timer mode
set up PWM mode for motor
set up PWM mode for motor
setup counter/timer 2
setup counter/timer 3



mov
setb
mov
mov
mov
mov
mov
mov
mov

CCON, #0
CR
IE, #11010000b
SpeedO, #0
DistHO, #0
DistLO, #0
Speed1, #0
DistH i, #0
DistL1, #0

; clear all PCA interrupts
; turn counter on
; enable PCA interrupt and serial int
; initialize speed and distance
; values to zero

Stop:
jmp Stop

;procedure to initialize motors

MinitO: mov
add
mov
mov
mov
clr
clr
ret

Minit l: mov
add
mov
mov
mov
clr
clr
ret

A, SpeedO
A, #128
DutyO, A
CCAPOH, DutyO
CCAPM2, #0011000 1b
CCF2
P1.1

A, Speedl
A, #128
Duty 1l, A
CCAPlH, Dutyl 1
CCAPM3, #00110001b
CCF3
P1.2

; get the speed for this motor
; convert to PWM value
; store as current PWM value
; set PWM value in counter
;Enable shaft enc interrupt
; clear shaft encoder interrupt
; enable motor drive

; get the speed for this motor
; convert to PWM value
; store as current PWM value
; set PWM value in counter
;Enable shaft enc interrupt
; clear shaft encoder interrupt
; enable motor drive

; Interrupt handler for the shaft encoders
RSEG PCA_seg
USING 1

PCAint:
push
push
mov
jnb

mov
jnz
mov

PSW
ACC
PSW, #08h
CCF2, Interl

A, DistLO
Nzer0
A, DistHO

; use register set 1

; save program status word
; save accumulator
; change to register set 1
; if motor 0 bit not set, skip
; motor zero routine
; get low byte of distance for motor0
; if the low byte is not zero, don't
; change high byte



jnz
call
jmp

NdoneO:

; if high byte is also zero, doneNdoneO
Done0O
DnO

NzerO:
dec DistHO
dec DistLO

mov
clr
rrc
jnz
mov
rrc
clr
rrc
add
mov
mov
clr
subb
mov
jb
mov
clr
subb
jnb
mov
add
mov
jmp

DnegO: mov
clr
subb
mov
clr
subb
jb
mov
add
mov

ChDutO:
mov

DnO: clr
jnb

if high byte is not zero, decrement
decrement low byte
deceleration routine
Get high byte of distA, DistHO

A
DnO
A, DistLO
A
C
A
A, #32
DTemp, A
A, DutyO
C
A, #128
ShDuty, A
ACC.7, DnegO
A, Dtemp
C
A, ShDuty
ACC.7, DnO
A, Dtemp
A, #128
DutyO, A
ChDutO
A, #0
C
A, Dtemp
DTemp, A
C
A, ShDuty
ACC.7, DnO
A, Dtemp
A, #128
DutyO, A

CCAPOH, DutyO
CCF2
CCF3, IntDone

; Rotate to decel if high byte is zero or 1
; Skip decel if not near end of travel
; get low byte of dist remain
; Shift down, shift in bit from high

; Shift in 0, shift down one
; set minimum speed when decel
; store new desired speed
; get current speed

; get so pos=fwd, neg=bwd
; save this version
; if current speed is neg, other routine
; get new desired speed

; compare to current speed
; don't do anything if current speed slower
; if current speed faster:
;convert new speed to duty cycle
; update current speed with new speed

; get negative of desired speed from before
; store as new desired speed

; compare to old speed
; don't change if new speed is faster
;get desired speed
; convert to duty cycle
; store as new duty cycle

; update PWM duty cycle
; clear shaft encoder interrupt
; if bit for motor 1 not set, done inter



Interl: mov
jnz
mov
jnz
call

jmp
Ndonel:

dec
Nzerl: dec

mov
clr
rrc
jnz
mov
rrc
clr
rrc
add
mov
mov
clr
subb
mov

mov
clr
subb
jnb
mov
add
mov

jmp
Dnegl: mov

clr
subb
mov
clr
subb

jb
mov
add
mov

ChDutl:
mov

A, DistL1
Nzerl
A, DistH1
Ndonel 1
Donel 1
Dn1

DistHi1
DistL1
A, DistH1i
C
A
Dnl
A, DistL1
A
C
A
A, #32
DTemp, A
A, Duty 1l
C
A, #128
ShDuty, A
ACC.7, DNegl
A, DTemp
C
A, ShDuty
ACC.7, Dn1
A, DTemp
A, #128
Duty 1, A
ChDutl
A, #0
C
A, DTemp
DTemp, A
C
A, ShDuty
ACC.7, Dnl
A, DTemp
A, #128
Duty1, A

CCAP1H, Dutyl

; get distance for motor1
; don't change high byte if low is not 0
; get high byte
; if zero, count is done

; decrement high byte
; decrement low byte
; deceleration routine
; same as for motor0



Dnl: clr CCF3

IntDone:
pop
pop
RETI

DoneO: setb
mov
call
ret

Done 1: setb
mov
call
ret

ACC
PSW

; clear shaft enc 1 interrupt

;restore accumulator
; restore PSW and register set0

; turn motor off
; send char indicating done

P1.1
A, #65
SNDCHAR

P1.2
A, #66
SNDCHAR

; Jump vector for PCA counter interrupts
CSEG AT 0033h
LJMP PCAint

; turn motor off
; send char indicating done

; interrupt vector for PCA

; serial port interrupt handler
RSEG SER_seg
USING 1

Serint:
push
push
mov
jnb

clr
mov
subb
jnz

Waitl: jnb
clr
mov

Wait2: jnb
clr
mov

Wait3: jnb
clr
mov
call

PSW
ACC
PSW, #08h
RI, Sdone

RI
A, SBUF
A, #65
NmotO
RI, Wait1
RI
SpeedO, SBUF
RI, Wait2
RI
DistHO, SBUF
RI, Wait3
RI
DistLO, SBUF
MinitO

save PSW
save accumulator
change to register set 1
if the interrupt is not received
data, don't do anything

clear interrupt signal
get character from serial port
compter to the letter "A"
if not A, it is not for motor0
it is for motor0, wait for next byte
clear interrupt
store next byte, speed
wait for next byte
clear interrupt
store next byte, high distance byte
wait for next byte
clear interrupt
store next byte, low distance byte
initialize motor0



; finish interrupt routine

NmotO:
dec
jnz

Wait4: jnb
clr
mov

Wait5: jnb
clr
mov

Wait6: jnb
clr
mov
call

Sdone: pop
pop
reti

;Jump Vector
CSEG
LJMP

A
Sdone
RI, Wait4
RI
Speedl, SBUF
RI, Wait5
RI
DistH1, SBUF
RI, Wait6
RI
DistL1, SBUF
Minitl

ACC
PSW

for serial port interrupts
AT 0023h
Serint

; compare to "B", character for motor1
; if not it, quit
; wait for next byte
; clear interrupt
; store byte, speed
; wait for next byte
; clear interrupt
; store next byte, high dist byte
; wait for next byte
; clear interrupt
; store next byte, low dist byte
; initialize motorl

;restore accumulator
; restore PSW and reg set 1

; interrupt vector for Serial

RSEG PROG
;Initialize Timer 1 to generate baud rate; fosc=12 mhz, baud rate@2400
SERINIT:

mov SCON,#50h
mov TMOD,#21h ;c/T#=O, mode 2, auto-reload
mov TH1,#243 ;baud rate=fosc/(32* 12*(256-thl))
setb TR1
setb TI
ret

; send a character in A to the serial port
SNDCHAR:

jnb TI, $
cldr TI
mov SBUF, A
ret

RSEG
SpeedO:
Speedl:

; wait for trans buffer to be empty
; set buffer flag to busy
; put char to write in buffer

VAR1
DS
DS

jmp Sdone



Duty0:
Duty 1:
Dtemp:
SHDuty:
DistHO:
DistLO:
DistHi1:
DistL 1:

END

DS
DS
DS
DS
DS
DS
DS
DS


