
On the termination of recursive algorithms in

pure first-order functional languages with
monomorphic inductive data types

by

Kostas Arkoudas

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1996

@ Massachusetts Institute of Technology 1996. All rights reserved.

I / / ./

Author.......... .. . ••..............
Department of Electrical Engineering and Computer Science

May 4, 1996

Certified by v . " . -

David Allen McAllester
Associate Professor of Computer Science and Engineering

, o Thesis Supervisor

Accepted by...................
F. R. Morgenthaler

Chairman, De artmental C ittee on Graduate Students

OF r TECHNO!_LOGY

JUL 1 6 1996

LIBRARIES

_··;_iCY~I _~ __IIII ?~__jl·ll)~iij___;I-

On the termination of recursive algorithms in pure

first-order functional languages with monomorphic

inductive data types

by

Kostas Arkoudas

Submitted to the Department of Electrical Engineering and Computer Science
on May 4, 1996, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

We present a new method for verifying the termination of recursively defined func-
tions written in pure first-order functional languages and operating on monomorphic
inductive data types. Our method extends previous work done by C. Walther on the
same subject. Walther's method does not yield a direct answer as to whether a given
function terminates. Instead, it produces a set of termination hypotheses whose truth
implies that the function terminates. But then an external general-purpose induction
theorem prover must be invoked to verify the hypotheses. By contrast, our method is
a self-contained procedure that always produces a direct Yes/No verdict. Moreover,
our method is much faster, and, unlike methods such as the one used in the Boyer-
Moore system, it requires no interaction with the user. A programming environment
in which one can define inductive data types and functions has been implemented in
order to test our method, and the latter was found to be very efficient in practice,
having readily proven the termination of many classic algorithms, including Quick-
Sort, SelectionSort, MinSort, and other sorting algorithms, algorithms for computing
greatest common divisors and transforming propositional wffs into normal forms, and
several others.

Thesis Supervisor: David Allen McAllester
Title: Associate Professor of Computer Science and Engineering

Acknowledgments

First of all I would like to acknowledge my advisor, David McAllester, for his patience,

his approachability, his willingness to help his students, and his inspiring enthusiasm

for and dedication to the field.

Needless to say, an invaluable resource during the many years of my studies has

been the emotional and financial support of my parents (not necessarily in that order).

So, as a very small token of appreciation, this thesis is dedicated to them (Mom and

Dad: I know you always longed for an efficient syntactic treatment of termination in

a recursive framework; long no more).

I would also like to thank my teachers at RPI, from whom I have the fondest

memories, for stimulating my interest in Computer Science and Logic, and for gen-

uinely believing me (however mistakenly) capable of contribution to these fields. I

would particularly like to single out Selmer Bringsjord, Robert McNaughton, and

David Musser, all three of whom have been critical in my career development so far.

Last, but not least, I would like to thank Bob Givan for much helpful feedback during

the writing of this thesis. Bob might well be the only person (besides David) who

has had the misfortune to plow through almost every gory detail in this manuscript.

·- 1^1-. -ICI·~-l-l·_· UIII~UTUYIYi·il-C-1

Contents

1 Introduction

1.1 Background .

1.2 Preliminaries

1.2.1 Terms

1.2.2 Trees .

2 The language IFL

2.1 Data types in IFL

2.2 Procedures in IFL

2.3 M odules .

2.3.1 Basic definitions and notational conventions

2.3.2 Admissibility

2.4 The Operational Semantics of IFL

2.5 An interpreter for IFL

orderings and the main termination theorem

The size of an object

A well-founded partial ordering of objects based on size .

The GTZ predicate

Argument-bounded procedures

The main termination theorem

4 Recognizing termination

4.1 The weak size inequality calculus R

3 Size

3.1

3.2

3.3

3.4

3.5

47

47

. 49

. 50

. 51

. 52

4.2 The strict inequality calculus Rs 66

4.3 Deciding term ination 68

4.4 Deciding argument-boundedness 71

4.5 Deriving strict inequality lemmas for argument-bounded procedures . 74

4.6 Examples, strengths, and shortcomings 79

A Proofs 105

B Modules and first-order theories 116

Bibliography 120

List of Figures

1-1 Representing terms as trees. 11

1-2 The tuple PosT(U) uniquely identifies any node u in a finitely branching

tree T ... 14

2-1 The definition of the term transition relation ==#r. 35

2-2 The definition of the Boolean expression transition relation (==-:). 36

2-3 The definition of the reflexive and transitive closure of =--=.. 37

2-4 A transition sequence for the term Plus(s(s(0)) , s(s(0))). 38

3-1 The recursion trees of the terms Fib(4) and Reverse([5, 2,3]). 54

Chapter 1

Introduction

1.1 Background

An important problem in many verification logics is proving the termination of re-

cursively defined functions. Termination is important not only from an operational

standpoint (getting into an infinite loop is not a desirable turn of events at execution

time) but also from a verification viewpoint. For instance, proving that QuickSort

produces a sorted permutation of any given list of numbers presupposes that the algo-

rithm halts for all appropriate inputs. In this paper we present an efficient and fully

automatic method (automatic in that it requires no help from the user whatsoever)

for proving that a given algorithm halts.

Two qualifying remarks are in order at this point. First, it is clear that the problem

concerning us here is no other than the halting problem, which is well-known to be

mechanically undecidable. Therefore, since our method is cast in a formalism that

is equivalent in computing power to Turing machines, it is bound to be incomplete,

meaning that it will fail to recognize many algorithms that do in fact terminate.

The claimed advantage of the method is that it works for a remarkable variety of

"commonly encountered" algorithms; and, furthermore, that it does so efficiently,

and without requiring any guidance from or interaction with the user.

Secondly, our method is applicable only to pure functional languages featuring

inductive data types such as the natural numbers, binary trees, etc.. In such languages

there is no concept of state and the only looping mechanism available is recursion. An

aditional requirement that we impose is that functions cannot be first-class values,

meaning that they cannot be passed as arguments to other functions or be returned

as results of function calls. From the viewpoint of automated deduction these are not

very severe restrictions, since for most verification systems the language of choice is

of the kind described above. The idea of proving termination mechanically has also

been explored in imperative environments, i.e., for languages allowing assignment

statements, while loops, etc. (see [2], [4], or [5]), although the problem is admittedly

much more difficult in such frameworks.

A common thread underlying much of the existing work on termination, both on

the procedural side and on the functional side, is the use of termination functions, also

known as convergence functions. In pure functional paradigms, which are the focus

of this paper, a termination function maps the arguments s l ,...,sk of a function

call f(si,..., Sk) to some value in a well-founded domain (W, R). Termination is

established by proving that every time a recursive call is made, the value of the

termination function strictly decreases in the sense of the well-ordering R.

Researchers have employed this idea in various ways, each with its own set of pros

and cons. In the Boyer-Moore prover ([1]) the user must either discover and define

the termination function himself, or at least steer the system to it by formulating

certain inductive lemmata that provide hints as to why the algorithm terminates.

The main advantage of this method is its broad applicability, the fact that it can be

used on a large class of algorithms. In addition, the well-ordered range of the termi-

nation function need not be the natural numbers under the "greater than" relation

(a common restriction of other methods, including ours); for instance, lexicographic

orderings can be used just as well. Its downside is that it places a large share of the

burden of proof on the user, who is expected to have a clear idea of why the algo-

rithm terminates and to guide the system to the desired conclusions by formulating

appropriate lemmata-an expectation that naive users often cannot meet.

Our method is based on Walther's work on the subject, as presented in [8]. The

termination function used in that work is based on the concept of size; roughly, the

ultimate goal is to show that every time a recursive call f(sl,...,Sk) is made, the

size of one or more arguments strictly decreases, which will allow us to conclude

that f terminates. The gist of Walther's method is a calculus for inferring weak size

inequalities of the form s -< t, asserting that the size of s is less than or equal to the size

of t1 . The terms s and t denote inductive objects such as lists, trees, numbers, etc., and

can be either ground or not. We could, for example, derive the following inequalities

from Walther's calculus: Reverse(l) E 1 (asserting that the size of a reversed list is

not greater than the size of the original list), or pred(succ(0)) 1 succ(0) (making

the not-so-exciting claim that 0 < 1).

The main difference between Walther's method and ours is that his does not

yield a direct verdict as to whether or not a given algorithm terminates. Instead,

it produces a set of termination hypotheses whose validity implies that the algo-

rithm terminates. Unfortunately, that still leaves us with the task of verifying the

termination hypotheses, which can be a non-trivial problem. Walther resolves this

by assuming that we have access to "a powerful induction theorem prover" which we

can then invoke in order to verify the said hypotheses. The obvious drawback is that,

even if we assume one is available, calling up a general-purpose theorem prover to

verify hypotheses of essentially arbitrary complexity can be quite time-consuming. In

fact Walther's method can take a long time even before it gets to the point where it

needs to call the external theorem prover. Generating the termination hypotheses is

an expensive procedure in and of itself, as it is based on a very rich calculus with a

computationally complex inference problem.

Our approach modifies and extends Walther's idea in two ways. First, we sim-

plify his calculus for weak size inequality in a way that expedites inference without

sacrificing a great deal of expressiveness. Secondly, we give a new, equally simple cal-

culus for strict size inequality that can be used to infer termination directly, thereby

averting the need to resort to a general-purpose induction theorem prover. The result

is an efficient and fully automated method that can serve as a conservative "black

1For now "size" can be understood intuitively. Think of the size of a list as the number of its
elements, the size of a number as its magnitude, the size of a tree as the number of its nodes, and
so on. A formal definition will be given in the sequel.

2E is often called a signature.

box" for determining whether an arbitrary algorithm (expressed in a language of the

sort we desribed earlier) terminates. Of course the gains in simplicity and efficiency

are not attained without repercussions. Technically speaking, Walther's method does

recognize a larger class of algorithms. However, we make the empirical claim that

our method works succefully on a remarkable multitude of algorithms encountered

in practice. We substantiate this claim by illustrating our method on a collection of

algorithms taken from [8] and elsewhere.

1.2 Preliminaries

1.2.1 Terms

Perhaps the most fundamental concept in our investigation is that of a Herbrand

term. Given a collection of function symbols E = {fi, f2, .. .}2 in which every fi

has a unique natural number #(fi) associated with it known as its arity, and a

collection of variables V = {z, y, z, x, I yl,...}, the set of Herbrand terms (or simply

"terms") over E and V, notated T(2, V), is the smallest set containing V such that

fi(tl,..., t,) E T(E, V) whenever tl E T(E, V),... ,t, 6 T(E, V) and the arity of fi

is n. For instance, if E = { O,s,Plus,Fact } with #(0) = 0, #(s) = 1, #(Fact) == 1,

#(Plus) = 2, and V = {z, y, z, xl, y1,...}, then the following are all terms over E and

V: 0,x, s(0), s(Plus(O, s(0))), Fact(s(y)),... (note that function symbols of arity zero

are treated as constants). The set T(E, 0), written simply as T(E), comprises the so-

called ground terms over E; these are the terms that do not contain any variables.

All of the above terms with the exception of x and Fact (s(y)) are ground.

For any term t - f(...)) T(E, V) we will write Top(t) to denote f--the "top

function symbol" of t. e.g. Top(Plus(s(s(O)), 0) = Plus, Top(O) = 0, etc. A term

s is said to be a subterm of t, written s E t, if either (i) s = t, or else (ii) it

f(tl,..., tn) and s is a subterm of a ti. If s rE t and s 0 t we say that s is a proper

substerm of t and we write s C t. The inverse of the E (E) relation is denoted by

S flU.
S rlUS

0

SF

x 0

0

Figure 1-1: Representing terms as trees.

S(-i), and if t : s (t 7 s) we say that t is a (proper) superterm of s. Further,

if t - f(t 1 ,..., t,) then we say that t1 ,...,t, are the immediate subterms of

t. We write #(t) to denote the number of t's immediate subterms, and t I i to

denote the ith such subterm. e.g. for t Plus(Fact(s(O)), s(s(0))) we have #(t) =

2, t . 1 = Fact(s(0)), t 1 2 = s(s(0)), (t .12) 1 1 = s(0), #(t 1 1) = 1, and so on. In

general, the immediate subterms of any term t are tl,..., t J#(t).

A term t is essentially an ordered tree structure and it is natural to depict it as

such, with Top(t) at the root and the trees t 1 1,... ,t J#(t) as the root's children,

from left to right. Fig. 1.2.1 shows the terms 0, s (s ()), and Plus (Fact (0) , s(s (0)))

as trees. Note that only variables and constants (function symbols of arity zero) can

appear at the leaves; internal nodes must be occupied by function symbols of positive

arity. In particular, the number of children of a certain node is equal to the arity

of the function symbol labeling that node. Therefore, terms can be represented in

two ways, as linear (one-dimensional) strings of characters, and as (two-dimensional)

trees3 . We will use both as we see fit, so at times we will be speaking of a term as if

it were a tree (e.g. we might say "consider the leaves of Plus(s(0) ,s(0))"), while

at other times we will be viewing terms as strings.

The size of a term t is simply the number of its nodes (viewing t as a tree).

More formally: the size of a constant or a variable is one, while the size of a term

3Note that the subterm/subtree relations are isomorphic in these two representations.

f(tl,..., t,) is one more than the sum of the sizes of tl,...,t,. Hence, the sizes of

the terms appearing in Fig. 1.2.1 are 1, 3, and 6, respectively. Term size should not

be confused with term height, which is simply the height of the tree representation

of the term (thus the height of constants and variables is zero, while the height of

f(tl,..., t,,) is one more than the height of the highest term amongst {tl,..., ,tn).

Given a signature E and a set of variables V, a substitution is a function

0 : V - T(E, V) that is the identity almost everywhere (i.e. 0(v) : v only for

finitely many v). We will usually write out a substitution 0 as [v1 F tl,..., v, i t-],

the obvious interpretation being that 0(vi) = ti for i E {1,... , n} (with tj $ v,), while

O(v) = v for v V {v 1 ,..., vn}. Given a term t E T(E, V) and a substitution 0 = [v-l

t1,...,v, F-+ t,] : V- T(YE,V), we will write t0 (or t [vi ý t 1,...,v~ -- tn] in

expanded notation) to denote the term obtained from t by replacing each occurence

of vi by the corresponding ti. More precisely,

to= 0(t) if t E V

P5f(s0,1...,skO0) if t f(s,...,sk).

For instance, Plus(s(x),Plus(x, s(y))) [x s(O), y ý Plus(z, s(0))]

Plus (s (s (0)) ,Plus (s (0) , s(Plus(z,s(0))))). We will often write [- +] as a

shorthand for [vl '-+ t1 ,..., vn tn].

For a certain signature E and a set of variables V, we define B(E, V), the set of

Boolean expressions over E and V , as follows:

* The symbols True and False are in B(E, V).

* For any two terms s and t in T(E, V), the expression (s = t) is in B(E, V).

* If E1 and E2 are in B(E, V), then so are (El A E 2), (El V E2), and (-E 1).

Expressions of the form -n (s = t) will be abbreviated as s 0 t.

* Nothing else is an element of B(E, V).

When writing such expressions we will omit outer parentheses in accordance with

the usual conventions, and, to enhance readability, we will freely use square brackets

along with parentheses. Also, when V = 0 we will write B(E, V) simply as B(E);

the elements of B(E) will be called ground Boolean expressions over E. Finally, if

E E B(E, V) and 0 is a substitution from V to T(E, V), we will write EO to denote

the expression obtained from E by carrying out the replacements prescribed by 0.

More formally:

E if E E {True, False}

EO (sO = tO) if E (s = t)

(E10 op E 2O) if E (El op E2), for op E {A, V}

(-E1 0) if E (-E 1).

1.2.2 Trees

Let T be a tree in which every node has a finite number of children (we shall call T

a finitely branching tree). We can assign to each node u in T a unique tuple of

positive integers called the position of u in T, and denoted by PosT(u), as follows:

* The position of the root of T is [1].

* If a node u has k children vj,..., vk, from left to right, and PosT(u) = [i,... , in],

then PosT(Vj) = [il,..., in,j].

By way of illustration, Fig. 1.2 shows the position of every node in the tree

Plus(s(O), Plus(Fact(0), s(s(0)))).

The nodes of a tree are partitioned into levels as usual: the root is at the first level,

while the children of an nth-level node are at the (n + 1)8t level. Note that the level of

a node u in T is equal to the length of the tuple PosT(u); i.e. PosT(U) = [i1 ,..., i s]

iff u is at the nt h level of T.

If u and v are nodes in a finitely branching tree T, we shall say that u precedes

v, or that u is to the left of v, written u <T v, iff PosT(u) <' PosT(v), where <' is

the lexicographic extension of the less-than < relation on N to UN', i = 1, 2, . To

Plus [1]

[1,1 s Plus [1,2]

[1,2,1] Fact s [1,2,2]
[1,1,1] 0

[1,2,1,1] 0 s [1,2,2,1]

0 [1,2,2,1,1]

Figure 1-2: The tuple POST(U) uniquely identifies any node u in a finitely branching
tree T.

minimize notational clutter, we will drop the subscript T whenever it is immaterial

or can be easily deduced from the context. It is not difficult to see that u <T iff u

is visited before v in an in-depth traversal of T. Clearly, the relation <T well-orders

any finite-branching tree T, and we shall write ORD(T) to denote the unique ordinal

that is isomorphic to (T, <T); moreover, we will let irT : ORD(T) -- T denote the

said isomorphism 4 . So, for example, if T is the term Plus(s(0), Fact (s (s (0))))

then ORD(T) = 7, while 7r(O) = Plus, 7r(1) = s, r(2) = 0, r(3) = Fact, etc. Notice

that for infinite trees ORD(T) could very well be greater than w, say w +5 or 3w + 87.

Finally, we shall call <T the standard well-ordering of T.

4Notational abuse: in the expression 7rT : ORD(T) - T, we are using T on the right side of
the arrow as the set of T's nodes.

Chapter 2

The language IFL

In this chapter we present the syntax and semantics of IFL, a pure first-order func-

tional programming language with monomorphic inductive data types.1

2.1 Data types in IFL

In IFL a data type is defined in accordance with the following grammar:

<Data-Type> ::= Type <Constructor-Declaration>+.

<Constructor-Declaration> ::= <Constructor-Name> : <Type-Name>

<Constructor-Name> (<Selector-Sequence>) : < Type-Name>

<Selector-Sequence> ::= <Selector> I <Selector> , <Selector-Sequence>

<Selector> ::= <Selector-Name> : <Selector-Type-Name>

where the notation <A>+ simply means "one or more occurences of the non-terminal

A", and <Constructor-Name>, <Type-Name>, <Selector-Name>, and <Selector-Type-

'A brief note on terminology: "pure" refers to the total absence of the kind of side-effects usually
associated with languages supporting state; "first-order" simply means that, unlike objects like
numbers, lists, etc., functions are not first-class values (most notably, they cannot be passed as
arguments to other functions or be returned as results of function calls); finally, "monomorphic" is
just the opposite of "polymorphic". A polymorphic data structure can contain objects of various
distinct types-e.g. a polymorphic list may contain an integer, a string and even an entire queue of,
say, real numbers, as individual elements. By contrast, the elements of a monomorphic list must all
be of the same type, e.g. they must all be integers.

Name> are identifiers (strings of letters and/or numbers and other symbols, beginning

with a letter).

Less formally, a data type is defined by specifying a sequence of one or more

function symbols known as constructors, the idea being that the elements of the data

type will be the ground terms built from these constructor symbols, with constructors

of arity zero treated as constants. We will use the term object to refer to an element

of such a data type.2 An illustration is provided by the following definition of the

data type NatNum (natural numbers):

Type zero:NatNum

succ(pred:NatNum) :NatNum.

Here the type NatNum is "generated" by two constructors: zero, a constant, and succ,

a unary constructor that takes an argument of NatNum type and returns ("constructs")

another object of that same type. So the objects of this data type, i.e. the natural

numbers, are all and only the ground terms built from zero and succ, namely

{ zero, succ(zero), succ(succ(zero)), ...}.

Note that every constructor that has a positive arity n also has n selectors

sell,..., sel, associated with the argument positions 1,..., n. The user must specify

both the name and the type of each of these selectors, in the format

selector-name: selector-type-name

when declaring the constructor. In the case of NatNum there is only one constructor

of positive arity, succ, which has one selector named pred (for "predecessor"). The

selector pred has type NatNum and is such that pred(succ(x)) = x for all xz

NatNum.

Mathematically, selectors are the inverses of constructors. Intuitively, a construc-

tor c of positive arity n "binds" or "pulls together" n objects Wl,..., wn to produce

a new complex object w, which, in a sense, contains the objects wl,..., w,. By con-

2 We will be riding roughshod over the sign/reference distinction by conflating a syntactic entity
(a term) with the mathematical object it is intended to denote.

trast, self, the selector associated with the ith argument position of c, when applied

to the object w will return the component object wi - mathematically speaking, self

will project the object w along the ith co-ordinate. Thus, constructors of positive

arity build new objects by pulling together one or more objects of various types,

while selectors dismantle objects so built by retrieving their constituent components.

It is natural to view a constructor c that produces objects of type T as a function

c: T1 x ... T, ---+ T, where n > 0 is the arity of c. For instance, the signatures of

zero and succ are as follows: zero:---+ NatNum and succ:NatNum - NatNum. We

will call T the type of c and Ti the ith component type of c, for each i E {1,... , n}.

And, as was already indicated, we will write sell to denote the selector associated

with the ith argument position of c (so that, for instance, sel'ucc = pred). Therefore,

if wl,..., we, are objects of types T1,..., Tn, respectively, then for every i E {1,..., n}

we have self(c(wi,..., w,)) = wi. We will view self as a function from T to Ti, and

we will call l Ti the type of selV. In contradistinction, we will call T the argument

type of self. Note that the type of self is the ith component type of c, while the

argument type of self is simply the type of c.

Constructors such as succ that take as arguments one or more objects of the same

type as the object that they produce are said to be reflexive. More precisely, a con-

structor c : T1 x ... x T, --- T is said to be reflexive if at least one of its component

types is T, i.e. if there is an i c {1,...,n} such that Ti = T. Otherwise c is called

irreflexive. Trivially, constructors of zero arity are irreflexive. In a similar spirit,

a selector is called reflexive or irreflexive according to whether or not its type it the

same as its argument type. An example of a reflexive selector is pred. It follows

that a constructor is reflexive iff at least one of its selectors is reflexive. Note that

every data type must have at least one irreflexive constructor in order to generate

"base-case" objects, so that production of more complex (reflexive) objects can "get

started", so to speak.

Another data type that we will frequently use is NatList, lists of natural numbers.

In IFL this type can be defined as follows:

Type empty:NatList

add(head:NatNum,tail:NatList) :NatList.

Here we have two constructors, the constant empty (denoting the empty list) and

the binary operator add(n,1), which forms the list obtained by inserting a num-

ber n at the front of a list 1. Note that add is reflexive since its second argument

is of type NatList. The two selectors of add, seladd and seladd, are, respectively,

head:NatList - NatNum and tail:NatList - NatList. Unlike head, tail is

a reflexive selector of add since it takes a list and returns a list. Using this notation,

the lists [], [3], and [1,2, 1] are represented, respectively, by the terms

empty,

add(succ(succ(succ(zero))),empty), and

add(succ(zero), add(succ(succ(zero)), add(succ(zero) ,empty))).

The following list provides additional examples of some classic data types and

their definitions in IFL:

* Integers:

Type int(sign:Polarity,abs-value:NatNum) :Integer.

where polarity is represented as follows:

Type positive:Polarity

negative:Polarity.

* Positive integers:

Type one:PosInt

inc(dec:PosInt):PosInt.

Note the isomorphism with the natural numbers (map(one) = zero, map(inc (x))

= succ(map(x))).

* Rational numbers:

Type rat(sign:Polarity,num:NatNum,denum:PosInt):Rational.

* Truth values:

Type true:Boolean

false:Boolean.

* Formulas of propositional logic:

Type atomic(subscript:NatNum):Wff

not(neg:Wff):Wff

and(1-and:Wff,r-and:Wff) :Wff

or(1-or:Wff,r-or:Wff):Wff.

* LISP s-expressions:

Type nil:S-expr

atom(number:NatNum):S-expr

cons(car:S-expr,cdr:S-expr):S-expr.

* Stacks of integers:

Type empty-stack:IntStack

push (top: Integer,pop:IntStack):IntStack.

With this notation,

pop(push(int(negative,succ(zero)),empty-stack)) =

empty-stack. Note the isomorphism with NatList.

* Characters:

Type a:Char

b:Char

c:Char

z:Char.

* Strings (lower-case, over the English alphabet):

Type empty-string:String

concat(first:Char,rest:String):String.

Note that, as defined, strings, lists, and stacks are essentially one and the same

structure.

* Binary trees of numbers:

·-·~---- ---- ----·UYllr~·l·~~lrrr~LII---illl~~n.l--j

Type null:BTree

tree (root-value: NatNum,

1-branch: BTree, r-branch: BTree) :BTree.

At this point we need to establish some notational conventions. First, in the

interest of brevity we will hereafter use the symbol 0 in place of zero, the symbol s in
i times

place of succ, and si(0), for i > 0, in place of succ(... (succ (0))). Secondly, given a

data type T we will write RCONT (IRCONT) for the set of the reflexive (irreflexive)

constructors of T (e.g. RCONNatList = {add} and IRCONNatList = {empty}).

Further, we will write CONT for RCONT U IRCONT and SELT for the set of all

selectors of all constructors of T. For instance,

CONNatNum = {0, s}

and

SELBTree = { root-value, 1-branch, r-branch }.

Finally, we will assume that every data type T comes equipped with an infinite supply

of variables VT. As usual, elements of VT will be used whenever we wish to denote

arbitrary objects of type T. The exact contents of VT are largely a matter of taste

and will be made precise only when it is necessary to do so. As an example, we might

let VNatNum = {n, m, k, n1, mi, ki, n2, ... and Vwff = {4, 4',q 1, $1,...}.3 Last, we will
use vl, v2,... as metavariables (i.e. variables ranging over the various VT).

Notice that our stipulations so far do not settle the question of what happens

when we apply a selector of a constructor c : T, x ... x T, --- T, say selc, to an

object of type T that is not constructed by c, i.e. whose top function symbol is

not c. For instance what are the "values" of terms like pred(0), head(empty), or

1-or(and(...))? This is an issue because we wish to regard each selector sel,! as

a total function from T to Ti; hence self should return some object of type Ti no

matter what object of type T it is given as input. Following Walther, we adopt the

convention that self, when applied to a term of type T whose top symbol is not c,

3 Needless to say, we will assume that if T1 and T2 are two distinct types, then VT, and VT2 are
disjoint.

should return the minimal object of type Ti, where the minimal object of type Ti is

either

1. the leftmost constructor of zero arity in the definition of Ti, if one exists, or else

2. the object obtained by applying the leftmost irreflexive constructor of Ti (one

must exist) to the minimal elements of its component types.

So, for example, the minimal objects of NatNum, NatList and Wff, are, respectively,

0, empty, and atomic(0). Therefore,

pred(0) = head(empty) = 0,

tail(empty) = empty,

1-or(and(.-.)) = atomic(0),

and so forth.

We end this section by introducing the notion of a well-formed definition. In

particular, we say that the definition of a data type T is well-formed with respect

to the definitions of n > 0 other data types T1,..., Tn if

(CONT U SELT)n (CONT, U SELT,) = 0 for every i = 1,...,n

i.e. if all the constructor and selector symbols appearing in the definition of T are

new with respect to the Ti. Moreover, the same definition is said to be well-typed

(again with respect to T1,..., T,) if (1) the type of every selector of T is either T

itself (in which case the selector is reflexive), or one of the Tis, and (2) at least one

of the constructors of T is irreflexive. Each of the foregoing definitions is well-formed

and well-typed with respect to all the definitions that precede it.

2.2 Procedures in IFL

Procedures4 in IFL are defined by means of the following grammar:

<Procedure> ::= Procedure <Proc-Name>(<Parameters>): <Return-Type> ;

Begin <Body> End.

<Parameters> ::= <ParamDec> I <ParamDec>;< Parameters>

<ParamDec> ::= <ParamList> :<ParamType>

<ParamList> ::= <ParamName> I <ParamName> , <ParamList>

<Body> ::== If True Then < Term>; I <IF-THEN-ELSE>+ < Term>;

<IF-THEN-ELSE> ::= If <Bool-Exp> Then <Term> Else

where <Proc-Name>, <Ret-Type>, <ParamName>,5 and <Param Type> are identi-

fiers, < Term> is given by the usual grammar for Herbrand terms, and a <Bool-Exp>

is either one of the constants {True, False}, or an atomic expression of the form

(s = t) or (s $ t) for two terms s and t, or a conjunction or disjunction of two Boolean

expressions 6. Note that the body of a procedure is either (1) a single statement If

True Then r; for some term r, or (2) a sequence of If-Then-Else statements ending

with a mandatory "catch-all" clause Else r;. A procedure with body

If El Then r1

Else

If Em Then rm

Else

rm+1;

is equivalent to one with body

4The term "function" would have been more fitting than "procedure", but we chose the latter to
avoid any ambiguity between the mathematical concept of a function and the IFL concept. As we
define them here, procedures return values and generally behave like LISP or ML functions (save
the obvious differences, of course), not as Pascal procedures.

SAlthough the name of a parameter can be an arbitrary identifier, usually we will assume that it
comes from VT, where T is the parameter's type.

6These will be formed with the keywords And and Or.

If El Then rl

Else

If Em Then rm

Else

If True Then rm+1;

so we will use the expression [< El, ri >,..., < E, rm >, < True, rm+1 >] as a generic

abbreviation for the body of an arbitrary procedure (hence for m = 0 the expression

[< True, rm+1 >] covers the case in which the body of the procedure comprises the

single statement If True Then rl;).

Observe that this syntax choice ensures that procedures are deterministic and

case-complete. "Deterministic" means that the various antecedents in the body of

the procedure are mutually exclusive, i.e. that at most one of them will be true for any

given sequence of arguments. This is waranteed in our formalism because, on account

of the Else tokens, each antecedent Ej is conjoined to the negation of every preceding

antecedent. "Case-complete" means that the antecedents are jointly exhaustive, i.e.

that at least one of them will be true for any sequence of arguments. This is ensured

in our syntax by the requisite trailing "catch-all" clause'. Thus determinism and

case-completeness in tandem entail that for any given sequence of arguments exactly

one antecedent will be true, and hence, from an evaluation standpoint, that exactly

one If-Then statement will be "fired".

The following is a collection of some useful primitive recursive functions expressed

as IFL procedures operating on the data types we introduced in the previous section.

* Binary addition on natural numbers:

Procedure Plus(n,m:NatNum) :NatNum;

Begin

If m = 0 Then n

Else

7The case in which the body contains only one statement is no exception, as in that case the

antecedent is required to be the constant True.

s(Plus(n,pred(m)));

End.

* Subtraction (n - m):

Procedure Minus(n,m:NatNum) :NatNum;

Begin

If m = 0 Then n

Else

Minus(pred(n),pred(m));

End.

* Multiplication:

Procedure Times(n,m:NatNum) :NatNum;

Begin

If n = 0 Then 0

Else

Plus(m,Times(pred(n),m));

End.

* Exponentiation (nm):

Procedure Exp(n,m:NatNum) :NatNum;

Begin

If m = 0 Then s(0)

Else

Times (n,Exp (n,pred(m)));

End.

* The factorial function:

Procedure Fact (n:NatNum) :NatNum;

Begin

If n = 0 Then s(0)

Else

Times(n,Fact(pred(n)));

End.

* The Fibonacci sequence:

Procedure Fib(n:NatNum):NatNum;

Begin

If n = 0 Then 0

Else

If n = s(O) Then s(O)

Else

Plus(Fib(pred(n),Fib(pred(pred(n)))));

End.

* The less-than predicate (n < m):

Procedure Less(n,m:NatNum):Boolean;

Begin

If (n = 0) And (m = 0) Then false

Else

If (n = 0) And (m 7 0) Then true

Else

If (n $ 0) And (m = 0) Then false

Else

Less(pred(n),pred(m));

End.

* The equality predicate (for NatNum):

Procedure Equal(n,m:NatNum):Boolean;

Begin

If (n = 0) And (m = 0) Then true

Else

If (n = 0) And (m $ 0) Then false

Else

If (n $ 0) And (m = 0) Then false

Else

Equal(pred(n),pred(m));

End.

* The less-than-or-equal-to predicate (n < m):

Procedure Leq(n,m:NatNum):Boolean;

Begin

If Less(n,m) = true Or Equal(n,m) = true Then true

Else

false;

End.

* The length of a list of numbers:

Procedure Length(l:NatList) :NatNum;

Begin

If 1 = empty Then 0

Else

s (Length(tail (1)));

End.

* List membership:

Procedure Member(n:NatNum;l: NatList) :Boolean;

Begin

If 1 = empty Then false

Else

If head(l) = n Then true

Else

Member(n,tail(1));

End.

* Appending two lists:

Procedure Append (li,12 : NatList) :NatList;

Begin

If 11 = empty Then 12

Else

add(head(1 1) ,Append(tail (11) ,12));

End.

* Reversing a list:

Procedure Reverse(l:NatList) :NatList;

Begin

If 1 = empty Then empty

Else

Append(Reverse(tail ()),add(head(l),empty)));

End.

* Traversing a binary tree "in order":

Procedure InOrder(t:BTree):NatList;

Begin

If t = null Then empty

Else

Append (InOrder (1-branch (t)),

add(value(t), InOrder(r-branch(t))));

End.

Finally, just as we did for data types, we will say that a definition of a procedure

f is well-formed with respect to the definitions of m > 0 other procedures fi,... , fm
and n > 0 data types T1,... , T, if every function symbol appearing in the body of f

is either f itself (in which case f is recursive), or one of the fi, or a constructor or

selector symbol introduced by the definition of some Ti. In addition, f is well-typed

(again, with respect to fl,.. , f m and T,..., T,T) if (i) the return type of f and the

types of its parameters are amongst the Ti, and (ii) in every conditional statement If

·-~·-r-------·--·Y~··Ill··-----·-··~LICa

E Then r in the body of f, r is a term of type T, where T is the return type of f. 8

2.3 Modules

2.3.1 Basic definitions and notational conventions

A module M is defined to be a finite sequence of definitions of data types and proce-

dures. Modules are defined as sequences because the idea is that they are developed

incrementally, in stages: we usually start from scratch, with the empty module Mo;

then we obtain a module M1 by defining a data type T1 whose constructors are either

constants or have T1 as a component type; then we extend M1 by defining either

a new data type T2 or a procedure fl, thereby obtaining a new module M2 ; and so

forth. Nevertheless, if the order of the relevant definitions is tacitly understood we

will occasionally treat a given module as a set, rather than a sequence, of data types

and procedures.

If M is a module comprising n > 0 types T1,...,Tn and m > 0 procedures

fi,..., Ifm, we write

* CONM for CONT1 U .. U CONT,.

* SELM for SELT1 U ... U SELTn.

* PROCM for {f1 < i < m}.

* EM for CONM U SELM U PROCM. We call E• the signature of M; it is simply

the set of all function symbols in M.

* VM for VT1 U...U VTn.

* TYPESM for {T1,..., T}.

For example, if M comprises the two data types NatNum and NatList, so that

TYPESM = {NatNum, NatList}, and the four procedures Plus, Minus, Times, and

8A precise definition of "a term of type T' is given in the next section, though an intuitive
understanding is sufficient at this point.

Append, then

CONM = {0, s, empty, add},

SELM = {pred, head, tail),

PROCM = {Plus, Minus, Times, Append},

and EM is the union of all three of these. Continuing, we define the terms of type

T, for any T E TYPESM, as follows:

1. Every constructor symbol of zero arity in CONT is a term of type T.

2. Every variable in VT is a term of type T (recall that VT is the set of variables

available for T).

3. If f is a function symbol in EM (constructor, selector, or procedure) with type

signature T1 x ... x T, - T, where T, Ti E TYPESM for i = 1,...,n, and

tl,..., tn are terms of type T1,..., Tn, respectively, then f(tl,..., t,) is a term

of type T.

4. Nothing else is a term of type T.

For instance, if M is as described in the last example and if

VNatNum = {fn, m,•ni, mi,l...} and VNatList = {1, 1,2, ... },

then the terms (a)-(f) in the following list are of type NatNum, while terms (g)-(j) are

of type NatList:

(a) 0

(b) m

(c) s(s(O))

(d) Times(s(n) ,m)

(e) Plus(s(O) Times(m 2 ,0))

(f) Minus (Plus(s(0), s(0)), Plus(0, s(O)))

(g) empty

(h) add(n,/17)

(i) 1
(j) Append(add(O, empty) ,empty).

As usual, terms that contain no variables will be called ground terms. In the

preceding example only (a), (c), (f), (g), and (j) are ground terms. Furthermore, we

say that a term t built from function symbols in EM and variables in VM is well-

typed if t is of type T for some T E TYPESM. In our current example terms (a)-(j)

are all well-typed, whereas terms such as s (empty) or Append(0,1) are obviously not.

With these definitions as background, we write

* T(CONM) for the well-typed terms that are built exclusively from the con-

structor symbols in CONM. Intuitively, these are ground terms representing

the "objects" that exist in the universe of M (see section B). Terms (a), (c),

and (g) in the previous list are examples.

* T(CONTM) for objects of type T, i.e. for the set {t E 7(CONM) I t is of type T}.

Thus

T (CONM) = U T(CON).
TE TYPESM

We will continue to use the expressions "an object w E T" and "a term w E

T(CONT,)" interchangeably.

* T(Em) for the well-typed terms built from function symbols in EM, i.e.,

T(EM) = {ground terms of type T IT E TYPESM}.

All ground terms in the list (a)-(j) are examples.

* T(EM, VM) for the set of all well-typed terms built from function symbols in

EM and variables in VM, i.e. T(EM, VM) = { terms of type T I T E TYPESM }.

Note that T(CONM) C T(E/) C T (EM, VM).

2.3.2 Admissibility

Every time that we extend a module by defining a new data type or a new procedure

we must check that the new module thus obtained is "admissible" - for instance,

we must check that the new definition is well-formed with respect to the previous

definitions. The precise requirements for admissibility are laid down as follows. First,

we say that a module is well-formed if

(i) every data type defined in it is well-formed with respect to the data types previ-

ously defined in it, and

(ii) every procedure defined in it is well-formed with respect to the data types and

procedures previously defined in it.

Likewise, a module is well-typed if every data type and every procedure defined in

it is well-typed with respect to the data types and procedures previously defined in

it. Finally, we say that a module M is admissible if

1. M is well-formed and well-typed, and

2. every procedure f : Tp,,,, x ... x Tp,,k - T defined in M is terminating, i.e.

it halts for every possible sequence of arguments wl E Tpar,,,..., k E Tpark.

In what follows we will be concerned with the last of the above requirements, i.e.

with verifying that f terminates. The other conditions are very easy to check. We

will briefly discuss each of them in the remainder of this section.

Checking that a new definition is well-formed is a trivial syntactic test. Checking

that a data type definition is well-typed is also trivial. Checking that a procedure

f : Tpar, x ... x Tpark . T with body

[< Ei, ri >,..., < Em, rm >, < True, rm+i >]

is well-typed involves (a) verifying that all k + 1 types TparI,..., Tpar,,k , T have already

been defined in M, and (b) verifying that each ri is a term of type T, i = 1,... ,m + 1.

Part (a) is a trivial look-up. For part (b) we give an algorithm TypeM that will return

the type of any given term t if t is well-typed in M, and null otherwise. Thus we

can also use this algorithm to check whether an arbitrary term t is well-typed in M:

simply compute TypeM(t) and verify that the result is not null.

FUNCTION TypeM(t) {

1. IF (#(t)= 0) THEN

2. Return (Top(t) E CONT for some T E TYPESM)? T : nullg;

3. IF (Top(t) E EM and has signature T1 x ... x Tn -- T) THEN

4. IF (#(t) On) THEN

5. Return null;

6. ELSE {

7. FOR i = 1 TO n DO

8. IF (TypeM(t I i) $ Ti) THEN

9. Return null;

10. Return T; }

12. ELSE

13. Return null; }

From here on we will only be concerned with well-formed and well-typed modules,

so the term "module" will be used synonymously with "well-formed and well-typed

module".

2.4 The Operational Semantics of IFL

In this section we present a Plotkin-style structured operational semantics (SOS)

for IFL. In IFL, as in most functional languages, the imperative concept of exe-

cuting a program is replaced by that of evaluating an expression. Thus, in what

follows the "program" to be "executed" will simply be a term u E T(EM) such

as Fact(Fib(s(0))) or Reverse(add(0, add(s(0),empty))). Evaluation amounts to

rewriting u in accordance with the definitions of the various procedures in M and

9The expression (E? vl : v2) (from C++) returns vl if the Boolean expression E is true and v2
otherwise.

the conventions regarding constructors and selectors. The rewriting continues until

we have obtained an object, i.e. a term w E T(CONM), which is then interpreted as

"the answer" to the original input term u (so, for the two sample terms given above,

the "answers" are the objects s120 (0) and add(s(0), add(0, empty)), respectively). Of

course the rewriting might continue ad infinitum if some procedure(s) in M are not

terminating.

More formally, we specify the SOS of IFL as a six-tuple

< C, , --===, , i, O >

where

* C, the set of configurations for the abstract SOS machine, is simply the set

T(EM).

F* , the set of final configurations (a subset of C), is T(CONM).

* 1, the input funtion that maps an input term u E T(EM) to an initial

configuration in C, is simply the identity function.

* O, the output function that maps a final configuration in F to an "answer"

in T(CONM), is again the identity function.

Transitions from one configuration c E C to another configuration c' E C (in our

case from one term u E T(EM) to another term u' E T(EM)) are specified by the

term transition relation ==T, a binary relation on T(EM). This relation is defined

in a mutually recursive manner in terms of the Boolean expression transition

relation =-s, which is a binary relation on B(E•), the set of all Boolean expressions

on EM.

Figures 1.3 and 2-2 list the axioms and rules of inference that define the relations

--=T and ==Ls, respectively. We use the symbols u, w, f, con, sel, g, and E, with

or without subscripts and/or superscripts, as domain variables ranging over T(EM),

T(CONM), PROCM, CONM, SELM, EM, and B(EM), respectively. In virtue of these

variables, every transition shown in the two tables acts as a transition pattern, i.e.

as a schema that stands for a (usually infinite) class of transitions. For example, the

axiom True V E ==L True specifies an infinite set of pairs < E 1,True> in which

E1 "matches" the pattern True V E; for instance, E1 could be

True V (pred(s(O)) $ Fact(ss(O))) , or

True V (False A [pred(pred(O)) = head(empty)).

Also note that several axioms and inference rules have constraints that serve to

delimit the set of allowable transitions specified by the axiom/rule in question. For

instance, in the axiom (uwl = 2) ==>1 False the constraint wl # w2 enforces the

intended meaning by disallowing transitions such as (0 = 0) ==#. False.

The following points are noteworthy:

* None of the axioms/rules defining =#T apply to objects, i.e. to terms ?w E

T(CONM). Therefore, objects are "minimal" elements of the ==-# relation:

for any object w, there is no term t E T(EM) such that w ==-T t. Intuitively,

that is because objects are interpreted as answers; once an answer has been

obtained, there is "nowhere farther" to go.

* Rule [T1], which we shall call the term evaluation progress rule, forces the

evaluation of a term u to proceed from left to right, in accordance with the

standard well-ordering of u. That is to say, in the process of evaluating ut, a

transition g(... t...) ==• g(... t' .-) can occur only if all proper subterms of

g(.. t ...) to the left of t are objects.

* Evaluation of Boolean expressions also proceeds from left to right, as enforced

by the "progress rules" [BI], [B2], and [B7]. Moreover, truth evaluation is non-

strict (rules [B8] and [B10]), i.e. it stops as early as possible. Hence it is

conceivable that a condition in the body of some procedure evaluates to True

or False even though it contains terms that diverge.

Figure 2-1: The definition of the term transition relation ==:T.

* We can now formally define a procedure f : Tpar, x ... x Tpark - T as ter-

minating iff for all objects w1 E Tpar ,..., Wk E Tpark there is an object w E T

such that f(wl,..., wk) ==: w.

A simple example of the above SOS "in action" is provided in Figure 2-4, which il-

lustrates the evaluation of the term Plus (s (s (0)) , s (s(0))) (based on the definition

of Plus given in section 2.2). We can see from steps 7,10,18,22, and 28 that

Plus (s (s (o0)) ,s (s (0))) s (s (s (s (0)))),

thus "the answer" to Plus(s(s(0)) ,s(s(0))) is the object s(s((ss(0)))).

Lastly, for any s and t in T(Em) such that s ==-T t, we define C(s, t), the rewrite

Ul ==T 1 u

[T1]
g(Wl,. . ., Wn,, UU2," .. 7, Um) ==T g(W1,..7 ., Wn 1, U2 2, ... , Um)

sel'on(con(wl,... , w =~)) ==:T wi [T2]
for any i E {1,...,n}

seldon, (con2(l, . ., o > n)) ==T MinimalM(Ti) [T3]
where con1 $ con2 , Ti is the i th component type of conl,

MinimalM(Ti) is the minimal object of that type,
and 1 < i < #(conl).

El[parl wl,...,park " wk] == False

Ej[parl - wl,...,park -+ wk] B False
Ej+l[parl - wl,...,park -' wWk] ==ý True

[T4]
f(wl, 1 , Wk) :-7T rj+1 [parl - wl,...park F- Wk]

where f E PROCM has k parameters parl,..., park and
body [< El,rl >,...,< Em, rm >, < True, rm+l >], while 0 _ j < m.

Figure 2-2: The definition of the Boolean expression transition relation (==>1).

U1 ==T 1•B
[B1]

(ul op U2) ==8S (U' op U2)
for op E {=,#}

[B2]
(w op u) ==,y (w op u')

for op E {=, }

(wl = W2) ==~j True [B3]
for wl 2

(wl = w2) ==ý, False [B4]
for w, 0 w2

(w1 Z w2) =#13 True [B5]
for wl 0 w2

(wl 5 w2) ==ý1 False [B6]
for wl w2

El == El
[B7]

E, op E 2 =*3 E' op E 2
for op E {A, V}

True V E ==-* True [B8]

False V E -==*3 E [B9]

False A E ==* False [B10]

True A E =-* E [B11]

Figure 2-3: The definition of the reflexive and transitive closure of ==>S.

cost of the transition s ===>T t, as follows:

1. If s -=T t by virtue of rule [T2] or [T3], then C(s, t) = 1.

2. If s -T t by virtue of [Ti], then C(s, t) = 1 + C(ui, u').

3. Finally, if s ==rT t by virtue of rule [T4], then s - f(wi,...,wk) for some

f E PROCM with k parameters parl,..., park and body

[< El,ri >,..., < Em, rm >, < True, rm+ 1 >]

and, for some j < m, there are j + 1 paths of the form
2-- 1 2-*[pa• ••] -l' '-1 3E ,

E pari Wi par i] E#' [.pari i] ·

[... - E[j - Ei == [pa. 1 p i] False--->e E a +1 ,· E [+1 False

Ej[para • w;i] EEp[pr W -E [pa-r i -B ...

... ==> E-•ari i ==•4 E- nj+l i /] False

nl+l -,---+ L3En+ +1 - --+

""-'--- " j+1 [parr i wF] + E+ [pari - True

In that case we let

j+1

C(s,t) = 1 +)
i=1

where, for any two Boolean expressions E and E' over EM such that E ==-. E',

we define BC(E, E'), the rewrite cost of the Boolean transition E ==>L E'

E --:> E [B12]

El - E2
E2 ==* E3

[B13]
E1 ==* E3

ni
rE BC(C[$, REB C= E7• - -p a r i - --] , E7 + 1 [par1 i-'Y=1

Transition Justification
s(s(O)) = 0 == s(s(O)) = 0
s(s(0)) = 0 ==e False
s(s(0)) = 0 == False
s(s(O)) 0 ==o s(s(O)) 0 o
s(s(0)) $0 ==L3 True
s(s(O)) # 0 == True
Plus(s(s(0)), s(s(0))) =:>' s(Plus(s(s(0)) ,pred(s(s(0))))
pred(s(s(0))) ==>• s(0)
Plus(s(s(0)) ,pred(s(s(0)))) ==>T Plus(s(s(0)),s(0))
s (Plus(s(s(0)),pred(s(s(0))))) ==>• s(Plus(s(s(0)),s(0)))
s(0) = 0==:> s(O) = 0
s(0) = 0 ==e False
s(0) = 0 ==- False
s(O) 0 o = s(O) 0o
s(0) $ 0 === True
s(0) $ 0 ==• True
Plus(s(s(0)),s(0)) ==>T s(Plus(s(s(0)) ,pred(s(0)))
s (Plus(s(s(0)) ,s(0))) ==>T s(s(Plus(s(s(0)),pred(s(0))))
pred(s(0)) ===T 0
Plus(s(s(0)) ,pred(s(0))) ==>T Plus(s(s(0)),0)
s (Plus(s(s(0)),pred(s(0)))) ==>T s(Plus(s(s(0)),0))
s(s(Plus(s(s(0)) ,pred(s(0))))) ==>T s(s(Plus(s(s(0)) ,0)))
0 = 0 o== 0 = 0
0 = 0 ==L3 True

0 = 0 ===> True
Plus (s(s (0)) ,) ===T s(s(0))
s(Plus(s(s(0)),0)) ==>- s(s(s(0)))
s(s(Plus(s(s(0)),0))) ==>T s(s(s(s(O))))

[B12]
[B4]

1,2,[B13]
[B12]

[B5]
4,5,[B13]

3,6,[T3], for j = 1
[T2]

8,[T1]
9,[T1]
[B12]

[B4]
11,12,[B13]

[B12]
[B5]

14,15,[B13]
13,16,[T3], for j=1

17,[T1]
[T2]

19,[T1]
20,[T1]
21,[T1]

[B12]
[B3]

23,24,[B13]
25,[T3], for j = 0

26,[T1]
27,[T1]

Figure 2-4: A transition sequence for the term Plus(s(s(0)) ,s(s(0))).

I

* C(u1, u') or C(u, u') if E ==~- E' by virtue of [B1] or [B2], respectively,

* BC(E1 ,E') if E ==- E' by virtue of [B7],

* 0 if E ==# E' by virtue of any other rule.

In other words we stipulate that once all the terms occuring in a Boolean ex-

pression E have been reduced to objects in T(CONM), computing the truth

value of E is "free", i.e. rules [B3]-[B6] and [B8]-[B11] are applied at "zero

cost".

A few examples: the transition

s(Plus(s(s(0)), pred(s(s(0))))) ==T s(Plus(s(s(0)), s(0)))

(transition #10 in Fig. 2-4) has rewrite cost 3; intuitively, that accounts for the

three transitions #8,#9, and #10. Transition #7 in the same figure has cost 1 (as

no additional cost is incurred by evaluating the Boolean expressions in the body of

Plus), while transition #18 has cost 2. Finally, the rewrite cost of a transition path

1 ==T- 32 ==> ". ==>T Sn ===T Sn+1 is defined as the sum of the costs of the

individual transitions comprising the path, namely Ei7l C(si, si+1). So, for instance,

the rewrite cost of the transition path [#7,#10,#18] in Fig 2-4 is 1 + 3 + 2 = 6.

2.5 An interpreter for IFL

It is a simple exercise to write an interpreter for IFL that works in the typical Read-

Eval-Print fashion. The procedure EvalM given below takes a term t E T(EM) and

attempts to map t to some object in T(CONM) by essentially rewriting it in accor-

dance with the transition relations -=== and ==-=> of the SOS of IFL. For instance,

if M comprises the data types and procedures given in sections 2.1 and 2.2, then

EvalM(Reverse(add(s15 (O), add(Fact(s3 (0)), empty)))) =

add(s 6(0), add(s1 5 (0), empty))

EvalM(Length(Append(InOrder(tree(s7(O), tree(s2(0), null, null),

tree(Fibonacci(s3 (0), null, null))), add(s"8 (0), empty))))) = s4(0), etc.

Of course in any practical implementation we would precede the call to EvalM(t)

10 with a call to TypeM(t) in order to ensure that t is well-typed. Or better yet,

type checking and evaluation could proceed simultaneously in order to avoid multiple

recursive descents on t. At any rate, the procedure we give below assumes that the

input t is a well-typed term and performs a three-way switch on the top function

symbol of t, which could denote either a constructor, or a selector, or a user-defined

procedure.

FUNCTION EvalM(t : T(Em)) {

1. a -- Top(t);

2. IF a E CONM THEN //Case 1: a E CONM

3. Return (#(t) = 0)? a : o(EvalM(t 3 1),...,EvalM(t I #(t)));

4. ELSE // Case 2: a E SELM

5. IF a = self for some c: T, x ... x T, -- T in CONM THEN {

6. seLarg +- EvalM(t 1);

7. Return (Top(sel-arg) - c)? (selarg I i) : Minimalm(Ti); }

8. ELSE // Case 3: a E PROCM

9. IF a = f for some f E PROCM with k parameters parl,...,park

and body [< Ei,ri >,..., < Em, r >, < True, rm+i >] THEN {

10. FOR i=1TO kDO

11. wi -- EvalM(t I i);

12. FOR j = TOm+1DO

13. IF (TEvalM(Ej[parl '-+ wl,...,park F-+ wk])) THEN

14. Return EvalM(rj[parl -+ wl,...,park - w k]);

where

(1) the value TEvalM(E), for any E E B(Em), is defined inductively as follows:

10To be read "Evaluate t in M".

. If E E { True,False }, then TEvalM(E) = E.

* If E = (s = t), for any s, t E T(Em), then

TEval(E) True if EvalM(s) = EvalM(t)

False otherwise.

This clause is where the mutual recursiveness of =*-T and == enters the

picture.

* If E - (-iE 1), then TEvalM(E) = True if TEvalM(El) = False, while TEvalM(E) =

False if TEvalM(El) = True.

* If E - (El op E 2), for op E {A, V}, then

TEvalM(E) = TEvalM(El) op TEvalM(E 2).

And,

(2) MinimalM(T1) returns the minimal object of type Ti (as defined in section 2.1).

This is trivial and can be done in time linear in the number of type definitions in M

(and independently of the length of those definitions).

Just as they are ===T-minimal elements, objects are also fixed points of EvalM.

In particular, the following is easily proved by strong induction on the size of w:

Lemma 2.5.1 For all objects w E T(CONM), EvalM(w) = w.

Another simple observation about the interpreter is that it "preserves type":

Lemma 2.5.2 For all t E T(T-M), TypeM(EvalM(t)) = TypeM(t).

It is clear that running EvalM on a term t might fail to return an answer if M is

not admissible. In particular, EvalM might get into an infinite loop if some of the

procedures in M are not terminating. We will write EvalM(t) T to indicate that the

computation of EvalM(t) diverges, and EvalM(t) I for the opposite, i.e. to indicate

that EvalM halts on input t. Likewise, we will write TEvalM(E) T or TEvalM(E) [
for an expression E E B(EM) to indicate that the evaluation of the truth value of

E diverges or converges, respectively. Clearly, TEvalM(E) I iff EvalM(t) I for every

term t occuring in E whose evaluation is necessary in computing the truth value of

E.

On the other hand, if EvalM(t) does return an answer, that answer is guaranteed

to be an object w E T(CONM). Furthermore, w will be such that t == - w. And

conversely, if w is an object in T(CONM) such that t ==#- w, then we will have

EvalM(t) = w:

Theorem 2.5.1 (Interpreter completeness) For any module M and term t E

T(EM), EvalM(t) returns a term w if w is an object in T(CONM) such that t = -T

W.

A proof of this can be found in Appendix A.

We can now easily prove the analogous completeness result for TEvalM:

Theorem 2.5.2 For all E E B(EM), TEvalm(E) returns a value TV if TV E

{True,False} and E ==* TV.

The following corollary is immediate:

Corollary 2.5.1 For any module M and term t E T(EM), EvalM(t) 1 if there is

an object w, E T(CONM) such that t ==- w = EvalM(t).

The above corollary provides us with an alternative (and perhaps more intuitive)

characterization of termination that we will be using in the sequel:

Proposition 2.5.1 A procedure f : Tpa,, x ... x Tpak) T in a module M is

terminating if EvalM(f(wl,..., wk)) J for all objects w1 E Tpar,. .. , wk E Tpark.

Proof. Suppose f is terminating, so that for all wl E Tpar,-..., Wpar E Tk, there is

a w E T such that f(wi,... , wk) ==• w; then, by the preceding corollary, we also

have Eval((f(wi,..., wk)) 1. Conversely, suppose that for all Wi E Tpa,,,,, , w E

Tpark, we have EvalM(f(wl,..., wk)) 1. Then, again by corollary 2.5.1, for any wl E

Tparl,... , wk E Tpark, there will be an object w such that f(wl,..., wk) ==-• w, hence

f is terminating. 1O

It follows that if M is an admissible module, EvalM (TEvalM) computes a total

function from T(EM) (B(EM)) to T(CONM) ({True,False}). We state this in the

following theorem, which is easily proved by induction.

Theorem 2.5.3 If M is an admissible module then for all t E T(EM),

EvalM(t) halts and returns an object w such that t =~- w. Similarly, for all E E

B(EM), TEvalM(E) halts and returns a truth value TV such that E ==* TV. Thus,

for admissible modules M, EvalM and TEvalM compute total functions from T(YEM)

and B(CEM) to T(CONM) and {True,False}, respectively.

Since the interpreter EvalM will be used extensively in the remainder of this

paper, it will be expedient at this point to analyze its behavior a little further and

derive a few more key conclusions for future reference. We begin by observing that

EvalM attempts to work its way down its argument in accordance with the standard

well-ordering of terms, as the latter is embodied in the progress rules of the SOS of

IFL. Thus the call EvalM(t) will initiate a depth-first traversal of t, during which

EvalM will be recursively invoked for every "visited" node r C t; the result of each

such intermediate invocation will be used subsequently in evaluating the parent term

of r.

We say that EvalM "attempts" to perform a recursive descent on its argument

because it might in fact not complete the traversal. For instance, if EvalM(t 1 1) T

(say, because Top(t 1 1) stands for a nowhere-terminating procedure), then EvalM

will never "reach" t 1 2. Let us pursue this idea a little further. Let us write

EvalM(s) ==-+ EvalM(t) to indicate that calling EvalM on s will eventually (af-

ter a finite time period) result in a recursive invocation of EvalM on t; in other

words, EvalM(s) ==>+ EvalM(t) says that the call EvalM(s) must eventually spawn

the call EvalM(t). For example, for any non-leaf term t E T(Em) we always have

EvalM(t) =-+ EvalM(t 1i), as the very first thing that EvalM does after it has classi-

fied Top(t) (as a constructor, selector, or procedure) is to recursively call itself on t 1.

However, as we indicated above, we do not necessarily have EvalM(t) -- + EvalM(r)

for every term r E t, as the interpreter might never get to certain subterms of t if it

· _·L___il___ _CI____I_·lli·U___I~_i·il

gets stuck at some prior point11 . To reiterate the last example, if EvalM(tl) T then

EvalM(f(ti, t 2)) 7=>+ EvalM(t 2), as the divergence of tl will prevent EvalM from

ever getting to t 1 2.

Nevertheless, we are guaranteed to have EvalM(t) -+ EvalM(r) for some r E: t if

EvalM halts for all proper subterms of t to the left of r. This is more accurately stated

and proved by way of lemma 2.5.3, but before we get there it might be instructive to

spell out formally what we mean when we write EvalM(tl) =>+ EvalM(t 2), as the

description that was offered earlier hinged on non-extensional terms such as "results

in", "must", etc.

Let us begin by defining a binary relation S 12 on T(EM) as follows:

* For any term t = g(tl,..., t),g E EM, and any j E {1,...,n}, if EvalM(ii) 1

for every i = 1,...,j - 1, then t S tj (so that we always vacuously have

g(tl, ..., tn) S tl).

* For any term t - f(tl,...,tk), where f is a procedure in M with k parameters

parl,..., park and body

[< Ei,rl >, ..., < Em, rm >, < True, r,+ +>],

if there are k objects wl,..., wk such that

f(tl,...,tk) = f(W1,...,wk)

and an integer j E {0,...,m} such that

then tS rj+l[par, ý EvalM(tl),... ,park - EvalM(tk)].

We can now formally interpret the expression EvalM(tl) ==+ EvalM(t 2) as asserting

"1"Prior" in the sense of the standard well-ordering of terms.
12," 8 , stands for "spawns", so tl 8 t2 should be read as "the evaluation of tl spawns the

evaluation of t2".

that tl S+ t 2 , where S+ is the transitive closure of S. In a similar fashion, we will

write EvalM(tl) =* EvalM(t 2) to mean t l S* t 2, where S* is the reflexive closure

of S+.

We are now in a position to state and prove the following useful result:

Lemma 2.5.3 Let M be any module (not necessarily admissible), let t E T(EM),

and let s be a proper subterm of t. If EvalM(r) I for every term r EC t to the left of

s that is not a superterm of s, then EvalM(t) =j* EvalM(s).

Proof. By strong induction on the size of t. Let tl,..., t, be the n > 0 immediate

subterms of t, and let tj be the unique child that is a superterm of s. Further,

assume that EvalM(r) I for every term r I: t that precedes s, and is not a superterm

of s. From this assumption it follows that EvalM(r) I for all terms r C tj that

are to the left of s and do not contain it (since r C- tj implies r C t). Hence, by

the inductive hypothesis, we conclude that EvalM(tj) -* EvalM(s) (i). Now, by

assumption, we have EvalM(ti) I for every i E {1,...,j - 1} (since each such ti

precedes s and does not contain it). But then, by the definition of S, we see that

EvalM(t) ==* EvalM(tj) (ii). Finally, (i) and (ii) together with the transitivity of

>* establish that EvalM(t) =* EvalM(s), and the argument is complete. o

We end this section with two additional lemmas, both of which are straightforward

and stated without proof.

Lemma 2.5.4 Let M' be an extension of a module M, so that EM, D EM. Then,

(a) For all terms t C -T(EG), EvalM,(t) = EvalM(t).

(b) Let f : Tpar, x ... x Tpar, - T be a procedure in PROCM, - PROCM and let

If Ej Then rj be a statement in the body of f such that Ej E B(EM, VM). Then, for

any k objects wl E Tpai,,... , wk E Tpark and TV E {True,False},

TEvalM,(Ej[par H- -]) = TV iff TEvalM(Ej par]) = TV.

Lemma 2.5.5 For any module M and term f(ti,...,tk) E T(EM), if EvalM(ti) I

for every i = 1,...,k then

EvalM(f(tl,. .. , tk)) I if EvalM(f(EvalM(tl),..., EvalM(tk))) I.

Chapter 3

Size orderings and the main

termination theorem

3.1 The size of an object

Every object has a certain size. How we "measure" that size depends on the type of

the object. For example, for objects of type NatList a natural measure of size is the

length of the list. Thus we say that the empty list has size 0, the list [3, 1] has size

two, and so on. Or, if we agree to let SZT(w) denote the size of an object w of type

T, we can write SZNatList(empty) = 0, SZNatList(add(s 5 (0), add(s(0), empty))) = 2,

etc. More formally, we have

SZNatList(l) = {
1 + SZNatList(tail(1))

if 1- empty

if I empty.

In a similar spirit, we take the size of a BTree object to be the number of its nodes,

so that

SZBTree(null) = 0,

SZBTree(tree(s 7(O), tree(s5 (0), null, null), null)) = 2,

(3.1)

and so on. More precisely:

0

SZBTree(t) = 1 + SZBTree(1-branch(t)) +

SZBTree(r-branch(t))

if t null

if t / null.

As a last example, we define the size of a propositional wff to be the number of

propositional operators in it. Thus

SZwff(atomic(s 2(o))) = 0,

SZwff(and(atomic(s"3 (0)), or(atomic(s(0)), atomic(s7 (0))))) = 2,

etc. In other words,

+ SZw•(neg(¢))

+ SZwuf(1-and(d)) +

SZwff(r-and(q))

1 + SZWff(1-or()) +

SZwff(r-or (0))

if =

if 4=

atomic(...)

not(...-)

if - and(...)

if € = or(...)

Each of the three size measures given above applies only to objects of its own

particular type, but nevertheless they all use the same essential idea: if an object is

built from an irreflexive constructor, let its size be zero (the first clauses of definitions

3.1-3.3); if it is built from a reflexive constructor, let its size be one more than the

sum of the sizes of its components (tail clauses of 3.1-3.3). This simply reflects the

intuition that the irreflexive constructors of a type T produce "simple" ("atomic")

objects - primitive building blocks that have no internal structure as far as 7T is

concerned. Hence their size should be zero. By contrast, a reflexive constructor of

T takes n > 0 objects sl,... ,s, and bundles them into a new "complex" object s.

The T-size of s should therefore be one plus the sum of the T-sizes of the si, the

"one plus" signifying that we have gone "one level higher" by applying the reflexive

(3.2)

SZw r(¢) = (3.3)

constructor in question, and the summing of the T-sizes of the si signifying that each

si is now a part of s and thus contributes to the latter's size. For instance, by joining

together two BTrees 1 and r at a new root node of value v, we produce the more

complex object tree(v,1 ,r), which, intuitively, is one unit larger than the sizes of 1

and r summed together.

We abstract the preceding observations into a general definition of size for objects

of a type T as follows:

T(S) = 0 if s ircons(...) (3.4)
1 + ET+ I SZT(s I ij) if s -rcons(..).

where ircons (rcons) is any irreflexive (reflexive) constructor of type T, and i,..., im

are the reflexive positions of rcons (so that the Zih component type of rcons is T, for

jE {1,...,m}).

If the type at hand is implicitly understood or can be easily deduced from the

context, we may drop the subscript T and simply write SZ(s).

3.2 A well-founded partial ordering of objects based

on size

Now let s and t be two terms of the same type T in some admissible module M,

and let v1,... , Vk be an enumeration of all and only the variables that occur in s and

t, where each vi E VTi. Then we will write s -< t to indicate that for all objects

Wl E T1 ,... .,Wk E Tk,

SZT(EvalM(s[--* -])) _ SZT(EvalM(t[--])). (3.5)

Of course if s and t are ground terms then there are no variables to be replaced and

s < t simply asserts that SZT(EvalM(s)) • SZT(EvalM(t)). Likewise, we will write

s -< t if (3.5) holds but with strict numeric inequality < in place of <. For instance,

we have 1 -< add(n, 1) because no matter what objects we substitute for n and 1, the

I·~_W_~Y· I

size of 1 will always be strictly less (one less, to be precise) than the size of add(n, 1).

The following list provides some additional examples:

(i) 0 -< s(n)

(ii) pred(s(n)) - n

(iii) 12 -- Append(l1, 12)

(iv) Reverse(l) l

(v) Minus(nl, n2) nl

(vi) n -< Plus(n,m)

(vii) n -< Plus(n, s(m))

(viii) 1-branch(t) -< t

3.3 The GTZ predicate

If s is a term of type T containing k > 0 variables vl E VT,,..., vk E VTk, we will write

GTZ(s) to mean that for all objects wl E TI,..., w.,k E Tk, we have

SZT(EvalM(s[vl H -* W,. .. , Vk H- Wk])) > 0. (3.6)

Again, if s is a ground term then (3.6) simply says that SZT(EvalM(s)) > 0. For

example, we have GTZ(s(O)), since SZ(EvalM(s(O))) = 1 > 0, GTZ(Fact(s(O))),

GTZ(Reverse(add(O, empty))), -GTZ(atomic(s(O))),

-GTZ(null), and so on. If s does have variables then GTZ(s) says that no mat.ter

what objects you substitute for the variables, you will always get an object with size

greater than zero. For instance,

GTZ(s (n))

-GTZ(Minus (n , m))

-GTZ(Plus (n, m))

GTZ(Plus(n, Fact(m))).

Note that if the top function symbol of s is a constructor then deciding GTZ(s)

is trivial and can be done in 0(1) time - simply check whether Top(s) is reflexive.

For, we always have GTZ(rcons(...)) and -GTZ(ircons(...)) for every reflexive

(irreflexive) constructor rcons (ircons). However, in general GTZ(s) is mechanically

undecidable, i.e. there is no algorithm that will always yield the correct answer.

Intuitively, that is because in order to decide GTZ(s) in general we need semantic

information about the functions computed by the various algorithms whose names

appear in s. For example, how can we tell whether or not GZT(f(Times(n, s2(0)))),

for some f : NatNum -+ NatNum, without knowing whether or not f(n) > 0 for all

even numbers n? Of course there are sound algorithms that serve as conservative

approximations to a decision procedure (indeed, we will subsequently offer such an

algorithm), but these are all bound to be incomplete. Nevertheless, it might be of

interest to note that GTZ is a decidable predicate if we restrict its domain to T(EM),

i.e. to ground terms only. For, by the admissibility of M, all procedures in PROCM

terminate; therefore, to decide GTZ(s) for s E T(EM), simply compute EvalM(s) and

check to see whether the top function symbol of the result is a reflexive constructor.

3.4 Argument-bounded procedures

A key role in our investigation will be played by the concept of argument-bounded

procedures. A procedure f : Tpar, x ... x Tpark , T is said to be i-bounded for

some i E {1,..., k} if

Tpari T and f(vl,..., vk) _ vi (3.7)

where vi E VTPar. Likewise, f is strictly i-bounded if (3.7) holds with -< in place

of -<. We call f argument-bounded if it is i-bounded (weakly or strictly) for at least

one of its k argument positions. For example, Minus is an 1-bounded procedure,

since Minus (ni, n2) - nl for all natural numbers n1 and n2 (or, less formally, since

nl - n 2 < n). Intuitively, that is because the value Minus (ni, n2) is always obtained

by "removing" something from the first argument (by "reducing" nl). Note that

Minus is not 2-bounded, as we do not in general have nl- n 2 < n 2 (e.g. 8-3 = 5 > 3).

3.5 The main termination theorem

In this paper we will only be concerned with termination of normal algorithms. In

IFL, a procedure f is called normal if every conditional statement If Ej Then rj in

the body of f is such that

(i) the expression Ej contains no recursive calls f(...), and

(ii) the term rj contains no nested recursive calls f(... f(...) ...).

This is not a severe restriction since most algorithms encountered in practice meet

these requirements. Non-normal procedures such as McCarthy's 91-function([5]) or

Takeuchi's function for reversing a list ([5]), although mathematically interesting,

tend to be rather pathological cases from a practical standpoint. For a treatment of

such procedures consult [6].

Following an idea introduced by Floyd ([2]), most methods for proving termina-

tion, including ours, are based on the concept of well-founded sets. Formally, a

well-founded set can be represented as an ordered pair (W, R), where W is a set (any

set) and R is a well-founded binary relation on W. Recall that R is well-founded iff

every non-empty subset of W contains at least one "R-minimal" element; or, equiva-

lently, iff there are no infinite chains x 1, 2, x 3 , ... such that x 1Rx 2, x 2Rx 3, x 3Rx4, ..

R usually induces a partial order on W and for our purposes it is expedient to read

xRy as "x is larger than y", in some abstract sense of "large". Under this interpreta-

tion, R being well-founded amounts to the preclusion of infinite sequences x1 , x 2 ...

in which each xi+1 is "smaller" than xi. Thus, simplistically put, no element of W

can decrease indefinitely; the descent must eventually stop after finitely many steps.

The classic example of a well-founded set is (N, >), the natural numbers under the

"greater than" relation. Our method is based on the following fundamental result:

Theorem 3.5.1 (Main termination theorem) Let M be an admissible module

and let M' be an extension of M obtained by defining a new normal procedure f :

Tparl x ... x Tpark - T with k parameters parl, . . . , park and body

[< El, ri >,...,< Em, rm >, < True, rm+l >].

Then f is terminating in the new module M' if there is a well-founded set (W, R)

and a function Q : T(CONat 1) x ... x T(CONTP ak) -+ W such that for each

recursive call f(tl,... ,tk) in each rj, j = 1,... ,m + 1, the following holds for any k

objects wi E T,,,,,...,wk E Tpark :

If TEvalM(Ej[parl ý wl,...,park F Wk]) = True then

Q(wl, ... , wk) R Q(EvalM(tilar -[+]),... EvalM(tkA--r [')).

Note that the assumption that f is normal is critical, otherwise the above condi-

tion would be nonsensical. For, if some ti contained an additional recursive call

f(t',... ,t') then the expression EvalM(ti[pVr ý i']) would be undefined because

EM does not contain f and thus we cannot use the interpreter EvalM to compute

ti•-j'• " '] (since that computation would eventually generate the invalid call

EvalM(f(t',...,t'k))). Moreover, if f were not normal we would not even be able

to obtain the truth value TEvalM(Ej [p- " I]), since that involves calling EvalM

on the terms flanking the equality symbols appearing in Ej; if these terms contain

recursive calls f(...), we cannot use EvalM for their evaluation.

We now proceed with the proof of theorem 3.5.1, which will provide us with the

opportunity to introduce some ideas that might help to sharpen the reader's intuitions

regarding termination. First, for any normal procedure f : Tpar, x * * * x Tpark - T

that has k parameters parl,..., park and is well-formed and well-typed wrt to an

admissible module M, and for any k objects w1 E Tparl,..., Wk E Tpar k , we define

the recursion tree of the term s - f(wl,..., wk), notated RT,, as follows:

* The root of RT, is s.

* The children of a node f(sl,..., sk) are specified as follows. Let If Ej+i Then

Reverse([5,2,3])
Fib(4)

Reverse([2,3])

Fib(3) Fib(2)
Reverse([3])

Fib(2) Fib(l) Fib(l) Fib(O) erse([])

Fib(l) Fib(O)

Figure 3-1: The recursion trees of the terms Fib(4) and Reverse([5, 2, 3]).

rj+l be the unique statement' in the body of f such that

TEvalM(Ej+l[r i "-) = True

and let f(t,..., t), ..., f(t,..., t) be the n > 0 "recursive calls" contained

in rj+l, ordered from left to right according to the standard well-ordering of

terms. Then the children of f(sl,... ,sk), from left to right, are the n terms

f(EvalM(t'[pFar F-* ']),..., EvalM(t [pFar ý-4 -]))

f(EvalM(t1 [a']),..., EvalM(t'[p '])).

Thus, if rj+l does not contain any recursive calls (i.e. if n = 0), then the node

f(sl,... ,Sk) is a leaf of RT,. Also note that if no rj in the body of f contains

more than one recursive call, then the recursion tree of any term f(w) is essentially a

linked list of terms f(w), f(w'), f(w"),.... By way of illustration, fig. 3.5 depicts the

recursion trees of the terms Fib(4) and Reverse([5, 2,3]).

1That there is such a statement follows from the case-completeness and determinism of f in
conjunction with the assumptions that M is admissible and f is normal.

Our next goal is to derive yet another intuitive characterization of termination by

proving that when we augment an admissible module M with a new normal procedure

f : Tpar X ... X Tpark -- T, the new procedure terminates in the new module M' iff

for all objects wl E Tparl,..., wk E Tpa~,, the recursion tree of f(w1,..., wk) is finite.

After we prove this result theorem 3.5.1 will follow naturally, since it is not difficult to

see that the conditions of the said theorem preclude infinite recursion trees for terms

of the form f(wl,..., wk). We begin with the "if" part of the result:

Proposition 3.5.1 Let M' be the module obtained by extending an admissible module

M with a normal procedure f : Tpar, x ... x Tpa, --- T, and let wl,..., Wk be any

k objects of type Tpa,,,. .. , T k, respectively. If f(wI,... , Wk) has a finite recursion

tree, then EvalM,(f(wl, ... , Wk)) I.

In the converse direction, we prove that the call EvalM(f(wl,..., Wk)) Will initiate

an in-depth traversal of the recursion tree of f(wi,..., wk). It will follow that if the

said tree is infinite, the evaluation of f(wi,..., Wk) will diverge. Proofs for both of

these propositions can be found in Appendix A.

Proposition 3.5.2 Let M' be the module obtained by augmenting an admissible mod-

ule M with a normal procedure f : Tpar, x ... x Tpar, -+ T, and let Wl,...,wk

be any k objects of type Tparli,... , Tpak respectively. Then for every finite ordinal

/ < ORD(RTf(w1,...,wk)) there are terms ul,..., uk in T(EM) such that

EvalMi(f(w1,.. , wk)) ==-* EvalMi(f(ul,... , Uk))

where EvalM,(ui) = (rRT(k k))()) 1 i for every i = 1,... , k.

As was remarked earlier, it is a consequence of the above proposition that if

RTf(,~ ... wk) is infinite, the evaluation of f(wi,..., Wk) will diverge. For, according to

what we just proved, we will have

EvalM,(f(wi,..., wk)) ==>* EvalM,(f(ul,... , uk)) (3.8)

for some terms u,... , Uk such that EvalM,(ui) = l7RTf(• 1. k)(/) I i for every finite

ordinal / < ORD(RTf(,,...,Wk)). But if RTf(, ...,wk) is infinite, ORD(RTf(w,,...,,,)) >

w, hence there are infinitely many finite ordinals 0 < ORD(RTf(w,,... k,,)), and thus,

according to (3.8), the call EvalM,(f(wl,... , Wk)) will recursively invoke the inter-

preter EvalM, infinitely many times. In fact proposition 3.5.2 conveys more in-

formation than the mere prediction that EvalM,(f(wl,..., wk)) will loop forever if

f(wl,... i, wk) has an infinite recursion tree. It also tells us exactly where the inter-

preter will diverge; namely, along the leftmost inifinite path in RTf(w, ,..k).

Perhaps the following is a more intuitive argument. If RTf(w, ...,wk.) is infinite then,

by K6nig's lemma ([3]), it must have at least one infinite path. Let ~r,1 be the leftmost

such infinite path (so that for any two nodes u and v, if v is on ~,, and u is to the left of

v in RTf(, j,1. ,k) but not itself on r,,, then the tree rooted at u must be finite). Then,

by employing the same argument that we used in the proof of proposition 3.5.2, we

can show that for every node ul in 7r1 we have EvalM,(ul) -==+ EvalM,(U2), where

u2 is the successor (child) of ul in 7,,. Thus there is an infinite sequence of terms

f(wl,.. .,wk) - U1, U2, u2,... such that EvalM,(uj) =-#+ EvalM,(ui+l) for all iE w,

and thus EvalM,(f(wl,... , wk)) diverges. We summarize as follows:

Theorem 3.5.2 Let M' be the module obtained by augmenting an admissible module

M with a new normal procedure f : Tpa,,,, x ... x Tpark -* T. Then f is terminating iff

for all objects wi E Tpal,l ... ,wk E Tpark, the term f(w,. .. , wk) has a finite recursion

tree.

Proving theorem 3.5.1 is now straight-forward: the existence of the function Q-which

is said to be a termination function for f-guarantees that the term f(w ,..., wk)

has a finite recursion tree. For, if f(sl,...,sk) is any node in RTf(w,,...,k) and

f(s1 , ... ,sk) is any one of its children, we will have Q(sl, ...,sk) R Q(S l,..., k).

But then, because (W, R) is well-ordered, it follows that there are no infinite paths in

RTf(w, ... wk), and hence that the latter is finite. Therefore, by the preceding theorem,

EvalM,(f(wl,..., wk)) I.

The termination function Q should be seen as mapping each k-tuple of objects

Wi E Tparl, ... Wk E Tpark to some "quantity" in W. In our method (W, R) will

always be (N, >), so the values of Q will be numeric. Furthermore, Q will be based

on the size function SZ. In particular, if f is unary (k = 1) then Q will actually be

SZ itself, i.e. we will have Q(w) = SZTpar,(w) for all objects w E Tp,,,,. If f has

more than one parameter then the termination function will be

Q(wl,..., wk) = SZ(wi) + + SZ(wi,) (3.9)

where the set {il,... ,in} is the so-called measured subset of f (in the terminology

of [1]). The measured subset of f, which will be written as MSf, is the set of

all argument positions i E {1,...,k} such that for every recursive call f(t 1 ,..., tk)

anywhere in the body of f, we have ti -4 pari. Our method, in a nutshell, will compute

MSf and then it will attempt to prove that in each recursive call f(t 1 ,..., tk) in the

body of f, we have tj -. parj for at least one j E MSf. If successfull, the termination

function defined in (3.9) will satisfy the requisite properties of theorem 3.5.1, allowing

us to conclude that f terminates for all appropriate inputs.

In order to compute MSf and to be able to test whether tj -4 parj for some

j E MSf, we need an algorithm for computing the two predicates -< and -<. Al-

though these are in general undecidable (see section 3.2), they can be "conservatively

approximated" to a degree that proves satisfactory for our purposes. In particular, we

will present two logic programs (collections of rules) R, and R, defining the two pred-

icates, and we will use classic Prolog-style backwards chaining to determine whether

or not the goal s __ t (s -< t), for two arbitrary terms s and t, can be derived from

the "database" R = R, U R,, i.e. whether R F- s -< t (R H- s -< t). An important

result that we will prove is that in the worst case, using R, and R, we can determine

whether or not s -_ t or s -< t in time linear and quadratic in the size of s, respectively.

In fact in most cases arising in practice we are able to compute R H- s -< t (R H- s -4 t)

in time logarithmic in the size of s (i.e. linear in the height of s). All of the rules

in R, and R, will be sound, so if we manage to conclude that, say, R•- s -< t, then

we can validly infer that s -< t. However, owing to the aforementioned undecidability

problem, R is necessarily incomplete. Therefore, results of the form R F- s - t or

R. - t do not warantee the respective conclusions s ý t, s ;A t. The practical import

of this is that if the system tells the user that the procedure they have just defined

does not terminate, the user is not entitled to infer that the said procedure does not

in fact compute a total function. It only means that the user must re-write the pro-

cedure in a way that will "help" the system prove its termination, while preserving

the intended semantics. We will see that it is easy to develop a procedure-writing

style (what. is called "Walther style" in [6]) that is conducive to proving termination

by our method.

Chapter 4

Recognizing termination

4.1 The weak size inequality calculus R,

Recall that modules are developed in an incremental fashion, whereby at each step the

user extends the "current" module by defining a new data type or a new procedure.

Our method for testing termination requires us to keep track of which of the proce-

dures defined so far are argument-bounded. At any given point the set Bi C PROCM

will comprise those procedures in the current module M that have been proven to be

i-bounded. Note that B 1 will include all the reflexive selectors in SELM by default,

since all such selectors are 1-bounded. The intended modus operandi is as follows.

Immediately after the user has defined a new procedure f : Tp,,,, x ... x T,,,,) T,

the system tries to prove that f is terminating. If it fails, the procedure is rejected as

a non-halter and the user must either provide an alternative definition of f or move

on to something else. If f is proven to terminate, then the next step is to determine

whether it is i-bounded for every i = 1,..., k such that Tp,,, = T. If we succeed in

proving that f is i-bounded for such an i, we set Bi - Bi U {f}. Exactly how we

go about deciding whether f is i-bounded is discussed in section 4.4.

We are now in a position to present R,, the set of rules that make up the calculus

for weak size inequality. It consists of the Horn clauses [R1]-[R6] given below. We use

the symbols s and t with or without subscripts as variables ranging over T((EM, V~/):

True ==t>tt [R1 I

True ==# ircons(si,...,s,) j t [R2]

for every irreflexive constructor ircons E CONM.

i t ==for g(s,...,severy g t [R3]

for every g E Bi.

GTZ(t), si, " selrcons(t),...,sim - selcons(t) == rcons(sl, .. s,) -< t [R4]

for every reflexive constructor rcons E CONM with

reflexive argument positions ij,..., im.

The GTZ predicate is conservatively approximated by the following rules:

t= rcons(tx, ... , te) =o GTZ(t) [R5]

for every reflexive constructor rcons E CONM.

Strictly speaking, each of the above rules is a schema that can have many different

instances depending on the particular contents of M. To take a simple example, if

M comprises the types NatNum and SExpr and the procedure Minus, then, supposing

that Minus has been proven to be 1-bounded, R will contain the following instances

of [R3]:

s t == pred(s)- t

s - t == car(s) _ t

s _t cdr(s) t

t ircons (t,...,tl),...,t irconsm(tm,...,t"r) = GTZ(t) [R6]

where irconsl,..., irconsm are all and only the irreflexive

constructors of type T, for every T E TYPESM.

sl S t ==> Minus(sl,s 2) - t

and the following instances of [R6]:

t O == GTZ(t)

t nil, t atom(tl) =- GTZ(t).

Soundness

Proving the soundness of the above rules is straightforward, with the possible excep-

tion of [R4], for which we will now give a formal proof. Suppose that the antecedent of

[R4] is true for two terms rcons(sl,..., s,,) and t in T(EM, VM). Let vi E VT1 ,..., vp E

VTP be the variables occuring in these terms, and let wl,..., wp be any p objects of

type T1 ,..., Tp, respectively. To prove that rcons(s ,...,sn) i t we must show that

Q1 _ Q2, where Q1 is the quantity SZ(EvalM(rcons(sl,..., s,)[j]- -b])) and Q2

is SZ(EvalM(t[- --])). With regard to the first quantity we have, by definition

of the SZ function,

QL = SZ(EvalM(rcons(sl,,...,s~n)[-]))

= SZ(rcons(EvalM(sl[-- •-]),..., EvalM(s,[-])))
m

S1 + SZ(EvalM(sij, [+ -])). (4.1)
j=1

As regards Q2, there are two cases: either Top(EvalM(t[V])) - rcons or not.

In the former case we have EvalM(t[-i F-+ -]) = rcons(t',..., t') for some objects

t:,.. .,tl, and thus

Q2 = 1 + E SZ(t). (4.2)
j=1

Now since we have assumed the antecedent of [R4] to be true, we have, for all j E

{1,...,m },

SZ(EvalM(sij [-])) V SZ(Eval (se on (t-))
(EaM(e) (t v 2])

= SZ(sel"o" (EvalM(t[-- H '-])))

= SZ(selfco*(rcons(t',..., t')

= SZ(t,,)

and thus it follows from (4.1) and (4.2) that Q1 < Q2.

On the other hand, if Top(EvalM(t[i5 4 '])) = rcons then

SZ(sel on(EvalM(t[v -* ~]))) = 0

for every j = 1,..., m, since for every such j the term sel,cons(Evalm(t[HV))

will be a minimal object built from irreflexive constructors. Now we know from the

antecedent that for all j c {1,..., m}

< SZ(Evalm(sel .ons(t[i -- -S])))

= SZ(selon"(EvalM(t[' -+ ')))

=0

hence for every such j we must have SZ(EvalM(si, [-i5 -H '])) = 0. Therefore,

by (4.1), we conclude that Q1 = 1. But now note that, because we have: assumed

GTZ(t), we have Q2 = SZ(EvalM(t[-- - 'I])) > 0, hence Q1 < Q2 and we are

done.

Some examples

Here are a few simple derivations in R,:

Rw - pred(pred(n)) - n:

n -< n

pred(n) -i n

pred(pred(n)) i

[R1]

[R3], since pred E B 1

n [R3] again.

SZ(EvalM(si, (-V]))

7~, - add(n, tail(l)) _ 1, on the assumption that (I $ empty) :

1. 1-- 1

2. tail(l) < 1

3. GTZ(1)
4. add(n, tail(l)) -l

Z, H s(Minus(Log(pred(n)), m)) _ n,

Minus,Log I' B1 :

[RI]

[R3]
[R6], by the assumption (1 $ empty)

[R4], 2,3.

assuming that (n 5 0) and

pred(n) -< pred(n)

Log(pred(n)) _ pred(n)

Minus(Log(pred(n)), m) i pred(n)

GTZ(n)

s(Minus(Log(pred(n)),m)) i n

[R1]

[R3], 1

[R3], 2

[R6], given that (n # 0)

[R4], 3,4.

Deducing atomic expressions from If-Then antecedents

Given that the equality and inequality symbols = and $ do not appear in the conse-

quent of any of the rules in R,, one might wonder how will conclusions of the form

(tl = t2) or (tl 7 t2) be established. The answer has to do with how termination

proofs, as well as proofs of argument-boundedness, are carried out in practice. Such

proofs require us to loop through the body [< El, ri >,..., < Em, rm >] of a procedure,

examining each statement If Ei Then ri in turn, for i = 1,...,m. Conclusions of

the form (tl = t 2) and (tl : t2), i.e. atomic expressions, will be derived by analyzing

the Boolean expression Ei and will be temporarily added to the global database R as

Prolog facts, so that they can be used by rules [R5] and [R6] to establish GTZ conclu-

sions. For instance, if we were working on the first statement of Minus (section 2.2),

we would add to R the assertion (m = 0).

Such assertions are added to R only temporarily because they are obviously valid

only as long as we are considering that particular statement If Ei Then ri from

1See section X for a definition of Log.

whose antecedent Ei the assertions were deduced. When we move to the next state-

ment If Ei+1 Then ri+l then all atomic expressions that were derived on the basis

of Ei must be retracted from R and replaced by new ones derived from Ei+1. In the

Minus example, when we proceed to the second If -Then statement we need to delete

the assertion (m = 0) and replace it by (m $ 0). This process will be made more clear

later when we present some concrete examples of termination proofs.

Inferring atomic expressions from antecedents is accomplished by the algorithm

AtEx given below, which takes an expression E E B(EM, VM) and returns a set of

assertions of the form (tl = t 2) and (tl / t2), each of which is logically implied by E:

Function AtEx(E : B(EM, VM)) {

If (E _ (tl = t2) Or E = (tl # t 2)) return {E};

Else

If (E: (El A E2)) return AtEx(E1) U AtEx(E 2);
Else

If (E E (El V E2)) return AtEx(E) n AtEx(E 2);

Else

return 0; }

The computational complexity of the R, calculus as a Prollog

program

We end this section by proving that, using the rules of R,, as a logic program, R., t-

s < t can be decided in no more than O(SIZE(s)) time:

Theorem 4.1.1 In the worst case, a Prolog interpreter can determine whether or

not TR,, [- s - t, for any s,t E T(EM, VM), using O(n) resolution steps, where n is

the size of s.

Proof. By induction on n, the size of s. Supposing that s - g(sl,..., ism) and that

s 0 t2, there are three mutually exclusive and exhaustive cases: either

2If s - then s < t would follow immediately from [R1].

1. g E B, for at least one i, or

2. g is a reflexive constructor, or

3. neither of the above.

In the first scenario the worst case arises when g E Bi for every i = 1,..., m, so that

7 contains m instances of [R3] with the head g(sl,... ,sm) -< t, and R, V sj -< t for

all j E { 1,..., m - 1}. Accordingly, in the worst case the interpreter will first try the

rule

81 ___< t j g(01,1... Ism) _ t

but will fail to prove sl t, then it will try the rule

S2 -4, t =: g(81,. ..,SM) • t

and will fail to prove s2 - t, and so forth, up to the subgoal sm -< t, for which it may

either fail or succeed. Hence the total effort in such a case will be

T = Ti + T2 + .. + Tm

where Ti is the maximum possible effort (in terms of resolution steps) expended in

order to decide si - t. But by the inductive hypothesis we have Ti = O(ni), where

ni is the size of si, hence

T - O(-l)+ --,- O(nm) = O(n+ ---.+ nm) O().

As regards (2), the worst case arises when g is reflexive in all of its argument positions

1,..., m and RZ - sj -8 self(t) for all j E {1,..., m - 1}, as well as R, H- GTZ(t).

In that case the maximum work will be

T = TGTZ(t) + 1 T 2 + " Tm

where TGTZ(t) is the maximum possible effort for deciding GTZ(t) and T3 is the max-

imum possible effort for deciding sj _ self(t). Again by the inductive hypothesis we

get T = TGTz(t) + O(n), and although the quantity TGTZ(t) is not directly expressible

in terms of n, it is easy to see that it is negligible compared to T1 + ---Tm; hence it

is sensible to conclude that T = O(n)3 . Finally, in the third case, given that we have

assumed s f t, there are only two possible scenarios: either Top(s) is an irreflexive

constructor or not. In the former case s -< t follows immediately from [R2], while in

the latter case 7Z / s -< t also follows immediately since the goal s < t does not

unify with the head of any rule in 1,. In either case the search tree of the goal s - t

is at most one level deep. O

4.2 The strict inequality calculus R,

To prove termination we must be able to deduce strict size inequalities of the form s -<

t. The calculus R, given below is a collection of sound rules that can be used to make

such inferences. Perhaps the most important rule in R, is [R8]. The rationale behind

this rule derives from the simple empirical observation that, sometimes, whether or

not an i-bounded procedure f returns an object of strictly smaller size than its ith

argument depends on whether or not some of its arguments have positive size. For

instance, the 1-bounded procedure Minus is also strictly 1-bounded whenever both of

3Intuitively it is easy to see that deciding GTZ(t) is "easy" by observing that the only predicate
symbols appearing in the bodies of [R5] and [R6] are = and 0, which do not appear in the head of
any rule in •2,. Therefore, the largest search tree that a goal of the form GTZ(...) can have will
only be one level deep: the only resolution step would be that of going from GTZ(t) to t = rcons(...)
or t : ircons (...),...,t ircons,(..). Of course the tree might be wide (bushy), but it will still
be only one level deep. In fact even the width will not be that large at all, as it is linear in the
number of constructors in CONM. More precisely, GTZ(t) can be decided, in the worst case, using
O(1 CONM I) resolution steps, which is inexpensive since CONM will usually have no more than a
few dozen elements.

But we can do even better if we avoid resolving GTZ(t) with an instance of [R5] or [R6] that
pertains to a, type other than TypeM(t) (e.g. if we avoid matching GTZ(n), for n E VNatNum, with
the head of a rule like t # empty ==ý GTZ(t)). This can be achieved if we make GTZ a binary
predicate by tagging t with its type, giving rise to rules like t $ 0 ==- GTZ(t, NatNum). Then
deciding GTZ(t, T) would be trivial (even in the worst-case scenario), since it would require no
more than I CONT I matchings.

its arguments are non-zero. In symbols,

GTZ(n, m) 4 == Minus(n, m) -< n.

Or, as another example, the selector tail (which is 1-bounded just in virtue of being

reflexive), is also strictly 1-bounded whenever its argument is a non-empty list, i.e.

GTZ(I) === tail(l) - 1.

In fact all reflexive selectors strictly reduce their arguments if the latter have positive

size. In general, if g is an i-bounded procedure, or selector, of n > 0 arguments, and

{al,..., am} is a subset of {1,..., n}, we will call g strictly i-bounded in positions

{ai,...,am} iff

GTZ(a,,,... ,sam) • f(si,... ,s,) -< si.

Thus all reflexive selectors are strictly 1-bounded in the first argument position. In

section 4.4 we will discuss in detail how we go about proving that an i-bounded

procedure is strictly i-bounded in a certain subset of its argument positions. For this

section the mere definition of the concept will suffice. It should be said, however, that

for every i-bounded procedure f, R, will contain at most one instance of [R8]; thus

there cannot be two distinct subsets {al,..., a } and {a2 , a 2 } such that both

GTZ(s,l 1 Sal Si t tg(sl'..., S) t

and

GTZ(s 2,..., Sa 2 2),si t t = g(S 1 ,...,Sn) <t

are in R,. The rule schemata of R, are the following:

GTZ(t) ==e ircons(st,...,s,) -c < t [R7]

for every irreflexive constructor ircons E CONM.

4We write GTZ(tl,..., t,) as an abbreviation for GTZ(tl),..., GTZ(tn).

s i r < t -i g(sl,..., s,) -< t [R9]

for every i-bounded procedure or reflexive selector g.

An inductive

following:

Theorem 4.2.1

R,1 - s -< t, for

size of s.

argument similar to the one used in the case of ~,, can establish the

In the worst case, a Prolog interpreter can decide whether or not

any s, t E• TEM, VM), using O(n 2) resolution steps, where n is the

4.3 Deciding termination

The termination algorithm we are about to present uses an auxiliary function Jloldsf

that takes a goal s -< t (or s -- t) and an expression Ej from the body

[< El,ri >,...,< Em, rm >, < True, rm+l >]

of a procedure f, computes

AtEx(Ej) U AtEx(-,Ei),
i<j

(4.3)

adds the results to 7, and then, in the fashion of a Prolog interpreter, tries to establish

the goal s _- t (s -< t). When a verdict is reached the atomic expressions of (4.3)

that were earlier added to 7 are now deleted from it and an answer of either True

or False is returned depending on whether or not the given goal was proved.

GTZ(sal,...,sam), si "t = g(sl,... ,sn) - t [R8]

for every i-bounded procedure or selector g that is

strictly i-bounded in positions {al,... ,am).

s . 1 .selcons(t),.. ,im s selrOn,(t) == rcons(s1,... s,) < t [R 0]

for every reflexive constructor rcons E CONM with

reflexive argument positions i, . . ., im.

Now suppose that an admissible module M is augmented with a new procedure

f : Tp,, 1 x ... x Tpark -- T with body

[< Ei,ri >, ., < Em, rm >, < True, rm+l]

and that our task is to determine whether f is terminating in the new module. The

first step is to compute MSf, the measured subset of f. This can be easily done

by looping through the integers i = 1,...,k and checking, for each such i, that for

every recursive call f(t 1,..., tk) contained in a term rj, j {1, ... , m + 1}, we have

Holdsf(ti -4 pari, Ej). We abstract this process into a separate function ComputeMS

as follows:

Function ComputeMS(f) {

res *- 0;

For (i = 1; i <k; + + i) {

For (j = 1; j m +1; + + j)

For every subterm of rj of the form f(t 1 ,..., tk)

If -iHoldsf(ti _ pari, Ej) Then {

S- m + 2; break; }

If (j ==m+ 1) Then

res - res U {i}; }
return res; }

Now to verify termination we simply check that for each recursive call f(tl,..., tk)

in the body of f there is at least one i E MSf such that ti -< pari:

Function Terminates(f){

MSf -- ComputeMS(f);

For j=1 To m+1 Do

For every recursive call f(t 1 ,...,tk) in rj Do

If there is no i E MSf such that Holds1 (ti -< pari, Ej)

return False;

return True; }

The soundness of this algorithm follows from the main termination theorem if we

just define the termination function Q as

Q(W1,-.,Wk) = E SZ(wi).
iEMSf

Then let f(tI,...,tk) be any recursive call in any term rj, let wl,..., Wk be any

k objects of type Tparl,... ,Tp•,rk respectively, and suppose that TEvaIM(Ej[par H

-W]) = True. By definition of MSf (and the soundness of ComputeMS), we have

ti - pari for all i E MSf, hence

SZ(EvalM(par[ipa-r]-4 -W])) _ SZ(EvalM(ti[- ý-4 1•))

or

SZ(EvalM(w1)) Ž SZ(EvalM(t]•-[frai-* 'w]))

or

SZ(wi) > SZ(EvalM(t(t [pr ý-4 "))

for every such i. Summing over MSf we obtain

Q& = Z SZ(wi) 2 Q2 = E SZ(EvalM(ti[-d I*])). (4.4)
iEMSf iEMSf

But by definition of Terminates there exists an io E MSf such that

R U AtEx(Ej) U AtEx(-Ei) I- tio -< pari0.
i<j

Because 7R and AtEx are sound and because the ground boolean expressions Ej [Pa•i -

'], -EiFar - '], 1 < i < m + 1, i $ j, are assumed to be true, we conclude that

SZ(wio) > SZ(EvalM(tio aýP •-+ W]4))

thereby deducing from (4.4) that Q1 > Q2. The argument is thus concluded in virtue

of the main termination theorem since Qx and Q2 are, respectively, the values of the

termination function Q on w 1,..., wk and EvalM(tl[p -]),..., Eval1(tk -4

We end this section by demonstrating our method on a simple example, the pro-

cedure Plus defined in section 2.2. The call ComputeMSf(Plus) will quickly re-

turn the set {1, 2} since, in the only recursive call in the body of Plus, namely

Plus(n, pred(m)), we have both R n -< n and R F pred(m) - m. Then by adding

the assertion m 5 0 to R we find that R1 - pred(m) --< m through the following instance

of [R8]:

GTZ(s), s -< t = pred(s) -- t

and thus Terminates(Plus) = True. All other procedures given in section 2.2 have

equally simple termination proofs.

4.4 Deciding argument-boundedness

Once a newly defined procedure f : Tpar, x -.. x Tpark -+ T with body

[< El, ri >,. .., < Em, rm >, < True, rm+1]

has been proven to terminate, the next order of business is to attempt to prove that

f is i-bounded for every i E {1,..., k} such that Ti - T. If we succeed in proving

that f is i-bounded for such an i, we add to ? the following instances of [R3] and

[R9]:

si -< t f(sl,...,sk) - t.

To prove that f is i-bounded we try to prove that rj - pari for every j = 1,..., m + 1;

or, more precisely, that Holdsf(rj -< pari, Ej) for every such j. This is clearly a sound

method-if it succeeds, we can validly infer that f is i-bounded. For, let w 1,... , wk be

aby objects of type Tparl,..., Tpark,, respectively, and let If Ej Then rj be the unique

statement in the body of f such that TEvalM(Ej [ar ý-]I) = True. Presumably

we have already established that Holdsy(rj -4 pari, Ej), i.e. that

R U AtEx(Ej) U AtEx(-'Ei) -rj - pari,
i<j

therefore, because 7 is sound and because we are assuming the expressions in AtEx(Ej ['-

W]) and iI

U AtEx(-Eij[~a-- + I])
i<j

to be true, we can conclude that

SZ(EvalM(rj•Far w])) < SZ(wi)

or, equivalently, that

SZ(EvalM(f(wl,.. , Wk))) 5 SZ(wi).

Since this argument is valid for any wl,..., wk, we are entitled to conclude that f is

i-bounded.

The method is based on an inductive argument on the number of recursive invo-

cations of EvalM(f(...)) spawned by a call EvalM(f(sl,... , sk)) (we know that there

is such a finite number because f has been proven to terminate). We illustrate the

method on procedure Minus, whose text we reproduce here for convenience:

Procedure Minus (n,m:NatNum) :NatNum

Begin

If (m = 0) Then n

Else

Minus (pred(n) ,pred(m));

End.

Letting n and m be any two natural numbers, we begin with the first statement,

If (m = 0) Then n, and we easily prove that rl n -< n. The next statement con-

tains the recursive call Minus(pred(n) ,pred(m)), so it is here that we utilize the

aforementioned inductive hypothesis (since the evaluation of Minus (pred (n) , pred (m))

will spawn fewer-one less, to be precise-recursive invocations of Minus than the

evaluation of Minus (n,m)); thus we postulate the assertion

Minus(pred(n), pred(m)) - pred(n).

To incorporate transitivity, we cast the above assertion as follows:

pred(s1) - t == Minus(pred(si), pred(s 2)) - t. (4.5)

Next, we add to 1 the expression (m $ 0) and we try to prove the goal

Minus(pred(n), pred(m)) _ n.

This matches the head of the inductive hypothesis with the bindings {t ý n, sl

n, s2 H-+ mI, so we are left to prove the subgoal pred(n) _ n, which is easily done

through [R3]. Since there are no more statements to consider the proof is complete,

and we can now record the knowledge that Minus is 1-bounded by adding to 1 the

two following lemmas:

sl _ t Minus(s l ,S2) t

and

si -< t == Minus(s, s 2) - t.

The following algorithm is a generalization of the the inductive process illustrated

above for an arbitrary procedure f : Tpar, x ... x Tp,,,, - T with body

[< Ei, ri >,..., < Em, r, >, < True, rm+i >] :

Function IsBounded(f, i) {

For j = 1 To m +1 {

For every recursive call f(s,... ,sk) in rj add to 7 the rule

·___i~l i_*IL·CI_·I___I__l_-- ICI--·LL ·IIYI--L·-~. i...

si t f(s, ,sk) t = (// the ind. hyp.

res -- Holdsf(rj _ pari, Ej);

Delete from R all inductive hypotheses previously added to it.

If -res Then

return False; }

return True; }

4.5 Deriving strict inequality lemmas for argument-

bounded procedures

After a procedure f : Tpa, , x ... x T,,,,k -- T has been proven to be i-bounded for

some i E {1,..., k}, the next step is to try to obtain a strict inequality lemma for

f and i in the form of rule [R8]. We do this by iterating through the power-set of

{1,..., k} and trying, for each subset {al,..., a,} C {1,..., k}, to prove the assertion

GTZ(para1,..., para•) == f(parl,..., park) - pari

or, more generally,

GTZ(para,,... ,paraQ), pari -< t == f(parx,...,park) -* t.

This is done by an inductive argument on the "running time" of f(parl,...,park)5

similar to that used in verifying that f is i-bounded. In particular, we loop through

the body of f identifying those statements If Ej Then rj for which the assertion

GTZ(para,,... ,paran) is consistent with Ej, and then we try to prove, for each such

statement, that Holdsf(rj - pari,Ej)-after adding to 7 the assertions GTZ(tl),

... , GTZ(t,,) as well as the inductive hypothesis

GTZ(Sa.,.. .,s.), si - t ==> f(s, ... , Sk) -< t

5Recall that f has been proven to terminate.

for every recursive call f(sl,... ,sk) occuring in rj.

To determine whether an antecedent Ej is "consistent" with the assertion

GTZ(par, . .. , paran)

we use the algorithm Consistent given below, which takes an expression E E B(EM, VM)

and a set of terms {tl,...,tn} and returns False if E ==# -GTZ(tl,..., tn). Thus, if

Consistent(E, {tl,..., tn}) = False, then E logically implies -GTZ(ti) for at least

one i E {1,...,m}:

Function Consistent(E, {t l ,..., tn}) {

If E- (t = ircons(...)) return (t tl A ... At t,);

Else

If E -(El A E2) Then return Consistent(El, {tl,...,tn}) A

Consistent(E2, {t l ,..., t I);

Else

If E = (El V E 2) Then return Consistent(El, {tl,...,tn}) V

Consistent(E2, {t l ,..., t});

Else

return True; }
Note that, in general, this is an undecidable problem. The above algorithm is

a simple conservative approximation to the ideal "black box", which would return

False if and only if E logically implied -GTZ(tl,...,tn). That is clearly not the

case with Consistent, since, for example, the expression Eo - (Minus(n, 0) = 0)

logically implies -GTZ(n) and yet

Consistent(Eo, {n}) = True.

However, this will be seen to be acceptable for our purposes.

We now present the method we outlined in the first paragraph in the more precise

form of an algorithm:

Input: A procedure f : Tpar, x . x Tpark -- T with body [< El,ri >,...,

< Em, rm >, < True, rm+1 >] and an integer i E {1,..., k}. It is assumed that f

has been proven to be i-bounded.

Output: A subset {al,..., a,} of {1,..., k}. If the subset is non-empty, then the

following holds and should be added to R:

GTZ(sl ,...,sa,), si - t ===> f(s, .,Sk) - t.

For every non-empty subset {al,..., an} of {1,..., k} Do {

For j=lTo m+lDo

If Consistentf(Ej, {para,...,paran}) Then {

Add to 1 the assertions GTZ(par,,),..., GTZ(parn);

For every recursive call f(tl,...,tk) in rj add to 1 the

inductive hypothesis

GTZ(tal,..., ta.), ti - t == f(tl,..., tk) -< t;

res - Holds(rj -< pari,Ej);

Delete from 1 everything that was added to it in the

previous three steps;

If (-res) Then

j -- m + 2; }

If (j == m + 1) Then

return {al,..., a,}; }
return 0;

where Consistentf(Ej, T) is a shorthand for

Consistent(Ej, T) AConsistent(-,Ei, T).
i<j

A few remarks are in order here. First, note that the algorithm stops immediately

after discovering the first subset {al,..., an} C_ {1,..., k} for which it can prove the

desired result. Therefore, as was pointed out earlier, the database 1 will contain at

most one instance of [R8] for every procedure f E Bi; otherwise we could conceivably

derive up to 2k - 1 such lemmas for f, most of which would be superfluous. Sec-

ondly, the subsets of {1,..., k} should be generated in order of increasing cardinality,

starting with the one-element subsets {al}, continuing with the two-element subsets

{al, a 2}, and so forth. This will ensure that the subset returned by the algorithm

has minimal cardinality, i.e. that there is no smaller subset of {1,..., k} for which

the same lemma could be proved. This is desirable because the smaller the subset is,

the fewer the GTZ assertions in the antecedent of the derived lemma, which means

that the lemma has the weakest possible antecedent. Thus if and when we come to

use the said lemma in a future proof, we will have to prove as little as possible in

order to draw the desired conclusion. Finally, it should be said that in any reasonable

implementation the above algorithm should execute fast. The fact that the algorithm

takes 0(2k) time is inconsequential since in practice k ranges from 1 or 2 in most

cases to no more than 5 or 6 in rare cases.

We illustrate the method on the procedure Minus. We assume it has been proved

that Minus E B 1, so that 7 already contains the two following rules:

sl t ==- Minus(sl,S 2) _ t (4.6)

sl - t = Minus(s l ,s 2) -< t. (4.7)

Now, beginning with the subset {n} C {n,m}, we find that

Consistent(m = 0, {n}) = True.

We add to 7 the assertion GTZ(n) but we fail to prove n -- n, so we continue with the

next one-element subset of {n, m}, namely {m}. We find that Consistent(m = 0, {m}) =

False, so we move on to the second statement, determining that

Consistent(m 5 0, {m}) = True.

.. ·C*lr~-·~--·r~L·--L --~-Ill~· ~~· · I·- -WI~YU·~·L·

We add to 7 the assertion GTZ(m) and the inductive hypothesis

GTZ(pred(m)), pred(n) - t => Minus(pred(n),pred(m)) -< t (4.8)

and we proceed to prove that

Minus(pred(n), pred(m)) -4 m.

We first try rule (4.7), but we fail because R V/ pred(n) -< m. Then we try rule

(4.8), the inductive hypothesis, and fail again since R V/ GTZ(pred(m)). Since

these two are the only rules in 1 whose heads match the goal at hand, we find

that HoldsMinu,(Minus(pred(n), pred(m)) -4 m, m 0 0) = False, and we continue with

the next subset, namely {n, m}. The first antecedent (m = 0) is provably inconsistent

with GTZ(n,m) so we take up the second statement, whose antecedent is not incon-

sistent with that assertion. We add to R the assertions GTZ(n) and GTZ(m) as well

as the same inductive hypothesis we had added earlier. We are now left to prove that

Minus(pred(n), pred(m)) -< n, which, through (4.7), backchains to pred(n) -< n. This,

in turn, is easily established by the rule6

GTZ(s),s t ==- pred(s) -< t

since we have assumed GTZ(n). Hence the algorithm returns the set {n, m} and R is

augmented with the following rule:

GTZ(s, s 2), sl _ t ==1 Minus(s, s 2) -< t.

6 Presumably 1 already contains that rule. In general, rules of the form GTZ(s), s -< t
rsel(s) -< t are entered into R immediately after the user has defined the data type introducing the
reflexive selector rsel.

4.6 Examples, strengths, and shortcomings

In this section we demonstrate the pros and cons of our method on several well-known

algorithms. We begin with algorithms for computing greatest common divisors. One

such algorithm can be written in IFL as follows:

Procedure Gcd(n,m:NatNum) :NatNum;

Begin

If n = 0 Or m = 0 Then Max(n,m)

Else

If Leq(n,m) = True Then Gcd(n,Minus(m,n))

Else

Gcd(Minus(n,m),m);

End.

Owing to the fact that Minus E B 1, we easily find the measured subset of Gcd to be

{1, 2}: regarding the first argument position we have R H- n - n in the first recursive

call, and R7 F Minus(n, m) - n in the second; likewise, for the second position we have

R H Minus(m, n) - m in the first recursion, and R 1 m - m in the second one. Hence

MSGcd = {1, 2}. Termination follows easily since both recursive calls in the body of

Gcd are under the assumption that both n = 0 and m 5 0. Thus in the first recursive

call we find that the second argument decreases (i.e. Minus(m,n) --< m), while in the

second recursion we find that the first argument decreases (i.e. Minus(n,m) -< n).

Thus Gcd is proven to terminate.

Another, perhaps more intuitive way of computing gcds is the following:

Procedure Gcdl(n,m:NatNum) :NatNum;

Begin

If n = m Then n

Else

If n = 0 Then m

Else

If m = 0 Then n

Else

Gcdl(Mod(n,m),Mod(m,n));

End.

Our method cannot verify the termination of this algorithm, and it is instructive

to understand why. Suppose we defined the remainder procedure Mod as follows:

Procedure Mod (n, m:NatNum) :NatNum;

Begin

If n = 0 Then 0

Else

If m = 0 Or Less(n,m) = True Then n

Else

Mod(Minus(n,m),m);

End.

The termination of Mod is easy to verify: first its measured subset is found to be

{1, 2}, and then in the only recursive call there is we find that Minus(n, m) -< n (since

in that case we have n 5 0,m m 0). Mod is also easily proved to be 1-bounded: in the

first If-Then statement we have 0 -< n, in the second we have n -< n, and in the third,

under the inductive hypothesis

Minus(n,m) -< t = Mod(Minus(n, m), m) _ t

we conclude that Mod(Minus(n,m),m) _ n. Subsequently the system would try to

prove that Mod is 2-bounded, which would obviously fail since Mod is not in fact

2-bounded (e.g. Mod(5,0) = 5).

That Mod is not 2-bounded may sound curious from a mathematical viewpoint,

since, by definition, one thinks of the result of the remainder operation as strictly

smaller than the divisor (the second argument). However, the customary mathemat-

ical definition of the remainder function does not permit the second argument to

be zero; whereas, as an IFL procedure, Mod must return some value for all possible

combination of inputs, even when the second argument is zero. This is the source of

the peculiarity here'. In fact the only way Mod could be 2-bounded is if it returned

zero when the second argument is zero. Even then, however, we would not be able

to prove that Mod is 2-bounded as long as the latter contained the statement If

Less(n,m) = True Then n. For then we would still have to prove n - m, which is

not derivable in our system from the antecedent Less (n,m) = True-even though

it logically follows from it. This point highlights the difference between our method

and Walter's approach of using a theorem prover: in order to deduce n -- m from

Less (n,m) = True one needs to have semantic knowledge about the meaning of pro-

cedures such as Less. Our method, being almost entirely syntactic, does not have

such knowledge and consequently fails to infer many size inequalities which may be

crucial to termination and/or argument-boundedness. In contrast, by making the

derivation of such inequalities contingent on the verification of hypotheses such as

Less(m,n) = True, which are to be subsequently established by a general-purpose

theorem prover, Walther's method will ultimately fare better in some cases because

it will take advantage of the power afforded by such a prover.

After failing to prove that Mod is 2-bounded, and having proven that it is 1-

bounded, our method would try to derive one of the three following rules, in the

given order:

GTZ(si), -t t -- ' Mod(sl, 2) -< t (4.9)

GTZ(s 2),si s t ==1 Mod(s1, s2) ". t (4.10)

GTZ(sl,S 2),s l - t ==* Mod(sl,s 2) -< t. (4.11)

Since none of these in fact hold and our method is sound, it goes without saying that

we would not be able to derive any of them.

Returning to the termination of Gcdl, we compute MSGcdi = {1, 2}. But now,

to prove termination, we must show either that Mod(n,m) -< n or that Mod(m,n) -<

m. Neither conclusion follows in our system from the premises n 0, m 0 O, n = m (in

7The same goes for the IFL implementations of other mathematical functions that are undefined
for some arguments, e.g. for division.

fact the first conclusion should not follow from these premises; consider Mod(2,5) =

2). The second conlusion does follow, but our method cannot prove this, as, in the

absence of rules such as (4.9)-(4.11), the only rule available whose head matches the

goal Mod(m,n) -4 m is

s, -< t ==* Mod(si, s 2) -4 t

(added to R immediately after Mod was discovered to be 1-bounded), which generates

the impossible subgoal m -< m.

Next we consider algorithms for finding the minimum element in a given collection

of numbers. First we would like a procedure that returns the smallest of two given

numbers. A natural implementation is the following:

Procedure Min(n,m:NatNum) :NatNum;

Begin

If Less(n,m) = True Then n

Else

m;

End.

It is noteworthy that although the termination of Min is trivally verified by our method

(vacuously, since there are no recursive calls) we are unable to prove that the proce-

dure is argument-bounded (of course it is both 1-bounded and 2-bounded). Doing

so would require us to prove at some point either that n -< m or that m < n, neither of

which can be achieved in our system since both require additional knowledge about

the semantics of Less. Assuming that an inductive theorem prover were available,

Walther's method would succeed here in proving that Min is both 1-bounded and

2-bounded, as such a prover would presumably be able to deduce from the condition

-Less(n,m) (in the second statement of Min) that m -< n; and from Less(n,m) (in the

first statement) that n -< m.

Our method cannot do that, but there is another straightforward way to write the

"Min" procedure that will allow us to infer argument-boundedness on both positions:

Procedure Mini (n,m:NatNum) :NatNum;

Begin

If (n = 0) Or (m = 0) Then 0

Else

s(Mini(pred(n),pred(m)));

End.

The termination of,Mini is easy to verify since R F- pred(n) - n, R - pred(m) _ m,

and, on the assumption that n $ 0 and m f 0, we have both pred(n) -< n and pred(m)

-4 m. But now we can also prove that Mini is 1-bounded. In the first case we trivially

have 0 - n (by the appropriate instance of [R2]). For the second case we temporarily

add to R the inductive hypothesis

pred(n) zý t == Mini(pred(n), pred(m)) _ t

and the expressions in AtEx(-E1), namely, n - 0 and m: 0, and we proceed to

establish s (Mini (pred(n) ,pred(m))) -< n. By [R4], this backchains to GTZ(n) and

Mini (pred(n) ,pred(m)) _ pred(n). GTZ(n) is easy: it follows directly from n = 0

(rule [R6]). For the subgoal

Mini(pred(n), pred(m)) - pred(n)

we resort to the inductive hypothesis, which yields the trivial subgoal pred(n) 6

pred(n). This proves Mini to be 1-bounded, so at this point the system would

permanently add to R the two following rules:

s1 _ t • Minl(si, S2) - t

and

sl - t = Minl(sl, s 2) - t.

A similar argument will show Mini to be 2-bounded as well, so 7 would be augmented

with two more rules:

82 - t == Minl(s1,S 2) -< t

52 -< t -~ Minl(sl,s 2) -. t.

Subsequently our method would follow the procedure of section 4.5 in an attempt to

derive the following strict inequality lemmas, in the given order:

GTZ(si), si t = Minl(sl,s 2) - t

GTZ(s2), S1 t Minl(sl, 82) t

GTZ(s,s 2),s1 < t ==> Minl(sl,s 2) -- t

Since none of these are true, none will be derived. The system would then try to

derive the corresponding lemmas for the second argument position, and would fail for

the same reason.

The following procedure returns the smallest element in a given list of numbers:

Procedure Minimum(l:NatList) :NatNum;

Begin

If 1 = empty Then 0

Else

If tail(l) = empty Then head(l)

Else

Minimum(add(Minl(head(l),head(tail(l))),tail(tail(l)));

End.

The termination of Minimum is readily verified. First, the measured subset is found

to be {1}, since, in the only recursion there is, we discover that

add(Minl(head(l), head(tail(l))), tail(tail(l))) -< 1 (4.12)

through [R4]. Specifically, applying [R4] to (4.12) yields the subgoals GTZ(1) and

tail(tail(l)) - tail(l). The former follows from the contents of AtEx(-E1j), while

the latter follows from [R3] and [R1]. The next step is to prove that

Holdsninimum(add(Minl(head(l), head(tail(l))), tail(tail(l))) -< 1, True).

First we add to 7Z the expressions in

AtEx(-n(1 = empty)) U AtEx(-i(tail(1) = empty)) =

{1 : empty, tail(l) : empty}.

Then we apply the only NatList-instance of [R10], generating the subgoals

tail(tail(1)) -< tail(1).

This matches the head of [R8] (with g F tail), which splits further into the two sub-

goals GTZ(tail(l)) and tail(l) i tail(l), both of which are readily established.

This concludes the proof that Minimum terminates. Argument-boundedness and the

associated strict inequality lemmas of section 4.5 are not an issue here since the return

type of Minimum and the type of its argument are distinct.

Finally we present a procedure that merges two sorted lists of numbers:

Procedure Merge(ll, 12 : NatList) :NatList;

Begin

If 11 = empty Then 12

Else

If 12 = empty Then 11

Else

If Less(head(li),head(12)) = True Then

add(head(l) ,Merge(tail(li),12))

Else

add(head(12) ,Merge(ll,tail(12)));

End.

In proving the termination of Merge we first compute MSnerge, which is found to be

{1,2} (as R F- tail(li) ý 11, R l11 11, R - 12 _ 12, and R -tail(12) d 12).
Then, in the first recursion, we find that tail(ll) -< 11 (from [R8], since 7R - 1i - 11

by [Ri] and 7R - GTZ(11) by AtEx(-EI)). In the second recursion we cannot prove

that the first argument decreases, but we can do so for the second one, i.e. for

tail(12), using essentially the same argument we used in the preceding case.

Our next example is a procedure DM that takes a Wff and recursively applies -De-

Morgan's laws to it until all the negation signs have been pushed inwards to atomic

propositions. DM also eliminates double negations along the way. Hence, the "postcon-

dition" for the result DM(q) is that it contains no subformulas of the form -1(01 V 02)

or -'(i1 A 02) or -1--01. In standard notation DM can be defined as follows:

DM(-¢q1) V DM(-'¢ 2)

DM(-¢I1) A DM(- ¢2)

DM(i1)

DM(01) op DM(¢2)

if (-1(01 A 02)

if = -'(0 1 V 02)

if = -1-101

if op O 2, op E {V, A}

otherwise.

For instance, DM(-n(p A -1q) V r) = (-'p V q) V r, DM(-n(-'-'p A (q V -r))) =

-1p V (-'q A r), and so on.

In IFL we can straightforwardly implement DM as follows:

Procedure DM(O:Wff):Wff;

Begin

If 0 = and(l-and(q),r-and(q)) Then

and(DM(1-and(q)) ,DM(r-and(q)))

Else

If q = or(l-or(q),r-or(q)) Then

or(DM (1-or ()), DM(r-or ()))

Else

If 0 = not(neg(4)) and neg(4) = not(neg(neg(q))) Then

DM(neg(neg(o)))

Else

If € = not(neg(q)) And

neg(O) = and(l-and(neg(4)),r-and(neg(q))) Then

or(DM(not(1-and(neg(¢)))),DM(not(r-and(neg(¢)))))

DM(¢) =

Else

If # = not(neg(q)) And

neg(q) = or(l-or(neg(q)),r-or(neg(O))) Then

and(DM(not(l-or(neg(b))))),DM(not(r-or(neg(q)))))

Else

End.

Presumably 7R will already contain the following rule instances (amongst others,

obtained right after the definition of the type Wff):

s - t == 1-and(s) - t (4.13)

s t == r-and(s) - t (4.14)

GTZ(t),s - neg(t) == not(s) - t (4.15)

t = not(s) - GTZ(t) (4.16)

GTZ(s),s -< t = 1-and(s) -< t (4.17)

s -< neg(t) = not(s) -< t. (4.18)

In computing MSDM we easily see that L - q for every recursive call DM($) in the

first three statements, since in those cases 0 is made up exclusively of selectors. The

only slightly tricky cases are the fourth and fifth statements, i.e. those in which q is

of the form -(01 A 42) and -1(0 1 V 02), respectively. In the former case we need to

prove that

not(1-and(neg(O))) -4 (4.19)

and

not(r-and(neg(¢))) _ q. (4.20)

Now, (4.19) can be derived from rule (4.15), if we can only prove GTZ(O) and

1-and(neg(O)) _- neg(4). The first is immediate from (4.16) since we are given that

= not(.- .), while the second follows directly from (4.13) since neg(q) - neg(4).

This proves (4.19). A symmetrical argument using rule (4.14) in place of (4.13) will

establish (4.20). Finally, similar reasoning will show that not(1-or(neg(¢))) _ 4 in

the case where -_'(01 V q2). Thus we conclude that MSDM = {1}.

Now to prove termination we need to show that HoldsDM(b - 0, Ej) for every

recursive call DM(4) in each rj. Again, the only cases that are not straightfor-

ward are those in which =_ -(01 A 02) and = -1(01 V 02). In the first case

we must show that not(1-and(neg(q))) -< q. By rule (4.18), this backchains to

1-and(neg(q)) -< neg(O), which, in turn, by (4.17), backchains to GTZ(neg(q))

and neg(O) -neg(q), both of which are easily established. A symmetrical argument

will verify that not (r-and(neg(0))) -< 0 in the case in which -•(1 A 02), while

similar reasoning can handle the case (=_ -(1 V 02).

Having established termination, we ask whether DM is 1-bounded. The answer of

course turns out negative. Consider, for instance,

DM(-(p A q)) = -'p V -q.

Here the size of -n(p A q) is two, while the size of the result -np V -'q is three.

Consequently, knowing that our method is sound, we may a priori conclude that it

will not prove DM to be 1-bounded. Nevertheless, it is instructive to hand-simulate

the attempt and see exactly what happens. In particular, it is worth noting that the

"proof"' goes through fine for the first three statements. For the first one, for example,

If k = and(l-and(O),r-and(q)) Then

and (DM(1-and (q)) ,DM(r-and (q)))

we add to R the two inductive hypotheses

1-and(O) 6 t =- DM(1-and(q)) _ t

r-and(o) 8 t =- DM(r-and(O)) _ t

and we proceed to verify that

and(DM(1-and(0)) ,DM(r-and(q))) - q. (4.21)

Presumably R will already contain the rule

GTZ(t), -1 < 1-and(t), s2- r-and(t) = and(sl,s) < t

by virtue of which the goal (4.21) backchains to

GTZ(Q) (i)

DM(1-and(q)) - 1-and(q) (ii), and

DM(r-and(q)) -< r-and(q) (iii).

The subgoal (i) is easily verified through the rule

I = and(sl, 2) =ý GTZ(t)

while (ii) and (iii) are readily established owing to the inductive hypotheses. Our

method will also breeze through the second case using analogous reasoning; the

third case is trivial with the appropriate inductive hypothesis at hand, since R7 -

neg(neg(q)) - q.

The foregoing argument is an elegant machine proof that the transformation

DM(1 A 02) = DM(¢ 1) A DM(q 2)

is size-preserving-on the critical inductive assumptions, of course, that no matter

what q1 and 0 2 are, we will have DM(q 1) - 41 and DM(q 2) _ q2. If the proof were

to go through for all six possible cases, these assumptions would be justified and the

conclusion that DM is 1-bounded would follow validly by induction. But of course the

proof does not go all the way through; it fails on the fourth case, which is exactly

where it should fail: in the non-size-preserving transformation

DM(-,(ql A 52)) DM(-O 1) V DM(-'q 2).

The reader may wish to verify this by carrying out the procedure in detail and dis-

covering exactly where things go wrong.

We end this section with some sorting examples from [8]. We begin with selection

sort, which uses the following auxilliary procedure:

Procedure Replace(n,m:NatNum;l:NatList):NatList;

Begin

If 1 = empty Then empty

Else

If head(l) = n Then add(m,tail(l))

Else

add(head(l),Replace(n,m,tail(l)));

End.

which replaces the leftmost occurence of n in 1 with m. Replace is first proven to

terminate (straightforward) and then to be 3-bounded, since, with the aid of the

inductive hypothesis

tail(l) -< t =- Replace(n,m,tail(l)) - t

we find that

HoldsReplace(add(head(1), Replace(n, m, tail(l))) - 1, True) (4.22)

by virtue of [R4]. In particular, the goal in (4.22) backchains by [R4] to GTZ(1) and

Replace(n,-m, tail(l)) -(tail(l). (4.23)

GTZ(1) follows directly from AtEx(E1), while (4.23) follows from the inductive

hypothesis and [R1]. Accordingly, we augment 7Z with the following rules:

S3 - t - Replace(sl, 82, 3) - t (4.24)

s 3 -4 t - Replace(s 1,s 2, s 3) " t. (4.25)

Finally, we attempt to find a subset A C {sl, s2, 3} such that

GTZ(A) =- Replace(si, 82 S3) -. 8 3

but do not succeed since there is no such subset.

The selection sort is written as follows:

Procedure SelectSort(l:NatList) :NatList;

Begin

If 1 = empty Then empty

Else

If head(l) = Minimum(l) Then add(head(l),SelectSort(tail(l)))

Else

add(Minimum(l),SelectSort(Replace(Minimum(1),head(l),tail(l))));

End.

In computing MSselectsort the first recursion is easy; we readily get tail(l) < 1. In

the second recursion we must prove that

Replace(Minimum(l), head(l), tail(l)) -< 1,

which, by rule (4.24), reduces to the straightforward subgoal tail(l) - 1. Hence

MSselectSort = {1}. The termination proof is similar: in the first recursion we get

tail(l) -< 1 (by [R8]), and in the second one we match the goal

Replace(Minimum(l), head(l), tail(l)) -< 1

with the head of rule (4.25), obtaining the subgoal tail(l) - 1, which is again es-

tablished by [R8], since in both cases we have 1 $ empty.

Interestingly enough, our method also succeeds in proving SelectSort to be 1-

bounded:

First statement. Trivially, R 7 empty - 1.

Second statement. First we add to 1 the inductive hypothesis

tail(l) -- t = SelectSort(tail(1)) - t.

Then to derive add(head(l), SelectSort(tail(1))) _ 1 we use [R4], producing

the subgoals GTZ(1) (which is immediate by AtEx(-El)) and

SelectSort(tail(1)) - tail(l)

which, by the inductive hypothesis, yields the readily verifiable

tail(l) tail l).

Third statement This is more interesting. First we postulate the hypothesis

Replace(Minimum(1), head(1), tail(1)) -< t

SelectSort(Replace(Minimum(1), head(1), tail(l))) -< t. (4.26)

Then, using [R4], the goal

add(Mimimum(1), SelectSort(Replace(Minimum(1), head(1), tail(l)))) -< 1

backchains to

SelectSort(Replace(Minimum(1), head(l), tail(l))) -< tail(1)

and GTZ(1). The latter is immediate from 1 h empty. For the former we use

(4.26) to get

Replace(Minimum(1), head(l), tail(l)) _ tail(l).

To this we can apply rule (4.24), which will finally yield the trivial tail(l) -

tail(1).

Our method will go on and attempt to prove

GTZ(s), -- t =- SelectSort(ls) -< t.

This, of course, is not true, so it cannot be proved.

Our next example is MinSort, which uses the following auxilliary procedure:

Procedure DeleteMin(l:NatList) :NatList;

Begin

If (1 = empty) Or (tail(l) = empty) Then empty

Else

If Leq(head(l),head(tail(l))) = True Then

add(head(tail(l)),DeleteMin(add(head(l),tail(tail(l)))))

Else

add(head(l) ,DeleteMin(tail(l)));

End.

DeleteMin () yields a permutation of 1 that contains one less occurence of Minimum(l).

Termination is verified easily. The procedure is also found to be 1-bounded, so the

following rules are added to R:

s _ t DeleteMin(s) _ t (4.27)

s - t == DeleteMin(s) -< t. (4.28)

Attempting to derive a strict inequality lemma in the manner of section 4.5, we first

add to 7 the assertion GTZ(1) and then we begin by examining the first case. The

antecedent of that is inconsistent with the hypothesis GTZ(1), so we move to the

next case. We add to 1Z the inductive hypothesis

GTZ(add(head(1), tail(tail(l)))), add(head(l),tail(tail(l))) -4 t

DeleteMin(add(head(1), tail(tail(l)))) -< t (4.29)

and we try to derive

add(head(tail(1)), DeleteMin(add(head(1), tail(tail(1))))) -1.

This is done through [R4], yielding the subgoal

DeleteMin(add(head(1),tail(tail(1)))) -4 tail(l). (4.30)

This subgoal unifies both with the head of (4.28) and with the head of the inductive

hypothesis. Which one will be tried first depends on their respective positions in R.

Assuming that R grows at the end (i.e. that new rules are appended to it), rule (4.28)

would be tried first, generating the subgoal

add(head(1), tail(tail(l))) -< tail(l)

which, trhough [R10], would yield the unsatisfiable

tail(tail(1)) -< tail(tail(1)).

At this point the interpreter would backtrack and try to establish (4.30) through the

inductive hypothesis, producing the subgoals

GTZ(add(head(1), tail(tail(1))))

and

add(head(l), tail(tail(l))) -4 tail(l).

The first of these is immediate, while the second matches [R4] and will produce

GTZ(tail(l)) and

tail(tail(l)) _- tail(tail(l)).

The former follows from AtEx(-El) and the latter from [R1], thus the proof is com-

plete. A similar argument will work for the last case, which will establish the lemma

and cause the system to extend ? with the following rule:

GTZ(s),s -< t ==> DeleteMin(s) -< t. (4.31)

MinSort is implemented as follows:

Procedure MinSort (:NatList) :NatList;

Begin

If 1 = empty Then empty

Else

add(Minimum(l) ,MinSort (DeleteMin ()));

End.

Since DeleteMin E B1, we get DeleteMin(l) _ 1 and hence MSMinsort = {1}. Ter-

mination is established through lemma (4.31), as in the second case of MinSort we

have 1 Z empty and hence R - GTZ(1).

Next we consider QuickSort. Walther's implementation of quickSort in [8] uses

the following procedures:

Procedure RemoveSmaller(n:NatNum; 1 :NatList) :NatList;

Begin

If 1 = empty Then empty

Else

If Leq(head(l),n) = True Then RemoveSmaller(n,tail(1))

Else

add(head(l),RemoveSmaller(n,tail(l)));

End.

LCI·IYT--L--L--LI~YIIll*fl~·C~

Procedure RemoveLarger(n:NatNum;l:NatList): NatList;

Begin

If 1 = empty Then empty

Else

If Less(n,head(l)) = True Then RemoveLarger(n,tail(1))

Else

add(head(l),RemoveLarger(n,tail(l)));

End.

RemoveLarger (n,1) returns a copy of 1 with all elements greater than n removed;

RemoveSmaller does the same thing for all elements that are smaller than or equal

to n. Both procedures are proven to terminate and to be 2-bounded, so the following

rules are added to R:

s2 < t - RemoveSmaller(si, s2) _ t (4.32)

S2 - t =• RemoveSmaller(si, s 2) - t (4.33)

82 _ t = RemoveLarger(sl s 2) t (4.34)

82 - t =j RemoveLarger(s 1, 2) 4 t. (4.35)

QuickSort can now be written as follows:

Procedure QuickSort(l :NatList) :NatList;

Begin

If 1 = empty Then empty

Else

Append(QuickSort(RemoveLarger(head(l),tail(l))),

add(head(l),QuickSort(RemoveSmaller(head() ,tail(l)))));

End.

The termination of QuickSort is easily verified with the help of rules (4.32)- (4.35).

Since Append is not an argument-bounded procedure, 2-boundedness cannot be es-

tablished for QuickSort.

Our next example is MergeSort, using the auxilliary procedures RemoveEven and

RemoveOdd, which remove all the elements in the even (odd) positions of a given list:

Procedure RemoveEven(l :NatList):NatList;

Begin

If 1 = empty then empty

Else

If tail(l) = empty Then 1

Else

add(head(l),RemoveEven(tail(tail(l)));

End.

Procedure RemoveOdd(l :NatList):NatList;

Begin

If (1 = empty) Or (tail(l) = empty) Then empty

Else

add(head(tail(1)),RemoveOdd(tail(tail(l))));

End.

Note that

(Vl E NatList) RemoveOdd(RemoveEven(1)) = empty.

Both procedures are proven to be terminating and 1-bounded, thus the following

rules are added to 7R:

8 - t == RemoveEven(sl) -< t (4.36)

si - t = RemoveEven(sl) -< t (4.37)

sl t ~ RemoveOdd(si) -t (4.38)

sl -< t == RemoveOdd(si) - t. (4.39)

In addition, we manage to prove the following lemma for RemoveOdd:

GTZ(si), s, t == RemoveOdd(si) -< t. (4.40)

Unfortunately a similar assertion cannot be proved for RemoveEven because it is not

true that RemoveEven(1) -. 1 whenever 1 # empty. In particular, this is false for all

one-element lists, as RemoveEven is the identity on such lists. Observe, however, that

the one-element lists are the only counter-examples to the statement in question. For

all longer lists 1 we do have RemoveEven(1) -< 1, or equivalently,

GTZ(tail(si)),sl t = RemoveEven(si) -< t. (4.41)

We will return to this observation shortly.

Let us now consider the termination of MergeSort:

Procedure MergeSort (1:NatList) :NatList;

Begin

If 1 = empty Then empty

Else

If tail(l) = empty Then 1

Else

Merge (MergeSort (RemoveEven ()) ,MergeSort (Remove0dd(l)));

End.

As the first step we note that since both RemoveEven and RemoveOdd are 1-bounded,

we will easily compute the measured subset of MergeSort to be {1}. Next, however,

we must prove that, on the assumptions 1 - empty and tail(l) empty, we have

RemoveEven(l) -< 1 and RemoveOdd(1) -< 1. The second is easily handled by (4.40),

but the first; is a problem. The only available rule we can apply to it is (4.37), which

will not work since it backchains to 1 -< 1. Thus the proof does not go through and

termination cannot be established. The missing piece of knowledge responsible for

this failure is that the condition tail(l) 0 empty entails RemoveEven(1) -< 1, i.e. rule

(4.41). If (4.41) was in R1 the goal RemoveEven(1) -< 1 would be reduced to the trivial

subgoals GTZ(tail(1)) and 1 - 1, and termination would then follow.

This type of difficulty is not peculiar to RemoveEven. For many i-bounded pro-

cedures f :Tpar, -- T, what determines whether or not f(w) < w is not whether

GTZ(w) but rather whether GTZ(sel(w)) or GTZ(sel(sel'(w))), etc., where sel, sel',

etc., are selectors of Tpa,,,,. For instance, in RemoveEven, what determines whether

or not RemoveEven(1) -< 1 is not whether GTZ(1) but whether GTZ(tail(1)). In

general, for any i-bounded procedure f of k parameters, the problem is that our

method will only try to derive lemmas of the form

GTZ(sai,...,Sa.) ==> f(s,... ,sk) -< Si.

We can remedy this as follows. Let us say that an atomic expression s = t or

s - t is a size expression iff Top(t) is a constructor symbol, either reflexive or

irreflexive. Thus 1 Z empty, pred(n) = 0, and m = succ(pred(m)) are all size ex-

pressions. Now let SZ-SET1 , the size set of f, be the set of all terms s such

that s = t or s $ t is some size expression in the body of f. For instance, the

size set of RemoveEven is {1,tail(1)}. Then we modify our algorithm for deriv-

ing strict inequality lemmas (section 4.5) so that we iterate through the power-set

of {parl,...,park} U SZ-SETf, not just the power-set of {parl,...,park}. Just

as before, for every subset A of this set we visit each statement If Ej Then rj in

the body of f for which Consistent (Ej, A) = True, we add to R the assertions

GTZ(A) along with the appropriate inductive hypotheses, and then we try to prove

that Holds (rj -< pari, Ej). If we succeed in proving this for all statements < Ej, rj >

for which Ej is consistent with GTZ(A), then we halt and augment R with the rule

GTZ(A),si -< t =# f(sl,... ,sk) - t.

To illustrate, for RemoveEven we would consider the power-set of {1,tail(1)}: as

before, we would fail to prove that

GTZ(1) ==• RemoveEven(1) -< 1

100

but we would succeed in proving

GTZ(tail(l)) ==> RemoveEven(l) -i 1.

As has already been explained, this will enable our method to prove the termination

of MergeSort.

Our final example is BubbleSort. The following procedure returns a copy of the

input list in which the smallest element has been "bubbled up" to the right end of

the list:

Procedure Bubble(l:NatList):NatList;

Begin

If 1 = empty Or tail(l) = empty Then 1

Else

If Leq(head(l),head(tail(l))) = True Then

add(head(tail(l)),Bubble(add(head(l),tail(tail(l)))))

Else

add(head(l),Bubble(tail(l)));

End.

Bubble is proven to terminate and to be 1-bounded, so the following rules are added

to TR:

s t -- > Bubble(s) _ t (4.42)

s -< t ==> Bubble(s) -< t. (4.43)

The next procedure removes the last element of the given list:

Procedure RemoveLast(1l:NatList) :NatList;

Begin

If 1 = empty Or tail(:) = empty Then empty

Else

add(head(l),RemoveLast(tail ()));

End.

101

RemoveLast is easily proven to be terminating, 1-bounded, and strictly 1-bounded

whenever the input list is non-empty, hence the following rules are added to 7Z:

s t -~ RemoveLast(s) < t (4.44)

s -i t- RemoveLast(s) - t (4.45)

GTZ(s), s -_ t -> RemoveLast(s) -< t. (4.46)

BubbleSort can now be implemented as follows:

Procedure BubbleSort (l:NatList) :NatList;

Begin

If 1 = empty Then empty

Else

add(Last(Bubble(l)),BubbleSort(RemoveLast(Bubble(l))));

End.

where Last is a procedure that returns the last element of a given list.

Since RemoveLast is 1-bounded, we readily compute MSBubbleSort = {1}. Next,

to prove RemoveLast(Bubble(l)) -< 1, we can either apply rule (4.45) or rule (4.46).

Unfortunately, neither will work. Rule (4.45) will require us to prove Bubble(l) -< 1,

which is not even true, while rule (4.46) will require the assertion GTZ(Bubble(l)),

which is true (on the assumption 1 7 empty) but cannot be derived.

We can get around this difficulty by devising a slightly more sophisticated method

for deducing GTZ conclusions. In particular, we want to be able to infer conclusions

of the form GTZ(f(...)), for f E PROCM, even in the absence of size equations

such as f(...) = rcons(...) or f(...) 7 ircons(...). One way to do this is to employ

the same technique we use for deriving strict inequality lemmas. Specifically, we will

examine various subsets A C {s,... ,sk}USZ-SETf in an attempt to derive a lemma

of the form

GTZ(A) ==f GTZ(f(sl,..., 8k))

More concretely, immediately after f has been defined and proven to terminate, we

102

carry out the following algorithm:

For every non-empty subset A C {parl,..., park} U SZ-SETf Do {

For j=lTo m+lDo

If Consistentf(Ej, A) Then {

Add to 7 the assertions GTZ(A);

For every recursive call f(t,..., tk) in rj add to R the

inductive hypothesis

GTZ(A[par; * ti]) ==- GTZ(f(tl,., tk));

res 4- Holdsf(GTZ(rj),Ej);

Delete from 17 everything that was added to it in the

previous three steps;

If (-'res) Then

j m + 2; }

If (j == m+1) Then

return A; }

return 0;

If a non-empty set A is returned by this algorithm, we add to 7 the rule

GTZ(A) ==> GTZ(f(parx,... ,park)).

We illustrate the method on procedure Plus:

Procedure Plus(n,m:NatNum) :NatNum;

Begin

If m = 0 Then n

Else

s(Plus(n,pred(m)));

End.

Here we have to consider the power-set of {n, m}. For the subset {n}, we examine

the first statement and we find its antecedent m = 0 to be consistent with GTZ(n),

so we add to R the assertion GTZ(n) and then we trivially derive GTZ(rl - n).

103

The second statement is also consistent with GTZ(n), so we add to R the assertion

GTZ(n) along with the inductive hypothesis

GTZ(n) =- GTZ(Plus(n, pred(m)))

and we proceed to prove

GTZ(s(Plus(n, pred(m))))

which is immediate. At this point the algorithm will successfully return the set {n}

and R will be augmented with the rule

GTZ(si) ==> GTZ(Plus(s1,s 2)). (4.47)

As a second example, consider the multiplication procedure:

Procedure Times(n,m:NatNum) :NatNum;

Begin

If n = 0 Then 0

Else

Plus(m,Times(pred(n),m));

End.

Here, beginning with the subset {n}, we find the first case to be inconsistent with

GTZ(n), so we move to the next statement, whose antecedent is consistent with the

said assertion. We thus add to R the fact GTZ(n) and the hypothesis

GTZ(pred(n)) == GTZ(Times(pred(n),m))

and we try to derive

GTZ(Plus(m, Times(pred(n), m))).

By rule (4.47) this backchains to GTZ(m), which is unprovable. Next we consider

the subset {m}, which fails from the beginning as it is consistent with the first case

104

(n = 0) but we cannot derive GTZ(O). Finally, for the subset {n,m} we reject the

first statement as inconsistent with GTZ(n,m), while, in the second case, rule (4.47)

yields the satisfiable GTZ(m), so at this point the method has successfully inferred

the lemma n > 0, m > 0 -= n -m > 0. Upon conclusion the set {n,m} is returned

and R is extended with the rule

GTZ(si, 82) == GTZ(Times(si, S2)).

Notice that rules of the form GTZ(...) =:- GTZ(...) do not have a significant

effect on the complexity of the system. The worst-case complexity of deciding a

GTZ(...) goal is still meager: if t - f(...) and f is the ith procedure defined in

M (in temporal order), then the goal GTZ(f(...)) will backchain at most i timess;

after that it must ultimately be decided using rules [R5] and [R6] only, which, as we

have seen, is a task of negligible difficulty (it is essentially a matter of looking up size

equations in 7). Returning to BubbleSort, it is now easy to see that the foregoing

technique will manage to prove the lemma

GTZ(s) == GTZ(Bubble(s))

which will be used subsequently to establish the termination of BubbleSort.

8And that assumes that we have derived rules of the form GTZ(...) .-. GTZ(g(.. .)) for every
single procedure g defined in M prior to f, which is very unlikely.

105

Appendix A

Proofs

Theorem A.1.1 (Interpreter completeness) For any module M and term t E
T(YEM), EvalM(t) returns a term w iffw is an object in T(CONM) such that t -•

W.

Proof. If part. The key observation is the following:

Lemma A.1.1 For all terms s, t E T(EM), if s === t then EvalM(s) = EvalM(t) 1.

Proof. By strong induction on the rewrite cost of the transition s ==->- t. There are

three cases to be distinguished:

Case 1: If s ==T t by [TI], then

S g-(Wl,...,Wn, Ul, U2,..., U), t g(W ...1 Wn, U U2,...,Um),

and u ==zT u'. By the inductive hypothesis, EvalM(ul) = EvalM(u'), and this

entails that EvalM(s) = EvalM(t).

Case 2: s ==-r t by [T2] or [T3], so that Top(s) E SELM and s 1 1,t E T(CONM).

In that case it is easy to see from lines 5-7 in the listing of EvalM that EvalM(s) =

1 Here the equality EvalM(s) = EvalM(t) means that the outcome of evaluating s is identical to
that of evaluating t, and is meaningful even in cases in which the value of either side is undefined.
In particular, it says that if EvalM(s) diverges then EvalM(t) diverges as well, and vice versa; and
that if EvalM(s) generates an error, then the exact same error is produced by computing EvalM(t),
and conversely.

106

t = Evalg(t).

Case 3: If s -=T t by virtue of [T4], then s f(wl,... ,wk) for some f E PROCM

with k parameters par1,...,park and body

[< Ei,ri >,...,< Em, rm >, < True, rm+l >

and t = rj+ i[ari wi] for some j < m such that
E-[pa-, wi]1 =E E r[-, 2 E [• E-] -- _. .

Ej[ý`a E[l 1 ig] rE +14 [> a] -F+

=s E1 [par; + i[ar] '] False

•. En,, l -- • f H] E=• E7rE +l a --] True.

The crucial observation is that.

TEvalM(Etl[pi_ - ' -->i]) = False

TEvalM (Ej[f H • - -i)= False,

while TEvalM(Ej+l[~ari ' i]) = True. This can be viewed as a consequence of the

following more general proposition:

Proposition A.1.1 For all i E {1,...,j + 1} and y E {1,...,ni},
rrr---+ + TEvalM(E + 1 -4""

TEvalM(E [ar iý-]) = TEvalm(E~ 1 j

Proof. By induction on the structure of =_ E_[Fi-+ -i]. If = (s),

then ==>- E='+[par --- + -i] -- 0 either by one of {[Bl],[B2]} or by one of

{[B3],[B4],[B5],[B6]}. In the latter case the result follows trivially from the defi-

nition of TEvalM, lemma 2.5.1, and the fact that TEvalM(TV) = TV for TV E

{ True,False}. In the former case, suppose 0 ==B 0 by [Bi], so € _ (Ul op u2), =

107

(u 1 op u2), op E {=, }, and ul ==#T u•. By the (outer) inductive hypothesis,

EvalM(ul) = EvalM(u')

and the result follows from the definition of TEvalM. A similar argument works if

q ==* 7P in virtue of [B2], and thus the base case is complete. The inductive step

(covering the cases in which € is a conjunction or a disjunction) is trivial, and the

proposition is established by structural induction. Eo

Now the above proposition implies that

TEvalM(El[pari W]) = TEval(Ef[p2 ----) =,• + 1 palse) False

= TEvalM(E+ 1 [ipa] w- _ False) = False ...

and, in a similar fashion,

TEvalM(Ej[a ----] = False, TEval(Ej+l[ari H i]) = True.

But then, given that EvalM(wi) = wi for i = 1,..., k, lines 9-14 in the listing of

EvalM show that

EvalM(f(wl,. . ., Wk)) = EvalM(rj+l[a i -i]).

The above cases exhaust all possibilities and the result follows by strong induction.

O
No wsuppose that w is an object such that t ==- w. By a simple induction on the

length of the t ==~-4 w path we conclude, on the basis of the above lemma, that

EvalM(t) = EvalM(w). But, by lemma 2.5.1, EvalM(w) = w, hence EvalM(t) = w.

Only-if part. By strong induction on r, the number of recursive invocations of EvalM

spawned by the call EvalM(t). If we let a = Top(t), there are three cases:

Case 1: a E CONM. In that case we must have #(t) > 0, hence the term that

will be returned by EvalM(t) is o(EvalM(t I 1),...,EvalM(t I #(t))). Now, by

the inductive hypothesis, each EvalM(t I i) will return an object wi such that t I

108

i__~___U_··lil··_L__ l--·-·LI--I~LYIYI_~·ilLI·l

109

i ==-* w. But then a(wi,..., Wk) is also an object2 , and, furthermore, by repeated

applications of the term evaluation progress rule [T1], we conclude that

t =_ a(t 1,...It I #(t)) ==,- 0'(Wl,...-, Wk).

Case 2: a E SELM. In that case t - sel (t1) for some c E CONT, T E TYPESM,

and, by the inductive hypothesis, EvalM(tl) will return an object wl such that t1 ==-

wl . Again by repeated applications of [T1] we conclude that t ==~ sel'(wi) (a).

Because t is well-typed (by assumption, since t E T(EM)) and EvalM preserves type,

we must have wi E T(CONT), i.e. Top(wi) E CONT. Now if Top(wi) - c then,

by [T2], sel'(wi) ==>7 wx I i (b), and, by combining (a) with (b) we are done, since

wl 1 i is precisely the term that will be returned by EvalM(t). On the other hand, if

Top(t) f c then EvalM(t) = MinimalM(Ti), where Ti is the ith component type of c,

and then by [T3] we will have sel (wi) ==-r MinimalM(Ti) (c), so the result follows

from (a), (c), and the transitivity of T== '.

Case 3: a- E PROCM. In that case t - f(ti,...,tk) for some f E PROCM with k

parameters par1 ,..., park and body

[< E, ri >,..., < Em, r >, < True, rm+l >].

By the inductive hypothesis, for each i = 1,... ,k, EvalM(ti) will return an object

wi such that t4 == wi, so, by repeated applications of [TI], it follows that t =4-

f(wi, ... , wk) (i). Now by inspecting lines 12-14 in the listing of EvalM we can

see that EvalM(t) will return the term EvalM(rj+l[pari -+ wia]) for some number

j < m such that TEvalM(Ei [-a-r -4]) = False (ii) for every i = 1,..., j, and

TEvalM(Ej+l[P--i '-4 W']) = True (iii).

Therefore, if we can only prove that

Ei [ar* -W-]== False for each i = 1,..., j (A.1)

2 Note that each wi object must be of the appropriate type (namely, the i
th component type of

a) since t is assumed to be well-typed and EvalM preserves type (lemma 2.5.2).

and

Ej+pari 'il ==H True, (A.2)

it will follow from [T4] that

f(Wl, ... , jWk) =•T rj+l1[ari + i] (A.3)

and then eq.(A.3) in tandem with (i) will establish that t ==-- rj+l[aari - wi]

(iv); but then, again by the inductive hypothesis, we will be able to conclude that

Evalm(rj+1•ari ý wi]) will return an object w such that rj+l ==>- w (v), and at

that point {(iv),(v)} will entail that t ===- w, and the proof will be complete since

w is the term that will be returned by the call EvalM(t).

Now eq.(A.1) and eq.(A.2) can be derived from the following more general observa-

tion:

Proposition A.1.2 For all i E {1,..., j + 1} and TV E{True,False},

if TEvalM(Ei[-Fri ý i+i]) = TV then Ei[Fpi i] - => TV.

The above can be easily proved by (nested) induction on the structure of Ei[pF -+

Ti]: if the latter is of the form (ul op u2) for op E {=, -}, then, by the (outer)

inductive hypothesis, EvalM(ul) and EvalM(u2) will respectively return two objects

wl and w2 such that ul ==~- w1, u2 == w2. Then by repeated applications of [B1]

and [B2] we get (Ul op u2) ==* (wl op w2). But now it is clear that (wl op w2) =='UB

TEvalM((wl op w2)), hence we conclude that

(Ul op u2) ==-* TEvalM((wl op w2)) = TEvalM((ul op u2)).

The inductive step is even simpler, and this concludes the inner inductive argument

as well as the original proof. O

Proposition A.1.3 Let M' be the module obtained by extending an admissible mod-

ule M with a normal procedure f : Tparl x ... x Tpark - T and let w1,... , Wk be any

110

111

k objects of type Tpar,,... ,Tpk, respectively. If f(wl,..., Wk) has a finite recursion

tree, then EvalMi(f(wi,..., wk)) 1.

Proof. By double strong induction on the size of RTf(,,...,wk) , the recursion tree

of the term f(wi,...,wk). Let If Ej+ 1 Then rj+l be the unique statement in the

body of f such that TEvalM,(Ej+l[pr - -w]) = True. Now because the various

conditions E in the body of f do not contain the symbol f (since f is normal), we

have

TEvalM(Ej+[1 ar]) = TEvalM,(Ej+1 i]) = True (A.4)

while

TEval M(Ei [3 'i-]) ' = TEvalM,(Ei[par - I]) = False (A.5)

for 1 < i < j. So, to show that EvalM, halts on f(wu,. ., k), we only need to show

that EvalM, halts on rj+l[ar - -it]. We show the latter by proving the stronger

statement that EvalM,(s) I for every s E rj+l,[ar F -], by (nested) strong induc-

tion on the size of s.

Suppose s = g(sl,... , s,) for some n > 0 and assume the result for all subterms

of rj+i[Fari+ -] of size smaller than that of g(sI,...,s,) (this is the inner in-

ductive hypothesis). Now either g _ f or not. Suppose g f f. By the inner

inductive hypothesis we get EvalM,(si) I for i = 1,... ,n, hence corollary 2.5.1 en-

tails that EvalM,(si) E T(CONM,) = T(CONM) for each such i. It follows that

g(EvalMi(sl),..., EvalM,(s,)) E T(EM), so, by lemma 2.5.4.a,

EvalM,(g(Eval,(sl),..., EvalM,(s,))) =

EvalM(g(EvalM,(sl), ... , EvalM(sn))). (A.6)

Now, by the admissibility of M and theorem 2.5.3 we see that

EvalM(g(EvalM,(sl), ... , EvalI,(s,))))

so, by (A.6), we conclude that EvalMi(g(EvalMi(sl),..., EvalM,(s,))) 1. But then

it follows from lemma 2.5.5 that EvalM,(g(sl,..., s,)) 1. Now suppose that g = f,

so that n = k. Then, because f is normal, no si contains a recursive call to f, thus

si E T(EM) for i = 1,...,n and EvalM,(si) = EvalM(si) (lemma 2.5.4). But, by

theorem 2.5.3 and the admissibility of M, we get EvalM(si) 1, thus we also have

EvalM,(si) . for all i E {1,...,n}. Next, corollary 2.5.1 implies that EvalM,(si) E

T(CONM,) = T(CONM), and since f(si,.. ,sk) is well-typed, we conclude from

lemma 2.5.2 that each term EvalM,(si) is an object of type Tpar,. But now observe that

the recursion tree of f(EvalM,(sl),..., EvalM,(Sk)) is a proper subtree of RTf(wl,...,wk),

so from the (outer) inductive hypothesis it follows that

EvalM,(f(EvalM,(sl), ... , EvalM,(sk)) 1.

At this point lemma 2.5.5 yields the desired conclusion that

EvalM,(f(sl,.. s,n)) I.

We have now shown that EvalM, halts for every subterm of rj+1F-r+ s], thus

including rj+l[par -V] itself, and both inductive arguments are complete. L

Proposition A.1.4 Let M' be the module obtained by augmenting an admissible

module M with a normal procedure f : Tp,,,, x ... x Tpak, -- T, and let wil,..., wk

be any k objects of type Tpari,... ,Tpa, respectively. Then for every finite ordinal

P < ORD(RTf(w1,...,wk)) there are terms u 1,..., uk in T(EM) such that

EvalM,(f(wl, . , Wk)) ===* EvalM,(f(ul,... , Uk))

where EvalM,(ui) = (rRTf(u ... k)(I)) 4. i for every i = 1,... ,k.

Proof. By double strong induction on 6. Let P be any non-zero finite ordinal strictly

less than ORD(RTf(• ... ,k)) and assume the result for all similar finite ordinals <

p. Let t - f(tl,...,tk) be 7r(P) and let pt f(sl,...,Sk) be the parent of t in

RTf(w1 ?...,wk) (t = 7r() must have a parent since / > 0). Since wr-l(pt) < 7-l(t)

112

.ur.·-~··l-u·u~.-c"---- ·--··~ICLL -Lil~;-C~LCI

EvalM,(ui) = Pt 1 i = si for each i E {1,..., k}. (A.8)

We will proceed to show that there are terms v1,..., Vk in T(EM) such that

EvalM,(f(ul,... , Uk)) ==* EvalMi(f(vl,. - -, Vk)) (A.9)

(A.10)

The result will then follow from (A.7) and (A.9) by the transitivity of ==-* and (A.10).

Let If Ej+i Then rj+i be the unique statement in the body of f such that

TEvalM,(Ej+j[parl F-+ EvalM,(ul),..., park ý- EvalM,(uk)]) =

TEvalM,(Ej+1[parl -4 si,...,park '-+ Sk]) =

TEvalM(Ej+l[parl -+ sl,...,park '-+ Sk]) =- True.

By the same analysis that was carried out in the proof of the converse proposition,

we can show that

TEvalM,(Ei[parl F-+ EvalM,(Ul),...,park '-4 EvalM,(Uk)]) = False

for all i E {1,..., j}, hence we conclude that

(A.11)

Now let f(tl,...,tl),..., f(t,... , t) be the n > 0 recursive calls contained in rj+l,

113

(A.7)

and

EvalM,(v1) = t I i = ti.

(equivalently, Pos(pt) <' Pos(t)), the inductive hypothesis implies that

EvalM,(f(wl,..., wk)) ==-* EvalM,(f(ul,..., uk))

for some terms u, ,..., Uk in T(M) such that

EvalM,(f(ul,..., uk)) ==* EvalM,(rj+ljar " 's]).

ordered in the usual manner. Then the n children of pt = f(s,. .. ,sk) in RTf(,,...,wk)

must be

61 f (EvalM(tl[- 7]),...,EvalM(t[- '•- 71))

bn f f(EvalM(t[V •]),.. , EvalM(t['])).

One of these must be t f(t,... ,tk), say it is S, for some m E {1,... ,n), so that

tt 4 i = = EvalM(t[-* s]) = EvalM,(ti [Far + 7])- (A.12)

for every i = 1,...

We now prove the

the left of

, k.

following assertion: Evalm,(r) I for every r E rj+l[a -+ 7] to

,.-- [Fa/ r ý-+ -S-+],..., tm[-- -* -)•]) f(vl, .-·,vk)

that is not a superterm of f(vi,..., vk) (note that we have set vi = tT [pca F 7]).

This is easily done by (nested) strong induction on the size of r. Let r g(pi,..., pd)

be a proper subterm of rj+1[ar '] to the left of f(vi,.. -, vk) that does not

contain f(vi,... , Vk) and postulate the (inner) inductive hypothesis. Then either g

f or not. If g 0 f then, by the inner inductive hypothesis, EvalM,(pi) I for each i =

1,..., d. Furthermore, we can use corollary 2.5.1 to infer that each EvalM,(pi) is an

object in T(CONM,) = T(CONM), and hence that g(EvalM,(pl),..., EvalM,(pd)) E

T(EM). Therefore, by theorem 2.5.3 we conclude that

EvalM(g(EvalMi(pi),..., EvalM,(pd))) 4.

so, by lemma 2.5.4.a, we get

EvalM,(g(EvalM,(pl), ... , EvalM'(pd))) ,

114

115

and, finally, by lemma 2.5.5, that EvalM,(g(pl,... ,Pd)) *.

Now suppose that g = f. Then we must have

f(to, ... I [t a)r] = f(t• ----+ ta[F I _])
1 k1k .. 8 a •-+ ,. ,

for some a < m (since r is to the left of f(tm),...,t)a -E a 7']). Since f is normal,
r cannot properly contain a recursive call to f, hence th [-] ' T(Ei) for each

i = 1,..., k. Hence, by theorem 2.5.3 and lemma 2.5.4.a we conclude that

EvalM,(tý'[Par H-+ ")

for each such i. Moreover, from corollary 2.5.1, the fact that r is well-typed, and

lemma 2.5.2, we infer that each term EvalM,(t[tar+ 74 V]) is an object of type Tpar,.

Now the crucial observation is that because P is finite and the recursion tree of

Sf(Eval,(t[]),..., EvalM,(t[r -'7]))

is to the left of the recursion tree of

t f(t,..., tk) E Sm f(EvalM(tr[' 7]),..., Evalm(tm[- ']))

in RTf(• 1. ... •k) (since a < m), it must be that the recursion tree of a is finite.

Therefore, by proposition 3.5.1 we conclude that EvalM,(a) 1, i.e. that

EvalM,(f(EvalM,(t'[--]), ... -Evalm(t'[-+)

and, by lemma 2.5.5, that

E valM ,(fl t [ar 1- '], ...,I t-SID) I

i.e. that EvalM,(r) ..

Having established that EvalM,(r) I for every proper subterm of rj+1l[pa--• - -51]

to the left of f(vi,..., Vk) that is not a superterm of the latter, we can infer from

lemma 2.5.3 that

EvalM,(rj+[pr F-+]) 's * EvalM,(f(vl, ... , Vk)).

Finally, from (A.11) and (A.13) it follows that

EvalM,(f(ul,... , uk)) -==* EvalM,(f(vl, . , Vk))

and the result follows by strong induction since

EvalM,(vi) = EvalMl(tT[p a• 7]) = ti = t t i

(by (A.12)) for every i= 1,...,k. 1o

116

(A.13)

UIW

117

Appendix B

Modules and first-order theories

Every admissible module M gives rise to a unique multi-sorted first-order theory

FOTM in a very natural way. In particular, the language of FOTM consists of the

signature EM, along with the variables of VM, the equality symbol =, the usual logical

connectives (-1, A, V, =>), and the two quantifiers V and 3. The terms of each type

T are defined as usual (see section 2.3.1), and then the atomic formulas are taken to

be all expressions of the form (s = t), for any two terms s and t0. Finally, wffs are

defined as follows:

* Every atomic formula is a wff.

* If q and b are wffs, then so are -A, (p), [€], € A b, q V 0, and ==- z b.

* If 0 is a wff containing a variable v E VT, then (Vv E T)q and

(3v E T)q are wffs.

Free variables are defined as usual and then those wffs that contain no free variables

are singled out as the sentences of FOTM. An example is the sentence

(Vnl E NatNum)(Vn 2 E NatNum)[Plus(ni, n2)= Plus(n 2, nl)]

1We do not impose the restriction that s and t be of the same type; in such cases (s = t) will
simply be false.

which asserts that binary addition is commutative. The axioms of FOTM are TAXMU

PAXM, where

TAXM = U AXT and PAXM = U AXf.
TE TYPESM fePROCM

Each AXT is a set of axioms "describing" the data type T (similarly, AXf is a set

of axioms describing procedure f). AXNatuu, for example, comprises the following

axioms:

(Vn E NatNum) [0 = succ(n)] (B.1)

(Vn E NatNum)(Vm E NatNum) [succ(n) = succ(m) == n = m] (B.2)

(Vn E NatNum) [(n = 0) V (n = succ(pred(n)))] (B.3)

(Vn E NatNum) [pred(succ(n)) = n] (B.4)

pred(0) = 0 (B.5)

It should be remarked that AXT can be computed mechanically just by inspecting

the definition of T, and in time linear in the definition's length. The same is true

for AXf, the axioms of which can be obtained algorithmically merely by universally

quantifying the m sentences

[Ej A'Ei ==> f() = rj]
i<j

j = 1,...,m+ 1, where [< E1, rt >,...,< Em, rm >,< True, rm+1 >] is the body of f.

For instance, AXAppend comprises the following two sentences:

(V11 E NatList)(V1l 2 NatList) [(li = empty) == Append(ll, 12) = 12

(V/i E NatList)(V12 E NatList)

[(II # empty) =- Append(li, 12) = add(head(l1),Append(tail(ll), 12))].

118

119

Next, we define the standard interpretation of FOTM, notated by 'M., as

follows. The domain ("universe of discourse") is T(CONM), i.e. the class of all

objects. To each function symbol g : T, x ... T- ---- T in EM we assign the function

gIM : T(CONT') x ... x T(CONIy) - T(CONT) defined as

fZM (wl,..., n) = EvalM(f(wl,..., w,)).

For instance, if M is the module we have been working with all along, then Fact z M --

{< 0, s(O) >, ... , < s4(0), s24(0) >, .. .}. Finally, each term t E T(EM) is mapped

to the object t-M = EvalM(t), and then the truth of a sentence 0 under the inter-

pretation IM is defined as follows:

* If € - (s = t) then € is true iff szM = tzM.

* If q --0, then 0 is true iff 7P is not true.

* If =- 1 A 02 then 0 is true iff both 01 and 02 are true.

* - 0 1 V 02 then 0 is true iff either 01 or 02 is true.

* If - 0 1 ==* 02 then € is true iff -- 1 V 0 2 is true.

* If € - (3v E T)4 then € is true iff there is an object w E T such that V)[v - w]

is true.

* If =- (Vv E T)b then € is true iff -(3v E T)-n4 is true.

If q is true under IM we say that the latter satisfies q and write ZM = q; the contary

is indicated by ZM ýL q. In our continuing example:

ZM - (Vn E NatNum) [Leq(Exp(s 2(0), n), Exp(s 3 (0), n)) = True] (B.6)

ZM ý= (Vn E NatNum)(VI E NatList)

[Member(n, 1) = True 4==- Member(n, Reverse(1)) = True] (B.7)

IM ý- (Vt E BTree) [root-value(t) = head(PreOrder(t))].

Eq.(B.6) asserts that 2" < 3", eq.(B.7) says that I and Reverse(l) contain exactly

the same elements, and eq.(B.8) says that the number at the root of a binary tree is

the first one to be listed in a pre-order traversal (notice that eq.(B.8) holds even for

null trees owing to our conventions regarding selectors and minimal objects). By

contrast, the two following sentences are false under the standard interpretation of

FOTM:

(3n E NatNum)(Vm E NatNum) [Less(m, n) = True]

(VI E NatList) [Length(l) = s(O)].

Observe that the axioms of FOTM are always true under ZM (intuitively, that

is because the axioms have been "built into" the interpreter EvalM). Therefore,

coupled with a sound deduction system, these axioms could be used to derive valid

(true) statements about the objects in the universe of M and the various algorithms

in EM that operate on them.

120

·)LUIY-Y^~-II I·Y.~X_~I1I-~^----· I-·1~I1I

(B.8)

Bibliography

[1] R.S. Boyer and J S. Moore, A Computational Logic, Academic Press, New York,

1979.

[2] R.W. Floyd, Assigning meanings to programs, in Mathematical Aspects of Com-

puter Science, Proceedings Symposia in Applied Mathematics 19, (American

Mathematical Society, Providence RI, 1967) 19-32.

[3] D. K6nig, Fundamenta Mathematicae 8, 1926, 114-134.

[4] Z. Manna, Termination of Algorithms, Ph.D Thesis, Computer Science Depart-

ment, Carnegie-Mellon University, Pittsburgh, PA 1968.

[5] Z. Manna, Mathematical Theory of Computation, McGraw Hill, New York, 1974.

[6] D. McAllester and K. Arkoudas, Walther recursion, CADE 13, 1996.

[7] J S. Moore, A mechanical proof of the termination of Takeuchi's function, Inf.

Process. Let. 9 (4), 1979, 176-181.

[8] C. Walther, On proving the termination of algorithms by machine, Artificial

Intelligence, 71, 1994, 101-157.

121

