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Abstract

This thesis is a feasibility study to determine whether knowledge of gestures can be used to
improve coding for the transmission of hand gestures. We implemented a coding system which
uses hidden Markov modeling (HMM) to predict the identity of the ongoing gesture. If a predic-
tion can be made with reasonable certainty, only a gesture ID code is sent. At the receiver, an
appropriate hand image is selected from the identified prototype gesture sequence to be the "recon-
structed" image. If a prediction cannot be made, the system uses principal component analysis
(PCA) to compress and reconstruct the actual hand image. In this case, 50 projection coefficients
must be sent. We evaluated the system using two different gestures. We found that when tested on
unseen sequences of the two gestures, the system can reconstruct the hand using only the gesture
ID code 97.5% of the time. Image sequences reconstructed from the prototype gestures also appear
cleaner and more natural than sequences reconstructed using PCA.

Thesis Supervisor: Aaron F. Bobick
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1

:tion

ted actions by humans that follow a general pattern. Most current research

cognition concentrate on identifying a gesture after seeing the complete execu-

pattern. The goal of this thesis is to determine whether a system can identify a

' without having to see an action in its entirety. A human observer, for

the act of sitting down within the first few tenths of a second in which a per-

and leans back. If a computer can likewise predict the most likely gesture by

rnset, the computer would become much more responsive. This ability to auto-

or predict the user's action has high entertainment as well as practical value.

'et interesting application of automatic gesture prediction involves efficient

coding for transmission purposes, such as video teleconferencing. In this sce-

em has observed enough data to predict the most likely gesture, it would have

ince of the rest of the gesture, or at least of the next few frames. If this knowl-

both the transmitter and receiver, an interesting coding scheme can be devised

f this information and significantly reduce the amount of transmitted data.

ibed here is a feasibility study to determine whether knowledge of gestures can

coding for the transmission of hand gestures.



:ope of Thesis

rent commercial video teleconferencing systems use block-by-block motion-compen-

rpolation or other MPEG-standard techniques [12]. We design a dual-system frame-

ich includes a knowledge-free system and a knowledge-based system. By knowledge-

nean that the system has no concept of what it means to be a hand gesture. The same sys-

n, for instance, can be used to code buildings or the motion of sailboats. In contrast, the

:e-based system uses specific gesture knowledge and hence is not easily extensible to

tre applications.

wo systems described run in parallel, and their purpose is to convert input video into a

idensed form for transmission. The knowledge-free system uses principal component

PCA) to handle compression and reconstruction of hand gestures. The knowledge-based

ses hidden Markov modeling (HMM) to recognize the ongoing gesture. Once the HMM

n predict the current action with reasonable certainty, it needs to transmit only the ges-

ification code and a few update parameters. Reconstruction of the rest of the gesture is

shed at the receiver using dynamic time warping of a stored prototype sequence for the

The intention is for the knowledge-free system to handle data transmission while the

)e-based system has not seen enough data to reliably identify the current action or while

: is being performed. When a reliable prediction can be made, transmission is turned over

>wledge-based system to achieve lower bit rates.

primary focus is to determine whether automatic gesture prediction is possible and

his knowledge can be used intelligently to accomplish more efficient coding for transmis-

md gestures. Thus, we are not concerned about the whole image; rather, we concentrate

ion on the hand segmented from the scene. Coding and reconstruction apply only to the

d hand on a black background. Furthermore, to avoid discussing the intricacies of the

a transmission, we assume standard encoders and decoders are available and that vari-



able-length codewords are used to achieve bit rates equal to the entropy of the "message", as in

Huffman coding.

Our implementation includes: a preprocessor which uses Kalman filtering to automatically

segment the hand from the input video, a knowledge-free coder and reconstructor, and a knowl-

edge-based coder and reconstructor. The design of these system components are described in

detail in a later chapter.

1.2 Overview

The thesis is organized as followed. First, Chapter 2 provides background information on the

mathematical algorithms and models used. Specifically, Kalman filtering, principal component

analysis, and hidden Markov modeling are discussed. A brief summary of previous related works

on gesture recognition is also given in Chapter 2. Next, Chapter 3 describes the design as well as

the designing issues of our video coding system for the transmission of hand gestures. Chapter 4

describes the data used to train and evaluate the system. Results and analysis of the system evalu-

ation are included. Finally, summary of the work and discussion of future extensions are presented

in Chapter 5.



Chapter 2

Background

Before presenting the system design, it is necessary to establish an understanding of the algorithms

and models used. First, we provide a brief description of Kalman filtering, which is used in this

thesis to track the hand from frame to frame and to "smooth out" the measurements of the hand

features. Principal component analysis and its application to data compression are then discussed.

Next, we explain the mechanics of hidden Markov modeling, which is used for gesture recogni-

tion. Finally, we conclude this chapter by presenting a survey of previous works which guide the

direction of this thesis.

2.1 Kalman Filtering

Kalman filtering is the standard technique for obtaining optimal linear estimates of the state vector

of a dynamic model from measurements corrupted by noise. For Gaussian noises, Kalman esti-

mates are the maximum-likelihood estimates. For non-Gaussian noises, they are the minimum

mean-square-error estimates.

In the discrete case, the state of the dynamic system is governed by the following equations:

zk = Hkxk + Vk

Xk + I = kxk + Wk

The first equation gives the measurement model, which is the relationship between the state vector

10
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x and the measurements z at time k. If the measurements were exact, the equation reduces to

zk = Hkxk. However, since the measurements are corrupted by noise, the error term vk is

needed. The second equation yields the system dynamic model. The change in state as time goes

forward is governed by a known law xk + = 1Dkxk . But again, there may be error in the model,

which is accounted for by the term wk. In general, vk and wk are modeled as Gaussian noises

with zero mean and covariance matrices Rk and Qk respectively. It is also generally assumed that

vk and wk are uncorrelated at all time (E [viwj] = 0 for all i, j).

Kalman filtering provides a recursive way for estimating the state vector of a dynamic system

defined by the above equations. The recursion involves two steps: prediction and update. At time

k-1, a predicted estimate of the state vector for time k is made. Then, at time k, the estimate is

updated using incoming measurement zk, and a new prediction is made for time k+ 1.

Kalman's recursive algorithm is presented below. For a detailed derivation of the algorithm,

[5] is recommended.

Prediction:

fk () =  k- Ik- 1 (+)

Pk (-) =  k- Pk- (+)kk-l T + Qk-1

Update:

Kk = Pk(-)Hk T[Hk Pk(-)Hk + Rk]

xk (+)= k (- ) + Kk [zk - Hkk (-)]

Pk(+) = [I - Kk Hk ]Pk(-)

In the above algorithm, xk (-) denotes the predicted state vector for time k, and Xk (+) denotes

the updated estimate after taking into account the measurement zk . P is the error covariance, I is

the identity matrix, and K is the Kalman gain. The error covariance (P = E[ (2 -x) (^ -x)T])

provides an indication of the accuracy of the estimate. Large P indicates large measurement noise

and hence not so reliable estimates. Conversely, a small P means that the estimates are close to



Hk- 1,' Rk - Hk' Rk

Figure 2.1 Timing diagram for the discrete Kalman filter.

their true values. The Kalman gain matrix K is essentially the ratio of the uncertainty in the state

estimate to the uncertainty in the measurement. From the first update equation, K determines how

much of the innovation [zk - Hk.k (-)] is used to correct the predicted state estimate kk (-). The

timing diagram for the predict-update recursion is shown in Figure 2.1.

2.2 Principal Component Analysis

In this thesis, principal component analysis (also known as Karhunen-Loeve expansion) is used to

transform high-dimension hand images into a small number of coefficients. To accomplish this,

PCA is first applied to a set of training images to construct an image space. The axes of this space

are statistically uncorrelated eigenimages. Usually the M' most significant subset of these eigen-

images (those corresponding to the largest eigenvalues) are chosen to span the space. By project-

ing a novel image onto the M' axes of this space, we obtain M' unique coefficients that

characterize the image. The process is reversed by reconstructing the original image from the pro-

jection coefficients and their associated space. The reconstructed image is in fact the minimum-

mean-square-error estimate of the original. Below we discuss the mathematics dealing with

eigenspace construction and reversible PCA representation of new images.

2.2.1 Eigenspace Construction

Principal component analysis basically seeks a set of orthonormal vectors which best accounts for

the distribution of the data in a given training set. If rk is an NxN image, we can think of Fk as a



vector of dimension N2. Thus, a set of M training images [ F1, F2 ,..., TM] makes up a matrix of
M

size N2xM. If we define the average image as m = T 1 Fn and the difference between each
n=1

training image and the average image as dk = k - m , then the desired orthonormal vectors ek are

chosen such that

M (eT)2= e
n=1

is maximum subject to

T k 1 j=k
e k e= 0 otherwise

Solving the above set of equations is equivalent to finding the eigenvectors ek and the eigen-

values Xk of the covariance matrix

M
C = 1 dndd = (DDT)

n=

where the matrix D = [dI d2 ... dM].

Since C is N2xN2 , determining the N2 eigenvectors and eigenvalues is difficult if not intracta-

ble. The computation is on the order of O(N6 ). However, if the number of training images M is

less than the dimension of the image space (M < N2 ), there can be only M-1 meaningful eigenvec-

tors ek[15]. The remaining eigenvectors have associated eigenvalues of zero. We can solve for

these meaningful, N2-dimensional eigenvectors by first solving for the eigenvectors uk of an MxM

matrix and then taking appropriate linear combinations of the difference images dk.

To be more mathematically precise, consider the MxM matrix DTD. Its M eigenvectors uk are

defined as D Duk = kUk. Left-multiplying both sides by D, we obtain DDTDuk = kDUk,



which states that Duk are the eigenvectors of C = DDT. Hence, the meaningful eigenvectors ek

and eigenvalues Xk of the covariance matrix are

M
ek =Duk = kndn k = 1, ... , M

n=1

Xkt k  
k = 1, ... , M

k 0 otherwise

The computation is reduced from O(N6) to O(M3). In practice, M<< N2, and calculating the

eigenvectors and eigenvalues of the N2xN2 covariance matrix is computationally feasible. In this

particular application, the eigenvectors are linear combinations of the original hand images.

Hence, they are hand-like in appearance and may be referred to as "eigenhands". The eigenhands

can be ranked according to their associated eigenvalues. Those that have the largest eigenvalues

account for the most variance within the set of training images and are therefore most useful.

In practice, only the best M' out of M eigenvectors are used to approximate the original space.

This reduces the number of coefficients and the amount of computations needed to represent a

novel image. Issues relating to using PCA as a compact representation of images are discussed

next.

2.2.2 Reversible representation

Given a set of M' eigenvectors, a new image r is transformed into its PCA components by the

simple projection operation

Ok = ek (TF-m) k = 1, ... ,M'

The above equation involves pixel-by-pixel (N2) image multiplications and additions. The projec-

tion coefficients form a vector Q = [op, 2, ... , OgM,], which describes the contribution of each

eigenvector in representing the new image. Put another way, Q is a measure of how similar the

new image is to each of the eigenvectors.



0 1P2

Figure 2.2 First-order Markov process. State A always outputs a "O",
and state B always outputs a "1".

To reconstruct the image from the projection coefficients, we reverse the above operation:

M'

' = m+ COne
n=J

If M' is equal to M (the number of meaningful eigenvectors) and there is no quantization, then the

process is truly reversible. Otherwise, the reconstructed image F' is only an approximation of the

original image F. Using the eigenvalues, we can determine the minimal set of eigenvectors which

approximates the image space and maintains a certain percentage of the variance seen in the train-

ing examples.

2.3 Hidden Markov Modeling

The hidden Markov model is a stochastic process built on top of another stochastic process, the

Markov process. A time domain process exhibits first-order Markov property if the conditional

probability density of the current event, given all past and present events, depends only on the

most recent event. It is conventional to represent a Markov process using a state transition dia-

gram such as the one shown in Figure 2.2. Notice that the output at each state is deterministic, and

the state sequence can be directly extracted from the observation sequence.

As defined, the Markov model is too restrictive to be widely applicable. The HMM, on the

other hand, is a powerful extension of the Markov model and can be applied to many problems of

interest. In a hidden Markov model, the output for each state corresponds to an output probability

distribution instead of a deterministic event. Thus, the state sequence is no longer directly observ-

able. It is hidden behind a layer of observable stochastic processes.

15
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1. Ii = 1/NI for all states ieSI, and 0 otherwise.

2. Find ao for all states i at time t=l:

al(i) = xibi(Ol )

3. Calculate a for all states j at time t = 2,..., T:

t) = [Xat I (i)a]b(Ot)

4. Final probability:

Pr(O1) = T aT(i)
iE SF

Figure 2.3 Forward algorithm for HMM evaluation.

Below we discuss the algorithms generally used for lifting the veil between the observer and

the state sequence as well as the different types of HMMs. For more detail on these topics, refer-

ences [7], [10], and [11] are recommended.

2.3.1 HMM Algorithms

An HMM can be represented compactly as X = [A, B, it], where A is the state transition proba-

bility distribution, B is the set of output probability distributions corresponding to the different

states, and In is the initial state distribution. Given the definition of HMMs, there are three main

problems to be solved: evaluation, estimation, and decoding.

Evaluation determines, out of several competing HMMs, which model best matches a given

sequence of observations. The evaluation problem can be expressed as maxi [Pr(OlXj )], where O

is the observation sequence. The most straightforward way to compute Pr(O| 1) is to sum the

probability over all possible state sequences in the model for the observation sequence. Hence,

Pr (O1 X) = Pr (O IS i, X) Pr(Sil ). The computational load of this direct approach, however, is

on the order O(2TNT) where N is the number of states of the HMM and T is the number of time

steps in the observation sequence.

A more efficient algorithm, with O(N2T), is the forward-backward algorithm. First, we define

the forward variable at (i) as the probability of the partial observation sequence up to time t and



i. PT(i) = /NF for all states iE SF , and 0 otherwise.

2. Find for all states j at time t = T-, T-2,...1 :

Pt(j) = aibi(Ot+1) Pt+(i)

3. Final probability:

Pr(OjX) = ibi(ol) 1(i)
i 6 S1

Figure 2.4 Backward algorithm for HMM evaluation.

state i, given the model ,. Similarly, the backward variable 3t (i) is defined as the partial obser-

vation sequence from time t+l to T, given state i at time t and the model X. Expressed mathemati-

cally, at (i) = Pr (O1,02,...,O st= il ) and t (i) = Pr (Ot+1,Ot+2,...,OT I st=i, X).

Figure 2.3 and Figure 2.4 illustrate how the forward and backward variables are used to find

Pr(Ol,) respectively. Alternatively, the forward and backward variable can also be used together

to find Pr(O X) = ,ct (i) 3t(i).

In practice, the Viterbi algorithm is generally used for evaluation at recognition time. Viterbi

can be viewed as a special form of the backward-forward algorithm, where only the optimal path

at each time step is taken instead of all paths. Thus, Viterbi finds maxi [Pr(O, Si X)] rather than

,Pr (O, Si,1X). Fortunately, the probabilities obtained from the forward-backward and Viterbi

algorithms have been shown experimentally to be very close.

The Viterbi method is extremely efficient since it does not take into account all possible paths.

Also, the Viterbi algorithm yields the optimal state sequence as a by-product. Hence, evaluation

and decoding can be done in a single step. The complete Viterbi algorithm is shown in Figure

2.4.In this thesis, evaluation at recognition time will be done using the Viterbi procedure.

Estimation is by far the most difficult and time-consuming problem of hidden Markov model-

ing. Given an observation sequence, estimation deals with adjusting the model parameters X,

such that Pr(Ol ) is maximized. Unfortunately, there is no known way to solve this analytically.

Instead, an iterative algorithm called the Baum-Welch algorithm is generally used for estimation.

17

I



1. Initialization: for all states i,
81(i) = ibi(Ol) WI (i) = 0

2. Recursion: for all states j, from time t=2 to T,
8t(j) = Maxi[8t-_l(i)aij]b.(Ot t(j) = argmaxi[ t-l(i)aii]

3. Termination:
P* = Max[8T(s)] ST* = argmaxs 6 SFT(s)]

4. Recovery of state sequence: from T-1 to 1,

st* = %t+l(St+1")

Figure 2.5 Viterbi algorithm for HMM evaluation and decoding.

im-Welch method is proven to converge to locally optimal HMM parameters

aining data.

Baum-Welch algorithm starts by first assuming a set of model parameters. Th

Lckward procedure is used to evaluate the probability that the given observation,

)y this initial set of model parameters. Using the probability obtained, we can

es of the model parameters and repeat the whole process. The reestimation or tr

is when the model parameters converge.

ore expressing the Baum-Welch algorithm mathematically, it is convenient to in

as t (i, j) and yt (i) . The first variable 4t (i, j) is the a posteriori probabilil

Lte i to state j at time t, given the observation sequence and a set of model parm

and variable yt (i) is the a posteriori probability of being in state i at time t

tion sequence and model.

en the definitions of 4t (i, j) and y' (i) , the Baum-Welch algorithm can be e:

n Figure 2.6. Note that in the reestimation procedure we used the forward-back

istead of the Viterbi algorithm to find Pr(OIX). This is because the advantage

backward-forward algorithm is efficiency at the cost of accuracy. But since t

beforehand, efficiency is much less of an issue compared to accuracy.



1. Find yt(i,j) and 7t(i) :

"i (k)bYt.U
S= aTT(k) X aT(k)

ke SF ke SF

2. Calculate ..i and bj(k):

T-1

X t(it) = t(
t=I b.(k) teOt=v k

aij = T-1 (k) = T

I "t (i) IYt (j)
t=1 t=1

3. Determine Ni = Y1 (i)

4. Repeat until model X converges.

Figure 2.6 Baum-Welch algorithm for reestimation of model parameters

ion of the Baum-Welch algorithm shown in Figure 2.6 is for a single (

a order to train the HMMs adequately, a set of independent observation

ne source is needed. The Baum-Welch algorithm shown can be easily e

iple observation sequences.

g deals with recovering the hidden part of the model. It is the problem of

tate sequence corresponding to the observation sequence. As mentioned

ithm yields the state sequence as a by-product of the evaluation process (st(

es of HMMs

ve been ambiguous about the nature of the output probability distribution

can be either discrete, continuous, or a combination of both. This leads t

Df HMMs, namely discrete, continuous, and semi-continuous.

;crete case, the observations are discrete symbols of a finite set. Examples

are the results of flipping a coin, course grades, and shoe sizes. Each .
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particular value. Mixtures of Gaussian densities are typically used to model the output probabili-

ties. Figure 2.7b shows an example of a continuous HMM. Again, there are two states, but there

are an infinite number of possible observations (all values between "0" and "1").

Using continuous probability densities allow for interpolation between seen events, thus alle-

viating the sparse training data problem. However, continuous HMMs require a considerable

increase in computational complexity compared to the discrete case. The number of free parame-

ters to be estimated from the training data is also much higher.

The semi-continuous HMM incorporates features from both the discrete and continuous

HMMs. Like the discrete HMM, the observation vector is quantized into a set of finite classes,

thus reducing the number of free parameters. But like the continuous HMM, the classes are mod-

elled by multivariate Gaussian densities. This helps remove distortion due to quantization as well

as avoid the sparse data problem. Figure 2.7c shows a two-state semi-continuous HMM with its

corresponding codebook. In this thesis, we will use continuous HMMs with output probabilities

modelled by mixtures of Gaussian densities.

2.4 Previous Work

Using HMMs for vision is a relatively new approach. A few works related to visual applications

of HMMs and hand gesture recognition are summarized below. Most early vision work with

HMMs dealt with handwriting recognition, such as [8]. In work related to human motions, Yam-

ato et al [18] used discrete HMMs to recognize six different tennis swings performed by three dif-

ferent subjects. The observation or feature vector used was the quantized, subsampled, 25x25

pixel image. Respectable recognition rates were reported, although the system required the swings

to be temporally segmented first.

Due to the expressiveness of hands, several systems have been developed specifically for rec-

ognizing hand gestures. One such system, developed by Darrell and Pentland, used a set of view



models to represent the hand [4]. Typical sequences of hand views for the different gestures were

determined and stored. Recognition of a novel hand gesture was performed by matching its space-

time pattern to the stored gesture templates using dynamic time warping and normalized correla-

tion. An accuracy rate of 96% was reported for the gestures "hello" and "good-bye".

A slightly more ambitious system was developed by Cui et al [3] for recognizing 28 different

hand signs. Here, the features were essentially the unit eigenvectors and eigenvalues obtained

from principal component analysis. The authors used learned decision boundaries within the fea-

ture space to distinguish between the different hand signs.

A system which used continuous HMMs specifically for hand gesture recognition was devel-

oped by Starner and Pentland for recognizing simple sentences in American Sign Language [13].

The feature vector in this case consisted of the position, orientation, and eccentricity of the bound-

ing ellipse of each hand. The system achieved high recognition accuracy rate but imposed a very

strict grammar on possible sentences. Our system is similar to this system since we also use con-

tinuous HMMs, and our feature vector also includes the hand's position, orientation, and bounding

ellipse measurements.

Wilson and Bobick also implemented an HMM-based system for gesture recognition [16].

However, instead of having one feature set, they used multiple independent representations. At

each state, a state-membership measure was used to combine the different representations or fea-

ture subspaces. Training involved the concurrent reestimation of the model subspaces and the tra-

ditional HMM parameters via the Baum-Welch algorithm.

In a separate paper, Bobick and Wilson defined a gesture as a sequence of states in a measur-

able feature space [2]. The states were aligned along a prototype trajectory obtained from example

trajectories of the same gesture. This approach is significantly different from hidden Markov mod-

eling in that it allows continuous tracking of a gesture within and between states. Thus, smooth

gesture reconstruction from a prototype trajectory may be feasible.

I I



Chapter 3

System Description

Our goal is to determine whether knowledge of hand gestures will lead to more efficient coding for

transmission purposes, such as video teleconferencing. To this end, we implement a dual-system

framework, which includes a knowledge-free system and a knowledge-based system. The knowl-

edge-free system will also be called the PCA system since it uses principal component analysis to

accomplish both coding and reconstruction of the hands. Similarly, the knowledge-based system

will be alternately referred to as the HMM system because it uses hidden Markov modeling to

carry out gesture coding. The intention is for the HMM system to handle the bulk of the transmis-

sion, and for the PCA system to serve as a substitute when the HMM fails to recognize the current

hand gesture with reasonable confidence. A visualization of the combined framework is shown in

Figure 3.1.

As seen from Figure 3.1, video images are first preprocessed at the transmitter. This prepro-

cessing involves segmenting the hand from the scene and extracting the necessary hand features.

The segmented hand I and extracted feature vector x are then fed to the PCA and HMM coders,

which run in parallel. Note that the HMM coder does not require the segmented hand as an input

since in the HMM system, coding and reconstruction depend on the hand's features rather than the

actual hand image. At the switch, the output K"HMM from the HMM coder is selected unless the

HMM confidence level is lower than a specified threshold. In that case, the output 12 PCA from the
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Figure 3.1 Schematic of the coding and transmission system. The HMM coder exploits knowl-
edge of hand gestures to accomplish more efficient transmission.

PCA system is chosen. A subset of the feature vector x (denoted by x') and the selected output Q

along with its 1-bit system-identifying label are encoded and transmitted using a standard encoder.

At the receiver end, the transmitted data is decoded. Using the ID label, the switch determines

which system should perform the reconstruction. The chosen system reconstructs the hand image

1', hopefully with little distortion. Finally, postprocessing is applied to embed the reconstructed

hand at its original location in an empty (black background) frame. This leads to a hand-only

reconstructed video sequence, which can be used with the original sequence in a range of possible

coding and reconstruction schemes.

The success of the system clearly depends on the ability to reliably recognize and predict hand

gestures and the ability to intelligently incorporate gesture knowledge into a coding scheme.

Below we detail the main components of the framework shown in Figure 3.1. Specifically, we

describe the designs of the image preprocessor, the knowledge-free PCA gesture coder and recon-

structor, and the knowledge-based HMM gesture coder and reconstructor. Implementation-spe-

cific issues are discussed in Appendix A.

3.1 Image Preprocessing

The purpose of the preprocessor is to extract the hand and its corresponding feature vector from an



x(n), I(n)

Figure 3.2 Schematic of the image preprocessor. Kalman filtering is used for tracking the
hand as well as "smoothing out" the hand's feature measurements.

input video sequence. The schematic of the preprocessor is shown in Figure 3.2. First, the hand

I(n) is tracked and segmented from the original image. A set of feature measurements z(n) is then

extracted from the hand. Because of the inherent noise within the system, Kalman filtering is used

to refine the feature estimates x(n) as well as to predict the state of the feature vector at the next

time step. The prediction xp(n+l) serves as a guide for the tracking and segmentation of the next

frame. The refined feature vector is also used to normalize the segmented hand with respect to

location, scale, and orientation. Below we discuss issues dealing with hand segmentation and fea-

ture extraction in more detail.

3.1.1 Hand Tracking and Segmentation

Tracking of the hand in a natural setting is difficult. Most successful hand tracking systems

are constrained in some way. Some require a simple background or more than one camera. Others

require the cameras to be at close range to the hand. Still others impose the use of wired sensors or

colored gloves. The limitation of these systems is that they are either obtrusive to the user or they

limit the user's natural movements. Most of these systems are also reconstructive; they try to

recover the full 3D information of the hand.

For our application, complete 3D information is unnecessary. We need only an approximate

location of the hand in order to segment it from the scene for further processing. Upon starting,

the system needs to be initialized with the approximate centroid of the hand in the first frame. Kal-



Figure 3.3 Typical segmentation results. (a) original frame; (b) cropped area around
predicted centroid; (c) area after thresholding; (d) area after imposing 6-connectedness;
and (e) area after imposing frame differencing.

man filtering is then used to predict the hand's centroid in successive frames, thus guiding the

tracking of the hand.

From the centroid information, the system crops out an area of interest. Segmentation of the

hand from this area is accomplished using thresholding, 6-connectedness constraint, and frame

differencing. The outputs at the end of these segmentation steps are shown in Figure 3.3. It was

found that a threshold of 115 works well for the 8-bit grayscale image sequences we have. The

success of thresholding in this case is mainly due to the user's choice of dark-colored clothing. In

a less favorable situation, we can think of using color images and thresholding for flesh color,

which is the approach taken in [17]. Since thresholding the cropped area usually yields many

unconnected regions, we impose a 6-connectedness constraint (as defined in [6]) to find the largest

connected region, which in most cases includes the hand. Finally, we use frame differencing to

define a "motion blob", which helps remove extraneous stationary objects that are connected to the

hand. By using frame differencing, we assume the background is stationary and the user is rela-

tively stationary except for his hand and arm movements. This is a valid assumption within the

video teleconferencing scenario.

Our segmentation algorithm performs satisfactorily in most cases. The algorithm fails when

the hand moves significantly from one frame to the next, due to the non-constant frame rate of our

video capture program. The Kalman filter, however, can generally recover within one or two

frames. Figure 3.4a shows a case where the algorithm fails due to a big "jump" in the hand's loca-
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Figure 3.4 Examples of where the segmentation algorithm fails. Failure due
to (a) significant hand motion and (b) hand occluding stationary objects.

tion. Notice how the system compensates in the third frame. Another place where the algorithm

breaks down is when the hand occludes a stationary object in one frame but not the next, causing

the algorithm to mistake the object as being part of the motion blob. An example of this is shown

in Figure 3.4b.

Once segmentation of the hand is obtained, the next stage is to extract relevant features from

the segmented hand.

3.1.2 Feature Extraction

The features we select to extract from each hand include the centroid, orientation, and scale. Cal-

culations of these features are performed on a binarized version of the segmented hand. Finding



the centroid (xo,yo) is straightforward:

Yxb (x, y)
Xo = xy

Y ,Yb (x, y)
x y

,,yb (x, y)
= xy

Y b (x, y)
x y

where b(x, y)= 1 for pixels belonging to the segmented hand and 0 otherwise.

The orientation and scale of the hand may be determined from the bounding ellipse around the

hand. The major axis of the ellipse corresponds to the axis of least inertia and can be determined

from the covariance matrix of the x and y coordinates of the hand pixels [6]. Mathematically, if the

covariance matrix is

[a 
b/2

b/2 
C

then a, b, and c are defined as

a = (x') 2b (x,y)
xy

b = 21 Ix'y'b (x, y)
xy

c = (y') 2b (x, y)
xy

where x' and y' are the x and y coordinates normalized with respect to the centroid (xo, yo).

The primary eigenvector of the covariance matrix corresponds to the normalized major axis of

the bounding ellipse. Conversely, the secondary eigenvector corresponds to the normalized minor

axis. The square roots of the eigenvalues yield the respective half-lengths lM and lm of the axes,

which provide a measure of the size or scale of the hand. In addition, the angle of orientation 0 of



the hand (measured clockwise from the vertical) can also be computed from the primary eigenvec-

tor. In summary,

IM = a+c+ (a - c)2+b2
2

J a+c- .i(a-c)2+b2
m 2

0 = atan( 1 1(a-c)2+b2- (a-c)

(/ (a-c)2 +b2 (c-a))

Note however that the formulas given above are actually for the ellipse that best approximates the

binarized hand, which may not necessarily coincide with what we think of perceptually as a

"bounding" ellipse. Also, for "roundish" hand shapes, which have no dominating axis, the com-

puted value for 0 is highly unreliable.

All the feature measurements listed above are obtained directly from video input and may be

corrupted by noise. Thus, we apply Kalman filtering to estimate the true values of the feature vec-

tor. The measurement vector in this case consists of z = (xO, yo, 0, Ml, Im) T, and the state vector

x includes the same features as well as their velocities and accelerations. That is,

S= (Xo0 , YO, l , I m, MiO , 0'O, 6 9m,o iN, Im o' j ' iM, M)T where "'" denotes velocity and "f6"

denotes acceleration.

Thus, the measurement model H and the dynamic model (D are

I AtI (At)!2
0 I AtI
0 0 I

where I is a 5x5 identity matrix. For the corresponding measurement noise v and the dynamic

model noise w, we use simple Gaussians with zero means and variances

00
R= I Q= 000

P 0 11I



respectively, where I again is a 5x5 identity matrix.

In determining the values for the different hand features, the "smoothed" updated estimate

vector I (+) is used instead of the actual measurement vector z. A subset of this state vector and

the segmented hand obtained from preprocessing are passed to the next stage, which is gesture

coding.

3.2 Gesture Coding

Thus far we have used the term "gesture" loosely. Rather than restricting a gesture to mean an

action which has definite meaning in human communication, we define gesture in a broader sense.

In this thesis, a hand gesture is a "repeated" sequence or trajectory of measurements through a fea-

ture space. The feature space is created from examples of different hand movements frequently

used while speaking.

Our definition of hand gesture makes several assumptions. First, the feature space must be

comprehensive in the sense that it includes all gestures of interest. Second, each gesture within

this space must describe a set of trajectories that can be interpreted by a human as being examples

of that gesture. Finally, the sets of trajectories for the different gestures must be mutually exclu-

sive so that gestures are distinguishable.

Gesture coding is handled by either the knowledge-free PCA coder or the knowledge-based

HMM coder. The PCA coder exploits the redundancy of information found in a video sequence by

using the last estimated hand to predict the appearance of the new hand. Principal component

analysis is applied to the difference image or innovation between the predicted hand and the actual

hand. The output of the PCA coder is thus a vector of projection coefficients. In contrast, the

HMM system uses the learned (hence the term "knowledge-based") transition matrix and output

probability density matrix to identify the current hand gesture. The HMM outputs are a gesture ID

label and a score of how confident the system is of its decision.



Figure 3.5 Schematic of the dual-system gesture coder. At the switch, output of the HMM
system is selected unless the HMM's confidence level is low.

Figure 3.5 shows the schematic of the dual-system framework for gesture coding. As men-

tioned, the output of the HMM coder is selected unless the HMM's confidence level is lower than

a specified threshold. In this case, the switch selects the output of the PCA coder. The chosen out-

put and the feature vector are then encoded and transmitted. Below we describe the PCA and

HMM coding systems more thoroughly.

3.2.1 Knowledge-free PCA Coding

As shown in Figure 3.5, the knowledge-free approach uses the feature vector x (n) to normalize

the segmented hand with respect to intensity, scale, location, and orientation. Scaling and rotation

are accomplished using bilinear interpolation. The resulting normalized hand image Inorm(n) is

then differenced by a predicted image I'norm (n). Principal component analysis is applied to the

innovation F (n) between the predicted hand and the normalized hand to obtain the vector of pro-

jection coefficients .PCA * The predicted hand in this case is simply the PCA reconstruction of

the innovation plus the last predicted hand image.

Note that for this scheme to work, the system must be initialized at both the transmitter and

receiver with the first hand image of the video sequence. Another underlying assumption of this
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which aspects of the gesture are reliably repeated and which are unreliable. The reliable features

can then be used to characterize and identify the gesture.

To achieve this, during training the system must determine a prototype trajectory through the

feature space from a group of example trajectories for a given gesture. The system must also

determine the local variances along the prototype trajectory. At the end of the training phase, the

system should have a unique prototype trajectory for each gesture of interest. Recognition of a

gesture is then simply finding the prototype that is most consistent with the trajectory of the ges-

ture. This is the approach taken by Bobick and Wilson to characterize a wave gesture [2].

The above approach, however, does not account for temporal variability. One solution is to

use dynamic time warping (DTW). In this thesis, we instead use hidden Markov modeling since

HMMs allow the temporal variability to be learned at the same time as the other features. Using

HMMs for gesture recognition is valid in a historical sense since the HMM methodology is related

to standard statistics techniques such as expectation maximization (EM), Q-learning, and dynamic

time warping. HMMs have also been used successfully by the speech community for the past

decade.

In this thesis, we shall train the HMMs starting with a small subset of the extracted hand fea-

tures since a large feature set would require more training as well as recognition time. On the

other hand, if the feature set is too small, the system would not be able to distinguish between the

different gestures. Hence, our approach is to continually add measurements to the feature vector

until the system can reliably differentiate between the gestures. The initial feature vector used

consists of the change in the centroid position, the angle of the axis of least inertia, and the half-

lengths of the major and minor axes of the bounding ellipse, or (io, 0, 0, M', 1m ).

Similarly, the topology of the HMMs are kept as simple as possible. We model each gesture

with a continuous left-to-right HMM and allow no skipping of states. The number of states of the



HMMs is varied from 3 to 7. Each state output probability density is modelled by a single Gauss-

ian instead of a mixture of Gaussians.

The initial model ?0 = [AO, B0, 7i] used for training the different HMMs are identical,. The

transition matrix Ao is defined such that the probability of staying in the current state and the prob-

ability of going to the next state are 0.5, with all other transition probabilities set to 0. Next, the

initial state output matrix Bo is set such that all states have the same zero-mean, unit-variant Gaus-

sian density. From this initial model, we apply the Baum-Welch algorithm until the parameters for

all the HMMs converge.

Gesture Prediction: Most implemented gesture recognition systems identify the gesture after

seeing the complete action sequence. In contrast, our system must decide the gesture identity as

early as possible. Thus, during the recognition phase, we force the HMM to make a decision at

each time step. Then, using the corresponding log probability score, we can determine whether the

decision is a valid one. Hence, in training the HMMs, we care about how soon the models can

make a reliable prediction, not just the final result. Using a set of example gesture sequences, we

can determine the confidence threshold beforehand.

3.3 Gesture Reconstruction

Since the input hands may be coded using either the PCA approach or the HMM approach, we

need two different ways to reconstruct the hand. Figure 3.6 shows the schematic of the twofold

module for handling gesture reconstruction. Again, the knowledge-free system is called the PCA

reconstructor, and the knowledge-based system is called the HMM reconstructor. Note that

KIPCA contains a vector of eigen projection coefficients, whereas "2HMM contains only a gesture

ID code.

Briefly, the knowledge-free system reconstructs the hand in each frame using inverse principal

component analysis. The HMM system, however, uses the transmitted gesture ID code to retrieve



Figure 3.6 Schematic of the twofold gesture reconstructor. Based on the decoded
"message", the switch determines which subsystem should handle reconstruction.
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being the start of a certain gesture, and suppose the system also knows how far along the corre-

sponding prototype trajectory the motion is at the moment of recognition, then the system would

simply move along the rest of the prototype trajectory to generate future hand estimates.

Two main issues must be resolved for this estimation-from-prototype approach to work,

namely timing and hand shape correction. Both of these deal with "personalizing" the recon-

structed hand. Embedded in the prototype trajectory is an average gesture execution time, which

in general will not match the execution time of a random user's gesture. To ensure that the pre-

dicted gesture will be in sync with the observed gesture, we can incorporate velocity information

of the observed hand. If we think of the prototype trajectory as a continuous curve in feature

space, then the velocity information determines the sampling rate at which we generate the curve.

High velocity indicates coarse sampling, and low velocity indicates a finer sampling.

The second issue, hand shape discrepancy, is harder to resolve. However, in most cases of

interest, the hand is moving fast enough such that the motion is more important than the details of

the hand. Of course, the system can also be made user-dependent. In this case, the system can

learn the hand shapes and motion characteristics of the different gestures of a specific user or set of

users. Since the system knows more about the users, the discrepancy between the reconstructed

hand and the actual hand should be small. In addition, it may be acceptable to not reconstruct the

actual motion exactly. Since the stored prototype is characteristic of the user, reconstruction from

the prototype with no further correction would still appear normal to the receiver.

Reconstruction from prototype gestures is the approach we undertake for this thesis. Specifi-

cally, we implement a user-dependent system for one user. For each gesture of interest, we build a

hand-only prototype from training examples of the gesture. All the prototypes are stored in a "ges-

ture library" at the receiver end as shown in Figure 3.6. Using the ID label 12HMM, we retrieve

the corresponding gesture G from the library.



Next, we have to determine where along the prototype gesture we are to retrieve the appropri-

ate hand image for display. To achieve this, we need to find a mapping between the transmitted

feature vector x'(n) and the prototype. In this implementation, we compute a sequence of feature

vectors Xp for each prototype. Then, by keeping track of how x'(n) changes with time, we can

dynamic time warp x' to xp to find the mapping. The trick is to determine which features to com-

pute for x' and xp, For the current task, a set of good features must be chosen such that the trajec-

tory of the gesture through the feature space is smooth and follows a general pattern. Note that

different sets of features may be used for different gestures.

Finally, after we retrieve the appropriate hand image G(n) from the stored prototype, we need

to adjust its intensity and scale (using x') to fit the current situation. The results of HMM recon-

struction is one of the topics discussed in the next chapter on system evaluation.



Chapter 4

System Evaluation

The work described here is a feasibility study to determine whether knowledge of gestures can be

used to improve coding for the transmission of hand gestures. Hence, although we use the number

of bytes needed to be transmitted at each time step to compare between different approaches, we

are more interested in discovering when the system works and when it fails. To this end, we evalu-

ate each component of the system first before testing the combined system.

In this chapter, we first describe the data used to train and test the system. Next, the specifics

of the PCA system and the results obtained using only the PCA approach are given. Similarly, the

specifics of the HMM approach and its results are also provided. Finally, we present the analysis of

the combined PCA-HMM framework.

4.1 Gesture Data

The gesture data used in this thesis was obtained using an SGI Indy video capture program with

instant playback. The camera was mounted on top to the display, and the user was seated facing

the setup. This is intended to simulate a video teleconferencing situation via the computer net-

work. Note that due to storage limitations, we recorded only grayscale 160x 120 video sequences.

Also, the built-in digitizer and playback program do not have a constant frame rate, resulting in

jerkiness and blurriness in some sequences. The average frame rate is about 15Hz.



Since the system implemented is user-dependent, gesture examples from only one user (the

author) were recorded. Currently, the system only knows of two gestures: "self' (hand going from

resting position up to chest and back, used when referring to oneself) and "side" (hand swinging

from resting position to side and back). These gestures were chosen because they are the most nat-

ural for the particular user and thus most frequently repeated gestures.

Thirty-five examples of each gesture were recorded. Of these, we set aside 25 examples for

training and 10 for evaluating the system. The assignment is mostly arbitrary, although we made

sure that both sets have slow as well as fast examples. The average length for the "self' gesture is

29 frames (approximately 2sec), and the average for the "side" gesture is 24.5 frames (1.6sec).

The training data was used in all system design stages, including determining the parameters

of the segmentation algorithm, constructing the different eigenspaces, training the HMMs, setting

the confidence threshold, and building the gesture prototype sequences. The testing set was used

solely for evaluating the system.

4.2 PCA Approach

The success of the PCA approach depends on the selection of an eigenspace. The ideal eigenspace

allows an image to be encoded and reconstructed using only a small number of projection coeffi-

cients. Below we present a comparison between the different spaces tried, followed by a discus-

sion of the final PCA system design and results.

4.2.1 Eigenspace Selection

In designing the PCA system, our assumption was that the innovation takes less amount of bits to

code than the actual hand. To test this assumption, we construct eigenspaces using innovation

images as well as actual hand images. From the set of example innovations, we build 3 different

eigenspaces: one using 500 frames from the gesture "self' only; another using 500 frames from the



gesture "side" only; and a third using 500 frames equally chosen from both gestures. Similarly, for

the actual hand images, we build a "self' space, a "side" space, and a combination space using 500

frames each.

Table 4.1 shows the average reconstruction residual obtained from projecting all the training

sequences onto the 50 most significant eigenvectors of the six spaces described. The last row

"best" of the table shows the average obtained when we select the space (either "self", "side", or

combination) which yields the smallest reconstruction residual for each image. Surprisingly, the

innovation spaces produce worse results than the spaces constructed from actual hands. Figure 4.1

shows typical reconstruction results using 50 projection coefficients. In Figure 4.1, (a) shows the

original image, (b) shows the reconstructed image using the best of the innovation spaces, and (c)

shows the reconstructed image using the best of the hand spaces.

Spaces Innovation Hand

"self' 1291.09 693.50

"side" 1021.33 528.53

combo 909.49 383.59

best 641.07 250.36

Table 4.1: Average reconstruction residual from different eigenspaces.

One possible explanation for the poor performance of the innovation spaces is that PCA

reconstruction tends to "smooth out" or low-pass the original image. This is not as significant for

hand images as for innovation images, which contain more high-frequency components. Figure

4.2 shows the low-pass effect of PCA reconstruction on innovation images. Here, the original

innovation image is displayed in (a), and the reconstructed innovation image is shown in (b).



Figure 4.1 Comparison of innovation space and hand space. (a) original segmented
image, (b) reconstructed image using the best innovation space, and (c) reconstructed
image using the best hand space.

a

b

Figure 4.2 Low-pass effect of PCA reconstruction. (a) original
innovation and (b) reconstructed innovation with less sharp edges.



Figure 4.3 Modified schematic of the PCA coding and recon-
struction system.

Based on the above analysis, we modify the design of the PCA system to that shown in Figl

4.3. The eigenspaces used in the system are constructed from training hand images rather tl

innovation images. Thus, we no longer need to keep the previously reconstructed images. Ho

ever, the system now includes two different spaces. We have found that the "self' space works b

for "self"' gestures, and similarly the "side" space works best for "side" gestures. This is illustra

in Figure 4.4, where (a) displays the average residual (as a function of the number of eigenvecto

obtained by projecting the 25 training "self' gestures onto the "self', "side", and combinati

spaces, and (b) shows the average residual obtained by projecting the 25 training "side" gestu

onto the same set of spaces. Since the PCA system has no knowledge of gestures, we need to I

both the "self"' and "side" spaces and select the one which yields the smaller residual. Note t

adding an extra space to the system yields better overall results, but it also increases the compu

tional requirement. The number of projection coefficients is still kept at 50 since this accounts

90% of the total variance in both the "self' and "side" spaces.

4.2.2 Final PCA Results

At each time step, the PCA system needs to transmit 50 projection coefficients, the eigenspace
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Figure 4.4 Comparison of the "self', "side", and combination spaces. Average residu-
als as a function of the number of eigenvectors for (a) the gesture "self' and (b) the
gesture "side". Dotted curve represents the "self"' space, solid curve indicates the
"side" space, and dash-dot curve represents the combination space.

code, and the feature vector x', which includes the hand centroid (xo, yo), the angle of rotation

and the original intensity and size information. Thus, the number of bytes needed to be transmit

per frame is about 212. This is twice the figure reported by Moghaddam and Pentland for codi

faces using principal component analysis [9]. However, the human head is for the most part a ril

object, whereas the human hand is highly deformable.

Using the 10 test sequences for each gesture, we found that the average reconstruction resid

grows from 250.4 for the training sequences to 461.6 for the testing data. The dramatic increase

average reconstruction residual indicates that we may have overfit the training data. Perhaps fev

eigenvectors should have been used to approximate the spaces.

Of the two gestures, the system performs worse for the gesture "side". This is partly becat

the "side" gesture is executed much faster than the "self' gesture, resulting in more motion bl

and jerkiness. Also, the hand's appearance in the "side" gesture as seen from the camera defor

much more than in the "self' gesture. One possible improvement is to construct more "speci

ized" spaces for the gesture "side", with each space capturing a set of similar hand poses.

In general, the PCA reconstructed images are blurry and tend to contain hands with very tl

fingers. However, in images where the segmentation algorithm fails and the segmented ha

e
~

so



includes extra parts, the PCA reconstruction of the image tends to make the extra parts less notice-

able.

4.3 HMM Approach

In this approach, the system tries to recognize the ongoing gesture and to use this knowledge to

reconstruct the rest of the gesture from a stored prototype. Below, we first discuss the hidden

Markov model selected to handle gesture prediction. Next, we describe how we determine the

mapping between the current frame and the stored prototype. Finally, we present the analysis of

the HMM system's performance.

4.3.1 Model Selection

Our search for the right HMM starts with a simple feature set and topology as described in Chapter

3. This simple setup, however, yields 100% recognition accuracy when trained and tested on the

full-length training examples. We vary the number of states from 3 to 7, and the system still per-

forms consistently well.

However, as mentioned previously, we are more interested in how quickly and reliably the

system can predict the identity of the current gesture before its completion. Thus, as a basis for

comparison, we define "wait" to be the amount of time (in terms of number of frames) before the

system correctly recognizes the gesture. The worst wait is the longest wait over all instances

within a given gesture set, and the average wait is the average over all the gestures of the same set.

Table 4.2 shows the worst waits for the "self' and "side" HMMs as we vary the number of

states. The values in parentheses indicate the average waits over all training examples. As shown,



the 6-state case yields the shortest worst-wait, whereas the 7-state case has the shortest average

wait. In general, increasing the number of states seems to favor the "side" gesture.

HMM Self Side

3-State 5 (1.28) 3 (2.56)

4-State 5 (1.28) 3 (2.56)

5-State 3 (1.08) 4 (2.68)

6-State 2(1.04) 4 (2.68)

7-State 5 (1.56) 3 (1.12)

Table 4.2: Waits" for the different HMMs. First value is the wait in the worst case; value in
parentheses is the average wait over all training examples.

The average log probability (or confidence score) per frame for the different cases are shown

in Table 4.3. As the number of states increases, the confidence score also increases. However, we

did not try to raise the number of states beyond 7 since we did not want to saturate the model.

Some gesture examples are only 19 frames in duration, and ideally we would like each gesture

instance to spend on average two to three frames in each state.

Gesture Self Side

3-State -7.138 -11.123

4-State -6.844 -10.227

5-State -6.393 -9.987

6-State -6.182 -9.708

7-State -5.999 -9.018

Table 4.3: Average log probability per frame for the different HMMS.

Based on the above analysis, we select 7 to be the number of states for the HMMs. The final

HMMs for the "self' and "side" gestures are shown in Figure 4.5. Note that at each state, we have

one Gaussian density for each of the 5 output features.



Figure 4.5 Transition diagrams for the "self' and "side" HMMs.

For checking the validity of the HMM's prediction, we use an average log probability thre,

old and a consistency test. Hence, for a "self"' prediction, if the average log probability is at le

-5.0 or the current prediction is consistent with the previous prediction, then the current pred

tion is valid. Similarly, for a "side" prediction, if the average log probability is at least -0.3 or 1

current prediction is consistent with the four previous predictions, then the system accepts the c

rent prediction. Note that in establishing these conditions, we did not account for the null case.

assume that at any given time, the ongoing action is either gesture "self' or gesture "side". (J

system will be extended in the very near future to account for unseen gestures as well.)

Applying these validity tests to the training set results in the rejection of 45 out of 1316 pred

tions. Of these rejections, 31 (or 2.36%) are misses. This reflects our conservative view whi

favors rejections over misclassifications.

4.3.2 Prototype Gesture Mapping

Our approach to finding the mapping between a new gesture and the stored prototype is

dynamic time warp their corresponding feature vectors. The key issue is which feature(s) shot

be included in this mapping. To start, we consider all the features in the state vector x as possil

candidates and weed out the ones that do not satisfy our mapping condition. The mapping con

tion requires that all example trajectories of the same gesture through the feature space must
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Figure 4.6 Mapping trajectories. (a) shows the relative-y trajectories of instances of ges-
ture "self' and (b) shows the relative-x trajectories of instances of gesture "side". The
asterisk curve in both represents the respective prototype trajectory.

smooth and must follow a general pattern.

Following the above paradigm, we find the relative y position of the hand to be the ideal ni

ping feature for the "self' gesture, and the relative x position of the hand to be ideal for the "si

gesture. Figure 4.6a shows the relative-y trajectories of the all the training examples for the gesi

"self'. The blue curve represents the trajectory of the prototype "self'. Similarly, Figure 4

shows the relative-x trajectories for the "side" examples, again with the blue curve depicting

prototype curve.

For most of the training examples, the mapping scheme discussed above performs nicely.'

system is able to "stretch" and "shrink" the prototype sequence to fit the current gesture. Mos

the reconstructed sequences appear natural to the human observer. Only 2 out of the 25 train

examples for the gesture "side" appear unnatural. In both cases, the problem occurs on the "c(

ing-back" part of the gesture where the hand's appearance changes from palm facing the camer

backside forward. The system mistakenly maps the backside of the hand too early, thus making

reconstructed gesture appear artificial.

4.3.3 Final HMM Results

In evaluating the HMM approach, we analyze each component of the system separately to de



Figure 4.7 A "self' sequence reconstructed using prototype gestures. The first 3 frames were
mistakenly taken from the "side" prototype.

mine which parts are satisfactory and which need improvement. Hence, we first discuss the perfor-

mance of the HMMs, followed by an analysis of the preset confidence check.

On the test set, the 7-state HMMs again achieve 100% recognition accuracy. The worst waits

for the "self' and "side" HMMs are 4 frames and 3 frames, respectively. The corresponding aver-

age waits are 2.2 and 1.2 frames. The average log probabilities for the "self' and "side" gestures

are slightly lower than the for the training set at -6.591 and -9.292 respectively.

Imposing the validity conditions, the system rejects 8 correct predictions (1.41% miss rate)

and accepted 7 wrong predictions (1.24% false alarm rate) out of 566. The total number of rejec-

tions is 14, thus 14 hand images must be handled by the PCA system. In cases where a wrong pre-

diction passes the confidence test, the reconstruction may still look relatively natural since some

parts of the "side" gesture do appear very much like parts of the "me" gesture.

Figure 4.7 shows an example where the wrong predictions pass through. The actual gesture is

"self'; however, the first 3 frames are from the prototype of the gesture "side". Note that only the

third frame appears out of place. If the sequence is played instead of analyzed frame by frame, the

mistake is barely noticeable.

In general, the reconstruction of the 20 test sequences appears natural. The mapping problem

present in the training phase was not encountered. The HMM-reconstructed hands not only seem

clearer than the PCA-reconstructed hand, but also clearer than the actual hand in most cases. Also,

since the reconstruction is from stored prototypes, even when the segmentation includes extra part,

the reconstructed images are still hands only, as shown in Figure 4.8.

- ------------------



Figure 4.8 Example of the higher quality of a HMM-reconstructed sequence. The top line is
the original segmented sequence, and the second line is the reconstructed sequence (which is
the same as the one shown in Figure 4.7)

For each HMM-reconstructed frame, we need to transmit the gesture ID code, the centroid

location, and the original intensity and size information, which takes approximately 8 bytes.

4.4 Combined System

As mentioned above, when tested on unseen sequences of the two gestures, the HMM system

rejects only 14 out of 566 testing frames. Hence, the PCA system is in use only 2.5% of the time.

Note that the results reported are valid only under the assumption that there is no null case (i.e. the

ongoing action is always either the gesture "self"' or the gesture "side"). In general, the PCA sys-

tem handles the first one or two frames before the HMM system takes over. Since the duration of

the PCA reconstruction is relatively short, no visible jump or discontinuity is observed. Figure 4.9

shows an example of a reconstructed sequence using both methods. The PCA system reconstructs

the first 3 frames, and the HMM system reconstructs the last 3 frames.

Figure 4.9 Sequence reconstructed using the combined PCA-HMM system. The first 3 frames
are handled by the PCA system and the last 3 are reconstructed using the HMM approach.

-------------------



ted here are encouraging, it is important to keep in mind the con-

system. Part of the success of the system is due to the particular

ugh unintended, the gestures chosen in this implementation are eas-

t chapter, we summarize the work done and discuss the conditions

ach can be successfully applied and extended.



Chapter 5

Conclusion

Although the task performed by our coding system is only modestly complicated, the results

obtained are encouraging enough to justify future research on knowledge-based coding systems

for the transmission of hand gestures. In this chapter, we summarize the important results obtained

and provide suggestions for future work.

5.1 Summary

In order to determine the feasibility of using gesture knowledge to improve hand coding for trans-

mission purposes, we have designed and implemented a complete coding system. The system con-

verts an input video sequence into a sequence of variable-length feature vectors. From the feature

vectors, the system reconstructs a corresponding hand-only video sequence.

The two main components of the system are the PCA coding module and the HMM coding

module. The PCA system uses principal component analysis to compress and reconstruct the

sequence of hand images, whereas the HMM system uses hidden Markov modeling to guess the

identity of the ongoing hand gesture. Actual hand reconstruction in the HMM system is accom-

plished by dynamic time warping the stored prototype gestures to fit the current situation. In our

implementation, the PCA system has to transmit 50 projection coefficients whereas the HMM sys-



tem only needs to transmit a gesture ID code (along with a few update feature parameters for both

systems).

Due to its greater compression power, we intend for the HMM system to handle the bulk of the

transmission, with the PCA system "helping out" only when the HMM component is not reason-

ably confident about the identity of the ongoing action. In the ideal case, the HMM system would

have knowledge of most of the hand gestures of a particular user or set of users. Transmission

would then be handled almost completely by the HMM system. In reality, it is most likely that the

PCA system will do most of the work since the number of possible hand gestures is too great for

the system to learn.

One feasible plan is to make the system user-dependent and to train it only on the most fre-

quently used hand gestures of a particular user. This is the approach we took to evaluate our sys-

tem design. We trained the system on two frequently used gestures of one user. When tested on

different examples of the two gestures, the HMM system handles the coding and reconstruction of

the hand sequences 97.5% of the time. In general, the PCA system processes only the first one or

two frames of each gesture instance.

The hand-only reconstruction of the test gestures appears natural to the human eye. There is no

observable "glitches" even in gesture examples where both the PCA and HMM systems were used

to reconstruct different parts of the sequence. In addition, since the stored prototypes were con-

structed from "good" gesture examples in the training set, the quality of the HMM-reconstructed

hand images is much higher than that of the PCA-reconstructed images. In some cases, the quality

of the HMM-reconstructed hand is even higher than that of the actual segmented hand, which may

suffer from motion blur or segmentation errors.

Even when the HMM system makes the wrong choice (which occurred 1.24% of the time), the

reconstructed sequence still appears natural. This is because the hand's appearance in certain parts

of the two gestures is similar. Hence, a more interesting and meaningful evaluation would be to



test the system using video sequences containing the two gestures that the system was trained on

as well as other yet-unseen gestures. It may turn out that the system can reliably reconstruct parts

of the unlearned gestures from the stored prototypes. However, this evaluation is beyond the time

frame of the thesis.

5.2 Future Work

One immediate extension is to evaluate the system using sequences of known as well as unknown

gestures, and to adjust the system parameters accordingly. This may require that we make the con-

fidence test more robust, possibly by setting the rejection threshold higher.

Since this work is meant to be a feasibility study, we trained the system on only two different

gestures. It would be insightful to see how the system performance changes as we add more ges-

tures. The gestures "self' and "side" used are easily distinguishable from each other. With a less

disparate set of gestures, the system probably would not be able to make a prediction as quickly. In

this case, we would need to improve the efficiency of the PCA system. Particularly, we can try

using different "specialized" spaces.

The system was also designed to be user-dependent, with the stored prototypes being gesture

examples performed by a particular user beforehand. It would be interesting to extend the system

to many different users. In this case, the design of the HMM coder would remain mostly the same.

However, instead of storing prototypes, the system can learn them from the current user. For

instance, the first time the system sees and recognizes a gesture from the user, it transmits a code to

instruct the other side to store the sequence. The next time the same gesture is executed, the system

would simply tell the reconstructor to play back (after dynamic time warping if necessary) what

was just previously received.

Since the HMM system and especially the PCA system depends on good segmentation, more

time could be spent on improving the segmentation algorithm. One obvious extension is to use



color images and threshold for flesh color to find the hand. We can also readjust the Kalman filter's

parameters, particularly the noise models R and Q.

Finally, the grand goal is, of course, to make the whole system perform in real time.
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Appendix A

Implementation

Implementation of the complete coding system was done by the author in the C++ programming

language, except for two modules. First, computation of the different eigenspaces was accom-

plished using Baback Moghaddam's principal component analysis program. Second, we used a

commercially available software package called HMM Toolkit (HTK) [19] developed by the

Entropic Research Laboratory to handle hidden Markov modeling.


