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ABSTRACT

The propagation and instability characteristics of small-signal
electro-fluid-mechanical space charge and polarization waves in non-
homogeneous fluids is developed. Stratified equilibrium configurations
with fluid properties and space charge density constant within planar,
cylindrical, and spherical surfaces, are emphasized. Equilibrium elec-
tric fields due both to charges in the fluid and to externally imposed
potentials are normal to these surfaces. The liquid is modeled as in-
compressible, inviscid, and perfectly insulating, with domains of suf-
ficiently high frequency or growth rate to validate the last assumption
defined in terms of electrical conductivity or mobility.

Two types of stratification for the mass density, dielectric con-
stant, and space charge density are distinguished and related: discrete
layers and continuous distributions. A general set of relations for
perturbation field and flow variables on the perturbed surfaces of fluid
layers having constant properties and snace charge are derived in each
of the configurations. Detailed description of wave dispersion and
instability for interactions in the following situations exemplifies how
these relations are used in representing a broad class of discretely
stratified equilibria: a) Perfectly-conducting interface stressed by
normal field and bounded from above by fluid supporting uniform space
charge; b) Two planar layers of differing properties and space charge;
c) Uniformly charged liquid jet; d) Uniformly charged liquid drop.
It is shown that the general relations can be used to represent systems
of coupled layers which approximate continuous distribution by a series
of step functions. Specific examples of weak-gradient and exponential
distributions are presented showing that the solution found directly
from the distributed theory is approached by the system of coupled layers,
if the limit is taken in which the number of layers becomes large while
the layer thickness approaches zero. Experiments are described which
attempt to delineate the coupling of space charge to electrohydrodynamic
surface waves on a perfectly-conducting interface in the configuration
of (a), above.

THESIS SUPERVISOR: James R. Melcher
TITLE: Professor of Electrical Engineering
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CHAPTER I

Background

1.1 Examples of Space Charge Distributions

In various disciplines, the dynamics of fluids in the presence of

bulk space charge has assumed considerable importance. Bohr and Wheeler

successfully used a charged liquid drop as a model for the atomic

nucleus.1,2 They considered the dynamics of a spherical drop which was

incompressible, inviscid, and perfectly insulating, with charge uni-

formly distributed throughout its bulk. Since some of the properties of

nuclear forces are analogous to the properties of forces which hold a

liquid drop together, these concepts, together with classical concepts

such as electrostatic forces and surface tension, were used to set up

a semi-empirical formula for the mass or binding energy of a nucleus in

its ground state. 3

Chemical interactions illustrate how the competing mechanisms

between Coulomb and diffusion forces can produce a space-charge dis-

tribution. Often, charge density gradients are very large near abrupt

discontinuities like an interface or electrode surface, where these

gradients extend over small distances on the order of Debye lengths

(' 1000A). Because the net charge density is large over these ver!y

small length scales (even though the net charge is zero), the electric

fields are very large, and thus the electric forces can be large enough

to cause macroscopic fluid motions. With a potential difference on the

order of two volts across these space charge junctions (so-called

'electrical double layers'), steady-state convection of the fluid is



possible. 4

These double-layer interactions are important in electrolytic

solutions because of the large ion densities present. However, even

in very insulating fluids like hexane or transformer oils, dissolved

ions are present due to impurities or from ionic emission from elec-

trodes when very high field strengths are present. If a sufficiently

large amount of net charge is present, the electrical forces on the

fluid can induce various motions.5-7 The bulk cellular convection

described by Avsec and Luntz is probably related to such space charge

effects.6

Forces in both electrolytic and poorly conducting fluids can be

of some use, and certainly are fundamental in a scientific sense. If

the electrical forces are large enough to overcome stabilizing forces

due to hydrostatic pressure, diffusion and viscosity, it may be possible

to make the fluid statically unstable, putting it in a constant state

of random motion, thus enhancing the heat and mass transfer. In an

electrolytic solution, this could be important in influencing reaction

rates or in the mass transfer through a semi-permeable membrane. In

oils which are used for cooling purposes, like transformer oil, a

constant agitation of the fluid will greatly increase the rate at

which heat can be carried away. Similar processes can increase the

efficiences of other heat transfer systems.8-12

On a larger scale, the origin of thunderstorms and other meteoro-

logical phenomena has been attributed to the effects of space charge

throughout the atmosphere.13 The fluid dynamics may be analagous to



Lord Kelvin's water dripper, wherein the motion of liquid drops is

responsible for the generation of high voltages with no external

electrical excitations. (See Ref. 14, Part II, pp. 388-392) These and

similar processes can be useful for aiding in the transfer or conver-

sion of energy. The presence of space charge in a fluid is the common

denominator, yet the scales of these phenomena differ-greatly. In

electrolytic systems, and hence in double layers, potential differences

on the order of volts are necessary for electrical forces to be impor-

tant. In typical situations involving insulating fluids, potential

differences on the order of kilovolts are necessary, while atmospheric

phenomena require hundreds of kilovolts. In each physical situation,

different parameters are necessary for the complete description of the

problem. Compressibility, temperature, diffusion, viscosity, and

electrical conduction are just a few parameters which may or may not

be important. The inclusion of these parameters greatly complicates

the analysis and understanding of the dynamics of these fluids. Although

steady state behavior may be solvable, questions of stability and

temporal response are very difficult to answer.

1.2 Scope of Thesis

Space charge equilibrium distributions often have dependence on

only one spatial dimension, being uniform in the other directions. This

may be in rectangular, cylindrical, or spherical geometry.

We wish to discuss here the propagation and instabilities of small

signal space charge waves through such waveguide--like structures com-

posed of charged fluids and electrodes as illustrated in Fig. 1. These
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include superposed fluid layers with properties of mass density, charge

density, permittivity, and convection velocity differing between layers

and the analagous problem of continuous distributions of these proper-

ties. Similar analysis has been performed in the past for internal

gravity wave systems.
15 17

The analysis proceeds with the usual theory of small oscillations

about an equilibrium state. In order to describe a wide class of

interactions, we make the simplifying assumptions from the outset that

for dynamical times of interest the fluid is inviscid, incompressible

and perfectly insulating. It will be shown in section 1.4 that for

many fluids this approximation is valid over a wide frequency range.

The subtle point here is that we can rely on the conduction mechanism

to create the equilibrium space charge, but for small signal inter-

actions, we can assume the fluid to be perfectly insulating. Within

this frequency range, we can ignore conduction and assume that the

charges are literally tied to the fluid.

Melcher has previously considered single interface problems of

this type including electric and magnetic coupling.18  However, the

electrical forces only acted at the interface and had no contribution

in the fluid bulk. Our analysis will include these surface forces and

also emphasize the bulk force due to space charge for any number of

layers.

The general problem of a fluid whose properties are continuously

stratified throughout the bulk is troublesome, because the resulting

differential equations have space-varying coefficients, for which there



are no general solutions. However, we will model these continuous

stratifications by many thin layers, each with constant properties.

We can then greatly simplify the description of the dynamics deter-

mined by the dispersion relation. The more layers we use as an approxi-

mation, the more accurate the resulting dispersion relation will be.

In fact, for a finite height system for which we approximate a contin-

uous stratification by many thin layers, if we let the number of layers

tend toward infinity as the thickness of each layer tends to zero,

the dispersion relation will be shown to become exactly correct. This

will be illustrated in a number of special cases for which we can

exactly solve the differential equation with the continuous stratifi-

cations. A technique will be shown of how. to solve the infinite number

of layers problem exactly for these special cases.

The layered approach is of great value in analyzing space-varying

systems, since we change from solving a difficult space-varying coef-

ficient differential equation to many simpler linear constant-coeffi-

cient difference equations. These equations can easily be solved on

a computer, although a few special cases can be solved in closed form,

which will be illustrated here.

In considering a large number of layers, we must develop a

systematic approach so as to avoid confusion. This can be done by

considering a prototype layer of inviscid, incompressible and perfectly

insulating fluid. We will describe the layer with sufficient generality

so that our analysis provides a prototype relation between variables

at the upper and lower surfaces of the layer, which can be used to



describe systems composed of many such layers. Our objective of

providing a prototype relation between variables evaluated adjacent

to the interfaces amounts to relating the respective surface potentials

and normal perturbation electric fields just inside the interfaces,

and the perturbation pressures and surface deflections just adjacent

to the interfaces.

The value of these "terminal relations" is that one avoids solving

the bulk equations again for every region. Rather, since they directly

relate pertinent interfacial variables which are related through boun-

dary conditions, we can easily determine the dispersion relation for

the electromechanical interfacial waves by simply "interconnecting the

terminals."

These methods will also be applied to cylindrical columns and

spherical shells of constant mass and charge density. Analogous ter-

minal relations will be derived for these geometries.

The examples presented will compare the dynamics between a per-

fectly insulating fluid with bulk charge and a perfectly conducting

fluid with surface charge. This will be done for a spherical drop

and a cylindrical column. This comparison is important, for in any

experiment where we try to change a charge distribution, for example

from zero to a finite value, the fluid will act like a perfect insula-

tor for the first few instants. As time increases further, the charges

will relax to the surface of the fluid, shielding out any fields and

thus acting like a perfect conductor. Depending on the time scale of

the experiment, the fluid dynamics will be much different.
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We cannot self-consistently allow any surface charge on an inter-

face in an inviscid fluid model unless the interface is perfectly

conducting.19'20  If we allow surface charge on a finitely conducting

interface, any motions of the interface will result in electrical

shear forces which can only be balanced by viscosity. If the fluid is

a perfect conductor, the electric field will come in normal to the

interface, resulting in no electrical shear force.

1.3 Equilibrium Space Charge Distributions

The conduction mechanism establishes the equilibrium charge

distribution. Although the details of this process are not necessary

for the linearized analysis, since the frequencies of interest will

be much higher than the response time of the charges, it is important

to know the equilibrium distributions as these terms do appear in the

linearized analysis. A direct way to measure the distributions is

desirable. In highly polar fluids like nitrobenzene or chlorobenzene,

electro-optical observations using the Kerr effect may be used to map

the electric field and thus the charge density. 21 ,22

If these fluids are stressed by an electric field, light polarized

parallel to this electric field will travel at a different phase

velocity than light polarized normal (the polarization in the plane of

the electric field). If the resultant light signal passes between

crossed polarizers, an interference pattern will result, with the

maxima and minima related to the imposed electric field.

However, in most liquids, the Kerr effect is small making this

procedure impractical. Thus, in order to determine the equilibrium
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distributions, a model must be proposed and these distributions cal-

culated. The two most useful models are ohmic and unipolar conduction.

1.3.1 Ohmic Conduction

The simplest conduction law often used is Ohm's law, where the

current and electric field are linearly related

ond = E' (1)

where the prime (') refers to quantities measured in the frame of

reference of the medium.

The model from which this law is derived, assumes that there are

at least two species of charges present of opposite signs, where one

species moves relative to the other with a drift velocity determined

by the collision frequency. Thus, even though the net charge is zero,

we can have a net conduction current. We use this constitutive law in

Maxwell 's equations

V7 (E•) = q (2)

V7 •T-• = 0 (3)
at

SJcond + qv a E + q  (4)

to obtain the relation

1+ v . 7 + qV v + E Vc + 0 (5)3t E

where we assume the permittivity e to be constant.



If there is no convection and the conductivity is a constant

v = 0; a = constant (6)

the solution to (5) is simply

q = q (x, y, z, t = 0) e-()t (7)

This relation shows that in the absence of convection, and with

a constant conductivity and permittivity, we can have no equilibrium

space charge. Any initial charge density will decay with character-

istic time - f, so that in the steady state there will be zero

charge in the bulk, with the total charge now distributed around the

boundary as a surface charge.

Similarly, if the convection velocity is a constant, and the

medium has a constant dielectric constant and conductivity

v = UTx; E = constant; a = constant (8)

we find the one dimensional steady state solution (~- = 0) with the

boundary condition of a charge source at x = 0 to be

x
q = q (x=0) e- R-l (9)

where

Re =

which represents a ratio of the electrical relaxation time to the

fluid transit time.



In the absence of convection, the only way to have a steady state

charge distribution is if the conductivity is a function of position.

The one dimensional steady state solution to (5) is

(i )
q = J (10)o ax

where Jo is the current/area through the fluid. The extreme case is

at the interface of two materials with different conductivities, where

we have surface charge.

Wong and Melcher built a pump using this mechanism to create

space charge.23 They applied a temperature gradient across a rectangu-

lar section of a channel filled with corn oil. Since the conductivity

of corn oil is a strong function of temperature, the resulting conduc-

tivity gradient generated space charge as given by (10). The bulk

electrical force thus induced, caused the liquid to flow around the

channel.

This model is usually appropriate for metals and other highly

conducting materials. In most homogeneous insulating liquids like

hexane, freon, kerosene, transformer oils, silicone oils, and in

highly polar liquids like nitrobenzene, chlorobenzene, acetophenone,

or xylene, it is well known that when these fluids are stressed by an

electric field, a space charge develops, usually in the vicinity of the

electrodes. This effect determined by the non-linearity of the voltage-

current relation and by optical techniques using the Kerr effect,

cannot be accounted for with an ohmic constitutive law with constant

conductivity as shown by (7). A mobility model is necessary, where we



allow the charge density at any point to be non-zero, (although the

whole system must be neutral).

1.3.2 Unipolar Conduction-Mobility Model

The mobility model is a generalized version of ohmic conduction,

where the charge density of each carrier is a function of the electric

field present, through Gauss's Law. For ohmic conduction, the charge

density of each carrier is not a function of the electric field,

although the conductivity could be a function of position.

For many species, the conduction law is given by

acond = E (qibi) E (1)
i

where qi is the magnitude of the charge density of each carrier, and

b. is its mobility (qi and b. are always positive). We wish to consider
1 1 1

the presence of only one carrier, which we assume to be positive.

An Example. In particular, suppose we specify a pair of equipotential

surfaces, having a potential difference Vo over a spacing 1 as shown in

Fig. 1. The lower electrode at x = 0, is a source of ions which have

a mobility b in the fluid medium.
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We wish to consider the equilibrium distributions, when the fluid

is stationary. Thus, in equilibrium we have

v = 0 J = j i x = constant

j sdE° 0(9)

qo(x)- 0 -dx

Solving, we obtain

E (x) = E2(o) + b (10)

qo(x ) = o (11)

b\/E2(0) + 0
Eb

S+ 2jl 1

V 1 eb [(E 2(o) (/2-E3(o)] (12)o 3 jo 0F

where E(o) is the electric field at the emission electrode.

In most experiments, the potential difference Vo is imposed, and

the current density jo is whatever it has to be. Thus, we would like

to eliminate jo from these equations by using (12). However, this

cannot be easily done due to the cumbersome form of (12). In addition,

we must also specify E(o) before the solution is complete.

To simplify the presentation, we define the parameter

2j 12 (13)
sb E2(o)
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Then

E(o) 3 aV /1 (14)

2[(1.+a))3/2 - 1.]

E(x) = E(o) [1. + TIx ]1/2 (15)

EE(o) T
q(x) (16)

2 [1. + ]1/2

Vo 2 8 jo [(1.+ a) 3 / 2 - 1. ]2

9 b 3 (17)

Note that the current is always proportional to the square of

the voltage. See Fig. 2.

In Figs. 3 and 4 we have plotted the electric field and charge

density as a function of position for various values of E(o) (or

equivalently a).

The plots show how sensitive the field and charge distributions

are to the injection process due to the strong dependence on the

electric field at the injection electrode.

The net electrical force on the fluid is

fx 2 {[E(1)] - [E(o)]2} A (18)

To maximize this force, we would prefer the space charge limited

case E(o) = 0 where we have all the charge in the fluid bulk, and

no surface charge on the emission electrode.

We might suspect that such a charge distribution is unstable at

high enough electric fields, since the bulk charge is being attracted

L
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by the surface charge on the other electrode. If this attractive

force overcomes the fluid pressure and viscous forces, this distribu-

tion will be unstable. This instability has been analyzed by other

workers and will be discussed in section 5.

Ion Drag Pumps

Stuetzer has built ion drag pumps similar in geometry to Fig. 1

where charge is injected into the fluid through points at x = 0 and

and collected at a permeable grid at x = 1, such that the fluid could

flow unimpeded. The electrical force given by (18), pumps the fluid.

He used such fluids as freon 113,. silicone oil, castor oil, and

kerosene. His analysis assumed space charge limited conduction, which

agreed well with his experiments. However, there is good reason to

suspect that within the pump, the fluid was unstable, upsetting the

equilibrium charge distribution, as it has been shown that for unipolar

conduction, voltages in excess of a few hundred volts cause most

insulating liquids to be unstable. This will be discussed in section 5.

1.4 Significant Parameters

In order to carry our analysis to sufficient depth, we will mainly

concern ourselves here with a model of a liquid which is inviscid,

incompressible, and perfectly insulating. Our results will then only

be useful for real liquids during an appropriate time scale. However,

we will show that this time scale covers a wide range for many fluids.

All fluids are slightly compressible, which is the mechanism by

which acoustic waves can propagate. The phase velocity of acoustic

waves in liquids is on the order of 1500 meters/sec. To ignore the

L



effects of this slight compressibility, the acoustic wavelengths must

be much longer than the size of the system. For systems with a charac-

teristic length on the order of 10 cm., the frequency range must be

much less than 10 KHz.

We can neglect the effects of fluid viscosity if the fluid inertia

is large enough so that

ay I >> V2 (1)

which will be true if the Reynolds number

2
R pL= (2)

is much greater than unity ; This will occur in a frequency range

where

W >> (3)
pL

where L is some characteristic length. This condition is easily met

for frequencies greater than .1 Hz if we use relatively inviscid fluids

like freon or hexane as indicated in Table I.

Oneof the most stringent conditions is that on the conduction

mechanism. For ohmic fluids, the frequencies should be high enough

that the charges cannot undergo appreciable conduction. This will be

in a frequency range where

S>> (4)

Examining Table I, we see that the electrical relaxation time (T = )

for the fluids of interest can vary from milliseconds to tens of seconds,



26

26

a me
E

C) 0o x Lo r

. .. .

un Ln

' -- -- o o
SI - Ix o

E . I_.i- t- t--· --JLO cu ý c ;

). E- IU C, 7 c: C'

me %.1 LA' c,ai 0 I ; Co -. ---- ----cc' C' i-----L - - - C--- '

I C , :C C C'

'-- -"-W-" > c . ' I -

(E I

4-' Cc'
U x

C' I I C- r-. C, OW

4-' v
- C U C - (NJ ,- ' (N (N.J - :-.j -L -

; Ic a c cc c V -4-' -C' E - 41

W 0 0 C 0c1
* C' L .U ' W LL ki



so that we can easily find fluids to meet this condition. Note that,

in order to have an equilibrium space charge in ohmic fluids, it is

necessary to have a conductivity gradient, otherwise any equilibrium

space charge will decay with time constant T = /l. For fluids

governed by mobility law, the analogous condition is

>> ab (5)

The maximum charge density that can occur over a centimeter length in

a fluid which is space-charge-limited with a potential difference of

20KV is

qmax 10-3 coulombs/m 3  (6)

Examining Table I, we find many fluids which will obey our

approximations in the frequency range

1 < f < 1000 Hz

(7)
(w = 2rf)

1.5 Past Work On Space Charge in Fluids

Turnbull and Melcher were the first to carry through, in depth,

a general electrohydrodynamic problem.11  They considered an incom-

pressible fluid in a gravity field g, directed in the -x direction

with an imposed colinear electric field in an initially stationary

fluid which was perfectly insulating. The equilibrium density p,

viscosity u. space charae density a. and permittivitv E were functions

of the vertical coordinate, x. A variational principle was used to



describe the stability of the system, with the analysis similar to

approaches used in hydrodynamic problems like the Rayleigh-Taylor or

B4nard problems.30 The principle of exchange of stabilities was

shown, thus making it possible to reduce the prediction of incipience

of instability to an eigenvalue problem in the electric field. They

derived a sufficient condition for stability to be

gDp - EDq - EDEDe < 0 (1)

where D = d/dx. Barston has shown that this condition is both necessary

and sufficient. 3 1

These results provide a limiting case, regardless of the electri-

cal conduction model. If an ohmic conduction model is used, then these

results are valid in the zero conductivity limit, and if a mobility

model is used, then these results are true if the mobility is zero.

However, as we have previously discussed, since all real fluids have

some finite conduction mechanism, these results will be only approxi-

mately true for high enough frequency so that any free charge cannot

respond to the excitation. Turnbull and Melcher focused their atten-

tion on conditions for instability, which occur at zero frequency,

and so take an infinite time to grow. On this long time scale, the

conduction rate processes have a chance to exert their influence, so

this limit at zero frequency is the place where many of their approxi-

mations are least appropriate for a real fluid. Previously, Turnbull

has shown that, for a fluid with finite ohmic conductivity, instability

is not incipient at zero frequency, although for small conductivity
x-



the condition for incipience approaches w = 0.12

In his experiments, Turnbull applied a vertical temperature

gradient in a poorly conducting liquid like corn oil or castor oil.

The gradient in conductivity resulting from the temperature gradient

caused free charge to accumulate in the fluid when an electric field

was applied. In the cases which were considered, the gradient in

dielectric constant was negligible with the only significant electric

force being due to space charge. If the fluid is inviscid and per-

fectly insulating, the necessary and sufficient condition for insta-

bility is given by (1) with E constant. If the fluid is inviscid with

instantaneous relaxation, the condition for stability is

eE2 D (-,
(-gDp) < [(ka)2 + (n) (2)

where a is the distance between the parallel electrodes, a is the

electrical conductivity with a0  being the average conductivity. This

result shows that for any given field strength, the fluid is unstable

for short enough wavelengths. However, viscosity, which was neglected,

has its greatest effect at short wavelengths, which indicates that the

inviscid limit is unrealistic for highly conducting fluids. Including

viscosity, he obtains a condition for stability to be

eE2a D(a )
H a< n 4_ n = 1, 2, ... (3)

i9 (-gDp/p a)2 2

which for n = 1 becomes

H < 8.15 (4)



The instability is caused by the electrical forces acting through

the conductivity gradient overcoming the viscous damping of the internal

gravity waves.

He measured the onset of instability using the Schmidt-Milverton

principle. The heat transfer Q, across a tank with a known temperature

gradient AT/d is measured and the Nusselt number is calculated

Nu = Q(kAT/d)

where k is the thermal conductivity. Q is the actual heat flow and

kAT/d is the heat flow in the absence of convection. If the Nusselt

number exceeds 1, convection is present. The convection is due to the

onset of fluid instability. His experimental data showed that the heat

transfer suddenly increased at a critical value of electric field which

agreed well with his theory.

Watson and Schneider have approximately solved for the stability

of a poorly conducting liquid with a single charge carrier of finite

mobility.32 Their stability conditions agreed well with experiments.33

They assumed that the principle of exchange of stabilities was valid,

although it was not proved. Their experimental agreement seems to

indicate that, for fluids with slight mobility, incipience of insta-

bility occurs near w = 0. With this assumption, they derived a

critical parameter which they termed the 'electric Rayleigh number',

3 E:V
R 3 = 99 (5)
e8 V ib

where b is the mobility, V the applied potential, u the viscosity

L



and e the permittivity.

This critical number was derived using the mechanical boundary

conditions that one surface was fixed, requiring both the normal and

shear fluid velocities to be zero, while the other surface to which

ions were injected, was assumed to be flat with zero tangential stress.

The electrical boundary conditions were that both surfaces be equi-

potential surfaces with space charge limited conduction.

Atten and Moreau studied a similar problem, also assuming insta-

bility to be incipient at zero frequency.34 Their boundary conditions

were that the perturbation velocities and potential be zero at the

electrodes and that the perturbation charge at the injector electrode

be zero. They found the critical value for instability to be

EV0
- 161 (6)

Using the above condition for hexane (see Table I) we find the

critical voltage to be

Vcrit= 400 volts

This critical value is typical for most insulating liquids.

These results indicate that with moderate voltages, a unipolar conduc-

tion mechanism becomes unstable, and so any equilibrium distributions

calculated, as in section 1.3.2, will be upset, with the fluid trying

to reach a new equilibrium which cannot be stationary.

These results indicate that when measuring the mobilities of

insulating liquids, one must only use voltages less than the critical



voltage. If this voltage is exceeded, the fluid is no longer stationary

and so convection currents in addition to conduction currents are being

measured. If these facts are not accounted for, erroneous values of

the mobility will result.

1.6 Relation to Past Work in Fluid Mechanics

The analyses presented in this thesis, are electrohydrodynamic

versions of the classic Rayleigh-Taylor and Kelvin-Helmholtz problems. 30

In the past, simple two layer versions of these problems have laid the

groundwork for more extensive work concerning many fluid layers and

continuum distributions of mass density and velocity.

The properties of fluids with density gradients and velocity

distributions have been important in meteorology, geology, and oceano-

graphy. We have included the added complication that the fluid is

charged and so each fluid element is coupled through the electric

field in addition to gravity and inertia.

Our method follows the chronology of the fluid mechanical problem.

We use simple layer problems as clues for the general properties of

complex systems. Eventually, we generalize to continuous distributions

and offer the convergence of many thin layers as an alternate method

for computing system dynamics.

Greenhill in 1887 set up the problem of (N+1) stationary superposed

liquids of differing densities which he solved for a special case in

the long-wavelength limit.35 Long, in 1953, solved a similar problem

ignoring the density gradients in the inertia term. 15 lie mentions that

the discrete layers yield similar results as an analogous continuous



distribution, but he does not go into any depth.

A controversy has existed for many years which only lately has

been resolved concerning the correctness of modeling a continuous

velocity distribution by many thin layers, each with constant velocity.

Taylor and Goldstein, in 1931, concluded that this procedure was

wrong, and that the two methods would give different answers even as

the number of layers go to infinity with the thickness of each going

to zero.36 ,37 However, in 1960, Case resolved the dilemma. He con-

sidered the stability of inviscid Couette flow (linear velocity dis-

tribution).38'39 The stability of the system was investigated in

accordance with the usual theory of small oscillations about a state

of steady motion. He found that there were no solutions. He then

considered an initial value problem and watched the solution evolve

in time. The solution was stable with an asymptotic response that

went like 1/t. He attributed this result to a continuum of modes with

the frequency extremes determined by the velocity limits and the

wavenumber.

The results of his analysis indicate that the general solution to

problems of this type are the ordinary discrete modes and a continuum

of modes. The continuum of modes represent solutions which grow (or

decay) differently than exponential, in this case 1/t. In Fourier

space, the 1/t time dependence is represented by a continuous frequency

spectrum. It has since been proved that if performed correctly, a

large number of thin layers does approximate the continuous problem. 40

The crucial question in the problems considered here is to what



order of singularity are we allowed to use in approximating continuous

distributions. One might guess that we may use many interfaces with

surface charge as an approximation to a continuous charge distribution,

yet as described earlier in section 1.2, such a formulation is incon-

sistent with an inviscid fluid model. For the continuous formulation,

it will be shown that the spatial derivative of the charge density is

the pertinent parameter. For a step-wise approximation, which we will

use, this term is a set of impulses, while a model using surface charge

on an interface results in a set of doublets. This is too high a

singularity to work with, so contradictions result. Because our

formulation avoids these higher order singularities, we only have

discrete modes.



CHAPTER II

GENERAL FORMULATION OF THE DYNAMICS OF UNIFORMLY CHARGED LAYERS

2.1 Introduction

We will examine the propagation characteristics and stability of

stratified equilibrium configurations by the usual method of consider-

ing small perturbations about the equilibrium state. In general, the

electromechanical equations of motion, although linear, have space

varying coefficients.

The types of stratification which are of interest here may be

superposed layers, where each layer has constant prooerties of mass

density, dielectric constant, viscosity, charge density and convection

velocity or continuous distributions of these properties. In the case

of layers the space varying coefficients in the differential equation

are constant within each layer, although they will be different for each

layer with possible singularities at the interface.

The solutions within each layer will be simple because of the

constant coefficients. Our approach will be to solve the equations

within each layer and obtain the total solution by appropriately

splicing the solutions at each interface using boundary conditions.

This method is also useful in approximating the description for

continuous distributions of material properties. The continuum is

replaced by many discrete layers of constant properties. The more

al yers we use as an approximation, the more accurate the solution will

be. If we let the number of layers go to infinity, with the thickness

of each layer tending to zero, the resulting answers will be exactly

correct.

I
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Thus our method has traded a difficult linear space varying coefficient

differential equation for many simpler linear constant coefficient

difference equations. This alternate method can be of special value

with computer analysis.

In considering a large number of layers, we will develop a systema-

tic approach to aid the analysis. We will describe a prototype layer

with sufficient generality so that our analysis provides a prototype

relation between interfacial variables for which adjacent layers can

be "married" together through the boundary conditions.

2.2 Equations of Motion

The general equations for an incompressible and perfectly insula-

ting fluid are:

Conservation of momentum -

Dv 1 2
p-t + V qE - T. V E + pg + iV2v (1)

Conservation of mass --

V v= 0 (2)

Dp = 0 (3)Dt

Maxwel Il's equations -

V xE 0 ; E= -Vý (4)

Gauss's Law: V (ef) = q (5)

Dt_ 0 (6)Dt



Conservation of charge: Dq = 0 (7)Dt

No matter what the geometry, in the prototype layer we assume the

fluid to be homogeneous such that the properties of mass density, charge

density, dielectric constant,viscosity and convection velocity are

constant.

To simplify the mathematics, we will assume from the outset that

the fluid is inviscid ( 0 = 0). After presenting the inviscid analysis,

it should be clear to the reader how to extend this work to include

viscosity.

Thus our approach is to assume all quantities of the form:

S= U + v' (8)i U)A

i p =p (F) + p' (9)

SP= A + p'  (10)

b = e (r) + ,' ; E = -V4 (11)

q = q + q' (12)

E = A +  E'  (13)

e ' p,6 qA U- constant (14)
and xx yandr = x + yi + zi (15)

The primed quantities are small perturbations from the equilibrium.

Equilibrium

The equilibrium variables must obey the time independent form of

(1) - (7), subject to the constraint of a homogeneous medium. Thus the

equilibrium variables in each region must obey the relations:



q q (16)

P PA (17)

e = E (18)

v u-A (19)
Vpo (r) =q -(F) + pg (20)

v E () (21)

Vx E 'r) =0; E (F) = -V (F) (22)

Moreover, they must satisfy the appropriate boundary conditions

between regions. For example, the pressure distribution must be such

that the equilibrium conditions are satisfied.

In particular, we will examine equilibrium distributions which obey

(16) - (22) for prototype layers in planar, cylindrical and spherical

geometry.

Perturbation Equations

Because we have assumed the fluid layer to be homogeneous, (3),

(6), and (7) may be written as:

q'
S + ): =0 (23)

for which we conclude that if any point in question can only be joined

khv r•ink n~r+iclr l4n ie n nninec nP. ofnnc•ntf nV ro+in, e le haOv enlui-

tions:

p' 0 (24)

q' = 0 (25)

E' = 0 (26)



For these conditions, the charge density, mass density, and dielec-

tric constant remain constant, in spite of the fluid motion. This is to

be expected, because any transport of material into a given region leads

to a transport of material which has the same properties as that pre-

viously occupying the given region. This statement only applies to those

portions of the fluid not swept out by motions of an interface. If a

point of interest is adjacent to an interface, an excursion of the

interface could result in an abrupt change of properties. However, if

surface deflections are considered at a given instant, all properties

everywhere between interfaces are uniform.

The other perturbation equations of interest are:

V v' = 0 (27)

PA[- at + U-A v'] + V (p' + q 6') = 0 (28)

V2@ ' = 0 (29)

If we take the divergence of (28), use (27) and define the quantity

7 ' = p1 + qA ' (30)

we obtain the concise equation

V2 r'= 0 (31)

Thus, regardless of the geometry, this problem reduces to solutions

of Laplace's equations, both for the perturbation potential and for the

quantity tr'.

In particular, we will solve (29) and (31) in rectangular, cylin-



drical and spherical geometry, but this analysis can be extended to

any co-ordinate system.

2.3 Rectangular Geometry

The physical situation to be characterized is shown in Fig. 1. A

planar layer of inviscid, incompressible and perfectly insulating fluid

assumes an equilibrium thickness, A. We will describe the layer with

sufficient generality so that our analysis provides a prototype relation

between variables at the upper and lower surfaces of the layer, which

can be used to describe systems composed of many such layers. There

is a distribution of charge throughout the bulk of the layer given by

qA; this charge is uniform, as depicted by Fig Ic. Because of this

charge, there is an equilibrium electric field intensity at the upper

surface which is generally different from that at the lower surface,

and these are designated by Ea and E0, respectively. Ea and EB as

defined here are evaluated inside the bounding surfaces. In general,

they are not continuous through the interface. Our objective of pro-

viding a prototype relation between variables evaluated adjacent to

the interfaces amounts to relating the respective surface potentials

and normal perturbation electric field intensities just inside the

interfaces, and the perturbation pressures and surface deflections just

adjacent to the interfaces.
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For this geometry, the equilibrium quantities are:

q =qA

p = p

P:CA

v = U z

p -p Agx

q x

E x

- q Vo(x) + constant

+ constant

We let all perturbation variables be of the form

' =Re T (x) e (Wt - ky - kz z)

Solutions of this form to (2.2.29) and (2.2.31) are

7r (x)] = A sinh kx + B cosh kx$ (x)
where

k = k 2 + kz2

Now the velocities at a and B are related to the displacements as

vx (a) j (w - kzU A) A j a (10)

Vx(8) = j (w kzUA ) • ,' kB (11)

where

W' =W - kzUAzh

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(12)
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From (2.2.28) we have that

A9

PAJW'vx + = 0 (13)

Using (8) - (13) we then obtain the relations

sinh k (x - ) sinh k (x - a)
x sinh kA sin (14)

and

, 2

7 sT n kA F [cosh k (x - P) 5- - cosh k (x -c) ] (15)=k sinh c -A

where

A (16)

Our analyses implicitly assumed the interfacial displacements to

be small, for in (14) we used (10) and (11) evaluated at the equili-

brium positions rather than at the interface itself. Fortunately,

because the velocity itself is a perturbation, the difference between

evaluating it at the interface or at the equilibrium position is second

order in the perturbation amplitudes. This illustrates the general

approach used in linearized surface deformation problems. The boundary

condition at the moving interface is replaced by one at the equilibrium

position of the boundary, thus greatly simplifying the analysis.

Then using the solution of (8) with (10), (11), and (2.2.28), wej find that r (a) and 4 (0) are related to the interfacial displacements

as

k



2 2 (17)
' PA -pA ' coth kA

(k sinh kA k

However, as the interfaces deform, in addition to perturbing all

variables, the equilibrium quantities acting on the interfaces also

change. Thus to compute the total first order change in all variables

evaluated at the interface, we must include linear changes of equili-

brium quantities. For example, the total linear changes in the pressures

are:
^ Dao
p= () p + ax (X(18)

r (x = a)

S= P () + ( B)o (  (19)

Similarly

a (a) + a = (a) - E  (20)

So = (B) - E (6 (21)x ((x = )

Using these definitions, we have

pa 7T (a) - qA4 (a) + [Eq,ý - pgac (22)

p (• ) - qac (u) + [E0q A pA g (23)

I



and so the mechanical transfer relations are from (17), (22), and (23)

a

CL

pB

p

p W' coth kA -P 2

k - PA k sinh k

2 2
P ' -PAW' coth kA

k sinh kA A

^i
cQc

(24)

There remains the task of finding the perturbation electric fields.

The charges in the layer of fluid have an effect on the fields repre-

sented by the normal component of the electric field intensity just

inside the respective interfaces. By relating perturbation potentials

to perturbation normal electric fields, we are able to give a solution

which is of general applicability.

We have already introduced the convention of the total linear

changes in the potential at the interfaces as given by (20) and (21).

In writing force equilibrium for the interfaces, it is convenient to

similarly define

A Ae. [qA•. +
Q a Aex = - + Aex(a)] (25)

0 = + + e = +S Aex(8) (26)

where we use the fact that

;Ex_ qA
ax CA

U'sing (8), perturbation fields are related at the equilibrium positions

of the interfaces by

^a

_qA



-FAk coth kA sinh kA

-Aksinh kA E k coth kA
sihk

Then, using the definitions provided by (25) and (26), (27) becomes

-EAke k coth kA kA sinh kA

-qAk

iL inh kA 
EAk coth kA

S+ E

o + E -

The electromechanical relations for the prototype layer are

summarized by (24) and (28). In a sense, problems of this type are

surface coupled, although the coupling is actually through volume

forces. We are successful in formally uncoupling the electrical and

mechanical equations in the volume only because the electric field

intensity can be so simply described in terms of a potential.

In Chapter III, the value of these "terminal relations" will be

seen when applied to specific examples.

2.4 Cylindrical Geometry

We will follow the same reasoning here, as we had in rectangular

geometry. In particular we consider a cylindrical shell of perfectly-

insulating, inviscid, incompressible fluid with mass density pA and

constant charce density a., which is movinq with velocity U. in the
LV - IA ·

z direction. We neglect the effects due to gravity.

A X

E:Aex W
(27)

Qa

Q

A

-FC(28)

I _ 1i

(a)

4(B)

+q

i



pi3 a 1.O

Definition of terminal variables for a prototype cylindrical shell of
incompressible, inviscid, perfectly-insulating fluid with uniform
charge density, q,.

Figure 1

In equilibrium, conservation of momentum has

Po + %q% = constant

2

-= q r 2
0 4e

(1)

- V0 ln i- ; V , R some constants (2)

The second term in (2) represents the Laplacian part of the equilibrium

potential which is due to charqes located in other regions of space

(perhaps c). Similarly, we have that

q r V
E + -
o 2A r (3)

with



In general, these Laplace solutions are non-zero and are essential

terms in our analysis, which will be seen in some later examples.

In rectangular geometry, the Laplacian solution was the constant

in 2.3.6, and was unimportant in the perturbation equations. Here the

Laplacian solution is a function of radial position, and so will appear

in our terminal relations.

Terminal Relations with No z-Dependence

If wavelengths of interest in the z-direction are much longer

than the length of the column, then the modes of the system are essen-

tially independent of z. Thus, we assume all variables of the form

= Re 7 (r) ej(wt -me) (4)

v = Re v (r) ej(Wt -me) (5)

where m must be an integer, since the system closes on itself, and

Vr(a) = jW (6)

vr (B) -w (7)

From 2.2.31, 7'(7' = p' + q 4') must obey Laplace's equation, for

which solutions in cylindrical coordinates are

ir(r) = Arm + Br-m (8)

Then proceeding as we had in rectangular geometry, we can easily derive

the transfer relation between a ,8r and the displacements 5, .

Since our boundary conditions are phrased in terms of the pressures, we



write the terminal relations as

2
PAW

-m[(~~ (cL~m]01

-( •-)m + ()m]

-2a B( + ()m]
S

;ct7

4)

P

I

L
where m / 0 since the fluid is incompressible.

For the special case where

8=0

(9) simplifies to
2

. a= -", aP Iml E" -qý a

2S=am = 0
Pe q m - •

As before, all quantities are to be evaluated at their respective

interfaces. Linear changes due to change in equilibrium position are

included. The only possible quantities which may be confusing as to

where they are evaluated are the potentials and normal electric fields,

+28

(9)

and when

(10)

(11)

-9,
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which are redefined below for clarity.

-r r• + (•) = (a) - E• (12)

B o B + () () - E B  (13)

rrcAaEA = r A e r (a) E A a (14)

^ -Eo a (15)
E: : Cer( )  + •A 9r-

r=B

All variables with superscripts n,( (like •,, a

mean that the quantity is evaluated at the respective interface.

Quantities, such as ¢(a), p(3), e (a), e r(), ... are solutions of

the perturbation equations and so may be evaluated at their equili-

brium position. The difference between the latter quantities and super-

scripted quantities is due to linear variations due to change in equi-

librium nosition. 0O and Q in some sense take the form of a surface

charge to terminate the normal electric field at the inside surface of

each interface, but it must be remembered that, physically, they are

just another way of describing the radial field at each interface.

With these terms defined, and from 2.2.29 it is easily shown that

the electrical terminal relation is



[(•) _ (S)m ]

(-m m-1 m -m-l)(a + a )

2-

2
a

(-m-l m m-1 ml

3Eo r=
aa r=a

ABE
SIrB

For the special case

8= 0

(16) simplifies to

+ a •E
0a x a + Ear o

OL A 3rr=a

and when

a = o

we obtain

QB ( + EýBB)Q 7-
aE

+ A r (18)

In (9) and (16) we see no effect due to convection. This is be-

cause we assumed no z variation and thus the wavenumber is zero such

that

W1 = w - kUA = 0

A

^ct
·

+ EcJ +EE

^83

+E

(16)

(17)



We note that our terminal relations are even in m, so when only

coupling these relations together we can assume m to be positive. If

the geometry or excitation has a preferential 0 variation, we must

keep in mind that m is generally both positive and negative.

Terminal Relations with z and 6 Variation

For an arbitrary length cylindrical column, the modes take the

form

=a Re gae j (wt-me-kz) (19)

a ej(wt-me-kz)

Re e-kz) (m integer) (20)

where

vr ()j(w -kU =j (21)

vr() = j(u- kU F ju= ji B  (22)

V2,r' = 0; i' = p' + q a' (23)

V2 ' = 0 (24)

The solutions to Laplace's equation here are

i (r) = A Jm (jkr) + B H (jkr) (25)

where J (jkr) is the mth order Bessel's function and Hm (jkr) is them m
thm order Hankel function of first kind, both with pure imaginary

arguments.

Then using the momentum equation and (21) - (25) we obtain the

terminal relations

L

temnlreain



Ca All

A2 1

j 2p

A1 2 - kDetA
A

2 1  DetA

A A
2 2 kDetA

A12

A2 2

[Jm(jka)H Hm '(jkB)

[Hm(jk~)JJm'(jkta)

[Jm(jks)Hm'(jkO)

[H m(jk))J '(jka)

"1

- Hm(jka)Jm '(jk)]

- Jm(jko)Hm'(jka)]

- H m(jk)J '(jk6)]

- Jm(jkf)H ' (jka)]mm

Det, = [Jm'(jký) Hm'(jka)

dJ m(jkx)

Jm ( jkx) -(j-kx-) ; Hand

- Hm ' (jkU)J m ' (jka)]

'm (jkx) =
dHm (jkx)
d(jkx)

0 B1

cL

where

(26)

B12

B22

6 + Ea

¢( + E •

°E•

aEoE 0a aD

,E
U0-A ý,

(27)I
I
ir o



jkE:

B -kc12 Det

jkeA
21 Det

jke

B22 -DetB

[Jm(jk,)H ml '(jka)

FH (jka)J ' (jka)

[Hm(jkS)Jm' (jkB)

[Jm(jka)Hm ' (jký)

- H (jkF)Jm' (jka)]

- Jm ( j ka)Hm (jka)]

- Jm(jkB)Hm' (jkO)]

- Hm(jka)Jm '(jkB)]

Det B = Jm(jkV)Hm(jka) - Jn(jka)Hm(jkS)

For the special case when

R = 0

(26) and (27) reduce to

.I ( k•i4 )
^( " \ J2 m rra W20 a m 4 -A-

LI JiN"'Jm \J f m

E jka2LJm '(jkca) ^
Oa--" (m +

S' J (jkcx)

(28)

Eaý" )
- E

"A 9 (29)
cx

and when

(cI

" 2 H m (jks)
= p kBH 2k (30

where

(30)



jkBHm' (jkB)
H (jkB)--

3  ) aEo
(4 + E • ) + C or (31)

Sr=B

We list below some properties of the Bessel functions and plot

in Fia. 2 some combinations which often appear.41

Jm(jx) = (-_)m Jm(jx)

H-m(jx) = e mIT Hm(Jx)

(m integer)

[r(m) = (m-l)']

,m(-jx) = ej mi Jm(jx)

Hm(-jx) = -e-ml[2Jm(jx) - Hm(jx)]

1m' (jx) = •m Jm(jx) - j(m+l)(jx)

Hm'(jx) = -- H (.jx) - H(m+)(x)
m•- ix H(m+l)

lim x + 0 (x real)

(1 x)m

Im(jx) f r(+1) (38)

H (jx) - 4 (m)(I jx)-m (39)

lim x +40 (x real)

(j) (j)mex (40)

H(jx) = -(m+) e- (41)

It is also sometimes useful to define modified Bessel functions

0B _-L

(32)

(33)

(34)

(35)

(36)

(37)

I
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Plots of Bessel function combinations which often appear.



which have real arquments as below.

Im(x) = jm m(.x)

Km(x) = !m+ Hm(jx)

(42)

(43)

Using the previous relations, we see that both terminal relations

are even in m and k. In the absence of geometry or excitations which

have preferential directions, we can assume m and k to be positive.

2.5 Soherical Geometry

We now consider a spherical shell of perfectly-insulating, inviscid,

incompressible fluid with constant mass density pA and charge density

q., as shown below. Our analysis proceeds in the same fashion as for

the previous geometries, but we neglect the effect of gravity.

Definition of terminal variables for a prototype spherical shell of
incompressible, inviscid, perfectly-insulating fluid with uniform charge
density q9 .

Figure 1
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In equilibrium, the net force must be zero,

PO + qgD = constant (1)

with q ,r2  Vo R

S= ---- + r + constant (2)

V, R, some constants

The last two terms in (2) represent the Laplacian part of the equili-

brium potential. Then

q Ar VRE = -V + o (3)0 o 3e 2r

We proceed as usual with a perturbation analysis. The method is

to solve the bulk equations, which amounts to solving Laplace's

equation operating on r'(r' = p' + qA@') and 4'. We obtain the bulk

solution in terms of two arbitrary constants, which we then relate to

the interfacial displacements (a and FB. In spherical geometry, we

assume that the perturbations take the form

p' = Re p(r) Ym (*,e) ejwt (4)

= Re Ymn (,,e) ejit (5)

where Ymn are the spherical harmonics, which are related to Legendre's

functions as

Y = e - j me pm (cos t) (6)mn n

with m and n positive integers and m < n.



Again, we wish to express the mechanical terminal relation in

terms of the pressure, displacement and potential at each interface,

for which we obtain

Sn -(n+2) a-(n+l) n-1 2n +
n n+l 2Sn + n(n+l)

= C
B -·(2n+l ) -n -(n+2) -(n+l) n-Ip + -L

L2n(n+l) n n + 1

-qA (7)

where 2
Po P

C n-l - ( n+2 ) n+2) ( n-1+2)

For the special case when

3=0

(7) reduces to 2
S= P- 'A - qA (8)n

and when

we obtain
2

n + l -
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Again, all variables are evaluated at the interfacial position,

since we have accounted for linear changes in the equilibrium. We

define

0( = - (e

^B +erB
r

(10)

(11)

whereupon we obtain the electrical terminal relation as

2n + 1
2

n+2)]2n + 1

L B2
+ E ý

(12)

DE

A ar

aE oA -o

where

+n-(n+1)T-nK - (n+l)

For the snecial case

6 =0

(12) reduces to

^a An a +a A Eo

r=a

E-nB-( n + l ) an-1 (n+1 )-(n+2)B n]

[-n-l a - ( n+ l )-(n+l)n-a -(

F;

r,



and when

S A (n+l) l aE o
- ( E) +EA Dr

The transfer relations

tion in spherical geometry.

illustrated with some examol

given by (7) and (12) complete our descrip-

The value of these relations will be

es in Chapter III.



CHAPTER III

PROPAGATION CHARACTERISTICS AND STABILITY
OF SIMPLE STRATIFIED EQUILIBRIA

In this section we will consider problems which will illustrate

the use and value of the transfer relations derived in the previous

chapter. These problems will have two regions with the boundary con-

ditions at the interface dictating the manner in which the two regions

are joined together. This is particularly convenient since our transfer

relations already relate interfacial variables.

3.1 Perfectly Conducting Fluid Bounded from Above by a Layer of

Uniformly Charged Fluid

Extensive analysis has been performed for this configuration,

excluding the effects of space charge. 18  If the upper fluid is air,

while the lower fluid is conducting (like water), measured frequency

shifts as a function of applied voltage agree well with a theory that

does not include space charge in the air. (See ref. 18, p.75 ) For a

two liquid system, where the upper fluid is very insulating (like a

hexane-water system), experimental results often do not agree with this

theory.42 The effects of space charge in the insulating liquid, either

due to the conduction mechanism, impurities or ionic emission from the

electrodes, may account for this discrepancy. Although such a charge

distribution probably has spatial variations, our first attempt at

analysis assumes the liquid to be uniformly charged.

In particular, we consider a perfectly-conducting fluid with

density pb and depth b which is bounded from below by a rigid wall and
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I

9

V

a-

-b -

Definition of variables for a perfectly conducting interface stressed
by a normal field and bounded from above by an insulating fluid sup-
porting uniform space charge.

Figure 1
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above by a stationary perfectly-insulating fluid of height a, mass

density a', charge density qa, and dielectric constant ca. The inter-

face has surface tension y. (A table for surface tension tractions

may be found in the Appendix.) We wish to determine the dispersion

equation for the electromechanical waves. The boundary conditions for

this problem are

A A A A

=0 ( =0 ( = 0 =0
1 1 2 3

o =0 =o 0 = =
4 4 2 3

2^

n - p + Ea aex (F) - yk = 0 (1)
3 2

From our terminal relations of 2.3.24 we obtain

Pa W22

p ( coth ka - pa g) (2)
'2 k "

2
pb

S=3 k coth kb - pbg)W (3)

The electrical terminal relation of 2.3.28 yields

n = Eaex() = Cak coth ka (Ea) + Qa (4)

Combining (1) - (4) we obtain

2
k (P coth ka + pb coth kb) = g(Pb Pa) - kE2a coth ka

- qa a + yk2 (5)



where
VI q a

E = a (6)a a 2Ea

In the absence of electric fields, our problem reduces to the

classic Rayleigh-Taylor problem. If the heavier fluid is on the bottom,

Pb a (7)

the gravity term is stabilizing. Surface tension is always stabilizing

in planar geometry, so we have gravity capillary waves at the interface.

If the heavier fluid is on top (pb < p,)  then the system will be

unstable for long enough wavelengths. This first occurs at the Taylor

wavelength

X* : 27 W b- a (8)

This is known as the Rayleigh-Taylor instability.

We note that for the product qaEa negative, we have a stabilizing

force. The question arises as to whether this term can ever exceed the

destabilizing effect of the other electrical force term due to the

surface charge on the interface. We use (6) to rewrite (5) as

~2 aVo 2

-k (p coth ka + ph coth kb) = g(Pb - Pa) - - ka coth kaS a

Sa (- - ) (ka coth ka - 1) + yk2  (9)

Now, (ka coth ka - 1) is always positive, so for the space charge to

stabilize the system, we must have



3 2

Vo ka coth ka aa a o+ < 0 (10)S (ka coth ka- + 2(E aa a

We find that there are no real values of qa or Vo to satisfy this in-

equality for any k, so we conclude that the net electrical force is

always destabilizing.

If the heavier fluid is on the bottom such that gravity stabilized

the system, as we increase the electric field there is a critical value

when the interface first becomes unstable. If we define the right-hand

side of (5) as

n1 = g(Pb - Pa) + yk2 - kE coth ka - qaEa (11)

the threshold for instability will occur when

n = 0 (12)

and

d 0n 0 (13)dk

which results in the relations

(ka)*2 + G
W = (ka)coth (ka) (14)

and

sinh 2(ka)* [(ka)* 2 - G] + 2(ka)* [(ka)*2 + G] = 0 (15)

where

2
G =[g(PbP )a qaEa] (16)



and 2
caEa a

W - (17)
Y

We use the results and similar notation defined by Melcher in his

solution of the simpler problem when q = 0. (See ref.18,p.61-65)

Fig. 2 plots the wavenumber and parameter W for impending instability

as a function of the parameter G. However, we can obtain some closed

form solutions for the long and short wavelength limits.

Long Wavelength Limit

When the distance to the upper electrode is closer than wavelengths

of interest

(ka)* << 1 (18)

for which

coth (ka)* (19)

sinh (ka)* = (ka)* (20)
Then the solution to (15) is

(ka)* " 0 (21)

which from (14), (16) and (17) yields

W = G (22)

or

2(23)
a aEa (Pb a) = 0 (23)

Upon solving and using (6) we obtain

V = + a (2aa• (b + - ) a (24)
aa



(ka)*

7
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4

3

2

1

4 8 12 16 20 24 28 32 G

Relation between
instability.

the parameter G, IWI and (ka)* at incipience of

Figure 2
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Short Wavelength Limit

If the upoer electrode is farther away than wavelengths of interest

(ka)* >> 1 (25)

for which

coth (ka)* 1= (26)

and

sinh (ka)* >> 1 (27)

Then the solutions to (14) and (15) are

(ka)* : GV/- (Pb - P - qaEa ]  - (28)

and

W= 2/ = 2 (ka)* (29)

3.2 Two Superposed Charged Layers In Relative "otion

This problem is of interest for it will demonstrate the existence

of space charge and polarization waves, in addition to the classic

capillary waves and Rayleigh-Taylor and Kelvin-Helmholtz instabilities.30

Aspects of this problem also model some conceivable charge distributions

that appear when a liquid is stressed by an electric field. This

general problem provides the first approximation to continuously

stratified distributions.

We consider two planar layers of uniformly charged fluids bounded

from above and below by rigid perfectly conducting plates as shown in

Fiqure 1. These layers each have their own uniform equilibrium mass

and soace charae density, convection velocity, and dielectric constant

L
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Definition of variables for two uniformly charged layers in relative
mo t i o n .

Figure 1

L

X

I.

z
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with a potential difference of V across the system. The interface

has surface tension y. (A table for surface tension tractions in rec-

tangular, cylindrical and spherical geometry may be found in the

appendix.) We wish to determine the dispersion relation for the elec-

tromechanical waves propagating on the interface.

The electromechanical waves depend on the equilibrium electric

field intensities to each side of the equilibrium interface. For the

system shown in Fig. 1, these quantities are found from an inteqration

of 2.2.4 and 2.2.5 to be

a - ab + Lba  Lo +2 b  a (1)

a ab b  gaaE V + (2)b -a b + Eba  o 2% 2-'a

Note that we do not allow any surface charge on the interface.

Because of the rigid plates and constant voltage we have

o =0 0 =o0
1 1

(3)
=0 0

4 4

At the interface, conservation of mass requires that the fluid

displacement be continuous and the irrotationality of E requires that

the potential be continuous

r =5\%
2 3 0

(4)

2 3 0



Because there is no surface charge on the interface, in writing

force equilibrium we require that the pressure be discontinuous only

because of polarization and surface tension effects which implies

^. ^ 2 A 2̂
p - p e= Ee, - ,Eke..e - yk2 = E Q + ELQ -k E

2 3 0 a A2 u u 3 a 2 L 3

and because there is no surface charge, we also must have

A A

Q +Q =0
2 3

(5)

(6)

We use these boundary conditions in connection with the transfer

relations of section 2.3 which are now identified first with one of

the fluid layers and then with the other. From 2.3.28 in conjunction

with (3) and (4) we have

0. = Eak coth ka (0 + Ea~ ) + q a
2 a 0 a 0  0-

Q= Ebk coth kb (. + Eb ) - b3 0 0 0

(7)

(8)

If we add these relations and use (6) we fi,

-5 q - b) + k(aEa co

o k(e coth ka + Eb

To express force equilibrium on the in

the upper and then lower regions, to obtain

nd

th ka + EbEb coth kb)]
coth kb)

terface, we use 2.3.24 for

=-[ (w - kUa) 2 coth ka + p g] - q2 0 V 0

p [b (w - kUb)2 coth kb - bg -
3 0 0

(10)

(11)



Then using (7) through (11) in (5) we obtain the desired dispersion

relation as

(w- ka) 2 (w - kUb) 2
--- a a coth ka + k b coth kb = g(Pb Pa) +yk2

(qa - qb)2

+ (Ea - Ebqb) + k( coth ka + b coth kb)a b

(qaEacoth kb+qbEbcoth ka)
-2(cb-C) a a coth ka + Ebcoth kb

-k ( - b 2 EaEb

(Ea tank kb + Eb tank ka) (12)

Within (12) there are a variety of interesting cases.

Kelvin-Helmholtz Instability

In the absence of electric fields, our problem reduces to the

classic hydrodynamic problem of the instability due to the relative

motion of two adjacent fluids. For this case, when the boundaries are

much farther away than wavelengths of interest, such that

ka >> 1

kb >> 1

(12) reduces to

(Pa + b) 2  2k(pU + PbUb) - (Pb - -yk3

+k 2 (PaUa2 + PbUb2 ) = 0 (13)aa b

which has solutionswhich has solutions



k aPb 2

k(p aUa b yk 3+ g(b a)k - a+•b (a-U b
a abb'+P bb ) .- --b (14)
Pa + Pb ab

We see that no matter how small the difference of velocities, its

effect is always destabilizing. For stability, we must have

Pa (U _Ub) 2
a ~ k (Ob a ) + yk (15)
Pa +Pb

For pb > Pa' the right hand side of (15) has a minimum at the

Taylor wavelength, (3.1.8), and so surface tension will suppress in-

stability if

2 2 1/2
(Ua - Ub [Yp(Pb - Pa ) ]  (16)

Pa b

The effects of convection only enter through the inertia term in

(12), having no influence on the electrical terms. Thus, in the

following analysis we will assume both layers to be initially station-

ary, such that Ua = Ub 
= 0.

Electrical Couplinq (Ua = Ub = 0)

'Ielcher has oreviously considered this problem in the absence of

free charge. Then from (12), we see that the polarization effects are

always destabilizing. The new terms introduced because of the space

charge change the character of the electrical coupling. We will

examine some special cases to illustrate these space charge waves.

"a b

If the dielectric constant is the same for each region, then

a = Eb and (12) (in the absence of convection) becomes



2

S(P coth ka + b coth

+ Ea (qa - qb )
a a b

kb) = g(Pb Pa ) + yk 2

+ k
(qa - q )2

(coth ka + coth kb)

For simplicity we assume a = b

If we then define

2 Q
n = G + (ka) + kaka coth ka

where

G (pb - P a )

23
(q - qb) a

2sy

instability is incipient when

and

+ Ea (qaa

n = 0

= 0
d(ka)

This last condition results in the relation

2(ka)* 3 cosh 2 (ka)* + 0 [(ka)* - sinh 2(ka)*]2

Fig. 2 shows the solution to (21) - (23).

= 0 (23)

For instability G must

be negative, either because of adverse gravity of because

Ea a -b ) <

The parameter Q tends to stabilize the system, so as Q increases, the

(17)

and

(18)

(19)

(20)

(21)

(22)

-- -
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magnitude of G must increase for instability to set in, for which (ka)*

also increases.

For very long or short wavelengths, we can be more explicit.

Short Wavelength Limit

If

(ka)* >> 1 (24)

we approximately obtain from (23) that

(ka)*3 (25)

and from (18)
i2/3

G = -3 () (26)

Long Wavelength Limit

If

(ka)* << 1 (27)

(23) yields

(ka)* = 0 (28)

and then from (18)

G = -Q (29)

"Soace Charae Limited" Interface Condition

If the total bulk charge in each region is just the image of the

corresponding surface charge on the electrodes, Gauss's Law requires

+k+ - n ÷th e-l 4t•r~1A c 4 fke t 4the int•rV•en k , zrth This rnd•ifi n w41i1

be true if

a -aeb
f = -eaE(x=a) = bSa b+

2qa a2 -q a = -q a (30)
2 aa a

J



b Sa b
af EbE(x=-b) = b a

a b

2 2
qbb qaa a

b a - bb = - qhb

which implies that

2
qa a-a-

which from (1) and (2) yield

Ea = Eb = 0 (33)

as expected.

Even though the electric field is zero at the interface, we still

have a stabilizing contribution in (12) from the self-fields due to

the space charge

2
k (Pa coth ka + pb coth kb) = g(Pb - a ) + yk 2

(34)
(qa - qb) 2

k(ea coth ka + eb coth kb)a cot

In the long wavelength limit (ka << 1, kb << 1), we see that the

waves are non-dispersive with phase velocity

±
- a= +P b 1/2

a b+

1 2

3 Pb - Oa) +
(qa - qb

(35)
(a
a

qa = qb

If the charge density in the two regions are equal, (12) becomes

(31)

2qb
2be = VI

0
(32)



2

-k (pa + Pb ) coth ka = g(p - a )

k(Ea

a

q aEa(Eb - a )

:b

+ yk2

2 _a
b b- cb) •+ b-tnk

where for simplicity, we assume

a=b

We note that if

aEa (Eb - ea)
< 0 (38)

the space charge tends to stabilize the system, although for short

wavelengths (ka >> 1) the destabilizing effects of the polarization

forces dominate.

If we define

n = (ka) 2

where

G [g(pb

+ G - W ka coth ka

qa Ea ( b - a )

(39)

2

Y

(c a - E b) E

(a b

incipience of instability occurs when

:=0O

(40)

(41)

(42)

and

drl (
dka-* = -0

E2
aka (36)

(37)

and

(43)
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However, we note that the form of (39) is identical to (3.1.11) -

(3.1.17). The results of that section including Fig. 3.1.2 can be used

for this case if we use G and W as given by (40) and (41).

3.3 Stability of an Insulating Charged Fluid Cylinder in Free Space -

No z Dependence

Investigators in the late 1800's found that the instability of a

capillary jet could be partially arrested by inducing charges on the

surface of the jet, such as by placing an electrified comb near the

43stream. However, as will be shown in section 3.4, the surface charge

on a perfectly conducting jet does not completely stabilize the system,

but rather makes different wavelengths become more unstable. If the

jet were insulating with a bulk charge, the behavior of the jet may be

different. The problems treated in sections (3.3) -(3.6) address them-

selves to this problem, where we consider the equilibrium jet to be

stationary. If the jet is convecting with velocity U in the z direction

we simply let

W +*w - kU

We first consider a charged cylinder where wavelengths in the z

direction are very long compared to dimensions of interest. This

charged column is placed in free space and is shown in cross section

in Fig. 1.

We include the effect of polarization forces by giving the cylinder

ff ij ct -Anf t+h +,.4 e4k45Avi+ .f +644 . ... _P
s an 8, w c may e eren rom e ree soace

pennittivity. The fluid is described by a mass density p, charge density

q and a surface tension Y. (A table for surface tension tractions in



Surface Tension y

Definition of terminal variables for charged cylinder in free
space.

Figure 1

__
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rectangular, cylindrical and spherical geometry may be found in the

Appendix.) This is a two-region problem, since the free space region

has electric fields due to the charged cylinder, even though there is

no charge in free space. We can use our terminal relations of section

2.4, first for the charged column of fluid where a t Ro and B 0,

and then for the infinite free-space region where a mc and ,8 Ro.

We first calculate the equilibrium electric field to be

S 2E (1)

2
L qRo
2o0r o

Note that the electric field is discontinuous at r = R if C 0, but

of course the displacement vector D = EE is continuous, since we cannot

allow any surface charge at the interface, because it is inconsistent

with an inviscid model for the fluid.

The boundary conditions for this problem are:

S= E = 5 (2)
1 2

0Q + 0 0 (4)2

p - D + nEe - FE e + y (1-mZ)= (5)
o r, r i" (_n),

+s2 e -s1ie-D r ~ (lm 2)~ (5

where
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Eoer 2  2

(6)

-cer l Q1

and

qR0
E = - R and E = R (7)

1 2E O 2 2c.

From our terminal relations of section 2.4, we find

p2R0
o = -)

1 m

p =0 (9)
2

0 mE ( + E 5) - (10)

S= - o-- (- + E2(11)
2 :0 2

Since there is no surface charge on the interface, we use (4) to obtain

S o[q - (EE + EE )1 A
m 1 2 E (12)(E + E0

Using relations (8) - (11) in (5) and using the facts that

EE = E CE = (13)
1 02 2

and.

E -E -= 0- (E- E ) (14)
2 1 2: 0



we find our dispersion relation to be

pm2 0 )2
o (m-) (m o 1 o 0 + o (15)m R Ec +0 C m 4 Ec

The m = 0 solution is not allowed, since this implies a oure

exoansion of the cylinder which is not allowed by mass conservation if

there is no z-dependence. The m = 1 solution is stable, since this

implies just a pure translation of the fluid cylinder; m > 1 may be

either stable or unstable, depending on the relative strengths of

surface tension and electrical forces. The electrical forces are

destabilizing both for free charge forces and polarization forces. We

can check our results with the general results derived by Turnbull and

Melcher , that

-EDq - EDEDe > 0 (16)

is destabilizing, where here D = d/dr. We can easily see that for q

Oositive, E > 0 and Dq < 0 at the interface, so EDq < 0. If a > Eo

then E2 > E1, and vice versa if E < Eo' E2 < E1. In either case,

EDEDe < 0, so this check does indeed agree with our results. Similar

arguments hold for q negative. Surface tension always tends to stabil-

ize the system.

Is we increase the value of q, the system verges on instability

when

' .- ~
2 k )c  o Y km 1)
q - (17)

o+
O 4cGE



The first m value which becomes unstable is m = 2, so the critical

value of charge is

2 (E+EO) 6y (E+E ) 12•o•Y
crit (18)3 + R (C + C

o 2e 0 0

For the special case when E = we find

2 12ey (19)crit R 3
o3.4 Stabilit of a erfec Fluid Cylinder with Surface

3.4 Stability of a Perfectly Conductina Fluid Cylinder with Surface

Charge - No z Dependence.

The question arises as to how the stab ility condition for the

previous problem differs from the problem of a surface charge af

spread uniformly on the surface of a perfectly-conducting fluid cylin-

der. The terminal relations of section 2.4 are still correct; however,

we must set q = 0, since there is no volume charge. We modify our

boundary conditions to be

C = 5 = 5 (1)1 2

i = : 2 0 (2)

2 +(1- 2) 0 = 0 (3)
0, -t +E,, +I0

Note that this problem is still consistent with an inviscid description

of the fluid because it is perfectly-conducting. The electric fields

1f
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must terminate normal to the interface, and so cannot create shear

forces. The equilibrium electric field is

S 0 r < R

E (4)E 0
r> Rr 0 - o

Thus, from our terminal relations, we obtain

o (5)
1 m

2 = o (6)
2

E (7)2 R 2 R
0 0

Substituting these relations into (3), we obtain

=m2° = (m-) [ (m+l) - 1 (8)
0 00

There are no polarization effects since there are no electric fields

within the fluid.

If we assume that the net charge for each problem was the same,

such that

2vR = 2,TR (9)o f 0

we can write (8) as

2 2
- (m-1) Y (m+l) q 0 (10)
m 4O



The threshold for stability occurs with m = 2 with critical charge

value

2 12coYSy- (11)qcrit 3
O

The critical value for the surface charge problem is identical to

that for the bulk charge problem, with e = o, (3.3.19), although the

mode dependences differ. The bulk charge cylinder will become unstable

for lesser values of q if 6 # g, because the polarization forces are

destabilizing.

Comoarison (E=E )

In Fig. 1 we plot the resonant frequency and growth rate for the

two cases considered in sections (3.3) and (3.4) as a function of the
2 3

non-dimensional parameter 8 = , which represents a ratio of electric
CY

forces to surface tension forces. The frequency is normalized to
1/2

m ~apR3

The dotted lower part of each plot represents imaginary w, and

thus the growth and decay rates. The upper part is for real w, and

thus represents stable oscillations of the cylinder.

We see that the dispersion relation for the m = 2 mode is identi-

cal for the conducting and insulating cylinders, but that for higher

modes, the conducting cylinder with surface charge becomes unstable

sooner.

I
L



1egions of stability and instability for various riodes for the
cylindrical bulk and surface charge distributions as a function
of the parameter 3 . EEo)

Cy

Figure 1
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3.5 Stability of an !nsulatinq Stationary Charged Fluid Cylinder in

Free Space - z and 8 - Dependence Included

We consider the same problem as in section 3.3 including z varia-

tions. The boundary conditions are identical to those previously used

in section 3.4, with a slight modification to the surface traction

because of the z-dependence of the surface tension (see Appendix). We

repeat the boundary conditions as

1 =2 =: (1)
1 2

. = 4 = (2)
1 2

0 + 0 = 0 (3)
1 2

p - p + (E - E ) Q - 2Y 2(m -1+(kR )2)=0 (4)
1 2 1 2 1 p 0

0

qR oR
E E2  o (5)S2E E 2 2o

UWsing the terminal relations of section 2.4 we have

w OR PJ m (jkRo ) F
VC (6)

o2 =0 (7)
2

J ksEd(jkR )
m o0
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-jke H'(jkR )
2 2

From (3), (5), (8), and (9) we obtain

jkR Jm(jkRo) Hm(jkR )L qR 1 - m(jkR- ) m(jkRo)m 0 (10)
jkR J'm(jkR ) e H'(jkR )

L m o . uHm(jkR )

Using these relations in (4), we obtain the dispersion relation as

w2pR om (jkR ) +q2Ro

jkRo kRo) 4 •-0

+ q2R [1 + (E:

+ -Y- (m2 - 1 + (kR2 0

jkR oJ(jkRo)

m 0

Note that all terms in (11) are real. Fig. 2.4.2 plots the conbination

of Bessel functions which recur in (11).

We can check this answer to see if it agrees with 3.3.15 in the

limit as k + 0. Thus

(11)
i0



lim Jm(jkR )

k-0 jkR ]' (jkR7 )

om o

k•0 jkR H'(jkRT =
'm 0i

( jkR )m r(m+l)

r(m+1)(jkR )(I jkR )m-l
In

- r(m)( 1 jkR )-m

(jkRo)(+- r(m))m- (I jkR-m-0 Tr 2 2 0k,

Substituting (12) into (11), we find that we recover 3.3.15.

The short wavelength limit is another interesting case. Then

from section 2.4, equations (40) - (41), we find that when kRo is

very large, with x = kRo

lim Jm(jkR )
k-+* jkR J(jkR )am 0

(o)m ex

J-/7ýx-j )mex
2 2j

I /2,x (27x )F/

2 2
S2x-x 2kRT -

1
- kR0

lim H (jkR o)
k-)+ jkRo H(jkR )

2 j-(m+1)-77r l2e-x

x .- (m+l) -x ~ 1 /2 " 2 1 2
7( 2x 2 x

2 -2 -1
7 - 12x - 2 kRo - kR--

0 0

T

(12)

1
T1 m

(13)

--

m

m
2



In this short wavelength limit (kR0 >> 1), (11) is approximately

2 -q2 2o(E- ) (kRo)
p -) (14)

0 0

( + (m2  1 + (kR )-q-o R

In this limit, the interface looks planar to these very short

waves. We can check (14) with the dispersion relation derived in

section 3.2 for two planar layers, where the upper layer will have

no space charge. When kR >> 1, (14) does agree with (3.2.12).

3.6 Stability of a Perfectly-Conducting Cylinder with Surface Charge

in Free Space; z- and 0- Dependence Included

Again we can use the terminal relations of section 2.4 with

boundary conditions

A A .

S= 5 =• (1)
1 2

1 = =0 (2)
1 2

Pz - 2 + E (R )+2 Y 1- l-m2 -(kR)2] = 0 (3)

where

,2  Jm(jkR )
: . . .. I4

o jkR d Jp 0 (5

p =0
2 (5)



-jkeoHm(jkRo) aE
Q 2 (kR ) E (Ro)  +  o- -0- (6)

R0

with E° being the equilibrium electric field due to the surface charge of

0 r < R

Eo = (7)
Rr>R

0r -r 0

Substituting these relations into the boundary conditions yields the

dispersion relation as

2 pRo m(jkRo) .f2 H'(jkRo)
S k - kRR HjkR) +1 (8)

oR oJ F o o ( +

+ Y-2 m2 - 1 + (kR )2]

0
18O

This relation agrees with the one previously derived by Melcherl8

Comparison (eso )

Figs. 1 - 5 plot the dispersion relation for various values of
2R2

the parameter B = -- , for the two cases considered here.
Ey

It should be noted that the upper portion of each Dlot represents

real w, while the dotted lower half is for imaginary w. This allows

s u to put on one clot, the dynamics of stable and unstable waves. The

normalization is the same used in Fig. 3.4.1,

j
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Dispersion relation for cylindrical surface and bulk charge
distributions in the m=1 mode. (E=e• )

Figure 2
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= p (9)
WM

In the m = 0 mode, there is always a range of k where the conduc-

ting cylinder with surface charge is unstable, no matter the amount of

charge. However, for the insulating cylinder with bulk charge, we find

some values of charge density which make the m = 0 mode stable. These

correspond on the plot to 8 = 3, 5, and 7. For lesser or larger values

of B, there again is a range of k where w is imaginary. However, for

those values of B where the m = 0 mode is stable, we see from Fig. 2

that the m = 1 mode is unstable. Thus, there is no way to completely

stabilize this system. As we increase the charge density, correspondingly

B, higher modes become unstable.

Because the propagation and instability characteristics between

these two cases differ, we can devise an experiment to determine

whether a cylinder supports bulk or surface charge. The easiest case

is to consider a convecting stream which is supersonic. Then our

analysis is still appropriate replacing w by w - kU. Then the imaginary

w plots in Figs. 1 - 5, will correspond to spatial growth rates of the

convective instabilities. We consider a jet of radius a , and charac-

teristic length 1. Fig. 6 illustrates an appropriate geometry. We

introduce charges into an insulating fluid through the use of razor

blades or sharp points by a corona emission process. We then let the

liquid fall through an orifice. For the perfectly insulating approxi-
a

mation to be valid, the transit time of the ion, T. , must be
ion bE
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I

Geometry for possible experiment to distinguish the instability
characteristics of cylindrical bulk or surface charge. Depending
on the ion time constants, this jet could act either like a conductor
or an insulator.

Figure 6

V0
0

I

Vo

m

I

i
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1
much longer than the transit time of the jet, Tiet :

Re = a >>
1 bE

For a very insulatinq jet we typically have

-3a=2x 10 m

1 = 101m

U = 1 m/sec

b = 10 7 m 2/volt-sec.

E = 105 Volts/m

for which

Re = 2

With these parameters, the experiment is borderline, but if we

can find fluids with a lower mobility, or if we increase the convection

velocity and alter the qeometry we can arrange the appropriate time

constants. If Re is too low, the ions will have a chance to reach the

surface and accumulate surface charge. The jet will then act like a

perfect conductor.

3.7 Stability of a rharged Spherical Drop In Free Space

This case is of historical interest, since the liquid drop model

of the atomic nucleus first used by Bohr and Wheeler I - 3 which models

the nucleus as an incompressible, inviscid, perfectly-insulating liquid
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drop with uniform charge density q, is often used in nuclear physics

to explain the nuclear fission process. Some of the properties of

nuclear forces are analagous to the forces which hold a liquid drop

together. This concept, together with other classical ideas such as

electrostatic repulsion and surface tension, are used to set up a semi-

empirical formula for the mass or binding energy of a nucleus in its

ground state. The formula is developed by considering the different

factors which contribute to the binding energy and weighting these

factors where possible with constants derived from theory or from

experimental data. 3

In particular, we consider the geometry of Fig. 1

Definition of terminal variables for.a charged spherical drop in
free space.

Figure 1

I

i

i

'i

f

I -

i

Bj
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For such a drop, the equilibrium electric field is

r< Ro-L
o 3

qR
0

2

3Eor

The boundary conditions for this oroblem are

=• =5

hp =

(2)

(3)

(4)+ 0 = 0
1 2

n - p  - E e + cEe E  - (n-l)(n+2)ý = 0
1 2 1 r, o 2 r2  2

0

(5)
, !here

qRo
E =

2 3F

qRo
L - -
2 3eo

(6)

We can determine the interfacial quantities by using the terminal

relations of section 2.5, first in the inner reaion with r = 0 and

a = R , and then for the outer region with , = R

obtain
2

D pR

0= n

and a = o. We then

n 0 (7)

0 =0

(1)

(8)
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-Ee n ( + E )
ri 1 R 1 3

0

Soe 0 =
2 2

60(n+l) A A 2
R ( + E 5) - q q

From (4), (9), and (10) we obtain

2q Ro(1 - n) (
3[n(s + -E- I ~ (ll)0o

Then using (7) - (11) in (5), we obtain the dispersion relation as

pmRo 0 2Ro(e-0 ) (n-l)

n 9 E:

-2q 2Ro (n-1)

0 0

Ln(0 -e) + E•
+0 ) + 0

2
IR

(n-l) (n+2)

The n = 0 solution is not allowed, due to the incompressibility

of the drop. The n = 1 solution is stable, because to first order,

this solution represents a pure translation of the drop. The first

mode which can become unstable is for n = 2. The critical value of

charge density is then

2 36y eos (2E + 3O)
qcrit = 3 [22 2R o 2E + 3 o + E

(13)

(9)

(10)

(12)
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If

S_ E:
0

this condition becomes

qcri t R 3(14)

This problem can be compared to the stability of a perfectly-

conducting drop with surface charge, the so-called "Rayleigh's limit."44

3.3 Stability of a Perfectly-Conducting DroD with Surface Charge --
44

Rayleigh's Limit

The equilibrium electric field is now[ 0 r < R0
E = 02 (1)

- 0  r>Ro

Our boundary conditions are

S= (2)1 2

cb = ~b = 0 (3)
1 2

p - P + Eo(R )Q - Y (n-1)(n+2) 5 = 0 (4)

0

From the terminal relations of section 2.5, we have

S- n 0 (5)1 n

zfl
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p =0 (6)
2

^ (n+l) ^ 2af
0 - a• - , (7)

0 0

Thus, our dispersion relation is

( pRn) 
of Ya_

-n R - + z (n-l)(n+2)
no 0 o R

o

y(n+2) af= (n-1) - (8)

The threshold for instability occurs when

Of crit = 2(9)

Comparison (e•e )

To compare this result to the previous bulk charge problem of

section 3.7, we assume e = e so that there is no polarization force,

and that the total charge for each problem is the same, for which

4 3 2
- R q = 4iRo  (10)

We then can rewrite (9) as

= - 1/2

crit = 6- (
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Comparing (11) and (3.7.14), we see that the bulk charge system

with E = Eo becomes unstable slightly earlier as the total amount of

charge is increased.

Physically, the insulating bulk charged drop and the conducting

drop with surface charge have much in common. As was discussed in the

analagous cylindrical problems of sections (3) - (6),.in any real

experiment where a drop is charged, on a time scale short compared to

the fluid relaxation time (D-), this drop can approximately be considered

perfectly insulating with a bulk charge. For longer periods of time,

the bulk charge will relax to the surface, shielding out the electric

field as if the drop were perfectly conducting.

For the case when e = Es, Fig. 1 plots the resonant frequencies

(and growth rates) for both these cases as a function of the non-

dimensional parameter

q2Ro3

where we assume the total charge for each case is the same. The

frequency is normalized to

/2
Wmj2Y

The two situations have different behavior for a given mode. Although

the insulating drop becomes unstable first, in the n = 2 mode, we see

that increasing' the amount of charge further results in the higher modes

of the conducting drop becoming unstable sooner.
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regions for a spherical drop with bulk or surface charge.

Fi gure 1

Stability
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CHAPTER IV

GENERPJL FORMULATION OF CONTINUOUS STRATIFICATIONS

4.1 Introduction

The discrete stratifications discussed in the previous chapters

are a subset of the general class of problems of continuous stratifi-

cations. The interfacial waves which propagate on the discrete struc-

tures are reolaced by bulk waves. In the past, much attention has been

given to gravity waves because of their presence in the oceans and

the atmosphere.15-17 The waves present at the water-air interface of

the ocean exemplify the class of interfacial waves, while the smooth

density gradients present in the atmosphere and in the oceans represent

internal gravity waves. Bulk properties of liquid systems are usually

temperature dependent, so any temperature variations will induce pro-

perty gradients. Since temperature variations are usually smooth,

property distributions are also smooth. Interfacial waves are a special

case where oroperty gradients are particularly sharp at the interface.

In charged fluid systems, each fluid element is coupled through

the electric field in addition to gravity, so that the new class of

'space charge" waves arise. In the previous chapters we have discussed

interfacial versions of these new waves, but in systems where there

are no surfaces, as when electrodes are submerged in a liquid, bulk

space charge waves will also propagate.

For such systems which are stratified in mass density, charge

density, and dielectric constant, we will derive the small signal

equations of motion in planar geometry. We will then consider the
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special cases of weak gradient and exponential distributions, since

the coefficients of the differential equation reduce to constants, for

which it is easy to obtain solutions. In Chapter V, we will consider

many thin layers as approximations to these distributions, and show

that as the number of approximating layers approach infinity, with the

thickness of each layer tending to zero, the continuous and discrete

results are identical.

4.2 Equations of Motion

Turnbull and Melcher11 considered the general case of an initially

static, incompressible fluid which is perfectly insulating and stratified

with continuous distributions of mass density, viscosity, permittivity,

space charge and electric field in planar geometry, as illustrated in

Fig. 1. For completeness, the general analysis will be repeated here.

Their analysis emphasized conditions for incipience of instability which

occur at zero frequency. As described in sections (1.4)and (1.5), the

approximation of a perfectly insulating fluid is not appropriate for

real liquids at this frequency, and so we wish to emphasize the dynamics

of such systems, in addition to the stability. In particular, we will

use the case studies of weak gradient and exponential stratifications,

to emphasize the wave propagation characteristics of such systems. In

Chapter V, we will approximate these distributions by many thin layers

to illustrate the convergence.

The necessary equations are:
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'1

Eg E(x)

40

i

,I!1i

An initially static fluid, stratified in the x direction, is
stressed by an electric field intensity E(x) imposed by means of
perfectly conducting electrodes (at x=O,d) constrained to a constant
potential difference, Vo. There is an equilibrium distribution of

mass density p(x), viscosity i(x), permittivity E(x), and space
charge q(x) in the vertical direction.

Figure 1

fn(x) fF(X• fiI(X) fnhy V

z

I
k

\

+ 0
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Conservation of Momentum
Dv T 1 38 -S+ Vp = qE - E.E V+ v(•-F )

2-+ P2 v + 2(Vu.-) V + Pg

+ Vpx (VxV-)

where
D_3 + v.V
St .t

Conservation of lass

V v =

Dt

Mlaxwell's Equations

Vx E = 0 ; E = -VQ

Gauss's Law

D ( E:E) = q

Conservation of Charge

OtID
where

(9)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)
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We have included electrostrictive forces in (1), however, since

it is a gradient of a quantity, we can include it with the pressure,

and because the fluid is presumed incompressible, electrostriction will

have no effect on the dynamics.

All quantities have an equilibrium and perturbation part as listed

below:

P = + p' (10)

v= v' (11)

p = D + &' (12)

q = q + q' (13)

SE + e' (14)
0

S= + p' (15)

: + s' (16)

The primed quantities are nresumed much smaller than the equilibrium

values.

Once we specify the equilibrium, we consider small perturbations

to be of the form

= Re (x) ej(w t - k - kz)  (17)R=ed (x) e w z (17)

with

k = k + k (18)
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The linearized form of our equations become:

po t -p' ix - Vp' + pV v + 2(Vi.V) v

+ Vix (XV-) + q'ET - o - (Eo E )Ve ,x 0 B0 0

+ E VCE
0 o ax

v* v=0

o -v Do

= -Vx o

W = -v Do
t x 'o

-EOV7 2+ n(Eo ') - DE 00' = q'

It is convenient to work with the variables vx and c, so we

eliminate all variables in terms of these two. The resulting equations

are thus

(19)

(20)

(21)

(22)

(23)

(24)



115

2 2^ 2 2 2_O2
jw [D(PoD x) - p k vx ] 2 D [lJ(D -k2)DVx ) ] - Ik2(Dk)x

+ D [1D(02+k2)v ] - Dk2uDv - k2 _ oV
÷ D w~

2 ^ 2 E Dqo ^- k PqIV + k --- vx.qo 30 x
k2  DE D•°V

E0 3W---

- k2E 0DoD

DE DE A

S 2 ^ o 0 E D(DEo x
0(E - k Eo¢ + jW X

-Dq
j0 x

Typical boundary conditions for these equations are:

v x(O) = 0

vx(+d) = 0

Dvx(0) = 0

Dvx(+d) = 0

0(0) = 0

¢ (+d) = 0

Equations (25) and (26), with boundary conditions such as (27),

summarize the eigenvalue problem for w. It has been shown by Turnbull

and Melcher,11 and Barston31 that the necessary and sufficient condi-

tion for stability is

gDpo - E Dqo - E DE Deo < 0 (28)

with instability incipient at zero frequency.

and

(25)

(26)

(27)
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If only conditions at incipience of instability are needed, we

simply solve (25) - (27) when

W) = 0.

Thus, we have traded an eigenvalue problem for w for an eigen value

problem in the system parameters, like the electric field. However,

if wave propagation characteristics or growth rates of an instability

are needed, we must solve (25) - (27). In general this is difficult

since the coefficients of the differential equations are functions of

position. However, for weak gradient and exponential distributions

(25) and (26) reduce to constant coefficient differential equations,

which can be easily solved.

For these case studies, we assume from the outset that the fluid

is inviscid, and that the permittivity is a constant. Then (25) and

(26) reduce to

p 2" -k2  g
jw [D(Po0 vx) - P k v x j (g)P0 - E Dq0) vx

- k2 o; (29)

and

0 - k2 --0 v = 0 (30)
j (o x

4.3 Weak Gradient Stratifications

If the gradient in fluid properties is very weak, we can use the

Boussinesq approximation that every coefficient in (29) and (30) is
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constant. In particular, we assume the equilibrium mass density to

increase very slightly with fluid depth such that

P= PT (1 + ax) 0 < x < d (1)

with

ad << 1 (2)

Then we can ignore density gradients in the inertial terms, but we

still keep density gradients in the gravity term of equation (4.2.29).

We also assume that the equilibrium bulk charge density is a

linear function in space such that

Dqo = constant (3)

but that the magnitude of the charge density is very small, such that

we can ignore its contributions to the electric field. The imposed

fields due to the external battery are much larger than the self-fields

due to the space charge. (Equivalently we can say that the total

surface charge on the electrodes is much larger than the total volume

charge present in the liquid). With these apnroximations

Vo

E = d- (4)

Then from (4.2.30), we have

NE 2 2
v _-_ (n -k ) (5)

0
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Note that in (5) we retain the effects of the fluid motion on the

potential. This will result in self-field effects being included. A

less rigorous analysis would forget (5) and ignore the last term in

(4.2.29). Note that there would still be electrical coupling in

(4.2.29) due to the imposed fields.

With these approximations in mind, we use (5) in (4.2.29) to obtain

2 - k2 2 +k L (-g +) ( - k2) -- k• . = 0 (6)
(D PT W2 PT

The last term in (6) represents the reaction back on the potential

due to a fluid displacement. A less rigorous analysis would neglect

this term.

We assume solutions to (6) of the form

^ = Aesx (7)

where s must satisfy the characteristic equation

22 2. . 9 .
(s- + (s - y = 0 (8)

wi th

2 EoDo
I _1.

S- - J J2 PT
and

k2(Dq )2

Y =-- -- (10)
SPTS

Solutions to (8) are
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2 2 + 7s-k - 2 (-2- +Y

Thus, the solutions to (6) are of the form

= A eS1X+ A eS2X+ A eS3X+ A eS4X
1 2 3 4

with

2
1 2

( 2 1 /2
+ y+ Y

S = - s

s = + k 2
3

(14)

(15)2 'x' 'Y u

(16)

From (5) we also have

[A (s 2
1

- k2) esix + A (s 2
2 2

+ A (s 2 _ k 2 ) eS3X + A (s 2
3 3 4 4

k2 ) eS2x (17)

k2) es4x]

Because of the rigid, oerfectly-conductinq boundaries at x = 0 and

x = +d, the boundary conditions are

4(0) = 0
cp(+d) = 0

vx (0) = 0

vx(+d) = 0
(18)

(11)

(12)

(13)

Do
'0
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e-s1d esid

(s 2-k2) (s 2-k2)1I

1

e-sad

(s 2-k2)

1

eS 3d

(s 2 -k2 )3

(s 2 -k 2 )e-Sld (s 2k 2 )eSld (s 2-k 2 )e-S3d (s 2-k 2 )esd A
I .

= 0

(19)

For solution, the determinant of the coefficients must be zero,

for which

(s 2 _ s 2)2
1 3

(es d - e-s ad) (esld - e-sld) = 0 (20)

So, for non-trivial solutions to (20), we must have either

s 2 = _ () 21 d (21)

22 (22)

Note that either (21) or (22) is allowed. Once, one solution is picked,

the other is determined from (13) - (16). Using (13) - (16), we can

treat both possibilities simultaneously

(23)

(24)

k2 2 + ) - +( )

2 n 2 k2
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We square both sides of (24) and simplify, to obtain

y = [(n2 2 n)2 + k2 _ ] (25)

Then from (9) and (10) we obtain the dispersion relation as

2 (Do)2 EDq 2k2[ + (-ag + } + k2

2 PT PT (26)

Sn = 1, 2, 3, ...

The self-field term on the right hand side of (26) results from

including the effects of the fluid motion on the potential as previously

discussed. Its effect is always stabilizing. However, for very short

waves (k -+ M) the other term dominates. We see that we will have

instability if

(-ag + o) < 0 (27)

This agrees with the general criterion of (4.2.28).

If the inequality of (27) is not met, the system suoports internal

gravity and space charge waves. Plots of the wave dispersion given by

(26) will be presented in section 4.5.

4.4 Exnonential Stratifications

In the previous section we ignored the contributions to the electric

field due to the space charge. Thus, our results were only applicable

when the quantity of space charge was much less than the total surface

charge due to the battery. In addition, we assumed the mass density

A
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change to be much smaller than the average mass density.

We consider here an exact problem with no approximations. We

assume that

p = pe+ (1)

and

oe+c/2 x 
(2)

These equilibrium distributions are quite particular, since the

exponential factors in (1) and (2) are similar. This problem is useful

for it provides an exact case study, for which aoproximate analyses

can be checked.

The previous analysis of section 4.3 can be checked when

ad << 1

It will lend credence to keeninq the self-field terms in the previous

section. In Chapter V, we will check the convergence of many thin

layers as an approximation to these exponential distributions. This

analysis will also be exact, to which approximate analyses can be

comnared.

'!ith these justifications, we oroceed by usinq (2) with Gauss's

law to obtain the electric field in the absence of any other field

sources.

E = + o +a/2x (3)
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We then substitute these equilibrium distributions into equations

(4.2.29) and(4.2.30). After eliminating vx in favor of p, we find that

all the exponential factors cancel out, leaving us with a constant

coefficient differential equation. This fact enables us to solve

exactly for the dynamics which justify our choice of distributions as

given by (1) - (3). Thus, we have obtained

[D2  2 - k2 ] (D2 _ k2 ) '

2 2 ̂2 (D2 - k 2) 2

+k 22 q+)2 0

-c = 0 (4)
o EP•0

We let

k2 [-agpo + o2 2
8- =(5)

0

and
k2  )2

= - ~q--- (6)

We then can assume solutions to (4) of the form

A: = •sX (7)
S-7. * - ', I

for which we obtain the characteristic equation as
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(s2 - - k2) (s - k2) + .(s - k) - y 0 (8)

which we fortunately can rewrite as

2  2
(s2 - k2) +(s2 - k2) (8 - ( -)) - y = 0 (9)

and has SOIUtions s2 a 2
2 2 k 2s - k = -L

We denote the four roots as S1/2
22 2a

s = + + Y(11)
L 2 2

s = -s (12)
2 1

I2/1

[ 22
s = k k2

3

2 I

+ y (13)

L - J

S = -S (14)
4 3

Thus, the most general solution to (4) is

(b= A esix + A eS2X + A es3x + A e5s x  (15)
1 2 3 4

and, from (4.2.30)

(10)

i
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S +2jWE w 2

x egX 1 1
o

- k2 )e(s 1~ , 2 )x + A (s 2_k2)e(S2-C/ 2)X
2 2

k- 2  (S3-cV2)x 2 2 (s4-a/2)x (16)+ A (s3 2 - k2)e 2)+ A (s - k2 )( 2) (16)
3 3 4 4

Because of the rigid, oerfectly-conducting boundaries, our boundary

conditions are

0(o) = 0

(+d) = 0

v (0) = 0
x

v (+d) = 0
x

(17)

which results in the relations

(s 2 -k 2)
1

-s d

(s 2'k2)
1

+sld

( k k2 -sId (s 2-k 2 )e+sd
1

1

(s 2-k2)
3

-s 3d

2 9 -s3 d(s -k2)e
3

1

(s 2 -k2)
3

2 2 +s3 d

(s 2-k 2)e 3d
3

For solution, the determinant of the coefficients must be zero, which

results in the relation

2(s - s 2)2 (e -ed_ e-d) (e Sd_e-sid) = 0 (19)

Thus, for non-trivial solution, either

Fl

A1

AK>

=0)

('18)



(s )2=_ (n)2
(5) $

(s) 2

We can handle both situations simultaneously using (10) - (14)

Rearranging (22) squaring and reducing, we finally arrive at

2
Y - (3 - ( ))
Y)

(k2 + n'2(dL)
2+ k2

+k] (23)

Then, using (5) and (6), we write (23) as

L 2
(sq0

(-agp + --2
0 C

2
)[(n,) +d k21]

(24)
k 2

n = 1, 2, ...

We note that the electrical terms are always stabilizing, so

gravity can be the only destabilizing mechanism. When

ac>O

the heavier fluid is on top and so the system is potentially unstable,

126

t)2d

(20)

(21)

2 2 2
(T )d (22)

k
2

2 =
SP

d +
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unless the amount of charge present is enough to stabilize the system,

which will occur if
2

qo
o > agPo (25)

If the inequality of (25) is met, the system will support purely

propagating waves.

4.5 Presentation of Results

Because the dispersion relations of (4.4.24) and (4.3.26) are so

similar in form, it is possibly to oresent the information of both

these equations simultaneously.

We consider only stable systems when (4.2.28) is obeyed. For the

weak aradient case (section 4.3) we define the quantities

2 oE 0o
S -2 a +  0 (1)

and

d2 (Dq )2
W2 0
p :(2)

Similarly, for the exnonential distributions, we define

2
2 q

,,• = -,g + (3)
Po0

and

2 adq 2(
P 2 0
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We see that (3) and (4) agree with (1) and (2) when

ad << 1 (5)

Fig. 1 plots the dispersion relation, when ad << 1, for various

values of ap2, where the frequency is normalized tow (wm2 > 0). If one

2 2is considering the weak gradient case, wm and are given by (1) and

(2), while if the exponential case is of interest they are given by (3)

and (4). Fig. 2 is appropriate for the exponential stratification when

cd = 5.

When p 2 exceeds wm 2, we find that for increasina wavenumber, the

group velocity, given by the slope of the curves (v = ), decreases,

eventually becomes zero, and then for higher k becomes negative. In

our analysis, we neglected all dissipative mechanisms such as viscosity

and conduction. Simple perturbation theory can be used to calculate

corrections to the relations given by (4.3.26) and (4.4.24), for slight

loss. If the system is driven at real frequency w, the spatial damping

is given by the imaginary part of k.

1 <Pd >

k - (6)1 2 v <W>

where <Pdis the time average power dissipated and <W> is the time

average power stored in the system. However, when the group velocity

becomes zero, k. becomes very large violating our approximations. This

indicates that when

!

indicates that when
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v = 0

a disturbance will not propagate away, thus allowing other mechanisms

a chance to exert their influence. Thus, we must keep in mind that

when

v -9

some assumptions may be violated in a real system.

In Chapter V, the two cases treated here will be compared to

analagous surface wave problems. For these continuous distributions,

we have an infinite number of modes. Superposed layered systems will have

only as many modes as there are interfaces. However, as the number of

interfaces gets large it will be shown that the two methods approximately

agree.
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CHAPTER V
ANALYSIS OF MANY SUPERPOSED CHARGED LAYERS

5.1 Introduction

The analysis of Chapters II and III considered the dynamics of

superposed layers of incompressible, inviscid, perfectly-insulating

fluids, where each layer had constant properties of mass density, charge

density, dielectric constant and convection velocity, which are differ-

ent for each layer. The electromechanical interactions couple through

each interface, and so can be easily analyzed by systematically applying

the boundary conditions at each interface. The terminal relations

derived in Chanter II aid in the analysis, since they directly relate

the interfacial perturbation quantities of pressure, displacement,

electric potential, and normal electric fields, which are the pertinent

quantities that appear in the interfacial boundary conditions.

We will illustrate the usefulness of the "terminal relation"

approach by developing the general case of (N+l) superposed layers in

planar geometry. The resultina solution will be of use for any dis-

crete strata problem of the type considered here, or if the number of

layers becomes large, with the thickness of each layer tending to zero,

the solution aporoaches the limiting case of a continuous stratification.

We will illustrate this convergence by modeling the weak gradient and

exponential stratifications treated in sections (4.3) and (4.4) by many

thin layers.

For completeness we include the nn~ihilitiep nf thp lyv•rs havina

relative velocities. There has been considerable controversy in the past
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as to whether continuous flow stratifications can be analyzed as the

limiting case of a multi-layered system. 4 0  If performed correctly,

such a representation is correct, but there are difficulties due to

the presence of a continuum of modes as discussed in section (1.6).

We avoid these difficulties in our examples by assuming the layers to

be stationary in equilibrium.

5.2 Equations of Motion for (N.+) Layers (N interfaces)

We consider (N+l) layers of incompressible, inviscid, perfectly-

insulating fluid bounded from above and below by rigid, perfectly con-

ducting plates. Each layer has its corresponding thickness A, mass

density p, charge density q, dielectric constant 6, and convection

velocity U, as shown in Fig. 1, Each interface also has its correspond-

ing surface tension y.

For clarity, we repeat here the terminal relations derived in

section 2.3 for the prototype layer shown in Fig. 2.

Pp ----coth kA - g sinh kAk k sinh ka

I = -q (1)
B j2 OO2 1 2

p k sinh kA coth kA - pa

-ek 1
sinh kA q+

Sc1 (2)
kTTTzf-I k coth kA + R E +

I L L J L
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Definition of variables for (N+1) superposed layers. Each layer
has its corresponding mass density p, charge density q, dielectric
constant E, thickness A, and convection velocity U. Each interface
also has its corresponding surface tension y.

Figure 1

I

i
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A g

4'

Q = -ce

S= +e x
Prototype layer for rectangular geometry.

Figure 2

e focus attention on the ith interface which separates the ithWe focus attention on the i interface which separates the i

and (i-l)t h layers. The boundary conditions are

Ia ib 1

Cia r ib6 ýi

ihb -ia i ai xai

(3)

(4)

(5)2xbi
c-il biexbi -

I-
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Oia + ib = 0

We define

w =m- kU.

Using the terminal relations of (1) and (2) we have

.2
S2 ^ Pii^

Pia (i coth ki + P i k sinh kA i+l
1

- qi

2
2 Pi-1i-1

= 2 coth kA
Dib (Pi- 1 i- ct c -1 i-1g) i - k sinh kA -1 -1

(9)

0ib = Ei- k coth kAi 1 (i + Ebi i)

-i-I. k .

sinh kA i- + Ea(i-1) i-l qi- 1
(10)

= ( + E ( )

ia sinh kA (i+1  b(i+l) i+l)i~~~il

+ Eik coth kAi (ýi + Eai ) + qi &i (11)

We note that the electric fields above and below an interface are

in general different, since

Eai # E(bi

(6)

(7)

(8)

(12)
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because

SiEai :i-I Ebi

Now using the boundary condition expressed by (6) we obtain

i [e.ik coth Ai + Ei_- k coth kAi I ]* 1 k cot k 1-1

+Ei-I k 1
Oi-I E sinh kAi i+1 sinh kAi

+ pi [ i- 1Ebik coth kAi- 1 + iEaik coth kAi + qi -

+ i Eb(i+l k +ei-I Ea(i-1) k+- j 1 ]- r - ]- =0)
i+ sinh kA i- sinh kAE

We can rewrite the boundary condition of (5) as

2^b -ia +(Eai - Ebi) (0 ) - ik = 0

which results in the relation

qi-l

(14)

(15)

(13)
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2
A. 2
S [  i- p coth kA. + Pi coth kA. -g(pi - pi) -yik 2

S k i_ 1 c- k i1 i-1 1'

+ (Eai - Ebi) iEai k coth kA + qi (Eai - Ebi)]

;2
i-1 Pi-1 ^Oi-i %i 1

k sinh kAi, i-I

i.'2 p (E

1 S- [k-shj-+ (Eai

- [qi-1 - qi - Ei(Eai

- Ebi) Eb(i+l) k
sinh kA. i+l

- Ebi) k coth kA ] ;i

i ( Ea i - Ebi ) k 1
sinh kA i+

(16)

After writing (15) and (16) as a matrix equation, and oerforminq

some matrix manipulations we can write the result concisely as (17),

Where

an  coth kA + n-ln- coth kA - g(p -Pn) - yi k

n+ (Ean t )2n k coth kA + q (Ean En)nan bn n In an bn

+ Ebn (qn-l - qn)

_ I

(13)
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b = (q - qn + n (Ean - Ebn) k coth kAn (19)

nC n =  si n kAn  (20)

dn =n Fn k coth kAn + En- 1 k coth kAn-l (21)

S-en k (Ean - Ebn) (22)

en sinh kAn

n 

(23)

Sf = - --:-( 3n sinh kA n

We note from (17) that the matrix is symetric with all elements

real. For N interfaces, the order of the matrix is 2N x 2N. The matrix

elements appear in a systematic form with the non-zero elements situ-

ated around the major diagonal. If we let each layer have the same

dielectric constant, then Ean = Ebn, and (17) reduces to a simpler form

because en = 0.

Equations (17) - (23) give the general solution for discrete

strata of any number of layers. The class of problems encompassed by

these equations include: (a) gravity-capillary waves and instabilities;

(b) nolarization waves and instabilities; (c) space charge waves and

instabilities; (d) effects due to relative convection of layers.

These equations also have the extra value of approximating con-

tinuous stratifications when letting the number of layers approach
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infinity, with the thickness of each layer approaching zero.

1We will use (17) - (23) to treat the examples of many layers when

the oroperties between layers change slowly or obey an exponential

law. This will be analagous to the continuous weak gradient and ex-

ponential stratifications considered in sections (4.3) and (4.4). 'je

%will then illustrate the convergence of many thin layers by showing the

dispersion relations of the limiting discrete and continuous problems

to be identical.

5.3 Discrete Weak Gradient Distribution ( = 0, Ui = 0, .i = constant)

The geometry for this stratified laver problem is illustrated in

Fig. la. We assume that each interface has surface tension equal to

zero (yi = 0), and that in equilibrium each layer is stationary (Ui = 0).

The dielectric constant and thickness of each layer are identical

(E = E = constant, A. = A = constant).

In particular, we consider a step-wise approximation to linear

distributions of mass and charge density as illustrated in Fiq. lb and

1c. Then

On =  (1 +anA) n=,i,..i (1)

where

ad << 1 (2)

and

(3)q - qn-1 = (0qo)A
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a) Geometry for weak gradient stratification;
We approximate linear distributions in mass
(b) and charge (c) densities by step functions.

Figure 1

I

(a)
-I

-ý 11 ý

!

~1 5

q 0



143

with

Dq0 = constant (4)

In analogy to the Boussinesq approximation made in section (4.3),

we assume the mass density to be constant in the inertia terms, while

retaining density gradients in the gravity terms. We also assume the

charge density to be very small, so that the electric field is deter-

mined from the external battery. With these approximations we have

Pn + Pn-l " 2p (5)

(6)

(7)

Pn-l - Pn = -Po C

V0
E = = - = constant

Then within our approximations (5.2.18) - (5.2.23) become

2
an - 2po coth kA + agp A - E Dq 0A a

bn = DqoA - b

2

Cn 0C - 2 o cn k sinh kA

d = 2sk coth kA - d

en -0

f --k f
n sinh kA

(8)

(9)

(10)

(11)

(12)

(13)
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We see that, within the same assumptions made in section 4.3,

every matrix element is a constant and does not change from row to row

in (5.2.17). Thus, we can write (5.2.17) as

a b c 0 0 0 0 0 0.

b d 0 f 0 0 0 0 0-

c 0 a b 0 0 0 0

0 f b d 0 f 0 0 O

0 0 c 0 a b c 0 O

0 0 0 f b d 0 f O

• * * * * * * * *

ý2

43

5,

3

In terms of difference equations, we have

A A A A

CSn- 1 + at n + cZn+ 1 + b n = 0

f n-l + dqn + f 4n+l + bn = 0

We have in (15) and (16) two coupled linear, constant-coefficient

difference equations. We assume solutions of the form

= 0

(14)

(15)

(16)
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= n

n, =
o9n = 4•X

for which we rewrite (15) and (16) as

C[cX2 + aX + cl + bX

ObX + {[fx + dX + f]

(19)

(20)= 0

For non-trivial solutions, the determinant of the coefficients of

cp and 5 must be zero, or

[cX 2 + aX + c][fX2 + dX + f] - b2 2 = 0

which can also be written as

4 a d 3 X2 ad b2x )X +X (2 + cy f ) +

(21)

(22)a d
c

In general, it is possible to solve for the four roots of a quartic

(17)

(13)

equation, but it is usually quite unwieldy.41 In this case, (2 2) is

factorable to

2
L 2

2' -- (B- 2)}X +1] [x"+{i-

c f

+ ad b2

6 T -• fc

) 2
-) -(B-2)}+l] =

(23)

(24)

(25)

2 + {A +

where

wi th
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J()2 - (B - 2)
2 2

(_a +9c 2f fc

2 ( - 2)

= a +d:•(T6+f (a d)2 b2

and

F2
- L. £.C

S(. + -d -
2 2c 2f

ad2

We then see that the four roots of (23) are

1 = -8 + + 82 - 1 2

2 -+ - + 2 - 1] /2

= -R + [B 2 - 11/2

= -5 - [ 2 1]1/2

If we further let

(33)8+ = cos

and

a = cos 0

,.e define

(26)

(27)

(28)

(29)

(30)

(31)

(32)

S =: ( - ( ()- (B - 2)

(34)
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we can rewrite the roots of (29) - (32) as

-e = -e

X2 = -e

-je
X3 = -e

+je
=4 = -e

Because of the rigid perfectly conducting electrodes, the boundary

conditions are:

05

E.. = 0

0

N, =0
N+1

So, we assume solutions of the form

I = Al n A2n n 4n
"n 1X1 + 2X 2 + A3X3 + 4X 4

(39)

(40)

and then, from (20)

n+l n+ A n+1 n+1
= -•A+ + 3- 2- + -

fl + dX + f fX2 + dX2 + f fXL + d + f f 2 + dX + f

S 1 2 2 3 3 4 1)

(41)

(35)

(36)

(37)

(38)
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Applying the boundary conditions of (39) and usinq the facts that

2 2fX + d 3l + f fX + dX + f

:d

: 3 d - 2f33 3 4 4

(42)

(43)

we obtain

3Nj +1

1
d

f 
+1

[2]d--%

1

[ -2 R+]

X2

[d-2•]

1

[f 2 n_]

3

[ -~2R ]

4N +1

1

IXN+12
[ •26 ]

=0

(44)

For non-trivial solutions, the determinant of the coefficients must be

zero, which becomes

2f .+ 1
2f(+ - 8_) 2 (4

S N+I1 
+1)

) (X - ' )
[d-2fra] [d-2f3 ]

-= 0 (45)-, ,--+J

X+1

Xil~l3
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We must have, from (35) - (38), that either

sin (N+1) 6+ = 0

sin (N+1) e = 0

for which

p = 1, .....

(p = 0 solution is trivial)

Then, from (33) or (34) we have

8= cos =p 1 a d
+ N+l 2 c 2f

F 72 ,2
I(.. S- ) +1Lc I- I-

(49) can be rewritten as

a d 2
2c 2fh

2

+ = 4fc

2
cos- + (-+1+1 2c 2f

which can be further reduced to

b2
bf
fc

ad+ a d on 2ad+ 2(- + ) cos -- -4cos2
cf c f N+1

DTr-.-.T = 0
1+

Referring back to (8) - (13), we have that

d
-= -2 cosh kAf

and

(46)

(47)

(48)

(49)

- 2(a dc f cos •'1
N+1

(50)

(51)

(52)

D IT
N+1
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= -2 cosh kA + (-agpo + E Dq ) sinh2 (53)
SPo

0

and

2 (Dq A)2 sinh2kA
bf-c 2(54)
fc 2

We can then rewrite (51) as

(DqA) 2si nh 2kA EoDq o )
S D o+ 2 (-gnh + ED 0 ) k sinh kA (cos 4Tf- + cosh kA)
" POE PO

4 ( cos -+ cosh kA) 2

p= '1, 2, .... N

(55)

Equation (55) describes the wave dispersion for (N+1I) layers with

small changes between layers. Gravity will be stabilizing for a nega-

tive, for then the heavier fluids will be below. A necessary and

sufficient condition for stability is

Eorq -c gpo > 0 (56)

We see that the self field term in (55) is always stabilizing, but

that the second term dominates when kA becomes very large. Plots of

(55) for various values of the parameters will be presented in section 5.5.

We can compare (55) to the analagous continuous problem treated in

section 4.3, if we take the limits
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(N+1)A = d

cosh kA - 1 + (kA) +
2

sinh kA - kA + . .

(1 + cos -) = 2 cos
2

(

2 2
(IT) (I±)h45 N+1-N

Since p is a running integer, ,we count backwards from N

o = N, 4-1, N-2, N-3, 1

or in general

p = N - r + 1 r = 1, 2, 3,

so from (62)

22 .c-oslim
N-*co

P7r 2

(:2 N -+1 r = 1, 2, 3, ...

Then in this limit, (55) becomes

Then

(57)

(58)

(59)

kA-0

lim
kA-*+

lim
p-D N

(60)

(61)

(62)

(63)

...1 (64)

(65)

~ ,,2 oN +1
r 7- = (n
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k2L )+ EoDq 2 2
2 .p + (- 0a + ( ] + k

2 L (66)

r=l, 2, 3,

which is identical to the disoersion relation of the continuous distri-

bution treated in section 4.3. (Eq. 4.3.26) We have shown that we can

model a continuous mass and charge density distribution by a large

number of thin layers, with our answers exactly aqreeing in the limit as

the number of layers tend to infinity, with the thickness of each layer

approaching zero. We emphasize that there is no wavelength restriction,

but we must keep in mind that we used the Boussinesq anoroximation on

the mass density and ignored self field effects on the electric field,

so our results are only anproximate.

In the next section, we will treat the exact problem of a discrete

exoonential stratification. The results of this and the next section

will be compared to the continuous stratification in section 5.5.

5.4 Discrete Exponential Stratifications

We will consider discrete stratifications in mass and charqe

density which obey an exponential law, as illustrated in Fiq. 1. There

will be no approximations in this section.

Wle assume the distribution between layers to be

=- - 1\

On-1 n-c/2 (2)Un
qnI:q e -̀ A / 2 (2)
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x

Discrete exponential stratification. We approximate exponential
distributions in mass and charge density by step functions.

Figure 1

ens

x
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_ 2 cLA/2
n Ea n

Pn-I + Pn= pn(1 + e- a )

Pn-I - %n P n(e-OA- 1)

qn-1 - On = qn (e- aA/
2

(3)

(4)

(5)

1) (6)

Then from (5.2.18) -

2a -w
n k

(5.2.23) we have

pn (1 + e A) coth kA

b = -q (e- 2
n n

2

C -k - 2 k n
n k sinh kA

= 2sk coth kA ý d

= 0

= -sk - f
n sinh kA -

Thus

- qpn

2
2q n+

(e- A - 1)

- 1)

- 1)

(7)

(8)

(9)

(10)

(11)

(12)

e- A/2 (e-xA/2
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Then the pertinent difference equations are

c~ + a + c + bn n  0Cnn-I n n n+1ln+l + bnn = 0

bnJn + f+n-1 + ddn + ffn+l = 0

Nlow, because of the special distribution, we chose

2
q =

2
Pn o (15)

Thus we can write a in (7) purely in terms of pnnto define the variables
to define the variables

and
Yn = Pn n

xn = q nn

It is approoriate

(16)

(17)

Then, if we multiply (14) by bn, and use the relations of (15) -

(17) we can rewrite (13) - (14) as

2 -cA F 2 2 2
- e -a c -) (e- l/2l)v + -- (l+e ) coth kA - g(e-Oa1)+ q e' (k sinh kA -n-1 CapLk~~ Ea

Yn

- 1) x =0 (n-W2  Y - (e-aA/2
1 -s h--- n+l

(13)

(14)

(18)
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and

2
qo (e- l2 - 1)
E0

y + s eaxA/2  - 2 k coth kA xnn sinh kA n-1 n

+k e+a/2 = 0
sinh kA n+l (19)

We recognize (18) and (19) as linear constant-coefficient difference

equations, for which we assume solutions of the form

(20)n
Yn = Yn

xn = XXn (21)

We define the parameter

k sinh kA 2 a_B = (1+e- A )coth
2W _

2

2qo
kA - g(e-aA-1)+ -°--(e -a/2

cap00

and substitute our assumed form of solution into (13) and (14) to obtain

[x 2 _ xx + e- a ] y + (e-A/2

2
^ o (e-a/ 2

PO

k sinh kA = 0
2

- 1) sinhk e-a/2 + (x2 - 2 cosh kAe aA/ 2 +e •)X = 0

(24)

For non-trivial, solutions to (23) and (24), the determinant of the

coefficients must be zero, for which we obtain

-1

(23)
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[X2 _ SA + e-- ] [-2 - 2 cosh kA e-tA i2 X + e- a ]

2 (e-A/2
x (e - 1)2 sinh 2 kA q0 e-aA/2

o po
= 0 (25)

Expanding the terms of (25) we obtain an equation of the form

4 +3 [ 2 [ 2 e-rGA + -By -6] + [-y-e - A + e- 2C

(26)

where

y = 2 cosh kA e - cA / 2

-a/2 1)2 s inh2 kAq A2 A/2
= (e 2 - 1) sinh oc• poE:

(27)

(28)

Because of the special equilibrium distribution we chose, the

coefficients of the cubic and first-order term are proportional, which

allows us to put (26) in the much simoler form

2 • +

~/(-Y-) - By +6) A+ e ]~[A2 + (- 2 +

2 -+- Yf3 - y )

(29)

I,!e note that (29) is very similar to the analoaous equation (5.3.23)

which was derived for a linear mass and charge density distribution.

This is as expected, since the exponential distributions assumed here
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apnroach linear distributions for ad << 1. We now proceed in the same

way as in Section (4.3) We define the quantities

+ - [- 2 +1

2

2

(2~-)2 - By + i ]2 _y + ]

(30)

(31)

so that the solutions to (29) can simply be expressed as

1 = -S+ + rs+ 2

X2 = -S -[S 2

1/2
- e- A

eaAI/2
_ e - A]

X3 = -S + [S 
2 - e-a ] /2

X4 = -S - [S 2 e- /2

S+ = cos e+ e - a+ / 2

S = cos 0 e-aA/ 2

Then (32) - (35) become

and

(32)

Let

(33)

(34)

(35)

and

(36)

(37)



-e + -aA/2= -e e /

+16
= -e

-je
= -e

+jO
= -e

Then, the most general solutions to (18) and (19) are

nn
Y = A= I + A2 2 n

2
xn a

k2 (e -1)

2
(X2 - RA2

+ e-a A)
+ e )

A2

(X42 - ,X4 + e- )

4_

I.

2 kA3  - !A3 +
A3 X3

4

Equation (43) can be simplified if we use the relation from (29) that

X2 + e-a - (2S÷)A (44)

so that (43) can be rewritten as

159

(38)

+ -aA/2e

e -aA//2

-e-aA/2

(39)

(40)

(41)

+ A4A4A4 4
+ A3X3

n n

FA1 (X12
K

(42)

- 6 1 + e- aA) nX1

+ A4

e- A)

(43)

I

• n •

2 "2
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2
x= [A1 (2S +kn A(e

k2A(e -1)

+ ) 1n + A2 (2S + 3)X2 n

+ A3( 2S_ + 5)X 3n + A4 (2S_ + ý)X4n]

The rigid perfectly conducting electrodes impose

x =0x o -

xN+1 = 0

the boundary conditions

v =0"j

(46)

YN+1 = 0

which result in the relations

N+I
3

(2S-+3.)

(2S +R)X3

X44(2S +

(2S_+8)

N+1 (2S '+)X4N+I

= 0

(47)

For solutions to (47), the determinant of the coefficients must be zero,

so that

4(S+-S )2 , ( 4!1+l x +l (X+1
X1 )=0 48

(45)

H+-1

(2S ++)

N1+1

(2S +B)

(2S+ +) x2'(2S+ +B)Kl+1
F

I

(48)
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which for non-trivial solutions yields

S = cos 7- e-aA/2
t1±

(49)

(p = 0 is a trivial solution)

From (30) and (31) we have

22
22 -ab

(G) + (~) + cos -~-22 ej '2'2 (50)

which can be reduced to

-a/A -a2A

(2 cos e + y) (2 cos -e2 + f) (51)

Substituting the definitions given by (22), (27), and (28) we

finally obtain

2 2
qo ,-ma/22 2 e-a_ 2qo ( - a /  i o

(---e -1)2sinhk+2(g( 1) (eo -1))ksinhk co
o P p

+ cosh kA)

(2 cos -.- + 2 cosh kA) (2 cos • e- a/2+ cosh kA [l+e-])

(52)
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In order to compare this result with the continuous distribution

problem, we take the limits given by (5.3.57) - (5.3.65) for which (52)

becomes

k2  + (+ q ( gp + o 2 + k2

2 Po o (53)

S) + k2 ) + k2- r=12
r = ,2, ...

This result is identical to the continuous exponential stratifi-

cation treated in section (4.4). (Eq. 4.4.24) We see in (52) and (53)

that if c4 is positive the system is potentially unstahle only because

of adverse gravity. The contributions from the electric field is

always stabilizina. A necessary and sufficient condition for stability

is 2 -a
2qo > cq ( e  - 1)

(54)
C (e-a/ 2 _ 1)

5.5 Presentation of Results

The solution to the discrete weak gradient problem, given byv

(5.3.55) is very similar in form to the solution for the discrete

exoonential distribution given by (5.4.52).

For the weak gradient distribution, we define

2 E 0qoA M -tq + (1)m 0

and

2 d2 (Dq ) 2

n n (2
·- """ 0
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Analagously, for the discrete exponential stratification, we define
2

2 q (L-a 2o -aA/2S W(e- _ 1) 2o 2 (e -1) (3)m a scp A

and

2
2 o -aA/2 2 2

Wm - (e - 1) (N+1 (4)

As A + 0, the definitions given by (1) - (4) approach those given

for the analagous continuous distributions in section 4.5 (Eqs. 4.5.1 -

4.5.4).

Figs. 1 - 4 are valid for the weak gradient case only when ad << 1.

with the parameters defined by (1) and (2). The results are plotted

for the exponential case when ad << 1 and ad =-5, with the parameters

defined by (3) and (4). The dispersion relation (w real for k real) is

plotted for various numbers of layers and for various values of W 2

The number of modes exactly equal the number of interfaces.

The first few modes for an 18 layer problem are plotted in

Figs. 5 and 6 and compared to the results for the continuous case. The

two results will be close when

kA << 1

or equivalently

kd << (N+1)

and when

kd << 27
n

(n represents the number of vertical spatial variations for the continuous
case.)
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Under these conditions, wavelengths are much longer than the thick-

ness of the layers and also much longer than vertical variations for

the continuous case (-d >> n).
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CHAPTER VI

EXPERiIMENTAL WORK

6.1 Introduction

iany anomalous results found with DC experiments using insulating

liquids are often attributed to so called "space charge" effects. These

anomalous effects have occurred in experimental configurations similar

to that analyzed in section 3.1, where we have a perfectly conducting

interface bounded from above by an insulating fluid.42 Analysis has

18
previously been done assuming the upper fluid to be uncharged.1 When

the upper fluid is air, the frequency decrease in the presence of a

static electric field agrees well with theory.18 This frequency shift

is given by (3.1.9) with qa = 0. However, if the upper fluid is an

insulating liquid, the frequency shifts often do not agree with this

theory. It is thought that the anomalous results are due to the presence

of space charge. The analysis of section 3.1 considers the upper liquid

to be uniformly charged, and so offers a new attack on this problem.

6.2 Description of Experiment

The dispersion relation given by (3.1.5) describes the motions of

a single mode of frequency w and wavenumber k.

k (P coth ka + pb coth kb) ) + yk2 a aka coth ka

-qa E (1)

V qa a

E - (2)a a 2E
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We consider a rectangular resonator which can be shook at precisely

controlled frequencies as illustrated in Fig. 1. We use tap water as the

lower conducting liquid and hexane as the insulating upper liquid. Since

the relaxation time of tap water is on the order of microseconds as con-

trasted to tenths of a second for hexane, it is appropriate to assume

the water perfectly conducting compared to hexane. Properties of these

liquids are listed in Table 1.

Interfacial deflections are measured by means of a pencil beam of

light from a small laser. Part of the light which is incident upon the

interface is reflected. As the interface moves up and down, the reflec-

ted light sweeps out a line on a screen. Even though interfacial deflec-

tions are small, the distance the light sweeps is proportional to the

slope of the interface and not the actual amplitude, so the light deflec-

tions are sufficiently large for easy viewing.

6.3 System Characteristics - No Electric Field

Since the resonator is thin in the y direction, interfacial deflec-

tions have variations only in the zdirection. If we assume the fluid to

slip at the walls, at resonance, an integer number of half wavelengths

must fit in the box, for which

ky = 0 (1)

k nTr (2)z n = 1, 2, 3,... (2)

However, in the way we oush the resonator, conservation of momentum only

lets us excite those modes where n is odd.
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screen

sinusoidal source

Experimental configuration for electrohydrodynamic resonator.

Figure 1
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Mass density

Permittivity

Relaxation time

Depth

Tap Water

1. kg/m3

80 Eo

S106 sec.

b = 7 cm.

Hexane

.67 kg/m 3

1.9 Eo

.1 sec.

a = 2.4 cm.

Surface tension (hexane-water interface) .038 Nts./m. [Measured by

balancing weights against the downward pull on a platinum sheet placed

through the interface.]

Resonator dimensions z = 9.5 cm.

1 = 3.5 cm.

Physical constants and geometry for hexane-water system.

Table 1
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Each value of n has its corresponding resonant frequency determined

by gravity, the density difference, interfacial surface tension, and the

geometry, as given by (6.2.1) with no electric field. If the system is

driven at this frequency, interfacial deflections will be a maximum,

limited only by viscosity. Table 2 compares the theoretical and measured

resonant frequencies. In the measured frequency column, we have put

those values which appear most often. Actually, from day to day, these

values can increase as much as 10% for the higher modes, most likely due

to variations in surface tension because of temperature changes or im-

purities. Since our main goal is to measure the effects of the electric

field, any discrepancies here are unimportant.

A crucial parameter to know is the wavenumber k. Although calcu-

lated in (2), the assumption was made that the liquids slip at the walls.

Experimentally, it is observed that there is some sticking on the walls,

which could modify (1) and (2). We have checked these relations by

actually measuring the wavelengths with the use of a telescopic eyepiece.

In addition, the good agreement in Table I, of the measured and theoreti-

cal resonant frequencies further confirm that (1) and (2) are valid,

thus indicating that the liquid sticking at the walls has negligible

effect on the wavenumber.

6.4 Frequency Shifts with a Time Varying Field

The amount of space charge present in insulating liquids is a

function of the electric field, as related through Gauss's law. However,

the time scale for which a charge distribution can respond is determined

by the conduction mechanism. If the frequency is much higher than the
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f (measured)

1.2

2.5

3.4

4.3

5.4

6.5

7.8

9.3

11.0

sec.-1sec. f (theoretical)

1.14

2.28

3.21

4.2

5.3

6.4

7.86

9.35

10.9

Comparison between theoretical and measured resonant frequencies with no

electrical parameters.

f (theoretical) - 127r

n iTk - ;1 = 9.5 cm.

Table 2

sec.-1sec.
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reciprocal relaxation time, the volume charge is approximately zero, as

the charges cannot respond as fast as the electric field. From Table 1,

in section 1.4, the relaxation time of hexane is approximately .1 sec,

so with an excitation at 400 Hz, we can assume the volume charge to be

negligible.

For the system of Fig. (6.2.1), the dynamics can still be represented

by (6.2.1) with qa = 0, if we use the root-mean square (RMS) value of the

electric field. This is valid because the remaining electrical term is

proportional to the square of the electric field, which has a DC and a

double frequency (800 Hz.) part. The interface cannot follow the high

frequency component because of the viscosity of the fluids, and thus

only responds to the DC part.

Our method is to shake the resonator at a frequency below resonance.

As we increase the potential, the resonance frequency will decrease until

it agrees with the same frequency with which we are shaking. The reso-

nance is determined when the light deflections on the screen are a

maximum.

This procedure was performed for the first nine odd modes, as

shown in Fig. 1. The data agrees very well with the theoretical

straight lines. The frequency decrease is due to the destabilizing

nature of the electric field pulling on the interfacial surface charge.

If we go much higher in voltage, the interface will become unstable for

some wavenumber, as discussed in section 3.1, equations (11) - (29).

For ka >> 1 ('and qa = 0) this will occur when
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--- theoretical curves with
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/4

crit = a

and

1/2

(ka)* =

which for the hexane water system yields

Vcrit = 27.6 KV

and

(ka)* : 7

6.5 Frequency Shifts with a Static Electric Field

The same procedure described in section 6.4, was repeated with a
2DC potential. Frequency shifts as a function of V were measured, and

were found to consistently differ over many trials with the measurements

described in section 6.4. However, these results are not without

question, as when the measurements were repeated in a "very clean"

resonator, there were no longer any anomalous shifts. The data was

then identical to that presented in section 6.4 both for DC and AC fields.

The original set of data was taken in a resonator held together by a

silicone sealant. Over the course of many experiments the sealant be-

came dirty and ingrained with Flaming Red, an oil soluble dye. This was
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the only difference between the measurements. AC experiments were

always consistent as presented in section 6.4.

It is difficult to offer an explanation for the non-reproducti-

bility of the DC results between "clean" and "dirty" resonators, except

to remark that impurities do alter the physical character of these

liquids. However, intentionally adding Flaming Red dye or pieces of the

silicone sealant into the "clean" resonator had no effect. Some further

discussion appears in the critique, section 6.6.

The results of the DC experiments in the "dirty" resonator are

plotted in Fig. 1. While using this resonator, the results displayed

in Fig. 1 were consistent and reproducible. The slopes of all the modes

are consistently less than the theoretical slopes given with no space

charge. The results remain the same, even when reversing polarity. We

wish to discuss this anomaly in the context of space charge present in

the hexane. An alternative viewpoint will be discussed in the critique,

section 6.6.

For sufficiently short wavelengths (modes 3 or higher for our

geometry) such that ka >> 1, the last term in 6.2.1 is small, such that

SEa2
qaEa a

Thus, the main effect of the space charge, at short wavelengths,

is to alter the electric field, as given by (6.2.2).

Since the measured slopes have decreased, the electric field at the

interface must have decreased implying that positive space charge is
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distributed near the interface, which itself supports positive surface

charge as shown in Fig. (6.2.1), (V assumed positive). The space0

charge has partially stabilized the interface by decreasing the electric

field.

The slopes of the higher modes are about 25% less than the theoreti-

cal slopes, if there were no space charge. This implies that the electric

field has decreased by approximately 13.5%. This can be accounted for

from (6.2.2) if

ao

If negative charge were distributed throughout the hexane, the

electric field at the interface would be enhanced, tending to destabilize

the interface. In section (1.5), we discussed the bulk instability of

unipolar conduction for voltages in excess of a few hundred volts. In

our experiments, we work in the kilovolt range, so by this criterion the

hexane bulk has become unstable, if the upper metal electrode is the

source of negative ions. The system would then try to reach a new

equilibrium which cannot be stationary. It is possible that there

exists a small scale turbulence in the hexane which alters the charge

distribution, as the system tries to reach a new equilibrium. This may

be the reason for our measurements indicating a stabilizing effect on

the interface. Further work is necessary to support these hypotheses.
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6.6 Critique

The DC results presented here are certainly open to question be-

cause of the lack of reproductibility in going from "dirty" to "clean"

resonators. Apparently slight impurities can greatly alter the con-

duction properties in insulating liquids. It is of interest that the

results for the "clean" resonator had no measured anomalies. Other

investigators using the same liquids have found the frequency shifts to

be anomalous in the other direction.42 That is, the slopes were too

large as contrasted to our measurements, which found the slopes too

small. Apparently, resonator experiments of this type determine what

the electric field is at the interface for a particular set of conditions.

Slight impurities, ionization or ionic emission can greatly alter the

electric field, so each investigator is measuring his electric field forhis

apparatus at that specific moment. The only way to gain complete con-

fidence of one's results is to devise an alternate scheme for measuring

the electric field at the liquid interface.

Another viewpoint would account for anomalous frequency shifts due

46to the surface tension being a function of the electric field. To be

consistent with the experimental results, the surface tension could only

change with a DC field, but would remain unchanged in an AC field. To

test this hypothesis, we set up the configuration shown in Fig. 1. If

the surface tension were truly a function of the DC electric field, we

would have a gradient in surface tension between the electrodes. There

would then exist a shear force on the interface, resulting in fluid

motion. However, under no conditions did we find any fluid motion,
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which indicates that this field dependent surface tension argument is

not valid here.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

7.1 Summary of Results

We have laid the groundwork for a broad class of interactions

involving liquids which have stratifications in mass density, charge

density, permittivity, and convection velocity. We modeled these

liquids as incompressible, inviscid and perfectly insulating, with

domains of sufficiently high frequency or growth rates to validate these

assumptions defined. In particular, we emphasized stratifications con-

sisting of many homogeneous layers. Within these homogeneous layers,

we are able to express the volume force due to the space charge as a

gradient of a quantity and thus could group it with the hydrodynamic

pressure. This fact particularly simplified the analysis, as the problem

is now representable as a surface coupled interaction. This simplifi-

cation will occur for any volume force which is curl free within a

homogeneous layer.

Because of the surface coupled nature of these interactions,

"transfer relations" are derived for prototype layers in rectangular,

cylindrical, and spherical geometry which relate the interfacial

variables of pressure, displacement, electric potential, and normal

electric field. Since these variables appear in the boundary conditions,

we can treat many layers by simply "splicing" regions together in a

manner dictated by the boundary conditions, avoiding the redundancy of

solving the bulk equations in every homogeneous region.

In particular, the value of this approach was exemplified in the
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following situations: a) Perfectly conducting interface stressed by

normal electric field and bounded from above by fluid supporting uniform

space charge; b) Two planar layers with differing properties and space

charge; c) Uniformly charged liquid jet; and d) Uniformly charged

liquid drop. The dynamics for the insulating jet and drop (c and d above)

were found to be much different than that of a perfectly conducting jet

and drop with surface charge. Experiments have also been described

which.attempt to delineate the coupling of space charge to electro-

hydrodynamic surface waves on a perfectly conducting interface in the

configuration of a, above.

An added feature of our approach, is that it allows one to model

continuous stratifications by many thin layers, each with constant

properties. For the examples of weak gradient and exponential strati-

fications, we have shown that as the number of approximating layers

approach infinity, with the thickness of each layer approaching zero,

the dispersion relation for the discrete and continuous cases become

identical.

7.2 State of Experimental Observations

There remains much experimental work relating to this thesis. The

biggest problem is the determination of the space charge distribution.

The electro-optic Kerr effect offers promise, yet fluids which have

large Kerr constants are usually highly conducting, which invalidates

our assumptions. In addition, electrical heating induces property

gradients and convection which makes it hard to distinguish effects due

solely to the space charge present. The conduction processes in liquids



which determine the equilibrium charge distribution are usually so

complex that they are difficult to analyze. Simple models of ohmic

or unipolar conduction are often not valid in liquids. In measuring

voltage-current relations, it is difficult to distinguish between

conduction currents and convection currents, that might be associated

with small scale turbulence in the liquids.

Electromechanical interactions as discussed in this thesis, offer

the advantage of measuring dynamical responses from which charge dis-

tributions can be inferred. This is convenient because the same experi-

mental configuration can be used to make measurements with high frequency

AC or DC fields. The AC fields, if sufficiently fast will prohibit any

bulk charge, while the DC field will allow the space charge time to

form an equilibrium profile. By comparing responses for these two cases,

we can directly infer the effects due to the space charge.

Most past work has relied on measurements for conditions at inci-

pience of instability. As pointed out in Chapter I, instability is

usually incipient near zero frequency, allowing other rate processes to

exert an influence, making it difficult to distinguish between mechanisms.

Experimental work described in Chapter VI, focused attention on stable

waves. ileasurements of resonant frequency shifts due to space charge

present were attempted, but no consistent results were obtained. This

fact agrees with other experimental observations relating to the voltage

current relation which in insulating liquids are not reproducible from

day to day or sample to sample.

Despite these initial difficulties, electromechanical interactions

188
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offer a direct way to measure the effects due to space charge. Experi-

ments must be designed which isolate the effects due to the space

charge, and in themselves do not introduce any more questions. Measure-

ments of resonance conditions, incipience of instability, and growth

rates in configurations similar to those discussed in this thesis, offer

a three-way approach which hopefully can converge to aid in the under-

standing of the dynamics of charged liquids in the presence of electric

fields.

7.3 Suggestions for Future Work

The analysis in this thesis modeled the liquids of interest as

incompressible, inviscid, and perfectly insulating, and treated con-

figurations in selected geometries. Future work can extend this

description, by relaxing some of our assumptions. In the following,

some directions in which one can head are discussed.

Geometry

Although our analysis considered only rectangular, cylindrical and

spherical geometry, this approach can easily be extended to any other

geometry. The difficulties in these new geometries amount to solving

for the equilibrium variables and solving Laplace's equation for the

perturbation quantities.

Viscosity

In concept, the effects of viscosity can easily be added to our

analysis. However, the mathematics become difficult because the differ-

ential equations are now sixth order. For the prototype layers, our

terminal relations must now include shear forces and shear displacements
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in addition to the normal forces and displacements. This results in

the transfer relations becoming 4 x 4 matrices, rather than the simpler

2 x 2 matrices considered in this thesis. The boundary conditions to

be matched at the interface now include a shear stress balance.

ComDressibilii ty

In the absence of space charge, similar analysis can be performed for

compressible fluids. The new necessary ingredient is the equation of

state, which relates the pressure to other variables. If the fluid can

be modeled as a perfect gas, the mechanical terminal relations will be

very similar to those derived in Chapter 2. It would be of interest to

add the space charge effects to this analysis, to find the effect of space

charge on acoustic waves. Attempts should be made to see if this addition

still leaves the analysis tractable.

Effects of Conduction

Our analysis modeled the liquids of interest as perfectly insula-

ting, with domains of sufficiently high frequency or growth rate to

validate this assumption defined in terms of electrical conductivity or

mo bility. It would be useful to extend this work to include the

effects of finite conduction. However, this extension greatly compli-

cates the analysis as the electric force in a homogeneous layer is no

longer curl free because of the presence of perturbation charge.

The charge is no longer tied to the liquid, and so we cannot lump

the electric force with the pressure. Attempts to overcome these

difficulties should be made.

Other Volume Forces

The techniques developed here may be used for other volume forces
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which are curl free within a homogeneous layer, or for surface forces

which only act at an interface. Some systems for which this approach

may prove useful are

a) Extension of the analysis here to include equilibrium electric

fields which are parallel to the interface.

b) Analagous magnetic systems with the magnetic field having

components both parallel and perpendicular to the interface. Homogeneous

fluid layers carrying a constant current may have tractable solutions.

c) Elastic media with electric and magnetic coupling.

d) Layers of plasma or electron beam with non-uniform equilibrium

ion densities and convection velocities.
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