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Abstract

We present several graph polynomials, of which the most important one is the Tutte
polynomial. These various polynomials have important applications in combinatorics
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Chapter 1

Introduction

1.1 Motivation and context

In recent decades, the chromatic number X(G) of a given graph G became an impor-

tant subject in combinatorics and complexity theory. Since it is one of the NP-hard

problems and it also has strong connections to the clique number w(G) and the in-

dependence number a(G) which are NP-hard problems, we would like to solve the

problems in polynomial time. The chromatic polynomial in Chapter 2 is one ap-

proach to the study of the chromatic number. Besides the chromatic polynomial, we

define other graph polynomials of graph G. Each of them has interesting combina-

torial interpretations and important connections to statistical physics. With several

graph operations, we derive surprising results. They all can be expressed in terms of

the titte polynomial.

In Chapter 2, we will define graph polynomials including the Tutte polynomial and

the chromatic polynomial. And we will show their important and useful properties.

In Chapter 3, we will present new approaches in statistical physics. We will intro-

duce the percolation process and the Potts model and will show that the percolation

probability of the percolation process and partition function of the Potts model de-

fined on graph G have similar properties of graph polynomials in Chapter 2.

In Chapter 4, in order to make correlations between graph polynomials, we will

first generalize the Tutte polynomial to the universal polynomial. We will then present



their correlations with the Tutte polynomial.

In Chapter 5, we will present another result about decompositions of planar graphs

and its application to the ice-type model.

1.2 Basic definitions

For a given multiple graph G = (V, E), where V is a set of vertices and E is a set of

edges of graph G, we define

* k(G) to be the number of connected components of G,

* rank of G to be r(G)= IVI- k(G),

* nullity of G to be n(G)= E - IVI + k(G).

For F C E, define (F) to be a graph (F) = (V, F). Let k(F), r(F), n(F) be the

number of connected components, rank and nullity of the graph (F). For example,

k(E) = k(G), r(E) = r(G) and n(E) = n(G).

We define the two basic operations on graph G = (V, E), deletion (cutting) and

contraction (fusing). For e = (i,j) c E, G - e is defined as (V, E - {e}). That is,

G - e is simply obtained by deleting the edge e from G. Similarly, G/e is obtained

by contracting the edge e. In other words, we can obtain the graph G/e from G by

deleting the edge e and identifying incident vertices i and j.

i i i,j

e

G 1 G-e J G/e

Figure 1-1: An example of the two basic operations on graph G.



Chapter 2

Graph polynomials

Graph polynomials defined on the graph G provide important information. For exam-

ple, the chromatic polynomial with variable x gives us the number of proper colorings

with x colors of graph G. If we want to know how many proper colorings of graph G

exist with n colors, we simply plug n into the variable x of the chromatic polynomial

of G, then the value is the number of proper colorings. In this chapter, we will present

several graph polynomials and their properties.

2.1 The Tutte polynomial

In 1954, Tutte constructed a remarkable generalization of the chromatic polyno-

mial [10]. This 2-variable graph polynomial gives us more information about graphs

than many other graph polynomials. The Tutte polynomial is also important in

statistical physics applications.

2.1.1 Definition

We define the Tutte polynomial via rank, nullity and number of components of sub-

graphs of G.

Definition 1 The Tutte polynomial T(CG; x, y) of non-empty graph G with variable x



and y is defined as follows

T(G;x,y) = (x - 1)r(E)- r(F) - 1 )n(F)

FcE

It is obvious that T(E,; x, y) = 1, where En is an empty graph with n vertices.

2.1.2 Properties

We now derive basic but very important properties of the Tutte polynomial. The-

orem 2 gives us the recurrence relations for the Tutte polynomial. We will use this

theorem to calculate the Tutte polynomial for certain families of graphs.

Theorem 2 Let C = (V, E) be a graph with e G E. Then

T(G; x, y) = I
x. T(G - e; x, y) if e is a bridge,

y. - T(G- e; x, y) if e is a loop,

T(G - e; x, y) + T(G/e; x, y) otherwise.

Furthermore, T(En; x, y) = 1 for the empty graph En, n > 1.

Proof of this theorem is given at the end of this chapter, [2.3]. The above theorem

simply implies the following corollaries.

Corollary 3 If B 1, B2 , B3r,..., Bk are the blocks of non-empty graph G. Then

k

T(G; x, y) = J7 T(Bi; x, y).
i= 1

This means that the Tutte polynomial is multiplicative.

Proof Since there are no graph edges between distinct blocks, we can derive this

corollary with Theorem 2 by induction. U



Corollary 4 If G is obtained from graph H by adding i bridges and j loops, then

T(G; x, y) = x' - yJ -T(H; x, y).

Proof It can be easily seen with Theorem 2 by induction. U

Corollary 5 Let Cn be a cycle with n vertices. Then

T(Cn; x,y)= y + x + x 2 +... + Xn - 1

Proof The proof proceeds by induction.

In the case of n = 1, C, is a graph with 1 vertex and 1 loop, thus T(Ci; x, y) = y.

Suppose this corollary holds for all n < k, then it suffices to show that this

corollary also holds for n = k + 1. Since Cn is a cycle, every edge is neither a bridge

nor a loop (for n > 2). By the third property of Theorem 2

T(Ck+1; x, y) = T(Ck+l - e; x, y) + T(Ck+l/e; x, y)

= T(Lk; x, y) + T(Ck; x, y) = (xk) + (yx+x 2 +... +x k- l) = y + x + x 2 +... + xk,

where Lk is a graph with k consecutive bridges. U

We define the thick edge In to be a graph which consists of two vertices and n

edges such that the two vertices are joined by n edges.

Corollary 6 Let In be a thick edge. Then

T(In; x,y) = x + y + y 2 +...yn-1

Proof The proof follows by induction.

In the case of n = 1, I1 is a graph with 1 bridge, so T(II; x, y) = x.

Suppose this corollary holds for all n < k, then it suffices to show that this

corollary also holds for n = k + 1. Since In is a thick edge, every edge is neither a



bridge nor a loop(for n > 2). By the third property of Theorem 2, we have

T(Ik+1; x, y) = T(Ik+1 - e; x, y) + T(Ik+l/e; x, y) = T(Ik; x, y) + T(Mk; x, y)

= (x + y + y2 +... +yk-1) + (yk) = xyY +2 +... +yk

where Mk is a graph with 1 vertex and k loops. U

Corollary 7 We have:

T(G; 2,2) = 2 |E,

T(G; 1, 1) = Number of spanning trees in G,

T(G; 1, 2) = Number of connected subgraphs in G,

T(G; 2, 1) = Number of spanning rooted forests in G,

T(G; 2, 0) = Number of acyclic orientations in G.

Proof When x = y = 2, T(G;2,2) = ZFCE fr(E)-r(F) n(F), that is, for every

F C E, every term in the summation is 1. Thus, T(G; 2,2) is equal to the number of

subgraphs of G, which is 21E.

If x = y = 1, T(G; 1, 1) = ZFCE o(E)-r(F)on(f) , that is, only F C E such that

r(E) = r(F) and n(F) = 0 has its value 1 in the summation. Thus T(G; 1, 1) is equal

to the number of spanning trees of G.

If x = 1,y = 2, T(G; 1,2) = FCE Or(E)-r(F)In(F), that is, only F c E such that

r(E) = r(F) has its value 1 in the summation. Thus T(G; 1,2) is equal to the number

of connected subgraphs of G.

If x = 2, y = 1, T(G; 2, 1) = EFCE lr(E)-r(F)0on(F), that is, only F C E such that

n(F) = 0 has its value 1 in the summation. Thus T(G; 2, 1) is equal to the number

of spanning rooted forests of G.

The last case T(G; 2, 0) will be presented again in [2.2.5] and will be proved in

[4.2.4]. M



We define G*, a dual graph of a given planar graph G, to be a graph which has a

vertex for each plane region of G and an edge for each edge joining two neighboring

regions.

Corollary 8 If G* is the dual graph of G, then

T(G;x,y) = T(G*;y,x).

Proof For a given graph G = (V, E) and its dual graph G* = (V', E'), if e G E is

a bridge then the edge e corresponds to the edge e' which is a loop of G*. Similarly,

if e G E is a loop then the edge e corresponds to the edge e' which is a bridge of G*.

Clearly, G and G* have the same number of edges.

We now use the recurrence relation from Theorem 2 to get their polynomials. By

the above observation, if e is a bridge, e' is a loop. Thus T(G; x, y) = x. -T(G - e; x, y)

and T(G*; x, y) = y. -T(G* - e'; x, y). If e is a loop, e' is a bridge. Thus T(G; x, y) =

y -T(G - e; x, y) and T(G*; x, y) = x -T(G* - e'; x, y). Since the other two cases have

the same relations and their initial conditions are the same as 1 for empty graphs, we

conclude that T(G; x, y) = T(G*; y, x). E

2.2 Other graph polynomials

Here are other examples of graph polynomials. Although they look original, they can

be expressed by the Tutte polynomial. We will discuss their basic properties here and

we will show their relationships in Chapter 4.

2.2.1 The chromatic polynomial

The chromatic number and the chromatic polynomial are the most combinatoric

concepts and have been studied for a long time. They concern not only the number

of proper colorings but also the colorability of a graph. After G.D. Birkhoff first found

the chromatic polynomial in 1912 [3], G.D. Birkhoff and D.C. Lewis tried to prove



the four color problem with the chromatic polynomial in 1946 [2]. They examined the

behavior of the function. The chromatic polynomial has been developed and applied

to other graph polynomials, including in the field of physics.

We call 0 a proper coloring of a given graph G, if no edge has the same color of

its vertices. We define the chromatic number X(G) of a graph G to be the minimum

number of colors which colors G properly.

Definition 9 The chromatic polynomial Co(x) of a graph G is the number of proper

colorings of graph G with x colors.

When x < x(G), we have C(G; x) = 0. By the properties of proper coloring, here

is a lemma for the chromatic polynomial.

Lemma 10 C(En; x) = x',

x-1 C(G - e;x) if e is a bridge,

C(G; x) = 0 if e is a loop,

C(G - e; x) - C(G/e; x) otherwise.

Proof For empty graph E, since each vertex can be colored by x colors, there are

x n proper colorings of En.

Suppose that e = (u, v) is a bridge. Without loss of generality, we also assume

that we color the vertex u the first time and color the vertex v next. In the original

graph G, we have (x - 1) colors for vertex v. However, in the deleted graph G - e,

we still have x colors for the vertex v. The other vertices are the same. Thus we have

Sproper colorings of G compared to G - e.

If C has a loop, then there are no proper colorings of G.

Finally, if e = (u, v) is neither a bridge nor a loop, we can separate proper colorings

of G - e into two classes. In one class the colors of u and v are the same, and in the

other class their colors are different. In the first case, those colorings are the same as

the proper colorings of G/e. In the other case, those colorings are the same as the

proper colorings of G. Thus, C(G - e; x) = C(G; x) + C(G/e; x). 0



2.2.2 The monochrome polynomial

Let us define m(G; i, x) to be the number of proper colorings with x colors which allows

i monochromatic edges. It is obvious that m(G; 0, x) is the chromatic polynomial.

We now define the monochrome polynomial with m(G; i, x).

Definition 11 For a given graph G = (V, E), we define the monochrome polynomial

M(G; x, s) as the following

IEl

M(G; x, s) = si .m(G; i, x).
i=O

From the definition, we derive the following theorem.

Theorem 12 M(En; x, s) = x n ,

8+x-1 . M(G - e; x, s) if e is a bridge,

M(G; x, s) = s - M(G - e; x, s) if e is a loop,

M(G - e; x, s) + (s- 1). - M(G/e; x, s) otherwise.

Proof For an empty graph E, there are xn proper colorings of En. There are no

other i > 1 monochromatic colorings of En.

As we saw before, m(G; 0, x) is the chromatic polynomial. We will use Lemma 10

in Chapter 2.

Suppose that e = (u, v) is a bridge, then the following equality holds for all i > 1.

x-1 1
m(G;i,x) = - . m(G- e;i,x) +-. m(G- e; i - 1,x).

X x

This is simply because the bridge e is monochromatic with - proportion. Thus we

have
IE1 |E)

M(G; x, s) = s' -. m(G; i,x) = m(G; 0,x) + s' -. m(G; i,x)
i=0 i=1

x-1 JIEI
- m.(G-e;0,x)+ s'-[(x-1)/x -m (G-e;i,x) + 1/x-m(G-e;i-1,x)]

i=1



x-1 EI 1 E
S * s'.m(G-e;i,x)+ - s'-m(G-e;i- 1,x)

i=0 i=1

JE|-1 I E|-1x -1 - 1 E -
Ex s .m(G-e;i,x) + - -s- s m(G - e; i, z)

X 
x

i=0 i=0

|El-1s+x- s-+x-s+x- s~~.m(G - e;i, x) = - M(G - e; x,s).
i=0

If e is a loop, m(G; i, x) = m(G - e; i - 1, x) for all i > 1. This is because every

loop is monochromatic. Thus we have

IEl |El
M(G;x,s) = s• -m(G;i,x) = m(G; 0,x) + L s' -m(G;i,x)

i=0 i=1

|EI |E|-1
= si.m(G - e; i - 1,x)= s. si-m(G-e;i,x)=s. M(G-e;x,s).

i=1 i=0

Finally, if e = (u, v) is neither a bridge nor a loop, the following equality holds for

all i > 1.

m(G - e; i, x) = m(G/e; i, x) + [m(G; i, x) - m(G/e, i - 1, x)].

This is because the i monochromatic colorings of graph G - e, where u and v have

the same color, are the same as the i monochromatic colorings of graph G/e. We

also use here that the number of i monochromatic colorings of graph G - e where u

and v have different colors are the same as the number i monochromatic colorings of

graph G minus the number of i - 1 monochromatic colorings of graph G/e. Since the

i monochromatic colorings of graph G include the case that the colors of u and v are

the same. From here we have:

IEI |E|

M(G;x,s)• s'-. m(G;i,x) = m(G; 0,x) + s m(G;i,x)
i=0 i=1



AE

= n(G-; 0, x)-m(G/e; 0, x)+ s'-[m(G-; i, x)-m(G/e; i, x)+m(Gl/e; i- 1, x)]
i= 1

IEJ-1 3E -1 >E|-1
Sm(G/e; i, x)

i=O

= M(G - e; x, s) + (s - 1) M(C/e; x, s).

This completes the proof. M

2.2.3 The dichromatic polynomial

This is one of the most important graph polynomials in statistical physics appli-

cations. The partition function in the Potts model will prove to be a dichromatic

polynomial in Chapter 3.

Definition 13 The dichromatic polynomial D(G; x, y) is defined as

D(E,; x, y) = x ,

D(G; x, y) = D(G - e; x, y) + y. -D(G/e; x, y),

for every edge e in C.

We will show that D(G; x, y) is well defined. There are several other definitions

of a dichromatic polynomial.

Theorem 14 Let D(G; x, y) be defined as follows:

D(G; x, y) =- xk(F)yn(F) dn,kXky n ,

FCG n,k

where dn,k is the number of spanning subgraphs of G with k components and nullity

n. Then D(G; x, y) = D(G; x, y).



Proof For the first condition,

D(En; x, y)= : xk(F)yn(F) = xny = X.
FCEn

Now, let us show the second condition.

D(G; x, y) = xk(F)yn(F)
FCG

[ - [k(F) n (F ) + xk(FUe) yn(FUe)

FCG-e

E x k(F ) yn(F) + y. xk(F) yn(F)

FCG-e FCG/e

= D(G - e; x, y) + y - D(G/e; x, y).

This completes the proof. U

Here is a useful property of the dichromatic polynomial. We will need this property

in Chapter 3 to find the relation between the dichromatic polynomial and the Tutte

polynomial.

Theorem 15 The dichromatic polynomial D(G; q, v) has the following properties

f +v- D(G - e; q,v) if e is a bridge,q

D(G; q, v) = (v + 1). -D(G - e; q, v) if e is a loop,

D(G - e; q, v) + v -. D(G/e; q, v) otherwise.

Proof The third equation is immediate from the definitions.

When e is a loop, G - e = G/e. So we have that

D(G; q, v) = D(G - e; q, v) + v -D(G/e; q, v)

= D(G - e; q, v) + v. D(G - e; q, v) = (v + 1) -D(G - e; q, v).



Assume that e is a bridge. Then it suffices to show that

v
v - D(G/e; q, v) =- . D(G - e; q, v).

q

The proof proceeds by induction according to the number of edges. Suppose G has

one edge e and n > 1 vertices. Then e is a bridge, G - e is an empty graph with n

vertices and G/e is an empty graph with n - 1 vertices. Thus we have

D(G - e; q, v) = qn =q qn-1 = q -D(G/e; q, v).

We now assume that q - D(G/e; q, v) = D(G - e; q, v) holds for all graph G - e

which has k > 1 edges and and n > 1 vertices, where e is a bridge in the original

graph G. We will show the case of k + 1. Let H - el be a graph with k + 1 edges

and n vertices. Let ei be a bridge in H. Since (H - el) - e2 = (H - e 2 ) - e1 arind

(H - el)/e2 = (H/e 2)- e1 have k edges, we have

D((H - el) - e2 ; q, v) = D((H - e2 ) - el; q, v) = q - D((H - e 2 )/el; q, v)

and

D((H - el)/e 2 ; q, v) = D((H/e2) - e1 ; q, v) = q -D((H/e2)/ei; q, v)

The following equalities hold from definition.

D(H - el; q, v) = D((H - el) - e2; q, v) + v - D((H - el)/e 2 ; q, v)

= q. D((H - e2)/el ; q, v) + v - q - D((H/e2)/e 1 ; q,v)

= q. [D((H - e2)/el; q, v) + v. - D((H/e2 )/e1; q, v)]

= q - [D((H/el) - e2 ; q, v) + v. D((H/ei)/e2; q, v)] = q -D(H/ei; q, v).

This completes the proof. U



2.2.4 The flow polynomial

For a directed graph G, and a finite additive abelian group A, we define A-flow

of G if it satisfies the Kirchhoff's current law' for all vertices. An A-flow of G is

nowhere-zero if it has non-zero flows along every edge.

Definition 16 F(G; A) is the number of nowhere-zero A-flows of G.

Later, we will see that F(G; A) is a polynomial in JAj, the order of the group A.

Theorem 17 F(En; A) = 1' = 1,

0

(JAJ - 1) - F(G - e; A)

F(G/e; A) - F(G - e; A)

if e is a bridge,

if e is a loop,

otherwise.

Proof For empty graph En, it is obvious the there is only one A-flow, (the empty

flow).

First, if G has a bridge, then there is no nowhere-zero A-flow of G. To satisfy

the Kirchhoff's current law, the flow in the bridge should be zero.

Second, if e is a loop, the flow through the edge e can be anything but zero. This

does not affect the rest of the flows. Thus, the second equation holds.

In the case of the third equation, it suffices to show that

F(G/e; A) = F(G; A) + F(G - e; A).

Suppose that e is neither a bridge nor a loop, then the flow assignments for G is

considered as the case that the flow along e is not zero and the flow assignments for

G - e is considered as the case that the flow along e is zero. Regardless of whether

the flow along e is zero or not, both flow assignments are available for G/e. Therefore

the above equation holds. U

1 At any vertex, the sum of currents flowing towards the vertex is equal to the sum of currents
flowing away from the vertex.

F(G; A) =



2.2.5 The acyclic orientation

For a given undirected graph G, we assign any direction to every edge. If there are

no directed cycles in this orientation, we call it the acyclic orientation.

Definition 18 Let a(G) denote the number of acyclic orientations of G.

In fact, a(G) is not a polynomial but a constant. Richard Stanley found the

relation between a(G) and the Tutte polynomial [8]. We will show this in Chapter 4.

We need the following theorem to prove this relation.

Theorem 19 a(En) = 1n = 1,

2 -2.a(G- e) if e is a bridge,
a(G) = 0 if e is a loop,

a(G - e) + a(G/e) otherwise.

Proof For empty graph En, it is obvious that there is only one orientation, (the

empty orientation).

If e is a bridge, any direction of e does not create a cycle. So any acyclic orien-

tations of G - e with both directions of e are also acyclic orientations of G. Thus,

a(G) = 2. a(G - e).

If G has a loop, any direction of e creates a cycle. Thus, there are no acyclic

orientations of G.

Now, suppose e is neither a bridge nor a loop. For an acyclic orientation ( of G,

if ( is still an acyclic orientation for the other direction of e in G then both 6/e and

- e are also acyclic orientations for G/e and G - e. If ( is not an acyclic orientation

for the other direction of e of G then (/e is not an acyclic orientation of G/e but - e

is still an acyclic orientation of G - e. U

Corollary 20 (Stanley) For a given graph G = (V, E) and IVI = n,

C(G; -1) = (-1)" . a(G).



Proof The proof follows the induction according to the number of edges.

For an empty graph En,

C(En; -1) = (-1)n = (-1)n - 1 = (-1)n -a(G).

Let us suppose that the equality holds for k or less than k edges. Our goal is to

show that it also holds for k + 1 edges.

For any graph G = (V, E) with n vertices and k + 1 edges, we pick any edge e e E.

By Lemma 10 and Theorem 20, if e is a bridge, then

C(G; -1) = 2. C(G - e; -1) = 2 - (-1)n - a(G - e) = a(G).

If e is a loop, then

C(G; -1) = 0 = (-1)n -a(G).

And lastly, if e is neither a bridge nor a loop, then

C(G; -1) = C(G - e; -1) - C(G/e; -1) = (-1)n - a(G - e) - (-1)n- 1 - a(G/e)

= (-1)n - {a(G - e) + a(G/e)} = (-1)n .- a(G).

This completes the proof. U

2.3 Proof of Theorem 2

We first need to define the rank generating polynomial S(G; x, y) on a graph G =

(V, E) as follows

S(G; x, y) = x r(E)- r(F) yn(F)

FCE

or simply S(G; x, y) = T(G; x + 1, y + 1).



Then, it suffices to show that

(x + 1). S(G - e; x, y)

(y + 1) -S(G - e; x, y)
S(G - e; x, y) + S(G/e; x,

if e is a bridge,

if e is a loop,

otherwise,

and S(E,;x,y) = 1 for the empty graph En (n > 1).

Let us define G' = G - e, G" = G/e, and also define r' and n' as the rank and

nullity functions of graph G', and r" and n" as those of G". The following lemma

includes the properties of the functions.

Lemma 21 If e E E and FCE - e, then

r (F) =r'(F),

n(F) = n'(F),

r(E) - r(F U e) = r"(E - e) - r"(F) = r(G") - r"(F),

r'(E - e) + 1

r'(E- e)

if e is a bridge,

otherwise,

and

n(F U e) = n"(F) + 1 if e is a loop,Sn" (F) otherwise.

Proof of this lemma is given at the end of the proof of Theorem 2.

We now define

So(G; x, y) =

S (G;x,y) =

Then, obviously, S(G; x, y) = So(

S x r(E)-r(F) . n(F)
FCE,eVF

5 r(E)-r(F) . n(F)

FCE,eEF

G;x,y) + Si(G;x,y). From Lemma 21, we have

So(G; , x, y) = . r(E)-(F). yn(F)
FcE-e

S(; x, y) =

r(E) = {



{ FcE(G') Xr'(E-e)+1-r'(F) . y'(F)

-FCE(G') Xr'(E-e)-r'(F) . yn'(F)

S(G'; x, y)

if e is a bridge,

otherwise,

if e is a bridge,

otherwise.

and

SI (G; ,x, y) = x•r(E)-r(FUe) . yn(FUe)

FCE-e

if e is a loop,

otherwise,

,y)

By

S(G; x, y) = So(G; x, y)+S 1 (G;

y . S(G"; x

S(G"; x, y)

adding So

x,y) =

if e is a loop,

otherwise.

and S1 together,

x. S(G'; x, y) + S(G"; x, y)

y S(G"; x, y) + S(G'; x, y)

S(G'; x, y) + S(G"; x, y)

if e is a bridge,

if e is a loop,

otherwise.

If e is a loop, it is obvious that G" = G'. Thus S(G"; x, y) = S(G'; x, y).

If e is a bridge, then S(G"; x, y) =S(G'; x, y) also holds. Because r"(E - e) -

r"(F) = r'(E - e) - r'(F) and n"(F) = n'(F) for all F C E - e.

Finally, it is obvious that S(En; x, y) = 1. Since an empty graph has only one

subgraph, the empty graph. This completes the proof. U

Proof of Lemma 21. Since F C E - e, we have

r(F) = IVI - k(F) = IVi - k'(F) = r'(F),

n(F) = IFI- IVI + k(F) = IFI - IVI + k'(F) = n'(F),

r(E) - r(F U e) = (IVI - k(E)) - (IVI - k(F U e)) =

-FcE(G") xr(G")+I-r"(F) . yn"(F)+1l

-FCE(G") Xr(G")-r"(F) . yn"(F)



(|VI - 1 - k(E)) - (IVI - 1 - k(F U e)) = r"(E - e) - r"(F) = r"(G) - r"(F).

If e is a bridge, then k(E) = k(E - e) + 1. Otherwise, k(E) = k(E - e).

If e is a loop, IVi = V"I. Otherwise, lVi = IV"I + 1. These two properties imply

the last two equations. U





Chapter 3

Statistical physics

In statistical physics, we work with random models in which states of sites and their

local connections are determined by probabilities. Our goal is to measure the proba-

bility of certain states of the system. If we construct a graph by considering the sites

as vertices and the local connections as edges, the graph describes a physical system

and therefore is useful in mathematical modelings.

3.1 The percolation process

In the percolation process, we assume that in each component there are special sites

which are called origins, that fluids are coming from the origins, and that each edge

allows fluids to pass through it with probability p, (0 < p < 1). Let us call the edge

open when the edge allows fluids to pass through it, and closed when it does not allow

fluids to pass through it. Let us define P(G,p) to be the probability that every site

gets wet. We want to estimate the probabilities P(G,p). The following proposition

is straightforward.

Proposition 22 The percolation probability

P(G;p) = plFI . (1 - p) G-FI,
F

where the summation is over all spanning subgraphs F of G.



With this proposition, we derive the following theorem.

Theorem 23 We have

p -P(G - e; p)

P(G - e;p)

(1 - p) . P(G- e;p)) + p. - P(G/e;p)

if e is a bridge,

if e is a loop,

otherwise,

and P(En; p) = 1.

Proof The case P(E,,;p) = 1 is obvious, since |F| = 0, IG - F1 = 0.

In the first case, since e is a bridge, e should be an open edge. Therefore F is a

spanning subgraph of G if and only if F - e is a spanning subgraph of G - e and e

is an open edge.

Regardless of whether the subgraph has a loop or not, the connectivity of C does

not change. Therefore the second equation holds.

If e is neither a loop nor a bridge, we have

P(G;p) = E piFI . (1 - p)IG-FI

FcG

pl FI. (1 - p)G-FI ± E plFU{e}l . (1 - p)iG-(FU{e})l

FCG-{e}

plFI . (1 - p)I(G-e)-FI+1 + SplFl+. (1 p)lG/e-Fl
FCG-{e}

= (1 -p) - P(G-e;p)) + p - P(G/e;p).

This completes the proof of the third equation. U

We will show the connection between the percolation probability and the Tutte

polynomial in Chapter 4.

P(G;p) =

=5
FCG-{e}

FCG-{e}



3.2 The Potts model

The Potts model is a mathematical model in statistical physics and a generalization

of the Ising model. In the Ising model, we assume each site has only two states-such

as positive or negative-and adjacent sites interact with each other regarding their

states. In the Potts model, we assume that each site has q states.

Let G = (V, E) be any graph such that each vertex i has a spin aoi with values

1,2,... ,q. We define the Hamiltonian H(a) to be

H(o)= ( -
(i,j)EE

where 6(a, b) is one when a is equal to b or is zero when a and b are different.

We define the partition function of q-state Potts model O(G; q, ,3) as follow

O(G; q, ) = e-H()

where / = is the inverse temperature such that k is the Boltzmann constant and

T is the temperature of the system. And e is the interactive energy between neighbor

spins.

The probability of a state a is e-'H(a) /O(G; q, /). Thus we can see that, if the

temperature of the system is high (that is, if/3 is low), then the probability distribution

of states are more uniformly distributed. But if the temperature of the system is low

(that is 0 is high), then low energy states have greater probabilities than high energy

states.

By the definition of the Hamiltonian, this model above is based on the assumption

that the nearest neighbor spins have interactive energy 0 if they have the same spin,

and energy c if they are different.

Now, let us define another model which is based on the inverse assumption, that

is, the nearest neighbor spins have interactive energy e if they have the same spin,



and 0 if they have different spin. Then we have the partition function

Z(G; q, v)=E J( (+ v -6 (a,j)),
T (i,j)CEE

where v = ec - 1.

This partition function Z(G; q, v) is often used in the context of statistical physics.

Here is an interesting theorem which shows the relation between partition function

of the Potts model and the dichromatic polynomial.

Theorem 24

Z(G; q, v) = D(G; q, v).

Proof Since there are qn possible states in any graph with n vertices

Z(E; q, v)=E (1 +
0- (ij)EE

v - (a, a)) = 1 = qn

Let e be an edge from k to 1, so that

Z(G; q, v) = ko' f(ij)EE
6(O , s)) +

= 1 (1±-v
-k #al (i,j)EE-e

6(i, jU)) + (1 + v). -
O'k Ol

=E I (1+v'6 ('JUU))+v" E JJ (1+v*6(Ui,oj))
a- (i,j)EE-e uk=al (i,j)EE-e

= Z(G - e; q, v) + v -Z(G/e; q, v).

This completes the proof. U

The following theorem shows the relationship between two other partition func-

tions.

Theorem 25 Let G=(V,E) be a multigraph, q > 1 an integer and 3 an inverse

E
Oak =a-0l

H (1 + v -(aEi, ))
(i,j)EE

II (1
(i,j)GE-e

+ v - (a, aUM



temperature. Then the partition functions are

O(G; q,,3) = e- ,I3 EI - Z(G; q, v),

where v = e' - 1.

Proof We will show eeI lEI - O(G; q, 3) = Z(G; q, v) in the following.

eE/ 1E1 O(G; q, 3) = eOIEI. E e-S H(S)

0(

- ec(IEI-H(a)) - E f{E --E(iJ)CE(1--5(ai"7C))}

06r

-e~f3(Z(ijeE 6 cTiUj)) +[ (1 ± 6(o, o)))
a. 0- (i,j)EE

= Z(G; q, v).

This completes the proof. U





Chapter 4

Connections between graph

polynomials and statistical physics

We will show that every graph polynomial we mentioned, including those from sta-

tistical physics, can be expressed by the Tutte polynomial.

4.1 The universal form of the Tutte polynomial

In order to prove that other graph polynomials can be expressed by the Tutte polyno-

mial, we present the more general form of the Tutte polynomial. We will next apply

it to other graph polynomials.

Theorem 26 Let U(G; x, y, a, o, 7T) be a graph polynomial for graph G = (V, E).

Suppose that, for every n > 1,

U(En; X, y, a, o, T) = ,n ,

and for every e E E,

U(G; x, y, y, 0, T,) =

x U(G - e;x,y, a, , T)
y . U(G - e;x, y, a, U, -r)

a0. U(G - e; x, y, a, , 7-) + -T U(G/e; x, y, a, , 7-)

if e is a bridge,

if e is a loop,

otherwise,



then

U(G; x, y, a, a, 7) = ak(G) . n(G) T r(G) -T(G; a. -x/r, y/o).

Proof Since k(En) = n, r(En) = n(E,) = 0 and T(En;a - x/r, y/au) = 1, it is

immediate that

U(En; x, y, a, a, r) = an .go. To T(En; a -x/T, y/a) = an.

If e is a bridge, then k(G) = k(G-e)-1, n(G) = n(G-e) and r(G) = r(G-e)+ 1.

Thus we have

U(G; x, y, a , ) = ak(G) .n(G). Tr(G) T(G; a -x/r, y/a)

- ak(G-e)l -. n(G-e) . r(G-e)+l .(a x/r) T(G - e; a - x/r, y/a)

= x. U(G - e;x, y, a, , T).

If e is a loop, then k(G) = k(G - e), n(G) = n(G - e) + 1 and r(G) = r(G - e).

Thus we have

U(G; x, y, a, u, 7) = ak(G) . an(G). r'(G) -T(G; a -x/r, y/a)

= ak(G-e) an(G-e)+l ,r(G-e). (y/a) -T(G - e; a -x/r, y/a)

= y. U(G - e;x,y,a, a, T).

Lastly, if e is neither a bridge nor aloop, then k(G) = k(G-e), n(G) = n(G-e)+1,

r(G) = r(G - e), k(G) = k(G/e), n(G) = n(G/e) and r(G) = r(G/e) + 1. Thus

U(G; x, y, a , a-, r) = ak(G) . an(G). ,r(G) .T(G; a -x/r, y/a)

= ak(G) . an(G) . r(G) . {T(G - e; a -x/r, y/au) + T(G/e; a -x/r, y/aI)}

= ak(G-e). an(G-e)+1 ,T r(G-e) -T(G - e; a -x/r, y/a)



+ak(Gl/e) . an(G/e) Tr(G/e)+l -T(G/e; a .- x/, y/a)

= 0. U(G - e; x, y, a, a, r) + 7- U(G/e; x, y, a, a, T).

This completes the proof. U

Like the Tutte polynomial, this universal form also has multiplicative properties.

Corollary 27 Let G, and G2 be vertex disjoint graphs. Then

U(G 1 U G2 ; x, y, a, a, T) = U(Gi; x, y, a, a, r) . U(G 2 ; x, y, a, U, r).

And let G1 and G2 share exactly one vertex. Then

U(G1 U G2 ; x, y, a, a, T) =
U(G; x, y,a,a, 7) . U(G 2; z, y, a, a, T)

Proof It is easy to see the following:

k(GI) + k(G2)
k(GI) + k(G 2) - 1

if GI and G2 are vertex disjoint graphs,

if GI and G2 share exactly one vertex,

r(Gi U G2) = r(Gi) + r(G2 ),

n(Gi U G2)= n(GI) + n(G2).

The following equality holds from Theorem 26.

U(G1 U G2; x y, y, a, 7) = ak(G1u •G2) . n(GiUG2 ) r(GuG2) - T(G1 UG2; a xl/r, y/a)

we know the Tutte polynomial is multiplicative from Corollary 3,

= ak(G•uG 2) . orn(G1UG2) , Tr(GlUG2) - T(Gi; a -x/r, y/a) - T(G2 ; a X/7, y/a)

if G1 and G2 are vertex disjoint graphs,

= ak(Gl) +k(G2) . an(G)+n(G2) • Tr(Gl)+r(G2) -T(G1i; a -x/r, y/a) -T(G 2; a -x/T, y/a)

k(G, U G2) =



= ak(G1) . an(Gi) Tr(G1) - T(G1; a x/r, y/a) - ak(G2) . an(G2 ). r(G2) - T(G2; a * /T, y/1)

and if G1 and G 2 share exactly one vertex,

a k(G1)+k(G2) - l . n(G)+n(G 2) 7 1;)+r(G2) a -x/r, y/o) -T(G 2; a x/T, y/U)

= ak(Gi).a n(Gi) .Tr(G). -T(Gi; -(.x/r, y/) -ak(G2) .an(G2) . r(G2) .T(G2; a .x/T, y/u).- -

U(G1; x, y, a, a, 7) -U(G2; x, y, a, , T)
a.

This completes the proof. N

4.2 Relations between graph polynomials

In Chapters 2 and 3, we discussed several graph polynomials. With the aid of Theo-

rem 26, We will now show their relationships.

4.2.1 The chromatic polynomial

In Chapter 2, we present the definition and basic properties of the chromatic polyno-

mial. We begin with the chromatic polynomial to show connections with the Tuitte

polynomial.

Theorem 28 For the chromatic polynomial C(G; x) and the Tutte polynomial T(G; x, y)

of graph C,

C(G; i) = (- 1)r (G) . ik(G) -T(G; 1 - i, 0).

Proof From Lemma 10 in Chapter 2, we know that C(En; i) = iP and

-1 C(G - e;i) if e is a bridge,

if e is a loop,

(G - e; i) - C(G/e; i)
i_C(G; i) = 0
C otherwise.



i-IWe get x , y = 0, a = i,0 = 1, 7- = -1.

Hence, according to Theorem 26, it is immediate that

C-(i) - U(G; (i- 1)/i, 0, i, 1,-1) = (-1)r(G) k(G) T(G; 1 - i, 0).

This completes the proof. U

4.2.2 The monochrome polynomial

Theorem 29 For the monochrome polynomial M(G; x, s) and the Tutte polynomial

T(G; x, y) of graph C,

M(G; i, s) = ik(G) . (s- )r(G) - T(G; (s + i - 1)/(s - 1), s).

Proof From Theorem 12 in Chapter 2, we know that M(E,; i, s) = in and

S+i•- . M(G - e; i, s)

s - M(G - e; i, s)

M(G - e; i, s) + (s - 1) - M(G/e; i, s)

if e is a bridge,

if e is a loop,

otherwise.

We get x = , y = s, a = i, cr = 1, 7 = S - 1.

Hence, according to Theorem 26, it is immediate that

M(G; i, s) = U(C; (s+i-1)/i, s, i, 1, s-1) = ik(G). r(G).T(G; (s+i-1)/(s-1), s).

This completes the proof. U

M(G; i, s) =



4.2.3 The flow polynomial

Theorem 30 For the flow polynomial F(G; A), where JAl is the order of group A

and the Tutte polynomial T(G; x, y) of graph C,

F(G; A) = ( 1 )n(G) - T(G; 0, 1 - [AI).

Proof From Theorem 17 in Chapter 2, we know that F(En; A) = 1n = 1 and

(JAI - 1) -F(G - e; A)

F(G/e; A) - F(G - e; A)

if e is a bridge,

if e is a loop,

otherwise.

We get x = 0, y = AI - 1, a = 1, oa = -1, r = 1.

Hence, according to Theorem 26, it is immediate that

F(G; x) = U(G; 0, [AI - 1,1,-1, 1) = (- 1 )n (G) - T(G; 0,1 - AI).

This completes the proof. U

4.2.4 The acyclic orientation

We are now able to prove the last equality of Corollary 7 in Chapter 2.

Theorem 31 For the acyclic orientation a(G) and the Tutte polynomial T(G; x, y)

of graph C,

a(G) = T(G; 2, 0).

We present two different proofs of this theorem.

F(G;A) =



Proof 1

From Theorem 19 in Chapter 2, we know that a(E,) = I = 1 and

2. a(G - e)

a(G - e) + a(G/e)

if c is a bridge,

if e is a loop,

otherwise.

We get x =2, y = 0, a = 1, r = 1, T = 1.

Hence, according to Theorem 26, it is immediate that

a(C) = T(G; 2,0).

This completes the proof. U

Proof 2

From Corollary 20 in Chapter 2, we know that

C(G; -1) = (-1) . a(G).

From Theorem 28 in Chapter 4, we also know that

C(G; x) = (-1)r(c ) . xk(G) -T(G; 1 - x, 0).

Thus we have

a(G) = (-1) - - C(G; -1) = (-1) - n . (-1)r(Gc ) . (-1)k(G) T(G; 2, 0)

= (-1)-~n+r(G)+k(G) - T(G; 2, 0) = (-1)o -T(G; 2, 0) = T(G; 2, 0).

This completes the proof. U

a(G) =I



4.2.5 The percolation process

Theorem 32 For the percolation probability P(G; p) and the Tutte polynomial T(G; x, y)

of graph G,

P(G; p) (1 - p)n(G) . pr(G) . T(G; 1, 1/(1 - p)).

Proof From Theorem 23 in Chapter 3, we know that P(En; p) = In = 1 and

p - P(G - e; p)

P(G - e; p)

(1 - p) - P(G- e;p)) + p. -P(G/e;p)

if e is a bridge,

if e is a loop,

otherwise.

We get x = p, y = 1, a = 1, u = 1 - p, - = p.

Hence, according to Theorem 26, it is immediate that

P(G; p) = U(G; p, 1, 1, 1 - p, p) = (1 - p)n(G) . pr(G) . T(G; 1, 1/(1 - p)).

This completes the proof. U

4.2.6 The dichromatic polynomial and the Potts model

Theorem 33 For the partition function of the q-state Potts model Z(G; q, v) and the

Tutte polynomial T(G; x, y) of graph C,

Z(G; q, v) = qk(G) . vr(C) - T(G; (q + v)/v, v + 1).

Proof From Theorem 24 in Chapter 3 and Theorem 15 in Chapter 2, we know that

Z(G; q, v) is a dichromatic polynomial and has the following properties.

Z(En; q, v) = q,

and

P(G;p) =



{ -+v Z(G - e; q,v)
q

(v + 1) -Z(G- e;q,v)
Z(G - e; q, v) + v - Z(G/e; q, v)

if e is a bridge,

if e is a loop,

otherwise.

We get x = q+, = y=v+ 1, a= q, o = 1, T = v.

Hence, according to Theorem 26, it is immediate that

Z(G; q, v) = U(G; (q + v)/q, v + 1, q, 1, v) = qk(G) . vr(G) - T(G; (q + v)/v, v + 1).

This completes the proof. U

Z(G; q, v) -





Chapter 5

Other results

In this chapter, we consider only planar graphs, defined as graphs drawn on a plane

such that no two edges cross. First, we will generalize the dichromatic polynomial

and define a surrounding lattice L' according to a planar lattice L. Next, we will

decompose the graph L' and will apply it to the ice-type model.

5.1 Planar lattices

In 1971, Temperley and Lieb established a remarkable relation between the Tutte

polynomial on a square lattice graph L and the partition function on a related square

lattice polygon surrounding graph L' [9]. And in 1975, R. J. Baxter, S. B. Kelland

and F. Y. Wu developed the relation between the partition function and the Whitney

polynomial which is the same as the dichromatic polynomial [1].

5.1.1 Generalization of the partition function

In Chapter 2, we found that the partition function

Z(G; q, v) = E (1 + v. (a, aj))
0" (ij)EE

45



is the dichromatic polynomial. From Theorem 14, we also know that

D(G; x, y) = xk(F)yn(F)
FCCG

is also the dichromatic polynomial. In short, D(G; x, y) = D(G; x, y) = Z(G; x, y).

Let us now modify the polynomial D(G; x, y) and define a new polynomial Lattice

polynomial

L(G; z, y) = xk(F)y iF i.

FCG

The next theorem shows that L(G; q, v) is also the dichromatic polynomial and

demonstrates the partition function.

Theorem 34

L(G; x, y) = Z(G; x, y) = D(G; x, y).

Proof It suffices to show that L(G; x, y) is the dichromatic polynomial.

For the first condition of Definition 13,

L(E,; x, y) = xk(F)y IF

FCEn

= xnyO0 -- Xn .
=xy =x

Now, let us show the second condition.

L(G; x, y) = E xk(F)y IFI

FCG

E- [Xk(F)YIFI ± xk(FUe)y FUei]
FCG-e

= xk(F)yI FI +y. xk(F) yIFI

FCG-e FCG/e

= L(G - e; x, y) + y - L(G/e; x, y).

This completes the proof. U

Until now, we have assumed that all interactive energies are the same and equal



to F. Let us now make it more general. We group the edges of the graph into certain

classes. For example, a square gird has two classes of edges, one is vertical and the

other is horizontal. Let us define the interactive energy as er and v, = eCO - 1 for

class r. Then the generalized partition function is expressed as

\%qk(F) .v 1 V1L'(G; q, v, v2 ,..) = k(F) . 1 2 ,
FCG

where l4 is the number of edges in the class i in F.

5.1.2 Planar lattice and its surrounding lattice

Though the partition function L'(G; q, vI, v2 ,...) defined in 5.1.1 applies to any graph,

we only consider planar lattices in this chapter. For every planar lattice L, we asso-

ciate another planar lattice L' according to L. The following are the definitions of

the surrounding lattice L' of L [1].

Definition 35 We associate with L another planar lattice L', as follows.

Draw simple polygons surrounding each site of L such that

1. no polygons overlap, and no polygon surrounds another,

2. polygons of non-adjacent sites have no common corner,

S. polygons of adjacent sites i and j have one and only one common corner. This

corner lies on the edges (i, j).

Figure 5-1: A planer lattice L (a dotted structure) and its surrounding lattice L'.

The surrounding lattice L' is not unique for given L. But the general argument

in the following section should apply to any choice of L'.



5.1.3 Polygon decomposition

We now have a lattice L = (V, E) and its surrounding lattice

G = (V, F) of L where F C E, we will make a bijection between

the decomposition of L'.

If G does not contain an edge (i,j), then we separate the

responding to the each vertex i and j, as in figure 5-2(a). if

(i, j), then we join the polygons of L' corresponding to the each

figure 5-2(b).

G->-- - ------O j

(a)

L'. For a subgraph

the subgraph G and

polygons of L' cor-

G contains an edge

vertex i and j, as in

io oj

(b)

Figure 5-2: The two possible cases for an edge (i, j)

Here, figure 5-3 is an example of decomposition of L' shown in figure 5-1.

Figure 5-3: A subgraph G of L, and the corresponding decomposition of L'.

We use the term island for a connected large polygon in the decomposition of L'.

And if one polygon contains another polygon, we use the term lake to describe the

smaller one. So every polygon in the decomposition of L' is one of two types, an

island without lake or an island with lake. Clearly, any connected component of G

corresponds to an island in the decomposition of L'.

We define p to be the number of polygons in the decomposition of L', C to be

the number of connected components in G or equivalent to the number of islands in

the decomposition of L', and S to be the number of circuits of G or equivalent to the



number of lakes in the decomposition of L'. It is obvious that

(1) p= C + S.

If we also define N to be the number of vertices of G, IFi = 11 + 12 +... to be the

number of edges of G, and RI = S + 1 to be the number of regions of G, then using

the following equation from the Euler characteristic

INI- IFI + IRI - ICI = 1,

we obtain:

N- (11 + 12 + ... ) + (S + 1) - C= 1.

Then we have

(2) S= C- N+1 1 +1 2 +...,

where 14 is the number of edges of i-th component in G. If we eliminate S from the

equation (2) using (1), we get

(3) C 1/2-(p+N-1 1 -1 2 -... ).

If we plug the equation (3) into the generalized partition function from [5.1.1], we get

L'(G; q, vI, v2, ... = q*() VUl v q22 .v V2 - • .
HCG

SEql/ 2 -(p+N-1l-12-...) 11. VI 22 N/2 qp/2. q-11/2. vl . q-12/2 . .

= qN/ 2 Eqp/2. X l1. 12

where xi = q-1/2 vi.

Now we can take the summation over all polygon decompositions of G, where p

is the number of polygons in the decomposition and li is the number of internal sites

of the i-th island in the decomposition.



5.2 The ice-type model

In this section, we will present the definition of the ice-type model on the lattice L'

and will find the relation between its partition function and the partition function

defined in [5.1.3].

The following definitions are originally from [1].

Definition 36 Let 0 and z be two parameters given by

q1/2 = 2. - cosh 0, z = exp(0/2r).

Then the ice-type model is defined as follows.

1. Place arrows on the edges of L' so that at each site an equal number of arrows

points in and out.

2. With each external site associate a weight z a if an observer moving in the

direction of the arrows turns through an angle a to his left, or an angle -a to his

right, as he goes through the site. This angle a is shown in figure 5-4.

a --
I I

a>O a<0

Figure 5-4: Directions regarding a

3. There are six possible arrangements of arrows at an internal site, as shown in

figure 5-5. With arrangement k on a site of class r associate a weight Wk, where

w1, ... ,w6 = zM - '7,zy- , Xr - Z -',xr "- ,z- 1 Z- - 5 + Xr -Z + 'Y, ZA+ + Xr Z- - 'Y,

and the angle a, /, -y, 6 are those shown in figure 5-5.

The partition function of this ice-type model is

Z'= E H (weights),
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2 

-

z

' 
Z

XrZP-

P

YXiZ-*z

5

Z-0 5 +yxrZ a+Y

Figure 5-5: Arrow configurations and decomposition
Figure 5-5: Arrow configurations and decomposition

where the summation over all allowed arrow

over all sites of L'.

We now derive an interesting theorem.

between the partition function of the ice-type

Potts model defined in the preceding section.

'*ý6

z + + Xr'Z -Z

Z 
+ Xr'Z

- c

configurations on L' and the product is

The next theorem shows the relation

model and the partition function of the

Theorem 37

L'(G; q, v, v 2 ,. . .) qN/ 2 . Z',

where L' is the partition function of the Potts model.

Proof It suffices to show that

Sqp/2. X11 .x2 ... = E (weights).

From the above equation, it also suffices to show that

qp/ 2 .x11 x 2 ... = (weights),

for a given polygon decomposition of L'.

We will calculate the product of weights by moving around a polygon in the

direction of the arrow and multiplying the weight whenever we get to the sites of the

Z a-y

z a--y



polygon. After we finish moving around one polygon, we use the same procedure for

the next polygon. Since every polygon is a simple closed curve, if we move around the

polygon, then we make a ±27r turn. The sign of the angle depends on the directions

of the arrows of the polygon, clockwise or counterclockwise. Since both cases occur,

the total weight for a polygon is z 2
, + z-2 .

For a r-th polygon which has ir internal sites, the total weight is xr- (z 2 + -2).

Since every internal site has the term Xr in its weight. Therefore, if there are p

components in L', the total product of weight is

1 x•', -(z 2 +z-•2 x 12. 2 +z-2l). x3.(z 2 +z-2 -).... i-(z -+7)p.x . 12. 3

= qp /2 x. 11 . 12 . .13

since /2 = 2 cosh = exp() + exp(-) z2•x -2 . This completes the proof. 3

since q1 / 2 = 2.o coshO = exp(O) ± exp(-O) = z 2, ± Z-2
,7. This completes the proof. U
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