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Abstract

There is a large class of applications in computational structural biology for which
atomic-level representation is crucial for understanding the underlying biological phe-
nomena, yet explicit atomic-level modeling is computationally prohibitive. Compu-
tational protein design, homology modeling, protein interaction prediction, docking
and structure recognition are among these applications. Models that are commonly
applied to these problems combine atomic-level representation with assumptions and
approximations that make them computationally feasible. In this thesis I focus on
several aspects of this type of modeling, analyze its limitations, propose improvements
and explore applications to the design and prediction of protein-protein interactions.
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Chapter 1

Introduction

Proteins are among the primary macromolecular players of the cell. The ability of

proteins to adopt 3-dimensional structure, interact with other proteins, change con-

formation under various conditions and catalyze reactions are of central interest to

biologists. Important to each of the above processes is the fact that proteins are

highly structurally flexible. However, proteins are also very complex systems with

many degrees of freedom and their structural flexibility is hard to model. They exists

somewhere between the quantum world (single atom level) and the macro world (ther-

modynamic level), for both of which there are well established physical treatments. So

an appropriate model for describing protein behavior should lie somewhere between

these extremes in the space of physical models, and the most appropriate level of

modeling will depend on the application. Many reduced representations of proteins,

such as lattice models or beads-on-a-string models, have been used, and in some cases

these reduced systems have been rigorously theoretically treated [38, 124, 112]. How-

ever, many of the aspects of protein behavior interesting to biologists are determined

by higher resolution structural information. Indeed, often it is processes occurring at

the atomic level, such as phosphorylation or other chemical modifications, that lead

to a biological readout. Similarly, binding of two proteins can lead to atomic-level

structural rearrangements exposing previously hidden functional groups and prop-

agating the biological signal. To understand protein behavior in the cell, we must

understand such events and thus an atomic-level model of proteins is necessary.



Unfortunately, for many practical applications explicit atomistic models are pro-

hibitively costly. These applications include protein design, homology modeling, in-

teraction prediction, docking, structure recognition and others. Hybrid models need

to be formulated that combine elements of atomic-level explicit modeling, and thus

retain the necessary resolution, while being computationally more efficient. There

is a popular class of models that has been used for this, although it has not been

widely recognized as a class. I will refer to these as "discrete structural flexibility"

models (DSF models). The idea behind this approach is that rather than modeling

proteins as being continuously flexible, the space of possible protein conformation

is discretized. This provides several advantages but also necessitates numerous ap-

proximations. Here I will review important considerations for such models, lay out

the major approximations and assumptions and outline the sate of the methods in

the field. I will also point out those limitations of DSF models that I have tried to

address in my work and put in prospective the methodological improvements I have

proposed.

1.0.1 Structural Sampling in DSF Models

Generally, the protein is broken down into its backbone and side-chains portions,

which are treated differently in terms of their structural freedom. Side-chain flexibility

is restricted to a set of commonly observed conformations, known as rotamers [43,

44, 113]. Backbone flexibility is treated differently in different methods. Often, the

backbone is simply fixed to the conformation observed in a native protein. This

approach can be used in applications such as protein design [117, 35] and docking

[162, 69]. As a generalization of this approach, a finite set of backbones can be

used to represent some of the structural flexibility [65, 88, 4]. Finally, in another

method the backbone is continually rearranged using a pre-compiled discrete set of

structural fragments. Baker and co-workers pioneered this approach and have applied

it, with great success, to problems of protein design [95], structure prediction [23],

docking [184] and homology modeling [126]. No matter how the backbone is modeled,

however, the flexibility of the backbone is treated separately from the flexibility of



side-chains. That is, for each one backbone conformation, side-chain conformations

are optimized to minimize energy. This can be viewed as a hierarchical approach to

flexibility, where the conformation of the backbone is considered to define most of the

structure and side-chain conformations provide the final small adjustments.

Clearly, modeling proteins as being discretely flexible is an approximation. How-

ever, from the structural standpoint this approximation is probably not that severe.

For example, it is known that most sidechains do in fact occur in conformations close

to a rotameric one [153, 113]. Fixing the backbone can, in some instances, be a bad

approximation, but results from the Baker lab indicate that naturally observed back-

bone flexibility can indeed be represented via a library of small structural fragments.

Alternatively, for some systems effective parameterizations of backbone freedom can

be derived [32, 65]. The real difficulty associated with using DSF models lies in the

energetic treatment of resulting discrete structures.

1.0.2 Solvent in DSF Models

When a protein is represented with all of its atoms and surrounded by explicit solvent,

the potential energy can be calculated by simply adding pairwise atomic interactions.

In this case, for any pair of atoms (or any pair of atom groups) their interaction

energy can be unambiguously separated and is independent of the positions of other

atoms. However, when some of the system's degrees of freedom are removed or re-

stricted, which is what DSF models do, such explicit pairwise separability is lost. One

example of this is related to the treatment of solvent degrees of freedom. In most

DSF models solvent molecules are not explicitly treated. In principle, solvent confor-

mational degrees of freedom can also be discretized and an attempt at this through

the use of discrete "solvated" rotamers has been made [80]. However, due to the

fact that the solvent is much less conformationally restrained than the protein, it is

less amenable to conformational discretization. Instead, most DSF models use some

sort of an aggregate representation for the solvent that tries to account for the effect

of solvent averaged over all of its conformational states. One of the most common

approaches is to use a uniform high-dielectric medium in place of water and apply



the Poisson-Boltzmann theory to solve for electrostatic energies numerically [73, 7].

However, although, Coulombic interactions are completely pairwise decomposable,

when solvent degrees of freedom are averaged, electrostatic energy can no longer be

represented in terms of independent contributions from pairs of atom groups. This

significantly complicates many of the aspects of the methods used to approach the

problems mentioned above (e.g. protein design, docking, structure prediction, etc.).

To circumvent this, pairwise-decomposable electrostatic models have been developed

that are either approximations of the complete Poisson treatment [67], are empiri-

cal models meant to recapitulate the general hydrophobic/hydrophilic tendencies in

proteins [173, 88] or are fit to experimental data [103, 47]. However, approximations

of electrostatic energy can lead to problems for such applications as computational

protein design [181]. Additionally, because electrostatics frequently plays a major role

in determining protein-protein interaction preferences, such approximations can be

expected to cause problems in structure-based protein interaction prediction as well.

Chapter 2 describes how I used structural modeling to predict interaction preferences

among human bZIP proteins. In this work, I used a hierarchical approach to dealing

with the inaccuracies associated with approximate electrostatics models. Pairwise

approximate treatments of electrostatics can be used to arrive at a reasonable low-

energy structure (or an entire list of structures), which can then be re-scored using

a higher-accuracy electrostatics models. Others have adopted a similar strategy in

computational protein design [59].

1.0.3 Implications of Removing Structural Degrees of Free-

dom

Just as the solvent degrees of freedom are averaged in DSF models, so too are some

of the protein conformational degrees of freedom. For example, because side-chain

flexibility is restricted to a finite set of rotamers, each rotameric configuration of

a protein actually represents an entire ensemble of conformations structurally close

to it. Thus, the energy associated with this configuration should also be represen-



tative of this ensemble. Because of this, even those non-bonded interaction terms

that preserve pairwise-decomposability in the DSF framework, such as van der Waals

interactions, can not necessarily be modeled as such. A common approach to this

problem, in relation to van der Waals energies, is to modify the shape of the van der

Waals potential to make it more "fuzzy", thereby accounting for some of the possible

structural relaxations of the protein. However, extensive modifications lead to non-

physical energies. In chapter 4, I explore this topic and compare the appropriateness

of a range of commonly used modifications. I also show that by adopting the rotamer

approximation, one makes the problem of computing appropriate van der Waals ex-

tremely non-pairwise decomposable so that no particular modification is expected to

work well.

1.0.4 The Reference State

In an explicit model of protein flexibility, where none of the degrees of freedom are

frozen, a protein is expected to visit all of its accessible states with probabilities re-

lated to the free energies of these states. Thus, the free energy difference between any

two states, such as the folded and the unfolded states, can be calculated by simply

measuring the fraction of the time the protein spends in either of them. However,

such explicit simulations of protein behavior are inaccessible to current computing

technology by at least several orders of magnitude [163]. Because of this, free energy

differences in conjunction with DSF modeling are normally approximated by treating

the two states separately, and subtracting their resulting energies. Unfortunately, the

problems associated with using DSF models are even more severe when treating the

unfolded state. All of the same assumption and approximations still apply, but an

additional problem is caused by the absence of explicit structural information about

the unfolded state. Without an explicit backbone structure (or a set of backbone

structures), it is hard to account for the contributions to energy arising from pairwise

interactions between amino acids. For this reason, this contribution is most often sim-

ply ignored with the idea that amino acid-to-amino acid interactions in the unfolded

state are negligible due to the lack of persistent structure. Thus, a common way to



model the unfolded state in conjunction with the DSF approach is to only account for

local side chain-to-backbone interactions [34, 185]. This is a severe approximation,

as even in the absence of persistent structure, the topological constraints imposed by

the protein sequence imply that significant contributions from amino-acid pairs can

still be present. Additionally, it has been shown that in some instances the unfolded

state consists of an ensemble of partially folded structures [81]. Finally, it has been

demonstrated that pairwise interactions in the unfolded state can play important

roles in protein stability [118]. In my work modeling bZIP interaction preferences

(chapter 2), I have shown that unfolded state energies based on such modeling sig-

nificantly hurt the performance of structure-based methods, relative to not modeling

the reference state at all (i.e. all sequences have the same free energy in the unfolded

state). Additionally, I have shown that simple scaling of amino acid-to-amino acid

interactions in the folded state, based upon whether these interactions can also occur

in the unfolded state, may be an appropriate, though crude, way of accounting for

some pairwise interactions in the reference state.

1.0.5 Systematic Reduction of Complexity

The approximations in the energy treatment of the DSF representation of proteins,

although sometimes quite severe, make the models computationally tractable. How-

ever, it is not clear that the particular set of approximations currently used in the

field are an optimal tradeoff between tractability and physical realism. In fact, often

these approximations, such as the unfolded state approximations, are made in an ar-

bitrary fashion by "necessity". One would prefer an approach to reducing a model's

complexity that is more rigorous and in which the effect on accuracy of a given as-

sumption is known. In chapter 3, I present a new approach (cluster expansion or

CE) that can potentially serve this purpose. Using this method, protein energies can

be analytically approximated in terms of reduced representations of proteins, such

as the DSF representation. What is attractive about this approach is that instead

of making arbitrary assumptions, it systematically expands the quantity of interest

(here protein energy) in terms of the reduced degrees of freedom (such as rotamer



states or even amino-acid states). This expansion can be made arbitrarily accurate by

accounting for higher-order terms. For example, as I show in chapter 3 and reference

[61], fixed-backbone energies from a DSF model can be expressed solely in terms of

amino-acid variables, although for some systems this requires the presence of either

triplet or even quadruplet interactions between amino acids. In principle, a similar

approach can be taken to express a more accurate measure of energy that normally

could not be used with the DSF representation (such as the electrostatic energy given

by the Poisson equation) in terms of rotameric states of amino acids, thereby making

it consistent with the DSF framework.

So far, I have only applied CE to expand standard DSF-like models in terms

of amino-acid sequence, which retains all of the problems of accuracy associated

with DSF models. However, due their tremendous reduction in complexity, such

sequence-based models can be used to solve significantly more challenging problems

than the original structure-based DSF models. One example, which I explore in

chapter 5, is systematic computational design of protein interaction specificity. Design

of specificity involves the selection of protein sequences that preferentially stabilize a

structural state relative to a number of competing states. For situations where only

one state is considered, efficient algorithms exist that can find the optimal sequence

for stabilizing that state as well as its rotameric structure [42, 56, 58, 101, 105, 143].

These algorithms, however, require that the energy of the state be decomposable in

terms of rotamer pair contributions. When considering several states, the expression

to optimize involves energies for all of the states. Such expressions, in general, are

not pairwise decomposable and thus sequence selection in computational specificity

design has to be performed with non-optimal searching techniques. By simplifying

the energy model to involve only sequence degrees of freedom, I was able to formulate

the problem of specificity design in a manner than can be solved exactly (see chapter

5).

In this thesis, I analyze several aspects of DSF modeling, propose methodological

improvements, and explore applications of this type of theory to the analysis and

design of protein-protein interactions.





Chapter 2

Structure-based prediction of bZIP

partnering specificity

Predicting protein interaction specificity from sequence is an important goal in com-

putational biology. We present a model for predicting the interaction preferences of

coiled-coil peptides derived from bZIP transcription factors that performs very well

when tested against experimental protein microarray data. We used only sequence

information to build atomic-resolution structures for 1,711 dimeric complexes, and

evaluated these with a variety of functions based on physics, learned empirical weights

or experimental coupling energies. A purely physical model, similar to those used for

protein design studies, gave reasonable performance. The results were significantly

improved when helix propensities were used in place of a structurally explicit model

to represent the unfolded reference state. Further improvement resulted upon ac-

counting for residue-residue interactions in competing states in a generic way. Purely

physical structure-based methods had difficulty capturing core interactions accurately,

especially those involving polar residues such as asparagine. When these terms were

replaced with weights from a machine-learning approach, the resulting model was able

to correctly order the stabilities of over 6,000 pairs of complexes with greater than

90% accuracy. The final model is physically interpretable, and suggests specific pairs

of residues that are important for bZIP interaction specificity. Our results illustrate

the power and potential of structural modeling as a method for predicting protein



interactions and also highlight obstacles that must be overcome to reach quantitative

accuracy using a de novo approach. Our method shows unprecedented performance

predicting protein-protein interaction specificity accurately using structural modeling

and suggests that predicting coiled-coil interactions generally may be within reach.

2.1 Introduction

The number of interactions that occur among human proteins has been conservatively

estimated as -40,000-200,000, and may be many-fold higher [21]. It will be a long

time before these interactions are measured directly with reliable methods and even

longer until structural detail can be assigned to all protein complexes experimentally.

The need for computational methods to address these problems - to predict protein-

protein interactions and to provide useful structural models of them - is clear. But

there are significant challenges [169]. Although considerable progress has been made

in the past 5-10 years, predicting the structure of a protein from its sequence remains

an unsolved problem. Even in cases for which the overall fold is known, high-resolution

details that determine protein-protein interaction specificity continue to elude state-

of-the-art methods [125]. Docking proteins of known structure is now feasible in many

cases, particularly in the absence of large conformational changes [127], but this is

not yet an approach that has practical utility for supplying new interaction data.

A variety of strategies are being pursued to address these problems. High-accuracy

models are likely to require all-atom representations and physics-based energy func-

tions, and several groups have developed such approaches for modeling the energetics

of protein-protein interactions [72, 83, 96, 103, 185]. Kortemme et al. [89] as well as

Guerois et al. [62] have presented empirical energy functions that are fast to evaluate

and that can be used to predict the effects of point mutations on protein stability or

protein-protein interaction affinity, given high-resolution structural data. Both ap-

proaches rely on fitting a combination of physical and statistical terms to a dataset of

point mutation energies for proteins with available crystal structures. The estimated

accuracy of both methods is in the range of -0.8 to 1.1 kcal/mol per single, con-



servative, amino-acid change, which is good enough to be practically useful for some

applications. The precision of these approaches, however, comes at the cost of exten-

sive scaling that reduces physical interpretability. Additionally, because the databases

used in these methods contain proteins of many different classes, it is difficult to tell

whether the non-uniform scaling of energy terms is due to general shortcomings of

the models or whether certain underlying assumptions are more appropriate for some

structural classes as opposed to others.

A few groups have begun to take a high-resolution homology modeling approach

to predicting protein-interaction specificity. Aloy and Russell modeled the interac-

tions of fibroblast growth factors with their receptors and were able to classify the

affinity of different hormone/receptor pairs as low or high with some success [6]. Kiel

et al. modeled the interactions of Ras-binding domains using available Ras/effector

crystal structures and found good agreement with experimentally determined binding

affinities [84]. Systematic methods for high-throughput modeling of complexes based

on known structures are also being developed [5, 114].

We are pursuing a "bottom-up" strategy for predicting protein interaction speci-

ficity, in which we consider a single protein motif at a time, in high detail. This

general approach has been explored for SH2, SH3 and PDZ domains, with some suc-

cesses in classifying different types of ligands [12, 24, 82, 187, 191, 195]. We tackle

the problem for the a-helical coiled coil, which is possibly the most prevalent inter-

action/oligomerization domain in all of biology. Coiled coils consist of two or more

alpha helices wrapped into a bundle with a slight superhelical twist. The high struc-

tural symmetry of the motif is encoded by an underlying amino-acid heptad repeat

(abcdefg), that contains hydrophobic residues at most a and d positions. A con-

siderable amount is known about the folding and dynamics of coiled coils as well as

the effect of many mutations on their stability and interaction specificity. The coiled

coil has also been a popular model system for computationally designing interaction

specificity [68, 168]. Among many other biological roles, the coiled coil provides a key

structural and dimerization element in two important classes of eukaryotic transcrip-

tion factors - the bZIP and the bHLHZ proteins [76, 109]. In this paper, we explore



the ability of structure-based modeling to capture the interaction preferences of the

bZIP coiled coils, using this example as a model for how motif-specific approaches

may provide a route towards computational annotation of the protein interactome.

Basic region leucine zipper (bZIP) proteins bind DNA as homo- or hetero-dimers

[76, 180] and have been implicated in numerous processes including cell proliferation

[9], response to cytokine stimulation and development [19, 63, 71, 76, 106, 146]. These

proteins share a homologous domain consisting of a region rich in basic residues fol-

lowed by a coiled coil. Several crystal structures have confirmed that the basic region

is responsible for binding DNA and that the coiled coil mediates dimerization [48, 55].

The coiled-coil region is frequently referred to as a "leucine zipper" because the ma-

jority of heptad d positions in known bZIPs are occupied by leucines. By encoding

dimerization preferences, the leucine zipper region helps to determine DNA binding

specificity [63, 91]. The human genome contains -53 unique bZIP domains allowing

for the potential formation of -1,431 unique bZIP dimers [134, 172, 179]. A significant

amount of work has been directed towards describing interactions among specific bZIP

family members, as well as towards understanding dimerization specificity by experi-

mentally measuring the strengths of key interactions [3, 19, 40, 64, 71, 94, 179]. More

recently, Newman and Keating measured the interactions between nearly all pairs

of human and some yeast bZIP leucine zippers using a protein microarray technique

[134]. They showed that only 1~5% of all possible dimers actually form, demon-

strating that; bZIPs are highly specific in choosing binding partners. Because the

dimerization preferences are encoded by the well-studied and structurally conserved

coiled-coil domain, this dataset provides an ideal framework for studying structural

determinants of protein stability and interaction specificity.

The goal of our present study was to derive a physically realistic model that ac-

counts for the observed pattern of bZIP coiled-coil binding preferences and to use

it to understand the physical basis of these interactions and their specificity. Such

a model is likely to have utility for treating coiled coils other than those found in

bZIP proteins. Several models for predicting the interaction specificity of bZIPs have

been proposed. Vinson and co-workers have experimentally measured coupling en-



ergies for many important interactions in two-stranded coiled coils [3, 40, 94] and

have shown that these correlate with whether coiled coils homo or heterodimerize

[179]. This approach is powerful, and captures many important trends in interac-

tion preferences. A possible weakness is that it cannot easily take into account the

context-dependence of residue-residue interaction strengths. In addition, because the

required experiments are demanding, not all interactions have been measured. Singh

and co-workers have similarly assumed context-independence of a larger set of impor-

tant pairwise residue-residue interactions and optimized their relative weights with

a machine-learning method [52]. This model performs very well for predicting bZIP

coiled-coil interactions, but it suffers from a lack of interpretability, as the molecular

structure and the physics that give rise to the predicted specificity are not addressed.

Further, machine-learning models of this type require large amounts of data for train-

ing.

Ideally, the relative stabilities of different complexes could be evaluated using first

principles directly from models of their structures. There are many different structure-

based energy functions that are commonly used in protein stability prediction [122].

Explicit physical models that capture effects such as packing, electrostatics, hydro-

gen bonds and desolvation have the potential of being most interpretable. However,

explicit consideration is not possible when the underlying structural models are not

available or are not sufficiently accurate, limiting the applicability of such an ap-

proach. In this work, we have predicted high-resolution structures of bZIP coiled-coil

domains and compared the ability of several physically motivated energy functions

to explain the interaction specificities of these proteins. We found that the energy of

the unfolded state, as well as the strengths of certain core interactions, are particu-

larly difficult to capture with explicit structural considerations and are much better

accounted for implicitly. Comparing the predictions of our final model to the exper-

imental results obtained by Newman and Keating [134], we found that for pairs of

bZIP dimers observed to have significantly different stabilities, the model predicts the

correct order of stability in over 95% of cases. When all pairs of bZIP dimers with a

consistent observed difference in stability are considered (regardless of the magnitude



of the difference), the model is correct in over 80% of cases.

2.2 Results

2.2.1 Testing Framework

Throughout this work, the performance of different computational methods for pre-

dicting bZIP coiled-coil interaction preferences was tested against the experimental

protein microarray data of Newman and Keating [134]. In their experiment, coiled-coil

peptides printed on glass slides were probed with fluorescently labeled solution-phase

peptides. The resulting data do not provide absolute measures of binding strength

but can be used to reliably order the stabilities of different complexes. This is espe-

cially true when comparing complexes that shared a common solution-phase probe in

the experiments (e.g. dimer AB versus dimer AC, where peptide A was the probe).

We used those pairs for which relative stability was well determined and tested the

performance of our models on the task of correctly predicting this ordering. Because

ordering is easier in cases where there is a significant difference in stability, pairs of

coiled-coil complexes were classified according to the difference between their fluo-

rescence signals in the assay, AF. For example, when comparing complexes AB and

AC, AF is the absolute value of the difference between the fluorescence observed for

complex AB and that observed for complex AC. Twelve datasets were constructed

corresponding to AF values ranging from 0 to 10,000. The number of data points in

each of these datasets is shown in Figure 2-1 and ranges from 801 "easier" compar-

isons with AF > 10,000 to 33,186 "difficult" comparisons with AF > 0. Although

datasets with lower F contain all of the pairs with higher F values, they are domi-

nated by dimer pairs with low signal differences and similar stabilities. The ability of

different computational methods to predict the correct ordering of complex stabilities

was evaluated as a function of AF.
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Figure 2-1: Number of coiled-coil pairs AB and AC (A, B, and C correspond to bZIP
sequences) consistently satisfying SAB - SAC > AF, where is the raw fluorescence
signal for dimer XY observed in ref [134].

2.2.2 General Modeling Procedure

Our approach for computing leucine-zipper interaction preferences involved predicting

the structures of complexes, and then evaluating their relative stabilities with a series

of physically motivated energy functions. For structure prediction we assumed a

constant, ideal GCN4-like backbone and placed side chains onto this scaffold using a

pairwise-decomposable energy function and the Dead End Elimination algorithm [42].

There are eight unique bZIP dimers with crystal structures in the PDB, and they all

have similar backbone geometries. Table 2.2.2 gives the RMS deviations between these

structures and the GCN4 backbone as well as our idealized model backbone. To test

the ability of our method to recover a relevant structure given this generic backbone,

we constructed models for three of the eight available bZIP crystal structures (those

with a resolution of 2.0 A or better) as well as several other high-resolution parallel

dimeric coiled-coil structures. The frequency with which side chains were placed in

close-to-native conformations was evaluated on the ideal backbone and on the wild-

type backbones. Table 2.2 summarizes the results. As expected, x-angle recovery was

higher at the core a and d positions than at the surface-exposed e and g positions,

but a and d sites were also more sensitive to the choice of backbone. Nevertheless,

using the ideal backbone resulted in average X1 and X2 recovery rates of 82% and



Table 2.1: Coiled-coil backbone variation in members of the bZIP family.
1CI6 1DH3 1FOS 1GD2 1GU4 1JNM 1NWQ

Backbone RMSD w/ 2ZTA (A) 1.26 1.22 0.93 0.64 0.91 0.87 0.72
Backbone RMSD w/ ideal (A) 1.16 1.14 0.82 0.39 0.82 0.73 0.68
Alignment length (residues) 26 26 31 26 31 27 28

70% in the core, respectively.

Structures generated using Dead End Elimination were subsequently minimized

slightly to remove steric clashes, and were then evaluated using a variety of non-pair-

wise-decomposable energy functions. The differences in the models tested came from

how the unfolded state was treated, and how core interactions were modeled. The

contribution of any amino acid aa to the stability of a protein or protein complex can

be broken into two components: AG foIding = -Gself Gself p (Gpair pair

The first component contains the single-residue or "self" contributions of amino acid

aa to the energy difference between the unfolded and folded states. This includes

changes in intra-amino acid interactions, changes in the entropy of the amino acid,

and changes in the interaction between the amino acid and the protein backbone. It

also includes mutual desolvation between aa and the backbone, but not between aa

and other modeled side chains. The self contribution does not contain any sequence-

dependent terms, but does depend on the shape of the folded backbone. The second,

sequence-dependent, contribution arises from specific side chain-to-side chain inter-

actions involving amino acid aa in the folded and unfolded structures, and the effects

of other side chains on desolvating aa. Modeling the unfolded state is a challenge for

computational protein folding and design. Our first four models (defined below, and

referred to as EX, PF, HP and HP/S) differ in the treatment of the Gelf and G pair

terms. Our final model, HP/S/C further modifies Gpair for the a and d positions.

2.2.3 Explicit Unfolded State

Because energy functions based on explicit structural models provide the most inter-

pretability, we first tested the use of a structurally explicit unfolded state for predict-

ing bZIP coiled-coil partners. Following others, we modeled the unfolded state by



Table 2.2: x:-angle recovery for placing native side chains on bZIP and non-bZIP
parallel dimeric coiled-coil backbones.

Native Backbone Ideal Backbone
a, da e, gb a, da e, gb

Xi 94% (149/159) 64% (130/203) 82% (131/159) 62% (126/203)
X2 84% (105/125) 57% (102/179) 70% (87/125) 52% (93/179)
a core a and d positions that are at least four residues removed from either end of
the molecule (to avoid end effects).
b g and e positions only.

neglectingC residue-residueinteractionsI(G Pa i r

neglecting residue-residue interactions (Gaa,UF) and accounting only for interactions

of side chains with themselves and with a local poly-Gly penta-peptide backbone

[34, 185]. The resulting energy model EX is described by:

AGfolding -- G E Tsci-scj -+E Gvsci-t r Gsci-ut

foding vdW,EEF,Coul,GBscreen Z vdW,EEF,Coul,GBscreen-- Z vdW,EEF,Coul,GBscreen
i<j i i

(2.1)

where sci - scj designates the interaction between side chains i and j, sci - t is the

interaction of side chain i with the template (all of the protein excluding modeled

side chains) and sci - ut is the interaction of side chain i with the local penta-peptide

backbone in the unfolded state.

Figure 2-2(a) shows the performance of model EX on the task of correctly order-

ing pairs of dimers in terms of stability. Although the success rate of the model is

reasonable for the highest fluorescence difference dataset (-80%), it falls off quickly

and reaches -61% for datasets where AF is small. This is quite modest given that a

50% rate can be obtained by random guessing.

We also tested the performance of a variant model that assumes single-residue

terms to be the same in the folded and the unfolded states (i.e. Gself and Gself

cancel). Accordingly, model PF consists only of the term G••r. It has no explicit

treatment of the unfolded state, it omits side chain-to-template interactions and only

accounts for side chain-to-side chain interactions and side chain-to-side chain des-

olvation effects in the folded state. This produced considerably better results (see

Figure 2-2(a)). A likely explanation is that the unfolded state is modeled poorly

with the penta-peptide method. This is particularly interesting given that this is a
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Figure 2-2: Performance of different models for predicting dimer stability differences,
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popular approach and has been used in the successful design of numerous proteins

[35, 117, 156].

2.2.4 Implicit Unfolded State

As an estimate of Gself - Gself for residues in helical environments, several inves-

tigators have measured the influence of amino-acid substitutions on helix stability

[18, 29, 74, 116, 139]. The resulting helix propensity scales, though measured in dif-

ferent contexts and with different methods, agree with one another well. We tested

two models that use helix propensities to account for changes in amino-acid self en-

ergies upon folding. In one, we assumed that these propensities adequately capture

all of the self contributions to coiled-coil folding. In another, we introduced a correc-

tion factor based on the amount of interaction of each amino acid with the two-helix

backbone, which varies according to coiled-coil heptad position (see Materials and

Methods). The former approach performed better in all tests and was incorporated

into model HP, which is described by the following equation:

AGfolding [href + hp (aai)] + E G5sciE-scj (2.2)

-- / ' L'L~rrvdW,EEF,Coul,GBscreen
site i i<j

where the first term represents G ,lf - Gelf and includes the sum of helix propen-

sities of all amino acids in the dimer, while the second term accounts for all side

chain-to-side chain interactions in the folded structure. The parameter hPref sets the

reference point for an absolute scale and was necessary to compare sequences of differ-

ent lengths. It was adjusted to optimize the number of correctly ordered dimer pairs

in the dataset with AF = 6000 (this dataset includes only 5.8% of the total number

of dimer comparisons), although the particular data set used was not critical (see

Figure 2-3). A significant range of hPref values gave essentially optimal performance,

however inappropriate values for hpref (e.g. hpref > -0.7) that penalized longer coiled

coils relative to shorter ones led to a significant decrease in performance. The opti-

mal value of hpref resulted in an absolute helix propensity for Gly of 0.61 kcal/mol,

favoring the unfolded state. Figure 2-2(a) shows how well this model orders pairs of
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Figure 2-3: Optimizing the value of parameter hPref in the context of model HP using
different dimer comparison datasets. Each line corresponds to a dimer comparison
dataset with a specific value of AF. The y-axis shows performance (fraction of cor-
rectly ordered dimer pairs) normalized by the optimal performance for each dataset.
A significant range of values (-1.3 < hpref < -0.7) is essentially optimal, indicating
that the particular value of hpref chosen is not very important.

dimers in terms of stability. Model HP performs significantly better than model EX

and also somewhat better than model PF. For 861 pairs of dimers with the largest

experimentally observed differences in stability, model HP predicts the correct order

in over 90% of cases.

2.2.5 Intra-helix interactions

Model HP performs well for dimer pairs that are significantly different in terms of

stability. However, performance still falls off quickly as AF decreases. To address
this, we tested the assumption that G pair

this, we tested the assumptio,UF can be ignored. This is a very common

assumption made for estimating protein stability, but there is evidence that such a

model for the unfolded state may be inappropriate for many coiled coils [81, 118].

We introduced a variable parameter to scale intramolecular side chain-to-side chain

interactions relative to intermolecular ones, effectively introducing a pair term to



competing uncomplexed states. Model HP/S is defined as:

AGfolding [hpref + hp (aai)]+ Gsi-scj+s Gs i- sc

site i inter-helix pairs i,j intra-helix pairs i,j

(2.3)

where s is the intra-chain interaction scale factor. The last two sums in the equation

capture Gp - G pair by assuming that side-chain to side-chain interactions occurring

in the folded state also occur, to some degree, in the reference state. Figure 2-2 shows

that model HP/S significantly outperforms both of the two previous models. For 2,945

dimer pairs with AF > 4, 000, the model predicts the correct order of stability in

over 90% of cases. For all dimer pairs in the test, the model predicts the correct order

of stability in 70% of cases.

The two adjustable parameters in equation 2.3, hpref and s, were chosen by op-

timizing the performance of the model on the dimer comparison dataset with AF

= 6000. As before, no clearly optimal value for hpref was observed, rather, a signif-

icant range -1.8 < hpref • -0.8 produced near optimal results (the value of 1.08

was used). The same was true for s (Figure 2-4). Interestingly, the optimal range of

-1.5 < s < 0 (s = -0.7 was used) suggested that favorable side-chain interactions

within the same helix may actually reduce coiled-coil stability. Optimizations using

the remaining eleven dimer comparison subsets gave slightly different optimal values,

but the ranges stayed essentially the same, with s always negative (Figure 2-5).

2.2.6 Alternative Models for Core Interactions

Model HP/S exhibits good performance overall, but shows a strong dependence on

AF below 4,000. To explore the origins of this effect we investigated interactions

known to be important for determining coiled-coil stability and specificity. These

include aia( and didý interactions that form the hydrophobic core and are essential

for dimer stability, and giei+1 interactions, which can contribute to both stability and

specificity (the prime denotes the position on the opposing monomer and subscripts

refer to heptad index) [179]. Vinson and co-workers have experimentally determined

coupling energies for 19 pairs of amino acids at aia( positions [3, 40] and 16 pairs of
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Figure 2-4: Performance of model HP/S on the dimer comparison dataset with AF
= 6000 as a function of hpref and s. Color, as shown in the key at right, indicates
the percentage of correctly order dimers. The optimal performance is 92.7% and the
straight, dashed lines indicate approximately where performance is better than 90%.
A range -1.8 < hpref < -0.8 gives essentially optimal performance. The same is true
for s. Strikingly, however, the range of optimality for s lies entirely in the negative
region -1.5 < s < 0.0 implying that intra-helix interactions either do not contribute
or contribute negatively to coiled-coil stability.
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Figure 2-5: Optimizing the value of parameter s on different dimer comparison
datasets gave very similar optimality ranges. For simplicity of analysis, hPref was
set to 1.08 kcal/mol (the value used in model HP/S) although optimizing hpref simul-
taneously with s produced very similar values of hpref for different datasets. Each
line corresponds to a dimer comparison dataset with a specific value of AF. The
y-axis shows performance (fraction of correctly ordered dimer pairs) normalized by
the optimal performance for each dataset.
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amino acids at gieý+1 positions [94] using alanine double mutant cycle analysis. In

Figure 2-6 we compare their values with average values of our computed interaction

energies. For gie,+1 interactions, the agreement is very good, with a correlation co-

efficient of 0.89. For core aiaf interactions, however, the agreement is much worse,

particularly for residue pairs involving Asn. To test the influence of errors in aia(

interactions, we replaced calculated side chain-to-side chain interaction energies with

experimentally determined values (only for those aial pairs for which these were

available), leaving the rest of the energy function the same. Figure 2-2(b) shows

the significant improvement in performance that results, particularly for dimer com-

parison data sets with low AF. The improvement comes almost entirely from aial

interactions involving Asn (Figure 2-2(b)). Asn to non-Asn coupling energies are the

largest among the ones measured by Acharya et al. [3], and pairing of Asn residues

at opposing a positions is known to be an important determinant of coiled-coil speci-

ficity [138, 179]. Surprisingly, substituting experimental coupling energies for giej+ 1

did not result in any improvement and in fact performed slightly worse for higher AF

datasets (see Figure 2-2(b)).

A machine-learning method for predicting coiled-coil associations based on Sup-

port Vector Machine-like optimization has recently been proposed by Fong et al.

[52, 159]. This model (referred to here as FKS) assumes that each of seven important

types of interactions in a parallel dimeric coiled coil (aia(, didO, aida, dial+l , ,die,

giai+1 , gie+.L) can be assigned an additive weight based on the amino-acid identities

at the interacting sites. These weights are optimized by training the model on known

coiled-coil sequences, hypothesized non-interactions and information from biophysical

studies, but not on the human bZIP array data [52]. The method performs very well

on the pair ordering test, as shown previously and in Figure 2-2(b) [52]. Although

model HP/S outperforms the FKS model for dimer pairs with significantly different

stabilities, the FKS method does better at separating dimers of more similar stability.

We observed above that better core interactions taken from experiment improved the

performance of model HP/S for low-AF dimer pairs, but experimental values are not

available for all of the important core interactions. To test whether remaining inac-
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Figure 2-6: Comparison of (a) gie,+1 and (b) aia! coupling energies measured by
Vinson and co-workers [3, 94] with the corresponding computed interactions. The
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modeled bZIP dimers.

curacies in the model still had to do with inadequate modeling of core interactions,

we replaced all computed aial and didf interactions in model HP/S with weights

from the FKS model. Although these weights do not represent physical energies,

they do capture the tendency of specific aial and didý pairs to stabilize coiled-coil

complexes. Further, experimental aia( coupling energies and FKS weights are of sim-

ilar magnitude and rank ordering, although they do not agree quantitatively (Figure

2-7). Reasonable agreement is expected, because the coupling energies were used in

training the FKS model [52, 159]. Figure 2-2(b) shows the performance that resulted

from replacing all core aial and didf interactions in model HP/S with FKS weights

(model HP/S/C). Weighting the FKS terms relative to the terms computed based

on structure did not give a noticeable improvement in performance. Model HP/S/C

outperforms all of the models discussed above as well as the FKS model itself. More

than 80% of the 33,186 dimer pairs in the test set are correctly ordered. For 2,945

significantly different dimer pairs (with AF > 4,000) the model predicts the correct

order in over 95% of cases.
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Figure 2-7: Comparison of aial coupling energies measured by Vinson and co-workers
[3] with corresponding FKS weights. Vertical bars represent the estimated experi-
mental error of 0.5 kcal/mol.

2.2.7 Comparison to Other Methods

Several general-purpose methods have recently been developed to evaluate the binding

energies of protein complexes given their structures. We applied some of these to the

coiled-coil pair ordering test to provide an unbiased measure of the difficulty of the

problem. DFIRE is a statistical potential that has been reported to predict protein-

protein binding energies in good agreement with experimental measurements [111].

Figure 2-2(c) shows the performance of DFIRE on ordering bZIP dimer pairs using

our predicted structures. Model HP/S/C significantly outperforms DFIRE in this

test.

FOLD-X is a method for estimating protein stability and protein-protein interac-

tion strength developed by Guerois et al., who have shown it to be effective in pre-

dicting single amino-acid mutation energies in proteins as well as in protein complexes

[62]. We used FOLD-X to score and order structures predicted with our methods.

Figure 2-2(c) shows that model HP/S/C performs significantly better than FOLD-X

for ordering bZIP coiled-coil pairs. It is possible that DFIRE and FOLD-X would

show better performance on native structures, but these are not available.

We also compared the performance of model HP/S/C with that of the RosettaDe-

sign algorithm of Baker and co-workers [95, 37]. The energy function underlying this

method is very effective for both protein structure prediction and design [96, 133].



Figure 2-2(c) compares the performance of model HP/S/C and RosettaDesign on

predicting dimer order stability. In this test RosettaDesign was used to predict the

coiled-coil structures given a fixed ideal backbone. Thus, unlike DFIRE and FOLD-X,

this method was not constrained to predict the energies of structures obtained with

our procedure. Nevertheless, Model HP/S/C significantly outperforms RosettaDesign

at all values of AF.

Vinson and co-workers have proposed that coiled-coil dimerization preferences can

be explained in terms of experimentally measured coupling energies of key giej+j and

aial interactions [3, 40, 94, 179]. In Figure 2-2(c) we also show the performance

of a model that estimates stability using the sum of the available gieý+ 1 and aial

coupling energies for each dimer (model CE). This model performs slightly better

than the three structure-based models described above but is still significantly worse

than Model HP/S/C.

2.2.8 Interaction versus non-interaction Discrimination

As an additional test of model HP/S/C we examined its ability to discriminate in-

teracting from non-interacting dimers. This is a more challenging test than ordering

dimer pairs by stability. The dimer comparison datasets consisted only of pairs in-

volving a common peptide partner, because these are most reliably ordered by the

experiments. Discriminating interactions from non-interactions more generally re-

quires comparison of dimers of completely different composition. Figure 2-8 shows

the ability of model HP/S/C to differentiate interactions from non-interactions. Each

column corresponds to a particular peptide interacting with all tested peptides. There

is a clear overall tendency for interacting dimers to have lower energies by model

HP/S/C, but there is no single energy cutoff that cleanly separates interacting pairs

from non-interacting pairs. At a cutoff of -50, 60% of true interactions are detected

with 79% of predicted interactions correct. Higher coverage can be achieved at the

cost of specificity: at a cutoff of -45, 79% of true interactions are detected with 52%

of predicted interactions correct.

Within a bZIP sequence family, cutoffs for distinguishing interactions from non-
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Figure 2-8: Performance of model HP/S/C on discriminating between interacting
and non-interacting leucine zippers. Red dots signify interactions and blue dots non-
interactions, as determined experimentally. Each column represents interactions with
a single probe. Probes are sorted by family along the x-axis. The energy from model
HP/S/C is on the y-axis.

interactions are easier to define. In Figure 2-8, dimers are sorted by the sequence

family of the probe, illustrating that model HP/S/C discriminates extremely well

between interactions and non-interactions within most families. To provide a quanti-

tative analysis of the model's performance in the discrimination test, we constructed

receiver-operator characteristic (ROC) curves for each family of interactions and com-

puted the average ROC curve, shown in Figure 2-9. We compared this to the perfor-

mance of the FKS and CE models. Model HP/S/C performs comparably to the FKS

model and significantly better than the CE model.

2.2.9 Implicit versus explicit models of side chain-side chain

interactions

We investigated further why our structurally explicit model does not describe ajal and

djdý interactions accurately, using experimental data that characterize the important

role of Asn at a sites. Using a designed coiled coil with a Val-Val (V-V) interaction at

a central pair of ajaj sites, Vinson and colleagues found that substitution of a single

Asn residue (giving V-N) is destabilizing by 5.2 kcal/mol while substitution of V-V

with N-N is destabilizing by only 3 kcal/mol. Further analysis gave coupling energies

for V-V, V-N and N-N of -0.7, +3.0 and -0.5, respectively [3]. Other studies have
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also made it clear that there is a strong preference for Asn residues to be paired at

a - a' positions in parallel, two-stranded coiled coils [137, 196]. We tested the ability

of different models to capture the relative stabilities N-N > V-N and V-V > V-N.

We used the well-studied bZIP homodimer GCN4 (PDB ID 2ZTA) and calculated

the contribution of a and a' residues to the rigid-body binding energy of this complex.

Although this is a poor approximation of real folding pathways, it isolates deficiencies

of the energy function from deficiencies of an unfolded-state approximation. We

constructed a series of models where V-V, V-N or N-N pairs were substituted at

either site 9 (V-V in native GCN4) or site 16 (N-N in native GCN4). The V-N pair

is best accommodated at site 16. Table 2.3 shows a decomposition of van der Waals,

electrostatic and desolvation contributions to binding. A possible explanation for

the observed preference for N-N over V-N, that is also consistent with the greater

stability of V-V than N-N, is that the desolvation penalty associated with burying

an Asn group is large, but that this cost is more than compensated for if the buried

Asn can interact with another Asn at the opposing aý position. However, electrostatic

interaction and desolvation energy differences between N-N and V-N fail to support

this argument. It costs -1.3 kcal/mol in solvation energy to bury the single Asn

residue in a V-N pair, but the desolvation energy to bury a second Asn in an N-N pair

(-1.7-1.9 kcal/mol) almost exactly cancels the favorable interaction between the two

Asn side chains, indicating that N-N and N-V are similar in terms of electrostatics.

The desolvation costs would likely be even larger given a more realistic model of

the unbound state. Including electrostatic interactions with the rest of the protein

favors N-V pairing over N-N slightly, increasing the discrepancy with experimental

observations. Poisson-Boltzmann calculations done on the same system by Hendsch

and Tidor support the idea that the Asn-Asn interaction energy barely compensates

(at best) for the cost of desolvating a second Asn residue at site 16 [70].

Including van der Waals packing energies fails to bring the calculations into agree-

ment with experiment. Our energy function favors Asn over Val at site 16, where this

is the native residue in GCN4: one Asn is good, two are better. At site 9, N-N

and V-V are equally good, and N-V is less favorable. Notably, extreme sensitivity



to backbone structure makes it difficult to evaluate the van der Waals contributions

accurately. There is nothing in the packing analysis, however, to suggest that V-V or

N-N are strongly preferred over V-N, as is observed experimentally.

Poor performance modeling aia( and didý interactions could be due to the fixed

backbone approximation [83]. These interactions represent points of closest contact

between the two monomers and slight backbone variation could lead to large energy

differences. Side-chain minimization relieved this problem to some extent, but to

test whether further relaxation gave improved performance we tested two different

backbone relaxation methods: 1) unconstrained minimization in CHARMM and 2)

fixed-backbone minimization using a family of ideal coiled-coil backbones. Neither

of the approaches gave a significant improvement in aial and didf interactions or the

performance of the overall model.

Unlike the situation for core interactions, for surface giej+ 1 interactions our ex-

plicit physical model gave better performance than either experimentally measured

coupling energies or statistical weights. Replacing the computed giej+ 1 interactions

with experimental ones does not improve the performance of the model (Figure 2-

2(b)). An explanation for this could be that the strength of surface interactions is

context-dependent, however we found that the average over all computed gie+,j in-

teractions for a given pairs of residues can be substituted for the explicitly calculated

ones with little or no degradation in performance.

2.3 Discussion

We have developed a physically motivated method for predicting relative coiled-coil

association strengths and specificities. Our models perform better than several oth-

ers, some of which were developed for scoring coiled coils and others for more general

purposes. Our final model HP/S/C separates interacting from non-interacting coiled

coils and can order a large number of dimer pairs in terms of stability, in agreement

with experimental protein microarray experiments (Figures 2-2(c) and 2-8). It ac-

complishes this without experimental knowledge of the structures of the complexes.



Table 2.3: Calculated contribution of N-N, N-V, or V-V at aia i positions to the
rigid-body binding energy of the coiled coil GCN4.

van der Waals Electrostatics EEF1 desolvation
Sitesa Minimiz

procedureb (ij)+(it)+(j-t)c (i-j)c (i-t)+(j-t)c i,j self' (i-j)+(i-t)+(j-t)c

A16-B16 None -10.3 -2.2 -2.8 3.3 20.6
native N-N EEF conv -16.2 -1.9 -2.7 3.1 20.4
A16-B16 None -13.7 -1.4 -2.0 3.2 21.4
rep N-N EEF cony -14.2 -1.8 -2.0 3.0 21.2
A16-B16 None 15.6 0.0 -2.6 1.4 15.8
rep N-V EEF conv -10.2 0.0 -3.4 1.3 14.9
A16-B16 None 15.0 0.0 0.0 0.0 9.8
rep V-V EEF cony -5.8 0.0 0.0 0.0 9.0
A9-B9 None -9.2 0.0 0.0 0.0 7.1
native V-V EEF cony -8.0 0.0 0.0 0.0 7.9
A9-B9 None -7.9 0.0 0.0 0.0 8.3
rep V-V EEF cony -9.1 0.0 0.0 0.0 8.0
A9-B9 None -6.0 0.0 -2.8 1.3 11.6
rep N-V EEF cony -8.0 0.0 -2.8 1.1 11.5
A9-B9 None -6.9 0.1 -4.3 3.3 18.8
rep N-N EEF conv -9.2 0.0 -4.0 2.7 16.8
a Residue positions in the structure 2ZTA, and the amino acids modeled at these sites: native indicates
residues from the x-ray structure, rep indicates models repacked as specified in the Methods.
b Relaxation procedure used: either no minimization or minimization in CHARMM using the EEF1 energy
function until convergence.
c i and j are the two modeled sites in column 1. i-j indicates the interaction between side chains at the
opposing a - a' positions considered. i-t indicates the difference between the interaction of side chain i
with the remainder of the structure (the template) in the dimeric and the monomeric states. For EEF1,
the notation x-y indicates the mutual desolvation of x and y. For the electrostatic term i self is the change
in the total side-chain self electrostatic energy upon binding for the two modeled side chains (reaction field
plus screened intra-side chain interactions).

Our development of these models highlighted several limitations of existing compu-

tational methods and ultimately led us to an approach that combined explicit and

implicit treatments. Three main insights led to significant increases in performance.

First, a popular penta-peptide model for the unfolded state did not perform well,

as evidenced by a significant improvement upon either simply removing it, or replac-

ing it with a helix propensity term (Figure 2-2(a)). The unfolded state is an ensemble

of many conformations, some of which may have significant local structure. Thus,

the penta-peptide model likely underestimates interactions and overestimates solvent

accessibility. Furthermore, the "unfolded" state is not the only alternative state that

must be considered; any significantly populated competing structure can affect the

stability of a bZIP complex [129]. The simple explicit unfolded state models com-

monly used for design also ignore other potentially important effects. For example,

it is difficult to accurately estimate loss of side-chain entropy upon folding. Rather

than try to address such complex contributions explicitly, we incorporated experi-



mental measurements of approximately the same terms [65]. We found that a helix

propensity model for the unfolded state worked much better than an explicit one.

Second, we found that intra-helix interactions between side chains may have an

important role not only in the coiled-coil state but also in competing dissociated

states (such as the unfolded state). Single-residue helix propensities contributed

positively to overall coiled-coil stability in our models, improving overall performance.

However, full-helix folding energies (similar to those computed with AGADIR [97], see

Methods), which included side chain-to-side chain interactions in addition to intrinsic

helix propensities, showed a decreased ability to order dimer pairs by stability (data

not shown). In fact, when we scaled intra-helix side chain-to-side chain interactions

relative to inter-helix ones, we found that optimal performance arose from negative

scaling (Figures 2-3 and 2-5). This suggests that intra-chain interactions in alternative

states may be an important consideration for modeling coiled-coil folding.

There is experimental and theoretical support for this idea. Marti and Bosshard

[118] have demonstrated that repulsive electrostatic interactions in the unfolded state

give rise to a large difference in how a heterodimeric coiled coil and its disulfide-linked

counterpart respond to changes in pH. Kammerer et al. have shown that certain re-

gions of at least some coiled-coil monomers are structured before the dimerization

step [81]. Theoretical calculations by Myers and Oas suggest that significant partial

helicity in monomers of the yeast transcription factor GCN4 is likely, and a model

based on this agrees well with folding kinetics and the effects of several Ala to Gly

substitutions [132]. Thus it appears that the random-coil model may not be appro-

priate for the unfolded state of coiled coils. More generally, Fitzkee and Rose have

suggested that ensembles of primarily structured proteins can capture experimentally

measurable properties of the unfolded state as well as a random-coil model [51].

The fact that a model based on scaling down intra-chain interactions improves

performance suggests that this strategy may be an effective way of accounting for

pair interactions in the collective reference state (i.e. the set of all competing states).

Model HP/S does not necessarily assume that the competing states are helical. Rather

it maintains that residues interacting within the same chain in the folded structure



may also interact in other states (such as the unfolded state) and therefore need to

be down-weighted. The fact that the optimal value for s is negative indicates that

the amount of intra-chain interactions in the competing states may be as great or

greater than in the folded coiled-coil state, perhaps because there are no competing

inter-chain side-chain interactions. It is likely that the appropriate value for s will

depend on the system studied and the actual sequence considered. However, our

analysis of bZIP coiled coils shows that although the optimal value for the parameter

s does depend somewhat on the particular subset used for fitting, these differences

are small, and the optimal s is always negative.

Third, we found that aial and didý interactions, particularly those involving polar

residues, are not captured well in our explicit model even when residues at these sites

are allowed to relax using side-chain minimization. Performance improved signifi-

cantly when interaction terms for these sites were replaced with values from experi-

ments or from a machine-learning method. This was not true for giai+j, dieý, aidý,

diai+l, or giei+ i interactions, which were best represented explicitly. The fact that

the physical model performs well for surface interactions but not for the core seems

at odds with the observation that side-chain conformation recovery is much better

in the a and d positions than in the more exposed g and e positions (Table 2.2).

However, structure prediction at the resolution of X-angle recovery and evaluation

of stability are very different challenges. Physical energy functions that include van

der Waals and electrostatic interactions are very sensitive to atomic position at close

distances. Because the core is more crowded, it requires a finer resolution of possible

conformations to give accurate estimates of these energies. Additionally, properly

calculating the cost of burial, and balancing it with gained interactions, is difficult

for core and partially buried positions. For surface positions, the total energy is more

forgiving of variations in atomic position. Also, burial of surface residues compared

to the unfolded state is less significant, making the desolvation/interaction tradeoffs

less critical.

An accurate structure-based denovo model for predicting protein-protein interac-

tions would have great utility. It would not require large amounts of experimental



data for determining parameters, and it would be interpretable in terms of basic

physical principles. However, generic energy functions that have been developed for

homology modeling and protein design do not perform well for the challenging prob-

lem of predicting coiled-coil interaction specificity. Despite the fact that they are

effective for other purposes, DFIRE [197], RosettaDesign, and FOLD-X [62] perform

poorly in our test. Although our best model so far contains implicit terms derived

from a learning method, we have made considerable progress towards an accurate,

physically interpretable, structure-based model. Model HP/S, with no FKS terms

included, outperforms the methods mentioned above, and for AF> 2 ,000 performs

significantly better than a coiled-coil specific scoring function derived from experimen-

tal coupling energies. Model HP/S/C shows the best performance of any method.

Thus, it is worth considering what models HP/S and HP/S/C suggest about the

physical origins of coiled-coil interaction specificity.

Models HP/S and HP/S/C predict specific interactions important for bZIP coiled-

coil stability. They capture the recognized importance of giej+1 charge complemen-

tarity, and predict residue-residue interaction energies in quantitative agreement with

measured coupling energies (Figure 2-6). Interestingly, our models predict that giaý+ 1

interactions are very important for establishing stability and interaction specificity.

These terms contribute significantly to the predictive ability of the model, as evi-

denced by a strong reduction in performance upon selectively removing them (data

not shown). Additionally, calculated magnitudes for several giaj+ 1 interactions are

larger than those for giei+1 interactions. Many of the same charged amino acids

with long side chains that participate in strong giej+ 1 interactions are also involved

in strong giaj+1 ones, particularly Lys/Asp, Glu/Lys and Lys/Glu. Based on our

success in recapitulating experimental giei+1 coupling energies, we propose that such

top-ranked giai+1 pairs are excellent candidates for experimental measurement. A

list of predicted strong gia~, 1 interactions is given in the Supplementary Material.

Our results support the frequently made assumption that coiled-coil stability can

be accurately expressed as a sum of residue-pair interactions. Although the explicit

structures used to compute energies in our method have the potential to capture



context-dependent effects, we found no evidence that this contributed significantly to

predictive ability. In fact, there was essentially no difference in overall performance

between using contextually explicit interactions and the averages of interactions over

all environments in which they were modeled. Further, the context-independent aial

or didý terms from the FKS gave very good performance when added to model HP/S.

There is clearly room for improvement in these methods, as highlighted by mediocre

performance distinguishing interactions from non-interactions in the YEAST, large

Maf and CREB bZIP families (Figure 2-8). We investigated why some large Maf

and CREB non-interacting pairs were predicted to be favorable whereas other pairs

that interact experimentally were given high energies. For several cases examined,

the problem was a mismatch between the energy function used for structure mini-

mization and that used for final energy evaluation. In particular, the use of different

electrostatic models (a distance-dependent dielectric for minimization and a Gener-

alized Born treatment for evaluation) led to an imbalance between van der Waals

and electrostatic interaction terms. Both of these terms are very sensitive to small

changes in interatomic distances, so structures relaxed with one function sometimes

give rise to unrealistically strong repulsions, or insufficiently attractive interactions,

when evaluated with another. Structure minimization using only the van der Waals

energy improved performance for the large Maf and CREB families quite significantly

(data not shown) but did not improve overall results.

Although the performance of model HP/S/C for predicting interaction specificity

based on sequence is already very good, improvements will likely come from general

advances in the methods used for protein design and homology modeling, as well as

from a better understanding of specific features of the coiled-coil motif. Table 2.2

shows that our structure-prediction performance is compromised by the use of an

ideal backbone. Our studies of aiaý interactions involving Asn and/or Val (Table

2.3) show that computed energies are strongly dependent on the site in GCN4 at

which these residues are modeled, illustrating how important it can be to capture

the role of local backbone flexibility. Thus, better structural sampling techniques

are needed. Electrostatic interactions remain difficult to describe accurately in a



pair-wise function suitable for use with standard search algorithms, and re-ranking

strategies designed to address this suffer from discrepancies between approximate

and more detailed energy surfaces. It is significant that our use of experimental data,

introduced in the form of learned weights from the FKS model, was essential for

achieving the highest accuracy predictions in this test. For the purpose of predicting

coiled-coil interactions, a combined approach that uses structure and learned weights

can probably be further optimized, perhaps within the FKS learning framework itself.

In the absence of a general method for predicting protein structure or protein-

protein interactions, domain- or motif-specific models represent a promising way for-

ward. Narrowing the focus of a study to a particular motif forces one to identify

features that are important for that structure and to capture these as accurately

as possible. Such an approach can lead to interesting insights, as well as to better

performance. There is precedent for the value of this perspective in the extensive ex-

perimental and modeling work describing the DNA-binding specificity of zinc-finger

proteins, and in the development of statistical models to recognize certain protein

motifs from sequence data [13, 22, 49, 82, 190]. Further, domain-specific approaches

lend themselves readily to experimental testing, which is key to making significant

progress [134, 157, 170, 199]. The ability to predict the interaction specificity of vari-

ous motifs and domains would be extremely useful for structure prediction, structural

genomics applications, and annotation of the protein-protein "interactome". At the

same time, developing this capability promises to uncover important physical prin-

ciples governing protein-protein interactions and teach us about the deficiencies of

general-purpose models for capturing them.

2.4 Methods

2.4.1 Datasets and testing

Models were tested using experimental data for 58 peptides from Newman and Keat-

ing. [134] Duplicate sequences and one of a pair of peptides with identical sequence



at a, d, e, and g positions were removed. We assessed performance in ordering the

stability of bZIP dimer pairs as a function of the difference, AF, between the raw

fluorescence intensities measured for two compared interactions, as defined in Fong

et al. [52] This yielded 33,186 experimental orderings for AF = 0 out of a maximum

of 95,847 comparisons possible (1,653 pairs of interactions for each probe). This is

significant coverage, given that most of the possible comparisons are between non-

interacting pairs.

For additional tests (Figure 2-8) all coiled-coil pairs were classified into 186 inter-

actions and 849 non-interactions in a manner similar to Fong et al. [52]. For each pair

of coiled coils, AB, there are two possible consensus Z-scores defined in ref [134] using

a binomial test over all data sets - one arising from the experiment where A was the

probe in solution and the other where B was the probe. An interaction was assigned if

both consensus Z-scores were > 2.5, whereas a non-interaction had Z-scores < 1.0 in

at least 75% of the measurements in all experiments. Such definitions produce high-

confidence sets of interactions and non-interactions, given the experimental data, and

cover 60.5% of all possible pairings. All interaction/non-interaction predictions were

grouped according to the sequence family of the peptide used as the solution probe in

the microarray experiment. ROC curves were constructed for each family separately

and the resulting curves were averaged in Figure 2-9.

2.4.2 Repacking and minimization

An initial side-chain placement study was carried out using known structures. Of the

eight available bZIP dimer crystal structures, we used only three with resolutions of at

least 2.0 A (PDB IDs 2ZTA, 1GD2 and 1GU4). To obtain additional structures, all of

the proteins listed in the SCOP database in the "leucine zipper domain" family with

at least 2.0 A resolution were manually examined (103 molecules). Those structures

with a dimeric coiled-coil domain sufficiently separated from the rest of the molecule

were included (PDB IDs 1GK6, 1UII, 1UIX, 1PI9, 1IC2). Different structures of the

same molecule or mutant variants were ignored. In cases where other domains were

present, the coiled-coil region was manually excised from the overall structure. The



repacking procedure described below for structure prediction was followed (except

that all positions were repacked), and angles were classified as native-like if they were

within ±400 of the crystal structure.

When predicting bZIP structures, an ideal, parallel, dimeric coiled-coil backbone

with Crick parameters [33, 66] Ro = 4.91, wo = 3.670, ¢ = 21.2' was used in all

calculations except where specifically noted otherwise. The coiled-coil sequences,

registers and heptad alignments were taken from Newman and Keating [134]. For

a pair of sequences, a dimer of length equal to that of the shorter sequence was

modeled. Only a, d, e, and g heptad positions were considered; b, c, and f were

fixed as Ala. Given the fixed backbone and the sequences, side chains from the

Richardson penultimate rotamer library [113] were placed using Dead End Elimina-

tion (DEE) followed by an A*branch and bound search [42, 56, 58, 101, 105, 143].

The energy function used in conjunction with this consisted of the following terms:

AG = GvdW + AG elec + AGdes + AGdihe. All terms were calculated in CHARMM us-

ing the paraml9 force field [25]. AG"dW is the van der Waals energy modeled as a 6-12

Lennard-Jones potential using 90% radii. AGelec is the water-screened electrostatic

interaction energy calculated using a distance-dependent dielectric e = r'r. r = 4.0

was used for side chain-to-template interactions and for non-polar to non-polar side-

chain interactions, , = 16.0 for polar to polar side-chain interactions and K = 8.0

for all other side chain-to-side chain interactions. In coiled coils, this particular set

of constants reproduces interactions calculated with the Poisson-Boltzmann equation

well (data not shown). AGdes is the desolvation energy calculated with the EEF1

model of Lazaridis and Karplus [103] and AGdihe is the rotamer torsion energy. En-

ergies calculated in the folded state included intra-residue interactions, interactions

of side chains with the entire template as well as pairwise side chain-to-side chain

interactions. The unfolded state was modeled as a set of non-interacting GGxGG

penta-peptides with native backbone geometry, one per design site (in this case all

a, d, e, and g positions), with the appropriate amino acid substituted at x. Energies

calculated in the unfolded state, therefore, capture only intra-residue interactions as

well as local side chain-to-backbone interactions. Predicted structures were indepen-



dent of the unfolded state energies. However, the resulting penta-peptides with their

optimal rotamers were used for folding energy evaluations in model EX.

Once the optimal combination of rotamers was obtained for each bZIP dimer, the

structures were allowed to relax through side-chain minimization using CHARMM.

The energy function used for this included van der Waals energy with 100% radii, a

distance dependent dielectric of Ir as well as all bond, angle, dihedral and improper

dihedral terms. In order to avoid biasing the resulting structures by the crude elec-

trostatic function, only 10 steps of steepest descent followed by 10 steps of adopted

basis Newton-Raphson minimization were used. This amount of minimization was

found to be sufficient to relieve unrealistic van der Waals clashes without significantly

changing the structure.

2.4.3 Evaluation of folded energy

The energy function for evaluating final structures was not constrained to be pair-

wise decomposable. We used the Generalized Born model (GB) with perfect radii

computed using PEP [15], which is essentially as accurate as full treatment with the

Poisson-Boltzmann (PB) equation [140]. A disadvantage of GB or PB models is that

the reaction-field term cannot be properly expressed as a sum of contributions from

different groups (such as the backbone or other side chains). This is problematic for

models with an implicit unfolded state that accounts for the amino acid-to-backbone

desolvation upon folding, where it is necessary to remove over-counted terms. Further,

we suspected that the large reaction-field energies that result from GB, which uses a

vacuum-like reference state with a low dielectric, did not provide accurate desolvation

estimates in the absence of a realistic unfolded state structure. Therefore, we replaced

the GB reaction field term with the approximate excluded volume-based solvation

model from Effective Energy Function 1 (EEF1) by Lazaradis and Karplus [103]

(calculated in CHARMM [25]). This energy function uses an aqueous small-molecule

reference state and has the additional benefit of accounting for the hydrophobic effect

[103]. It performed similarly to GB in model EX tests, where the unfolded state

was explicitly considered and no implicit cancellation of local backbone effects was



necessary. The total electrostatic and desolvation energy consisted of Coulombic

interaction energy in a uniform dielectric of 4, electrostatic screening from the GB

model due to transfer to a medium of external dielectric of 80 and internal dielectric

of 4, and atomic desolvation energy from the EEF1 model. The packing energy

was modeled using the paraml9 van der Waals potential with 100% radii [25]. In

all calculations only polar hydrogen atoms were considered explicitly and atomic

parameters were derived from paraml9 [25]. In all models, changes in intra-side chain

and intra-backbone interactions upon folding were ignored (except in cases where the

latter is partly accounted for by helix propensities). Intra-backbone changes are

difficult to model, and were assumed to largely cancel in comparisons of bZIP pairs

with similar lengths. Changes in intra-side chain interactions were found to be rather

small and strongly dependent on the choice of rotamer (or rotamers) in the unfolded

state. Additionally, we observed that explicitly accounting for changes in intra-side

chain interactions upon folding did not improve the performance of the models.

2.4.4 Helix propensities

Although only a, d, e, and g positions were considered for building dimer structures,

all positions were included when calculating helix propensities. We used two models

of helix propensity. In the first, we assumed that all heptad positions of a coiled

coil have helix propensities equal to those in a "generic" helix and used the values of

Munoz et al. [130] These have been shown to correlate well with the average of several

experimentally obtained scales [130]. In the second, we allowed for the possibility that

single-residue contributions to helix stability depend on heptad position. To capture

this, we used helix propensities for an isolated coiled-coil f position measured by

O'Neil and DeGrado [139] and applied a correction factor derived as follows. First,

we modeled each amino acid in an f position using an ideal coiled-coil backbone with

the same sequence background as used by O'Neil et al. (structures were obtained

using the same protocol as for bZIP coiled coils). Then, for any amino acid at heptad

position x in a modeled bZIP coiled coil, we computed the difference between its

total interaction with the coiled-coil backbone (both helices) and that of the same



amino acid when modeled in the f position. The helix propensity of this amino acid

at this position was then corrected by the resulting difference. In this model the

change in amino-acid self energy upon folding to the f position is captured by helix

propensities, while the change in self energy due to going from position f to any

position x is captured by side chain-to-backbone interactions.

Because helix propensities are a relative scale (usually referenced by Ala or Gly)

we introduced an adjustable parameter hpref that shifts the entire scale by the same

amount, in order to be able to compare G lin~ for proteins of different lengths.

2.4.5 Full-helix folding energy function

Our implementation of the energy function underlying the AGADIR method by Ser-

rano and co-workers was based on the parameters for version ls-2 given in Lacroix

et al. [97]. Each sequence was scored as a difference between the energy of the folded

helical state, where the entire sequence forms a helix, and the random-coil reference

state, as described in reference [97].

2.4.6 Modeling backbone relaxation

We used two approaches to introduce backbone flexibility. In the first, we subjected

structures resulting from the side-chain placement procedure to 2,000 steps of uncon-

strained continuous minimization in CHARMM. This resulted in a slight deformation

of the backbone and improvement in mostly the van der Waals energy. For the second

method, we considered a family of eight ideal coiled-coil backbones (each representing

the best fit to one of the eight representative structures of bZIP coiled coils in the

PDB - see Table 2.2.2). Each dimer was repacked on each of the backbones and the

resulting structures were subjected to the same protocol as used for a single ideal

backbone. The best energy according to model HP/S/C was used as the score for

each dimer.



2.4.7 DFIRE

The executable and parameter files for DFIRE corresponding to the version used in

reference [111] were obtained from the Zhou lab. The executable was run on all of

the dimer structures predicted using our protocol. The value of the binding energy

from the output was used to score each dimer. We tried using DFIRE on the set

of structures obtained either with or without continuous side-chain minimization in

CHARMM. The latter gave a slightly better performance and corresponds to the

values in Figure 2-2(c).

2.4.8 RosettaDesign

A standalone version of RosettaDesign was obtained from the Baker lab. The method

was used with the same GCN4-like ideal coiled-coil backbone as in our model. We

tried models with either wild-type or Ala residues at the b, c, and f positions with

nearly identical performance. The default rotamer library and parameters were used.

Only one solution was requested. The total energy in the output file was used to

score each dimer.

2.4.9 FOLD-X

Fold-X version 2.0.1 for Windows XP was downloaded from http://foldx.embl.de/.

The executable was applied with default parameters to the structures predicted using

our protocol either with or without side-chain minimization. The latter gave better

performance and corresponds to the values in Figure 2-2(c). The "Stability" command

was used and the total energy from the output file was used to score each dimer.

2.4.10 Evaluating contributions of ai - a! interactions to bind-

ing

Similar to Hendsch et al. [70] we modeled binding as rigid docking. All of the ener-

gies listed in Table 2.3 are differences between the dimeric and the monomeric states.



Using the crystal structure of GCN4, 2ZTA, as a model, either sites A16 and B16

(naturally occupied by Asn) or sites A9 and B9 (naturally occupied by Val) were

considered. At each site either the native structure or models in which the targeted

sites were replaced with N-N, V-N, N-V or V-V were examined. Models were gener-

ated by optimally placing mutant side chains onto the backbone in the presence of

all native side chains, following the procedures outlined above. Of the two complex

structures for N-V or V-N, the one producing the lower binding energy was chosen.

All structures were evaluated without side-chain minimization and also after four dif-

ferent procedures in CHARMM: 1) 10 steps of minimization using only the van der

Waals potential (with 100% param 19 radii), 2) minimization until convergence us-

ing only the van der Waals potential 3) 10 steps of minimization using the full EEF1

[103] energy function or 4) minimization until convergence using the full EEF1 energy

function. The convergence criterion was that 10 steps of minimization changed the

total energy by less than 0.1 kcal/mol. The different minimization procedures were

found to give similar results and only (4) is shown in Table 2.3.

A variety of energy terms were computed to evaluate the final structures. The van

der Waals energy was calculated in CHARMM using full paraml9 radii. Electrostatic

energy was calculated as a sum of the Coulomb energy in a uniform dielectric (e = 4)

and solvation energy from the GB model. Desolvation energy from the EEF1 model

was calculated in CHARMM.
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Chapter 3

Ultra-fast Evaluation of Protein

Energies Directly from Sequence

The structure, function, stability and many other properties of a protein in a fixed

environment are fully specified by its sequence, but in a manner that is difficult

to discern. We present a general approach for rapidly mapping sequences directly

to their energies on a pre-specified rigid backbone, an important sub-problem in

computational protein design and in some methods for protein structure prediction.

The cluster expansion (CE) method that we employ can, in principle, be extended

to model any computable or measurable protein property directly as a function of

sequence. Here we show how CE can be applied to the problem of computational

protein design, and use it to derive excellent approximations of physical potentials.

The approach provides several attractive advantages. First, following a one-time

derivation of a CE expansion, the amount of time necessary to evaluate the energy

of a sequence adopting a specified backbone conformation is reduced by a factor

of - 10' compared to standard full-atom methods for the same task. Second, the

agreement between two full-atom methods that we tested and their CE sequence-

based expressions is very high (RMSD 1.1- 4.7 kcal/mol, R2 = 0.7 - 1.0). Third,

the functional form of the CE energy expression is such that individual terms of the

expansion have clear physical interpretations. We derived expressions for the energies

of three classic protein design targets - a coiled coil, a zinc finger and a WW domain



- as functions of sequence, and examined the most significant terms. Single-residue

and residue-pair interactions are sufficient to accurately capture the energetics of

the dimeric coiled coil, whereas higher-order contributions are important for the two

more globular folds. For the task of designing novel zinc-finger sequences, a CE-

derived energy function provides significantly better solutions than a standard design

protocol, in comparable computation time. Given these advantages, CE is likely to

find many uses in computational structural modeling.

3.1 Introduction

Protein structure prediction, homology modeling, fold recognition and design, in-

cluding the prediction and design of macromolecular interactions, are among the

most complex and essential problems in contemporary computational structural bi-

ology. Proteins are critical players in the cell and their function is dictated by their

structure. Because the number of proteins with known sequence far exceeds the num-

ber with known structure, an ability to predict structure from sequence would be

extremely valuable. On the other hand, designing proteins with specific structure

and function is also important because of the usefulness of proteins as reagents and

therapeutics [102].

At the heart of any computational approach to protein design or structure pre-

diction lies the problem of determining the fitness (effective energy) of a particular

protein in a given conformation or state. Depending on the method used, this effec-

tive energy may correspond to different physical quantities, e.g. stability, solubility,

binding affinity, catalytic efficiency or a combination thereof. In protein design, the

goal is to optimize this fitness in the large space of possible amino-acid sequences. In

the fold-recognition approach to structure prediction (also called threading), the goal

is to identify the most suitable structure for a particular sequence, given a library

of known folds. In both cases the complexity of the problem imposes two some-

times conflicting requirements on the energy function used: physical accuracy and

computational efficiency.



There are two major classes of fitness functions used in the fields of structure pre-

diction and design. Lazaridis and Karplus [104] refer to these as statistical effective

energy functions (SEEFs) and physical effective energy functions (PEEFs). SEEFs

are derived from databases of proteins with known structures and describe the distri-

bution of residues (or atoms) at different distances, solvent exposure, and sometimes

more complicated measures, such as local atom density or relative orientation of sec-

ondary structure elements [151]. These terms are treated as effective potentials for

calculating the energy of a protein in a given conformation. Most statistical energy

functions include up to pair interactions [54, 158, 197]. However, it has been suggested

that pairwise statistical energy functions may not be suitable for protein design or

fold prediction [124, 178], so some SEEFs include higher order terms [27, 124, 149].

The advantages of SEEF methods lie in their computational efficiency, simplifying

abstraction from details, and ability to implicitly capture effects such as desolvation,

loss of entropy, and the hydrophobic effect, which are hard to account for explicitly.

To gain these benefits, accuracy and physical interpretability are compromised.

Physical effective energy functions use atomic-level representations to capture un-

derlying physical phenomena and approximate the free energy of the studied system.

Some of the terms commonly included in PEEFs are van der Waals interactions,

electrostatic interactions, hydrogen bond energies, dihedral angle torsion energies,

atomic desolvation energies and solvent-accessible-surface-area or volume-dependent

estimates of the hydrophobic effect [57, 93, 104, 144]. Some attempts have also been

made to model side-chain entropy [31]. The advantage of PEEFs is that they have the

potential to provide a more comprehensive understanding of the observed phenom-

ena. The disadvantages are that much of the underlying physics is difficult to account

for quantitatively, and when it is possible to do so, it is usually computationally ex-

pensive. An optimal energy function would have the simplicity and computational

efficiency offered by SEEFs while retaining the theoretical rigor and physical inter-

pretability of PEEFs.

A protein's behavior is a function of its sequence, given a defined environment. In

particular, the energy required for a protein to fold to a given state or conformation (a



quantity of central importance for protein design and structure prediction problems)

is a function of its sequence regardless of the complexity of the underlying physics

that determines that energy. In this paper we present a general method by which the

energy of a protein on a fixed backbone, given by an arbitrary energy function, can be

accurately expressed as a simple function of its sequence. In principle, this method

can be applied in conjunction with any energy function, the only limitation on the

complexity being that energies for enough training sequences can be generated, at

reasonable computational effort. We illustrate an application in which the calculated

molecular mechanics energy of a protein, with a continuum treatment of solvation,

can be mapped to a simple function of sequence that is extremely fast to evaluate and

that maintains high accuracy. We find that the number of training sequences required

to compute this mapping is significantly lower than would normally be adequate for

sequence-space searches done in protein design. Furthermore, the resulting expansion

retains, and in certain ways enhances, physical interpretability.

In the following sections, we first present an overview of theory of cluster expansion

and detail its application to protein structural modeling. We point out how the

expansion consists of terms that are conceptually familiar to biochemists. We then

go on to apply the method to three protein systems: the a-helical coiled coil, the zinc

finger and the WW domain. For each domain, we show that CE can derive useful yet

highly simplified energy expressions. We conclude with a direct demonstration of the

power of CE in protein design.

3.1.1 Theory

We seek to express the energy of a protein folding to a particular conformation as

a function of its sequence. To attain this goal we employ the technique of cluster

expansion (CE). CE is a method for representing a property (in this case, energy) that

depends on discrete and topologically ordered degrees of freedom in a system [152].

The method finds its origin in alloy theory, where very expensive ab initio calculations

are required to accurately capture material properties, and only computations on a

small number of atomic arrangements with relatively small unit cells are possible



[39, 152]. The cluster expansion is essentially a parameterization of the energy in

terms of discrete variables that give the occupancy of each lattice point in the crystal.

When the occupation variable is a spin variable (ai = +1 or -1), the CE takes on the

form of a generalized Ising model. This approach has proven itself highly accurate

in predicting alloy phase diagrams [11, 175, 177], and in identifying novel low energy

crystal structure [28, 176].

In its more general form, CE is an expansion of the energy in a set of linearly

independent basis functions that span the relevant configuration space (e.g. all pos-

sible distributions of atoms A and B on a crystal lattice, or all possible amino-acid

sequences on a protein backbone). In most forms, the basis set of the cluster expan-

sion is mathematically complete by construction, and a full expansion will result in a

perfect representation of the energy. Truncated expansions may have practical utility,

however. The use of a truncated cluster expansion to model the energy is analogous

to using any truncated expansion in basis functions (e.g. plane waves or spherical

harmonics) to represent a complex unknown function. The goal in developing an

effective CE is to identify a truncated expansion that, when fit to a training set of

data, provides an accurate mapping between degrees of freedom and energy using a

minimal number of parameters.

We have recently pioneered the use of CE for describing protein energetics [198].

To do so, we make a correspondence between an alloy lattice and a protein backbone

and between alloy constituent elements and amino acids. Whereas alloy problems

are typically solved for two or three possible species per site, the complete collection

of natural amino acids requires twenty species per site. Such a dramatic increase in

phase space requires some reformulation of the CE implementation typically used for

alloys. The general idea is to define a set of basis functions that correspond to the

energetic contributions of single amino acids at single sites, pairs of amino acids at

pairs of sites, triples of amino acids at sets of three sites, and so on. If intuition holds,

the lower-order terms in this expansion will be more important than the higher-order

ones, and a truncated expansion will be sufficient to represent the energy. In practice,

given a set of training sequences and their energies, the CE is derived by starting with



* CF pool = const + point CFs * fit training set using CF pool + candidates
* candidates = all pair CFs * record J, for each CF,

I-- ----- ..-.. ------------cn s r .i
Scanddates = allpair UCs + triplet and/or
quadruplet CFs among sites with over- * fit training set with CF pool, calculate CV
represented amino-acid pairs! * for each CFi in candidates, in order of

* CF pool = const + point CFs decreasing JJA:
* increase training set size if necessary fit training set using CF pool + CF,

calculate CV score
S.. ........... if new CV better than old CV:

characterize poorly-fit sequences: CV score = new CV score
* over-represented aa's at sites CF pool = CF pool + CF,

over-represented aa pairs at pairs o sites......... ............... .............................
No

. -- No is CV score satisfactory?

Done

Figure 3-1: The procedure for fitting a cluster expansion. Cluster functions (CFs)
capture the contribution of a particular set of amino acids at a set of sites. Point,
pair, and triplet CFs contain the contributions of amino acids at single sites, pairs of
sites, triplets of sites, etc. The energetic contribution of any cluster function CFi is
denoted by the variable Ji. CV score designates the cross-validation root mean square
error (i.e. the average error with which the energy of each sequence is predicted when
left out of the fit), and its behavior serves as a measure of parameter significance. The
goal of the fitting procedure is to find an optimal pool of cluster functions with which
to expand the energy. Point and constant CFs are always included and thus form an
initial pool of CFs. In the next step, all pair CFs are considered as candidates. In
order to asses the relative importance of candidate CFs, they are initially all added
into the fit and their corresponding Ji's are stored. The candidates are then visited
one-by-one in the order of decreasing I Ji and considered for inclusion into the CF
pool. Candidates are included if they reduce the CV score. If the final CV score
upon trying all pair CFs is not satisfactory, the list of candidates is appended with
higher order terms and the procedure is repeated. Details are provided in Materials
and Methods.

lower order terms and successively considering higher order contributions until a fit

of the expansion to the data gives adequate performance when tested under cross

validation. This process is outlined in the flowchart in Figure 3-1 and elaborated in

the Materials and Methods. A formal description of the theory of CE as we have

applied it to protein energetics follows.

Given a discrete variable o that can take on M different values (a = 0... M -

1), any function of it can be expanded using a basis set of M linearly independent

functions D = {o -- ¢1 , 01..., M-1 }:

M-1

f () = E JaqO (O) (3.1)
a=O



where Ja are constants. A similar statement can be made about any function f (5)

of N discrete variables U = {al = 0...M - 1,...,aN = 0...M - 1}, because S

can be thought of as a discrete variable with MN possible values. Thus, to expand

f (5) exactly, a basis set with MN functions is needed. Let vector d represent an

amino-acid sequence with element indices of the vector corresponding to sites on

the protein under study. Thus, we consider N sites on a protein with M amino

acids possible at each site. Further, let function f (5) be the optimal energy of

sequence ' on a given backbone. According to the cluster expansion formalism [152],

a particularly convenient basis set for expanding f (5) can be obtained by considering

all the possible products between functions in the N point basis sets Vi = {0o (au ) =

1, 01 (Wa),..., M-1 (o.i)} each completely describing the sequence space at site i.

Thus, a basis set suitable for expanding f (5) is defined in the product space of the

point functions:

(Ic = 4D g (p & ... 2 ( ()N

[1],

[I 1 (i 1)],... [4IM _1 (0. )], [4 1 (02)],. • [4* M_-1 (02)],

...... 4D1 (0N)] I•..• [(M-1 (0.N)],

[) 1  [ (al)) (-2], • . [I 1  1) - 2...

[kM-1 (1 UM-1 (2) (]N)

[IM (0N-2) (M_- (.N-1) M_ (oN)] ,

[41M-1 (0-1) 4M-l (U2) ýM-1 (a3) ... 4M-1 (UN)]

(3.2)

where in each row, the subscripts that index functions q independently run through

1... M - 1 and the superscripts indexing protein sites take on all possible combi-

nations of 1... N, without duplicates. Each basis function in this set (expressions

in square brackets in equation 3.2) depends on the amino-acid identity at either no



sites (constant term), one site, two sites and so on. We call a set of specific sites a

cluster. Each cluster has several basis functions, or cluster functions (CFs), asso-

ciated with it. For instance, any point cluster i (a cluster consisting of site i) has

M - 1 cluster functions associated with it (functions 01 (ai) ,... , OM- (ai) but not

0o (ai ) - 1, which is attributed to the constant cluster). Therefore, there are a to-

tal of N - (M - 1) point cluster functions (the second row in equation 3.2) because

there are N point clusters. Similarly, each pair cluster {i, j} has (M - 1)2 cluster

functions associated with it (0o (a i ) Ok (oj ) -k (aj ) and Ok (oi) o (aj ) - kk (ui) are

associated with point clusters i and j for k > 0 and with the constant cluster for

k = 0). Because there are N. (N-i) pair clusters, the total number of pair cluster

functions is (M - 1)2 N (N-li) (the third row in equation 3.2). For a size-k cluster,

there are (N) . (M - 1 )k cluster functions. Therefore, the total number of cluster

functions is EN ( . (M - 1)k = MN and there are as many linearly independent

cluster functions in the basis set as there are possible values of the discrete variable

S. Given the constructed basis set, we can exactly expand the energy of a sequence

on the modeled backbone as:

f()=m EEJAA (3.3)
IA

where I is a cluster of sites, Vi is the A-th cluster function associated with cluster

I, and the coefficients JA are referred to as effective cluster interactions (ECI).

3.1.2 Interpretation of the Expansion

Because the point basis set at a single AA site (D = {0 - 1, 11,..., M -l1} can be any

set of linearly independent functions, we choose for simplicity ¢0 (a) = 6 (a - (a - a)).

In other words qo (o) is always one, and for a > 0, Oa (a) is always zero unless it is

applied to the amino acid with index a. For any particular sequence & = {a 1,..., aN}

the only CFs that remain in the expansion are of the form ¢,i (ai) ... ,j (aj ) where



i ..... & 0 (see equation 3.2) and thus f (Y) is expressed as:

f () = Jo+ Z J+E i ()± (oi) + E 7 i(j J( 3(ai) (aj) ...
aiO l,0aj$o (3.4)

SJo+, J i+ A iJ is

The first term in the expansion is constant and Jo can be thought of as the energy

of a reference sequence. Indeed, for a hypothetical sequenced = {a1 = 0, 2 = 0, ... , aN 0= ,

the only surviving part of the expansion is the constant term. The amino acid assigned

index zero at each site defines the reference sequence; for simplicity, we will take this

to be alanine. The ECI corresponding to higher order terms in the expansion then de-

fine additional contributions to the energy of a sequence relative to poly-alanine. For

example, J~. corresponds to the point contribution of amino acid ai at site i relative

to alanine at that site. This is the sequence context-invariant portion of an alanine-

mutation energy. If there were no interactions among amino acids, point contributions

and Ala-mutation energies would be equivalent. The context-dependent effects are

captured by higher-order terms. For example, when interactions are present, the ECI

corresponding to the terms Ji,j capture the effective interaction between amino acids

a i at site i and aj at site j relative to an Ala-Ala pair. Notice, however, that for

amino-acid pairs Ala-X at sites i-j, where X corresponds to any amino acid, the value

of J~c,j is zero. The contribution of this interaction is captured in the point energy

for amino acid X at site i. Therefore, the ECI corresponding to Jj represents the

pure effective interaction between the two amino acids, devoid of self contributions.

This is conceptually identical to a double mutant coupling energy - a measure well

known to biochemists [3, 94, 154]. Coupling energies measure the change in stability

brought about by a double mutation, corrected by the change in stability due to each

of the two single mutations. If the reference sequence in our cluster expansion is

poly-alanine, pair ECI correspond to double alanine mutant coupling energies.

Even though the physics determining the conformational energy of a protein in

solution is frequently modeled with only single-atom energies and pairwise atomic

interactions, higher order contributions may arise if one integrates out some degrees



of freedom. For example, when modeling molecular solvation, if individual solvent

molecules are replaced with a continuum high-dielectric medium, higher order interac-

tions are necessary to accurately describe electrostatics as a function of conformational

changes in the solute [73]. Similarly, integrating out side-chain degrees of freedom

and expressing energy as a function of sequence can lead to higher order interactions

between sequence variables, even though on the atomic level no more than pairwise

interactions are present.

As shown in equations 3.3 and 3.4, the CE formalism allows for arbitrarily high

order interactions (up to N-tuples) of residues. If all of the MN terms have to be

accounted for, such an expansion is not very useful. However, intuition dictates that

for physical systems higher order interactions should be less important, and thus

that ignoring them may be appropriate. If the expansion is truncated, the remaining

coefficients Jij can be fit to minimize the error between the correct value of some

desired fitness function and its CE approximation. Given a set of training sequences

a1 to dn with known energies E (61) to E (dY,) , equation 3.3 defines a system of linear

equations with JA as the unknowns (each equation corresponding to one sequence).

E (d,) 1 I Jo

... ... ... ... (3.5)
E(n) 1 (Un) JAI

If there are more sequences than cluster functions, the linear system in equation 3.5

becomes over-determined and it is possible to use least squares fitting to find the

optimal values of JI.

3.2 Results

In principle, the method of cluster expansion can be applied to any property of a

protein sequence that can be computed or measured experimentally for a large set

of training examples. In this work we expanded the energy of a sequence adopting a

particular backbone conformation, which is a necessary component for protein design



and some methods for fold recognition. We computed this energy in two different

ways. First, using a side-chain repacking scheme and a molecular mechanics potential

(giving Epack) and second, subjecting every repacked structure to a short continuous

side-chain relaxation procedure and then re-evaluating it with a more accurate energy

function that included a non-pairwise decomposable electrostatics treatment (giving

Emd,GB) - see Materials and Methods.

In the Results we describe the application of CE to model the energetics of three

different protein folds - the parallel dimeric coiled coil (an extended periodic struc-

ture), the zinc finger, and the WW domain (both aperiodic). These three structures,

though small, are each of significant biological importance and have been the subject

of previous protein design efforts using a variety of techniques [35, 68, 92, 150, 166].

3.2.1 Coiled Coil

The method of cluster expansion is particularly well suited for systems dominated by

local interactions, because this limits the number of clusters that need to be included.

CE also has an additional benefit in periodic systems, where modeling the energetics of

a repeating unit cell can capture the behavior of the entire system. Both conditions

are usually true in alloy theory, where the method is used extensively. Although

proteins are rarely periodic, there are instances in which they are approximately so.

An example of such a system is the -helical coiled coil. The coiled coil is a common

structural motif estimated to be present in approximately 5% of all proteins [189].

It consists of two to five right-handed helices that wrap around each other in a left-

handed manner to form a super helix [32, 119]. Because of this super-coiling, the

backbone geometry is repeated every seven residues - a unit that is referred to as a

heptad, with its residues labeled abcdefg. Coiled coils can either be parallel (all N

termini at one end), anti-parallel (N and C termini at opposite ends) or mixed (in

higher order oligomers). In a parallel dimeric coiled coil (see figure 3-2), positions a

and d are located in the core of the dimerization interface, whereas positions e and

g are largely solvent exposed and can form salt bridges between strands of the coiled

coil. Positions b, c, and f are solvent exposed on the side of the helix opposite to the
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Figure 3-2: Schematic of a parallel dimeric coiled coil. A) Helical-wheel representa-
tion shows an end-on view of the structure. Opposing a and d residues interact in
the core while opposing e and g residues frequently participate in electrostatic inter-
actions. B) Cartoon representation of the coiled coil, viewed from the side. Residues
are represented as spheres. An e position is better located for interaction with the
g position of the previous heptad on the opposing strand than with the g position
of the next heptad (bold arrows). This interaction is denoted g - e'+ and coupling
energies for it have been determined experimentally [94].

dimerization interface.

The parallel dimeric coiled coil is an extended structure, so it is reasonable to
expect that only local clusters will contribute significantly to the energy expansion.
Additionally, it is a periodic structure, so by accurately modeling the interactions of
one structural subunit (unit cell), we can describe a coiled coil of arbitrary length.
The unit cell must contain within it all interactions likely to be important. We
postulated that interactions between amino acids more than one heptad apart are
not significant. Thus, we modeled the unit cell as the central two-heptad section of
a six-heptad dimeric coiled coil, where the flanking sequences were copies of the unit
cell sequence (see figure 3.2.1). Because it is generally assumed that positions b, c,
and f play only a minor role in determining the dimerization properties of coiled coils,
we set these to alanine in our model. Positions a, d, e, and g were allowed to be one
of 19 amino acids (all natural ones except proline).

We expressed the folding energy of a parallel dimeric coiled coil (i.e. the differ-
ence between the dimer state and the unfolded monomers state) as a function of its
sequence. In order to be tractable, the expansion in equation 3.3 must be truncated.
Consistent with our unit cell approximation, we included only clusters involving sites

N(

N (
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Figure 3-3: The unit cell used for modeling coiled-coil interactions. The entire
structure consists of three copies of the sequence of the central unit cell, which is
ajAAdje1 Agja 2AAd 2e 2Ag 2 on the one strand and a'1AAd' e'Ag'a'2AAd'2 e'2 Ag' on
the other, marked in red (A = alanine). Only positions a, d, e, and g were allowed
to vary. The energy of the central unit cell is calculated as the sum of its internal
interactions and half of its interactions with the bounding structure. A) Helical wheel
diagram corresponding to the entire structure modeled, with sites in the central unit
cell colored red. B) Ribbon diagram representation of the modeled system viewed
as in 3-2B with the central unit cell colored red. Grey and orange balls represent
locations of side-chain Cp atoms of a/d and e/g sites respectively.
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no more than seven residues apart in the expansion. Further, as a starting point, we

included only up to pair clusters, resulting in a total of 137 clusters. Taking into ac-

count coiled-coil symmetry (since ECI for symmetry equivalent clusters are identical

[39, 152]), this was reduced to 1 constant, 4 point and 36 pair clusters with unique

ECI. To find appropriate values for coefficients JI, we considered -30,000 randomly

generated sequences (i.e. approximately 2.5 times as many sequences as JI parame-

ters being fit) and computationally predicted their structures under the assumption

of a constant ideal backbone and discretized side-chain conformations [60]. This in-

volved searching a conformational space of 1053 structures for an average sequence.

Given optimized structures, we calculated E fack for each and used these as a train-

ing set to find optimal values for JA (see Materials and Methods and Figure 3-1).

Figure 3-4A shows the progress of the fit accuracy, measured by cross-validation, as

a function of the number and type of clusters functions (CFs) included in the expan-

sion. The largest drop in error, per cluster function, is due to point CFs. This is

intuitive and consistent with the fact there are strong amino-acid preferences at dif-

ferent coiled-coil heptad positions [115, 183]. A few important pair cluster functions

further reduce the error significantly, and many less-important pairs drive the error

down slowly.

Figure 3-4B shows the performance of the resulting CE on predicting coiled-coil

energies for a test set of -4,000 sequences not present in the training set. When

deriving the expansion, we considered only the energy of a two-heptad unit cell, so

training-set sequences were periodic with a two-heptad sequence repeated three times

(see figure 3.2.1 and Materials and Methods). The test set, however, contained non-

periodic six-heptad sequences and allowed us to evaluate not only the accuracy of the

cluster expansion, but also the validity of the unit-cell approximation. The overall

root mean square deviation (RMSD) is 1.96 kcal/mol, whereas that for more relevant

sequences (those with calculated energies below -5 kcal/mol) is 1.08 kcal/mol. This

is a very small error and is in fact comparable to or better than the accuracy of

the underlying energy function. Thus, for a six-heptad coiled coil, the CE formalism

reduces a sequence-structure space of 10115 possibilities to a search of 1061 sequences



with minimal cost in accuracy. The reduction of search space grows exponentially

with the length of the coiled coil modeled.

Given the accuracy and simplicity of the CE functional form, the task of evaluating

the energy of a sequence is reduced to several interaction table lookups. However, the

CE formalism is also convenient because the functional form implies that individual

ECI have clear physical interpretations. Specifically, pair ECI correspond to double

mutant coupling energies. Figure 3-5A shows the agreement between experimentally

measured g - e'+ coupling energies [40, 94] (the prime designates the opposite strand

and "+" indicates the next heptad) and the corresponding pair ECI from the above

cluster expansion. The excellent agreement illustrates the physical interpretability of

the cluster expansion.

One of the strengths of the CE approach is that, in principle, any energy function

can be expanded as a function of sequence. In a previous study we found that

more reasonable coiled-coil energies were obtained by allowing the structures resulting

from discrete side-chain repacking to relax via several steps of continuous side-chain

minimization [60]. In addition, we derived a specific physics-based energy model

(HP/S) that performed well in predicting coiled-coil dimerization preferences [60].

Unlike the original energy function used above, HP/S is not pairwise decomposable

at the atomic level, due to its more accurate treatment of electrostatics. We fit a

cluster expansion for the HP/S energy using the same training set sequences as before.

Figure 3-4C shows the progress of the fit as a function of the number and type of

included cluster functions. Again, constant, point and pair clusters are sufficient

for reasonable accuracy. Figure 3-4D shows the performance of the resulting cluster

expansion on a set of -4,000 test sequences not included in the training set. The

error for relevant sequences (those with energies below 0 kcal/mol) is 1.96 kcal/mol.

Note that these energies are not strictly on an experimental scale. Our previous work

has determined that stable coiled coils of 5-6 heptads have energies varying over 15

kcal/mol using this energy function [60] and random sequences span a range of over 40

kcal/mol; this is surely larger than the range of experimental free energies of folding.

Figure 3-5B shows the agreement of experimental g - e'+ coupling energies with the
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Figure 3-5: Agreement between experimentally measured double-alanine coupling
energies for residues E, Q, R and K at g - e'+ [94] and corresponding pair ECI from
the cluster expansion (in kcal/mol). A) Energies from repacking calculations, Erepack,
were used to fit the CE. B) Eid,GB energies were used to fit CE.

corresponding pair ECI obtained from this cluster expansion. This comparison with

experimental values is more meaningful, due to cancellations in error in the double

mutant cycle that put the calculations on a similar scale.

3.2.2 Zinc Finger

A cluster expansion including only up to residue-pair interactions works well for the

coiled coil, an extended fold where only local interactions are likely to be important.

To test whether this is a unique property of the coiled coil and whether higher order

interactions are important in more globular folds, we examined the zinc-finger motif.

Zinc finger domains are found in a diverse set of proteins that require coordination of

one or more zinc ions to stabilize their structure [98]. Cys 2His2 zinc fingers coordinate

a zinc ion with two cystine and two histidine residues and are found in many DNA-

binding proteins. Among these, the murine zinc finger Zif268 has been extensively

studied [142]. To derive a CE describing the Zif268 fold, we defined the backbone

using coordinates from the PDB entry 1ZAA, residues 33-60. The amino acids allowed

at each site were based on the classic design by Dahiyat et al. [35] and were such that

1 core site was chosen from 7 aliphatic amino acids, 18 surface sites varied among 10

amino acids and 7 interface sites were selected from 16 amino acids (a sequence space

of _1027). This restriction gives design sequences with better physical properties



while retaining a large and diverse protein design search space. Side-chain repacking

was used to calculate folding energies Erflk for -60,000 random training sequences

and a cluster expansion was derived. The progress of the fit is shown in Figure 3-

6A, where the order in which triplet and pair cluster functions were added is defined

in Figure 3-1 (see Materials and Methods). In this case, triplet cluster functions

are necessary to attain good accuracy, and it is not strictly true that pair terms

contribute more significantly than triplet terms. Additionally, the contribution of

point terms is relatively larger than for the coiled coil, indicating that an amino

acid's contribution to the overall energy is affected significantly by the 3-dimensional

template of the molecule. Figure 3-6B shows the accuracy of the derived cluster

expansion when tested on a set of -4,000 random sequences not included in the

training set. The RMSD of 15.3 kcal/mol over the entire range of energies is quite

high, but this is due to the large spread in energies (over 1,000 kcal/mol) caused by

many of the sequences producing van der Waals clashes. As a percentage of the range,

the error is quite low (< 1.5%), and for the more realistic zinc-finger sequences (those

with negative energies) the error is only -2.5 kcal/mol. In this case, CE reduces a

sequence-structure space of _1060 to ,1027 sequences.

To expand a more physically meaningful energy, we used -30,000 structures to

calculate Emf,GB for each and used these for training. The progress of the resulting

cluster expansion fit is shown in figure 3-6C. Once again, triplet terms are important

for attaining good accuracy. Most of the triplet cluster functions arise from the two

triplet clusters shown in figure 3-7. These are structurally compact, with CFs of

significant magnitude mostly corresponding to large amino acids (such as Y, F, and

W). Such clusters represent close-range interactions of bulky residues. Figure 3-6D

shows the performance of the CE on a test set of -4,000 sequences not included in

the training set. Though the agreement is still very good (R2= 0.85), the error is

larger than in other cases (4.61 kcal/mol for sequences with energies ranging between

0 and -60 kcal/mol) indicating that the more complicated geometry of the domain

may make the energy a more complex function of sequence.
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from the point with the minimal CV score, which is indicated on the graphs. Panels
B) and D) show the performance of the respective cluster expansions on predicting
energies of 4,000 random sequences not included in the training sets. Insets show
the entire range of energies, whereas only sequences with reasonably low energies are
shown in the main plots.
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Figure 3-7: Important triplet clusters for the expansion of zinc-finger energies. Orange

balls represent the location of the C3 atoms of side chains. Two clusters are shown,
one in red and one in blue.

3.2.3 WW Domain

The WW domain is a protein-protein interaction motif composed of 35-40 residues.

It forms the smallest known independently stable triple-stranded antiparallel -sheet.

WW domains bind proline-rich or proline-containing ligands [77]. A defining feature

of this motif, from which its name is derived, is the presence of two tryptophans spaced

20-22 residues apart. Under the assumption that the statistical information encoded

in multiple sequence alignments of WW domains reflects evolutionary constraints,

Ranganathan and co-workers have used these statistics to engineer artificial WW

domains with specific binding properties [150, 164]. Protein design methods using

energy functions similar to those we employ here have also been applied to this domain

[92].

We derived a cluster expansion for the WW domain that captures relationships

between sites that are important for folding energetics. We used the structure of

human PIN1 WW domain (PDB ID 1PIN) to define backbone coordinates and chose

an alphabet of amino acids at each site using a multiple sequence alignment of WW

domains from the SMART database (accession number SM00456). The choices at

each position covered at least 90% of all naturally occurring residues. Thus the search

space is very diverse while at the same time it excludes sequences that are grossly

incompatible with the WW domain fold and not worth searching. The resulting



problem had an average of 7.5 amino acids per position and a total of -1.1 x 1027

possible sequences. We explicitly computed structures for -42,700 random sequences

and estimated their folding energies.

Figure 3-8A shows the progress of expanding Efldck for the WW domain as a

function of the number and type of cluster functions in the expansion. Similar to

the Zn finger, we found that higher order terms (11 triplet clusters and 1 quadruplet

cluster) were necessary for good agreement. Figure 3-8B shows the performance on a

set of -4,000 test sequences not included in the training set. The error of only 1.76

kcal/mol over a range of -40 kcal/mol is impressively low and the correlation is good.

Here CE reduces a sequence-structure space of 2.6 x 1065 to 1.1 x 1027 sequences.

Figure 3-8C shows the progress of expanding EindGB for the WW domain. Once

again, higher order interactions contribute significantly to the expansion. However,

the relative contribution of point terms as compared to the case where no minimiza-

tion was done (figure 3-8A) is much larger. This is likely due to the fact that many

high energy side chain-to-side chain interactions were relieved upon minimization.

Several triplet clusters contribute many cluster functions of considerable magnitude.

However, unlike for the zinc finger, for the WW domain there are two types of triplet

clusters. One consists of structurally compact sites, and CFs arising from these clus-

ters are mostly positive and correspond to large amino acids (see Figure 3-9A for an

example). In the other, sites are more structurally dispersed and combinations of

residues producing significant CFs consist mostly of charged and polar amino acids

(see Figure 3-9B). These two types of clusters roughly correspond to the two main

classes of interactions we model - van der Waals (short-range) and electrostatics

(which can be long-range). Additionally, there is one quadruplet cluster that seems

to be important for overall accuracy - it is shown in Figure 3-9C. The set of amino

acids at this cluster that give rise to large CFs is diverse and it does not have a

clear structural or energetic interpretation. The error of the fit, 4.7 kcal/mol (Figure

3-8D), is higher than before but, considering the energy range of over 300 kcal/mol,

this is sufficiently accurate to be very useful.
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Figure 3-9: Important higher-order clusters for the expansion of WW-domain en-
ergies. Orange balls represent the location of the Cp atoms of side chains. A) A
structurally compact cluster corresponding to short-range interactions. B) A more
disperse cluster arising from long-range electrostatic interactions. C) Quadruplet
cluster with many contributing cluster functions corresponding to a wide range of
amino-acid types.

3.2.4 A Design Application and Speedup Analysis

Because the sequence-dependent energy function provided by CE is enormously sim-

plified relative to the full physical model, it takes significantly less time to evaluate

the energy of one sequence. This parameter is of critical importance in protein design,
where very large sequence spaces need to be searched. We compared the amount of
time it takes to evaluate the energy of one sequence either with the direct structural

method or using CE (see Materials and Methods; all computations were run on 2.4

GHz CPU machines with 2GB of memory, although memory was not a limiting fac-

tor). For the coiled-coil system considered above (a total of 48 variable sites) it took

-360 seconds on average to repack, minimize and re-evaluate one sequence. Using
CE, it took -4 x 10-' seconds to evaluate an approximation of that same energy,
a speedup of 9 x 106. For the zinc finger (a total of 26 variable sites) on average

it took -70 seconds per sequence for the structural method and -7 x 10-6 seconds

with CE - a speedup of 107. And finally, for the WW domain (34 variable sites) the
corresponding times were -70 and -6 x 10-6 seconds - a speedup of 1.2 x 107.

The large speed advantage of CE comes at the cost of an error in energy. In
addition, deriving a cluster expansion relies on evaluating a set of training sequences

with the slower, atomic-level methods and carrying out the fitting procedure. To



assess the overall advantage that CE brings to protein design, we used the zinc finger

system as an example and carried out two design procedures. One was a sequence

search driven by the "exact" energies obtained by repacking, minimizing and evaluat-

ing every sequence (direct design). The other consisted of using the same evaluation

procedure to calculate energies for a training set of random sequences, deriving a clus-

ter expansion and performing a sequence search guided by CE energies (CE design).

In an approximation of a head-to-head competition, the two methods were allowed

the same amount of wall-clock time (-2 days), and up to 20 processors, as follows.

Direct design was allowed to sample a total of 60,000 sequences by performing 20

independent Monte Carlo runs each with 3,000 steps (with the temperature linearly

falling from 1000K to 298K and the acceptance of each step governed by the Metropo-

lis criterion [123]) and took 2 days on 20 processors. Fitting the cluster expansion

required explicit modeling of -30,000 sequences, which took 1 day on 20 processors.

In addition, the fitting procedure (run in serial) took approximately a day of mostly

human operational time (see Materials and Methods for details of the fitting proce-

dure). Upon completing the fit, CE design was given 12 minutes on 1 processor to

run 100 Metropolis Monte Carlo searches guided by CE energy, each with 106 steps

and the same temperature range as above. The best sequences from each of these 100

runs were then explicitly repacked, minimized and evaluated using the original, di-

rect energy function. Figure 3-10 compares energy histograms corresponding to these

sequences (with their energies evaluated with the direct energy function) and the 100

best sequences from direct design. Clearly, due to its ability to cover a considerably

larger sequence space, CE discovers significantly better sequences.

3.3 Discussion

We successfully adapted the method of cluster expansion [152], often used in alloy

theory, to express the energies of proteins in several backbone conformations directly

as functions of their sequences [198]. The resulting energy functions are a tremen-

dous simplification relative to the underlying physical model, and as such offer an



U)
0Ca)og

(I,

a.

c

O(I
a)

Energy

Figure 3-10: Distribution of the energies of the top 100 sequences from direct design
and CE design. The best solutions from CE design were modeled and repacked
using the direct method for comparison purposes. Thus, the reported energy is that
computed using the direct method for both cases. The best sequence found with CE
design is significantly better than the best one from direct design. Also, the ensemble
of best sequences found with CE is significantly more stable than that from direct
design. This indicates that its greater speed allows CE design to reach and sample a
lower energy sequence space.

enormous computational speedup compared to explicit atomic-level calculations. De-

spite their simplicity, these functions produce energies in close agreement with those

obtained through explicit calculations. Additionally, the functional form associated

with the cluster expansion formalism ensures that the individual terms of the final

expression are easily interpreted physically. The fact that this approach can be used

in conjunction with any theoretical or experimental energy function, regardless of its

complexity, makes this a very powerful general method that is likely to prove useful

for many computational structural approaches.

We successfully applied CE to three model systems and illustrated its potential

for computational protein design. Figure 3.4 shows the results for the parallel dimeric

coiled coil. We found that including only up to pair interactions in the cluster ex-

pansion was sufficient for excellent agreement, giving an error of just 1 - 2 kcal/mol.

Interestingly, several methods of scoring coiled-coil dimerization have assumed that

pair interactions in sequence space are sufficient to describe the fold [52, 115, 120].

Additionally, many experimental studies of coiled-coil interactions have made the



assumption that a pair of amino acids at a pair of sites has a roughly constant contri-

bution, regardless of the remaining sequence environment [40, 179]. The finding that

a cluster expansion with only up to pair terms is sufficient to accurately describe the

energy of the entire structure supports these assumptions.

One of the strengths of the cluster expansion approach is the transparency of

the functional form and the consequent interpretability of the fitting coefficients.

Supporting this, we demonstrate good agreement between experimentally measured

coiled-coil g - e'+ coupling energies [94] and the corresponding pair ECI from the

cluster expansion (see Figure 3.5). These measures are not exactly equivalent, as

coupling energies are measured in a specific context, whereas ECI capture an effec-

tive interaction between two residues that is independent of surrounding sequence.

Practically, however, much of the context-dependence probably cancels in corrections

for single-site effects.

There is a less direct correspondence between point ECI and Ala-mutation en-

ergies, which are very sensitive to environment. Additionally, self contributions to

folding are more sensitive than coupling energies to the nature of the unfolded state,

and modeling the unfolded state is a challenge. However, we do find qualitative

agreement between point ECI and experimentally observed positional amino-acid

preferences. Leucine has the most favorable point ECI at d positions according to

the cluster expansion derived from minimized structures. Analysis of parallel dimeric

coiled-coil sequences shows that Leu is by far the most common residue at position d

[115, 120, 183]. Moitra et al. have further shown that in at least two slightly differ-

ent sequence backgrounds Leu is the most stabilizing aliphatic amino acid at the d

position [128]. Based on these results, it is reasonable to propose that the observed

preference for Leu at d positions in parallel dimeric coiled coils comes from a favorable

single-body energetic contribution, as captured in the cluster expansion. Sequence

analysis also suggests that Leu is the most common amino acid at the d position

[115, 120]. Accordingly, Leu has the second best point ECI at a according to the

cluster expansion. In fact, six of the top seven most favorable amino acids based on

point ECI are also among the top seven most frequently observed amino acids at a



positions [115].

We also applied the CE approach to two more compact folds - the Zn finger and

the WW domain, and these differ from the coiled coil in several respects. First,

higher order cluster functions are necessary for a good fit. Important triplet clusters

can be either structurally compact or disperse. In compact triplets, the largest ECI

correspond to combinations of large hydrophobic amino acids engaged in short-range

van der Waals interactions. Examples of such clusters are shown in Figures 3-7

and 3-9A. Disperse clusters arise from long-range electrostatic interactions, and most

significant ECI arise from triplets of charged and polar amino acids (see Figure 3-9B).

Another difference between the coiled coil and the two more globular systems is

that the accuracy of the fit is better for the coiled coil. Cluster expansion can attain

an arbitrary degree of accuracy provided enough terms are included. However, to

derive statistically meaningful ECI for high-order interactions, enough sequences are

needed to provide several instances of that interaction. Thus, it was easier to derive

a good fit for the coiled coil, where only up to pair clusters were required, than to

identify and fit the triplet and quadruplet terms necessary to describe the Zn finger

and the WW domain folds. Ultimately, the desired target accuracy is dictated by the

application. For protein design, where the goal is to find one or several good sequences,

the magnitude of the error in all three systems is amply compensated by a sizeable

increase in the accessible sequence space, especially given that the underlying full-

detail physical models are only approximations themselves and do contain significant

errors. For other applications, higher accuracy may be obtained by including more

cluster functions and training on larger datasets, and/or by iteratively improving

the CE fit by generating biased training datasets enriched with poorly fit sequences.

Theoretically, because the complete expansion is exact, any desired level of accuracy

can be attained. However, the cost of this (i.e. in time and memory requirements)

depends on the specifics of the system under study, which is already apparent from the

examples considered here. Alternatively, in cases were the accuracy of the expansion

is not high enough for direct application, CE can be used as a highly efficient filter

followed by evaluation with a higher resolution energy function.



A trend seen in all three systems is that the accuracy of the CE fit is worse after

minimizing the structures and evaluating them with a non-pairwise decomposable

energy function. This indicates that the energy resulting from this procedure is a

more complicated function of sequence. Interestingly, in these cases fewer important

higher order interactions are detected. This might indicate that structure relaxation

reduces the importance of each high order interaction, so they are harder to detect,

but there could be more of them. Even though the error is larger for cases with

minimization, the actual energies are more informative because they are devoid of

the unphysical van der Waals clashes that often result from optimization in discrete

side-chain space. In addition, the computational speedup is especially significant here,

as minimization and re-evaluation are computationally expensive.

3.3.1 Conclusion

The advantages offered by the cluster expansion methodology should make it widely

useful in computational structural biology. We have demonstrated the application

of CE to protein design problems in sequence spaces up to 1027. Application to

fold-recognition problems of similar size should be straightforward, although the best

energy function to expand may differ from that used here. In both design and fold-

recognition, CE can be applied to help relieve the fixed backbone approximation by

expanding energies for several variants of the same structure. Once expansions are

complete, evaluation of a sequence, or of all sequences in a proteome, on each of the

backbones is extremely fast. Additionally, given the interpretability of CE, cluster

expansions of many closely related structures may reveal key structure determinants.

The prospect that CE may be able to provide a general tool for approaching

problems in protein structure prediction and design, beyond the initial demonstra-

tions that we present here, is exciting. Where the limits of the approach lie remains

to be explored. We have shown that the type of expansion required will be sensitive

to the protein fold studied and to the nature of the energy function being expanded.

Large proteins will require more parameters, and possibly more memory-efficient fit-

ting procedures. It is easy to imagine many promising heuristics for choosing which



parameters to fit strategically, however, and/or for partitioning larger problems into

smaller ones. We hope that the modeling community will join us in exploring the

boundaries of CE for their own problems of interest. The potential payoffs, as we

have demonstrated here, are very large.

3.4 Materials and Methods

3.4.1 Repacking and minimization

Energies for repacking were calculated in CHARMM based on parameter set 19 [25].

The energy function consisted of van der Waals energy (with atomic radii scaled

to 90%), dihedral angle torsion energy, screened electrostatic interactions given by

a distance dependent dielectric model and desolvation energy given by the EEF1

model [4, 103]. We treated the unfolded state by ignoring all side-chain-to-side-

chain interactions and treating each side chain on a 5-residue stretch of its local

native backbone. Rotamers were taken from the Dunbrack 2002 rotamer library

[43]. We used our implementation of the dead end elimination (DEE) and A* branch

and bound algorithms [42, 56, 58, 101, 105, 143] to find the optimal structure for

each sequence. Given this structure, we calculated its folding energy Efck using

the potential used for repacking. To compute more accurate energies (devoid of

large uninterpretable steric clashes and with better electrostatics), we subjected the

solutions obtained with DEE to continuous side-chain minimization in CHARMM

(10 cycles of steepest-descent minimization and 10 cycles of adopted basis Newton-

Raphson minimization). The resulting structures were evaluated with an alternate

energy function, in which 100% radii were used for van der Waals calculations and

screening of electrostatic interactions was modeled using the Generalized Born model

with "perfect" Born radii [140] computed using the program PEP [16] (Efo GB)

For the zinc finger and WW domain, the same penta-peptide representation of the

unfolded state as before was used for calculating reference energies. For the coiled-

coil system, additional modifications were made to the unfolded state according to an



energy model previously shown to perform well in recognizing coiled-coil dimerization

preferences (model HP/S) [60].

3.4.2 The coiled-coil unit cell

To derive a scoring function for coiled coils of arbitrary length, we expanded the

energetics of a repeating structural element (unit cell). We postulated that interac-

tions between amino acids more than one heptad apart in a coiled coil would not be

appreciable and did not include clusters corresponding to these interactions in the

CE. The unit cell was chosen to be a two-heptad dimeric parallel coiled coil (see fig-

ure 3.4). Additionally, to avoid edge effects, we used a periodic boundary condition

for the backbone structure and sequence (see figure 3.3). Each periodic six-heptad

training-set sequence was repacked as specified above. Cluster expansion was fit to

.just the energy of the central unit cell (all of the unit cell self energy and half of all

interactions between the unit cell and the rest of the molecule), which allowed each in-

teraction type to be counted exactly once. Thus the resulting ECI map exactly onto

the energies of the corresponding interactions and can be applied for non-periodic

sequences.

3.4.3 Cluster Expansion fitting

If energies for enough sequences are available, JAI can be solved for by standard fitting

procedures (see equation 3.5). We used the method of pseudo-inverse [188] to perform

least-squares fitting with an exponential weighting reducing the contributions of the

less meaningful high-energy sequences. Therefore, for n cluster functions, the fitting

procedure has an asymptotic running time of O (n3) and memory requirement of

O (n2). Determining which of the MN cluster function terms to keep in the fitting is

not trivial (AM is the number of residues possible at each site and N is the number

of sites; for simplicity, we assume all sites to have the same number of possibilities).

Although one may be guided by the notion that point terms are more important than

pairs, which in turn are more important than triplets and so on, this is not always



true. We address the problem using the cross-validation (CV) score rather than the

root mean square deviation (RMSD) to guide the fitting procedure. The CV score is

the average error with which each sequence is predicted when left out of the fitting,

and is a good measure of predictive power. When more CFs are included, the RMSD

score decreases, while the CV score might increase (i.e. possible over-fitting) if the

CFs are not physically relevant.

The fitting procedure used was as follows (see Figure 3.1). The number of se-

quences in the training set was chosen to be in the range of -1.5-2.5 times the

expected number of parameters in the fit (i.e. the number of parameters required

to model up to all pair interactions). The constant and point CFs were initially in-

cluded in the CF pool and used to compute a base-line value of the CV score; all

pair CFs were considered as candidates for inclusion into the pool. For each pair

cluster {i, j} we considered all CFs associated with it (each corresponding to the

contribution of a pair of amino acids) one at a time, and only those pair CFs that

decreased the CV score were added to the pool. Because the contribution of a new

CF (and its effect on the CV score) in general depends on the CFs that are already

present, the order in which pair CFs are considered for inclusion into the pool is

important. To determine a meaningful order, we first performed a fit with all pair

CFs (in addition to the constant and points) to obtain fitting parameters Ji for each

CFi. Pair CFs were then considered in the order of decreasing IJil. Once all pair

CFs were considered for inclusion, it was determined whether the quality of the fit

(i.e. the magnitude of the CV error) was satisfactory. If it was not, we used the

characteristics of poorly fit sequences Q : IAEI > D kcal/mol (i.e. those sequences

with error larger than D kcal/mol, where D was 10 for unrelaxed cases and -5-6

for relaxed ones) to locate important higher-order clusters (triplets and quadruplets).

We calculated the information content P = In (M) - S (p (a•lI)) for each site i and

-
i: j = In (M 2) - S (p (Uio JI)) _ Ii _I j for each pair of sites {i, j} out of the amino-acid

distribution in Q. The terms p (aiuf) and p (aij IQ) are the amino-acid distributions

at site i and at the pair of sites {i, j} in the sequence profile Q, respectively, and

S (p) = - ZEp, p Inp denotes the entropy of a probability distribution. Usually only



a few sites had significant point information content. Triplet and/or quadruplet CFs

among sites with significant pair information content were manually added to the

pool. The number of training sequences was increased (i.e. energies for more se-

quences were explicitly calculated) if the number of fitting parameters exceeded the

number of sequences. For the un-relaxed cases with the Zn finger and the WW do-

main, the newly considered sequences were biased to include the amino-acid pairs

over-represented in poorly fit sequences. All pair CFs in addition to the selected

higher order CFs formed the new set of candidates. The procedure for considering

candidate CFs one at a time was repeated as above and a final CV score was derived.

3.4.4 Zinc-finger design exercise

The energy models employed in this study do not account for protein solubility. Addi-

tionally, the rather crude unfolded state models make it difficult to properly estimate

the overall relative point contributions of different amino acids at a given site. To

get around these problems, we performed fixed composition design - an optimization

problem in which amino-acid composition is held constant, but the sequence is free

to change under this constraint [87]. This allows one to specify a reasonable compo-

sition that ensures likely solubility while relying on the optimization process to pick

a permutation particularly well suited for the given backbone. An additional advan-

tage is the cancellation of the unfolded state energy (assuming a strict composition

dependence) across different sequences.

We used the zinc-finger sequence designed by Mayo and co-workers [35] (QQYT

AKIK RTFR NQKQ LRDF IEKF KR), which has been experimentally characterized,

to fix the amino-acid composition of our design. Note that because this sequence is

quite heterogeneous, the search space of all unique permutations, 8.6 x 1020, is very

large and the design problem is still challenging. Each step of a Monte Carlo search in

this fixed composition space amounted to picking two sites at random and swapping

amino acids between them (if they were not already the same). Two Monte Carlo

searches were run - one using repacking, minimization and re-evaluation according to

ERm,GB to score each sequence (direct design) and the other using cluster expansion



equivalent of the same energy function (CE design). The DEE and A* branch and

bound algorithms for repacking [42, 56, 58, 101, 105, 143] were implemented in C.

CHARMM [25] was used for continuous side-chain minimization and calculation of

the van der Waals and EEF1 portions of the potential. PEP [16] was used to calculate

atomic Born radii. A wrapper script that combined these steps for each sequence was

written in perl. Sequence design code was written in C to use MPI and was distributed

over 20 CPUs. The program for searching using cluster expansions was written in C

without parallelization.
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Chapter 4

Computing van der Waals Energies

in the Context of the Rotamer

Approximation

The rotamer approximation states that protein side-chain conformations can be de-

scribed well using a finite set of rotational isomers. This approximation is often

applied in the context of computational protein design and structure prediction to

reduce the complexity of structural sampling. It is an effective way of reducing the

structure space to the most relevant conformations. However, the appropriateness of

rotamers for sampling structure space does not imply that a rot;amer-based energy

landscape preserves any of the properties of the true continuous energy landscape.

Specifically, because the energy of a van der Waals interaction can be very sensitive

to small changes in atomic separation, meaningful van der Waals energies are partic-

ularly difficult to calculate from rotamer-based structures. This presents a problem

for computational protein design, where the total energy of a given structure is of-

ten represented as a sum of pre-calculated rigid rotamer self and pair contributions.

A common way of addressing this issue is to modify the van der Waals function to

reduce its sensitivity to atomic position, but excessive modification may result in a

strongly non-physical potential. Although many different van der Waals modifica-

tions have been used in protein design, little is known about which perform best, and



why. In this paper we study ten ways of computing van der Waals energies under

the rotamer approximation, representing four general classes, and compare their per-

formance using a variety of metrics relevant to protein design and native-sequence

repacking calculations. Scaling van der Waals radii by anywhere from 85 to 95%

gives the best performance. Linearizing and capping the repulsive portion of the

potential can give additional improvement, which comes primarily from getting rid

of unrealistically large clash energies. On the other hand, continuously minimizing

individual rotamer pairs prior to evaluating their interaction works acceptably in

native-sequence repacking, but fails in protein design. Additionally, we show that

the problem of predicting relevant van der Waals energies from rotamer-based struc-

tures is strongly non-pairwise decomposable and hence further modifications of the

potential are unlikely to give significant improvement.

4.1 Abbreviations

vdW, van der Waals; RCE, rotameric conformational energy; NCE, neighborhood

conformational energy; MAD, median absolute deviation; AAD, average absolute

deviation; R60-95, modifications in which van der Waals radii are scaled by 60 to

95%; L-J, Lennard-Jones; LR 90, linearly repulsive van der Waals with 90% radii;

PRM, pairwise rotamer minimization; LR9AO, linearly repulsive van der Waals using

90% radii with all non-bonded terms capped; RR00, Richardson and Richardson

penultimate rotamer library; RRexp, Richardson and Richardson penultimate library

with expanded aromatics; RRX1, Richardson and Richardson penultimate rotamer

library with expanded X1; Db02, Dunbrack rotamer library from 2002; Db99 Dunbrack

rotamer library from 1999.

4.2 Introduction

It has long been known to chemists that molecules tend to adopt staggered, rather

than eclipsed, dihedral conformations [50]. When the first few crystal structures of



proteins were solved, it became apparent that the same is true for amino-acid side

chains [30]. Side-chain X angles do not vary over all possible values, but rather clus-

ter in tight distributions around conformations called rotamers (rotational isomers).

Beginning in the 1970's, rotamer libraries were compiled to represent side-chain con-

formations observed in proteins of known structure [17, 30, 78]. Ponder and Richards

developed the first complete rotamer library by examining 19 high-resolution crystal

structures [145], and many variants of this work based on larger structural datasets

have been published since then [45, 121, 171] (reviewed by Dunbrack [43]). The

differences between most rotamer libraries lie in their size (number of rotamers per

amino acid), the procedure used for discarding potentially bad experimental data and

whether or not rotamers are defined as a function of backbone conformation. The

rotamer libraries developed by Dunbrack and Cohen [44] and by Lovell et al. [113]

are among the most commonly used today.

Most protein side-chains are observed to occur in conformations very close to

library rotamers, a concept referred to as "rotamericity". Shrauber et al. have shown

that although significant outliers from rotameric conformations do exist, between

70 and 95% of all side chains in protein structures have X angles within 200 of a

rotamer [153]. Similarly, Richardson and Richardson estimated the rotamericity of

their rotamer library, which they defined as the fraction of observed residues with

X-angles within 300 of a rotamer, to be 94.5% [113]. This, coupled with the fact

that rotamers tremendously reduce the difficulty of sampling conformational space

and allow for the application of many discrete optimization algorithms, makes it clear

that the rotamer concept is very useful from a structural perspective.

It is not so clear that such a decomposition of structure space is justified from

the energetic point of view. The landscape of protein conformational energies is very

rugged - small changes in coordinates often lead to large changes in energy. Sampling

this landscape at discrete structural points can lead to significant loss of information,

because the apparent shape of the potential surface, and hence the locations of local

and global minima, can change significantly depending on the sample points. This

sensitivity of structure space-to-energy space mapping presents a challenge for many



problems to which the rotamer approximation is applied.

Computational protein design in particular is very sensitive to the rotamer approx-

imation, especially when carried out on a fixed backbone. This type of calculation

is based on evaluating the energies of various amino acid sequences adopting a given

backbone structure. Scoring the compatibility of a sequence with a backbone is a sub-

problem of protein structure prediction that requires placing side chains in appropri-

ate conformations. This is often referred to as the side-chain packing (or repacking)

problem, and the rotamer approximation is applied at this step by restricting side

chains to rotameric conformations. Discrete optimization algorithms such as Dead

End Elimination [42] can be applied to find the combination of rotamers giving the

globally lowest energy for a given sequence [141]. Therefore, in protein design, the

rotamer approximation is used not only to reduce the structure space but also to

guide optimization on a very rugged energy landscape.

Most of the roughness of the protein energy landscapes comes from the van der

Waals energy, due to its strongly repulsive nature at close distances. The standard

approach in the field for addressing this problem is to modify the van der Waals

potential to make it less sensitive to atomic position. This results in a less rugged

energy landscape and potentially reduces the problems associated with discrete struc-

tural sampling. However, a potential disadvantage is that the resulting energy is less

physical, so conformations found with this modified potential may be less relevant.

Many different van der Waals modifications have been used in the field of compu-

tational protein design [68, 96, 100]. However, even though the possible advantages

and disadvantages of using such potentials are recognized, little is known about how

they compare with one another. In this study we test several widely used van der

Waals modifications in various side-chain packing and design calculations. We find

that modifications that scale van der Waals radii by -90% perform best in most tests.

Additionally softening the repulsive portion of the potential by linearizing it (hence

introducing an energy cap) together with appropriate capping of all non-bonded terms

improves performance further. We discuss key aspects of the problem and suggest

some limitations for the performance of any pairwise-decomposable potential.



Table 4.1: Summary of Characteristics of the Protein Structure Set
PDB ID Functional Class Res Lng A B O SCOP
1AMM Crystallin 1.20 174 5 82 87 b
1BKR Actin-Binding 1.10 109 62 0 47 a
1EW4 Unknown Function 1.40 106 34 35 37 a+b
1FUS Hydrolase (Endoribonuclease) 1.30 106 17 29 60 a+b
1G8A RNA-Binding Protein 1.40 227 57 72 98 a/b
1H4A Eye Lens Protein 1.15 173 0 82 91 b
IIFC Lipid-Binding Protein 1.19 132 16 79 37 b
IIFR Immune System 1.40 121 0 53 68 b
1KNG Oxidoreductase 1.14 156 47 35 74 a/b
1LU4 Oxidoreductase 1.12 136 43 32 61 a/b
1NG6 Structural Genomics, N/A 1.40 148 113 0 35 a
108X Electron Transport 1.30 146 45 33 68 a/b
1P5F Unknown Function 1.10 189 76 39 74 a/b
1QAU Oxidoreductase 1.25 112 15 51 46 b
1QGV Transcription 1.40 142 40 29 73 a/b
1R26 Electron Transport 1.40 125 45 28 52 a/b
1R29 Transcription 1.30 127 67 13 47 a+b
1UKF Hydrolase 1.35 188 83 51 54 a+b
1X6X Structural Protein 0.96 123 25 32 66 -
2LIS Cell Adhesion 1.35 136 91 0 45 a
Res = resolution in Angstroms; Lng = length in residues; A, B, O = number of sites
classified respectively as alpha helix, beta sheet, or other by STRIDE [53]; SCOP =
SCOP classification of proteins [131].

4.3 Materials and Methods

4.3.1 Structural Database

Structures were selected from Protein Data Bank (PDB) entries that were determined

by X-ray crystallography and had a resolution of 1.4 A or lower. All structures had

a single chain with at most 300 amino acids and none contained non-natural amino

acids, metals, or other non-peptide chemicals in regions other than the surface. Out

of approximately 900 structures that met these criteria, 20 were chosen manually to

cover a diverse range of amino-acid composition, sequence, secondary and tertiary

structure. Table 4.1 summarizes the structure set.

Compact structural regions were defined for each considered protein for further

calculations. For each structure, an initial seed residue i was chosen at random and



this selection was then expanded to include all residues with at least one atom within

6 A of vdW surface-to-vdW surface distance of any atom of residue i. This selection

constituted a region. The residues within this region were then excluded from the set

of candidates for choosing the seed for the next region. The procedure was repeated

until no residues were left for selecting a seed for a new region. This resulted in a

total of 208 regions with an average of 27 + 10 sites per region. Based on the relative

solvent accessibilities of residues in the native structure, each site was classified as

core (< 13% accessible), boundary (between 13 and 49% accessible) or surface (over

49% accessible). NACCESS [75] was used to calculate relative solvent accessibilities.

4.3.2 Repacking, Design, Minimization and Evaluation

Regions defined as described above were used as templates in repacking and design

calculations. Residues outside of the considered region were held constant in their

native conformations. In sequence design, for reasons of computational time, the

number of sites per region was limited to 20 (if the region had more than 20 sites,

the first 20 closest to the seed residue were chosen). Each position was allowed six

amino-acid possibilities, which included the wild-type amino acid along with five

others drawn randomly from a set that depended on the burial classification of the

site. For core sites the set to draw from was {C, G, A, V, L, I, F, Y, W, M}

for surface sites it was {C, G, A, S, T, H, D, N, E, Q, K, R} and for boundary

sites the union of these two sets was used. In all calculations, the 1999 release of the

Dunbrack rotamer library was used [44], except where different rotamer libraries were

compared.

The energy function used in repacking and design was as follows: AG = AGvdW +

AGelec + AGdes + AG dihe. All terms were calculated using the CHARMM paraml9

parameter set [25]. AGvdW is the van der Waals energy modeled using the appropriate

modification. AG ele is the water-screened electrostatic interaction energy calculated

using a distance-dependent dielectric (DDE) e = 8r, where r is atom-atom separation

in Angstroms. AGde s is the desolvation energy calculated with the EEF1 model of

Lazaridis and Karplus [103] and AGdihe is the torsion energy. Energies considered in
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Table 4.2: Summary of Commonly Used Abbreviations
van der Waals Modifications
R60 - R95 6-12 Lennard-Jones potential with radii scaled by 60 - 95%.
L-J 6-12 Lennard-Jones potential with standard (100%) radii.
LR9 o Linearly Repulsive van der Waals with 90% radii. The function is

linear from 0 to 10 kcal/mol in the repulsive range and uses 90% van
der Waals radii.

LREjA Linearly Repulsive van der Waals with 90% radii with All non-bonded
terms capped. Same as LR 90 , but all non-bonded terms are capped
at the value for the distance where the van der Waals energy is zero.

PRM Pairwise Rotamer Minimization. A procedure in which each rotamer
or pair of rotamers is minimized briefly in the context of the template
prior to evaluation of self-energy or pair-energy terms.

Calculated Quantities
RCE Rotameric Conformational Energy. The energy obtained by directly

evaluating a rotameric configuration.
NCE Neighborhood Conformational Energy. The energy of the structure

reached by continuous side-chain relaxation of a rotamer-based con-
formation.

MAD Median Absolute Deviation.
AAD Average Absolute Deviation.

the folded state included intra-residue interactions, interactions of side chains with

the template (all of the protein excluding the designed side chains) and pairwise

side chain-to-side chain interactions. The unfolded state, which affects only sequence

design calculations, was modeled as a set of non-interacting GGxGG penta-peptides

with native backbone geometry, one per design site, with the appropriate amino acid

substituted at x.

The side-chain packing problem was solved using the Dead End Elimination (DEE)

algorithm [42, 56, 101, 143] followed by an A* branch-and-bound search [58, 105]. The

design procedure involved performing a Monte Carlo search in sequence space using

the energy obtained from side-chain packing to score each sequence. For each region,

10 searches with 1,000 steps each were performed with the temperature annealing

linearly from 1,000 to 200 K. The 100 sequences with lowest energy were kept for

each region. Additionally, for each region 100 random sequences were considered

and repacked. To generate non-optimal structures using the native sequence, 100
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Monte Carlo searches, each with 1,000 steps, were performed in rotamer space. The

lowest-energy structure from each of the 100 searches was kept for analysis for each

region. Although most of these 100 structures had reasonably low energies, due to

the ruggedness of the conformational energy landscape, high-energy structures did

infrequently result from the Monte Carlo sampling. These rare structures introduced

a considerable amount of noise when evaluating average absolute deviations (AAD,

defined below), which made it difficult to compare different modifications. To remove

this effect, only the 90 lowest-energy structures from each region (out of 100) were

considered for calculating the average within-region AAD in Figure 4-4c. The outlier-

insensitive median absolute deviation (MAD, defined below) was still calculated using

all 100 structures per region. AAD, MAD and other abbreviations used commonly

in this paper are defined in Table 4.2 for easy reference.

Given a particular rotameric solution, its energy was extracted directly from the

pre-calculated energy tables for design as the van der Waals component (evaluated

using the appropriate modification) of the total energy in the folded state. This

energy is referred to as the rotameric conformational energy, or RCE. Rotameric

structures were subjected to 10 steps of steepest descent followed by 10 steps of

adopted basis Newton-Raphson side-chain minimization in CHARMM. The resulting

energy is referred to as the neighborhood conformation energy, or NCE. We used

a short minimization procedure because the predominant change in van der Waals

energy occurs in the very beginning of side-chain minimization. We repeated some of

the tests presented in this paper (those having to do with native-sequence repacking)

using minimization to convergence with no significant changes in results (data not

shown). The standard 6-12 Lennard-Jones potential, along with all bond, angle,

dihedral and improper dihedral terms, was used in this minimization.

All modifications except LR A involved changing only the van der Waals compo-

nent of the total energy. With LR9Ao, in order to avoid side effects associated with

capping exclusively the van der Waals energy, DDE electrostatic and EEF1 desol-

vation terms were capped as well. If a pair of atoms with opposite charges had a

vdW energy above zero (atoms were closer to each other than Rmin//,/, where Rmin
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is the equilibrium van der Waals distance), the DDE electrostatic interaction energy

between these atoms was calculated using Rmin/•2 as the interatomic distance. A

similar capping was done for EEF1 desolvation except that it was applied regardless

of whether the mutual atomic desolvation was favorable of unfavorable. Note that

according to the theory of the solvent-exclusion model underlying EEF1 [103], the

maximal desolvation energy of any given atom, defined as the integral over all space

of the solvation free energy density function, is finite and hence the mutual desolva-

tion of any two atoms can not diverge even at zero distance. However, the manner

in which the integration is approximated computationally (the free energy density

function in the center of the excluding atom is multiplied by the volume of the atom)

does cause it to diverge because the density function itself tends to infinity towards

the center of the desolvated atom.

4.3.3 van der Waals modifications

In order to allow for arbitrary alterations of the potential used, a program was imple-

mented in C to calculate non-bonded self and pair terms. In the absence of modifica-

tions, the program produced van der Waals, distance-dependent dielectric, and EEF1

energies in excellent agreement with CHARMM (within machine error). All radius

scaling modifications were calculated by changing the parameter files. For LR 90 and

LRAo special modifications were implemented. For LRSA these modifications included

capping the attractive DDE and all EEF1 interactions. Additionally, 90% radii were

used with both LR 90 and LRAo.

Because modification PRM involved continuous side-chain minimization, interac-

tions for it were calculated directly in CHARMM with 100% radii from parameter set

19 [25]. Before evaluating the self energy for each rotamer, the rotamer was subjected

to 5 steps of continuous steepest descent minimization in the presence of a fixed tem-

plate (backbone and side chains of non-design sites). Similarly, before evaluating the

interaction energy for each pair of rotamers, the pair was also minimized for 5 steps

in the presence of the fixed template.
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4.3.4 Statistical Measures

Because of the presence of significant outliers in much of the data analyzed in this

study, we adopted a median-based statistical measure of correlation - the median of

the absolute value of prediction errors (Median Absolute Deviation or MAD). For a

given set of true and predicted values (e.g. T and P) the MAD was calculated as the

minimum of median (T - s -P) with respect to slope s. In order to find the optimal

slope, a grid search over all angles from 0 to 90' was performed by considering 6

focusing iterations, each breaking the current range into 100 intervals and zooming in

on the lowest point ± one interval. Once this slope was found, effectively defining the

lowest-median-error line, the MAD was calculated with the formula above. Addition-

ally, the average absolute deviation (AAD) was also calculated using the same slope

as median (T - s - P). For within-region RCE-to-NCE agreement, to account for the

effect that some regions may have a constant RCE offset, the MAD was calculated

as the minimum of median (T - s - P - b) with respect to the intercept b. In these

cases, the slope s was not optimized and was taken from the least-MAD line for the

given modification in the corresponding cross-region case, so that each modification

had a characteristic slope that was independent of structural region. In general, we

found that optimal slopes for within-region agreement were very close to the opti-

mal one for cross-region agreement. To assist in analyzing the raw data describing

RCE-to-NCE agreement, we used the lowest-MAD slope to automatically generate

plots zoomed in on the relevant region of data (where most of the data points lay), by

effectively ignoring outliers. The procedure for generating these plots entailed setting

the upper limits of the y and x axes to be equal to the highest NCE in the dataset and

the RCE corresponding to it according to the lowest median error line, respectively.

4.4 Results

The rotamer approximation breaks protein structure space into discrete bins, each

representing conformations closest to a particular rotameric configuration. This works

well from a structural perspective, in the sense that most low-energy conformations
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Structure space (rotameric sampling)

Figure 4-1: A cartoon representing the RCE and NCE landscapes. The solid line
represents the true rugged protein energy landscape and open circles indicate points
of discrete sampling using rotamers. For each rotameric structure, the NCE assigned
to it is the energy of the closest local minimum (filled circles). In this example, the
NCE represents much better than the RCE the shape of low-energy regions in the
true energy landscape and, in particular, preserves the global minimum.

adopted by proteins have a very close rotameric representation [113, 153]. However,

this means that when we score the energy of a particular rotameric configuration, as-

signing it a rotameric conformational energy, or RCE, we are actually assigning that

same energy to an entire local structural region. If the RCE is unrepresentatively

large, e.g. because of a slight steric clash, the entire neighborhood may be unduly

excluded in a search. The energy that we want to compute is one that is characteristic

of the entire structural neighborhood that the rotameric conformation approximates

(hereafter referred to as the neighborhood conformational energy, or NCE). A suitable

definition for the NCE would be the ensemble-averaged energy over all protein confor-

mations that fall within the same structural bin as the rotamer-based conformation

in question. Assuming that this is dominated by the local minimum in this region,

in this study we define NCE as the energy of the structure reached by continuous

side-chain relaxation of a rotamer-based conformation, a quantity that can be easily

calculated using any standard force field. Figure 4-1 shows a cartoon of an energy

landscape with the NCE and RCE indicated.

We sought to examine the difference between the NCE and RCE. If this difference
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Table 4.3: Changes resulting from minimization of repacked rotameric structures
Quantity Mean Diff. Median Diff. Stdev

6-12 Lennard-Jones en- 1.3. 105 kcal/mol 305 kcal/mol 6.0. 10 kcal/mol
ergy
Coulombic energy with 6.2 kcal/mol 6.1 kcal/mol 3.5 kcal/mol
Cint - Eext = 4b

Torsion energy 16.5 kcal/mol 15.5 kcal/mol 14.2 kcal/mol
Hydrogen bonding energy 3.2 kcal/mol 2.2 kcal/mol 3.4 kcal/mol
EFF1 desolvation energy 17.8 kcal/mol 17.0 kcal/mol 6.3 kcal/mol
Delphi [73] polarization 3.8 kcal/mol 3.1 kcal/mol 2.8 kcal/mol
energy upon moving from
Eint = Eext = 4 to Cint

4, 6ext = 80b

Solvent accessible surface 0.2 kcal/mol 0.2 kcal/mol 0.2 kcal/mol
area multiplied by 10
cal/mol-2
Sidechain position (all 0.16 A 0.15 A 0.06 A
atom)a
For each region, the sidechain root mean square deviation between pre- and post-
minimized structures along with absolute differences in several energy terms upon
minimization were calculated and the average, median and the standard deviation
over all regions are reported. a - difference here is defined as RMSD. b Eint and
Eext ext represent internal (protein) and external (solvent) dielectric constants.
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is small, using the energy of a rotamer-based structure as a measure of its NCE is

justified. To investigate this, we defined a set of structurally compact regions from

high-resolution crystal structures that included a diverse collection of secondary and

tertiary structure environments (see Table 4.1). In total, 208 regions were selected

with an average of 27 sites per region. Each of these regions was subjected to native-

sequence repacking and the lowest-RCE rotameric solutions were then relaxed using

continuous side-chain minimization, as shown in Figure 4-2. Table 4.3 summarizes the

change in structure and energy resulting from this minimization. While the amount

of structural change is very small (average side-chain RMSD 0.16 A), conformational

energies do change significantly. In particular, the van der Waals energy, computed

with the standard 6-12 Lennard-Jones potential, changes by many orders of magni-

tude on average, with the median deviation of 305 kcal/mol also much higher than

that for other terms. Thus, in accord with intuition, most of the energy landscape

ruggedness comes from the van der Waals term, which presents a problem for esti-

mating NCE from rigid rotamer-approximated structures. Because it is the greatest

source of error resulting from the rotamer approximation, the rest of this paper will

address van der Waals energies and we will use RCE and NCE to refer to only the

van der Waals component of the total energy.

4.4.1 Overview of van der Waals modifications

The first uses of van der Waals potential modifications in computational structural

biology predate the rotamer approximation in protein design. For example, in 1983

Levitt used a 6-12 Lennard-Jones potential with repulsion capped at 10 kcal/mol to

improve convergence properties of molecular dynamics and energy minimization sim-

ulations [107]. Later this potential was adapted by Koehl and Delarue in a method

for side-chain repacking using a self-consistent mean field approach [86]. Several in-

vestigators have since modified the repulsive portion of the Lennard-Jones potential

in computational protein design. Desjarlais and Handel capped the standard 6-12

Lennard-Jones potential at 100 kcal/mol [41]. Kuhlman and Baker used a modifica-

tion in which the repulsive Lennard-Jones region was replaced with a linear ascent
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native sequence
repacking or

T w-ts redesign

Template from wild-type structure

sidechain minimization
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Rotamer-based RCE " 6-12 Lennard-Jones energy
using vdW modification of minimized structure (NCE)

Figure 4-2: Overview of the computational experiment. Given a particular structural
region, the native backbone was used as a template and either the native sequence
was repacked or alternative low-energy sequences were designed using a specific van
der Waals modification. The solutions resulting from these calculations were then
subjected to 20 steps of continuous side-chain minimization using the L-J potential,
which had only a small effect on side-chain geometry. The van der Waals energy
of the minimized structure, evaluated with the 6-12 Lennard-Jones potential (NCE),
was compared to the energy of the rotamer-based structure given by the van der
Waals modification used in repacking and design (RCE).

to 10 kcal/mol [96]. Another version of the same modification had the linear portion

taking effect at 3 of the minimum energy van der Waals distance and having a slope

identical to that of the Lennard-Jones potential at that point [95].

Van der Waals energies can also be modified by altering atomic parameters, rather

than adjusting the functional form. The most common type of parameter modification

is the uniform scaling of atomic radii. It is presumed that reducing the van der Waals

radii implicitly accounts for the side chain and backbone relaxation that occurs to

relieve rotamer clashes. The most common scale factor reported in the literature is

90% [4, 68, 100], although 95% is also used [37, 96]. The historic reason for this

choice is a study by Dahiyat and Mayo, in which four different radius scale factors

between 1.07 and 0.7 were used to design variants of protein G •1 domain. The

peptide resulting from the design with scale factor 0.9 was experimentally shown to

be the most well-ordered and to have the highest stability [36].

Another flavor of commonly used van der Waals modifications involves subjecting

rotamers to side-chain minimization before calculating their interactions. Vsquez

performed native-sequence repacking with rotamers minimized in the presence of
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the template, such that each side-chain position had a custom rotamer library [182].

Havranek and Harbury took the same approach in a protein design study [68]. Wodak

and coworkers additionally minimized all rotamer pair interactions as well as single-

rotamer interactions with the template [186].

Finally, as an alternative way of accurately predicting relevant van der Waals en-

ergies from rotameric structures, some investigators have expanded rotamer libraries.

Xiang and Honig [192] significantly expanded their rotamer libraries for native side-

chain repacking and showed that this led to considerable improvements in X-angle

recovery. Mayo and co-workers [34, 100, 156], Havranek and Harbury [68] and Baker

and co-workers [10] have used less expanded rotamer libraries in protein design.

The approaches listed above all share the property that vdW energies can be

computed as sums of single-rotamer and rotamer-pair interaction terms. This is

necessary for some search algorithms. If this condition is lifted, other classes of

modifications can be used that involve, for example, minimizing residues "on the

fly" during the search procedure. For example, Baker and co-workers have used a

related approach for side-chain placement in docking [184]. The advantage of pairwise

decomposability, however, is that globally optimal solutions in RCE can be found.

Clearly, many different van der Waals modifications have been attempted over

the years, often with scant justification. It would be difficult to test them all. Our

approach was to pick examples that represent each class of commonly used modifica-

tions. Because the results by Dahiyat and Mayo [36] turned out to be quite seminal

for the field, we tested a range of radius scaling modifications to uncover trends and

to see if 90% is indeed the optimum. We considered scale factors from 60% to 100%,

referred to here as R60 - R95 and L-J. We also analyzed a modification where both

rotamer self and pair energies were evaluated after short side-chain minimization; this

is referred to as PRM (pairwise rotamer minimization). Finally, as a representative

of modifications in which the shape of the repulsive part of the potential is explic-

itly altered, we considered a function with a linear ramp-up to 10 kcal/mol after the

6-12 Jennard-Jones potential crosses zero. However, for many atom type pairs this

made the initial slope of the van der Waals repulsion steeper than that of the 6-12
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Lennard-Jones potential, resulting in a modified potential that was more restrictive

than the original in a distance range where many interactions are expected to lie.

To avoid this problem, we applied the linear repulsion modification in conjunction

with 90% van der Waals radii. This modification is referred to as LR 90 (linearly

repulsive van der Waals with 90% radii). Using LR 90, we quickly discovered that

setting a limit for van der Waals repulsion but not for other non-bonded terms gave

very unrealistic structures in repacking and design. For this reason, we considered

an additional modification, where atomic pairwise desolvation and attractive electro-

static interactions were capped as well (see Materials and Methods and below). This

modification is referred to as LR9A (linearly repulsive van der Waals using 90% radii

with all non-bonded terms capped). Finally, to explore the effect of rotamer libraries,

we considered those proposed by Dunbrack and Cohen [44] and by Lovell et al. [113],

as well as variants thereof.

4.4.2 Modified van der Waals energies versus NCE

A common approach to computational protein design involves using side-chain pack-

ing to score candidate sequences. Given such a framework, two important consider-

ations arise regarding the van der Waals potential used. For a given sequence, the

energy of the optimal conformation obtained using a modified potential should be

a good estimate of the NCE of that conformation, as the quality of the sequence is

judged based on this energy. We refer to this as cross-sequence agreement. Also, to

ensure that the lowest-RCE conformation obtained for a sequence is relevant, energies

assigned to other conformations must also be good estimates of their NCEs. We refer

to this as cross-conformational agreement. We compared the performance of different

van der Waals modifications at providing both types of agreement by performing a

large number of sequence repacking and design calculations and evaluating the results

using a panel of metrics. It was neither practical nor representative of common design

applications to consider entire proteins at once. Therefore, these calculations were

run on the same 208 compact structural regions defined above.
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RCE-to-NCE agreement across different regions

Two types of calculations were performed on each structural region and for each van

der Waals modification tested. In the first, the native-sequence was repacked. In the

second, we used Monte Carlo sampling to generate 100 low-energy sequences. The

NCE was then computed by relaxing the resulting structures and re-evaluating their

van der Waals energies with the L-J potential (Figure 4-2). Cross-sequence agreement

is quantified as the correlation between the RCE and NCE of these configurations, and

results for three vdW modifications are shown in Figure 4-3. The overall agreement is

poor in almost all cases, with many significant outliers making it difficult to observe

trends. Some standard ways to assess correlation, such as root mean square deviation

and the correlation coefficient, are very sensitive to outliers and fail to capture trends

in the bulk of the data. In this study, we adopted a measure of agreement that is

less sensitive to the presence of outliers - the median of absolute prediction error

(median absolute deviation, or MAD). Additionally, we recognized that disagreement

between predicted energies and NCE by a constant factor is tolerable, because this

can be corrected by scaling. Therefore, the relevant measure of agreement is the MAD

between s-RCE and NCE, where s is chosen in such a way as to minimize the MAD,

effectively defining the slope of the minimum-MAD line.

Insets in Figures 4-3a-b show the most relevant portions of the plots in the main

figure. Also shown in Figure 4-3 are the least-MAD and least-squares lines. As

expected, the least squares fit focuses almost entirely on the outliers, whereas the

MAD is able to capture the main trend of the correspondence. Figures 4-4a-b show

the MADs between RCE and NCE of either native repacked structures (Figure 4-4a)

or designed structures (Figure 4-4b) for all of the tested van der Waals modifications.

Potentials R85 and R90 give the best cross-sequence agreement out of the radius-

scaling modifications. Capping vdW energies only (modification LR 90 ) does not work

at all. In fact, given such poor performance in native-sequence repacking (an "easy"

test, because the native sequence is clearly compatible with its backbone), LRo0 was

excluded from further analysis. On the other hand, LRo, a modification that caps
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all non-bonded interactions, performs best overall. PRM works well in repacking,

but it performs very poorly in sequence design (Figure 4-4b). We also report average

absolute deviations from the least-MAD line (AAD), shown in circles in Figures 4-4a-

b. The extent to which MAD and AAD are different is an indication of the presence

of significant outliers. Although scaling of vdW radii by 90 or 85% does improve

performance over L-J on the bulk of the data, significant outliers are still present,

particularly in the case of repacking.

Within-region RCE-to-NCE agreement

In Figure 4-3, panels d-f, the color of the data points is used to indicate regions. For

some regions, many of the points representing designed sequences lie off of the main

diagonal by a roughly constant amount. These points decrease performance when we

compare NCE with s-RCE. Agreement can be significantly improved if we introduce

a region-specific intercept parameter, b, such that s - RCE + b is as close to NCE as

possible. Because for many applications it is only necessary to compare structures

and sequences within the same structural region (and thus the value of b does not

matter), we further tested different vdW modifications by looking at within-region

RCE-to-NCE agreement. For native-sequence repacking this amounts to looking at

cross-conformational agreement. The set of conformations considered for each region

consisted of the global RCE optimum structure along with 100 non-optimal confor-

mations generated by Monte Carlo sampling. Due to the sampling procedure, most

of the non-optimal solutions had reasonably low RCE and therefore effectively rep-

resented the energy funnel around the rotameric global optimum solution. Correct

estimation of van der Waals energy for solutions in this funnel is important for iden-

tifying the relevant lowest energy conformation. Using these structures, Figure 4-4c

shows the within-region RCE-to-NCE MAD and AAD averaged across regions. Modi-

fication LR9A0 gives the lowest AAD and MAD. Figure 4-4d shows within-region MAD

and AAD for sequence design, where the 100 lowest-RCE sequences from the design

procedure were considered for each region. In this case R95 performs best in MAD,

whereas LRAo has the lowest AAD. The conclusions for within-region comparison are
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Figure 4-4: Performance of different vdW modifications on predicting the NCE of low-

RCE structures in native sequence repacking (left panels) or sequence design (right

panels). In (a) and (b), RCE-to-NCE agreement across different structural regions

is considered and (c) and (d) report within-region averages. In (a), the lowest-

RCE structure from native sequence repacking was used for each region, whereas an

additional 100 non-optimal structures for each region were considered in (c). In (b)

and (d) 100 low-RCE solutions from sequence design were used for each region. Bars

and circles represent MAD and AAD (left and right y-axes) respectively. For data

points outside of the limits of the graphs, values are shown. (e) and (f) show average

within-region re-ranking frequencies (circles, averaged over all regions) and re-ranking

depths (crosses, averaged over regions where re-ranking occurred).
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thus very similar to the conclusions for the cross-region case.

As another metric of within region RCE-to-NCE agreement, we looked at the

frequency with which structures re-rank upon switching to the more accurate estimate

of energy. We defined frequency of re-ranking as the fraction of solutions that have

a lower NCE than that of the lowest-RCE solution. Strictly speaking, re-ranking

should be defined in terms of the total energy. However, as Table 4.3 shows, van

der Waals energy is the term that changes the most upon structural relaxation, so

a significant re-ranking in this term will give rise to similar re-ranking in the total

energy. In Figure 4-4, panels e-f show the average within-region re-ranking frequencies

in native-sequence repacking and sequence design using the same set of structures as

in Figures 4-4c-d. R95 shows the lowest frequency of re-ranking in both tests.

In addition to knowing how often structures re-rank when switching from RCE to

NCE, it is also useful to know how many rotamer-based solutions around the RCE

minimum one has to sample to be certain that the right local NCE minimum is

captured. Figure 4-4 panels e-f also show the average RCE rank of the solution that

ends up with the lowest NCE (dotted lines with crosses). We refer to this measure as

the depth of re-ranking. Modification LR9A performs best in this test for both native-

sequence repacking and sequence design, whereas the optimal radius scale factor lies

somewhere between 80 and 95%.

Global properties of the RCE energy landscape

In the tests above we examined the RCE-to-NCE agreement of either the native

sequence or sequences judged to be reasonable for the backbone by the particular

energy function used. If this agreement is poor, then the low-RCE solutions discovered

by protein design are selected based on an incorrect estimate of energy. However, for

high-RCE sequences it is also important that their RCE be a reasonable estimate of

their NCE. To test this, we repacked 100 random sequences in each region using each

of the van der Waals modifications and measured the frequency with which these

had lower NCE than that of the lowest-RCE sequence from design (Figure 4-5a).

Because they are random, these 100 sequences are inappropriate for the corresponding
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Figure 4-5: Global tests of the RCE energy landscape. (a) NCE re-ranking of random
sequences with the lowest-RCE sequences from design. Re-ranking is calculated for
each region and shown are cross-region averages for each modification. Re-ranking
here indicates global differences between the RCE and NCE-based energy landscapes.
(b) x-angle recovery in native-sequence repacking using different van der Waals mod-
ifications. Full bar heights represent the fraction of X1 angles predicted correctly and
the shorter grey bars correspond to the fraction of X1 and X2 angle combinations
predicted correctly. x-angle recovery indicates how close the global RCE optimum is
to the optimum of the true energy landscape.

backbones and have much higher RCE than the optimized sequences. However, for

all modifications the average frequency of re-ranking is non-zero, and it is significant

for all but R90, R95 and LRSA.

As a final test of the ability of different modifications to predict reasonable low-

energy structures, we looked at native X -angle recovery rates. Figure 4-5b shows

these data for all of the tested modifications. Consistent with previous observations,

R95 and R90 are the best radius-scaling modifications, and LR9A is best overall.

Rotamer libraries as alternatives to van der Waals modifications

Van der Waals modifications are used to compensate for the rotamer approximation.

In the limit of very many rotamers, the van der Waals potential need not be modified

at all. Further, some rotamer libraries may be better than others at appropriately

sampling the rugged energy landscape. In the calculations above we used the 1999

release of Dunbrack's rotamer library (DB99) [44]. We repeated all the calculations for
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AAD (lines, right y-axis) of RCE-to-NCE agreement in native sequence repacking.
b) X1 (full bars) and X1-2 (shorter grey bars) angle recovery.

the 2002 release of the Dunbrack library (DB02) [43], the Richardson and Richardson

penultimate rotamer library [113] (RROO), the Richardson library with X1 angles

expanded for aromatic residues (F, Y and W X1 angles expanded by ±5' and ±100;
RRexp), and the Richardson library with all X1 angles expanded by ± the standard

deviation (obtained by dividing the half width at half maximum by i2 1n2); RRX1).

The libraries varied in size, consisting of 391 (DB99), 370 (DB02), 175 (RR00), 243
(RRexp), and 521 (RRX1) rotamers. Figure 4-6a compares the MAD and AAD of
different rotamer libraries in native-sequence repacking using either the unmodified

Lennard-Jones potential or the 90% radius modification. In both cases the ranking of

rotamer library performances is the same, with the largest (RRX1 with 521 rotamers)

and the smallest (RROO with 175 rotamers) performing best and worst, respectively.

The performance of intermediate-sized libraries does not exactly follow library size.
The effects of increasing the rotamer library size by a factor of -3 are minimal
compared to the significant improvement in MAD and AAD upon reducing the size
of the atomic radii to 90%. No dramatic change was found from either type of
modification in native X-angle recovery (Figures 4 - 5b and 4 - 6b).
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Why the problem is hard - the price of pairwise decomposability

Most protein repacking and design algorithms require a pairwise decomposable energy

function, and typically all interactions between rotamer pairs are pre-calculated [141].

For a fixed structure, the L-J potential meets this criterion as it can be calculated as a

sum of contributions from rotamers and pairs of rotamers. However, once a rotameric

structure is allowed to undergo molecular-mechanics minimization, the rotamer-level

pairwise-decomposability is lost. This is because the exact manner in which a side

chain relaxes depends on its entire structural environment. However, many inher-

ently non-pairwise decomposable measures can be accurately modeled in a pairwise

manner. For example, Mayo and co-workers have shown that solvent-accessible and

buried surface areas of proteins, even though not strictly decomposable into residue

pair contributions, can be effectively approximated in this way [165]. Similarly, pair-

wise decomposable solvation models have been developed that approximate the exact

continuum dielectric results [67]. So the relevant question is not whether predicting

NCE from rotamer-based structures is pairwise decomposable - it is not - but rather

what the limits of a pairwise approximation are.

One way to analyze this is to look at the mapping between atom-to-atom distances

of a rotameric structure (1,j) and the corresponding atom-pair interaction energies

that result upon minimization (E.in). If this mapping is close to functional, it will

be possible to derive a good pairwise expression. Figure 4-7 shows this mapping for

a set of rotameric structures and their minimized versions. Even though the overall

distribution of data does resemble a Lennard-Jones-like shape, there is significant

fuzziness, i.e. the same distance can map to very different energies, depending on the

structure.

A pairwise potential that predicts individual atomic interactions in minimized

structures, given rotameric structures, is sufficient but not necessary for protein de-

sign. All that we need is for the total NCE to be approximately decomposable into

contributions from pairs of rotamers (i.e. there can be some cancellation between

the errors of predicting atom-pair interaction energies). To analyze the degree of
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minimization atomic interaction energies. Axes are unit-free; for each interaction,
the distance is normalized by the equilibrium distance (rmin = ri + rj, where ri and
rj are the van der Waals radii of interacting atoms) and energies are divided by the
well-depth (cij = /(6ciej), where Ei and cj are the well-depth parameters of interacting
atoms). The full and the dashed lines correspond to the 6-12 Lennard-Jones potential
and R90, respectively. Approximately 0.7 % of the data points have scale-free inter-
action energies above 10 and are not shown. Each structure used for this analysis
was generated by perturbing one of the side chains of the native structure of 1AMM

(an entry from the dataset in Table 4.1) to a rotamer of the same amino acid selected
from the RROO library [113]. All native amino-acid rotamers were considered in all
of the 28 sites of the first region defined on 1AMM, giving rise to 278 structures.
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non-pairwise decomposability of NCE at the rotamer level, we looked at the NCE

contribution of a given pair of rotamers at a pair of sites as a function of the ro-

tameric states of surrounding sites. Figure 8 shows the results for a set of rotamer

pairs that have van der Waals overlap in their rotameric states. The contribution of a

pair of rotamers can vary over several orders of magnitude depending on its structural

environment. Notably, the strong contextual dependence makes it hard to identify

rotamer pairs that should be eliminated due to unfavorable interaction. Figure 4-8b

shows the fraction of rotamer pairs that have their lowest NCE-contribution, out of

the ten environments sampled, below a cutoff. For over 30% of the rotamer pairs con-

sidered, there are structures where the NCE contribution of the pair is negative. On

the other hand, the range of interaction energies among these same 30% of rotamer

pairs is consistently over 20 kcal/mol.

Reasons for the success of radius scaling: rotamer-level interaction analysis

In most of the tests performed in this study, modifications that scaled the van der

Waals radii by 85-95% (LR9AO, R85, R90 and R95) showed best performance. To ex-

amine the reason for this (and to isolate the effect of radius scaling), we compared

modification R90 with the original Lennard-Jones potential. We considered the set of

structures from native-sequence repacking generated by the L-J potential and found

that R,90 scores these with a lower MAD and AAD than L-J (MAD and AAD, re-

spectively, were 6.7 and 301 kcal/mol for R90 and 25.5 and 829 kcal/mol for L-J). To

determine whether this improvement arises from changes in the repulsive part of the

potential, the attractive part, or both, we scored the same structures with a hybrid

potential (L-J90) in which the L-J value for an atom-pair interaction energy was used

if it was below +1 kcal/mol and the energy from R90 was used otherwise. Thus, L-J90

and L-J are almost identical, since atomic interactions above 1 kcal/mol constitute

only -7% of all significant atomic interactions (defined as those with energy magni-

tudes above 0.1 kcal/mol). Surprisingly, L-J90 gave rise to MAD and AAD values

comparable to and even slightly lower than those of R90 (5.8 and 246 kcal/mol respec-

tively). Thus, the improvement in performance offered by R90 mainly comes from
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the adjustment to the repulsive part of the potential. However, we have shown previ-

ously that accurately predicting the contribution to the NCE of a clashing interaction

in a pairwise manner is essentially impossible, so R90 must improve performance in

some other way. Figure 4-9 shows the correlation between NCE and RCE contribu-

tions, as predicted by either R90 or L-J, of all repulsive atomic interactions with a

Lennard-Jones energy above 1 kcal/mol. Neither R90 nor L-J show any appreciable

correlation. In fact, the RCE-to-NCE correlation coefficient is 0.05 for R90 and 0.07

for L-J, whereas it is 0.99 for the correlation between R90 and L-J. The difference

between the two potentials, however, is that R90 predicts all energies to be lower,

which brings its estimates closer by value to the NCE contributions. Therefore, R90

treats repulsive interactions better not because it can recognize when clashes resolve

upon minimization and when not, but because it indiscriminately reduces the energy

of all clashes, which on average brings it closer to the right answer.

4.5 Discussion

Computational structure prediction and design rely heavily on the concept of side-

chain rotamers and the formulation of rotamer libraries [17, 30, 78, 145]. An over-

whelming majority of side chains in crystal structures exist in very nearly rotameric

conformations [113, 153]. However, we have shown that sampling conformational

energy in rotamer space can lead to an apparent energy landscape that is very dif-

ferent from the true energy landscape. Most of this difference comes from van der

Waals conformational energies, which change much more than any other term upon

relaxation of rotamer-based structures (see Table 4.3). We tested several types of

modified potentials that have been used in the literature to compensate for the use of

rotamers. The ideal vdW modification would be one for which the energy landscape

it describes in rotamer space resembles closely the NCE-based energy landscape (see

Figure 4-1). However, it is not practical to analyze the entire energy landscape for

a design problem of any reasonable size. For this reason, we defined several simpler

properties and used them to compare different methods.
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Figure 4-8: The contribution of a given rotamer pair to the NCE of a structure
strongly depends on the surrounding structural context. Rotamer pairs (roti-rotj)
were considered in 10 different structural contexts, where the rotameric states of
surrounding side chains were randomized. Each of these 10 structures was subjected
to side-chain minimization (see Methods) and the van der Waals interaction energy
between roti-rotj in the minimized structure was recorded. In 4-8a each column
(with a particular interaction index) corresponds to a given rotamer pair and the
y-axis denotes interaction energies of this pair in the various considered structures.
For each rotamer pair, the lowest encountered interaction energy as well as the range
of encountered energies (highest minus lowest) was recorded. In 4-8b, for any given
interaction cutoff denoted on the x-axis, the solid line (left y-axis) shows the fraction
of rotamer pairs with the lowest encountered interaction below this cutoff. For this
set of rotamer pairs, the dashed and the dashed-dotted lines (right y-axis) represent
the median and the mean of the interaction ranges, respectively. Rotamer pairs for
this analysis were picked from the native-sequence repacked structure set based on a
criterion for the existence of a clash in their rotameric conformations (van der Waals
energy above 10 kcal/mol). At most 10 rotamer pairs were considered per structural
region.
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One desirable property of a modification is that structures obtained by optimiz-
ing the RCE have an RCE in close agreement with their NCE. We tested this in the
context of both native-sequence repacking (Figure 4-4a) and sequence design (Figure
4-4b). In both cases, modification LR'o performs best on average, as well as in the
median sense. Striking differences between performance in repacking vs. design are
highlighted by modification PRM, which performs very well in repacking but poorly
in design. Because rotamers and rotamer pairs are pre-minimized in the presence of
only the template, PRM has the potential to over-pack the core of a protein. Al-
though there is little opportunity to over-pack the native sequence of a protein on its
own backbone, this problem does show up in sequence design. Figure 4-3f illustrates
an example where low-RCE structures have high NCE. Notably, this is the worst type
of failure in protein design, because of the time and resource commitment associated
with testing sequences experimentally. The over-packing problem for sequence design
is also observed with the radius-scaling modifications; AAD decreases with decreasing
radius size for repacking, whereas it has a minimum at R90 in sequence design. In-
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terestingly, even though LRSA also has the potential to be too soft, apparently the 10

kcal/mol penalty is sufficient to avoid the over-packing problem and this modification

performs well on both tests.

Quantitative agreement of RCE with NCE across sequences and structures, as re-

ported in Figure 4-4 panels a and b, is necessary for some applications. For instance,

when several folds are explicitly considered in protein design, e.g. to introduce speci-

ficity for one of them, the energies on the different backbones should be on the same

scale. On the other hand, such strict agreement across structural environments is

not always required. For example, it is irrelevant when predicting structures by side-

chain repacking or when evaluating the relative stabilities of different sequences on

the same backbone. The within-region RCE-to-NCE correlation, which is the key

metric for this application, is shown in Figure 4-4, panels c and d. In each case,

the within-region performance trends are the same as the cross-region trends. For

sequence design, however, the AAD and MAD values are lower when the structures

being compared share the same backbone (compare 4-4d to 4-4b). This is likely due

to the presence of hard-to-resolve clashes in certain structures, i.e. groups of sites

for which there are no or few clash-free rotamer combinations. Such region-specific

clashes would contribute a roughly constant offset to RCE values that would not be

penalized in within-region tests.

For yet another set of applications, the correct ordering of sequences by energy

within a given structural region, rather than quantitative RCE-to-NCE agreement,

may be sufficient. This is the relevant requirement for a hierarchical approach to

protein design in which a large pool of candidate sequences is generated using a fast

energy function (in our case RCE), and potentials of increasing accuracy and complex-

ity (here NCE) are applied to filter the results. We used two metrics to interrogate

the degree of RCE-to-NCE re-ranking. Figure 4-4, panels e-f, show the frequency

and depth of re-ranking for RCE-optimized structures in native-sequence repacking

and for low-RCE sequences in design. Frequency of re-ranking behaves similarly in

the two cases, with R95 and LR9A showing the best performance. The behavior of

re-ranking depth, however, is strikingly different between design and repacking, and
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it roughly correlates with the respective within-region MAD values. Starting at R80,

re-ranking depth monotonically increases with radius size for native sequence repack-

ing. Larger radii cause more clashes and make it more likely for a high-RCE solution

to end up with the lowest NCE. This trend is not seen in sequence design, where there

are fewer clashes because there is more opportunity to resolve them by changing the

sequence. Interestingly, capping van der Waals interactions (modification LR9Ao) gives

a dramatic improvement over R90 for repacking, causing LR9A to have the lowest re-

ranking depth for repacking and sequence design. This indicates that in addition

to getting rid of structures with unrealistically large RCE, LRA also improves the

agreement between the RCE and the NCE orderings of structures - not necessarily

an expected effect.

The metrics discussed so far test whether RCE and NCE-based energy landscapes

are close around RCE minima. Good agreement at these minima does not necessarily

mean that the two landscapes are close at other points, however, or that there is rough

overall agreement between them. Indeed, differences in RCE-to-NCE agreement for

native sequences, which should presumably be scored well by a reasonable design

procedure (Figure 4-4a), and sequences that are selected in design (Figure 4-4b)

indicate that there is a qualitative difference between these. For this reason, it is

important to test RCE-to-NCE agreement not only for low-RCE sequences, but also

for high-RCE ones, as it is possible that most of appropriate sequences for the given

fold (such as those with well-packed cores after minimization) have high RCE. We

tested for a more global RCE-to-NCE agreement in two ways. Figure 4-5a shows the

average frequency with which one of 100 random sequences had a lower NCE than

the best RCE-designed sequence. Strikingly, the value is close to zero only for R90,

R95 and LRAo. For modifications like PRM or R80 it is essentially meaningless to

search in RCE space, because it does not take very many attempts to randomly find

a better sequence directly in NCE space. Even for R80, -2 sequences out of 100

random ones are as good or better than the best sequence found through extensive

optimization of RCE.

Another way to evaluate the global appropriateness of the RCE-based energy
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landscape is to look at X -angle recovery rates in native-sequence repacking. This

provides a test of whether the RCE global minimum is similar to the global minimum

of the true energy landscape (see Figure 4-1). Although energy terms other than

vdW determine the accuracy of structural prediction, when these are constant it is

reasonable to compare X-angle recovery across different vdW modifications. Figure

*4-5b shows the results of this analysis. LR9A has the highest x-angle recovery rates,

closely followed by R95 and R90. Interestingly, most of the improvement of LRA

comes from better prediction of surface positions, which almost certainly has more

to do with modifications of electrostatics than van der Waals. Indeed, in core and

boundary positions, where changes in repulsive van der Waals are expected to play

the most important role, the performance of LRA, is roughly the same as that of R90.

Therefore, for X-angle prediction it is best to scale vdW radii by 90-95%, and most of

the improvement is not due to the specifics of the repulsive portion of the potential.

An alternative to introducing vdW modifications in protein design is to use larger

rotamer libraries. We tested libraries ranging in size from 175 to 521 rotamers in

native-sequence repacking, using the L-J and R90 potentials (Figure 4-6a). Notably,

even the smallest library used with R90 outperforms the largest library with L-J.

This indicates that appropriate vdW energy modifications can be a far more effective

way of addressing the problem of RCE-to-NCE disagreement than rotamer library

expansion, especially given the computational cost of the latter. Honig and co-workers

have shown that x-angle recovery can be significantly improved by using a very large

expanded rotamer library (7,562 rotamers) [192], presumably due to an improved

sampling of the true energy landscape. However, here we have shown that expanding

rotamer libraries in a size range more practical for protein design does not effectively

address the problems associated with the ruggedness of the energy landscape (Figures

4-6a-b).

The problem of predicting NCE from rotameric structures is non-pairwise decom-

posable, and this imposes a limit on how well a pairwise, rotamer-based approximation

can perform. However, it is not clear whether this limit is close to being achieved by

the different modifications we considered, or whether further significant improvement
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can be expected. To explore this, we looked at the sensitivity of atomic pair and

rotamer pair interactions to their surrounding structural environment (Figures 4-7

and 4-8, respectively). Both tests indicate that the problem is severely non-pairwise

decomposable. This is due to the extremely important influence of structural context

on the extent to which an atom or a rotamer pair interaction can relax. The data in

Figure 4-8 indicate that in the absence of contextual information, rotamer interaction

energies can only be predicted with an error of > 20 kcal/mol. This suggests that no

pairwise-decomposable modification can be expected to "fix" this problem.

Out of all the modifications we tested, those based on scaling the van der Waals

radius by 90 or 95% emerge as the clear winners. This is fortunate, as R90 is also the

modification that has been used most frequently in protein design. The choice has

been justified using a limited set of experimental data [36], and it is interesting to

see it borne out in more extensive computational tests. In this work we investigated

the basis for R90's superior performance. As expected, this mostly has to do with

the softer treatment of vdW repulsion by R90 compared to the original Lennard-

Jones potential. Somewhat surprisingly, however, R90 is no better than L-J (in the

sense of correlation) at predicting the eventual NCE contributions of initially clashing

interactions. The difference is that all repulsive interactions are scored uniformly

lower by R90, which allows for fewer unrealistically large interactions and better

agreement with NCE. Indeed, our analysis of rotamer pair interactions in structures

repacked with R90 or L-J shows that 60% of repulsive interactions between rotamers

resolve upon minimization to yield neutral (0 kcal/mol) or favorable contributions to

the NCE, and 82% yield NCE contributions below 0.5 kcal/mol. Thus, it would seem

that potentials that treat repulsion softly should perform very well. However, this is

not strictly true because eventually, if vdW repulsion is treated too permissively (as

is the case with PRM), sequences with unresolvable clashes are selected in protein

,design. Scaling van der Waals radii by -90% seems to be the optimum between

these two competing extremes. In many tests, modification LR90 gives an additional

improvement in performance over R90, which is due to the further reduction in the

number and magnitude of outliers with unrealistically high RCE.
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In the end, the performance of even LR9Ao, R90 or R95 is far from perfect. Dif-

ferences between RCE and NCE in repacking and design are large in comparison

with the magnitude of effects normally considered in protein design. Note that to

,obtain even these deviations in practice, one must find the optimal scale factor for

the modified potential. We found that for modifications R90, R95, L-J, LR9A and

PRM the scale factors were close to unity (roughly 0.8 - 1.4), but they were signif-

icantly different from unity for smaller radii. Additionally, the reordering between

random solutions and RCE-optimized solutions is non-zero even for the best modifi-

cations (see Figure 4-5a). We have shown that the problem of predicting NCE from

rotameric structures is inherently strongly non-pairwise decomposable. All of these

results together raise the question of whether the use of approximate potentials in

conjunction with global optimization (e.g. Dead End Elimination) is justified, relative

to non-optimal searching using the correct energy function. In fact, some develop-

rments in the latter direction have already been made. Baker and co-workers have

used non-optimal searching to adjust the choice of side-chain rotamers after initial

repacking, by allowing each rotamer at each position to relax independently with the

rest of the structure held constant [184]. Additionally, we have recently completed

a successful design study in which the sequence search was driven by NCE rather

than RCE (unpublished results). Thus, although the extraordinary utility of the ro-

tamer approximation for describing protein structure cannot be disputed, exactly how

this approximation should best be incorporated into fixed-backbone protein design

calculations remains to be determined.
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Chapter 5

A Novel Framework for Specificity

Design

Computational design of protein-protein interactions has emerged as a promising ap-

proach for engineering new cellular reagents and pharmaceuticals. Several studies

have successfully designed new protein interfaces and a few have succeeded in en-

gineering proteins that bind native targets. However, to design practically useful

reagents, one must pay attention not only to the intended interaction between the

design and the target, but also to the specificity of this interaction, which can be

important for function. Here we introduce a novel protein design framework, which

allows for the incorporation of an arbitrary number of undesired states. This ap-

proach produces a map of provably optimal tradeoffs between stability and specificity

and leaves it up to the user to select sequences with satisfactory levels of both. We

applied this novel framework to the design of specific partners against the leucine

zipper domains of human transcription factors from the bZIP family. Dimerization

specificity within this family is known to be functionally determining, so avoiding

off-pathway interactions is of great practical utility. We have characterized the space

of specificity/stability tradeoffs for designs against all human bZIPs and have shown

that often designing solely against the target sequence does not produce the desired

levels of specificity. We have also found that some bZIP coiled-coil sequences are

inherently easier targets for specificity design than others. Finally, we have designed
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specific binding partners against a number of human bZIPs, considering all of the

other bZIP sequences as undesired competitors, and proposed them for experimental

verification.

5.1 Introduction

Over the last, decade, computational protein design has emerged as a promising tech-

nique for engineering biologically useful reagents, pharmaceuticals and new materi-

als. Among the successes of the field are the stabilization of existing protein scaffolds

[117, 35], solubilization of membrane proteins [161], incorporation of new enzymatic

activity into a scaffold [46] and the design of a novel fold [95]. Design of specific

protein-protein interactions is of particular practical interest, as it potentially allows

one to engineer partners against existing cellular players. To be practical, a method

for designing binding partners for cellular proteins must not only take into account

the strength of the target complex (stability), but also the possible off-target interac-

tions of the designed protein (specificity), as the latter can have significant functional

effects in the cell.

Several studies have reengineered protein-protein interactions [68, 90, 20, 4, 156,

147, 135], although few have considered the problem of designing partners against a

fixed target [156, 147], and even fewer have done this by explicitly considering off-

target interactions. Havranek and Harbury computationally selected dimeric coiled-

coil sequences that preferentially formed either homo- or hetero-dimers by varying

both monomers and explicitly considering competing states [68]. Mayo and co-workers

computationally redesigned calmodulin to improve its binding to one of its native tar-

;gets and in doing so also increased its specificity for that target [156]. Similarly, Reina

et. al reengineered the specificity of a PDZ domain by considering only the strength of

the target interaction [147]. Kortemme et. al used a computational second-site sup-

pressor strategy to engineer a new variant of an existing protein-protein interaction

that is orthogonal towards the native pair [90].

The fact that design of specificity or multi-state design is relatively less studied
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compared to single-state stability design is probably partly due to the fact that earlier

is a more challenging task. Current methods for computational protein design are still

very much in development and are not yet at the point where most proposed designs

work experimentally. The most successful single-state design studies have had yields

around one out of four to ten designs. If success is defined in terms of more than

one state (e.g. the design should bind to protein A, but not a related protein B), the

probability of success is expected to drop exponentially with the number of alternative

states. In practice that means that many proposed designs would have to be tested

experimentally, before a successful one is found.

Other reasons for why specificity design is challenging have to do with the nature

of the computational methods. A key component in computational protein design

is the scoring function that is used to describe the compatibility of any particular

sequence with the fold or interaction in question. A variety of scoring functions are

used, and although they vary in terms of their physical realism, a significant empirical

component is present in all of them [122, 104]. Given this empirical nature of scoring

functions, it is difficult to know how to properly weight stability relative to specificity

and derive a single quantity to optimize. Additionally, even if a single quantity is

formulated, the global optimization techniques that have worked so well for single-

state design [42, 56, 58] are usually no longer applicable, making it necessary to

employ non-optimal searching techniques. Given that the sequence search space to

deal with is roughly 20' where n is the number of designed positions, this means

that one never knows whether the obtained designs are even close to being optimally

specific.

In this study we introduce a new framework for specificity design that allows

for the treatment of an arbitrary number of negative states and does not rely on

formulating specificity as a single expression. Instead, it systematically explores the

space of tradeoffs between specificity and stability in a manner that is easy to analyze.

This allows the user to make the final choice of a sequence that likely to be both

stable and specific enough from a relatively short list of candidates. The idea behind

the framework is diagrammatically shown in Figure 5-1. Here the target state is

133



designated T and there are four competing states N1 through N4 . Initially, if we

select a sequence to only optimize the stability of the target state, it may or may

not have favorable energies in undesired states. If not, the problem is solved and the

,specificity was obtained "for free". However, as is the case with N1 in figure 5-1 (left

panel), some undesired states may turn out to be significant competitors. In this

case, some stability in the target state has to be traded to obtain more specificity. In

subsequent panels of figure 5-1 the stability in the target state is optimized under a

progressively increasing constraint on the gap between the target state and the most

stable of the negative states. Eventually this leads to solutions where the target state

is relatively more stable than any of the undesired states, albeit some stability of T

is lost. Finally, a situation arises where no sequence exist that produces a larger gap

between the target and undesired states. We call this procedure a specificity sweep.

Several theoretical insights were necessary to make such a procedure possible.

First, we drew from our earlier work on cluster expansions in protein design (see

chapter 3 and ref [61]) to express a structure-based energy function as a simple func-

tion of sequence, thereby tremendously simplifying the sequence optimization tasks.

Also, we formulated the problem of optimizing the energy of the target state under a

set of gap constraints as an integer linear program in a way similar to the one used

by Singh and co-workers [85].

We have applied this novel framework to design specific partners against coiled-coil

regions of human transcription factors from the bZIP family. Dimerization specificity

among bZIP proteins is known to determine function in many cases [174, 63], and

so avoiding possible off-target interactions is particularly important. The problem is

exacerbated further by the significant sequence conservation within the bZIP family,

making it difficult to discriminate between competitors. We have designed specific

partners against a number of bZIP coiled coils by considering interaction with all non-

target bZIPs, as well as homodimerization of the design itself, as undesired states. We

have also performed a global computational analysis of the bZIP interactome showing

that some sequences are inherently easier targets for specificity design than others.

134



"""" N 3

N2

........ N i

.-T

. . N 4

SN,

........ N

T

.... N 3

........ N

T

........ N 3

........ N 2

........ N4

........ N 1
max
gap

- ,T

no gap
constraint increasing gap constraint

Figure 5-1: Illustration of the specificity sweep procedure. T designates the target
state and Nk through N4 are undesired states. First, the energy of the target state
alone is minimized (left panel), which results in N4 being more favorable than the
target state. Subsequently, an increasing constraint is placed on the gap between T
and the most stable undesired state (middle panels). Eventually, a situation arises
where the gap can no longer be increased (right-most panel).
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5.2 Results and Discussion

The goal of our framework is to allow for optimization of the target-state energy while

arbitrarily constraining the energies of undesired states. In computational protein

design, the energy of a sequence in a given structural state is normally defined as the

conformational energy of that sequence minimized over side-chain rotamer degrees of

freedom: E ra in (J) = min {Ec (9, rJ}, where Ec (a, rJ is the conformational energy

for of sequence U = {Al, ... , a N } with rotamer configurations r. Efficient algorithms

exist for finding this optimal set of side-chain rotamers and the corresponding minimal

energy for a given sequence [42, 56, 58, 101, 105, 143]. However, using these algorithms

we can only define the energy of a sequence numerically, which makes it very difficult

to perform constrained optimizations in sequence space mentioned above. One way

to circumvent this problem is to express sequence energy analytically, rather than

numerically. We have previously shown how excellent analytical approximations to

E' in (d) can be obtained using the approach of cluster expansion (CE) [61]. Figure 5-

2 shows the agreement between structure-based energies according to model HP/S/C

(developed in chapter 2) and corresponding sequence-based approximations (see 5.4.1

for details). The agreement between the two is within 2.2 kcal/mol, which is quite

good given the range of energies predicted by model HP/S/C for natural bZIP dimers

[60]. Once Em in (U) for each state is analytically expressed as a function of sequence,

the problem of optimizing the target state energy while constraining the energies of

undesired states can be formulated as an integer linear program and solved exactly

(see section 5.4.2).

5.2.1 Designs that Optimize Stability Hit Off-target Partners

In some instances in the literature, interaction specificity has been obtained without

explicitly considering undesired states and instead just improving the stability of the

target complex [156, 147, 194]. However, clearly such a strategy can not be expected

to work in all situations. In particular, its success depends on the degree of similarity

between the target and the competing partners as well as whether the design against
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Structure-based energy (kcal/mol)

Figure 5-2: Agreement between structure-based energies explicitly calculated with
HP/S/C and a CE sequence-based approximation.

the target alone happens to exploit features that are similar between the target and

the undesired competitors. We are interested in designing specific coiled-coil probes

against members of the human bZIP transcription factor family. Because there is

significant sequence conservation within the coiled-coil region of these proteins, we

expected that specific designs would be unlikely to originate from optimizing solely

against the target protein. We tested this hypothesis computationally. For each

human bZIP coiled-coil, we found the sequence of the optimal binding partner ac-

cording to two different models, and asked whether that sequence scored well against

other bZIPs. One of the models, referred to as HP/S/C (described in chapter 2),

was shown to reproduce well experimentally observed bZIP coiled-coil interaction

preferences [60]. We also considered the sequence-based scoring method for predict-

ing parallel dimeric coiled-coil interactions developed by Singh and co-workers [52].

This model, referred herein as model ML, is based on summing pairwise contribu-

tions from amino acid located at seven different pairs of positions (a - a', d - d',

g - e'+, g - a'+, d - e', a - d', d - a'+) with these contributions derived via a ma-

chine learning method and a database of coiled-coil as well as non coiled-coil partners

[52].
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Figure 5-3: Results of optimizing binding partners against each human bZIP coiled
coil (left panel in figure 5-1). The first column shows the score against the target
sequence. Subsequent columns contain gaps between the target state heterodimer
and dimers between the design and other bZIPs. Negative gaps indicate that the
target scores more favorably. Gaps in each row are colored in light gray and dark
gray if they are in the top 40% and 20% of the gap range observed for that target,
:respectively. Panels (a) and (b) to models HP/S/C and ML respectively. For the
latter, scores are negated so that lower scores correspond to higher stabilities, in
analogy to binding energies. 138

9 - 36 5 1-12- -1 -1 - -,. ,,21~ 2k, 21 --!9-- ;1 2 8 -19 l -1 -7 1 -1 o-:2 - 7 _ -21 : : ;-15, -17 -1.7, -15 -17

' -22 - -3-3 -5 -3 .. " •H ;' , - 5 4 1 1 -- -5 -5 -5 --
3  1 - -5 - - -1 I - 1 1 1

S S S 2 22 20 2 ; 2S - 1 -1 61 5 : -· 2 23 5-15-62 2 . . . .. - • ;,

-- -7: ' , -0 -7 20 : '-7 :7-1- : 9 - -6 1 - - -11 1 - 1 h :-9 -7 .-:. : -12 1 - 1 9 : s : 11 - 1 0 ; .m 14 1 9 -1 - 7 .L : . :2 4: 2- 4 2 4 2

• 1 -- 1 ; 1 ;i -L 11 -1 -- 1 -13 - -15 - -1 -a--1 --1 2 -- 1 2 -12 : -18 2. 2.-1 -I , 2;

_I m 2 • -6-

16 -5 i 1 - 2 --1 ; :•1 .ru . - 22 .10 ;9 '. -9 : , .., -. 12 -- . .9 :2 -: - --

-2 18 ,9 4 3 42•202 12 .: . , ,- 1 1-22 21: 2 2- -4-m-7 
i

3 ": ;:3 6 - : 0 -5 128-11 - --M -5 -5 -5 -4:: - • - -5 -3 -:-2o :7i :,: ': ., .' 4: ,.' 4: 4n ": ,1" :. , , " :7.

-14 -2-9.-13 . , -: -. =.9'3 --4 2 1. 24
S1 M ' -22•-2 1-2 '-22 ' 4 .ý-7-16 2' 26 2 1-21- 2-• illli 2i-21 -2- _1 -2 .,

I EX.

: F

I.FY
MFI·:·
AFl:l·:·
_;I,'.

:FI:;F:

A·

__



The results of optimizing only against the target bZIP (left panel of figure 5-1)

are shown in figure 5-3(a) for model HP/S/C. In most instances, just by virtue of

optimizing binding with the target bZIP, interactions with other bZIPs are scored

weaker. However, for almost all bZIP targets, there is at least one competitor that

either produces a positive gap (i.e. the score of the design against the competitor

is more favorable than against the target) or a small negative gap. In particular,

members of the same sequence family (diagonal blocks) are almost always problem-

atic competitors. Additionally, the homodimer of the design is often stabilized when

only the target heterodimer state is considered (darker squares in figure 5-3(a) show

the most problematic competitors). There can also be off-family competitors, i.e.

sequences not in the same family as the target bZIP that nevertheless are expected

to interact well with the design. For instance, according to model HP/S/C, when

designing against targets in the CREM family, interactions are also likely with pro-

teins from Jun family and designs against C/EBP, are predicted to interact with

sequences from both ATF-2 and Jun families. Interestingly, these combinations are

almost never reciprocal (e.g. CREM family members are not expected to compete

with design against the Jun family).

Figure 5-3(b) shows the result of optimizing binding with model ML. In this case,

the problem of designing specificity does not seem to be nearly as difficult. For the

possible exception of competitors from the same sequence family as the target, the

magnitudes of the observed gaps are higher with ML, relative to the scores of the

*target state, than for model HP/S/C. This, however, can be an artifact of the scoring

function. When tested against experimentally observed dimerization preferences of

human bZIP coiled coils, scores above -35 for the ML model corresponded to strong

interactions [52]. So it may be that scores of 70 and 40 correspond to roughly the

same interaction strength, meaning that many of the gaps observed in figure 5-3(b)

are not actually as large as they appear.
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5.2.2 Designing Stability and Specificity

As indicated in figure 5-3 specificity is likely to be a problem if designs are only opti-

mized against their target partners. Using the methodology we have developed (see

section 5.4.2), we can optimize binding with the target sequence under arbitrary con-

straints on the gap between the target dimer and the undesired dimers (see figure 5-1).

Here we perform specificity sweeps of all human bZIP coiled coils, while considering

the design homo-dimer as well as hetero-dimers with all other bZIPs, except members

of the target's family, as undesired states. We have seen that binding to members of

the same sequence family as the target is difficult to avoid due to high sequence con-

servation. Indeed, experimental binding profiles of family members are usually very

similar [134]. At the same time, members of a family are expected to have similar

functions, so from the practical standpoint, absence of specificity within a family may

not be a problem. For this reason, in our further analysis we exclude members of the

sequence family of the target bZIP from the list of undesired competitors.

Shown in figure 5-4 is a series of graphs summarizing the results of the specificity

sweeps using model HP/S/C. Each specificity sweep (one for each bZIP target) results

in a list of optimized sequences of decreasing stability and increasing minimal gap with

any of the undesired states. Figure 5-4(a) shows the gaps for the sequences optimized

:for biding to their targets without any constraints. In figure 5-4(b) gaps are shown

for the sequence out of the specificity sweep list that loses at most 5% of the score

:relative to the optimal sequence. In figure 5-4(c) up to 20% of stability is allowed to be

lost. Finally, figure 5-4(d) shows the sequence with the largest possible minimum gap.

Clearly, significant specificity can be gained by allowing for the loss of some stability

(dark and light grey boxes indicate gaps above -6 and -13 kcal/mol). In fact, the

most dramatic difference is between the most stabilizing sequence (figure 5-4(a)) and

one that is allowed to be at most 5% less stable (figure 5-4(b)). In this interval of

stability, many of the designs gain gaps of -10 kcal/mol against most competitors.

Based on previous tests of the energy model, a gap of this size indicates a high degree

of confidence in the relative order of stability. The marginal improvement is less
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between loosing up to 5% and up to 20% of the original stability (compare figures

5-4(b) and 5-4(c)) and by the time 20% of stability is lost, most designs already have

the largest possible minimal gaps (compare figures 5-4(c) and 5-4(d)).

5.2.3 Proposed Designs for Experimental Testing

To test our specificity design framework, as well to further test model HP/S/C, we

selected designs against several targets for experimental characterization. We selected

targets from a variety of bZIP families that together span a large portion of native

bZIP sequence space [8], while at the same time considering reagent availability.

Members of families ATF-2, ATF-3 (a family with one sequence), Fos, Jun, L-Maf and

NFE2 were considered for target selection. Additionally, we selected a viral protein,

Meq, as one of the targets. Meq is a bZIP from Marek's disease virus (MDV) - a

very oncogenic herpesvirus that induces T cell lymphomas in chickens [110]. Because

Meq is believed to be the oncoprotein of MDV [108], peptides that target Meq in a

specific manner may be of practical use.

Figure 5-5 shows examples of specificity sweeps against several targets. Design

against ATF-2 is shown in figure 5-5(a). As we can see, simply optimizing binding with

ATF-2 causes p21SNFT (from the BATF family) to score nearly as well against the

design as against ATF-2 itself, producing a gap of only -2.6 kcal/mol. From earlier

characterization of model HP/S/C, we know that a score difference of -13 kcal/mol

corresponds to a very high level of confidence in the order of interaction strength, so

ideally we would like to see gaps of around that magnitude. The design homodimer,

HCF and C/EBP, are also close competitors. As a progressively larger gap constraint

is placed on the design, there is initially very little change in core residue identities,

and specificity is mostly addressed with e and g position mutations (amino-acid

changes are indicated with blue squares). Eventually, however, when that strategy

saturates, core residues begin to change and this is also the point where stability

drops more sharply. Two designs were selected against ATF-2 (marked with asterisks

in figure 5-5(a)), both of which are above the point where stability is significantly

compromised. The first design is expected to be slightly more promiscuous than the

143



ATF-2
-75

p21SNFT -2.6
-75

homo -3.9
-74

p21SNFT -5.1
* -74

HCF -6.1
-74

C/EBPg -7.2
-74

homo -8.3
* -73

HCF -9.4
-73

p21SNFT -11
-71

JUND -12
-64

Meq -13

FOS
-79

p21SNFET -12
-78

p21SNFT -14
* -78

NFE2L2 -15
-77

p21SNFT -16
-74

NFE2L2 -17
-73

ATF-2 -18
-69

CMAF -19

Meq
-70

p21SNFET 1.62
-70

p21SNFT 0.48
-70

p21SNFT -1.2
-70

p21SNFT -2.7
* -70

ATF-2 -3.8
-69

p21SNFT -4.9
-69

p21SNFT -5.9
-67

CREB3 -7.1
-66

ATEF-3 -8.1
-63

ATF-3 -9.1

fg a b cd e fg a b cd e f g a b c d e f g a b cd e fg a b cd e fg a b c d e fg
VWVQSLEKKAEDLSSLNGQLQSFVTLLRNEVAQLKQLLLAHKDC
A AA RA LAA E EA AA KA AAEKA AA RA E AANKAI
QKADKLHEEYE SLEQENTMLRRE I GKLTEE LKHLTEALKE HEKM
A A AAR A AAE EA AAK KA AAK KAA AA~A AAEKAZ
AKLAALRALLAALEARNAALKALRAALKALLAALEAELAALKAE
A AA*RA AA*EA AAEKA AA*KA AA A AA A
QKADKLHEEYESLEQENTMLRRE IGKLTEELKHLTEALKEHEKM

A AALRA AALEAA AALKA L AA KA LAAL A AA MEAE
EYVMGLESRVRGLAAENQELRAENRELGKRVQALQEESRYLRAV
AmAA A AAHEAmAANKA A AN KA A AAA AEAA
QKAQDTLQRVNQLKEENERLEAK I KLLTKE LSVLKDLFLEHAHN
AmA AGA A AAEAE AA AKAA AAEKAIA AA A AANKAA
AKLAALRAILAALEAANAALKALRAALKALLAALEAELAAMKAE
A AAIRAfAAEEA AAEKA AAMKA AA A AA AA
EYVMGLESRVRGLAAENQELRAENRELGKRVQALQEESRYLRAV

A AA*RA AA*EA AA KA AA AA AA A AA0A

A AAMRA AA EA AASKA AASKA AA A AA A
ERI SRLEEKVKTLKSQNTELASTASLLREQVAQLKQKVLSHV
A• AAAiAA EA AAQ$ KA AA KA AA A AA AI
DYVDKLHEACEELQRANEHLRKEIRDLRTECTSLRVQLARHE

(a) ATF-2

f g a b
ELTD

A A
QKAD
AN A

QKADA(MA
ENIVAIMA
A MA

AB A
VWVQ

AMA
Q QR H

c d e

TLQ
ASK
KLH
AIK
KLH
AIK
ELE
AIK
RLH
AIK
ELE

ASK
S LE

ASK
VLE

fg a b cd e fg ab
AE TDQLEDEKS

A AA RA A
EEYE SLEQENT
A AAMRA A

EE YE SLE QENT
A AA RA A
QD LDHLKDEKE
AAAARA A
EEYESLEQENT
A AA RA A

QD rLD HLKDEKE
A[ AAn R A XI A
KKAEDLSS LNG

SEKNQLLQQVD

fg a b cd e fg a b
DYVDKLHEACE

A AAERA A
QKADKLHEEYE

QKADKLHEE YE
A AAM A A

QKADKLHEE YE
AA RA A

A AA RA A

VWVQSLEKKAE

QKADKLHEEYE

A'LR AAn E A TXA
QKADKLHEEYE

A 'IA AM AMA
VYVGGLE SRVL
A L A A I A DVA
E KTE C LQKE S E
AEK E AA QKA SA
E K TE CL Q KESE

cd e fg a b cd e fg ab

AK KA A AKA KJA
MLRREIGKLTEELK
AURA AAS A A
MLRRE I GKLTEE LK
AURA AA KA A
KLLKEKGENDKS LH
AKA AmA AKRA A

A KA AA KA A

KLLKEKGENDKS LH
AK KA JA AK KA *A
QLQSEVTLLRNEVA
HLQA A AA I A R E A
H LK Q EIS RL VR ER D

(b) Fos

Cd e fg a b cd e f g a b

E LQRANEHLRKE I R
AKRA AAELA A

SLEQENTMLRRE I G
A I A AA LA A

SLEQENTMLRRE IG

AHE A ,$A AMLA $JAS LEQE NTMLRRE I GAEEA AA LA A

A EA AA*EA A

AEEAAA~AAA EA AA A A
A ME A 0A A MEA t0A
KYTAQ-NMELQNKVQ
An EA -;A Al~A A &:AA

KLE SVNAELKAQ I EA (c) MeqAA AKLESVNAELKAQIE

(c) Meq

c d e
DLR
AIK
KL T

fg ab

EELK

c d e f g a b
KLEFILA

AMR A A
HLTEALK
H LR EA LA
HLTEALKAM RA EýA

LLKKQLSAM A Eý!ýA

HLTEALKANA AA

LLKKQLS

A RA41A
QLKQLLL

AYKEKYE

c d e
AHR

AIK
EHE
AIK
E HE
AHK
TLY
AIK
E HE

ASK
T LY

AIK

ANK

KLV

Sd e fg ab c d e

SLRVQLARHE

HLTEALKE HE
A KA AA RA AA K
KLTEELKHLTEALKE HE
A• K AA RA,. AA• K
KLTEE LKHLTEALKEHE
A KA AA A AA K
KLTEELKHLTEALKE HE
A A AAELA AAMK

LLRNEVAQLKQLLLAHK
AEASAAELA AANK

K LTN ELKHL T EAL KEHE
A A AA A AANK

AOAD A A A A AI K
L LLEE Q LS LL DQLNL RQ
AA A AA A A ANK
ELKNEKQHLIYM NLHR
AM RAQ*AA RAQAANK
EL KN EK QH L IYM LN LH R

144



Figure 5-5: Specificity sweeps against several targets with model HP/S/C. The se-
quence in the top line of each panel is that of the target. Sequences highlighted in
color are different designs, ranked from the one with most stability (second line) to
the one with the most specificity (next to last line). The interaction score of the tar-
get heterodimer is shown to the left of each designed sequence. Coloring of the design
sequences indicates heptad position. Orange, yellow, light grey and dark grey corre-
spond to g, e, a and d. Amino acids that change in each round of the specificity sweep
are indicated with blue squares. Underneath each design sequence, the competing se-
quence with the smallest gap to the target dimer (the most problematic competitor)
is shown and the gap itself is shown to the left (negative gaps indicate that the unde-
sired heterodimer scores less favorably than the target). Sequences marked with an
asterisk in the left column have been selected for experimental characterization.

second, with minimal gaps of -6.1 and -9.4 kcal/mol, respectively.

Figure 5-5(b) illustrates the specificity sweep against Fos. In this case, optimiza-

tion against the target alone produces significant gaps with other bZIPs (minimal

gap of -12 kcal/mol) and these gaps can be widened somewhat with little loss in

stability. Because Fos has some non-canonical residues at a positions (threonines in

the first two heptads and lysines in the third and fifth), optimal designs against Fos

also do not have the canonical all-hydrophobic selection at a. This heterogeneous

core is much of the reason why high specificity for Fos is obtained. One design was

selected against Fos (marked with an asterisk in 5-5(b)), which had a minimal gap of

-15 kcal/mol and was predicted to be nearly as stable as the top design. This design

has two lysines and one arginine at a positions. The two lysines (the first two a posi-

tions) are across from threonines at a' positions in the other helix. Interestingly, K is

the only residue for which a significantly favorable thermodynamic coupling energy

is reported with T at this position (-0.45 kcal/mol) [2]. One of the lysines is in the

N-terminal a position, which will minimize its desolvation upon folding. Finally, the

second lysine is poised to make a salt bridge with a glutamate at the opposing g

position in Fos. The arginine selected in the fourth a position can form a similar salt

bridging interaction.

Results of the specificity sweep against Meq are shown in figure 5-5(c). This is

an example where specificity design is difficult. The top binding partner against Meq

scores better against p21SNFT by 1.6 kcal/mol than against Meq itself. In addition to
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this, only six out of the 12 e and g position amino acids in Meq are charged, and four

of these six are identical between Meq and p21NSFT. This makes it difficult to impose

specificity in the usual manner, i.e. with charge patterning. Instead, design relies on

the core to deal with specificity, selecting many of the core position residues to be

polar or charged. The most specific design has a minimal gap of -9.1 kcal/mol, but

by this point the stability has dropped significantly and all of the a position residues

are polar. We chose one design against Meq at a point where further improvements in

stability caused the core to be much more polar (marker with an asterisk in figure 5-

5(c)). This design is expected to be somewhat promiscuous and will probably interact

at least with the ATF-2 and BATF families. However, calculations still predict that

it should interact with Meq better than any other bZIP.

Upon choosing designs against all targets, b, c and f position amino acids were

chosen as described in section 5.4.4. Model HP/S/C does not directly account for b,

c and f residues, and in general less is known about the impact of these positions on

coiled-coil stability and specificity. Hence, our goal was to choose amino acids at these

positions that are most appropriate given what was already chosen at a, d, e and

g, according to naturally observed distributions. Additionally, through experimental

characterization of some initial designs we, discovered that large values of charge or

helix propensity can be problematic (high charge causes significant salt effects, and

a high helix propensity indiscriminately stabilizes all interactions). Therefore, in our

procedure for choosing b, c and f amino acids, we imposed constraints on the values

of charge, charge content and helix propensity of the entire final sequence. Table 5.1

shows the list of the final design sequences proposed for experimental characterization.

These will be characterized using both protein microarrays to assay global specificity

and circular dichroism to investigate select complexes more quantitatively.

5.3 Conclusions

We have presented a new powerful technique for simultaneously designing specificity

and stability. This approach is not based on formulating a specific tradeoff function for
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Table 5.1: Final sequences for experimental characterization.
register fgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefg
antiATF-2 QKLQTLRDLLAVLENRNQELKQLRQHLKDLLKYLEDELATLEKE

antiATF-3-1 NEDLVLENRLAALRNENAALENDLARLEKEIAYLEKEIEREK

antiATF-3-2 ELTDELKNKKEALRKDNAALLNELASLENEIANLEKEIAYFK

antiATF-3-3 NETEQLINKKEQLKNDNAALEKDAASLEKEIANLEKEIAYFK

antiFos NEKEELKSKKAELRNRIEQLKQKREQLKQKIANLRKEIEAYK

antiJUN SIAATLENDLARLENENARLEKDIANLERDLAKLEREEAYF
antiMAFG-1 KEIEYLEKEIERLKDLREHLKQDNAAHRQELNALRLEEAKLEFILAHLLST

antiMAFG-2 KEIERLEKEIKTLINLLTTLRQDNAAHRKEAAALEKEEANLERDIQNLLRY

antiMeq-1 NLLATLRSTAAVLENENHVLEKEKEKLRKEKEQLLNKLEAYK

antiMeq-2 NEVAQLENDVAVIENENAYLEKEIARLRKEIAALRDRLAHKK
antiMeq-3 NEVTTLENDAAFIENENAYLEKEIARLRKEKAALRNRLAHKK

antiNFE2 QKRQQLKQKLAALRRDIENLQDEIAYKEDEIANLKDKIEQLLS

stability and specificity, as this can be difficult in practice given the empirical nature of

scoring functions used for computational protein design. The method systematically

maps out the space of optimal specificity/stability tradeoffs and leaves the decision

of selecting final sequences for synthesis up to the user (although this last step can be

easily automated if it is felt that the scoring methods are reliable enough). Although

we have chosen to use a specificity sweep strategy (i.e. where the stability of the

target state is optimized under an increasing constraint on the smallest gap between

the target and the undesired states), many different optimization protocols can be

envisioned under the same general ILP approach. In particular, the target state

energy can be optimized under a constraint involving any linear combination of gaps

with the undesired states. Alternatively, the constraint can be placed on the stability

and the gaps can be optimized. Finally, although we have applied our framework

to only sequence-based pairwise-decomposable energy functions, it is easy to envision

how higher-order terms can be accommodated within the same framework (see section

5.4.2 for a brief elaboration).

Based on our calculations, specificity design is certainly something that needs

to be considered explicitly if one hopes to design practical peptide binders against

bZIP targets. Sequences that globally optimize target state stability often fail to

be predicted to bind better to their intended target than to any of the competitors.
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Although our calculations only apply to the bZIP system, intuition dictates that

interaction specificity will in general not be obtained "for free" by simply optimizing

binding against the target, especially in instances when potential competitors form a

family with the target protein. This is because if only information about the target

is known during optimization, it is impossible to know whether the design is taking

advantage of those features of the target that are conserved within the family or not.

Given this, we believe that methods for systematic design of specificity and stability,

such as the ILP-based method presented here, will become increasingly important as

computational protein design is utilized for practical applications.

5.4 Materials and Methods

5.4.1 Cluster Expansion

The theory behind using cluster expansions to express the fixed-backbone energy of

a protein as a function of its sequence is described in chapter 3 and ref [61]. In this

study we derived a cluster expansion of model as HP/S/C described in chapter 2. The

expansion was truncated at pair contributions. Only amino acids within one heptad

of one another (both on the same chain and on opposite chains) were assumed to have

significant interactions, so pair ECI only for these pairs were considered. This gave

rise to 4 point clusters and 4 homotypic and 36 heterotypic pair clusters. Positions

a, d, e, and g were allowed to vary among all natural amino acids except proline and

glycine and positions b, c, and f were fixed as alanine. This resulted in a total of

9,929 ECI (1 constant, 68 point and 9,860 pair).

Although ECI are chosen to minimize the error of a cluster expansion, it is ex-

pected that the error will be larger for sequences very different from those present in

the training set. Because the purpose of deriving a cluster expansion in this study

was to design specific partners against naturally occurring coiled coils, we built a

training set that represented well the sequence space encountered in nature. Amino-

acid frequencies specific for each heptad position were derived from 432 native bZIP
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sequences from 10 species (dataset obtained through personal communication with

Mona Singh). 60,000 six-heptad parallel dimeric coiled-coil sequences were generated

by randomly selecting amino acids with probabilities equal to their natural frequen-

cies at the corresponding heptad positions. The training set was then enriched for

amino-acid combinations with corresponding ECI that occurred less than five times

by augmenting the set with five sequences that contained that particular combina-

tion with the rest of the amino acids chosen randomly as before. This brought the

final size of the training set to 61,780. Each of these sequences was then repacked

and evaluated with model HP/S/C as described before [60] as well as with model

HP/S/Cv. Cluster expansions were derived by initially including only constant and

point cluster functions and progressively considering all pair cluster functions, keeping

only those that decreased the CV RMS error (for each set of cluster functions, ECI

were obtained using standard least-squares fitting by the method of pseudo-inverse)

[61]. The order in which pair cluster functions were visited was determined by the

magnitude of their ECI when all pair cluster functions were included. The final ex-

pansion contained a total of 2,544 ECI and had RMS error of 2.2 kcal/mol. Figure

5-2 shows the performance of CE on the training set.

5.4.2 Formulation of the Problem as an Integer Linear Pro-

gram

Singh and co-workers have shown how the problems of rotameric structure packing

and protein design can be expressed as an integer linear program (ILP) [85]. To this

end, the sequence/structure space in a protein design problem with p variable sites

is represented as a undirected p-partile graph with node set V = V1 U... U Vp,.

Set Vi contains one node for each rotamer at position i. Each node u Vi is

assigned a weight E,,u corresponding to its self energy. The edges of the graph

D = {(u, v) : u EVi and v e Vj, i $ j} are assigned weights Euv equal to the pair-

wise interaction energies between the corresponding rotamer pairs. A particular se-

quence/rotamer configuration can then be represented by specifying the set of nodes
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in V and the set of edges in D that it involves. Given this formulation, the energy of an

arbitrary sequence/rotamer configuration becomes E = Ev EUUXu+EuZ,vED EUVx,,

where binary decision variables xu and xv determine which nodes and edges from

the graph are chosen. The problem of optimizing energy can thus be expressed as that

of minimizing e under the constraint that the chosen vertices and edges correspond

to one another [85]:

Minimize: E = EuV EV xuu + Eu,veD Evxu,

subject to:

E•u . xu = 1 for j =1,...,p (5.1)

EEVy XuV =XV for j = l,...,p andveV\Vj

xuu, xuv E {0, 1}

We extend this formulation to allow for multi-state design. First, to simplify the

problem tremendously, we express the energetics of our target as well as negative

states as analytical functions of sequence. Note that because these sequence-based

expressions are still pairwise-decomposable, the ILP formulated above can still be used

to find the optimal sequence in any one state (the difference is that now only amino-

acid degrees of freedom remain, which drastically reduces the number of decision

variables xu and xu and the number of constraints). The energy of a sequence in

any state S can be expressed as Es = EZ v ESVxu + Eu,vED ESxu,, where weights

ES and ES are simply the corresponding ECI from the cluster expansion for state S.

Because the same decision variables are involved here as in single-state design, we can

build ILPs similar to that in equation 5.1 to optimize any linear combination of state

energies as well as to impose arbitrary inequality constraints on state energies. In this

study we have chosen to optimize the energy of the target state T under constraints
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on the gaps between T and the negative states Ni. An ILP that accomplishes this is:

Minimize: 6- = uEV Euuxuu + Eu,vED Ev,•

subject to :

Euc xuu = 1 for j = 1,...,p

Ue, xUv = xV,, for j = 1,.. ,p and v e V\Vj (5.2)
EN1  

T > gc, where EN, uEv E~NxI + + uvD Ex NIX

ý.Nk - > gc, where ENk = uEV ENk N+ u,vED E kX

xuu, xuv {, 1}

where gc is the particular gap constraint imposed and k is the number of competing

states. In this study we solved such ILPs with the glpsol tool from the GNU Linear

Programming Kit. Because of the simplicity of sequence-dependent energy functions

obtained through cluster expansion, solutions to these ILPs with as many as 49 neg-

ative states were normally obtained within 1-5 minutes on a single 2.7 GHz CPU.

Whereas if full rotamer-level energy functions have to be considered, such optimiza-

tions become intractable by any current method.

Note that although here everything was formulated for sequence pairwise-decomposable

energy functions, in principle this approach can be easily generalized for higher-order

terms. Clearly, the CE methodology is already capable of taking higher-order inter-

actions into account, should there be a need for that [61]. As far as the ILP problem

formulation, it can be expanded to handle higher-order terms by introducing addi-

tional decision variables. For example, x,,, would be 1 if there is a triplet interaction

between rotamers u, v, and w at the corresponding sites. Additionally, constraints for

these new decision variables would also have to be imposed to make sure that higher

order interactions only occur between those rotamers that are "chosen" (e.g. in this

case x, xv and x, are 1). Note that these higher-order decision variables would have

to be introduced only for those clusters of sites that do, in fact, have higher-order

interactions. This allows the complexity of the ILP problem to grow naturally with

the size of the system (i.e. the number of variables and constraints grows linearly with
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the number of interactions in the system). Additionally, clever pruning techniques,

such as those proposed by Singh and co-workers [85], may be applied here as well to

simplify the ILP problem.

5.4.3 Design Specifications

Each of the design calculations performed in this study sought to find a sequence that

bound to a particular natural human bZIP coiled coil in a parallel dimeric manner.

The set of explicitly considered negative states consisted of the parallel homo-dimer of

the designed sequence as well parallel hetero-dimers with the remaining human bZIP

coiled coils, except the sequences in the same family as the target (unless otherwise

specified). Positions a, d, e, and g were allowed to vary over the 10 most frequently

occurring amino acids at each position as follows: {V, L, N, I, K, A, R, T, Y, E}

for a, {L, V, I, M, H, Y, T, A, K, F} for d, {E, K, R, Q, L, S, T, A, V, I} for

e and {E, K, Q, R, L, Y, T, D, A, I} for g. b, c and f positions were fixed as

alanine. The energy models used in this study approximate the effect of amino-acid

substitutions on the stability of the parallel dimeric coiled-coil structure, but know

nothing about alternative structural states such as aggregated states, the stabilization

of which can lead to problems with solubility. Therefore, additional efforts were

necessary to ensure that designed sequences had a hydrophobic/hydrophylic pattern

favoring the coiled-coil state. The most common way of addressing this problem

is to restrict the amino-acid library at each position based on the degree of burial,

favoring hydrophobic amino acids in the core and polar amino acids on the surface.

However, in coiled coils, charged and polar amino acids are frequently found in core

positions, especially position a, and hydrophobic amino acids are often found on the

surface. Therefore, we imposed a restriction at the level of the entire sequence, rather

than requiring that particular positions be hydrophobic or hydrophilic. To this end,

a position-specific scoring matrix (PSSM) was constructed for each heptad position

based on a dataset of 432 native bZIP sequences. A constraint was incorporated into

the ILP that required designed sequences to score above a certain cutoff using this

PSSM. The cutoff was chosen such that 15% of natural bZIP sequences scored above
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The procedure for design consisted of a specificity sweep, where the stability of

the target sate was optimized under a progressively increasing constraint on the gap

between the target state and the competing states (see figure 5-1). The first opti-

mization was run without any gap constraints at all (i.e. gc = inf in equation 5.2),

meaning the sequence that optimized target state energy was found. Gaps between

that sequence in the target state and all the negative states were then calculated and

the smallest gap gmin (the most negative) identified. The next optimization was run

with a gap constraint gc = gmin - 1 kcal/mol. This procedure was repeated until no

sequences existed that could satisfy the imposed constraints. This chain of optimiza-

tions resulted in a list of sequences of decreasing stability and increasing specificity,

which can be viewed as the limiting line in the specificity/stability phase space.

5.4.4 Choosing b, c and f positions

Identities of the b, c and f positions were chosen to be most appropriate for the

already selected a, d, e, and g positions given what is observed in the dataset of

432 natural bZIP sequences. Thus, for each b, c or f position bi we sought to opti-

mize P (bi a],..., an), where a ... an are the identities of the selected a, d, e, and g

positions. To this end we expressed this quantity in terms of probabilities we could

measure from our dataset:

P(bj aj,..., P (bi, a, ... an) = P (aJlbi, a2 ... an) - P ( b i , a 2 . . . a n )  (53)
P (a,,..., an) P (a,, ... ,an)
P (a, bJ, a2 ... an) P (a2lbi, a 3 . . .an) . . .P (an bi) . P (bi)

P (al, . . . , an)
P (a, ibi) -P (a2lbi) ... P (anIbi) • P (bi)

P (a, . . . , an)

The last step assumes that the pre-selected amino-acid decoration at positions a, d, e,

and g represents well the natively observed decorations at these positions (i.e. prob-

ability P (ak bi) measured in the particular given adeg context and that probability

averaged over all native contexts are the same). Quantity P (a, ... ,an) is hard to
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estimate, but it is constant with respect to b, c, f and is therefore not important.

Conditional probabilities P (aklbi) can be easily measured from the dataset and for

each b, c and f position the amino acid that optimizes the probability in equation

5.3 can be found. Using this approach we were able to obtain b, c, f decorations of

natural content and distribution. However, we found that infrequently this procedure

resulted in sequences with large charge and/or helix propensity (mostly due to the

fact that the pre-selected a, d, e, and g amino acids already had high values of charge

or helix propensity). Some of our initial experimental testing indicated that extreme

values of these properties may be undesirable. Large amounts of charge give rise to

very strong salt effects, and high helix propensities make it difficult to discriminate

between monomeric and dimeric states by circular dichroism. Thus, we modified the

procedure for selecting b, c and f to guarantee that sequences with physical properties

in a reasonable range were selected. The goal was still to optimize the probability in

equation 5.3, but constraints on total charge and charge content (number of charged

residues) as well as on the helix propensity of the entire sequence were imposed. The

optimization problem was expressed as a integer linear program as for the optimiza-

tion of energy in section 5.4.2. For each property, the range of acceptable values

was defined as p ± a, where p and a are the mean and standard deviation of the

corresponding property in the native bZIP dataset. In a few instances this resulted

in no solutions (i.e. the selected a, d, e or g were already outside of the range for

one of the properties) and for these cases more liberal intervals were allowed (either

p ± 1.5a or -± 2a). Finally, since we wanted to rely on UV absorbance for deter-

mining concentration of our peptides in experimental characterization, we placed an

additional constraint on the sequence of b, c, f to contain at least one Y or W residue

(unless there was one already present at a, d, e or g).
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Chapter 6

Conclusions

DSF-based of approaches have lead to significant successes over the past few years.

Novel protein structures as well as enzymatic activity have been computationally de-

signed [46, 95], structures of many proteins have been predicted with atomic accuracy

[23] and interactions between proteins have been predicted using structural models

[60, 84]. However, as I describe throughout my thesis, there are clearly still many

limitations and challenges. Now is an interesting time in the evolution of protein

modeling as computing technology has become more available and affordable than

ever before. Thus, it is interesting to speculate on future prospects for DSF-based

modeling.

6.1 Coarseness of Structural Sampling

In general, there is no principal difference between modeling proteins as having a dis-

crete set of conformations and treating them continuously, as all modeling in silico

is discrete. Even molecular dynamics simulations have to have a finite time step of

integration, which means that conformational changes occurring on timescales be-

yond this interval can not be modeled. So the real difference then between DSF and

continuous models is in the fineness of structural sampling. In fact, as computing tech-

nology advances, the boundaries between DSF and continuous modeling blur. This is

particularly apparent in the work by Baker and co-workers [148]. Their ROSETTA
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approach to structural modeling involves the assembly of protein backbones from a

pre-complied list of three- and nine-residue structural fragments obtained from the

PDB. Although strictly a discrete sampling method, through its successful applica-

tions to structure prediction and docking, Baker and colleagues have demonstrated

that the degree of flexibility obtained with ROSETTA is sufficient to describe much

of the space of low-energy protein conformations. Of course, rigorous application of

this methodology is very computationally complex as the search space of possible pro-

tein conformations is immense. Certainly, some of the recent success of this method

can be attributed to the use of a distributed computing platform Rosetta©Home.

Others have shown alternative methods, by which protein conformations can be sys-

tematically explored. Harbury et. al have used Crick parameterization of coiled-coil

backbones [32] to explore flexibility in computational protein design [65]. DeGrado

and co-workers have also used parameterization approaches to model helical bundles

[136]. Dihedral angle perturbations, NMR ensembles and normal modes have also

been used to generate collections of protein conformations [99, 88, 193].

The work of Pande and co-workers has been blurring the lines between continu-

ous and discrete modeling from the other extreme - explicit atomic-level molecular

dynamics simulation. Pande and colleagues represent the space of possible protein

conformations on a folding pathway as a graph connecting discrete conformational

neighborhoods, and they compute the transition probabilities between the neighbor-

hoods close in structure [160]. Combining these data allows them to simulate transi-

tion probabilities of much larger conformational rearrangements extending simulation

timescales far beyond those associated with traditional molecular dynamics. Although

this approach employs explicit molecular dynamics simulation, the manner in which

protein conformation space is represented shares resemblance with DSF-based models.

Pande and colleagues have also benefitted tremendously from distributed computing

technology through the Folding@Home platform.

The idea behind the DSF framework - breaking down the space of protein confor-

mations into discrete bins, is sound and is a very promising direction. However, it is

hard to know a priori what level of structural discretization will be appropriate for
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different applications. That is why I think it is important to develop methods that

can be generalized for arbitrary fineness of structural sampling. For example, the ro-

tamer approximation used in protein design often appears to be sufficient to explain

the relevant side-chain flexibility. However, it is possible that in order to model cer-

tain phenomena, it will be necessary to account for flexibility on a finer level. Some

of the methods currently used to treat side-chain flexibility (e.g. self consistent mean

field approaches) can in principle incorporate any number of off-rotameric structural

states for each amino acid. On the other hand, modeling backbone flexibility by

considering a finite set of variant backbones and performing separate calculations on

each, may not scale quite as well.

6.2 Adjustable Energy Functions

Because it is not known what level of structural sampling will be necessary for differ-

ent applications, it is also important to develop energy models that can be adjusted

for different levels of coarseness. For example, as I show in chapter 4, although van

der Waals interaction energy modeled with the Lennard-Johns potential is completely

decomposable in terms of atom pair contributions, when structural degrees of free-

dom are discretized, such strict decomposability is lost. The severity of this problem

is directly related to the fineness of structural sampling. Thus, an approach must be

developed that can systematically adjust energetic models for an arbitrary level of

structural sampling. In the case of van der Waals energy, this may involve introducing

triplet or higher-order interactions between side-chain rotamers. One method that

can potentially fill this need is the cluster expansion approach I describe in chapter

3. However, other approaches are also possible. For example, in the field of reduced

protein models (beads-on-a-string or lattice representations of proteins), one is often

concerned with choosing an appropriate energy function for the reduced represen-

tation so as to optimally recapitulate the properties observed in real proteins [38].

Approaches of similar nature may also prove to be useful for dealing with structural

discretization.
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6.3 Unfolded States

Finally, the ability of DSF models to treat unstructured states of proteins is quite

limited. In general, the idea of structural discretization is probably less natural for

the unfolded state given that it is an heterogeneous ensemble of a large number of

structural conformations. Modeling the unfolded state by only accounting for side

chain-to-backbone interactions with one backbone conformation is unrealistic and I do

not expect this approach to work well in the future. However, in principle, it is possible

to improve upon this model while still remaining in the DSF framework. One could

explicitly consider a large enough ensemble of discrete backbone conformations such

that averages over this ensemble would approximate well thermodynamic properties

of the unfolded state. Approaches akin to those employed by Pande and co-workers

or Baker and colleagues may make this possible. However, it is not clear that this is

the best approach. Because of its heterogeneous nature, it may be better to model

the unfolded state with the help of more classical thermodynamic methods. In this

respect, previous work on lattice models [155, 1] and Ising-like models [26] may prove

useful. It is also important to realize that part of the reason that unfolded state models

are currently very limited is the small amount of experimental evidence isolating the

effects of protein behavior to the unfolded state. Marti et. al have demonstrated that

electrostatic repulsion in the unfolded state can stabilize a leucine zipper [118]. There

have also been attempts to structurally characterize unfolded state ensembles [14].

More studies of this sort should aid greatly in the development of appropriate models.

6.4 Summary

In summary, discrete structural flexibility models have been useful for a large range

of applications over the past decade. Nowadays, as high-performance computing

technology becomes more available, the boundaries between discrete and continuous

modeling begin to disappear. To address this convergence, new methods for system-

atically dealing with varying degrees of coarseness of structural sampling need to be
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developed. Some promising new directions towards addressing this need already exist

and over the next decade I think we will see a qualitative improvement in the accuracy

and applicability of DSF-based models.
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Chapter 7

Possible Future Directions

7.1 Specificity Design Framework

We have so far limited the application of our specificity design framework to the

parallel dimeric coiled coil system. Other flavors of coiled coils, such as antiparallel

dimers or mixed higher-order oligomers, come to mind as obvious candidates for

future applications. For coiled coils the barrier between different orientations and

oligomerization states can often be low and a few mutations can easily tip the balance

for one state relative another. So the ability to account for various possible orientation

and oligomerization states can be very useful in design. Additionally, it may be

practically useful to be able to specifically design anti-parallel dimers or higher-order

oligomers. The biggest limitation for this problem is currently the lack of reliable

energy functions that account for these alternative coiled-coil states. Deriving such

energy functions is therefore an important future direction (see section 7.2 for on

this).

In principle, the specificity design framework, as formulated in chapter 5, is gen-

eralizable and can be applied to systems other than the coiled coil. Some technical

augmentations, however, may make this generalization easier. Given the current for-

mulation of the framework, only up to pairwise interactions between amino acid at

various sites in any given state can be treated. For the dimeric coiled-coil system, up

to pairwise interactions capture the majority of energetic effects and are sufficient for
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reasonable accuracy (see ref [61] and figure 5-2 in chapter 5). However, it is possible

that for other systems higher-order interactions will be necessary [61]. The cluster

expansion formalism readily allows for the incorporation of such higher-order contri-

butions, should they be necessary to increase the accuracy of the expansion. However,

the Integer Linear Program used by the specificity sweep procedure currently only

allows for up to pairwise interactions. In section 5.4.2 of chapter 5 I briefly outline

how this limitation can be broken and implementing this functionality is probably

key to applying the framework more widely.

7.2 Structure-based Modeling of Coiled-coil Inter-

actions

Our structure-based model for parallel dimeric coiled-coil interactions (model HP/S/C

- see chapter 2) has proven reasonably accurate in prediction as well as shown good

potential in design. However, there are several limitations to the model that we are

aware of, and there are many potential approaches to addressing these limitations that

we have not yet been pursued. One of the shortfalls of our structure-based approach

is that it is not able to correctly predict values of experimentally measured coupling

energies for a - a' interactions, especially those involving asparagine. In HP/S/C we

have temporarily addressed this limitation by replacing computed a - a' and d - d'

interactions with corresponding empirical weights from a machine learning model (see

chapter 2). Although this has worked well so far, it is not the most satisfying solution

to the problem. Additionally, we have already noticed some biases arising in design

that are most likely due to the less precise manner by which interaction weights are

assigned in the machine learning approach, especially for those amino-acid pairs that

occur rarely in the training set.

One possibility for why our DSF-based approaches have failed to reproduced cor-

rect a - a' coupling energies may be the lack of backbone flexibility in our modeling.

In deriving model HP/S/C, we attempted to crudely account for backbone flexibility
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by giving each potential dimer a choice of eight different ideal backbones. Although

this did not give a significant improvement in result, there is much more to be done

before we can rule out backbone flexibility as a major source of error. First, it is

likely that eight backbones are not enough and more sampling is required. Also,

it is possible that rather than performing grid-based sampling (i.e. using the same

predefined backbones for all sequences), it may be more efficient and appropriate to

search in backbone space separately for each sequence. There is precedent for this

type of approach in the design and structure prediction and it may work very well in

our case, since the space of backbone variations in parallel dimeric coiled coils is quite

limited. The search for an appropriate backbone can be done either with stochastic

Monte Carlo-like techniques or with dynamics (either explicit molecular dynamics or

reduced complexity dynamics).

I am currently pursuing a molecular dynamics-based approach for calculating

a - a' coupling energies. If this approach is successful, it may provide insight into

why the DSF-based models we have applied to the task have failed. Whether it comes

from molecular dynamics, another modeling approach or from experimentation, I

think it is important to gain a deeper physical understanding for why the measured

a - a' coupling energies are what they are and how dependent on context they are.

This will potentially allow us to adjust our reduced models to capture the necessary

effects.

When deriving model HP/S/C, we did not systematically analyze the effect of

explicitly modeling positions b, c and f. The fact that we get quite reasonable

performance by ignoring these positions says that much of the coiled-coil interaction

specificity in natural sequences is independent of amino acids in b, c and f. However,

through our design work we have discovered that inappropriate choice of sequence at

b, c and f can lead to significantly weakened interactions. Therefore, I think that

looking for possible improvements in performance due to explicitly modeling b, c and

f positions, is a potentially fruitful future direction. Besides being applicable to the

coiled-coil system, findings of such a study may help understand the contributions

of non-interfacial amino acids in other helix-mediated interactions (such as helix-to-
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grove).

Something that is currently at a very simplistic level in model HP/S/C is the

treatment of the reference (unfolded) state. Our finding that intra-helix pairwise

interaction contribute much less to stability than inter-helix ones indicates that pair-

wise contributions to the unfolded state energy are important. Unfortunately, it is

not trivial how these contributions can be accounted for in a rigorous manner, so in

HP/S/C they are treated implicitly and crudely by scaling intra- versus inter-chain

interactions differently. An alternative way to approaching this problem is to use

a statistical representation of the unfolded state, where all interactions have some

probability of occurring, and tune the parameters of the statistical ensemble as well

as the parameters of residue-residue interactions, to optimize performance. A possi-

ble drawback of such an approach is that too many adjustable parameters may need

to be used to make the model physically reasonable, making it difficult to obtain a

statistically-meaningful fit. Another potential approach would be to explicitly model

a representative structural ensemble of unfolded structures. Sosnick and co-workers

have developed a method for generating explicit random coil ensembles for arbitrary

protein sequences, and have shown that their ensembles reproduce experimentally-

measured unfolded state characteristics such as radius of gyration, while retaining a

significant amount of locally native structure - a feature of the unfolded state often

noted in spectroscopic studies [79]. It would be very interesting to know whether

such explicit ensembles can be used to improve modeling of the unfolded state. One

problem with such an approach is that the amount of computational time necessary

to treat a reasonable unfolded ensemble even for one sequence can be quite large, es-

pecially if used in conjunction with a sophisticated energy function. However, initially

one can try to do this using a very simple energy function (one with a fast treatment

of solvation, such as EEF1), such that the evaluation of hundreds of structures can

be done per second. One then would simply test whether the presence of such an

explicit unfolded state model improves prediction results relative to using the same

simple energy function but without an unfolded state (i.e. all sequences have the same

free energy in the unfolded state). Using such a test, we were able to eliminate the
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penta-peptide model for the unfolded state as inappropriate for modeling coiled-coil

association. I would be very curious to know if any improvement can be obtained

with an explicit unfolded state model and, if yes, how this improvement changes with

the number of structures considered in the unfolded ensemble.

Finally, it would be interesting and useful to try to extend model HP/S/C to treat

other coiled-coil orientations and oligomerization states. The biggest limitation I see

with this is the lack of a uniform and clear experimental dataset that can be used

for model validation and training. Microarray technology applied to the bZIP system

provided us with a semi-quantitative dataset of relative interaction strengths for over

1,000 potential parallel dimeric coiled-coil interactions, which was integral in deriv-

ing a reasonable model. A similar dataset does not exist for other orientation and

oligomerization states. Of course, one can compile a dataset of coiled-coils sequences

with verified orientation and oligomeric states, such that the ability of different meth-

ods to discriminate between these can be ascertained. Perhaps the easiest way to do

this is to look for coiled coils with available structures and sequences with homol-

ogy to those with known structure can also be considered. However, the problem

of discriminating between different orientation and oligomerization states is different

from the problem of capturing the relative stability of different sequences in the same

state, although an ideal energy function could do both. For example, the unfolded

state is unimportant for the simple folded state discrimination problem. In order to

be able to derive a reasonable unfolded state model, a dataset of relative stabilities is

necessary. It would be nice, for example, to perform similar microarray experiments

to the ones done with human bZIPs on a set of anti-parallel coiled coils. Gathering

relative stability data for higher-order coiled-coil oligomers may be more difficult.

However, if we derive a unified structure-based model that works well for predicting

relative stabilities of both parallel and anti-parallel dimeric coiled coils, then it may

be reasonable to expect that the model is general enough that its extension to arbi-

trary oligomerization states may also work well. Perhaps then such a model does not

need to be quite as extensively verified for higher-order oligomers in prediction mode

and can be directly applied in design mode.
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7.3 Cluster Expansion

One of the significant advantages of the cluster expansion approach as I present it in

chapter 3 is that computationally very expensive models can potentially be expressed

as very simple functions of sequence. The only limitation is that the original models

have to be fast enough such that energies for a training set of sequences (usually

several tens of thousands) can be computed. Optimally, one would like to expand an

energy function that is based on explicit molecular dynamics (MD) simulations, but

obtaining free energies from explicit MD is currently difficult for protein-sized systems.

Hybrid MD-based models, such as MM/PBSA methods, have recently shown some

promising results [167]. They are computationally fast enough that cluster expansions

based on MM/PBSA energies are probably within reach (at least for small systems).

It would be interesting to apply this approach in the context of design.

A potential improvement to the cluster expansion method itself would be finding

better ways to identify potentially contributing higher-order interactions. Because

the number of possible interactions grows exponentially with cluster size, for most

systems it is impossible to enumerate over all interactions beyond the pairwise ones.

Thus, one has to have an idea which high-order interactions are likely to contribute.

Clearly, physical intuition dictates that combinations of residues very far apart in

structure should generally not have a significant energetic contribution. However,

this does not restrict the number of potential clusters to a small enough set and,

further, this is just a trend rather than a strict condition. It would be nice to have

some set of criteria, by which potentially contributing high-order interactions can be

identified. An interesting project may be to consider one or a few systems that are

small enough such that all triplets can be enumerated and important ones identified,

and see if there are any conditions or structural properties that correlate with a high-

order cluster having large contributions. If such properties are identified, one may

try to move to a larger system and see how much of an improvement in expansion

accuracy (in the sense of cross-validated error) can be obtained by considering high-

order interactions identified a priori with the above properties.
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